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A B S T R A C T   

This work provides new insights on bi-criteria resource-constrained project scheduling problems. We define a 
realistic problem where the objectives to combine are the makespan and the total cost for resource usage. Time- 
dependent costs are assumed for the resources, i.e., they depend on when a resource is used. An optimization 
model is presented and it is followed by the development of an algorithm aiming at finding the set of Pareto 
solutions. The intractability of the optimization models underlying the problem also justifies the development of 
a metaheuristic for approximating the same front. We design a bi-objective evolutionary algorithm that includes 
problem-specific knowledge and is based on the Non-dominated Sorting Genetic Algorithm (NSGA-II). The re-
sults of extensive computational experiments performed using instances built from those available in the liter-
ature are reported. The results demonstrate the efficiency of the metaheuristic proposed.   

1. Introduction 

The resource-constrained project scheduling problem (RCPSP) con-
sists of scheduling a set of activities subject to precedence and resource 
constraints. This is a well-known problem with much work available in 
the literature. This is attested by the large number of surveys that have 
been published. Among these, we quote the most recent ones by 
Abdolshah [2], Habibi et al. [23] and Hartmann and Briskorn [27,28]. 
The amount of work done on the RCPSP has reached such a volume that 
one even finds surveys on specific types of methodologies developed for 
it. For instance, Pellerin et al. [42] focus on hybrid metaheuristics in the 
context of these problems. 

This work focuses on a bi-criteria RCPSP considering the makespan 
and the total costs for resource usage as the objectives to optimize. We 
consider resource- and time-dependent costs, i.e., the cost depends on 
the resource being considered as well as on the time it is used. We can 
find many different examples in practice of such time-dependent 
resource costs. This holds, for instance, when scarce resources are 
involved, such as water in some geographies. The availability of such 
resource may easily change over time (e.g. summer versus autumn) with 
impacts on its costs. In the specific context of manufacturing systems, 
this issue becomes of great relevance with energy costs that are typically 

much cheaper during off-peak times than in peak times (an interesting 
discussion is presented by Moon and Park [39]). Additionally, the labor 
costs may easily depend on the time the resources are used (e.g. week-
days versus weekends). What is more, all these costs may be affected by 
an annual increase induced by the consumer price index. Above all, by 
capturing more realistic settings, it is possible to develop more adequate 
tools of great relevance in the context of smart manufacturing in general 
[46] and in the context of scheduling activities in manufacturing sys-
tems in particular [37]. 

The goal for the bi-objective problem we investigate in this work is to 
find the Pareto front, i.e., the entire set of solutions that cannot be 
improved in terms of one objective without deteriorating the other. The 
intractability of the optimization models required to find those solu-
tions, that will be clear by the experiments we report, motivates the 
development of a heuristic algorithm for approximating the front. We 
propose a metaheuristic based on the Non-dominated Sorting Genetic 
Algorithm (NSGA-II) proposed by Deb et al. [18]. 

We start by discussing modeling issues related with the problem. 
Afterwards, we discuss an exact algorithm for finding exact Pareto so-
lutions, namely, the so-called AUGMECON [36] that we adapt to our 
problem. The work proceeds with the new metaheuristic we propose for 
approximating the Pareto front. Finally, our methodological 
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contribution is assessed via a series of computational tests performed 
using instances built from those available in the literature. The results 
obtained are reported in detail. 

The remainder of this paper is organized as follows. In Section 2 we 
discuss the relation between our work and the existing literature. 
Particular emphasis is put on multicriteria decision making in the 
context of the RCPSP as well as on the search for a time-cost trade-off. In 
Section 3, we provide all details of the problem we are studying and 
present a bi-criteria vector optimization model. We also illustrate the 
relevance of considering such model. In Section 4, we apply an exact 
algorithm for finding exact Pareto solutions. Section 5 presents the 
metaheuristic we have designed and developed for the problem. In 
Section 6, we report on the extensive experiments performed to assess 
the methodologies proposed. Finally, the paper ends with an overview of 
the work carried out. 

2. Relation with the existing literature 

The major aspects related to the current paper include multicriteria 
optimization in the context of the RCPSP as well as a cost-dependent 
resource usage. Next, we provide an overview of the work done, 
which in turn, helps to strengthen the motivation for developments we 
propose in the following sections. 

2.1. Multicriteria optimization in the context of the RCPSP 

The RCPSP is prone to the consideration of different objectives 
depending on the specific interests of the decision maker. We refer to 
[11] and [23] for many examples of different types of objectives of 
practical relevance. These include the makespan, the maximum lateness 
(when deadlines are considered), and cost objectives. Interestingly, the 
literature on project scheduling and management is not abundant when 
it comes to considering cost as a sole objective. Nevertheless, we still 
find some good exceptions such as the work by Martins [35], where the 
author discusses aspects such as the integration of cash-flows along with 
the project execution, or borrowing strategies for supporting projects’ 
costs. 

More often than not, more than one objective emerges as relevant in 
RCPSP. This justifies that large stream of research one can find in terms 
of multicriteria models and techniques for these problems. We note the 
relevance of this issue in [52], where the authors study a bi-objective 
version of the RCPSP such that, in addition to makespan minimiza-
tion, it seeks to minimize the total tardiness (deadlines are assumed for 
the activities). Pareto solutions are sought by means of a two-stage al-
gorithm: first, all the supported solutions are identified and the solution 
space is reduced considering the triangle areas where non-supported 
solutions can be found; afterwards, the non-supported solutions are 
identified. In this work, the authors aim to find exact Pareto solutions. 
Unfortunately, this can be accomplished for rather small instances, 
which explains the existence of a larger number of articles focusing on 
approximate procedures for multicriteria RCPSP as we can observe next. 

Al-Fawzan and Haouari [5] consider a bi-objective RCPSP that in 
addition to the usual makespan objective, involves a robustness objec-
tive and they propose a Tabu Search-based algorithm for approximating 
the Pareto front. For every activity, the authors define a slack, repre-
senting the amount of time the activity can be shifted without delaying 
the start of their direct successors in the precedence network, while 
maintaining resource usage feasibility. The robustness measure adopted 
is the sum of such slacks for all activities because it somehow quantifies 
the ability of a schedule to cope with non-predictable changes in some 
activity(ies). A Tabu Search-based algorithm is developed for approxi-
mating the Pareto front. The same problem was treated by Abbasi et al. 
[1] who proposed a simulated annealing-based procedure. 

Abello and Michalewicz [3] seek to minimize the makespan and the 
project cost (resource allocation) in a project scheduling problem with a 
time-dependent number of activities. The authors develop a 

multiobjective evolutionary algorithm for finding non-dominated solu-
tions. Wang et al. [51] also investigate a bi-objective RCPSP. The au-
thors assume that the processing time of the activities may change which 
will call for resource transfer decisions. One objective function repre-
sents the so-called total starting time criticality of the activities. For each 
activity, this value is computed as the product of a marginal cost for 
starting the activity later than initially planned and the probability that 
such activity cannot start according to its (initially) scheduled starting 
time. The second objective function represents the total resource 
transfer cost. For the above problem, the authors developed a 
non-dominated sorting genetic algorithm type II. 

Wang et al. [53,54] study a three-objective RCPSP: they consider the 
two objective functions already adopted in [52] and add a third one that 
measures the workload balance level to be maximized. In that work, 
genetic algorithms are hybridized with the Self Controlling Dominance 
[45] for finding approximate Pareto solutions. Habibi et al. [24] also 
consider a three-objective RCPSP with time-dependent resource re-
quirements and capacities. In addition to the traditional makespan, the 
authors also consider maximizing the schedule robustness (considering a 
weighted sum of the activities’ free slacks), and maximizing the dis-
counted cost associated with the resources. A non-dominated sorting 
genetic algorithm and a multi-objective particle swarm optimization 
procedure are proposed for approximating the Pareto front. 

The above literature shows that, in the context of the RCPSP, most of 
the research effort has been placed in developing algorithms for 
approximating the Pareto front. The aforementioned single paper that 
seeks to identify exact Pareto solutions does so without exploring state- 
of-the-art tools in the context of bi-criteria optimization. Moreover, cost 
is not considered in that specific article. 

We note that research can be found that aims at finding exact Pareto 
fronts for the most natural extension of the RCPSP: the multi-mode 
RCPSP. This is the case with Florez et al. [22], who consider three 
objective functions: the makespan, the total labor and investment cost, 
and resource stability. The authors assume that human resources are 
involved and thus some social objective is needed to better support 
decision making. Pareto solutions are found using an a priori lexico-
graphic ordering of the objectives, followed by the application of the 
ε-constraint method. 

2.2. Time-dependent costs 

The vast existing literature on project management problems is 
abundant when it comes to searching for time-cost trade-off solutions. 
This was exactly the case when such problems started being investigated 
in the specialized literature stemming from the leading work by Kelley 
and Walker [30]. This seminal article set the idea of compressing the 
execution time of the activities with some cost incurred. Achuthan and 
Hardjawidjaja [4] proposed an interesting innovation to that idea: the 
cost of the activities is time-dependent. As the authors point out, this is 
quite realistic in many problems. Nevertheless, in that work, resources 
are abundant. Other work aligned with using time-dependent costs is 
that by Szmerekovsky and Venkateshan [48] in which, again, activity 
duration can be compressed although, once more, unlimited resources 
are assumed. 

To the best of the authors’ knowledge, in the context of the RCPSP, 
no work has explicitly considered time-dependent resource costs, which 
is a major feature in our current paper. Nevertheless, some works can be 
found capturing time-dependent features which, in some way, may 
reflect the existence of resources with time-dependent costs. Möhring 
et al. [38] mention the existence of time-dependent resource profiles in 
RCPSP (related with resource availability) although no costs are 
explicitly captured. Pottel and Goel [43] consider a RCPSP with 
time-dependent activity processing times and resource consumption. 
Again, costs are not explicitly considered. In the context of scheduling 
problems in manufacturing systems, Wu et al. [55] consider a 
multi-scenario setting, capturing uncertainty in the processing time of 
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the activities. The difference with respect to the two previous works is 
that the processing time is exogenous (although uncertain). 

Overall, by reviewing the existing literature, we realize that the time- 
dependent cost associated to resources has never been considered for the 
RCPSP, let alone combined with the minimization of the makespan in a 
multicriteria framework, as we propose in this work. 

2.3. Contribution provided by the current work 

Given the existing literature as well as the modeling aspects and 
algorithmic developments proposed in the current paper, we can sum-
marize the major contributions we provide as follows:  

• The RCPSP is extended to capture time-dependent resource costs.  
• The above extension leads to a cost-minimization objective that is 

considered together with the makespan minimization within a bi- 
criteria modeling framework.  

• An exact procedure is developed for determining the exact Pareto 
front.  

• A metaheuristic based on the NSGA-II algorithm is proposed for 
approximating the Pareto front aiming at tackling large-scale in-
stances of the problem. 

• We report on the results of an extensive set of computations per-
formed by considering a well-known dataset of instances. 

3. Problem details 

A project consists of a set V = {0, 1, . . . , n, n + 1} of activities such 
that for each activity j ∈ V, a duration or processing time dj is known. The 
latter is assumed to be deterministic and integer. There are precedence 
relations between activities, all of a finish-start type. For each activity j, 
a set Pj is considered that contains all its predecessors. Preemption is not 
allowed, i.e., activities are executed during dj time periods from their 
start time without interruption. Moreover, activities make use of a set K 
of renewable resources with each activity j ∈ V requiring rjk units of 
resource k per time unit. The availability of resource k in each time unit 
is given by Bk. The problem consists of finding the start time for each 
activity so that the precedence relations and the resource constraints are 
satisfied and the project makespan is minimized. Activities 0 and n + 1 
are dummy activities representing the start and the end of the project, 
respectively. These activities have a null processing time and do not 
consume resources. 

Different models have been proposed for the RCPSP makespan 
minimization. A comprehensive overview is provided by Artigues et al. 
[9]. We take the first optimization model proposed for the model as a 
starting point, which is due to Pritsker et al. [44]. This model makes it 
necessary to set a planning horizon, of a certain length T. This indicates 
that all the activities must be completed by time T. Ideally, T should be 
determined by a sharp upper bound in the optimal makespan. None-
theless, in the worst case scenario, it can be set equal to the sum of the 
duration of all activities. This induced planning horizon is thus a natural 
number, which is divided into unitary-time periods, starting at time 0. 

Given the precedence-relations, for each activity j ∈ V there is an 
earlier starting time, ESj, which is the minimum time necessary to 
execute the direct and transitive predecessors of j. On the other hand, 
given that the project much be completed at time T (at most) then the 
starting time of an activity j ∈ V should be such that it allows its direct 
transitive successors to be executed in a way that the entire project ends 
at time T or before. In other words, for every activity j ∈ V there is a latest 
starting time, LSj. These times, ESj and LSj, are calculated in the usual 
way that we revisit to make this document self-contained: 

ES0 = 0;
ESj = max

i∈Pj
{ESi + di} ∀j ∈ V;

LSn+1 = T;
LSj = min

k ∕ j∈Pk
{LSk − dj} + T − ESn+1 ∀j ∈ V.

Considering the above elements, the following decision variables are 
defined: 

yjt =

{
1 if j starts at time t,
0 otherwise,

}

∀ j ∈ V and t ∈ {ESj, …, LSj}. For a vector of objective functions of 
interest, say f(y), a vector optimization RCPSP can be formulated as 
follows: 

minimize f(y) = (f1(y), f2(y),…, fL(y)), (1)  

subject to
∑LSj

t=ESj

yjt = 1 ∀j ∈ V, (2)  

∑LSj

t=ESj

t yjt −
∑LSi

t=ESi

t yit ≥ di ∀i, j ∈ V : i ∈ Pj, (3)  

∑

j∈V
rjk⋅

∑min{t,LSj}

τ=max{t− dj+1,ESj}

yjτ ≤ Bk ∀k ∈ K, t ∈ {0,…, T − 1}, (4)  

yjt ∈ {0, 1} ∀j ∈ V, t ∈ {ESj,…,LSj}. (5)  

In this model, Constraints (2) ensure that every activity starts in some 
time; Constraints (3) are the precedence constraints and they guarantee 
that if some activity i precedes another activity j, then the latter can only 
start after the former has been finalized; the resource constraints are 
represented by (4), in each time period the amount available of each 
resource limits its usage. Finally, (5) define the domain of the y- 
variables. 

What remains to be defined is the set of objective functions to 
consider. Using the y-variables, the makespan is straightforwardly 
defined as 

f1(y) =
∑T

t=ESn+1

t y(n+1),t (6) 

Let us consider now that we have a time-dependent cost for the use of 
the renewable resources. In particular, we denote by ckt the cost of 
employing one unit of resource k in period between times t and t + 1, for 
all k ∈ K and t ∈ {0, …, T − 1}. 

The total cost for resource usage becomes 

f2(y) =
∑

j∈V⧹{n+1}

∑min{T − 1,LSj}

t=max{0,ESj}

(
yjt

∑t+dj − 1

τ=t

∑

k∈K
rjk ckτ

)
(7) 

Example 1. We present an example for illustrating the above 
problem. Fig. 1 shows an instance of a project with time-dependent 
costs. The example has been adapted from that presented in [6]. The 
project consists of 7 activities making use of a single renewable resource, 
which has an availability of 6 units per period. Activities 0 and 8 

Fig. 1. An example of the RCPSP with time-dependent resource costs.  
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represent the usual dummy activities, which have also been included in 
set V. The length of the planning horizon for this project was set equal to 
the sum of all the processing times. In each period, the cost per unit of 
the renewable resource, which presents two different rates, has been 
calculated. 

Considering the objectives f1(y) and f2(y) separately, we obtain 
different solutions to the problem. Two different feasible solutions have 
been presented in Fig. 2, where the values for both objectives have been 
calculated. Both schedules represent a way to execute the same project, 
but, as the activities are executed in different periods, the cost may 
differ. Looking at both solutions, we can conclude that none of them 
dominates the other in the sense that no objective can be improved 
without deteriorating the other. As we will also discuss, this is in line 
with one of the aims of this work, which will be to find the so-called 
Pareto front, i.e., the set of non-dominated solutions. 

In terms of the resource-constrained project scheduling problem, a 
major novelty of our work stems from considering the objective function 
(7). This fully changes the nature of the problem. First, the concept of 
optimality is no longer valid since we now have two objective functions 
gathered within a bi-criteria model. What is more, as our illustrative 
example reveals, the new objective function and the usual makespan (to 
minimize) can easily be conflicting. This poses a major challenge when it 
comes to solving the model and also selecting a solution. In particular, 
the best we can now do is to look for the so-called Pareto solutions, i.e., 
those solutions such that an objective function value cannot be 
improved without deteriorating the other. In the example, if our 
objective is only to minimize the project duration, the optimal makespan 
is 11. However, if we consider both objectives, there would be 7 Pareto 
solutions, which vary from a schedule with a makespan of 11 and a cost 
of 140 to a schedule with a makespan of 18 and a cost of 118. Between 
these two solutions it may be possible to provide a decision maker with a 
rich set of alternatives from which a better decision could certainly be 
made. 

In the following sections we propose an algorithm for finding exact 
Pareto solutions and afterwards an approximate algorithm, since for 
large-scale instances finding exact Pareto solutions may turn out to be 
cumbersome. 

4. Finding exact Pareto solutions 

Following the previous section, we are focusing on problem 

minimize f (y) = (f1(y), f2(y)),
subject to (2) − (5). (8)  

Our goal is to obtain Pareto solutions to this problem—hopefully, the 
entire Pareto front. The ε-constrained method is a well-known procedure 

for finding non-dominated solutions in vector optimization. Since we 
have only two objectives, we can implement this method quite effi-
ciently and thus find the entire Pareto front (see, e.g., [36] and [13]). To 
ensure that this manuscript is self-contained, we briefly describe the 
method. 

The ε-constrained method relies on a single objective model, keeping 
one of the objective functions and setting bounds on the others (by 
means of additional constraints). Without loss of generality, in our case 
we can consider the following model: 

minimize f1(y),

subject to y ∈ S,
f2(y) ≤ ε. (9)  

In this model, S denotes the feasibility set for the y vector, i.e., the set of 
binary vectors y ∈ {0, 1}∣V∣×(T+1), satisfying (2)–(5). 

Denote by f1 = (f1
1, f

1
2) and f2 = (f2

1, f
2
2) two points in the criteria 

space such that f1
1 ≤ f2

1 and f1
2 ≤ f2

2. Using the terminology introduced by 
Boland et al. [13], we define R(f1, f2) as the rectangle in the criteria 
space that has f1 and f2 as extremes of one diagonal. Let 

f̂ 12 = lexmin
y∈S

{
f1(y), f2(y)

⃒
⃒f (y) ∈ R(f 1, f 2)

}
.

f̂ 12 is the point in the objective space corresponding to the minimum of 
f2(y) in rectangle R(f1, f2) chosen among the points corresponding to the 
minimum value of f1(y) also in that rectangle. In other words, f̂ 12 is 
obtained by solving sequentially the following two optimization 
problems: 

f̂ 1 = min
y∈S

{
f1(y)

⃒
⃒ f (y) ∈ R(f 1, f 2)

}

and 

f̂ 2 = min
y∈S

{
f2(y)

⃒
⃒ f (y) ∈ R(f 1, f 2) ∧ f1(y) ≤ f̂ 1

}
.

Likewise, we can represent ̂f 21 as the point in the rectangle R(f1, f2) with 
smallest value for f1(y) among all points minimizing f2(y). 

Since we are considering two objectives, we adopt the improvement 
of the ε-constrained method introduced by Mavrotas [36]: the so-called 
AUGMECON method. In particular, we consider minimizing the make-
span by setting the total cost for the resources as a constraint: 

minimize
∑T

t=ESn+1

t y(n+1),t (6)  

Fig. 2. Different solutions to project in Fig. 1.  
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subject to (2) − (5),
∑

j∈V⧹{n+1}

∑min{T − 1,LSj}

t=max{0,ESj}

(

yjt

∑t+dj − 1

τ=t

∑

k∈K
rjk ckτ

)

≤ ε. (9)  

As explained in [36], an optimal solution to the above problem is 
guaranteed to be an efficient solution only if the ε-constraint is binding. 
This motivated the author to consider an augmented problem that in our 
case is the following: 

minimize
∑T

t=ESn+1

t y(n+1),t − γ s (10)  

subject to (2) − (5),
∑

j∈V⧹{n+1}

∑min{T− 1,LSj}

t=max{0,ESj}

(

yjt

∑t+dj − 1

τ=t

∑

k∈K
rjk ckτ

)

+ s = ε, (11)  

s ≥ 0. (12) 

In the above model, s is the slack variable of the ε constraint and γ is a 
small factor ensuring that the slack of the ε is as high as possible. This is 
an elegant way of ensuring that non-supported efficient solutions are 
excluded when solving this single-objective model. 

Two reference solutions in the Pareto front correspond to optimizing 
the objective functions lexicographically: 

y* ∈ arglexmin
y∈S

{f1(y), f2(y)|f (y) ∈ R((− ∞,∞), (− ∞,∞))}

and 

y** ∈ arglexmin
y∈S

{f2(y), f1(y)|f (y) ∈ R((− ∞,∞), (− ∞,∞))}.

These two solutions induce the so-called payoff table, presented in 
Table 1. 

The values in the payoff table define the range of interest for the 
objective function f2(y), which is the objective that we are setting as a 
constraint: [f2(y**), f2(y*)]. This range can be split into a number L of 
subintervals with breakpoints given by ε0 = f2(y**), ε1, … , εL− 1, εL 
= f2(y*). We consider intervals of equal length, i.e., we set 

εℓ = f2(y**) + ℓ [f2(y*) − f2(y**)]

L
, ℓ = 0,…, L.

A set of Pareto solutions can now be found starting with εL and solving 
the problem 

minimize (10)
subject to (2) − (5), (11), (12),

replacing ε successively with εL, εL− 1, …, ε0. Since we start with the 

largest value for the cost—second objective function—then, every time 
we visit a new breakpoint and we observe a change (improvement) in 
the makespan—first objective function—we have just found a new 
Pareto solution. 

Naturally, our capability for visiting the entire Pareto Front during 
this process depends on the specific instance being solved and the 
number of breakpoints assumed for the range of the second objective 
function. With the above information, we can now formalize the AUG-
MECON method applied to our problem. This is done in Algorithm 1. 

Algorithm 1. Determining the Pareto Front.  

Algorithm 1 starts by setting the first Pareto solution equal to the 
solution inducing the upper-left corner of the payoff table. This corre-
sponds to the largest value of resource cost. Then, step by step, we 
impose a smaller value for the second objective function (εℓ). When 
checking a new breakpoint, if we do not improve the value of the first 
objective function, we proceed to the next breakpoint. Otherwise (line 8) 
we have just found a new Pareto solution. When changing the break-
points, we also check the current value of second objective function 
since there is no need to check breakpoints that are larger than or equal 
to that value (lines 13–15). 

5. A multi-objective metaheuristic for the RCPSP with time- 
dependent resource costs 

We have designed a metaheuristic for solving the RCPSP with time- 
dependent resource costs in order to consider the two objectives, 
makespan and cost, from a real multi-objective perspective, making it 
possible to obtain the set of non-dominated solutions of the problem or, 
at least, an approximation of this set. The algorithm is based on the 
general purpose template of the Non-dominated Sorting Genetic Algo-
rithm II, NSGA-II, proposed by Deb et al. [18] which is presented as an 
improvement of its predecessor, NSGA [47]. The general template of the 
NSGA-II is presented in Algorithm 2.  

Table 1 
The payoff table.   

f1 (y) f2 (y) 

minf1(y) f1(y*) f2(y*) 
minf2(y) f1(y**) f2(y**)  
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Algorithm 2. NSGA-II.  

This template can be used to solve different optimization problems 
but, previously, different structures and procedures need to be deter-
mined. Firstly, an appropriate way to encode the solutions must be 
designed. The encoding design is one of the most important tasks and the 
performance of the algorithm depends, to a large extent, on it. Then, a 
method to generate the initial population, sized N, needs to be 
implemented. 

Before starting the main loop, it is necessary to apply two procedures 
that allow us to compare two different solutions and to choose the best. 
These procedures are, fast_non_dominated_sort() and crowding_dis-
tance_assignment(). The first sorts the individuals of the current pop-
ulation in different fronts. Belonging to one front or another depends on 
the domination rank of each solution, which is calculated in the pro-
cedure. Specifically, in the first front we can find the solutions that are 
not dominated by any other solution in the population; in the second 
front, the solutions that are dominated by one or more solutions from the 
first front, and so on. Therefore, solutions in front i are better than so-
lutions in front j if i < j. The second procedure calculates a metric to 
determine the distance in the objective space among the solutions in a 
given front. These two procedures assign two different values to every 
solution: the front the solution belongs to and the crowding distance 
from the solution to the rest of the solutions in the corresponding front. 
Now, when we need to compare two solutions to determine the best one, 
we will choose the one belonging to the best front, and, if there is a tie, 
the one with a higher distance, i.e., a solution that is in a less dense re-
gion will be preferable. 

The main loop represents the evolution process and will be carried 
out until the stopping criterion, which usually depends on the number of 
evaluations performed or the CPU time employed, being satisfied. In the 
current generation, the three genetic operations, that is, selection, 
crossover and mutation, are applied to the current population and a new 
population with N individuals is produced. Then, both populations are 
joined in a double-sized population Rt and, to reduce its size to the initial 
one, the reduce_population() procedure is carried out. Only the best N 
solutions in Rt will form part of the new population and to allow com-
parison between the solutions, it is first necessary to form the different 
fronts and to calculate the distances among the solutions on the fronts. 
These two procedures and the one to reduce the size of the population 
can be considered as standard and independent of the problem to which 
they will be applied. The details about these procedures are described in 
[18]. In the next sections, we detail the different features we have 
designed in order to implement the algorithm. 

5.1. Solutions encoding 

Several different encodings have been proposed to solve the RCPSP 
using heuristics or metaheuristics. However, the activity list represen-
tation (ALR) [25], also called permutation-based solution representa-
tion, is the most used; given that it is the most appropriate to solve this 
problem regardless of the type of metaheuristic used [31]. A solution is 
encoded as a permutation of the activities in the project where an ac-
tivity always appears in the solution after its predecessors. This is an 
indirect representation and, to obtain the schedule, it is necessary to 
apply a scheduling scheme, the serial generation scheme being the most 
commonly applied, although the parallel generation scheme could also 
be applied. 

This representation has later been extended in different works in 
order to include additional information that allows combining different 
ways of generating a schedule with the same activity list [26,6,7,14,20, 
59,15]. Moreover, the standard activity list representation has been 
adapted to encode the solutions of the multi-mode RCPSP [8,21,58] 
including information about the execution mode of the activities. Some 
works have also used these encodings to manage these problems (RCPSP 
and MM-RCPSP) considering several objectives (for example [40]). 

However, we consider that when managing multiple objectives, the 
previous encodings are not appropriate, because they do not allow the 
consideration of different objectives in the construction of the schedule. 
In our problem, if we use the standard activity list encoding without 
additional information about the objectives and activities are scheduled, 
one by one, as soon as possible in the order given by the list, we would 
always prioritize the temporal objective over the economic one and it 
would not be appropriate in a case like this. Some authors have 
considered this fact and have included information that considers the 
different objectives in the representation. For example, Abbasi et al. [1] 
propose an ALR with an additional binary gene indicating the scheme 
used to build the schedule: serial generation scheme (that prioritizes the 
makespan objective) or that proposed by Ulusoy et al. [49] which could 
allow scheduling the activity without prioritizing the makespan objec-
tive. However, the whole schedule is built on the same criterion and this 
could present a drawback. 

We propose an innovative encoding where solutions are represented 
by a double list, a list of activities and a second binary list with the 
criterion to be prioritized when scheduling the corresponding activity in 
the scheduling process. 

5.1.1. Activity list with scheduling objective 
Solutions are encoded with a double list, a list of activities and a 

binary list of the scheduling objectives of the corresponding activities. 
Therefore, activities are scheduled by the order given by the list. How-
ever, when an activity j ∈ V is going to be scheduled, its corresponding 
scheduling objective, makespan or cost, will determine its start time, sj. 
In the first case, i.e., if the scheduling objective of an activity j is the 
makespan, it will be scheduled from the moment where all its pre-
decessors finish, as soon as there are enough resources to be executed, 
sj = smak

j . Otherwise, if the scheduling objective of the activity indicates 
the cost, the start time of the activity will be that in the interval [smak

j ,

smak
j + max shiftj] where the cost is cheaper and there are enough re-

sources to be executed, sj = scost
j . The parameter max_shiftj, i.e., the 

maximum delay of the activity, should be established. It could be set at 
the same value for all the activities, for example, max_shiftj = 10 for all j, 
or a different value could be generated for each activity. 

Example 2. In Fig. 3, we illustrate different solutions encoded with the 
activity list with scheduling objective representation for the project 
example presented in Fig. 1 and the corresponding schedules that they 
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are transformed in. If the scheduling objective of an activity is 0 it 
represents the makespan and 1 indicates that the priority objective to be 
considered when scheduling that activity is the cost. To build the 
schedules, we could set, as example, max_shiftj = 5 for all j. We must take 
into account that if an activity is scheduled when its scheduling objec-
tive refers to cost, it is scheduled in the cheapest option instead of the 
earliest one and, therefore, the schedule could present periods where no 
activity is executed because an activity has been moved to the right in 
the schedule in order to save money, as happens with solution B in this 
figure. Let us recall that, in this problem, the cost of an activity is given 
by the cost of the resource usage, which is dependent on the period in 
which they are used. For example, the cost of executing activity 3 as in 
schedule 3, in periods 5, 6 and 7, is 30 and the same activity, executed in 
periods 10, 11 and 12 as in schedule 4, costs 18. 

5.2. Initial population 

We have implemented a random mechanism to generate the in-
dividuals (solutions) in the initial population. To create a new solution, 
first, the activity list is generated. The first activity in the list is randomly 
chosen among the activities belonging to the eligible set, which is 
initially formed with the activities with no predecessors. Then, the 
following steps are repeated until all the activities have been chosen and 
occupy a position in the activity list: the eligible set is updated, including 
the activities with all the predecessors placed on the list; then, an ac-
tivity of that set is randomly chosen to be placed in the next position on 
the list. Once the activity list has been generated, the scheduling 
objective of each activity is randomly chosen (cost or makespan) with a 
probability of 50% each. 

5.3. Selection 

The selection mechanism is applied over the current population to 
form a new one with the same population size. That population becomes 
the current population replacing the original one. Next, the crossover 
mechanism will be applied to it. We have implemented the selection 
mechanism proposed by Deb et al. [18] in the NSGA-II general template. 
The mechanism is based on the standard binary tournament selection. 
To build the new population, the following procedure is repeated until 
the new population is fulfilled: two individuals of the current population 
are randomly chosen and they compete for a place in the new popula-
tion; the winner of this tournament is the one belonging to the best front 
or, in case of ties, the one with a best crowding distance. The details of 
this mechanism can be consulted in [18]. 

Fig. 3. Activity list with scheduling objective representation. Example.  

Fig. 4. Crossover example.  

Fig. 5. Average number of Pareto solutions.  

Table 2 
Evolution of the number of Pareto solutions found by AUGMECON with the 
number of breakpoints.   

10 30 50 70 90 110 130 150 

J301_1  11  27  37  42  47  50  54  58 
J3010_1  11  30  45  55  60  64  65  67 
J3020_1  11  22  28  29  37  36  39  40 
J3030_1  11  23  24  26  30  31  30  30 
J3040_1  11  27  40  49  56  58  67  68 

Average  11.0  25.8  34.8  40.2  46.0  47.8  51.0  52.6 

J601_1  11  29  42  52  50  57  63  66 
J6010_1  10  26  36  46  53  54  55  56 
J6020_1  11  21  28  36  37  39  42  41 
J6030_1  10  21  24  31  37  36  39  41 
J6040_1  11  25  30  35  39  43  47  47 

Average  10.6  24.4  32.0  40.0  43.2  45.8  49.2  50.2  
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5.4. Crossover 

The current population resulting from the selection procedure un-
dergoes the crossover mechanism to build a new population where the 
mutation procedure will be applied. Pairs of individuals are randomly 
chosen and, if they undergo the crossover operation, two offspring are 
produced and are included in the new population. Otherwise, the 
selected individuals are included in the new population. The parameter 
to decide if a pair of individuals are combined to generate offspring or 
not is the crossover probability, Pcross, which does not depend on the 
pair of solutions to be crossed. 

The crossover operator is applied over a pair of solutions and it 
should combine the information of both solutions, the parents, in order 
to create the offspring. Since in our case the solutions are represented by 
a list of activities and a list of scheduling objectives, the procedure must 
be designed to manage and combine the information of both lists. The 
crossover operator we have designed has two phases: first, the activity 
lists of the parents are combined and, in a second phase, the offspring 
inherit the information contained in the scheduling objective lists. 

The first phase consists on applying the two-point crossover pro-
posed by Hartmann [25] in his genetic algorithm to solve the RCPSP in 
order to cross the activity lists of the parents. This was designed as a 
two-point crossover operator applied to permutations but taking into 
account that an activity can only appear in the activity list after all its 
predecessors. Therefore, this crossover always generates feasible lists. In 
a second phase, the activities in the offspring inherit the scheduling 
objectives present in the parent from which the activity was inherited. 

Example 3. We illustrate the above procedure in Fig. 4, where two 
solutions for the project presented in Fig. 1, the mother and the father, 
have undergone the crossover operation. First, two random crossover 
points, for example, k1 = 2 and k2 = 5 are generated, dividing the list 
into three parts. Then, one of the offspring, the daughter, inherits the 
first two positions in the activity list from the mother. The following 
three are inherited from the father: we look for the first three activities in 
the father not present in the daughter, maintaining the relative order 
between them in the father. The last two activities are those which are 
not present in the daughter and maintain their relative order in the 
mother. The activity list in the son is obtained in the same way, but 
interchanging the role of the parents. In the second phase, activities 
inherit the scheduling mode they had in the parent from which they 
have been copied. In this way, the offspring always represent feasible 
schedules because, applying this procedure, an activity can not appear in 
the list before any of its predecessors. 

5.5. Mutation 

The mutation mechanism is applied to every individual in the current 
population and, if the solution mutates, it replaces the original one. The 
mutation mechanism allows more variability in the population to be 
introduced, it can include new characteristics in one or more individuals 
of the population or characteristics that were present in the past but 
have been lost during the evolution process. We have designed a mu-
tation operator that is applied to every individual and, as the crossover 
operator, consists of two phases: the first is applied to the activity list 
and the second to the scheduling objective list. 

The mechanism applied in the first phase is the procedure employed 
by Alcaraz and Maroto [6] in their GA to solve the RCPSP, which was 
first proposed by Boctor [12] to generate neighbors in his simulated 

annealing algorithm to solve the problem. Following the authors, for 
each activity in the sequence, a new position is randomly chosen, be-
tween the last of its predecessors and the first of its successors which 
ensures the generation of only precedence feasible solutions. The ac-
tivity is inserted in the new position with a probability of Pmut_act. After 
the insertion, all the activities in the list maintain their scheduling 
objective. This procedure allows the order in which the activities will be 
chosen in the scheduling scheme to be changed. In the second phase, the 
scheduling objective of each activity changes with a probability of 
Pmut_obj. The scheduling objective changes from 0 to 1 or vice versa. 
This second phase allows the objective considered to schedule an ac-
tivity in the scheduling process carried out to build the corresponding 
schedule to be changed. 

6. Empirical analysis 

In this section, we report on the computational tests performed to 
assess the methodological contribution of this paper. We start by 
describing the test bed instances used. Afterwards we provide the details 
regarding the experimental setting adopted both for AUGMECON and 
for the metaheuristic. In particular, we discuss the different metrics that 
were considered for assessing the approximate Pareto front provided by 
the metaheuristic. We then present results for AUGMECON for the in-
stances for which we are sure to have found only exact Pareto solutions. 
Finally, we analyze the other instances—those for which it was not 
possible to find the exact front. 

6.1. Test data 

In order to obtain test data for the methodologies proposed above, 
we consider the instances available in the PSPLIB library (http://www. 
om-db.wi.tum.de/psplib/) as a basis. In particular, we considered the 
single mode data sets J30, J60, J90 and J120, where the number in-
dicates the number of activities that each instance (project) in the set 
has. The first three sets have 480 instances each and J120 has a total of 
600 instances. 

The instances were generated by an automatic generator, combining 
three different factors: Network complexity (NC), resource factor (RF), 
and resource strength (RS) (see [32]). The first corresponds to the 
average number of direct successors of the activities. The second mea-
sures the average proportion of resources required by each activity and 
is a value between 0 and 1 where a value close to 1 indicates that the 
activities are very resource-demanding. Finally, the resource strength 
regards the mean tightness of the resource constraints and like the RF, 
this is also a value in the interval [0,1] with a value close to 1 indicating 
that the available resources are enough to allow all the activities to start 
at their earliest starting time; on the other hand, a value of RS close to 
zero stems from an instance with scarce resources—each activity calls 
for the usage of resources in the limit (or close to it). 

In the first three datasets, we have three different levels for NC (1.5, 
1.8 and 2.1), four levels for RF (0.25, 0.5, 0.75 and 1) and four for the 
parameter RS (0.2, 0.5, 0.7 and 1). The combination of these levels gives 
a total of 3 ⋅ 4 ⋅ 4 = 48 combinations and for each combination, ten 
different instances were generated, what means that each one of these 
datasets has 480 instances. The instances in these sets in PSPLIB are 
named as JXY_Z, where X ∈ {30, 60, 90} indicates the number of ac-
tivities each project has, Y ∈ {1, . . . , 48} represents the number of 
combination of the parameters and Z ∈ {1, . . . , 10} the number of 
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repetitions. In the case of J120, we can find the same levels for NC and 
RF as in the first three datasets, but there are five RS levels (0.1, 0.2, 0.3, 
0.4 and 0.5) instead of four. Therefore, in J120 we have 3 ⋅ 4 ⋅ 5 = 60 
combinations for the factors and for each one we can find 10 repetitions 
which give 600 instances. These instances are named as J120Y_Z, for Y 
∈ {1, . . . , 60} and Z ∈ {1, . . . , 10}. 

As the number of instances is very high, first we have selected a total 
of 48 instances with 30 activities and the same number of instances with 
60 activities. In order to have instances with all the combinations of 
factors, we have selected the first repetition of each group, i.e., JXY_1. As 
for the larger instances (90 and 120 activities), very early in our work we 
realized that the use of the exact algorithm would be tantalizing and 
thus, instead of considering all the instances, we report results for only a 
few in each set, namely: J901_1, J9010_1, J9020_1, J9030_1, J9040_1 
for 90 activities, and J1201_1, J12010_1, J12020_1, J12030_1, 
J12040_1, J12050_1, J12060_1 for 120 activities. 

For each instance, we set T as the sum of the processing times of all 
the activities. Moreover, none of the above instances include time- 
dependent costs for the resources and thus, that component of the 
data was generated for this work. The methodology is presented next. 

We can consider a general pattern for the evolution of the cost of a 
resource throughout time. If ct is the cost for a resource at time t (valid 
from time t to time t + 1) we set 

ct = α + βt + γt + ωt, t = 0,…, T − 1,

with. 

α, representing a constant defining a base level of the cost series; 
β, representing a constant slope determining a cost trend; 
γt, representing the seasonal term for the time period starting at time 
t; 
ωt representing a random variable such that E[ωt ] = 0 and V[ωt ] =

σ2
ω. 

If L is the length of a season (number of time periods), then there are 
at most L seasonality different terms, that will repeat throughout time. 
We can also assume that 

γ0 + γ1 + ⋯ + γL− 1 = Γ × L.

More generally, for t ≥ L (and integer) we assume that 

γt− L + γt− L+1 + ⋯ + γt− 1 = Γ × L.

These assumptions are justified by the fact that the seasonal terms 
represent a deviation above and below some average, Γ. Thus, the 
average of any L consecutive seasonal terms should always be equal to Γ. 

From here we can consider four patterns for the evolution of a 
resource cost: 

Pattern 1: trend with a positive slope; no seasonality. 
Pattern 2: trend with a negative slope; no seasonality. 
Pattern 3: trend with a positive slope; with seasonality. 
Pattern 4: trend with a negative slope; with seasonality. 

Given that the instances available in PSPLIB for the resource- 
constrained project scheduling problem contain 4 resources each, we 
assigned one pattern to each resource in that order: resource 1 → pattern 
1,., resource 4 → pattern 4. 

For a resource (and for the corresponding cost pattern) we generate 
the costs as follows: 

• A cost level α is generated randomly according to a uniform distri-
bution U[100,200].  

• The slope is generated in such a way that if no perturbation exists, 
then the level of the series in the last time would be equal to α∕2. A 
minimum (maximum) slope of 0.1 (− 0.1) is imposed. Thus, for 
getting a positive (negative) slope, β is randomly generated accord-
ing to a uniform distribution U[0.1, α

2T] (U[ − α
2T, − 0.1]) if α

2T > 0.1; β 
is set equal to 0.1 (− 0.1) otherwise.  

• For the patterns with seasonality, we set L = 12 (12 weeks—three 
months; 12 months; ...). We generate Γ randomly according to a 

Table 3 
Instances J30 and J60: features and resolution using AUGMECON.     

J30 J60 

NC RF RS Instance Optimal front? Instance Optimal front? 

1.5  0.25  0.2 J301_1 ✓ J601_1 ✓     
0.5 J302_1 ✓ J602_1 ✓     
0.7 J303_1 ✓ J603_1 ✓     
1 J304_1 ✓ J604_1 ✓   

0.5  0.2 J305_1 ✓ J605_1 —     
0.5 J306_1 ✓ J606_1 —     
0.7 J307_1 ✓ J607_1 —     
1 J308_1 ✓ J608_1 ✓   

0.75  0.2 J309_1 — J609_1 —     
0.5 J3010_1 ✓ J6010_1 —     
0.7 J3011_1 — J6011_1 —     
1 J3012_1 ✓ J6012_1 ✓   

1  0.2 J3013_1 — J6013_1 —     
0.5 J3014_1 — J6014_1 —     
0.7 J3015_1 ✓ J6015_1 ✓     
1 J3016_1 ✓ J6016_1 ✓ 

1.8  0.25  0.2 J3017_1 ✓ J6017_1 —     
0.5 J3018_1 ✓ J6018_1 —     
0.7 J3019_1 ✓ J6019_1 —     
1 J3020_1 ✓ J6020_1 ✓   

0.5  0.2 J3021_1 ✓ J6021_1 —     
0.5 J3022_1 ✓ J6022_1 —     
0.7 J3023_1 ✓ J6023_1 ✓     
1 J3024_1 ✓ J6024_1 ✓   

0.75  0.2 J3025_1 — J6025_1 —     
0.5 J3026_1 ✓ J6026_1 —     
0.7 J3027_1 ✓ J6027_1 —     
1 J3028_1 ✓ J6028_1 —   

1  0.2 J3029_1 — J6029_1 —     
0.5 J3030_1 — J6030_1 —     
0.7 J3031_1 ✓ J6031_1 —     
1 J3032_1 ✓ J6032_1 — 

2.1  0.25  0.2 J3033_1 ✓ J6033_1 —     
0.5 J3034_1 ✓ J6034_1 —     
0.7 J3035_1 ✓ J6035_1 —     
1 J3036_1 ✓ J6036_1 ✓   

0.5  0.2 J3037_1 — J6037_1 —     
0.5 J3038_1 ✓ J6038_1 —     
0.7 J3039_1 ✓ J6039_1 ✓     
1 J3040_1 ✓ J6040_1 —   

0.75  0.2 J3041_1 — J6041_1 —     
0.5 J3042_1 ✓ J6042_1 —     
0.7 J3043_1 — J6043_1 —     
1 J3044_1 ✓ J6044_1 ✓   

1  0.2 J3045_1 — J6045_1 —     
0.5 J3046_1 — J6046_1 —     
0.7 J3047_1 ✓ J6047_1 —     
1 J3048_1 ✓ J6048_1 —  
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uniform distribution U[20,30]. The different seasonality terms that 
will repeat throughout time are: 

0, Γ, 2Γ, 3Γ, 2Γ, Γ, 0, − Γ, − 2Γ, − 3Γ, − 2Γ, − Γ.

• The noise ωt is generated according to a Normal distribution N(0, 5). 

6.2. Experimental setting 

We now detail several aspects defining the experimental setting 
considered in this work. 

Table 4 
Number of optimal Pareto fronts found.  

(a) Instances with 30 activities.  

RS= 0.2 RS= 0.5 RS= 0.7 RS= 1.0 Total  

NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 (RF) 

RF= 0.25 1 1 1 1 1 1 1 1 1 1 1 1 12 
RF= 0.50 1 1 0 1 1 1 1 1 1 1 1 1 11 
RF= 0.75 0 0 0 1 1 1 0 1 0 1 1 1 7 
RF= 1.0 0 0 0 0 0 0 1 1 1 1 1 1 6 
Total (NC) 2 2 1 3 3 3 3 4 3 4 4 4  
Total (RS) 5 9 10 12   

(b) Instances with 60 activities.  

RS= 0.2 RS= 0.5 RS= 0.7 RS= 1.0 Total  

NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 (RF) 

RF= 0.25 1 0 0 1 0 1 1 1 1 1 1 1 9 
RF= 0.50 0 0 0 0 0 0 0 1 1 1 1 1 5 
RF= 0.75 0 0 0 0 0 0 0 0 0 1 1 1 3 
RF= 1.0 0 0 0 0 0 0 1 0 0 1 0 0 2 
Total (NC) 1 0 0 1 0 1 2 2 2 4 3 3  
Total (RS) 1 2 6 10   

Table 5 
Metrics and CPU time for the J30 instances such that AUGMECON could successfully solve all the MILP problems.   

AUGMECON Metaheuristic 

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ HVR IGD+ Spread Time (hrs) 

J301_1  49 100% 0.087  1.48  63 1.351 0.074 0.094 95.53% 0.024 0.545  0.57 
J302_1  59 98.15% 0.067  1.28  54 1.362 0.09 0.051 94.08% 0.025 0.502  0.53 
J303_1  55 100% 0.101  0.58  40 1.365 0.132 0.075 91.79% 0.033 0.591  0.85 
J304_1  42 100% 0.097  0.36  34 1.378 0.097 0.096 88.61% 0.049 0.63  0.51 
J305_1  57 100% 0.088  13.5  56 1.385 0.088 0.045 94.6% 0.028 0.464  0.61 
J306_1  40 100% 0.155  7.8  35 1.252 0.155 0.061 95.07% 0.027 0.644  0.59 
J307_1  34 100% 0.121  0.37  30 1.374 0.111 0.06 95.18% 0.027 0.638  0.65 
J308_1  44 100% 0.117  0.5  34 1.388 0.124 0.077 92.13% 0.037 0.503  0.55 
J3010_1  60 100% 0.082  6.79  56 1.373 0.107 0.095 91.53% 0.039 0.521  0.63 
J3012_1  37 100% 0.099  0.99  32 1.359 0.198 0.102 90.32% 0.037 0.677  0.63 
J3015_1  41 100% 0.125  2.69  35 1.528 0.143 0.063 91.44% 0.042 0.609  0.59 
J3016_1  43 100% 0.108  1.71  32 1.395 0.127 0.114 89.02% 0.046 0.569  0.51 
J3017_1  59 98.39% 0.078  12.16  62 1.384 0.061 0.052 95.08% 0.024 0.475  0.6 
J3018_1  47 100% 0.093  0.73  39 1.353 0.111 0.093 93.27% 0.031 0.626  0.53 
J3019_1  51 95.65% 0.078  0.49  46 1.313 0.098 0.096 93.07% 0.032 0.497  0.55 
J3020_1  36 100% 0.113  0.64  29 1.339 0.114 0.113 92.15% 0.048 0.591  0.71 
J3021_1  42 100% 0.129  19.62  37 1.392 0.118 0.071 94.6% 0.028 0.553  0.59 
J3022_1  35 100% 0.115  2.25  35 1.382 0.115 0.055 96.44% 0.018 0.61  0.46 
J3023_1  41 100% 0.092  0.93  33 1.369 0.092 0.078 93.14% 0.03 0.565  0.68 
J3024_1  21 100% 0.348  0.19  19 1.229 0.214 0.051 97.46% 0.023 0.783  0.68 
J3026_1  26 100% 0.234  16.75  22 1.391 0.213 0.129 84.79% 0.066 0.588  0.54 
J3027_1  29 100% 0.48  6.81  29 1.257 0.153 0.102 92.91% 0.042 0.531  0.59 
J3028_1  20 100% 0.529  0.63  18 1.193 0.173 0.057 96.49% 0.023 0.582  0.56 
J3031_1  22 100% 0.375  8.83  23 1.442 0.375 0.079 94.64% 0.033 0.611  0.44 
J3032_1  17 100% 0.489  0.37  20 1.507 0.267 0.069 94.88% 0.031 0.539  0.91 
J3033_1  29 100% 0.217  2.79  46 1.41 0.176 0.026 98.31% 0.011 0.547  0.74 
J3034_1  20 100% 0.289  0.56  16 1.396 0.289 0.065 91.92% 0.042 0.445  0.75 
J3035_1  12 100% 0.412  0.11  11 1.347 0.471 0.103 88.51% 0.057 0.585  0.55 
J3036_1  27 84.62% 0.304  0.21  26 1.251 0.417 0.031 99.32% 0.005 0.852  0.73 
J3038_1  49 100% 0.103  2.38  42 1.358 0.112 0.1 93.66% 0.034 0.589  0.44 
J3039_1  53 100% 0.089  0.99  45 1.368 0.107 0.09 90.58% 0.041 0.647  0.6 
J3040_1  62 100% 0.089  1.12  45 1.334 0.109 0.123 87.9% 0.061 0.6  0.68 
J3042_1  41 94.44% 0.215  17.03  36 1.406 0.206 0.046 96.36% 0.022 0.624  0.62 
J3044_1  29 100% 0.237  0.8  24 1.409 0.495 0.069 95.19% 0.026 0.778  0.54 
J3047_1  39 100% 0.126  6.15  36 1.405 0.147 0.061 93.42% 0.03 0.535  0.48 
J3048_1  49 100% 0.127  0.71  39 1.352 0.139 0.128 89.76% 0.045 0.596  0.46 

Average  39.4 – –  3.9  35.5 – – – – – –  0.6  
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Table 7 
Metrics and CPU time for the J30 instances such that AUGMECON could not successfully solve all the MILP problems.   

AUGMECON Metaheuristic 

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ Time (hrs) 

J309_1  26 87.5% 0.137  80.21  32 1.346 0.151 0.156  0.46 
J3011_1  44 97.06% 0.117  36.67  34 1.348 0.233 0.059  0.53 
J3013_1  22 53.57% 0.178  44.1  28 1.427 0.274 0.094  0.46 
J3014_1  48 100% 0.088  56.93  36 1.298 0.099 0.089  0.44 
J3025_1  8 26.47% 0.355  84.09  34 2.677 0.387 0.051  0.62 
J3029_1  19 72.41% 0.26  68.2  29 1.861 0.211 0.11  0.62 
J3030_1  25 90.63% 0.169  54.68  32 1.468 0.145 0.092  0.48 
J3037_1  38 100% 0.11  45.53  43 1.424 0.11 0.046  0.48 
J3041_1  12 52.94% 0.357  60.66  34 1.684 0.179 0.104  0.52 
J3043_1  30 100% 0.207  30.87  30 1.278 0.14 0.05  0.64 
J3045_1  12 26.09% 0.208  58.07  23 1.628 0.218 0.098  0.4 
J3046_1  44 97.44% 0.109  79.33  39 1.322 0.13 0.07  0.46 

Average  27.3 – –  58.3  32.8 – – –  0.5  

Fig. 6. Exact and heuristic Pareto solutions for 2 selected instances.  

Table 6 
Metrics and CPU time for the J60 instances such that AUGMECON could successfully solve all the MILP problems.   

AUGMECON Metaheuristic 

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ HVR IGD+ Spread Time (hrs) 

J601_1  56 100% 0.078  23.22  51 1.425 0.18 0.204 83.29% 0.08 0.708  1.83 
J602_1  84 100% 0.054  32.71  68 1.253 0.127 0.295 76.52% 0.111 0.685  1.56 
J603_1  74 100% 0.046  12.85  80 1.364 0.11 0.167 89.81% 0.051 0.677  1.65 
J604_1  29 100% 0.224  6.51  17 0.971 0.253 0.218 81.63% 0.069 0.747  2.07 
J608_1  80 100% 0.054  14.12  62 1.306 0.095 0.194 81.05% 0.087 0.543  2.11 
J6012_1  77 100% 0.04  18.78  55 1.321 0.092 0.193 79.18% 0.09 0.623  1.38 
J6015_1  54 100% 0.096  18.87  28 1.437 0.201 0.197 82.29% 0.084 0.662  2.04 
J6016_1  47 97.06% 0.122  44.22  34 1.493 0.159 0.106 91.87% 0.036 0.667  2.87 
J6020_1  36 100% 0.172  20.69  26 1.587 0.396 0.146 87.6% 0.061 0.754  2.13 
J6023_1  76 100% 0.049  26.21  59 1.345 0.135 0.201 84.88% 0.069 0.593  2.25 
J6024_1  39 100% 0.119  2.37  26 1.057 0.099 0.131 90.81% 0.041 0.733  1.41 
J6036_1  36 100% 0.181  1.83  31 1.352 0.34 0.158 88.79% 0.062 0.857  1.4 
J6039_1  30 100% 0.545  42.73  20 1.075 0.145 0.108 89.53% 0.05 0.732  1.57 
J6044_1  80 100% 0.052  15.36  39 1.358 0.126 0.219 79.57% 0.085 0.587  1.56 

Average  57.0 – –  20.0  42.6 – – – – – –  1.8  
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6.2.1. AUGMECON 
The AUGMECON method calls for solving a sequence of MILP 

problems for each instance. The algorithm was coded in C++ and in-
tegrated with IBM CPLEX 20.1 through Concert Technology. 

A first important decision concerning the use of AUGMECON con-
cerns the number of breakpoints to consider to split the cost range. We 
recall that the cost range is obtained from the costs in the payoff table. It 
is important to note that setting a given number n of breakpoints leads 
AUGMECON to obtain a maximum of n + 1 points on the front, given 
that the cost range is divided into n + 1 subintervals. 

Since we had no hint about the number of breakpoints that should be 
considered, we conducted preliminary experiments using a small subset 
of instances namely: J301_1, J3010_1, J3020_1, J3030_1, J3040_1, 
J601_1, J6010_1, J6020_1, J6030_1 and J6040_1. We applied AUGME-
CON several times for each instance using a different number of 
breakpoints: 10, 30, 50, 70, 90, 110, 130 and 150. In these experiments 
we set a time limit of 2 h for each MILP solver, i.e., two hours for each 
non-dominated solution, and we left all the other parameters as default. 
The results obtained are summarized in Table 2 and depicted in Fig. 5. 

In Fig. 5, we observe a tendency for the average number of break-
points to stabilize around values 90 and 100. In fact, although a growing 
trend can still be observed after 100 breakpoints are considered, the 
differences from a number of breakpoints to the following seem to 
decrease. Given that we needed to seek a comfortable trade-off between 

the number of breakpoints to consider and the computing effort when 
computing the Pareto front, we adopted the round figure ‘100’ as the 
‘stabilizing’ point. For this reason, for the J30 and J60 instances, we 
decided to use 100 breakpoints. For the larger instances, given the 
predictable additional computational effort to solve the MILP models, 
we decided to reduce the above number to 50. Furthermore, we keep 
considering a time limit of 2 h for solving the MILP models associated 
with the smaller instances (30 and 60 activities). For the larger instances 
we consider 4 h. Note that this time limit is set for each MILP solved and 
thus for analyzing each breakpoint. 

6.2.2. Metaheuristic 
In order to evaluate the performance of the metaheuristic designed, 

we have implemented it and we have solved the instances in PSPLIB 
described above with this technique. We have implemented the meta-
heuristic proposed using the jMetal framework [19,41], which is a 
widely used open-source framework for multi-objective optimization 
with metaheuristics (see, e.g., [34,33,56,57]). 

We carried out some preliminary experiments to set the best 
configuration of the algorithm in the different scenarios. Firstly, we 
combined different values for the parameters Pcross, Pmut_act, Pmut_obj 
and Population size. Although there was not a combination of values 
that performed the best in all the experiments, we decided to set a fixed 
configuration for all the runs in order to avoid a custom configuration 

Table 8 
Metrics and CPU time for the J60 instances such that AUGMECON could not successfully solve all the MILP problems.   

AUGMECON Metaheuristic 

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ Time (hrs) 

J605_1  6 62.16% 0.479  46.82  37 2.57 0.358 0.176  1.29 
J606_1  20 100% 0.286  79.28  28 2.928 0.714 0.142  1.38 
J607_1  11 71.43% 0.289  95.92  21 5.203 1.167 0.167  2.31 
J609_1  23 64.86% 0.39  74.76  74 1.776 0.115 0.132  1.13 
J6010_1  44 100% 0.079  132.26  58 1.416 0.106 0.223  1.5 
J6011_1  89 100% 0.034  80.07  74 1.331 0.086 0.194  1.59 
J6013_1  1 2.04% —  200  49 — — —  2 
J6014_1  19 80.56% 0.189  74.09  36 3.865 0.83 0.105  2.58 
J6017_1  42 100% 0.106  68.15  43 1.401 0.335 0.136  1.48 
J6018_1  16 52.78% 0.278  78.43  36 6.419 0.667 0.14  2.22 
J6019_1  14 75% 0.883  42.87  24 1.474 0.307 0.085  1.85 
J6021_1  15 48.44% 0.612  60.19  64 1.735 0.152 0.13  2 
J6022_1  44 100% 0.101  75.36  46 1.443 0.101 0.093  2.1 
J6025_1  1 16.98% —  200  53 — — —  1.82 
J6026_1  25 100% 0.177  86.21  34 2.081 0.194 0.164  2.45 
J6027_1  10 77.27% 0.381  105.14  22 2.883 0.429 0.286  2.47 
J6028_1  29 100% 0.56  11.86  20 1.356 0.192 0.087  2.72 
J6029_1  4 38.98% 0.54  50.23  59 3.348 0.276 0.124  1.97 
J6030_1  31 100% 0.208  61.11  40 1.319 0.104 0.104  1.48 
J6031_1  40 100% 0.161  112.27  34 1.488 0.426 0.108  1.5 
J6032_1  33 91.67% 0.347  71.49  24 1.739 0.32 0.093  2.26 
J6033_1  21 100% 0.545  58.11  17 1.204 0.176 0.114  1.28 
J6034_1  10 47.22% 0.313  85.62  36 5.534 0.813 0.125  1.62 
J6035_1  27 86.67% 0.24  39.14  30 0.984 0.165 0.095  1.56 
J6037_1  1 19.35% —  200  31 — — —  1.58 
J6038_1  16 100% 0.747  117.76  30 1.269 0.18 0.123  1.62 
J6040_1  40 100% 0.168  28.39  25 0.993 0.147 0.173  1.9 
J6041_1  2 19.05% 1  57.24  63 2.974 0.236 0.186  1.28 
J6042_1  50 96.25% 0.123  57.06  80 1.397 0.083 0.149  1.56 
J6043_1  36 100% 0.331  70.69  28 1.262 0.087 0.161  1.37 
J6045_1  1 3.45% —  200  58 — — —  1.04 
J6046_1  11 94.74% 0.252  52.34  38 1.742 0.18 0.105  1.61 
J6047_1  14 78.26% 0.2  136.09  23 3.242 0.6 0.25  1.84 
J6048_1  17 78.95% 0.257  85.74  19 1.868 0.314 0.143  1.69 

Average  22.4 – –  88.1  39.8 – – –  1.8  
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for each instance. After these parameters were set, we ran the different 
instances with different numbers of iterations and 20 million seemed a 
good trade-off between the computational time employed and the 
quality of the results. Therefore, the following combination of these 
parameters was set in all the runs:  

• Pcross = 0.9  
• Pmut_act = Pmut_obj = 1∕n; being n the number of activities in the 

project  
• Population size: 100  
• Total number of evaluations: 20 million 

The parameter max_shiftj, for all j ∈ V, must be set before the eval-
uation of each solution in order to allow the transformation of an 

individual in the population into a schedule. After some preliminary 
experiments, we set an upper bound of T∕2 for this maximum delay of 
each activity. Next, we performed some test experiments setting the 
same value of the parameter max_shiftj for all activities in the project, as 
well as obtaining a different parameter value for each activity. We also 
analyzed how the behavior of the metaheuristic was influenced by the 
fact of always randomly generating the parameter max_shiftj in the in-
terval [1, T∕2], or allowing this parameter to be progressively larger, 
that is, allowing that, as the metaheuristic search process evolves, the 
activities can be more delayed. After some test experiments, we ended 
up defining four different strategies for setting the maximum shift for the 
activities in the project when a schedule is to be built (evaluation 
performed): 

Table 9 
Metrics and CPU time for the J90 instances such that AUGMECON could not successfully solve all the MILP problems.   

AUGMECON Metaheuristic 

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ Time (hrs) 

J901_1  13 82.76% 0.24  104.3  87 1.831 0.253 0.079  3.94 
J9010_1  10 36.36% 0.375  130.77  55 22.547 6 0.599  3.16 
J9020_1  13 60% 0.222  88.42  25 4.842 1.333 0.213  2.93 
J9030_1  2 71.43% 1  88.07  21 8.266 1.333 0.778  5.73 
J9040_1  8 45.83% 0.385  180.91  24 5.858 0.714 0.357  3.29 

Average  9.2 – –  118.5  42.4 – – –  3.8  

Fig. 7. Approximate Pareto solutions for 4 selected instances.  
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• Strategy 1. A unique random integer number, max_shift, is generated 
in the interval [1, T∕2] and max_shiftj = max_shift for all j ∈ V.  

• Strategy 2. For each j ∈ V, a random integer number, max_shiftj, is 
generated in the interval [1, T∕2].  

• Strategy 3. A unique random integer number, max_shift, is generated 
in the interval [A, B] and max_shiftj = max_shift for all j ∈ V. Now, the 
interval where to choose the parameter depends on the number of 
evaluations performed so far. In the first 10% of the evaluations, [A, 
B] = [1, T∕8], in the next 20% [A, B] = [T∕8 + 1, T∕4], in the 
following 30% of evaluations [A, B] = [T∕4 + 1, 3T∕8] and in the 
last 40% [A, B] = [3T∕8 + 1, T∕2].  

• Strategy 4: For each j ∈ V, a random integer number, max_shiftj, is 
generated in the interval [A, B]. The interval [A, B] is formed as in 
strategy 3 and it depends on the number of schedules built so far. 

In strategies 3 and 4, all the intervals have the same length and the 
percentage of evaluations considered to determine the corresponding 
interval has been set after some test experiments. Moreover, preliminary 
experiments showed that none of these criteria performed the best in all 
the instances. On the other hand, it was possible to find that each one of 
the criteria performed the best in one or more instances. Therefore, we 
decided to combine the four criteria in the resolution of every instance. 
Given that the maximum number of evaluations is set to 20 million per 
instance, we have performed 4 independent runs employing one of the 
four criteria in each, setting a total of 5 million evaluations per run. The 
non-dominated solutions of each run are included in a set and the result 
of the metaheuristic is formed with the non-dominated solutions of this 
set, which forms a front. 

6.2.3. Metrics for evaluating the approximate Pareto front 
A good review of metrics to measure the quality of Pareto front ap-

proximations in multi-objective optimization can be found in [10]. The 
authors classify the metrics according to their properties: cardinality, 
convergence, distribution and spread. Cardinality indicators quantify the 
number of non-dominated points generated by an algorithm. Conver-
gence indicators quantify how close a set of non-dominated points is from 
the Pareto front in the objective space. Distribution and spread indicators 
quantify the distribution of a Pareto front approximation. Coverage 
measures how well every region of the objective space is represented, 
while spread focuses on the aspect that points should be far away from 
each other. There are also some convergence and distribution indicators 
which capture both the properties of convergence and distribution. 
Following this classification by Audet et al. [10], we detail below the 
metrics used in this work. The selection of the metrics has been made in 
such a way that all the categories are covered and, moreover, the in-
formation given by them all give us a detailed description of the char-
acteristics that the front has. Moreover, the metrics have been selected 
because they are easy to interpret and have been widely used in the 
literature. 

For instances in which the optimal Pareto front cannot be obtained, 
we decided to calculate the following metrics to compare two fronts: .  

• Cardinality:   
– Overall non-dominated Vector Generation (OVNG), proposed by 

van Veldhuizen and Lamont [50]: returns the number of 
non-dominated points on the front.  

– C-metric, proposed by Zitler and Thiele [61]: gives for two fronts, 
F1 and F2, the fraction of solutions in F1 that are dominated by one 
or more solutions in F2, C(F1, F2).  

• Distribution and spread:   
– Γ-metric, proposed by Custòdio et al. [17]: when considering a 

bi-objective problem, reduces to consider the maximum distance 
between two consecutive points in the Pareto front approximation, 
therefore, a lower value of Γ is desirable. 

– M*3-metric, proposed by Zitler et al. [60]: in the case of two ob-
jectives, this equals the distance of the two outer solutions and, 
consequently, a higher distance is desired.  

• Convergence:   
– ϵ-indicator, proposed by Zitzler et al. [63]: gives the minimum 

additive factor by which the approximation set has to be translated 
in the objective space in order to (weakly) dominate the reference 
set. A lower value is desirable. 

In addition to the above metrics, for the instances where the optimal 
Pareto front is known, we also calculate the following metrics: .  

• Convergence and distribution:  
– Hypervolume ratio, HVR, proposed by Zitzler [62]: the hyper-

volume indicator determines the volume of the space in the 
objective space dominated by the front generated by a given 
method. Therefore, the HVR computes the proportion of the space 
dominated by the optimal Pareto front which is dominated by the 
approximation method.  

– IGD+, proposed by Ishibuchi et al. [29]: overcomes the drawbacks 
presented by GD [50] and IGD [16]. Following [10], this measure 
takes into account the dominance relation between the elements of 
the fronts to be compared when computing the Euclidean distance 
and it is weakly Pareto compliant. As it represents a distance be-
tween the fronts, a lower value is considered to be better.  

• Distribution and spread:   
– Spread, proposed by Deb et al. [18]: takes into account the extent 

of the Pareto front approximation. A lower value is preferable. A 
spread value equal to 0 represents the most widely and evenly 
distributed set of non-dominated solutions. 

6.3. First results using AUGMECON 

We start by reporting on some results obtained when using the 
AUGMECON algorithm for finding the Pareto front of the problem we 
are investigating. The exact Pareto front could be obtained only for the 
J30 and J60 instances, although not for all. For the larger instances, 

Table 10 
Metrics and CPU time for the J120 instances such that AUGMECON could not successfully solve all the MILP problems.   

AUGMECON Metaheuristic 

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ Time (hrs) 

J1201_1  1 0% —  124.05  45 — — —  6.07 
J12010_1  1 30.3% —  200  33 — — —  5.55 
J12020_1  3 40.54% 0.748  140.08  37 6.652 1.143 0.667  10.21 
J12030_1  1 30.56% —  200  36 — — —  9.18 
J12040_1  0 — —  200  47 — — —  7.4 
J12050_1  1 20% —  200  20 — — —  6.97 
J12060_1  1 16.13% —  200  31 — — —  7.68 

Average  1.1 – –  180.6  35.6 – – –  7.6  
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AUGMECON could not find an exact single Pareto front. 
In Table 3, we present the analysis for the instances with 30 and 60 

activities. In this table, we detail the instances according to three project 
characteristics: Network complexity (NC), resource factor (RF), and 
resource strength (RS) which were described above. Observing Table 3 
we realize that for 12 out of the 48 instances with 30 activities, the 
optimal Pareto front could not be obtained. For the J60 this number 
raises to 34. 

To devise some possible relation between the difficulty in finding the 
optimal Pareto front and the specific features of the instances, we pre-
sent Tables 4a and 4b, where a 1 indicates that for the corresponding 
instance, the optimal Pareto front could be obtained and a 0 indicates 
the contrary. 

In these tables, we conclude for a clear tendency of AUGMECON to 
find the optimal Pareto fronts more easily when the resource factor 
decreases and when the resource strength increases. This is not sur-
prising since a smaller RF indicates that the activities are not very 
resource-demanding which makes it ‘easier’ to allocate the resources. 
On the other hand, an increased resource strength makes it more diffi-
cult to process activities in parallel and thus makes it ‘easier’ to find a 
schedule for the activities. 

In what follows, we use the instances for which the optimal Pareto 
front was obtained to benchmark the metaheuristic. Once this has been 
done and it becomes clear that the metaheuristic provides a good 
approximation of the Pareto front, we apply the heuristic to the other 
instances (the optimal Pareto front is not known) and analyze the 
results. 

6.4. Heuristic benchmarking 

The quality of the metaheuristic developed in Section 5 can be 
assessed by considering the instances for which AUGMECON could solve 
up to proven optimality all the MILP models called by the algorithm. For 
these instances we computed all the metrics described in Section 6.2.3. 

To obtain reliable results, before calculating any metric, the objec-
tive values of each of the objective functions of the problem were 
normalized, according to the following formula: 

f ′i(y) = (fi(y) − min
x

fi(x))∕(max
x

fi(x) − min
x

fi(x))

where max
x

fi(x) and min
x

fi(x) are the maximum and minimum values 

of the i-th objective function on the reference Pareto front, that is, on the 
front obtained by AUGMECON. 

Table 5 shows all the metrics for the J30 instances such that AUG-
MECON could successfully solve all the MILP problems, as well as the 
CPU time (in hours) required by each method to solve the problems. Let 
us recall that for each instance in J30 and J60, AUGMECON has a time 
limit of 200 h (100 breakpoints, 2 h per breakpoint) and the meta-
heuristic a limit of 20 million of evaluations. As described in Section 
6.2.3, OVNG gives the number of non-dominated points on the front. We 
can observe that, in most instances with 30 activities, OVNG is similar 
for both methods. Specifically, the average OVNG for AUGMECON was 
around 39 and for the metaheuristic around 36. C(F1, F2) measures the 
fraction of solutions in the approximate Pareto front that are dominated 
by one or more solutions on the front provided by AUGMECON. We see 
that there are 5 instances where this metric is less than 100% which 
means that some of the solutions of the approximate front are not 
dominated by solutions on the exact front. C(F2, F1), i.e., the fraction of 
solutions on the optimal Pareto front that are dominated by the 
approximate front, is not shown as it is always 0% in the instances of this 
table. Γ measures the size of the holes on the front, therefore, a lower 
value of this metric is desirable. The values for this metric are very 
similar in both methods, indicating that the maximum distance between 
adjacent points on both fronts is similar. Regarding M*3, it measures the 
extent of the front. Note that, due to normalization, the M*3-metric for 
the AUGMECON method is always equal to 

̅̅̅
2

√
≈ 1.414 and for this 

reason, it is not shown in the table. In the approximate front, the min-
imum value for the M*3-metric is 1.193 and the maximum value is 
1.528, therefore, the extent of the approximate Pareto front is not very 
different from the optimal Pareto front. The ϵ indicator gives the mini-
mum additive factor by which the approximation set has to be translated 
in the objective space in order to (weakly) dominate the reference set. 
The values of this metric are, as we can observe in the table, quite low, 
which is desirable. Regarding HVR, we can observe that in 30 of the 36 
instances it is greater than 90%. Let us recall that HVR computes the 
proportion of the space dominated by the optimal Pareto front which is 
dominated by the approximation method. The last two metrics, 
IGD+ and Spread, are mainly useful for comparing our metaheuristic 
with other methods in future research. IGD+ measures the distance 
between the set offered as an approximation to the Pareto front and the 
optimal Pareto front. We can see that IGD+ is quite low in all cases, 
which indicates that the approximate front is quite close to the optimal 
Pareto front. The spread takes into account the extent of the Pareto front 
approximation. A spread value equal to 0 represents the most widely and 
evenly distributed set of non-dominated solutions. In our case, these 
values are between 0.445 y 0.852. 

In general, and taking into account all the metrics considered, we can 
conclude that the approximate Pareto fronts provided by the meta-
heuristic are quite good with respect to cardinality, distribution, spread 
and convergence. Moreover, the average CPU time to solve the instances 
in Table 5 was 3.9 h for AUGMECON and 0.6 h for the metaheuristic. 
Therefore, the results demonstrate that the metaheuristic is a good 
alternative to the exact method when solving these instances, which are 
the smallest of all those selected. 

Table 6 shows the metrics for the J60 instances such that AUGME-
CON could successfully solve all the MILP problems, and the CPU time 
employed by both methods. For these 14 instances, AUGMECON gives 
fronts with, on average, 57 points in an average CPU time of 20 h per 
front. By contrast, the fronts obtained by the metaheuristic in 1.8 h, on 
average, have around 43 points. Regarding C(F1, F2), we see that there 
is 1 instance where this metric is less than 100% which means that some 
of the solutions of the approximate front are not dominated by solutions 
on the exact front. Again, C(F2, F1) is not shown, as it is always 0% in 
these instances. In most cases, the Γ values are very similar in both 
methods, i.e., the maximum distance between adjacent points in both 
fronts is similar. In the approximate front, the M*3-metric is between 
0.971 and 1.587, compared with the value of 

̅̅̅
2

√
which AUGMECON 

always reports. Again, the values of the ϵ indicator are rather low, which 
is desirable. Regarding HVR, we can observe that in 11 of the 14 in-
stances it is greater than 80%. IGD+ are quite low in all cases, indicating 
that the approximate front is close to the optimal Pareto front. Finally, 
we can see that the spread values are between 0.543 y 0.857. As in the 
analysis of the J30 instances, these results show that the metaheuristic 
provides approximations of the optimal Pareto fronts with good features 
in much lower computation times. 

Fig. 6 graphically shows the Pareto fronts obtained, both by AUG-
MECON and by the metaheuristic, for two selected instances, one with 
30 activities and the other with 60. As can be seen from the analysis of 
the previous metrics, in this figure we once again observe that the exact 
fronts and those obtained by the proposed metaheuristic are rather 
similar. Furthermore, we see that these similarities are stronger for 
shorter makespan, which will generally be the schedules in which a 
decision maker is usually more interested. 

6.5. In search for approximate Pareto fronts 

We now focus on the results for the instances for which AUGMECON 
could not find the exact Pareto front. Table 7 shows the metrics for the 
J30 instances such that AUGMECON could not successfully solve all the 
MILP problem, which happened in 12 of the 48 instances selected with 
30 activities. The table also shows the CPU time (in hours) employed by 
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AUGMECON and the metaheuristic. In most of these instances, the 
metaheuristic was able to find more non-dominated solutions than 
AUGMECON. Specifically, the average OVNG for AUGMECON was 
around 27 and for the metaheuristic it was near 33. Regarding the C- 
metric, in most cases there are solutions on the front provided by the 
metaheuristic that are non-dominated by the solutions on the front 
provided by AUGMECON, that is, C(F1, F2) is less than 100%. In cases 
where AUGMECON cannot find the optimal Pareto front, the fraction of 
solutions on the front provided by AUGMECON that are dominated by 
one or more solutions on the front provided by the metaheuristic, C(F2, 
F1), may be nonzero. In the instances of Table 7, this happens in in-
stances J3013_1, J3025_1, J3029_1, J3041_1 and J3045_1 where C(F2, 
F1) was 4.55%, 62.5%, 5.26%, 25%, and 16.67%, respectively. We can 
see that the Γ values are very similar in both methods in most cases, 
which means that the maximum distance between adjacent points on 
both fronts is similar. The M*3-metric for the metaheuristic is greater 
than 

̅̅̅
2

√
in 7 of the 12 instances, that is, the extent of the metaheuristic 

front is greater than that of AUGMECON. Regarding the ϵ indicator, the 
values are rather low, which is desirable. Note that the metrics HVR, 
IGD+ and Spread are not calculated since we do not know the optimal 
Pareto front. Therefore, in these instances, the metaheuristic also ob-
tains good fronts in 0.5 h on average in contrast to the more than 58 h 
needed by AUGMECON. 

Table 8 details the metrics and the CPU time for the 34 instances with 
60 activities such that AUGMECON could not successfully solve all the 
MILP problems. In most of the instances of Table 8, the metaheuristic 
was able to find more non-dominated solutions than AUGMECON, near 
40 vs 22, on average. In four of the instances, the exact technique only 
obtains one point on the front in 200 h of execution time while the 
metaheuristic obtains for those instances, fronts with on average 50 
points in 1.6 h, on average. Regarding the C-metric, in 21 of the 34 in-
stances C(F1, F2) is less than 100%. C(F2, F1) was nonzero only in 
instance J605_1, with a value of 16.67%. In 16 of the instances, the Γ 
metric is better in the metaheuristic, in 13 instances this happens the 
other way around. Note that when the payoff table could not be 
approximated because one of the extreme points could not be calculated 
by AUGMECON, normalization could not be performed and, therefore, 
most of the metrics could not be calculated. This is the case for instances 
J6013_1, J6025_1, J6037_1 and J6045_1. The M*3-metric for the met-
aheuristic is greater than for AUGMECON in 20 of the 30 instances for 
which it can be calculated, that is, the extent of the metaheuristic front is 
better than that of AUGMECON. Regarding the ϵ indicator, the values 
are rather low again, which is desirable. For these instances, the average 
CPU time for the metaheuristic was 1.8 h, while for AUGMECON it grew 
to 88.1 h. 

The results presented so far indicate that the metaheuristic proposed 
is a very good alternative to the exact method because it has demon-
strated a good performance in the instances in which the exact method is 
able to give a front in extremely lower CPU times. 

For the J90 and J120 instances selected, AUGMECON was run for a 
maximum of 200 h (50 breakpoints, 4 h per breakpoint) and it could not 
find the optimal Pareto front in any of the instances. Table 9 shows the 
metrics and CPU time for the J90 instances. In all the J90 instances, the 
metaheuristic was able to find more non-dominated solutions than 
AUGMECON. The average OVNG for AUGMECON was around 9 and 
near 42 for the metaheuristic. We can see that C(F1, F2) is less than 100% 
in all cases. For example, in J9010_1, the 63.64% of the front given by 
the metaheuristic is not dominated by solutions on the AUGMECON 
front. Regarding the Γ and M*3 metrics, it is worth highlighting the case 
of the instance J9010_1 where the value for the metaheuristic is very 
high but, if we analyze in detail the fronts given by both methods (see 
Fig. 7c below), we can see that this is due to the little extent of the 
reference front provided by AUGMECON, which is also shown by the 
high value of the M*3 metric for the metaheuristic. The ϵ indicator, as 
always, takes quite good values. The average CPU time for the 

metaheuristic was 3.8 h, while for AUGMECON it was 118.5 h. 
Table 10 details the metrics and CPU time for the J120 instances 

selected. As we can see, only in one of the instances with 120 activities, 
AUGMECON was able to find more than one point on the front, which 
allows the calculation of the analyzed metrics. What’s more, for one of 
the instances (J12040_1) it was not able to find any point. For these 
instances, AUGMECON gives fronts with a number of points which 
varies from 0 to 3 in around 180 h of CPU time, on average, and the 
metaheuristic gives, in less than 8 h per instance, fronts with, on 
average, near 36 points. C(F1, F2) is less than 50% in all cases. Regarding 
the high values of the Γ and M*3 metrics for instance J12020_1, these are 
explained again by the little extent of the reference front obtained by 
AUGMECON (see Fig. 7d below). 

The last results show that the exact method performs as intractable to 
solve the problem considered in large instances. In these cases, the 
metaheuristic, which has demonstrated a good performance in small or 
medium sized instances, has nowadays become the only practical 
alternative and can find good approximate fronts in reasonable 
computation times. 

Fig. 7 shows the Pareto fronts obtained, both by AUGMECON and by 
the metaheuristic, for 4 instances, one for each one of the sets in PSPLIB 
we have considered in this work. These are only four examples where 
the metaheuristic gives fronts with better characteristics than the exact 
method with regard to the different type of features considered for 
comparing the fronts: cardinality, convergence, distribution and spread. 

7. Conclusions and future research 

In this paper, we have presented a bi-criteria resource-constrained 
project scheduling problem considering as objective functions the 
makespan and the total cost associated with resource usage, which is 
time-dependent. Several major conclusions can be drawn from the work 
carried out. First, only for small to medium sized instances was it 
possible to find exact Pareto solutions. Still, in many cases, the 
computational effort required is significant. Second, the problem we are 
investigating is quite rich in terms of the Pareto solutions found. This 
means that, in general, each instance of the problem leads to a large set 
of Pareto solutions. Third, the metaheuristic developed for the problem 
is quite effective in finding the approximate Pareto front. We could 
observe results that often correspond to sharp approximations of the 
Pareto front. Furthermore, the CPU time required by the metaheuristic is 
rather small given the quality of the solutions found. Moreover, when 
the use of AUGMECON, even as an approximate method failed to find 
Pareto solutions to the problem, the metaheuristic was able to deliver a 
rich set of approximate solutions in reasonable computation times. 
Overall, finding a perfect cost-time trade-off for the RCPSP is far from 
possible since many compromise solutions can be adopted. In any case, 
the methodologies proposed in this paper make it possible to provide a 
decision maker with a rich set of alternative solutions from which a 
better decision can certainly be made. 

Several research avenues are opened with this work. In fact, the set of 
objective functions investigated in this work can be extended to consider 
other possibilities such as resource leveling to ensure an even use of the 
resources throughout the planning horizon. The use of non-renewable 
resources is also an interesting research direction to explore. Above 
all, multicriteria resource-constrained project scheduling problems 
define a very challenging area in which much work still remains to be 
done. The use of time dependent costs for the resources is an interesting 
area that is still very much unexplored. 
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