

View

Online


Export
Citation

RESEARCH ARTICLE |  DECEMBER 17 2024

Generalized synchronization in the presence of dynamical
noise and its detection via recurrent neural networks 
José M. Amigó   ; Roberto Dale  ; Juan C. King  ; Klaus Lehnertz 

Chaos 34, 123156 (2024)
https://doi.org/10.1063/5.0235802

Articles You May Be Interested In

“Metric” complexity for weakly chaotic systems

Chaos (March 2007)

The two-parametric scaling and new temporal asymptotic of survival probability of diffusing particle in the
medium with traps

Chaos (March 2017)

An analysis of the stability and bifurcation of a discrete-time predator–prey model with the slow–fast effect
on the predator

Chaos (March 2024)

 18 D
ecem

ber 2024 08:18:46

https://pubs.aip.org/aip/cha/article/34/12/123156/3326495/Generalized-synchronization-in-the-presence-of
https://pubs.aip.org/aip/cha/article/34/12/123156/3326495/Generalized-synchronization-in-the-presence-of?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-1642-1171
javascript:;
https://orcid.org/0000-0002-7262-474X
javascript:;
https://orcid.org/0009-0005-2510-9859
javascript:;
https://orcid.org/0000-0002-5529-8559
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0235802&domain=pdf&date_stamp=2024-12-17
https://doi.org/10.1063/5.0235802
https://pubs.aip.org/aip/cha/article/17/1/013116/280305/Metric-complexity-for-weakly-chaotic-systems
https://pubs.aip.org/aip/cha/article/27/3/033117/136040/The-two-parametric-scaling-and-new-temporal
https://pubs.aip.org/aip/cha/article/34/3/033127/3275681/An-analysis-of-the-stability-and-bifurcation-of-a
https://e-11492.adzerk.net/r?e=_dXRtX3NvdXJjZT1wZGYtZG93bmxvYWRzJnV0bV9tZWRpdW09YmFubmVyJnV0bV9jYW1wYWlnbj1IQV9DSEFfU1QrT3Blbitmb3IrU3Vic19QREZfMjAyNCJ9&s=jyigj3eVIo9GMKJ92Hrb7psRcO4


Chaos ARTICLE pubs.aip.org/aip/cha

Generalized synchronization in the presence of
dynamical noise and its detection via recurrent
neural networks

Cite as: Chaos 34, 123156 (2024); doi: 10.1063/5.0235802

Submitted: 29 August 2024 · Accepted: 1 December 2024 ·

Published Online: 17 December 2024 View Online Export Citation CrossMark

José M. Amigó,1,a) Roberto Dale,1,b) Juan C. King,1,c) and Klaus Lehnertz2,d)

AFFILIATIONS

1Centro de Investigación Operativa, Universidad Miguel Hernández, 03202 Elche, Spain
2Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz

Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14–16, 53115 Bonn, Germany; and Interdisciplinary

Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany

a)Author to whom correspondence should be addressed: jm.amigo@umh.es
b)Electronic mail: rdale@umh.es
c)Electronic mail: juan.king@goumh.umh.es
d)Electronic mail: klaus.lehnertz@ukbonn.de

ABSTRACT

Given two unidirectionally coupled nonlinear systems, we speak of generalized synchronization when the responder “follows” the driver.
Mathematically, this situation is implemented by a map from the driver state space to the responder state space termed the synchronization
map. In nonlinear times series analysis, the framework of the present work, the existence of the synchronization map amounts to the invert-
ibility of the so-called cross map, which is a continuous map that exists in the reconstructed state spaces for typical time-delay embeddings.
The cross map plays a central role in some techniques to detect functional dependencies between time series. In this paper, we study the
changes in the “noiseless scenario” just described when noise is present in the driver, a more realistic situation that we call the “noisy sce-
nario.” Noise will be modeled using a family of driving dynamics indexed by a finite number of parameters, which is sufficiently general for
practical purposes. In this approach, it turns out that the cross and synchronization maps can be extended to the noisy scenario as families
of maps that depend on the noise parameters, and only for “generic” driver states in the case of the cross map. To reveal generalized syn-
chronization in both the noiseless and noisy scenarios, we check the existence of synchronization maps of higher periods (introduced in this
paper) using recurrent neural networks and predictability. The results obtained with synthetic and real-world data demonstrate the capability
of our method.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0235802

The first description of synchronization of two coupled dynam-
ical systems (two pendulum clocks hanging from a beam) is
attributed to Christiaan Huygens in 1665. In 1990, Pecora and
Carroll demonstrated that chaotic systems that are unidirec-
tionally coupled (i.e., drive-response systems) can also synchro-
nize. By synchronization in both of the previous cases, we mean
that the two systems evolve in finite time to a dynamic with
a constant relationship between their states. In turn, chaotic
synchronization gave rise to generalized synchronization, where
now the relationship between states may be arbitrary. Precisely,

our work deals with a mathematical formulation of general-
ized synchronization in the more realistic case of drivers per-
turbed by dynamical noise. In addition, we do not assume
knowledge of the states but only scalar observables of them
in the form of time series. We also discuss other practical
issues, most importantly, a method to detect generalized syn-
chronization for both noiseless and noisy drivers, based on
recurrent neural networks. The capability of this method is
successfully tested with numerical simulations and real-world
data.
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I. INTRODUCTION

The framework of this paper is nonlinear time series analy-
sis, and the topic is synchronization of two unidirectionally coupled
nonlinear systems and its generalization when noise is present in
the driving system. By synchronization we mean generalized (or gen-
eral) synchronization in the sense of Afraimovich et al.1 and Rulkov
et al.,2 i.e., there is a map, called the synchronization map that trans-
forms the states of the driving system (driver) into states of the
driven system (responder), possibly with a time delay or after an
initial transient time. Identical (complete, full, etc.) synchroniza-
tion corresponds then to the synchronization map being the identity
between two structurally equal systems; other, more interesting
examples include lag, intermittent-lag, and phase synchronizations.3

Synchronization, whether identical or generalized, plays an impor-
tant role in many fields of science and engineering, particularly
in nonlinear dynamics,4,5 telecommunications,4,6,7 neuroscience,8–10

and cryptography;11–14 see, e.g., Pikovsky et al.,15 and Pecora and
Carroll16 for overviews and historical notes.

In the noiseless or fully deterministic scenario, synchroniza-
tion has been extensively studied using a number of techniques,
including cross (or mutual) prediction,17,18 conditional Lyapunov
exponents,4,19,20 replica synchronization,21 asymptotic stability of the
responder,22 nonlinear interdependence measures,23–25 cellular non-
linear networks,26,27 complexity measures extracted from symbolic
representations,28–30 reservoir computing,31,32 and more. We will use
prediction because predictability is a fingerprint of determinism, i.e.,
functional dependence.33

Furthermore, it is known18 that, in the case of two unidirection-
ally coupled nonlinear systems with a noiseless driver, there exists
typically a continuous map defined from the reconstructed state
space of the responder to the reconstructed state space of the driver,
which was called the closeness mapping in Amigó and Hirata34 and
will be called the cross map here. As it turns out, the definition of
synchronization amounts to the invertibility (i.e., bijectivity) of the
cross map; in fact, the inverse of the cross map is the “translation” of
the synchronization map (if any) from the original domains (driver
and responder state spaces) to the reconstructed ones. The exis-
tence of the cross map has been used to study interdependence and
causal relationships in nonlinear time series analysis.34–37 In a nut-
shell, these methods harness some actual or hypothetical property
of the cross map (continuity, smoothness, or local expansiveness) to
reveal, given bivariate time series of a coupled dynamics, what the
driving system is. We will generalize the cross and synchronization
maps to multi-time versions that are well suited to the application of
recurrent neural networks in time series analysis.

The main objective of this paper is the extension of the cross
and synchronization maps from noiseless to noisy drivers. To model
noise in the driver, we replace the dynamic of a noiseless driver
with a family of driving dynamics indexed by a finite number of
parameters whose values are randomly chosen, an idea called finitely
parameterized stochasticity.38 To implement this idea in our setting,
we will use the stochastic forcing approach of Stark et al.39 First,
noise is formulated as an autonomous dynamical system called a
shift system, whose states comprise all possible noise realizations
in form of parametric sequences; the nth component of a given
sequence indicates which is the chosen driving dynamic at time n.

Second, the noisy driver is then formulated as a non-autonomous
system, namely, a system forced by that shift system. As a result,
our approach to synchronization in the presence of dynamical noise
is based on state space reconstruction for unidirectionally coupled
systems40 and stochastic forcing39 and is sufficiently general for prac-
tical purposes. We will show that the cross and synchronization
maps can be extended from the noiseless to the noisy scenario by
incorporating an additional dependence on the noise parameters
and only for typical driver states in the case of the cross map.

In addition to discussing theoretical results in the noiseless and
noisy scenarios, we also explore synchronization with synthetic and
real world data. Prompted by multi-time expressions for the syn-
chronization map, we not only use perceptrons but also long short-
term memory (LSTM) nets.41 In this approach, synchronization is
detected via estimation of a responder state by a contemporaneous
driver state or, in case of LSTM nets, by a segment of contem-
poraneous and past driver states. As the benchmark in numerical
simulations, we chose nearest neighbor cross prediction because it is
based precisely on the existence of the cross map, so it fits very well
in our approach. In fact, the continuity of the cross map entails that
near neighbors of a point in the responder state space map to near
neighbors of its image in the driver state space (and vice versa when
synchronization sets in). Therefore, one expects that this correspon-
dence stays if low-amplitude noise affects the driving dynamic. We
also apply LSTM nets to detect coupling directionality and syn-
chronization in electroencephalograms (EEGs) from a subject with
epilepsy. The optimization of the parameters and metaparameters of
our numerical tools is beyond the scope of the present work.

To address the points described above, the rest of this paper is
divided into a first, theoretical, and a second, numerical, part. Thus,
in Sec. II, we first review the basics of our approach to make this
paper self-contained. For didactic reasons, we start with the Tak-
ens and Stark (or forced Takens) embedding theorems (Sec. II A),
along with the concept of cross map (Sec. II B); then we introduce
the concept of generalized synchronization (Sec. II C) and discuss
its relationship with the cross map (Sec. II D). Novel concepts such
as the cross and synchronization maps of higher periods are intro-
duced for further applications in Secs. VI and VII. The presentation
is rigorous from a mathematical point of view but unnecessary
technicalities are avoided. Along the way, practical issues are also
considered with a view to the second part of the paper. Once the
traditional, noiseless scenario has been presented, the noisy scenario
is set in two steps: in Sec. III, we revisit stochastic forcing and an
embedding theorem that is used in the second step, Sec. IV, where a
unidirectional coupling with a noisy driver is modeled as stochas-
tic forcing. The generalization of the cross and synchronization
maps to the noisy scenario is the subject of Sec. V. The theoretical
concepts of Secs. II–V are illustrated and put into practice in the
second part of the paper. For this purpose, in Sec. VI, we resort to
two unidirectionally coupled Hénon maps, synchronization being
detected with recurrent neural networks and compare the results
with those obtained with nearest-neighbor cross predictability. In
Sec. VII, we tackle the applicability of our tools to the analysis of
real data in the form of EEGs, where noise and bidirectional cou-
pling are the rules. In this case, the “driver” is identified by the
direction with the strongest coupling. Our findings are discussed
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in light of results published in the specialized literature. Finally, the
main contributions and conclusions of this paper are summarized
in Sec. VIII.

II. THE NOISELESS SCENARIO

This section is a compact, mathematically oriented account of
the cross map, synchronization, and their interplay in the absence of
noise.

A. Embedding theorems

Following Stark,40 let Y be a non-autonomous dynamical sys-
tem (the responder) evolving under the influence of an autonomous
dynamical system X (the driver). X is also called the driving or forc-
ing system, and Y is the driven or forced system. In the case of
discrete-time deterministic dynamical systems or flows observed at
discrete times, this situation is described by the difference equations

{
xt+1 = f(xt),
yt+1 = g(xt, yt),

(1)

where (i) xt ∈MX is the state of system X at time t; (ii) yt ∈MY

is the state of system Y at time t; (iii) MX and MY are compact
manifolds of dimensions dimX ≥ 0 and dimY ≥ 1, respectively; (iv)
f : MX →MX is a C1 diffeomorphism (i.e., a C1 invertible map such
that f−1 is also C1, where C1 is shorthand for continuously differen-
tiable); and (v) g : MX ×MY →MY is a C1 map such that g(x, ·)
is a diffeomorphism of MY for every x ∈MX. Alternatively, we say
that there is a (unidirectional) coupling from X to Y and use the
shorthand X Y. Since we assume that f and g(x, ·) are invert-
ible, we may take t ∈ Z, although in applications time series have
a beginning that we will set at t = 0.

Remark 1. By defining the map

[f, g](x, y) = (f(x), g(x, y)), (2)

the forced system (1) becomes an autonomous dynamical system on
the full state space MX ×MY, called the skew product of f and g. Due
to the properties (ii)–(v) above, [f, g] is a C1 diffeomorphism of the
compact manifold MX ×MY.

As stated in the Introduction, we are mainly interested in non-
linear time series analysis. So, suppose further that the only infor-
mation available about the systems X and Y are scalar observations
ϕX(xt) of the states xt and ϕY(yt) of the states yt, where the observa-
tion functions ϕX : MX → R and ϕY : MY → R are assumed to be
C1. To reconstruct the state spaces of the driver X and the responder
Y from the corresponding observations ϕX(xt) and ϕY(yt), we use the
Takens and Stark theorems, respectively, which we remind below for
further reference.

Theorem 2 [Takens theorem42]. If d ≥ 2 dimX+1, then the
map Ef,ϕX

: MX → R
d defined as

Ef,ϕX
(x) = (ϕX(f 0(x)), ϕX(f 1(x)), . . . , ϕX(f d−1(x))) (3)

is an embedding for generic f and ϕX.
As usual, f 0 is the identity, f 1 = f, and f n is the nth iterate of f.

Here, “generic f and ϕX” formally means that the set {f, ϕX} for which
Ef,ϕX

is an embedding (i.e., a C1 diffeomorphism onto its image) is
open and dense in the C1-topology (uniform convergence of a map

and its derivative) of the respective function spaces, namely, dif-
feomorphisms of MX, and C1 maps from MX to R. In general, a
property is generic in a topological space T if it holds on a residual
subset S ⊂ T , i.e., on a subset that contains a countable intersec-
tion of open sets. It turns out that an open and dense set of maps f
for which Ef,ϕX

is an embedding for generic ϕX is built by those C1

diffeomorphisms of MX that have only a finite number of periodic
orbits of period less than d, and the eigenvalues of each such periodic
orbits are distinct (Stark,40 Theorem 2.2).

Remark 3. Theorem 2 was generalized by Sauer et al.43 in
two ways. First, by replacing “generic” with “probability-one” (in
the sense of prevalence). Second, by replacing the manifold MX

by a compact invariant set A that may have fractal box-counting
dimension, and the restriction d ≥ 2 dimX+1 (which comes from
Whitney’s embedding theorem44) by d ≥ 2boxdim(A)+ 1, where
boxdim(A) is the box-counting dimension of A.

For our purposes, we need to generalize Theorem 2 to the
forced dynamic

(xt+1, yt+1) = [f, g](xt, yt)

defined by the diffeomorphism (2) in the full state space MX ×MY.
As before, set [f, g]0

= identity, [f, g]1
= [f, g] and [f, g]t+1

= [f, g] ◦
[f, g]t for the iterates of [f, g], so that

[f, g]t(x, y) = (f t(x), g(t)(x, y)), (4)

where g(t)(x, y) : MX ×MY →MY is recursively defined by
g(0)(x, y) = y and

g(t)(x, y) = g(f t−1(x), g(t−1)(x, y)) (5)

for t ≥ 1. Application of the Takens theorem to the skew prod-
uct [f, g] would provide a map E[f,g],ϕX,Y

: MX ×MY → R
D, with

D ≥ 2(dimX+ dimY)+ 1, which would be an embedding for open
dense sets of diffeomorphisms of MX ×MY and observation C1

maps ϕX,Y(x, y) : MX ×MY → R, in the C1 topology of the respec-
tive function spaces. However, what we need for applications to
nonlinear time series analysis is an embedding for generic maps f,
g, and observation maps ϕY on MY, and this is not guaranteed by
this approach.

The generalization of the Takens theorem to forced dynamics
that we need is the following due to Stark.

Theorem 4 [forced Takens theorem40]. If D ≥ 2(dimX

+ dimY)+ 1, then the map Ef,g,ϕY
: MX ×MY → R

D defined as

Ef,g,ϕY
(x, y) = (ϕY(g

(0)(x, y)), ϕY(g
(1)(x, y)), . . . , ϕY(g

(D−1)(x, y)))
(6)

is an embedding for generic f, g, and ϕY.
Specifically, generic g means that Ef,g,ϕY

is an embedding for an
open and dense set of diffeomorphisms g(x, y) (such that g(x, ·) is
a diffeomorphism of MY for every x ∈MX) in the C1-topology of
MX ×MY. In this case, an open and dense set of maps f for which
Ef,g,ϕY

is an embedding for generic g and ϕY is built by those C1 dif-
feomorphisms of MX whose periodic orbits of period less than 2d
are isolated and have distinct eigenvalues (Stark,40 Theorem 3.1).
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B. The cross map

Hereinafter, we tacitly assume that f, g, ϕX, and ϕY are generic
in the sense of Theorems 2 and 4. Also, “smooth” stands for C1

smoothness in the following.
Given the scalar observations (ϕX(xt))t∈Z and (ϕY(yt))t∈Z, The-

orems 2 and 4 allow to “reconstruct” the (possibly unknown)
dynamics of the underlying systems X and Y in the manifolds

NX = Ef,ϕX
(MX) ⊂ R

d

and

NY = Ef,g,ϕY
(MX ×MY) ⊂ R

D

called the reconstructed driver and responder state spaces, respec-
tively, by means of the time-delay vectors

xt = Ef,ϕX
(xt) = (ϕX(xt), ϕX(xt+1), . . . , ϕX(xt+d−1)) ∈ R

d (7)

and

yt = Ef,g,ϕY
(xt, yt) = (ϕY(yt), ϕY(yt+1), . . . , ϕY(yt+D−1)) ∈ R

D. (8)

In turn, the dynamics xt+1 = f(xt) in MX translates into the recon-
structed driving dynamics

xt+1 = (Ef,ϕX
◦ f ◦ E−1

f,ϕX
)(xt) =: f̃(xt) (9)

in NX, while the dynamics (xt+1, yt+1) = [f, g](xt, yt) in MX ×MY

translates into the reconstructed coupled dynamics

yt+1 = (Ef,g,ϕY
◦ [f, g] ◦ E−1

f,g,ϕY
)(yt) =: [̃f, g](yt) (10)

in NY, the manifolds NX and NY being diffeomorphic copies of MX

and MX ×MY, respectively. Therefore, all coordinate-independent
properties of f and [f, g] can be determined in NX and NY.

Remark 5. Without loss of generality, it can be assumed
that d = D. In nonlinear time series analysis, where the underlying
dynamical system is unknown, the embedding dimension of a time
series is usually chosen by the method of false nearest neighbors.45

Let 5X : MX ×MY →MX be the projection onto MX, i.e.,
5X(x, y) = x. From the diagram

MX ×MY 3 (xt, yt)
5X
−→ xt ∈MX

E−1
f,g,ϕY

↑ ↓ Ef,ϕX

NY 3 yt xt ∈ NX

(11)

along with the smoothness of the embeddings E−1
f,g,ϕY

, Ef,ϕX
, and the

projection 5X, we conclude the following proposition.
Proposition 6. A unidirectional coupling X  Y necessarily

implies the existence of a smooth map

8 := Ef,ϕX
◦5X ◦ E−1

f,g,ϕY
: NY → NX (12)

called the cross map of the coupling X Y, which sends yt to xt, i.e.,

xt = 8(yt). (13)

Intuitively, Eq. (13) spells out that the responder signal carries
information about the dynamics of the driver because of the time
evolution law yt+1 = g(xt, yt).

Remark 7. Equation (13) is equivalent to the existence of a
map

xt = 8(k)(yt−k), (14)

for any k ∈ Z, where 8(k) : NY → NX. Indeed, from

xt = f̃k(xt−k) (15)

[see Eq. (9)] and xt−k = 8(yt−k), it follows

8(k) = f̃k ◦8 = Ef,ϕX
◦ fk ◦ E−1

f,ϕX
◦8 (16)

and, hence,

xt =
1

K

K−1∑

k=0

8(k)(yt−k) =: 8K(yt, yt−1, . . . , yt−K+1) (17)

for all K ≥ 1. Note that 8(k) and 8K are continuous, and 8(0)

= 81 = 8.
By changing the summation limits in (17), one can construct

other similar multi-time expressions. For definiteness, we will use
only definition (17).

Definition 8. We call the continuous map xt = 8(k)(yt−k)

the cross map of order k ∈ Z, and the continuous map xt

= 8K(yt, yt−1, . . . , yt−K+1) the cross map of period K ≥ 1.
The continuity of the cross map 8 has been used in nonlinear

time series analysis to discriminate functional (deterministic, causal,
etc.) relationships between observations due to coupled dynamics
from statistical correlation. In its simplest version, the continuity of
the cross map xt = 8(yt) belonging to the coupling X Y implies
that, given an open ball Bε(xt) ⊂ R

d with center xt and arbitrary
radius ε > 0, there exists an open ball Bδ(yt) ⊂ R

D with center yt

and radius δ = δ(ε) > 0 such that 8(Bδ(yt)) ⊂ Bε(xt). Therefore,
the k nearest neighbors yt1 , . . . , ytk

of a time-delay vector yt ∈ NY

in a time series (yt)0≤t≤T of the responder are mapped by 8 to close
neighbors xt1 , . . . , xtk

of the contemporaneous vector xt ∈ NY in the
corresponding time series (xt)0≤t≤T of the driver. Methods that take
advantage of the continuity of 8 in this way to unveil the coupling
X Y include cross prediction,18 convergent cross mapping,35 and
continuity scaling.37

C. Generalized synchronization

According to Rulkov et al.2 and Pikovsky et al.,15 the systems
X Y are in generalized (or general) synchronization if there exists
a continuous map h : MX →MY such that

yt = h(xt), (18)

for all t ∈ Z. That is, the responder follows the driver but in a
weaker form than in identical synchronization, which corresponds
to h being the identity (i.e., X and Y are structurally the same and
yt = xt). We will also say that Y is synchronized to X if Eq. (18) holds
and call h(x) the synchronization map.

Therefore, in case of synchronization the full state space MX ×
MY shrinks into the subspace {(x, y) ∈MX ×MY :
y = h(x)}, which is the graph of the synchronization map x 7→ h(x).
This subspace is usually called the synchronization manifold, even
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when h is not smooth. It follows then that the projection map from
MX ×MY onto MX, 5X(x, y) = x, is invertible,

5−1
X (x) = (x, h(x)), (19)

and the range of 5−1
X : MX →MX ×MY is the synchronization

manifold.
Remark 9. Plug the driver dynamic xt = f(xt−1) into Eq. (18)

to derive

yt = h(xt) = (h ◦ f)(xt−1) = · · · = (h ◦ fk)(xt−k) =: h(k)(xt−k),
(20)

where h(k) = h ◦ fk : MX →MY is continuous for all k ≥ 0, and
h(0) = h. Equation (20) with k ≥ 1 corresponds to generalized syn-
chronization for responders with an internal delay loop. When f is
invertible (as in our case), the generalized synchronization of the
systems X and Y can indistinctly be defined by yt = h(xt) or, more
generally, by yt = h(k)(xt−k) for k ∈ Z; in the latter case, h = h(k) ◦
f−k. The maps h(k) : MX →MY are called synchronization maps of
order k, orders 0 and 1 being the usual choices in applications.

From Eq. (20), it trivially follows that

yt =
1

K

K−1∑

k=0

h(k)(xt−k) =: hK(xt, xt−1, . . . , xt−K+1), (21)

for all K ≥ 1, in case Y is synchronized with X. By changing the sum-
mation limits in Eq. (21), one can construct other similar expres-
sions. For definiteness, we will use only Eq. (21) in this paper, so
that h1 = h.

Therefore, to detect synchronization of a time series {yt}t≥0 with
another time series {xt}t≥0, we can look for functional dependencies
of the form (21) with K > 1 rather than yt = h(xt). If {xt}t≥0 is a
deterministic time series (i.e., xt+1 = f(xt)) and {yt}t≥0 is synchro-

nized with it, then Eq. (21) holds with a continuous map hK : M K
X

→MY such that hK(xt, f
−1(xt), . . . , f−K+1(xt)) = h(xt). The point is

that, in time series analysis, multi-time dependencies like (21) can be
efficiently detected by recurrent neural nets, as we discuss in Sec. VI.

Definition 10. We call the continuous map yt = hK(xt, . . . ,
xt−K+1) in Eq. (21), the synchronization map of period K ≥ 1.

The synchronization maps of order k, h(k) = h ◦ fk, satisfy a
number of straightforward relations involving also the function
g(x, y). Indeed, in case of synchronization, the dynamic (1) of X Y
simplifies to {

xt+1 = f(xt),
yt+1 = g(xt, h(xt)).

(22)

Comparing with yt+1 = h(f(xt)) shows that h(x) fulfills the func-
tional relation

h(f(x)) = g(x, h(x)). (23)

Replace x with fk(x) in Eq. (23) to obtain

h(k+1)(x) = h(k)(f(x)) = g(fk(x), h(k)(x)). (24)

Recursion of Eq. (24) leads to alternative formulas for synchroniza-
tion maps of arbitrary periods involving function g.

Contingent upon the structure of g(x, y), the synchronization
map h(x) can sometimes be written in closed form; see Pikovsky
et al.15 and Parlitz46 for an example with a baker map. Interestingly,

the parameters of that example can be fine-tuned so that the cross
sections x(2) = const of h(x(1), x(2)) are Weierstrass functions, i.e.,
continuous functions that are nowhere differentiable.

The definition of synchronization can be weakened by requir-
ing condition (18) only asymptotically. In more formal terms, we say
that the responder Y is asymptotically synchronized to the driver X if
there exists a continuous map h : MX →MY such that

lim
t→∞

∥∥yt − h(xt)
∥∥ = 0, (25)

where ‖·‖ is a distance in MY. In this case, the synchronization
manifold becomes an attracting set in MX ×MY.

A direct consequence of asymptotic synchronization is the
asymptotic stability of the responder. We say that the responder Y is
asymptotically stable if all orbits converge to the same orbit regard-
less of the initial condition, that is, if given two responses (yt)t≥0

and (ỹt)t≥0 to a signal (xt)t≥0 from the driver with different initial
conditions y0 6= ỹ0, then

lim
t→∞

∥∥yt − ỹt

∥∥ = 0. (26)

Asymptotic stability of the responder is weaker than asymptotic
synchronization because the existence of a hypothetical synchro-
nization map does not follow from Eq. (26). This is the case, for
example, when a periodic driver has gone through a period-doubling
bifurcation47 or there is a multistability in the responder, i.e., a driver
signal (xt)t≥0 can elicit two or more stable responses.15

On the other hand, the asymptotic stability of the responder
provides a simple method to test synchronization called the auxil-
iary system method.21 This method boils down to check Eq. (26) for
two initial conditions y0 6= ỹ0; if (26) does not hold, then Y is not
synchronized to X.

D. Relationship between generalized synchronization

and the cross map

According to Proposition 6, a coupling X Y implies the exis-
tence of the cross map xt = 8(yt), whereas the synchronization map
yt = h(xt) exists in seemingly exceptional cases (unless the coupling
is strong enough). Despite this notable difference, both maps are
closely related, as we will now see.

Let 5Y(x, y) = y be the projection map from MX ×MY onto
MY. On the one hand, from the diagram

MX 3 xt
h
−→ yt ∈MY

Ef,ϕX
↓ ↑ 5Y ◦ E−1

f,g,ϕY

NX 3 xt
8
←− yt ∈ NY

, (27)

we have that if 8 is invertible, then h exists and

h = 5Y ◦ E−1
f,g,ϕY
◦8−1 ◦ Ef,ϕX

. (28)

On the other hand, Eq. (19) spells out that, if h exists, then 5X

is invertible. From Eq. (12), it follows then that

8−1 = Ef,g,ϕY
◦5−1

X ◦ E−1
f,ϕX

. (29)

The bottom line of Eqs. (28) and (29) is the following.
Proposition 11. The systems X Y are synchronized if and

only if the cross map xt = 8(yt) is invertible and bicontinuous
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(i.e., 8−1 is continuous). If this case, the synchronization map yt =
h(xt) and yt = 8−1(xt) are related through the expressions (28) and
(29), where 5−1

X (x) = (x, h(x)).
In other words, 8−1 : NX → NY is the synchronization map

of the systems X Y in the reconstructed state spaces (if it exists
and is continuous); see Pecora et al.48 for numerical methods to test
whether two time series are related by a map with properties such as
continuity, invertibility, smoothness, and more. As a rule, the rela-
tionship x 7→ (x, y) is multivalued owing to folds in the manifold
MX ×MY, so generalized synchronization is rather an exception.
Multivalued synchronization maps, corresponding to noninvert-
ible cross maps, have been considered, e.g., in Rulkov et al.49 and
Parlitz.46

To lift yt = hK(xt, xt−1, . . . , xt−K+1), the synchronization map of
period K (21), to the reconstructed state spaces NX and NY, use

the reconstructed driver dynamic f̃ : NX → NX defined in Eq. (9)
to derive

yt = 8−1(xt) = (8−1 ◦ f̃)(xt−1) = · · · = (8−1 ◦ f̃k)(xt−k), (30)

where k ∈ Z and

8−1 ◦ f̃k = 8−1 ◦ Ef,ϕX
◦ fk ◦ E−1

f,ϕX
= (8(−k))

−1
, (31)

by the definition of the cross map of order k, Eq. (16). Therefore, the
synchronization map of period K ≥ 1 (21) becomes

yt =
1

K

K−1∑

k=0

(8(−k))
−1

(xt−k) =: HK(xt, xt−1, . . . , xt−K+1) (32)

in the reconstructed spaces. Note that H1 = 8−1.
Definition 12. The continuous map yt = HK(xt, xt−1, . . . ,

xt−K+1) defined in Eq. (32) will be called the reconstructed synchro-
nization map of period K ≥ 1.

We will harness HK with K > 1 in the applications with syn-
thetic data (Sec. VI) and real world data (Sec. VII) via recurrent
neural networks. We remark already at this point that, unlike the
synthetic data of Sec. VI, real world data are generally bidirection-
ally coupled, as happens with the EEGs of Sec. VII. Following the
standard approach, we will measure the coupling strength between
pairs of EEGs in both directions, the “driver” being identified by the
direction with the strongest coupling. In case of equal strengths, the
systems are assumed to be synchronized.

As mentioned in Sec. II B, in case of unidirectional coupling
(the framework of this paper) the relationship xt = 8(yt) due to
the coupled dynamic X Y can be unveiled numerically from the
time series (xt)0≤t≤T and (yt)0≤t≤T.35,37,48 Thus, in the method of
nearest-neighbor cross prediction, one estimates xt or xt+1 based on
the nearest neighbors of yt for any 0 ≤ t ≤ T to test for the exis-
tence of 8. Likewise, if 8−1 exists and is continuous (i.e., X and Y
are synchronized), then one can also discern the inverse relation-
ship yt = 8−1(xt) by the same techniques. As a matter of fact, in
the case of a bijective and bicontinuous 8, there is a one-to-one
relation between the neighborhoods of nearest neighbors of yt and
xt, so, if QT(8) and QT(8

−1) are fidelity metrics of the respective
estimations, then

QT(8)− QT(8
−1) ' 0, (33)

where it applies that the longer the time series, the better the pre-
dictions and, hence, the smaller QT(8)− QT(8

−1). In other words,
the continuity of the cross map and its inverse can be exploited
via (33) to test two time series (xt)0≤t≤T and (yt)0≤t≤T for general
synchronization.

Remark 13. The nonexistence of the cross map can uncover
common drivers. Indeed, if Z X and Z Y, then zt = 8(xt)

and zt = 8̃(yt), so that 8(xt) = 8̃(yt). Here, 8 : NX → NZ and
8̃ : NY → NZ are the cross maps associated to the coupled dynam-
ics Z X and Z Y, respectively. However, there is no cross map

between NX and NY, unless 8 or 8̃ is invertible and continuous [so
that xt = (8−1 ◦ 8̃)(yt) or yt = (8̃−1 ◦8)(xt)], in which case X or
Y is synchronized with Z.

To wrap up this section, let us point out that the diagram (27)
is a particularization of the diagram

MX 3 xt
h(k)

−→ yt+k ∈MY

Ef,ϕX
↓ ↑ 5Y ◦ E−1

f,g,ϕY

NX 3 xt
8(−k)

←− yt+k ∈ NY

(34)

to k = 0, where h(k) is the synchronization map of order k [Eq. (20),
h(0) = h) and 8(−k) is the cross map of order −k [Eq. (14), 8(0)

= 8]. Thus, Eq. (28) is the special case k = 0 of the relationship

h(k) = 5Y ◦ E−1
f,g,ϕY
◦ (8(−k))

−1
◦ Ef,ϕX

= 5Y ◦ E−1
f,g,ϕY
◦8−1 ◦ Ef,ϕX

◦ fk, (35)

where we used (31) and (9) in the second line. In this regard, note
that h(k) is invertible if and only if h is invertible [since h(k) = h ◦
fk by Eq. (20)] and, likewise, 8(−k) is invertible if and only if 8 is
invertible [since 8(−k) = Ef,ϕX

◦ f−k ◦ E−1
f,ϕX
◦8 by Eq. (16)].

III. DYNAMICAL NOISE AS STOCHASTIC FORCING

Random or “noisy” dynamical systems can be modeled in
different ways, from the perhaps simplest ones, such as switch-
ing systems50,51 and iterated function systems52 to nonautonomous
dynamical systems53 and full-fledged random dynamical systems,
described by random differential equations.54 In our setting, a natu-
ral way to turn a noiseless dynamic, say, xt+1 = f(xt) on a compact
manifold MX, into a noisy one is to replace the map f with a family
of maps {fωt}t∈Z, where the index ωt is a (possibly multi-component)
parameter belonging to a suitable space that is randomly chosen
at each discrete time t. For example, fωt(xt) = f(xt)+ ωt, ωt ∈MX,
models additive dynamical noise, while fωt(xt) = ωtf(xt) models
multiplicative dynamical noise. This approach, sometimes called
“finitely parameterized stochasticity”38 is sufficient for most prac-
tical applications.55 So, the term noisy dynamical system will refer
hereafter to such implementation of dynamical noise via stochas-
tic processes in the parameter space; our parameter spaces will be
compact topological sets.

At this point, we recall that each stationary (discrete-time)
stochastic process corresponds in a canonical way to a so-called shift
system, which is a dynamical system whose states are the realizations
of the stochastic process considered.56 In other words, stationary
stochastic processes can be modeled as autonomous dynamical sys-
tems. It is, therefore, not surprising that shift systems allow to
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formulate noisy dynamical systems as forced systems in a manner
formally similar to the noiseless case. However, before getting to that
point, we need to introduce the concepts and notation.

Let � be a compact topological space of parameters and let �Z

be the set of all two-sided sequences of elements of �,

ω = (. . . , ω−t, . . . , ω−1, ω0, ω1, . . . , ωt, . . .)

endowed with the product topology. As a result, �Z is a compact
topological space too. Furthermore, let σ : �Z → �Z be the (left)
shift map,

σ(ω) = (. . . , ω−t+1, . . . , ω0,
∗

ω1, ω2, . . . , ωt+1, . . .),

where the asterisk marks the zeroth component; component-wise,
[σ(ω)]t = ωt+1 for all t ∈ Z. The shift map is a homeomorphism
of �Z.

In addition, the continuous (or topological) dynamical system
(�Z, σ) can be further promoted to a measure-preserving dynam-
ical system by introducing a σ -invariant (probability) measure µ

on the Borel sigma-algebra B× of �Z via the finite-dimensional
probability distributions of the given or desired �-valued stochas-
tic process.56 For instance, the n-dimensional marginal probabilities
P(ωi1 ∈ Bi1 , . . . , ωin ∈ Bin) on (�Z, B×) are given by

µn(Bi1 × . . .× Bin) := µ(Bi1 × . . .× Bin ×

i 6=i1 ,...,in∏
�), (36)

where Bi1 , . . . , Bin are Borel sets (e.g., open sets) of �. The resulting
dynamical system 6 = (�Z, B×, µ, σ) is the shift system mentioned
above. When the measure µ consists of finitely many atoms, then
{fωt} is an iterated function system.52 Product measures

µn(Bi1 × Bi2 × . . .× Bin) = µ1(Bi1)µ1(Bi2) . . . µ1(Bin)

correspond to independent (memoryless) processes such as coin
tossing and white noise.

Following Stark et al.,39 a noisy dynamical system X is then
modeled by the skew product

{
ωt+1 = [σ(ω)]t,
xt+1 = f(ωt, xt) = fωt(xt),

(37)

where we suppose that fωt = f(ωt, ·) : MX →MX is a diffeomor-
phism for all ωt ∈ �. Alternatively,

{
ωt+1 = [σ t(ω)]0,
xt+1 = f([σ t(ω)]0, xt) = f[σ t(ω)]0

(xt),
(38)

i.e., the parameter of the dynamic at time t is the 0-component of the
shifted sequence σ t(ω).

Due to the formal similarity of Eq. (37) with Eq. (1) for the
forced dynamic X Y, the modeling (37) of a noisy dynamical sys-
tem is called stochastic forcing.39 Indeed, here we have 6  X, where
the shift system 6 = (�Z, B×, µ, σ) is also an autonomous dynam-
ical system and X is randomly forced by 6 since xt+1 = f(ωt, xt). This
parallelism also carries over to the embedding Ef,ϕX

: MX → R
d,

Eq. (3), as follows.

Let ω = (ωt)t∈Z be a two-sided sequence of points in � and set

fωt ,...,ω0(x) = (fωt ◦ · · · ◦ fω0)(x), (39)

for all x ∈MX, so fωt ,...,ω0 : MX →MX for all t ≥ 0. For every ω,
define the map Ef,ϕX ,ω : MX → R

d as

Ef,ϕX ,ω(x) = (ϕX(x), ϕX(fω0(x)), . . . , ϕX(fωd−2 ,..,ω0(x))). (40)

Note that Ef,ϕX ,ω actually depends on the d− 1 parameters
ω0, ω1, . . . , ωd−2.

Theorem 14 [Stark et al.39]. If d ≥ 2 dimX+1, then there
exists a residual set of (f, ϕX) such that for any (f, ϕX) in this set there
is an open dense set of sequences ω ∈ �Z such that the map Ef,ϕX ,ω is
an embedding.

Finally, let us point out that Theorem 14 generalizes readily
to the case of noisy observations. For example, if the observa-
tion function ϕX(x) is replaced by the noisy observation function

ϕX,η(x) = ϕX(x, η), where η ∈ (�′)
Z, �′ is a compact set, and 6′ is

the corresponding shift space, then the map

Ef,ϕX ,ω,η(x) = (ϕX,η0(x), ϕX,η1(fω0(x)), . . . , ϕX,ηd−1
(fωd−2 ,..,ω0(x)))

(41)

is an embedding for generic (ω, η) ∈ 6 ×6′. See Stark et al.39 for
more detail and other possibilities. Therefore, we may assume here-
after that the observations are noiseless for notational simplicity.

IV. COUPLED DYNAMICS AND NOISE

Next, we show that the skew product (37) includes the case of
two unidirectionally coupled systems X Y, where the driver is a
noisy dynamical system, namely,

{
xt+1 = fωt(xt),
yt+1 = g(xt, yt).

(42)

Equivalently,

xt+1 = fωt ,ωt−1 ,...,ω0(x0), (43)

see Eq. (39), and

yt+1 = (gxt ◦ gxt−1 ◦ · · · ◦ gx0)(y0) = gxt ,xt−1 ,...,x0(y0) (44)

for t ≥ 0, where gx(y) := g(x, y).
Remark 15. Of course, if ωt = ω0 for all times t, then we

recover the noiseless case with f := fω0 , y0 = g(0)(x0, y0) and

gxt−1 ,...,x0(y0) = gxt−1 ,...,x1(g(x0, y0)) = g(t)(x0, y0) (45)

for t ≥ 1; see Eqs. (4) and (5).
Some basic facts about the noisy driving dynamic xt+1

= f(ωt, xt) follow.
Fact 1. Since the parametric sequence ω = (ωt)t∈Z is a trajec-

tory of an �-valued random process modeled by the shift space
6 = (�Z, B×, µ, σ), the noisy orbit

ξ(x, ω) = (· · · , x, fω0(x), fω1 ,ω0(x), . . . , fωt−1 ,...,ω0(x), . . . .)

= (· · · , x0, x1, x2, . . . , xt, . . .) ∈M
Z

X (46)

is a trajectory of an MX-valued random process. In general, i.i.d.
parametric sequences ω (commonly used in applications) do not
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generate i.i.d. noisy orbits ξ = ξ(x, ω). Additive noise xt+1 = f(xt)

+ ωt is a plain example when the invariant measure of f : MX →
MX is not uniform.

Fact 2. Since the ωt’s are the outcomes of a stationary process,
the xt’s are also the outcomes of a stationary process. Indeed, the
definition xt+1 = f(ωt, xt) is time-invariant due to the stationarity in
the generation of the ωt’s.

Fact 3. Under additional assumptions, ξ(x, ω) = (xt)t∈Z can
match any arbitrary stationary sequence in MX (i.e., a trajectory of a
stationary MX-valued random process) by fine tuning the sequence
ω. For example, assume the following mild proviso.

Condition 16. f(·, x) = fx : MP →MX is an embedding for
each x ∈MX.

Under this condition, given xt, the relationship between ωt

and xt+1 is one-to-one for each t, which implies that the equation
fxt(ωt) := f(ωt, xt) = xt+1 can be solved for ωt in a unique way.
Therefore, the noisy orbit ξ(x, ω) can be recursively transformed
into any stationary sequence η ∈M Z

X by choosing x0 = η0 and
ωt as the unique solution of f(ωt, xt) = ηt+1 for t = 0, 1, 2, . . . and
t = −1,−2, . . .. Henceforth, we assume that Condition 16 is met.

Fact 4. In particular, by Condition 16, the relationship between
ξ = {xt}t∈Z and {x0, ω} is one-to-one, i.e., the function (x, ω) 7→ ξ is
invertible, where ξ0 = x. Therefore, we may indistinctly talk of x and
ω, or ξ = (xt)t∈Z. In practice, one chooses ω so that the noisy orbit
ξ of x deviates from the noiseless orbit by small perturbations.

By Fact 2, we can view the noisy dynamic (42) as stochas-
tic forcing, the compact manifold MX being the parameter set and
the orbits ξ = (xt)t∈Z of the noisy driver playing the role of the
parameter sequences ω = (ωt)t∈Z. This being the case, replace in
Theorem 14(i) the sequence ω ∈ �Z with the noisy orbit ξ = (xt)t∈Z

∈M Z

X , (ii) the map f : �×MX →MX with g : MX×MY →MY,
(iii) fωt(xt) = f(ωt, xt) with gxt(yt) = g(xt, yt), (iv) fωt ,ωt−1 ,..,ω0 with
gxt ,xt−1 ,...,x0 , and (v) ϕX with ϕY, to derive the following result.

Theorem 17. If δ ≥ 2 dimY+1, then there exists a residual set
of (g, ϕY) such that for any (g, ϕY) in this set there is an open dense set
of sequences ξ = (xt)t∈Z ∈M Z

X such that the map Eg,ϕY ,ξ : MY → R
δ

defined by

Eg,ϕY ,ξ (y) = (ϕY(y), ϕY(gx0(y)), . . . , ϕY(gxδ−2 ,..,x0(y))) (47)

is an embedding.
According to Eq. (47), Eg,ϕY ,ξ : MY → R

δ depends actually on
the δ − 1 parameters x0, x1, . . . , xδ−2. The points (x0, . . . , xδ−2) are
dense in the finite-dimensional manifold M

δ−1
X if and only if the

points xk are dense in MX for each 0 ≤ k ≤ δ − 2. It follows that
Eg,ϕY ,ξ is an embedding for a residual set of (g, ϕY) and dense sets of
points {x0, . . . , xδ−2} in MX.

Remark 18. One can extend the map Eg,ϕY ,ξ from MY to
MX ×MY by defining Eg,ϕY ,x1 ,...,xδ−2

: {x0} ×MY → R
δ as

Eg,ϕY ,x1 ,...,xδ−2
(x0, y) := Eg,ϕY ,ξ (y). (48)

Yet, Eg,ϕY ,x1 ,...,xδ−2
does not allow to reconstruct the full state space

MX ×MY because, according to Theorem 17, in general, this map
is an embedding only for a dense set of points (x0, y) ∈MX ×MY.
Nevertheless, this result can be useful in applications where one can
assume x0 to be fixed and generic, like in time series analysis.

V. THE NOISY SCENARIO

In this section, we discuss some changes and limitations intro-
duced by noise in the conventional framework of Sec. II. Since the
driver dynamic now explicitly depends on time through the noise,
so do the main concepts like state reconstruction, cross map, and
synchronization map.

A. State reconstruction

Let ω ∈ �Z be a parametric sequence and suppose
d ≥ 2 dimX+1. Then, according to Theorem 14, the map Ef,ϕX ,ω :

MX → R
d defined in Eq. (40) is generically an embedding. Similar

to the noiseless case, we define the manifolds

NX,ω = Ef,ϕX ,ω(MX) ⊂ R
d (49)

(each one diffeomorphic to MX), and the noisy time-delay vectors

xt = Ef,ϕX ,σ t(ω)(xt)

= (ϕX(xt), ϕX(xt+1), . . . , ϕX(xt+d−1)) ∈ NX,σ t(ω), (50)

with xt+k = fωt+k−1 ,...,ωt(xt) for k ≥ 1. Then, the driver dynamics
xt+1 = fωt(xt) translate to

xt+1 = Fσ t(ω)(xt) (51)

in the reconstructed state spaces, where the map Fω : NX,ω

→ NX,σ(ω) defined as

Fω = Ef,ϕX ,σ(ω) ◦ fω0 ◦ E−1
f,ϕX ,ω (52)

is a diffeomorphism, provided that Ef,ϕX ,ω and Ef,ϕX ,σ(ω) are embed-
dings. At variance with the noiseless case, the reconstructed dynamic
xt 7→ xt+1 hops from a diffeomorphic copy NX,σ t(ω) of MX to
another diffeomorphic copy NX,σ t+1(ω).

Likewise, let ξ = ξ(x, ω) ∈M Z

X be a noisy orbit of x = x0

[Eq. (46)] and suppose δ ≥ 2 dimY+1. Then, according to Theorem
17, the map Eg,ϕY ,ξ : MY → R

δ defined in Eq. (47) is generically an
embedding. Define the manifolds

NY,ξ = Eg,ϕY ,ξ (MY) ⊂ R
δ (53)

(each one diffeomorphic to MY) and the noisy time-delay vectors

yt = Eg,ϕY ,σ t(ξ)(yt)

= (ϕY(yt), ϕY(yt+1), . . . , ϕY(yt+δ−1)) ∈ NY,σ t(ξ), (54)

with yt+1 = g(xt, yt) =: gxt(yt) and

yt+k = g(xt+k−1, gxt+k−2 ,...,xt+1 ,xt(yt)) =: gxt+k−1 ,...,xt+1 ,xt(yt), (55)

for k ≥ 2. Then, similar to (52), the map Gξ : NY,ξ → NY,σ(ξ)

defined as

Gξ = Eg,ϕY ,σ(ξ) ◦ gξ0 ◦ E−1
g,ϕY ,ξ (56)

is a diffeomorphism, provided that Eg,ϕy ,ξ and Eg,ϕy ,σ(ξ) are embed-
dings, and it holds

yt+1 = Gσ t(ξ)(yt). (57)

Again, the range of Gσ t(ξ) depends on t through σ t(ξ), but all of them
are diffeomorphic copies of MY.
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B. Cross map

The definition of the cross map of the systems X Y in (12)
hinges on the reconstruction of both the driver state space MX

and the full state space MX ×MY. However, according to Remark
18, the latter reconstruction is generally only possible in the noisy
scenario for a dense set of driver states.

This being the case, we are going to define the cross map xt

= 8σ t(ω)(yt) for two time series (xt)t≥0 and (yt)t≥0 of time-delay
vectors obtained from a noisy orbit ξ = ξ(x0, ω) of the driver X
[Eq. (46)] and the corresponding response from the system Y,
respectively. This limited approach suffices for the needs of time
series analysis, where the focus in practice is on (finite segments of)
single orbits rather than on manifolds, and points and parameters
can be considered generic. For ease of notation, we will write

Eg,ϕY ,σ t(ω)(xt, yt) = Eg,ϕY ,xt+1 ,...,xt+δ−2
(xt, yt) = yt, (58)

see Eq. (48), since the relation σ t(ξ)↔ (xt, σ
t(ω)) is one-to-one by

Condition 16 in Sec. IV.
To define the cross map in the presence of dynamical noise,

xt = 8σ t(ω)(yt), we mimic the definition of the cross map in Eq. (11)
in the form

MX ×MY 3 (xt, yt)
5X
−→ xt ∈MX

E−1
g,ϕY ,σ t(ω)

↑ ↓ Ef,ϕX ,σ t(ω)

NY,σ t(ξ) 3 yt xt ∈ NX,σ t(ω),

(59)

under the assumption that Eg,ϕY ,σ t(ω)(xt, yt) is an embedding for the
considered states xt ∈MX. Hence,

xt = 8σ t(ω)(yt) :=
(
Ef,ϕX ,σ t(ω) ◦5X ◦ E−1

g,ϕY ,σ t(ω)

)
(yt). (60)

Let us check that 8σ t(ω)(yt) becomes 8(yt), Eq. (12), when the
noise is switched off in Eq. (60), i.e., when ω = ω̄ with ω̄t = ω0

for all t ∈ Z. We suppose that the maps Ef,ϕX ,σ t(ω) and Eg,ϕY ,σ t(ω) are
embeddings for ω = ω̄.

In that case, Ef,ϕX ,σ t(ω̄)(xt) = Ef,ϕX
(xt) with f := fω0 ; see Eqs. (50)

and (3). Similarly, by Eqs. (45) and (6) with D = δ − 1, and setting
ξ̄ = (x0, ω̄) = (f t(x0))t∈Z,

Eg,ϕY ,σ t(ω̄)(xt, yt)

= Eg,ϕY ,σ t(ξ̄ )(yt)

= (ϕY(yt), ϕY(gxt(yt)), . . . , ϕY(gxt+δ−2 ,..,xt(yt)))

=
(
ϕY

(
g(0)(xt, yt)

)
, ϕY

(
g(1)(xt, yt)

)
, . . . , ϕY

(
g(δ−1)(xt, yt)

))

= Ef,g,ϕY
(xt, yt). (61)

Comparison with Eq. (12) shows that 8σ t(ω̄)(yt) = 8(yt), as it
should.

C. Synchronization map

Generalized synchronization (18) can be extended from the
noiseless dynamic [f, g] to the noisy dynamic [fω , g], ω ∈ �Z, where
the dynamic changes at every time step, by requiring

yt = hσ t(ω)(xt). (62)

Definition 19. We say that the responder Y is synchronized
to a driver X perturbed by the noise ω ∈ �Z, if there is a sequence of
continuous maps hσ t(ω) : MX →MY such that Eq. (62) holds for all
t ∈ Z.

More generally, the synchronization map of order k ≥ 0,

h(k) = h ◦ fk [Eq. (20)], generalizes to h(0)

σ t(ω)
:= hσ t(ω) and

yt = h(k)

σ t(ω)
(xt−k) := hσ t(ω) ◦ fωt−1 ,...,ωt−k

(xt−k), (63)

for k ≥ 1 in the noisy case, while the synchronization map of period
K ≥ 1 (21) generalizes to

yt =
1

K

K−1∑

k=0

h(k)

σ t(ω)
(xt−k) =: hK,σ t(ω)(xt, . . . , xt−K+1). (64)

To define the synchronization map in the reconstructed spaces,
we replace yt = 8−1(xt) with yt = Hσ t(ω)(xt) in the “noisy” version
of diagram (27),

MX 3 xt

h
σ t(ω)
−→ yt ∈MY

E−1
f,ϕX ,σ t(ω)

↑ ↑ E−1
g,ϕY ,σ t(ξ)

NX,σ t(ω) 3 xt

H
σ t(ω)
−→ yt ∈ NY,σ t(ξ)

. (65)

Here, we used Eqs. (50) and (54) and assume that the maps Ef,ϕX ,σ t(ω)

and Eg,ϕY ,σ t(ξ) are embeddings. Then, it follows from (65)

yt = (Eg,ϕY ,σ t(ξ) ◦ hσ t(ω) ◦ E−1
f,ϕX ,σ t(ω)

)(xt)

=: Hσ t(ω)(xt). (66)

Furthermore, by Eq. (51),

xt = Fσ t−1(ω)(xt−1)

= · · · = (Fσ t−1(ω) ◦ · · · ◦ Fσ t−k(ω))(xt−k) = F(k)

σ t−1(ω)
(xt−k), (67)

so that

yt =
1

K

K−1∑

k=0

(
Hσ t(ω) ◦ F(k)

σ t−1(ω)

)
(xt−k)

=: HK,σ t(ω)(xt, . . . , xt−K+1) (68)

generalizes the reconstructed synchronization map of period K,
Eq. (32), to the noisy case.

To check that yt = Hσ t(ω)(xt) becomes yt = 8−1(xt) when the
noise is switched off in Eq. (66), replace

E−1
g,ϕY ,σ t(ξ)

: yt −→ yt (69)

on the right column of diagram (65) with

5Y ◦ E−1
g,ϕY ,σ t(ω)

: yt

E−1
g,ϕY ,σ t(ω)

−→ (xt, yt)
5Y
−→ yt (70)

so that, according to Eq. (61), 5Y ◦ E−1
g,ϕY ,σ t(ω)

(yt) becomes 5Y ◦

E−1
f,g,ϕY

(yt) in the noiseless case ω = ω̄, i.e., ω̄t = ω0 for all t ∈ Z.

Finally, set h(xt) = hσ t(ω̄) to convert diagram (65) to diagram (27),
thus identifying Hσ t(ω̄)(xt) with 8−1(xt), as it should be.

The numerical simulations of Sec. VI show that synchroniza-
tion is robust against dynamical noise for strong enough couplings
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and, hence, can occur in the presence of dynamical noise. On the
other hand, if synchronization occurs in the presence of dynamical
noise but disappears when noise is switched off, then one speaks of
noise-induced synchronization.57

Finally, we can generalize the concepts of asymptotic synchro-
nization and stability of the responder in the presence of noise in
the driver as follows. We say that Y is asymptotically synchronized
to the noisy driver X if the definition of synchronization, Eq. (66),
holds only asymptotically, i.e.,

lim
t→∞

∥∥yt −Hσ t(ω)(xt)
∥∥ = 0, (71)

where ‖·‖ is a norm in R
dimY . It follows then that Y is asymptoti-

cally stable, i.e., the orbits of Y converge to Hσ t(ω)(xt), regardless of
their initial conditions. Asymptotic stability can easily be checked in
practice. As in the noiseless case, it is a handy method to rule out
synchronization.

VI. NUMERICAL SIMULATIONS

Unlike identical synchronization, which can be easily visual-
ized, generalized synchronization is more difficult to detect. As men-
tioned in the Introduction, there exists an extensive literature on
methods to detect functional dependency (and generalized synchro-
nization for that matter) between two time series. The functional
dependency targeted in this section is the synchronization map of
a certain period K > 1 given in Eqs. (32) and (68) for noiseless and
noisy drivers, respectively. For this reason, we use recurrent neural
networks of the type long short-term memory (LSTM), which excel at
predicting data from time series and are robust to noise. In fact, the
LSTM nets outperformed the perceptrons (K = 1) in the numerical
simulations below, so we will only report the results obtained with
the former. As a benchmark we use nearest-neighbor cross predic-
tion (Sec. II B) because it is based on the continuity of the cross map
(and its inverse in case of synchronization). In addition, nearest-
neighbor cross prediction is robust against noise, particularly if the
neighborhoods are well populated.

A. Models

For the numerical simulations we chose two unidirectionally
coupled Hénon maps with several structural parameters and varying
coupling strength. This testbed, first proposed by Schiff et al.17 and
studied with the normalized mutual error, has been revisited sev-
eral times in the literature, e.g., in Quian Quiroga et al.,24 where the
authors use the conditional Lyapunov exponent and the so-called
nonlinear interdependencies.23

Thus, the equations of the driver X, with states x = (x(1), x(2))

in a trapping region of the attractor, are

{
x(1)

t+1 = 1.4− (x(1)
t )

2
+ (b1 + ωt)x

(2)
t ,

x(2)
t+1 = x(1)

t ,
(72)

where b1 is a constant and ωt are i.i.d. random numbers in the
interval [−A, A], the noiseless scenario corresponding to A = 0. The

observation function is ϕX(xt) = x(1)
t , i.e., the projection on the first

component.

The equations of the responder Y, with states y = (y(1), y(2)), are
{

y(1)
t+1 = 1.4− [Cx(1)

t y(1)
t + (1− C)(y(1)

t )
2
]+ b2y

(2)
t ,

y(2)
t+1 = y(1)

t ,
(73)

where b2 is a constant and C is the coupling strength. For C = 0, sys-
tems X and Y are uncoupled. The observation function is again the

projection on the first component, ϕY(yt) = y(1)
t .

The parameter settings are as follows.

• The settings for the constants b1 and b2 are the same as in Schiff
et al.17 and Quian Quiroga et al.24 So, we first set b1 = b2 = 0.3,
the standard values of the Hénon map, to study the coupling of
identical systems (Model Hénon 0.3–0.3), which allows identical
synchronization (i.e., yt = xt) for C = 1. Then, to study the cou-
pling of non-identical systems, we set b1 = 0.3, b2 = 0.1 (Model
Hénon 0.3–0.1) and b1 = 0.1, b2 = 0.3 (Model Hénon 0.1–0.3).
• For the previous choices of b1 and b2, we found that the driver

orbits can diverge for noise amplitudes A > 0.013, so we restrict
them to the interval 0 ≤ A ≤ 0.013. The amplitudes used in the
figures below are A = 0 (noiseless driver), 0.005 and 0.013.
• The range of the coupling strength C is 0 ≤ C ≤ 1.2; the increment

of C in the figures below is 1C = 0.05.
• For each case described above (identical/non-identical sys-

tems, noiseless/noisy driver), one series (xt)0≤t≤T−1 and one
series (yt)0≤t≤T−1 were generated with seeds x0 = (0, 0.9) and y0

= (0.75, 0), and length T = 105 (after discarding the first 1000
points). Since we are only interested in synchronization, one
series per case suffices because of asymptotic stability (Sec. II C).
• The embedding dimension in the noiseless and noisy scenarios

is d = 5, i.e., xt = (x(1)
t , . . . , x(1)

t+4) and yt = (y(1)
t , . . . , y(1)

t+4), 0 ≤ t
≤ T− 5. A posteriori justification for this choice are the excellent
results obtained in the benchmark below.

The methods to test for synchronization in the noiseless case
(A = 0) and noisy cases (A = 0.005, 0.013) are the following.

Method 1 Our first method unveils synchronization by detecting
functional dependencies, namely, the existence of the
synchronization map of period K = 10 for time-delay
vectors, i.e.,

yt = H10(xt, xt−1, . . . , xt−9) (74)

[see Eq. (32)]. To do this, we used a three-layer neural
network to predict yt based on xt, . . . , xt−9. Specifically,
(i) the input layer consisted of an LSTM net with 5 units,
hidden states of dimension 10 (corresponding to the
inputs xt, . . . , xt−9) and the activation function ReLU(x)
= max{0, x}; (ii) the intermediate layer had 25 neurons
and the activation function Sigmoid(x) = 1/(1+ e−x);
and (iii) the output layer had 5 neurons. Hence, the
output layer returns 5 states, corresponding to the 5 com-
ponents of ŷt, the prediction of yt. The network was
trained with an 80% of the data (the first 80 000 time-
delay vectors) and stochastic gradient descend, while the
remaining 20% of the data was used for testing. The accu-
racy of the predictions ŷt output by the neural network
based on the testing data xt,. . . , xt−9 (i.e., for each t =
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80 000,. . . , 99 990) was measured by their mean squared
error (MSE), mean absolute error (MAE), and mean
absolute scaled error (MASE). The matching of these
three metrics in both the training and testing phases dis-
cards overfitting. Furthermore, since predictions based
on data patterns are robust against low levels of noise, we
expect this method to work well in both the noiseless and
noisy cases.

Method 2 As a benchmark we used nearest-neighbor cross predic-
tion which, in the noiseless case, estimates xt based on the
continuity of the cross map xt = 8(yt) and correspond-
ing nearest neighbors.18 Following the convergent cross
mapping (CCM) method, we measured the accuracy of
those estimations by r(x, x̂), the Pearson correlation coef-
ficient of the estimates x̂t obtained with the d+ 1 = 6
nearest neighbors of yt. Since T = 105, the time series
are sufficiently long to obtain good estimates (actually
only the first 10 000 points were used), so r(x, x̂) ' 1. On
the contrary, if r(y, ŷ) is the Pearson correlation coef-
ficient of the estimates ŷt obtained via the d+ 1 = 6
nearest-neighbors of xt, then we expect r(y, ŷ) ' 0, unless
Y synchronizes with X, in which case y = 8−1(x) and

r(y, ŷ) ' 1 (this time due to the continuity of 8−1). We
conclude that if

1r = r(x, x̂)− r(y, ŷ) (75)

and X Y, then
(i) 0 ≤1r ≤ 1, and
(ii) 1r ' 0 signalizes synchronization, except when

r(x, x̂) = 0 = r(y, ŷ), i.e., when X and Y are uncou-
pled.
In the noisy cases, the situation is qualitatively the
same, thanks to the robustness of nearest-neighbor
cross prediction against low levels of noise. See, e.g.,
Sugihara et al.,35 Mønster et al.58 and the book by
Datseris and Parlitz59 for CCM algorithms to com-
pute (75).

B. Results

Out of the accuracy results obtained with the LSTM network
and testing data, we are going to discuss only the MSE vs C curves
since the other two curves, MAE and MASE vs C, are similar for all
models.

FIG. 1. Numerical results for the model Hénon 0.3–0.3, i.e., b1 = 0.3 in (72) and b2 = 0.3 in (73). (a) MSE vs the coupling strength C for a noiseless driver (noise amplitude
A = 0) and a noisy driver (A = 0.005, 0.013) obtained with an LSTM net. (b) 1r vs C for a noiseless driver (A = 0) and a noisy driver (A = 0.005, 0.013) obtained via
6-nearest-neighbor cross prediction. See text for more detail.
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FIG. 2. Numerical results for the model Hénon 0.3–0.1, i.e., b1 = 0.3 in (72) and b2 = 0.1 in (73). The information displayed in the panels (a) and (b) is the same as in
Fig. 1.

The results of the numerical simulations are depicted in
Figs. 1–3 for Method 1 [panels (a)] and Method 2 [panels (b)] and
the three models Hénon 0.3–0.3 (Fig. 1), 0.3–0.1 (Fig. 2), and 0.1–0.3
(Fig. 3). Comparison of both panels for each case and C > 0 shows
an excellent agreement of both methods on the synchronization
states, i.e., MSE(C) = 0 in panels (a) and 1r(C) = 0 in panels (b).
As noted above, 1r(0) = 0 in all cases owing to the fact that X and
Y are uncoupled for C = 0; such numerical artifacts can be easily
filtered out by checking whether r(x, x̂) ' 0 and r(y, ŷ) ' 0.

The main conclusions from the numerical results can be sum-
marized as follows.

• Small-amplitude noise does not destroy all the states of “strong”
synchronization (i.e., due to strong enough couplings), it only
shifts the synchronization threshold to higher values. So, synchro-
nization can also occur in the presence of dynamical noise.
• Synchronization due to strong enough couplings is robust against

small-amplitude dynamical noise, while synchronization states
with a weak coupling strength can be unstable whatever the
amplitude of the noise. This fact is illustrated in the Model Hénon
0.1–0.3 (Fig. 3), where synchronization is detected in the interval
0.5 . C . 0.6 for A = 0.

• Weakly coupled systems can be asymptotically synchronized,
which can be detected via the auxiliary systems method both in
the noiseless and noisy cases. Indeed, Table I shows the intervals
of coupling strengths for which the responder is asymptotically
stable, obtained with the auxiliary system method. Therefore,
synchronization can occur only for couplings in the correspond-
ing interval (as it does). Note that Table I excludes the spurious
synchronization 1r(0) = 0.
• In general, when the noise amplitude increases, the threshold of

stable synchronization moves towards stronger couplings. How-
ever, the Model Hénon 0.3–0.1 (Fig. 2) shows that there can be
parameter settings for which that threshold is virtually the same
for the noise amplitudes considered here.

Finally, let us point out that we also performed numerical sim-
ulations with perceptrons to detect the possible existence of the
conventional synchronization map (period 1). The results were sim-
ilar but not as sharp regarding weak synchronization states as the
results obtained with LSTM nets to detect synchronization maps of
period K > 1. However, no performance analysis of Method 1 with
respect to the period K was carried out and, hence, no attempt was
made to optimize the parameter K (which, anyway, depends on the
data at hand).
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FIG. 3. Numerical results for the model Hénon 0.1–0.3, i.e., b1 = 0.1 in (72) and b2 = 0.3 in (73). The information displayed in the panels (a) and (b) is the same as in
Fig. 1.

VII. APPLICATION TO REAL-WORLD DATA: EEGs

The purpose of this section is to illustrate the application of
Method 1 to real world data, specifically, intracranial EEG record-
ings from a subject with epilepsy. Therefore, we will not scrutinize
here the complexity of such signals but rather check whether our
findings align with results obtained in previous studies.

First of all, we notice that real observations (ϕX(xt))1≤t≤T and
(ϕY(yt))1≤t≤T of coupled systems X and Y, respectively, can devi-
ate from our assumptions in Secs. II–VI in two important issues:
nonstationarity or/and bidirectionality of the coupling, as it actually
occurs with the time series in this section. To meet these chal-
lenges, this time we will apply Method 1 (Sec. VI) in both directions

TABLE I. Coupling strengths in the range 0≤C≤ 1.2 for which the responder is

asymptotically stable.

Hénon 0.3–0.3 Hénon 0.3–0.1 Hénon 0.1–0.3

A= 0 0.40≤C≤ 1.20 0.15≤C≤ 1.20 0.40≤C≤ 1.20
A= 0.005 0.40≤C≤ 1.20 0.20≤C≤ 1.20 0.40≤C≤ 1.20
A= 0.013 0.40≤C≤ 1.20 0.20≤C≤ 1.20 0.40≤C≤ 1.20

X Y and Y X, on sufficiently short data segments to ensure
approximate stationarity.

There is a subtlety, though. In the unidirectionally coupling
X Y studied in the previous sections, we detected synchro-
nization by detecting a functional dependency between yt and
xt, . . . , xt−K+1, namely, yt = HK,X Y(xt, . . . , xt−K+1), where HK,X Y

is the reconstructed synchronization map of period K of the cou-
pling X Y, defined in Eq. (32). The robustness to noise of HK,X Y

allowed us then to extend our conclusions to signals contaminated
with low-amplitude noise. If, for the sake of this argument, we
think of a bidirectional coupling X! Y as the joint action of two
separate unidirectional couplings X Y and Y X, then yt will
depend on xt, . . . , xt−K+1 (whether X and Y are synchronized or
not) through the cross map of period K of the coupling Y X,
i.e., yt = 8K,Y X(xt, . . . , xt−K+1); see Eq. (17) with y and x swapped.
Therefore, here we expect yt to depend on xt, . . . , xt−K+1 in general.

The bottom line is that, by using Method 1 in the direc-
tions X Y and Y X, we will be able to detect the “dominant
driver” or the “coupling directionality” of the bidirectional coupling
X! Y. To this end, we are going to measure the strength of the
coupling in both directions via the accuracy of the predictions of xt

and yt made by LSTM nets in short non-overlapping segments over
the entire EEGs, the dominant driver being given by the direction
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with the strongest coupling. In case of equal strengths, the systems
are assumed to be synchronized.

A. Data description

The data that we are going to analyze is the following; see
Lehnertz and Dickten60 for more detail.

1. The signals are EEGs recorded intracranially from a subject
with epilepsy during 86 090 s (23 h, 54 m, 50.4 s) with 48 elec-
trode contacts at a sampling frequency of 200 Hz (sampling time
= 5 ms). The subject had signed informed consent that her/his
clinical data might be used and published for research pur-
poses, and the study protocol had previously been approved by
the ethics committee of the University of Bonn. The record-
ing started at 7:00 am, corresponding to the initial sampling
interval t = 1, and ended at the final sampling time tfinal

= 17.217 984× 106. The epileptic convulsions occurred at the
following sampling times.
• Average time of a first group of subclinical seizures: t̄C1

= 3. 4082× 106 (17 041 s). By subclinical seizures we mean
localized seizure activity on the EEG with no obvious clinical
activity.
• Average time of a second group of subclinical seizures: t̄C2

= 4. 6082× 106 (23, 041 s).
• Average time of a third group of subclinical seizures: t̄C3

= 6. 8762× 106 (34 381 s).
• Onset time of a clinical seizure (the only one in the whole

series): tC4 = 17.1842× 106 (85 921 s).
2. A schematic of the implanted electrodes can be found in Fig. 2

of Lehnertz and Dickten.60 The electrodes contacts are divided
into the following three categories:
• focal (F), which comprises electrode contacts located within

the seizure-onset zone;
• neighbor (N), which groups electrode contacts not more than

two contacts distant to those of category F;
• other (O), gathering all remaining electrode contacts.
To designate the electrode contacts and their (approximately)
24 h recordings, we use the same labels as in Ref. 60. For exam-
ple, X = TR01 means that the system X is the source of the EEG
(ϕX(xt))1≤t≤tfinal

recorded at the electrode contact TR01.
3. For the sake of our analysis, we will consider the following five

pairs (X, Y) of electrode contacts.
• Case 1: (X, Y) = (TR05–TR06) in the categories (F–F).
• Case 2: (X, Y) = (TR07–TBPR1) in the categories (F–N).
• Case 3: (X, Y) = (TR05–TL05) in the categories (F–O).
• Case 4: (X, Y) = (TBAR1–TLL04) in the categories (N–O).
• Case 5: (X, Y) = (TLR04–TLL04) in the categories (O–O).

4. As in the previous numerical simulations, the embedding
dimension of the systems X and Y is 5. Thus,

xt = (ϕX(xt), ϕX(xt+1), . . . , ϕX(xt+4)) (76)

1 ≤ t ≤ tfinal − 4, are the time-delay vectors corresponding to
system X, and analogously with the EEG (ϕY(yt))1≤t≤tfinal

gen-

erated by the system Y.

5. For approximate stationarity,64,65 we partitioned the time series
(xt) and (yt), 1 ≤ t ≤ tfinal − 4, into 1434 non-overlapping seg-
ments

SX,n = (xt)12 000(n−1)+1≤t≤12 000n−4 (77)

and

SY,n = (yt)12 000(n−1)+1≤t≤12 000n−4 (78)

of 11 996 points (' 60 s) each, n = 1, 2, . . . , 1434, and a last pair
of segments

SX,1435 = (xt)1 72 08 001≤t≤1 72 17 980 (79)

and

SY,1435 = (yt)1 72 08 001≤t≤1 72 17 980, (80)

comprising only 9980 points (' 50 s). The segments 1 ≤ n
≤ 720, correspond to the daylight hours (7 am–7 pm), while the
segments 721 ≤ n ≤ 1435 correspond to the night hours. The
clinical seizure occurs in the segment n = 1433, i.e., the third to
last segment of the series, and it initiates just one second after
the beginning of that segment (tC4 = 85 921 s).

6. As in Sec. VI, we use the first 80% of the data of each nth seg-
ment SX,n and SY,n as training data, and the remaining 20% as
testing data. So, this time we obtain two accuracy measures:
(i) MSEX Y(n), for the predictions of yt output by the LSTM
net, based on xt, . . . , xt−K+1 with testing data of the segments
SY,n and SX,n, and (ii) MSEY X(n), for the predictions of xt out-
put by the LSTM net, based on yt, . . . , yt−K+1 with testing data of
the segments SX,n and SY,n. As in Sec. VI, we set K = 10 here. Of
course, the parameter K can be fine-tuned for optimal results,
but this is an issue not contemplated in the present work.

B. Results

Since, at variance with the numerical simulations in Sec. VI, we
have here bidirectionally coupled signals and two prediction accu-
racy measures MSEX Y(n) and MSEY X(n), we are going to use the
coupling directionality index

1MSE(n) =
MSEX Y(n)−MSEY X(n)

MSEX Y(n)+MSEY X(n)
, (81)

for each pair of data segments SX,n and SY,n, 1 ≤ n ≤ 1435, so that

(i) −1 ≤ 1MSE(n) ≤ +1 and
(ii) 1MSE(n) ≥ 0 if and only if MSEY X(n) ≤ MSEX Y(n), i.e.,

knowledge of xt in the nth segment leads to better predictions
of yt than the other way around.

Therefore, if 1MSE(n) > 0 (respectively, 1MSE(n) < 0), then
we conclude that X is the dominant driver (respectively, Y is the
dominant driver). This interpretation agrees with other approaches
based on the cross map,34,35 transfer entropy,66,67 phase dynamics,68

etc. Otherwise, if 1MSE(n) = 0, then X and Y are assumed to be
synchronized in segment n (although it might be difficult to discern
this situation from “no-coupling”).

Figure 4 plots 1MSE(n) vs the segment number n, 1 ≤ n
≤ 1435. The numerical results are summarized in Table II for the
24 h EEGs, and in Table III for 12 h EEGs corresponding to day-
light hours (1 ≤ n ≤ 720) and night hours (721 ≤ n ≤ 1435). It was
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FIG. 4. Top to bottom: plots of1MSE(n), the directionality indicator (81), obtained using the segments SX ,n and SY ,n, 1 ≤ n ≤ 1435, given in Eqs. (77)–(79), for cases 1–5.
The clinical seizure occurs in the segment n = 1433, too close to the right margin to be marked. See Sec. VII A for detail.
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TABLE II. Results of cases 1–5 with 24 h EEGs.

Case 1MSE(n) > 0 Dominant electrode

1 (F–F) 16% of segments Y= TR06 (F) dominates X=TR05 (F)
2 (F–N) 64% of segments X= TR07 (F) dominates Y=TBPR1 (N)
3 (F–O) 56% of segments X= TR05 (F) dominates Y=TL05 (O)
4 (N–O) 5% of segments Y= TLL04 (O) dominates X=TBAR1 (N)
5 (O–O) 7% of segments Y= TLL04 (O) dominates X=TLR04 (O)

not possible to highlight the clinical seizure in Fig. 4 because it
occurs in the segment n = 1433, so any visual marks at that point are
indistinguishable from the right margin of the corresponding panel.

In view of Fig. 4 and Tables II and III, we can draw the following
general conclusions.

• The coupling directionality, as measured by 1MSE(n), depends
on the segment n. The overall dominance of the signals is stable
with respect to day and night, although the dominance degrees,
as measured by the percentages of segments contributing to the
dominant coupling direction in the first or second 12 h, respec-
tively, are different in all cases.
• Except in case 2, the sign of 1MSE(n) during the epileptic con-

vulsions (n = 1433) coincides with the overall coupling direction.
In fact,

Case 1 2 3 4 5

1MSE(1433) −0.58 −0.87 0.60 −0.68 −0.40

• According to Osterhage et al.,62,63 an important question in
epileptology is whether the pathological interaction between the
seizure-onset zone (label F) and other brain areas (labels N and
O), a phenomenon called focal driving, can also be identified dur-
ing seizure-free periods. Cases 2 and 3 in Table II answer this
question affirmatively, that is, our method detects focal driving
in the analyzed EEG.
• In addition, cases 2 and 3 in Table III indicate that focal driving is

not diminished during sleep.
• More generally, Table III shows that focal driving does not appear

to be influenced by other (possibly “stronger”) synchronization
phenomena such as sleep.
• The dominance degree is rather high in cases 1, 4, and 5, with

1MSE(n) < 0 over 80% of the segments both in the 24 h and 12 h

TABLE III. Results of cases 1–5 with 12 h EEGs (day and night).

Case 1MSE(n) > 0 day 1MSE(n) > 0 night

1 (F–F) 18% (Y dominant) 15% (Y dominant)
2 (F–N) 70% (X dominant) 58% (X dominant)
3 (F–O) 51% (X dominant) 60% (X dominant)
4 (N–O) 6% (Y dominant) 4% (Y dominant)
5 (O–O) 9% (Y dominant) 6% (Y dominant)

EEGs. Note that the interaction in those cases is local (cases 1 and
5) or it does not involve the seizure generating area (case 4).

The above findings are in line with the results of more com-
prehensive studies by Lehnertz and Dickten,60 Dickten et al.,61 and
Osterhage et al.,62,63 which empirically demonstrates the capability
of our LSTM net-based method.

VIII. CONCLUSION

Synchronization of two unidirectionally coupled dynamical
systems X Y is a classical topic in nonlinear dynamics. It is
defined by the existence of a continuous function yt = h(xt) between
the states xt of the driver X and the states yt of the responder,
called the synchronization map. While h, when it exists, points
from the state space of the driver (domain) to the state space of
the responder (range), the cross map xt = 8(yt) always exists in
that framework, is continuous, and points in the opposite direction
between the corresponding reconstructed state spaces. In the stan-
dard, noiseless scenario, the existence of the synchronization map
(i.e., synchronization between X and Y) amounts to 8 being invert-
ible and bicontinuous. These and other fundamentals of generalized
synchronization in the absence of dynamical noise were presented
in a self-contained and unified way in Sec. II, with emphasis on the
relationship between the cross map and the synchronization map.

In this context, the main contributions of the present paper are
the following.

(1) Introduction of higher-period versions of the cross and synchro-
nization maps in Eqs. (17) and (21), the period-1 versions
corresponding to the conventional concepts. They are based on
the corresponding maps of order k, defined in Eqs. (14) and
(20), and, actually, they may be defined in many different ways.
A synchronization map of period 10 was used in the numeri-
cal simulation of Sec. VI because it gave better results than the
conventional map in the detection of synchronization. Higher-
period cross maps were invoked in Sec. VII to understand the
sign of the directionality index (81) when the coupling is bidi-
rectional. Optimization of the period was not discussed because
it is beyond the scope of this paper.

(2) Generalizations of the synchronization map and the cross map
when the driver is noisy in Secs. V B and V C, respectively. To
this end, the dynamical noise was modeled as stochastic forcing.
The generalizations consist of families of maps that depend on
noise parameters and coincide with their conventional counter-
parts when the noise is switched off. As usual, those generaliza-
tions have the wished properties under some formal provisos,
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e.g., generacy of the maps and parameters involved, as well as
the driver states in the case of the cross map. However, this does
not mean that they are only useful in theory; they can be also
useful in practice, e.g., in laboratory or numerical experiments,
where typical properties are taken for granted and even noise
parameters may be known.

(3) Application of LSTM nets to detect synchronization in synthetic
data. This method harnesses the existence of synchronization
maps of higher periods in both the noiseless and noisy scenar-
ios. To be more precise, in the numerical simulations of Sec. VI,
synchronization was revealed in the reconstructed state spaces
by detecting a period-10 synchronization map [Eq. (32)] using
an LSTM net and predictability. The dynamical systems were
two coupled Hénon maps with several parameter settings and
noise amplitudes. As a benchmark, we used nearest-neighbor
cross prediction based on the continuity of the cross map and
its inverse (in case of synchronization). The agreement of the
results obtained with the two methods was excellent. The results
also showed the robustness of both methods against noise.

(4) Application of LSTM nets to detect the dominant driver in real-
world data in Sec. VII. The real-world data consisted of a 24 h
EEG from a subject with epilepsy. To cope with the nonsta-
tionarity of the signal and the bidirectionality of the couplings
between different brain areas, we partitioned the EEG in non-
overlapping 60 s segments and measured the coupling domi-
nance by the directionality index 1MSE(n) defined in Eq. (81);
this index is based on the mean square error of predictions made
by LSTM nets in the nth segment. The results agreed with results
published in the literature, in particular, the existence of focal
driving and its robustness to the day/night cycle.
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