
Journal of Manufacturing Systems 63 (2022) 506–523

Available online 18 May 2022
0278-6125/© 2022 The Author(s). Published by Elsevier Ltd on behalf of The Society of Manufacturing Engineers. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Bi-objective resource-constrained project scheduling problem with
time-dependent resource costs

Javier Alcaraz a,b, Laura Anton-Sanchez a,b,*, Francisco Saldanha-da-Gama c,d

a Departamento de Estadística, Matemáticas e Informática, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
b Centro de Investigación Operativa, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
c Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
d Centro de Matemática, Aplicaçóes Fundamentais e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

A R T I C L E I N F O

Keywords:
Resource-constrained project scheduling
problem
Time-dependent resource costs
Makespan
Multi-objective optimization
Exact Pareto front
Metaheuristics

A B S T R A C T

This work provides new insights on bi-criteria resource-constrained project scheduling problems. We define a
realistic problem where the objectives to combine are the makespan and the total cost for resource usage. Time-
dependent costs are assumed for the resources, i.e., they depend on when a resource is used. An optimization
model is presented and it is followed by the development of an algorithm aiming at finding the set of Pareto
solutions. The intractability of the optimization models underlying the problem also justifies the development of
a metaheuristic for approximating the same front. We design a bi-objective evolutionary algorithm that includes
problem-specific knowledge and is based on the Non-dominated Sorting Genetic Algorithm (NSGA-II). The re-
sults of extensive computational experiments performed using instances built from those available in the liter-
ature are reported. The results demonstrate the efficiency of the metaheuristic proposed.

1. Introduction

The resource-constrained project scheduling problem (RCPSP) con-
sists of scheduling a set of activities subject to precedence and resource
constraints. This is a well-known problem with much work available in
the literature. This is attested by the large number of surveys that have
been published. Among these, we quote the most recent ones by
Abdolshah [2], Habibi et al. [23] and Hartmann and Briskorn [27,28].
The amount of work done on the RCPSP has reached such a volume that
one even finds surveys on specific types of methodologies developed for
it. For instance, Pellerin et al. [42] focus on hybrid metaheuristics in the
context of these problems.

This work focuses on a bi-criteria RCPSP considering the makespan
and the total costs for resource usage as the objectives to optimize. We
consider resource- and time-dependent costs, i.e., the cost depends on
the resource being considered as well as on the time it is used. We can
find many different examples in practice of such time-dependent
resource costs. This holds, for instance, when scarce resources are
involved, such as water in some geographies. The availability of such
resource may easily change over time (e.g. summer versus autumn) with
impacts on its costs. In the specific context of manufacturing systems,
this issue becomes of great relevance with energy costs that are typically

much cheaper during off-peak times than in peak times (an interesting
discussion is presented by Moon and Park [39]). Additionally, the labor
costs may easily depend on the time the resources are used (e.g. week-
days versus weekends). What is more, all these costs may be affected by
an annual increase induced by the consumer price index. Above all, by
capturing more realistic settings, it is possible to develop more adequate
tools of great relevance in the context of smart manufacturing in general
[46] and in the context of scheduling activities in manufacturing sys-
tems in particular [37].

The goal for the bi-objective problem we investigate in this work is to
find the Pareto front, i.e., the entire set of solutions that cannot be
improved in terms of one objective without deteriorating the other. The
intractability of the optimization models required to find those solu-
tions, that will be clear by the experiments we report, motivates the
development of a heuristic algorithm for approximating the front. We
propose a metaheuristic based on the Non-dominated Sorting Genetic
Algorithm (NSGA-II) proposed by Deb et al. [18].

We start by discussing modeling issues related with the problem.
Afterwards, we discuss an exact algorithm for finding exact Pareto so-
lutions, namely, the so-called AUGMECON [36] that we adapt to our
problem. The work proceeds with the new metaheuristic we propose for
approximating the Pareto front. Finally, our methodological

* Corresponding author at:Departamento de Estadística, Matemáticas e Informática, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
E-mail address: l.anton@umh.es (L. Anton-Sanchez).

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

https://doi.org/10.1016/j.jmsy.2022.05.002
Received 7 December 2021; Received in revised form 8 April 2022; Accepted 2 May 2022

mailto:l.anton@umh.es
www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
https://doi.org/10.1016/j.jmsy.2022.05.002
https://doi.org/10.1016/j.jmsy.2022.05.002
https://doi.org/10.1016/j.jmsy.2022.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2022.05.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Manufacturing Systems 63 (2022) 506–523

507

contribution is assessed via a series of computational tests performed
using instances built from those available in the literature. The results
obtained are reported in detail.

The remainder of this paper is organized as follows. In Section 2 we
discuss the relation between our work and the existing literature.
Particular emphasis is put on multicriteria decision making in the
context of the RCPSP as well as on the search for a time-cost trade-off. In
Section 3, we provide all details of the problem we are studying and
present a bi-criteria vector optimization model. We also illustrate the
relevance of considering such model. In Section 4, we apply an exact
algorithm for finding exact Pareto solutions. Section 5 presents the
metaheuristic we have designed and developed for the problem. In
Section 6, we report on the extensive experiments performed to assess
the methodologies proposed. Finally, the paper ends with an overview of
the work carried out.

2. Relation with the existing literature

The major aspects related to the current paper include multicriteria
optimization in the context of the RCPSP as well as a cost-dependent
resource usage. Next, we provide an overview of the work done,
which in turn, helps to strengthen the motivation for developments we
propose in the following sections.

2.1. Multicriteria optimization in the context of the RCPSP

The RCPSP is prone to the consideration of different objectives
depending on the specific interests of the decision maker. We refer to
[11] and [23] for many examples of different types of objectives of
practical relevance. These include the makespan, the maximum lateness
(when deadlines are considered), and cost objectives. Interestingly, the
literature on project scheduling and management is not abundant when
it comes to considering cost as a sole objective. Nevertheless, we still
find some good exceptions such as the work by Martins [35], where the
author discusses aspects such as the integration of cash-flows along with
the project execution, or borrowing strategies for supporting projects’
costs.

More often than not, more than one objective emerges as relevant in
RCPSP. This justifies that large stream of research one can find in terms
of multicriteria models and techniques for these problems. We note the
relevance of this issue in [52], where the authors study a bi-objective
version of the RCPSP such that, in addition to makespan minimiza-
tion, it seeks to minimize the total tardiness (deadlines are assumed for
the activities). Pareto solutions are sought by means of a two-stage al-
gorithm: first, all the supported solutions are identified and the solution
space is reduced considering the triangle areas where non-supported
solutions can be found; afterwards, the non-supported solutions are
identified. In this work, the authors aim to find exact Pareto solutions.
Unfortunately, this can be accomplished for rather small instances,
which explains the existence of a larger number of articles focusing on
approximate procedures for multicriteria RCPSP as we can observe next.

Al-Fawzan and Haouari [5] consider a bi-objective RCPSP that in
addition to the usual makespan objective, involves a robustness objec-
tive and they propose a Tabu Search-based algorithm for approximating
the Pareto front. For every activity, the authors define a slack, repre-
senting the amount of time the activity can be shifted without delaying
the start of their direct successors in the precedence network, while
maintaining resource usage feasibility. The robustness measure adopted
is the sum of such slacks for all activities because it somehow quantifies
the ability of a schedule to cope with non-predictable changes in some
activity(ies). A Tabu Search-based algorithm is developed for approxi-
mating the Pareto front. The same problem was treated by Abbasi et al.
[1] who proposed a simulated annealing-based procedure.

Abello and Michalewicz [3] seek to minimize the makespan and the
project cost (resource allocation) in a project scheduling problem with a
time-dependent number of activities. The authors develop a

multiobjective evolutionary algorithm for finding non-dominated solu-
tions. Wang et al. [51] also investigate a bi-objective RCPSP. The au-
thors assume that the processing time of the activities may change which
will call for resource transfer decisions. One objective function repre-
sents the so-called total starting time criticality of the activities. For each
activity, this value is computed as the product of a marginal cost for
starting the activity later than initially planned and the probability that
such activity cannot start according to its (initially) scheduled starting
time. The second objective function represents the total resource
transfer cost. For the above problem, the authors developed a
non-dominated sorting genetic algorithm type II.

Wang et al. [53,54] study a three-objective RCPSP: they consider the
two objective functions already adopted in [52] and add a third one that
measures the workload balance level to be maximized. In that work,
genetic algorithms are hybridized with the Self Controlling Dominance
[45] for finding approximate Pareto solutions. Habibi et al. [24] also
consider a three-objective RCPSP with time-dependent resource re-
quirements and capacities. In addition to the traditional makespan, the
authors also consider maximizing the schedule robustness (considering a
weighted sum of the activities’ free slacks), and maximizing the dis-
counted cost associated with the resources. A non-dominated sorting
genetic algorithm and a multi-objective particle swarm optimization
procedure are proposed for approximating the Pareto front.

The above literature shows that, in the context of the RCPSP, most of
the research effort has been placed in developing algorithms for
approximating the Pareto front. The aforementioned single paper that
seeks to identify exact Pareto solutions does so without exploring state-
of-the-art tools in the context of bi-criteria optimization. Moreover, cost
is not considered in that specific article.

We note that research can be found that aims at finding exact Pareto
fronts for the most natural extension of the RCPSP: the multi-mode
RCPSP. This is the case with Florez et al. [22], who consider three
objective functions: the makespan, the total labor and investment cost,
and resource stability. The authors assume that human resources are
involved and thus some social objective is needed to better support
decision making. Pareto solutions are found using an a priori lexico-
graphic ordering of the objectives, followed by the application of the
ε-constraint method.

2.2. Time-dependent costs

The vast existing literature on project management problems is
abundant when it comes to searching for time-cost trade-off solutions.
This was exactly the case when such problems started being investigated
in the specialized literature stemming from the leading work by Kelley
and Walker [30]. This seminal article set the idea of compressing the
execution time of the activities with some cost incurred. Achuthan and
Hardjawidjaja [4] proposed an interesting innovation to that idea: the
cost of the activities is time-dependent. As the authors point out, this is
quite realistic in many problems. Nevertheless, in that work, resources
are abundant. Other work aligned with using time-dependent costs is
that by Szmerekovsky and Venkateshan [48] in which, again, activity
duration can be compressed although, once more, unlimited resources
are assumed.

To the best of the authors’ knowledge, in the context of the RCPSP,
no work has explicitly considered time-dependent resource costs, which
is a major feature in our current paper. Nevertheless, some works can be
found capturing time-dependent features which, in some way, may
reflect the existence of resources with time-dependent costs. Möhring
et al. [38] mention the existence of time-dependent resource profiles in
RCPSP (related with resource availability) although no costs are
explicitly captured. Pottel and Goel [43] consider a RCPSP with
time-dependent activity processing times and resource consumption.
Again, costs are not explicitly considered. In the context of scheduling
problems in manufacturing systems, Wu et al. [55] consider a
multi-scenario setting, capturing uncertainty in the processing time of

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

508

the activities. The difference with respect to the two previous works is
that the processing time is exogenous (although uncertain).

Overall, by reviewing the existing literature, we realize that the time-
dependent cost associated to resources has never been considered for the
RCPSP, let alone combined with the minimization of the makespan in a
multicriteria framework, as we propose in this work.

2.3. Contribution provided by the current work

Given the existing literature as well as the modeling aspects and
algorithmic developments proposed in the current paper, we can sum-
marize the major contributions we provide as follows:

• The RCPSP is extended to capture time-dependent resource costs.
• The above extension leads to a cost-minimization objective that is

considered together with the makespan minimization within a bi-
criteria modeling framework.

• An exact procedure is developed for determining the exact Pareto
front.

• A metaheuristic based on the NSGA-II algorithm is proposed for
approximating the Pareto front aiming at tackling large-scale in-
stances of the problem.

• We report on the results of an extensive set of computations per-
formed by considering a well-known dataset of instances.

3. Problem details

A project consists of a set V = {0, 1, . . . , n, n + 1} of activities such
that for each activity j ∈ V, a duration or processing time dj is known. The
latter is assumed to be deterministic and integer. There are precedence
relations between activities, all of a finish-start type. For each activity j,
a set Pj is considered that contains all its predecessors. Preemption is not
allowed, i.e., activities are executed during dj time periods from their
start time without interruption. Moreover, activities make use of a set K
of renewable resources with each activity j ∈ V requiring rjk units of
resource k per time unit. The availability of resource k in each time unit
is given by Bk. The problem consists of finding the start time for each
activity so that the precedence relations and the resource constraints are
satisfied and the project makespan is minimized. Activities 0 and n + 1
are dummy activities representing the start and the end of the project,
respectively. These activities have a null processing time and do not
consume resources.

Different models have been proposed for the RCPSP makespan
minimization. A comprehensive overview is provided by Artigues et al.
[9]. We take the first optimization model proposed for the model as a
starting point, which is due to Pritsker et al. [44]. This model makes it
necessary to set a planning horizon, of a certain length T. This indicates
that all the activities must be completed by time T. Ideally, T should be
determined by a sharp upper bound in the optimal makespan. None-
theless, in the worst case scenario, it can be set equal to the sum of the
duration of all activities. This induced planning horizon is thus a natural
number, which is divided into unitary-time periods, starting at time 0.

Given the precedence-relations, for each activity j ∈ V there is an
earlier starting time, ESj, which is the minimum time necessary to
execute the direct and transitive predecessors of j. On the other hand,
given that the project much be completed at time T (at most) then the
starting time of an activity j ∈ V should be such that it allows its direct
transitive successors to be executed in a way that the entire project ends
at time T or before. In other words, for every activity j ∈ V there is a latest
starting time, LSj. These times, ESj and LSj, are calculated in the usual
way that we revisit to make this document self-contained:

ES0 = 0;
ESj = max

i∈Pj
{ESi + di} ∀j ∈ V;

LSn+1 = T;
LSj = min

k ∕ j∈Pk
{LSk − dj} + T − ESn+1 ∀j ∈ V.

Considering the above elements, the following decision variables are
defined:

yjt =

{
1 if j starts at time t,
0 otherwise,

}

∀ j ∈ V and t ∈ {ESj, …, LSj}. For a vector of objective functions of
interest, say f(y), a vector optimization RCPSP can be formulated as
follows:

minimize f(y) = (f1(y), f2(y),…, fL(y)), (1)

subject to
∑LSj

t=ESj

yjt = 1 ∀j ∈ V, (2)

∑LSj

t=ESj

t yjt −
∑LSi

t=ESi

t yit ≥ di ∀i, j ∈ V : i ∈ Pj, (3)

∑

j∈V
rjk⋅

∑min{t,LSj}

τ=max{t− dj+1,ESj}

yjτ ≤ Bk ∀k ∈ K, t ∈ {0,…, T − 1}, (4)

yjt ∈ {0, 1} ∀j ∈ V, t ∈ {ESj,…,LSj}. (5)

In this model, Constraints (2) ensure that every activity starts in some
time; Constraints (3) are the precedence constraints and they guarantee
that if some activity i precedes another activity j, then the latter can only
start after the former has been finalized; the resource constraints are
represented by (4), in each time period the amount available of each
resource limits its usage. Finally, (5) define the domain of the y-
variables.

What remains to be defined is the set of objective functions to
consider. Using the y-variables, the makespan is straightforwardly
defined as

f1(y) =
∑T

t=ESn+1

t y(n+1),t (6)

Let us consider now that we have a time-dependent cost for the use of
the renewable resources. In particular, we denote by ckt the cost of
employing one unit of resource k in period between times t and t + 1, for
all k ∈ K and t ∈ {0, …, T − 1}.

The total cost for resource usage becomes

f2(y) =
∑

j∈V⧹{n+1}

∑min{T − 1,LSj}

t=max{0,ESj}

(
yjt

∑t+dj − 1

τ=t

∑

k∈K
rjk ckτ

)
(7)

Example 1. We present an example for illustrating the above
problem. Fig. 1 shows an instance of a project with time-dependent
costs. The example has been adapted from that presented in [6]. The
project consists of 7 activities making use of a single renewable resource,
which has an availability of 6 units per period. Activities 0 and 8

Fig. 1. An example of the RCPSP with time-dependent resource costs.

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

509

represent the usual dummy activities, which have also been included in
set V. The length of the planning horizon for this project was set equal to
the sum of all the processing times. In each period, the cost per unit of
the renewable resource, which presents two different rates, has been
calculated.

Considering the objectives f1(y) and f2(y) separately, we obtain
different solutions to the problem. Two different feasible solutions have
been presented in Fig. 2, where the values for both objectives have been
calculated. Both schedules represent a way to execute the same project,
but, as the activities are executed in different periods, the cost may
differ. Looking at both solutions, we can conclude that none of them
dominates the other in the sense that no objective can be improved
without deteriorating the other. As we will also discuss, this is in line
with one of the aims of this work, which will be to find the so-called
Pareto front, i.e., the set of non-dominated solutions.

In terms of the resource-constrained project scheduling problem, a
major novelty of our work stems from considering the objective function
(7). This fully changes the nature of the problem. First, the concept of
optimality is no longer valid since we now have two objective functions
gathered within a bi-criteria model. What is more, as our illustrative
example reveals, the new objective function and the usual makespan (to
minimize) can easily be conflicting. This poses a major challenge when it
comes to solving the model and also selecting a solution. In particular,
the best we can now do is to look for the so-called Pareto solutions, i.e.,
those solutions such that an objective function value cannot be
improved without deteriorating the other. In the example, if our
objective is only to minimize the project duration, the optimal makespan
is 11. However, if we consider both objectives, there would be 7 Pareto
solutions, which vary from a schedule with a makespan of 11 and a cost
of 140 to a schedule with a makespan of 18 and a cost of 118. Between
these two solutions it may be possible to provide a decision maker with a
rich set of alternatives from which a better decision could certainly be
made.

In the following sections we propose an algorithm for finding exact
Pareto solutions and afterwards an approximate algorithm, since for
large-scale instances finding exact Pareto solutions may turn out to be
cumbersome.

4. Finding exact Pareto solutions

Following the previous section, we are focusing on problem

minimize f (y) = (f1(y), f2(y)),
subject to (2) − (5). (8)

Our goal is to obtain Pareto solutions to this problem—hopefully, the
entire Pareto front. The ε-constrained method is a well-known procedure

for finding non-dominated solutions in vector optimization. Since we
have only two objectives, we can implement this method quite effi-
ciently and thus find the entire Pareto front (see, e.g., [36] and [13]). To
ensure that this manuscript is self-contained, we briefly describe the
method.

The ε-constrained method relies on a single objective model, keeping
one of the objective functions and setting bounds on the others (by
means of additional constraints). Without loss of generality, in our case
we can consider the following model:

minimize f1(y),

subject to y ∈ S,
f2(y) ≤ ε. (9)

In this model, S denotes the feasibility set for the y vector, i.e., the set of
binary vectors y ∈ {0, 1}∣V∣×(T+1), satisfying (2)–(5).

Denote by f1 = (f1
1, f

1
2) and f2 = (f2

1, f
2
2) two points in the criteria

space such that f1
1 ≤ f2

1 and f1
2 ≤ f2

2. Using the terminology introduced by
Boland et al. [13], we define R(f1, f2) as the rectangle in the criteria
space that has f1 and f2 as extremes of one diagonal. Let

f̂ 12 = lexmin
y∈S

{
f1(y), f2(y)

⃒
⃒f (y) ∈ R(f 1, f 2)

}
.

f̂ 12 is the point in the objective space corresponding to the minimum of
f2(y) in rectangle R(f1, f2) chosen among the points corresponding to the
minimum value of f1(y) also in that rectangle. In other words, f̂ 12 is
obtained by solving sequentially the following two optimization
problems:

f̂ 1 = min
y∈S

{
f1(y)

⃒
⃒ f (y) ∈ R(f 1, f 2)

}

and

f̂ 2 = min
y∈S

{
f2(y)

⃒
⃒ f (y) ∈ R(f 1, f 2) ∧ f1(y) ≤ f̂ 1

}
.

Likewise, we can represent ̂f 21 as the point in the rectangle R(f1, f2) with
smallest value for f1(y) among all points minimizing f2(y).

Since we are considering two objectives, we adopt the improvement
of the ε-constrained method introduced by Mavrotas [36]: the so-called
AUGMECON method. In particular, we consider minimizing the make-
span by setting the total cost for the resources as a constraint:

minimize
∑T

t=ESn+1

t y(n+1),t (6)

Fig. 2. Different solutions to project in Fig. 1.

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

510

subject to (2) − (5),
∑

j∈V⧹{n+1}

∑min{T − 1,LSj}

t=max{0,ESj}

(

yjt

∑t+dj − 1

τ=t

∑

k∈K
rjk ckτ

)

≤ ε. (9)

As explained in [36], an optimal solution to the above problem is
guaranteed to be an efficient solution only if the ε-constraint is binding.
This motivated the author to consider an augmented problem that in our
case is the following:

minimize
∑T

t=ESn+1

t y(n+1),t − γ s (10)

subject to (2) − (5),
∑

j∈V⧹{n+1}

∑min{T− 1,LSj}

t=max{0,ESj}

(

yjt

∑t+dj − 1

τ=t

∑

k∈K
rjk ckτ

)

+ s = ε, (11)

s ≥ 0. (12)

In the above model, s is the slack variable of the ε constraint and γ is a
small factor ensuring that the slack of the ε is as high as possible. This is
an elegant way of ensuring that non-supported efficient solutions are
excluded when solving this single-objective model.

Two reference solutions in the Pareto front correspond to optimizing
the objective functions lexicographically:

y* ∈ arglexmin
y∈S

{f1(y), f2(y)|f (y) ∈ R((− ∞,∞), (− ∞,∞))}

and

y** ∈ arglexmin
y∈S

{f2(y), f1(y)|f (y) ∈ R((− ∞,∞), (− ∞,∞))}.

These two solutions induce the so-called payoff table, presented in
Table 1.

The values in the payoff table define the range of interest for the
objective function f2(y), which is the objective that we are setting as a
constraint: [f2(y**), f2(y*)]. This range can be split into a number L of
subintervals with breakpoints given by ε0 = f2(y**), ε1, … , εL− 1, εL
= f2(y*). We consider intervals of equal length, i.e., we set

εℓ = f2(y**) + ℓ [f2(y*) − f2(y**)]

L
, ℓ = 0,…, L.

A set of Pareto solutions can now be found starting with εL and solving
the problem

minimize (10)
subject to (2) − (5), (11), (12),

replacing ε successively with εL, εL− 1, …, ε0. Since we start with the

largest value for the cost—second objective function—then, every time
we visit a new breakpoint and we observe a change (improvement) in
the makespan—first objective function—we have just found a new
Pareto solution.

Naturally, our capability for visiting the entire Pareto Front during
this process depends on the specific instance being solved and the
number of breakpoints assumed for the range of the second objective
function. With the above information, we can now formalize the AUG-
MECON method applied to our problem. This is done in Algorithm 1.

Algorithm 1. Determining the Pareto Front.

Algorithm 1 starts by setting the first Pareto solution equal to the
solution inducing the upper-left corner of the payoff table. This corre-
sponds to the largest value of resource cost. Then, step by step, we
impose a smaller value for the second objective function (εℓ). When
checking a new breakpoint, if we do not improve the value of the first
objective function, we proceed to the next breakpoint. Otherwise (line 8)
we have just found a new Pareto solution. When changing the break-
points, we also check the current value of second objective function
since there is no need to check breakpoints that are larger than or equal
to that value (lines 13–15).

5. A multi-objective metaheuristic for the RCPSP with time-
dependent resource costs

We have designed a metaheuristic for solving the RCPSP with time-
dependent resource costs in order to consider the two objectives,
makespan and cost, from a real multi-objective perspective, making it
possible to obtain the set of non-dominated solutions of the problem or,
at least, an approximation of this set. The algorithm is based on the
general purpose template of the Non-dominated Sorting Genetic Algo-
rithm II, NSGA-II, proposed by Deb et al. [18] which is presented as an
improvement of its predecessor, NSGA [47]. The general template of the
NSGA-II is presented in Algorithm 2.

Table 1
The payoff table.

f1 (y) f2 (y)

minf1(y) f1(y*) f2(y*)
minf2(y) f1(y**) f2(y**)

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

511

Algorithm 2. NSGA-II.

This template can be used to solve different optimization problems
but, previously, different structures and procedures need to be deter-
mined. Firstly, an appropriate way to encode the solutions must be
designed. The encoding design is one of the most important tasks and the
performance of the algorithm depends, to a large extent, on it. Then, a
method to generate the initial population, sized N, needs to be
implemented.

Before starting the main loop, it is necessary to apply two procedures
that allow us to compare two different solutions and to choose the best.
These procedures are, fast_non_dominated_sort() and crowding_dis-
tance_assignment(). The first sorts the individuals of the current pop-
ulation in different fronts. Belonging to one front or another depends on
the domination rank of each solution, which is calculated in the pro-
cedure. Specifically, in the first front we can find the solutions that are
not dominated by any other solution in the population; in the second
front, the solutions that are dominated by one or more solutions from the
first front, and so on. Therefore, solutions in front i are better than so-
lutions in front j if i < j. The second procedure calculates a metric to
determine the distance in the objective space among the solutions in a
given front. These two procedures assign two different values to every
solution: the front the solution belongs to and the crowding distance
from the solution to the rest of the solutions in the corresponding front.
Now, when we need to compare two solutions to determine the best one,
we will choose the one belonging to the best front, and, if there is a tie,
the one with a higher distance, i.e., a solution that is in a less dense re-
gion will be preferable.

The main loop represents the evolution process and will be carried
out until the stopping criterion, which usually depends on the number of
evaluations performed or the CPU time employed, being satisfied. In the
current generation, the three genetic operations, that is, selection,
crossover and mutation, are applied to the current population and a new
population with N individuals is produced. Then, both populations are
joined in a double-sized population Rt and, to reduce its size to the initial
one, the reduce_population() procedure is carried out. Only the best N
solutions in Rt will form part of the new population and to allow com-
parison between the solutions, it is first necessary to form the different
fronts and to calculate the distances among the solutions on the fronts.
These two procedures and the one to reduce the size of the population
can be considered as standard and independent of the problem to which
they will be applied. The details about these procedures are described in
[18]. In the next sections, we detail the different features we have
designed in order to implement the algorithm.

5.1. Solutions encoding

Several different encodings have been proposed to solve the RCPSP
using heuristics or metaheuristics. However, the activity list represen-
tation (ALR) [25], also called permutation-based solution representa-
tion, is the most used; given that it is the most appropriate to solve this
problem regardless of the type of metaheuristic used [31]. A solution is
encoded as a permutation of the activities in the project where an ac-
tivity always appears in the solution after its predecessors. This is an
indirect representation and, to obtain the schedule, it is necessary to
apply a scheduling scheme, the serial generation scheme being the most
commonly applied, although the parallel generation scheme could also
be applied.

This representation has later been extended in different works in
order to include additional information that allows combining different
ways of generating a schedule with the same activity list [26,6,7,14,20,
59,15]. Moreover, the standard activity list representation has been
adapted to encode the solutions of the multi-mode RCPSP [8,21,58]
including information about the execution mode of the activities. Some
works have also used these encodings to manage these problems (RCPSP
and MM-RCPSP) considering several objectives (for example [40]).

However, we consider that when managing multiple objectives, the
previous encodings are not appropriate, because they do not allow the
consideration of different objectives in the construction of the schedule.
In our problem, if we use the standard activity list encoding without
additional information about the objectives and activities are scheduled,
one by one, as soon as possible in the order given by the list, we would
always prioritize the temporal objective over the economic one and it
would not be appropriate in a case like this. Some authors have
considered this fact and have included information that considers the
different objectives in the representation. For example, Abbasi et al. [1]
propose an ALR with an additional binary gene indicating the scheme
used to build the schedule: serial generation scheme (that prioritizes the
makespan objective) or that proposed by Ulusoy et al. [49] which could
allow scheduling the activity without prioritizing the makespan objec-
tive. However, the whole schedule is built on the same criterion and this
could present a drawback.

We propose an innovative encoding where solutions are represented
by a double list, a list of activities and a second binary list with the
criterion to be prioritized when scheduling the corresponding activity in
the scheduling process.

5.1.1. Activity list with scheduling objective
Solutions are encoded with a double list, a list of activities and a

binary list of the scheduling objectives of the corresponding activities.
Therefore, activities are scheduled by the order given by the list. How-
ever, when an activity j ∈ V is going to be scheduled, its corresponding
scheduling objective, makespan or cost, will determine its start time, sj.
In the first case, i.e., if the scheduling objective of an activity j is the
makespan, it will be scheduled from the moment where all its pre-
decessors finish, as soon as there are enough resources to be executed,
sj = smak

j . Otherwise, if the scheduling objective of the activity indicates
the cost, the start time of the activity will be that in the interval [smak

j ,

smak
j + max shiftj] where the cost is cheaper and there are enough re-

sources to be executed, sj = scost
j . The parameter max_shiftj, i.e., the

maximum delay of the activity, should be established. It could be set at
the same value for all the activities, for example, max_shiftj = 10 for all j,
or a different value could be generated for each activity.

Example 2. In Fig. 3, we illustrate different solutions encoded with the
activity list with scheduling objective representation for the project
example presented in Fig. 1 and the corresponding schedules that they

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

512

are transformed in. If the scheduling objective of an activity is 0 it
represents the makespan and 1 indicates that the priority objective to be
considered when scheduling that activity is the cost. To build the
schedules, we could set, as example, max_shiftj = 5 for all j. We must take
into account that if an activity is scheduled when its scheduling objec-
tive refers to cost, it is scheduled in the cheapest option instead of the
earliest one and, therefore, the schedule could present periods where no
activity is executed because an activity has been moved to the right in
the schedule in order to save money, as happens with solution B in this
figure. Let us recall that, in this problem, the cost of an activity is given
by the cost of the resource usage, which is dependent on the period in
which they are used. For example, the cost of executing activity 3 as in
schedule 3, in periods 5, 6 and 7, is 30 and the same activity, executed in
periods 10, 11 and 12 as in schedule 4, costs 18.

5.2. Initial population

We have implemented a random mechanism to generate the in-
dividuals (solutions) in the initial population. To create a new solution,
first, the activity list is generated. The first activity in the list is randomly
chosen among the activities belonging to the eligible set, which is
initially formed with the activities with no predecessors. Then, the
following steps are repeated until all the activities have been chosen and
occupy a position in the activity list: the eligible set is updated, including
the activities with all the predecessors placed on the list; then, an ac-
tivity of that set is randomly chosen to be placed in the next position on
the list. Once the activity list has been generated, the scheduling
objective of each activity is randomly chosen (cost or makespan) with a
probability of 50% each.

5.3. Selection

The selection mechanism is applied over the current population to
form a new one with the same population size. That population becomes
the current population replacing the original one. Next, the crossover
mechanism will be applied to it. We have implemented the selection
mechanism proposed by Deb et al. [18] in the NSGA-II general template.
The mechanism is based on the standard binary tournament selection.
To build the new population, the following procedure is repeated until
the new population is fulfilled: two individuals of the current population
are randomly chosen and they compete for a place in the new popula-
tion; the winner of this tournament is the one belonging to the best front
or, in case of ties, the one with a best crowding distance. The details of
this mechanism can be consulted in [18].

Fig. 3. Activity list with scheduling objective representation. Example.

Fig. 4. Crossover example.

Fig. 5. Average number of Pareto solutions.

Table 2
Evolution of the number of Pareto solutions found by AUGMECON with the
number of breakpoints.

10 30 50 70 90 110 130 150

J301_1 11 27 37 42 47 50 54 58
J3010_1 11 30 45 55 60 64 65 67
J3020_1 11 22 28 29 37 36 39 40
J3030_1 11 23 24 26 30 31 30 30
J3040_1 11 27 40 49 56 58 67 68

Average 11.0 25.8 34.8 40.2 46.0 47.8 51.0 52.6

J601_1 11 29 42 52 50 57 63 66
J6010_1 10 26 36 46 53 54 55 56
J6020_1 11 21 28 36 37 39 42 41
J6030_1 10 21 24 31 37 36 39 41
J6040_1 11 25 30 35 39 43 47 47

Average 10.6 24.4 32.0 40.0 43.2 45.8 49.2 50.2

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

513

5.4. Crossover

The current population resulting from the selection procedure un-
dergoes the crossover mechanism to build a new population where the
mutation procedure will be applied. Pairs of individuals are randomly
chosen and, if they undergo the crossover operation, two offspring are
produced and are included in the new population. Otherwise, the
selected individuals are included in the new population. The parameter
to decide if a pair of individuals are combined to generate offspring or
not is the crossover probability, Pcross, which does not depend on the
pair of solutions to be crossed.

The crossover operator is applied over a pair of solutions and it
should combine the information of both solutions, the parents, in order
to create the offspring. Since in our case the solutions are represented by
a list of activities and a list of scheduling objectives, the procedure must
be designed to manage and combine the information of both lists. The
crossover operator we have designed has two phases: first, the activity
lists of the parents are combined and, in a second phase, the offspring
inherit the information contained in the scheduling objective lists.

The first phase consists on applying the two-point crossover pro-
posed by Hartmann [25] in his genetic algorithm to solve the RCPSP in
order to cross the activity lists of the parents. This was designed as a
two-point crossover operator applied to permutations but taking into
account that an activity can only appear in the activity list after all its
predecessors. Therefore, this crossover always generates feasible lists. In
a second phase, the activities in the offspring inherit the scheduling
objectives present in the parent from which the activity was inherited.

Example 3. We illustrate the above procedure in Fig. 4, where two
solutions for the project presented in Fig. 1, the mother and the father,
have undergone the crossover operation. First, two random crossover
points, for example, k1 = 2 and k2 = 5 are generated, dividing the list
into three parts. Then, one of the offspring, the daughter, inherits the
first two positions in the activity list from the mother. The following
three are inherited from the father: we look for the first three activities in
the father not present in the daughter, maintaining the relative order
between them in the father. The last two activities are those which are
not present in the daughter and maintain their relative order in the
mother. The activity list in the son is obtained in the same way, but
interchanging the role of the parents. In the second phase, activities
inherit the scheduling mode they had in the parent from which they
have been copied. In this way, the offspring always represent feasible
schedules because, applying this procedure, an activity can not appear in
the list before any of its predecessors.

5.5. Mutation

The mutation mechanism is applied to every individual in the current
population and, if the solution mutates, it replaces the original one. The
mutation mechanism allows more variability in the population to be
introduced, it can include new characteristics in one or more individuals
of the population or characteristics that were present in the past but
have been lost during the evolution process. We have designed a mu-
tation operator that is applied to every individual and, as the crossover
operator, consists of two phases: the first is applied to the activity list
and the second to the scheduling objective list.

The mechanism applied in the first phase is the procedure employed
by Alcaraz and Maroto [6] in their GA to solve the RCPSP, which was
first proposed by Boctor [12] to generate neighbors in his simulated

annealing algorithm to solve the problem. Following the authors, for
each activity in the sequence, a new position is randomly chosen, be-
tween the last of its predecessors and the first of its successors which
ensures the generation of only precedence feasible solutions. The ac-
tivity is inserted in the new position with a probability of Pmut_act. After
the insertion, all the activities in the list maintain their scheduling
objective. This procedure allows the order in which the activities will be
chosen in the scheduling scheme to be changed. In the second phase, the
scheduling objective of each activity changes with a probability of
Pmut_obj. The scheduling objective changes from 0 to 1 or vice versa.
This second phase allows the objective considered to schedule an ac-
tivity in the scheduling process carried out to build the corresponding
schedule to be changed.

6. Empirical analysis

In this section, we report on the computational tests performed to
assess the methodological contribution of this paper. We start by
describing the test bed instances used. Afterwards we provide the details
regarding the experimental setting adopted both for AUGMECON and
for the metaheuristic. In particular, we discuss the different metrics that
were considered for assessing the approximate Pareto front provided by
the metaheuristic. We then present results for AUGMECON for the in-
stances for which we are sure to have found only exact Pareto solutions.
Finally, we analyze the other instances—those for which it was not
possible to find the exact front.

6.1. Test data

In order to obtain test data for the methodologies proposed above,
we consider the instances available in the PSPLIB library (http://www.
om-db.wi.tum.de/psplib/) as a basis. In particular, we considered the
single mode data sets J30, J60, J90 and J120, where the number in-
dicates the number of activities that each instance (project) in the set
has. The first three sets have 480 instances each and J120 has a total of
600 instances.

The instances were generated by an automatic generator, combining
three different factors: Network complexity (NC), resource factor (RF),
and resource strength (RS) (see [32]). The first corresponds to the
average number of direct successors of the activities. The second mea-
sures the average proportion of resources required by each activity and
is a value between 0 and 1 where a value close to 1 indicates that the
activities are very resource-demanding. Finally, the resource strength
regards the mean tightness of the resource constraints and like the RF,
this is also a value in the interval [0,1] with a value close to 1 indicating
that the available resources are enough to allow all the activities to start
at their earliest starting time; on the other hand, a value of RS close to
zero stems from an instance with scarce resources—each activity calls
for the usage of resources in the limit (or close to it).

In the first three datasets, we have three different levels for NC (1.5,
1.8 and 2.1), four levels for RF (0.25, 0.5, 0.75 and 1) and four for the
parameter RS (0.2, 0.5, 0.7 and 1). The combination of these levels gives
a total of 3 ⋅ 4 ⋅ 4 = 48 combinations and for each combination, ten
different instances were generated, what means that each one of these
datasets has 480 instances. The instances in these sets in PSPLIB are
named as JXY_Z, where X ∈ {30, 60, 90} indicates the number of ac-
tivities each project has, Y ∈ {1, . . . , 48} represents the number of
combination of the parameters and Z ∈ {1, . . . , 10} the number of

J. Alcaraz et al.

http://www.om-db.wi.tum.de/psplib/
http://www.om-db.wi.tum.de/psplib/

Journal of Manufacturing Systems 63 (2022) 506–523

514

repetitions. In the case of J120, we can find the same levels for NC and
RF as in the first three datasets, but there are five RS levels (0.1, 0.2, 0.3,
0.4 and 0.5) instead of four. Therefore, in J120 we have 3 ⋅ 4 ⋅ 5 = 60
combinations for the factors and for each one we can find 10 repetitions
which give 600 instances. These instances are named as J120Y_Z, for Y
∈ {1, . . . , 60} and Z ∈ {1, . . . , 10}.

As the number of instances is very high, first we have selected a total
of 48 instances with 30 activities and the same number of instances with
60 activities. In order to have instances with all the combinations of
factors, we have selected the first repetition of each group, i.e., JXY_1. As
for the larger instances (90 and 120 activities), very early in our work we
realized that the use of the exact algorithm would be tantalizing and
thus, instead of considering all the instances, we report results for only a
few in each set, namely: J901_1, J9010_1, J9020_1, J9030_1, J9040_1
for 90 activities, and J1201_1, J12010_1, J12020_1, J12030_1,
J12040_1, J12050_1, J12060_1 for 120 activities.

For each instance, we set T as the sum of the processing times of all
the activities. Moreover, none of the above instances include time-
dependent costs for the resources and thus, that component of the
data was generated for this work. The methodology is presented next.

We can consider a general pattern for the evolution of the cost of a
resource throughout time. If ct is the cost for a resource at time t (valid
from time t to time t + 1) we set

ct = α + βt + γt + ωt, t = 0,…, T − 1,

with.

α, representing a constant defining a base level of the cost series;
β, representing a constant slope determining a cost trend;
γt, representing the seasonal term for the time period starting at time
t;
ωt representing a random variable such that E[ωt] = 0 and V[ωt] =

σ2
ω.

If L is the length of a season (number of time periods), then there are
at most L seasonality different terms, that will repeat throughout time.
We can also assume that

γ0 + γ1 + ⋯ + γL− 1 = Γ × L.

More generally, for t ≥ L (and integer) we assume that

γt− L + γt− L+1 + ⋯ + γt− 1 = Γ × L.

These assumptions are justified by the fact that the seasonal terms
represent a deviation above and below some average, Γ. Thus, the
average of any L consecutive seasonal terms should always be equal to Γ.

From here we can consider four patterns for the evolution of a
resource cost:

Pattern 1: trend with a positive slope; no seasonality.
Pattern 2: trend with a negative slope; no seasonality.
Pattern 3: trend with a positive slope; with seasonality.
Pattern 4: trend with a negative slope; with seasonality.

Given that the instances available in PSPLIB for the resource-
constrained project scheduling problem contain 4 resources each, we
assigned one pattern to each resource in that order: resource 1 → pattern
1,., resource 4 → pattern 4.

For a resource (and for the corresponding cost pattern) we generate
the costs as follows:

• A cost level α is generated randomly according to a uniform distri-
bution U[100,200].

• The slope is generated in such a way that if no perturbation exists,
then the level of the series in the last time would be equal to α∕2. A
minimum (maximum) slope of 0.1 (− 0.1) is imposed. Thus, for
getting a positive (negative) slope, β is randomly generated accord-
ing to a uniform distribution U[0.1, α

2T] (U[− α
2T, − 0.1]) if α

2T > 0.1; β
is set equal to 0.1 (− 0.1) otherwise.

• For the patterns with seasonality, we set L = 12 (12 weeks—three
months; 12 months; ...). We generate Γ randomly according to a

Table 3
Instances J30 and J60: features and resolution using AUGMECON.

J30 J60

NC RF RS Instance Optimal front? Instance Optimal front?

1.5 0.25 0.2 J301_1 ✓ J601_1 ✓
0.5 J302_1 ✓ J602_1 ✓
0.7 J303_1 ✓ J603_1 ✓
1 J304_1 ✓ J604_1 ✓

0.5 0.2 J305_1 ✓ J605_1 —
0.5 J306_1 ✓ J606_1 —
0.7 J307_1 ✓ J607_1 —
1 J308_1 ✓ J608_1 ✓

0.75 0.2 J309_1 — J609_1 —
0.5 J3010_1 ✓ J6010_1 —
0.7 J3011_1 — J6011_1 —
1 J3012_1 ✓ J6012_1 ✓

1 0.2 J3013_1 — J6013_1 —
0.5 J3014_1 — J6014_1 —
0.7 J3015_1 ✓ J6015_1 ✓
1 J3016_1 ✓ J6016_1 ✓

1.8 0.25 0.2 J3017_1 ✓ J6017_1 —
0.5 J3018_1 ✓ J6018_1 —
0.7 J3019_1 ✓ J6019_1 —
1 J3020_1 ✓ J6020_1 ✓

0.5 0.2 J3021_1 ✓ J6021_1 —
0.5 J3022_1 ✓ J6022_1 —
0.7 J3023_1 ✓ J6023_1 ✓
1 J3024_1 ✓ J6024_1 ✓

0.75 0.2 J3025_1 — J6025_1 —
0.5 J3026_1 ✓ J6026_1 —
0.7 J3027_1 ✓ J6027_1 —
1 J3028_1 ✓ J6028_1 —

1 0.2 J3029_1 — J6029_1 —
0.5 J3030_1 — J6030_1 —
0.7 J3031_1 ✓ J6031_1 —
1 J3032_1 ✓ J6032_1 —

2.1 0.25 0.2 J3033_1 ✓ J6033_1 —
0.5 J3034_1 ✓ J6034_1 —
0.7 J3035_1 ✓ J6035_1 —
1 J3036_1 ✓ J6036_1 ✓

0.5 0.2 J3037_1 — J6037_1 —
0.5 J3038_1 ✓ J6038_1 —
0.7 J3039_1 ✓ J6039_1 ✓
1 J3040_1 ✓ J6040_1 —

0.75 0.2 J3041_1 — J6041_1 —
0.5 J3042_1 ✓ J6042_1 —
0.7 J3043_1 — J6043_1 —
1 J3044_1 ✓ J6044_1 ✓

1 0.2 J3045_1 — J6045_1 —
0.5 J3046_1 — J6046_1 —
0.7 J3047_1 ✓ J6047_1 —
1 J3048_1 ✓ J6048_1 —

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

515

uniform distribution U[20,30]. The different seasonality terms that
will repeat throughout time are:

0, Γ, 2Γ, 3Γ, 2Γ, Γ, 0, − Γ, − 2Γ, − 3Γ, − 2Γ, − Γ.

• The noise ωt is generated according to a Normal distribution N(0, 5).

6.2. Experimental setting

We now detail several aspects defining the experimental setting
considered in this work.

Table 4
Number of optimal Pareto fronts found.

(a) Instances with 30 activities.

RS= 0.2 RS= 0.5 RS= 0.7 RS= 1.0 Total

NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 (RF)

RF= 0.25 1 1 1 1 1 1 1 1 1 1 1 1 12
RF= 0.50 1 1 0 1 1 1 1 1 1 1 1 1 11
RF= 0.75 0 0 0 1 1 1 0 1 0 1 1 1 7
RF= 1.0 0 0 0 0 0 0 1 1 1 1 1 1 6
Total (NC) 2 2 1 3 3 3 3 4 3 4 4 4
Total (RS) 5 9 10 12

(b) Instances with 60 activities.

RS= 0.2 RS= 0.5 RS= 0.7 RS= 1.0 Total

NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 NC= 1.5 NC= 1.8 NC= 2.1 (RF)

RF= 0.25 1 0 0 1 0 1 1 1 1 1 1 1 9
RF= 0.50 0 0 0 0 0 0 0 1 1 1 1 1 5
RF= 0.75 0 0 0 0 0 0 0 0 0 1 1 1 3
RF= 1.0 0 0 0 0 0 0 1 0 0 1 0 0 2
Total (NC) 1 0 0 1 0 1 2 2 2 4 3 3
Total (RS) 1 2 6 10

Table 5
Metrics and CPU time for the J30 instances such that AUGMECON could successfully solve all the MILP problems.

AUGMECON Metaheuristic

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ HVR IGD+ Spread Time (hrs)

J301_1 49 100% 0.087 1.48 63 1.351 0.074 0.094 95.53% 0.024 0.545 0.57
J302_1 59 98.15% 0.067 1.28 54 1.362 0.09 0.051 94.08% 0.025 0.502 0.53
J303_1 55 100% 0.101 0.58 40 1.365 0.132 0.075 91.79% 0.033 0.591 0.85
J304_1 42 100% 0.097 0.36 34 1.378 0.097 0.096 88.61% 0.049 0.63 0.51
J305_1 57 100% 0.088 13.5 56 1.385 0.088 0.045 94.6% 0.028 0.464 0.61
J306_1 40 100% 0.155 7.8 35 1.252 0.155 0.061 95.07% 0.027 0.644 0.59
J307_1 34 100% 0.121 0.37 30 1.374 0.111 0.06 95.18% 0.027 0.638 0.65
J308_1 44 100% 0.117 0.5 34 1.388 0.124 0.077 92.13% 0.037 0.503 0.55
J3010_1 60 100% 0.082 6.79 56 1.373 0.107 0.095 91.53% 0.039 0.521 0.63
J3012_1 37 100% 0.099 0.99 32 1.359 0.198 0.102 90.32% 0.037 0.677 0.63
J3015_1 41 100% 0.125 2.69 35 1.528 0.143 0.063 91.44% 0.042 0.609 0.59
J3016_1 43 100% 0.108 1.71 32 1.395 0.127 0.114 89.02% 0.046 0.569 0.51
J3017_1 59 98.39% 0.078 12.16 62 1.384 0.061 0.052 95.08% 0.024 0.475 0.6
J3018_1 47 100% 0.093 0.73 39 1.353 0.111 0.093 93.27% 0.031 0.626 0.53
J3019_1 51 95.65% 0.078 0.49 46 1.313 0.098 0.096 93.07% 0.032 0.497 0.55
J3020_1 36 100% 0.113 0.64 29 1.339 0.114 0.113 92.15% 0.048 0.591 0.71
J3021_1 42 100% 0.129 19.62 37 1.392 0.118 0.071 94.6% 0.028 0.553 0.59
J3022_1 35 100% 0.115 2.25 35 1.382 0.115 0.055 96.44% 0.018 0.61 0.46
J3023_1 41 100% 0.092 0.93 33 1.369 0.092 0.078 93.14% 0.03 0.565 0.68
J3024_1 21 100% 0.348 0.19 19 1.229 0.214 0.051 97.46% 0.023 0.783 0.68
J3026_1 26 100% 0.234 16.75 22 1.391 0.213 0.129 84.79% 0.066 0.588 0.54
J3027_1 29 100% 0.48 6.81 29 1.257 0.153 0.102 92.91% 0.042 0.531 0.59
J3028_1 20 100% 0.529 0.63 18 1.193 0.173 0.057 96.49% 0.023 0.582 0.56
J3031_1 22 100% 0.375 8.83 23 1.442 0.375 0.079 94.64% 0.033 0.611 0.44
J3032_1 17 100% 0.489 0.37 20 1.507 0.267 0.069 94.88% 0.031 0.539 0.91
J3033_1 29 100% 0.217 2.79 46 1.41 0.176 0.026 98.31% 0.011 0.547 0.74
J3034_1 20 100% 0.289 0.56 16 1.396 0.289 0.065 91.92% 0.042 0.445 0.75
J3035_1 12 100% 0.412 0.11 11 1.347 0.471 0.103 88.51% 0.057 0.585 0.55
J3036_1 27 84.62% 0.304 0.21 26 1.251 0.417 0.031 99.32% 0.005 0.852 0.73
J3038_1 49 100% 0.103 2.38 42 1.358 0.112 0.1 93.66% 0.034 0.589 0.44
J3039_1 53 100% 0.089 0.99 45 1.368 0.107 0.09 90.58% 0.041 0.647 0.6
J3040_1 62 100% 0.089 1.12 45 1.334 0.109 0.123 87.9% 0.061 0.6 0.68
J3042_1 41 94.44% 0.215 17.03 36 1.406 0.206 0.046 96.36% 0.022 0.624 0.62
J3044_1 29 100% 0.237 0.8 24 1.409 0.495 0.069 95.19% 0.026 0.778 0.54
J3047_1 39 100% 0.126 6.15 36 1.405 0.147 0.061 93.42% 0.03 0.535 0.48
J3048_1 49 100% 0.127 0.71 39 1.352 0.139 0.128 89.76% 0.045 0.596 0.46

Average 39.4 – – 3.9 35.5 – – – – – – 0.6

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

516

Table 7
Metrics and CPU time for the J30 instances such that AUGMECON could not successfully solve all the MILP problems.

AUGMECON Metaheuristic

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ Time (hrs)

J309_1 26 87.5% 0.137 80.21 32 1.346 0.151 0.156 0.46
J3011_1 44 97.06% 0.117 36.67 34 1.348 0.233 0.059 0.53
J3013_1 22 53.57% 0.178 44.1 28 1.427 0.274 0.094 0.46
J3014_1 48 100% 0.088 56.93 36 1.298 0.099 0.089 0.44
J3025_1 8 26.47% 0.355 84.09 34 2.677 0.387 0.051 0.62
J3029_1 19 72.41% 0.26 68.2 29 1.861 0.211 0.11 0.62
J3030_1 25 90.63% 0.169 54.68 32 1.468 0.145 0.092 0.48
J3037_1 38 100% 0.11 45.53 43 1.424 0.11 0.046 0.48
J3041_1 12 52.94% 0.357 60.66 34 1.684 0.179 0.104 0.52
J3043_1 30 100% 0.207 30.87 30 1.278 0.14 0.05 0.64
J3045_1 12 26.09% 0.208 58.07 23 1.628 0.218 0.098 0.4
J3046_1 44 97.44% 0.109 79.33 39 1.322 0.13 0.07 0.46

Average 27.3 – – 58.3 32.8 – – – 0.5

Fig. 6. Exact and heuristic Pareto solutions for 2 selected instances.

Table 6
Metrics and CPU time for the J60 instances such that AUGMECON could successfully solve all the MILP problems.

AUGMECON Metaheuristic

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ HVR IGD+ Spread Time (hrs)

J601_1 56 100% 0.078 23.22 51 1.425 0.18 0.204 83.29% 0.08 0.708 1.83
J602_1 84 100% 0.054 32.71 68 1.253 0.127 0.295 76.52% 0.111 0.685 1.56
J603_1 74 100% 0.046 12.85 80 1.364 0.11 0.167 89.81% 0.051 0.677 1.65
J604_1 29 100% 0.224 6.51 17 0.971 0.253 0.218 81.63% 0.069 0.747 2.07
J608_1 80 100% 0.054 14.12 62 1.306 0.095 0.194 81.05% 0.087 0.543 2.11
J6012_1 77 100% 0.04 18.78 55 1.321 0.092 0.193 79.18% 0.09 0.623 1.38
J6015_1 54 100% 0.096 18.87 28 1.437 0.201 0.197 82.29% 0.084 0.662 2.04
J6016_1 47 97.06% 0.122 44.22 34 1.493 0.159 0.106 91.87% 0.036 0.667 2.87
J6020_1 36 100% 0.172 20.69 26 1.587 0.396 0.146 87.6% 0.061 0.754 2.13
J6023_1 76 100% 0.049 26.21 59 1.345 0.135 0.201 84.88% 0.069 0.593 2.25
J6024_1 39 100% 0.119 2.37 26 1.057 0.099 0.131 90.81% 0.041 0.733 1.41
J6036_1 36 100% 0.181 1.83 31 1.352 0.34 0.158 88.79% 0.062 0.857 1.4
J6039_1 30 100% 0.545 42.73 20 1.075 0.145 0.108 89.53% 0.05 0.732 1.57
J6044_1 80 100% 0.052 15.36 39 1.358 0.126 0.219 79.57% 0.085 0.587 1.56

Average 57.0 – – 20.0 42.6 – – – – – – 1.8

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

517

6.2.1. AUGMECON
The AUGMECON method calls for solving a sequence of MILP

problems for each instance. The algorithm was coded in C++ and in-
tegrated with IBM CPLEX 20.1 through Concert Technology.

A first important decision concerning the use of AUGMECON con-
cerns the number of breakpoints to consider to split the cost range. We
recall that the cost range is obtained from the costs in the payoff table. It
is important to note that setting a given number n of breakpoints leads
AUGMECON to obtain a maximum of n + 1 points on the front, given
that the cost range is divided into n + 1 subintervals.

Since we had no hint about the number of breakpoints that should be
considered, we conducted preliminary experiments using a small subset
of instances namely: J301_1, J3010_1, J3020_1, J3030_1, J3040_1,
J601_1, J6010_1, J6020_1, J6030_1 and J6040_1. We applied AUGME-
CON several times for each instance using a different number of
breakpoints: 10, 30, 50, 70, 90, 110, 130 and 150. In these experiments
we set a time limit of 2 h for each MILP solver, i.e., two hours for each
non-dominated solution, and we left all the other parameters as default.
The results obtained are summarized in Table 2 and depicted in Fig. 5.

In Fig. 5, we observe a tendency for the average number of break-
points to stabilize around values 90 and 100. In fact, although a growing
trend can still be observed after 100 breakpoints are considered, the
differences from a number of breakpoints to the following seem to
decrease. Given that we needed to seek a comfortable trade-off between

the number of breakpoints to consider and the computing effort when
computing the Pareto front, we adopted the round figure ‘100’ as the
‘stabilizing’ point. For this reason, for the J30 and J60 instances, we
decided to use 100 breakpoints. For the larger instances, given the
predictable additional computational effort to solve the MILP models,
we decided to reduce the above number to 50. Furthermore, we keep
considering a time limit of 2 h for solving the MILP models associated
with the smaller instances (30 and 60 activities). For the larger instances
we consider 4 h. Note that this time limit is set for each MILP solved and
thus for analyzing each breakpoint.

6.2.2. Metaheuristic
In order to evaluate the performance of the metaheuristic designed,

we have implemented it and we have solved the instances in PSPLIB
described above with this technique. We have implemented the meta-
heuristic proposed using the jMetal framework [19,41], which is a
widely used open-source framework for multi-objective optimization
with metaheuristics (see, e.g., [34,33,56,57]).

We carried out some preliminary experiments to set the best
configuration of the algorithm in the different scenarios. Firstly, we
combined different values for the parameters Pcross, Pmut_act, Pmut_obj
and Population size. Although there was not a combination of values
that performed the best in all the experiments, we decided to set a fixed
configuration for all the runs in order to avoid a custom configuration

Table 8
Metrics and CPU time for the J60 instances such that AUGMECON could not successfully solve all the MILP problems.

AUGMECON Metaheuristic

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ Time (hrs)

J605_1 6 62.16% 0.479 46.82 37 2.57 0.358 0.176 1.29
J606_1 20 100% 0.286 79.28 28 2.928 0.714 0.142 1.38
J607_1 11 71.43% 0.289 95.92 21 5.203 1.167 0.167 2.31
J609_1 23 64.86% 0.39 74.76 74 1.776 0.115 0.132 1.13
J6010_1 44 100% 0.079 132.26 58 1.416 0.106 0.223 1.5
J6011_1 89 100% 0.034 80.07 74 1.331 0.086 0.194 1.59
J6013_1 1 2.04% — 200 49 — — — 2
J6014_1 19 80.56% 0.189 74.09 36 3.865 0.83 0.105 2.58
J6017_1 42 100% 0.106 68.15 43 1.401 0.335 0.136 1.48
J6018_1 16 52.78% 0.278 78.43 36 6.419 0.667 0.14 2.22
J6019_1 14 75% 0.883 42.87 24 1.474 0.307 0.085 1.85
J6021_1 15 48.44% 0.612 60.19 64 1.735 0.152 0.13 2
J6022_1 44 100% 0.101 75.36 46 1.443 0.101 0.093 2.1
J6025_1 1 16.98% — 200 53 — — — 1.82
J6026_1 25 100% 0.177 86.21 34 2.081 0.194 0.164 2.45
J6027_1 10 77.27% 0.381 105.14 22 2.883 0.429 0.286 2.47
J6028_1 29 100% 0.56 11.86 20 1.356 0.192 0.087 2.72
J6029_1 4 38.98% 0.54 50.23 59 3.348 0.276 0.124 1.97
J6030_1 31 100% 0.208 61.11 40 1.319 0.104 0.104 1.48
J6031_1 40 100% 0.161 112.27 34 1.488 0.426 0.108 1.5
J6032_1 33 91.67% 0.347 71.49 24 1.739 0.32 0.093 2.26
J6033_1 21 100% 0.545 58.11 17 1.204 0.176 0.114 1.28
J6034_1 10 47.22% 0.313 85.62 36 5.534 0.813 0.125 1.62
J6035_1 27 86.67% 0.24 39.14 30 0.984 0.165 0.095 1.56
J6037_1 1 19.35% — 200 31 — — — 1.58
J6038_1 16 100% 0.747 117.76 30 1.269 0.18 0.123 1.62
J6040_1 40 100% 0.168 28.39 25 0.993 0.147 0.173 1.9
J6041_1 2 19.05% 1 57.24 63 2.974 0.236 0.186 1.28
J6042_1 50 96.25% 0.123 57.06 80 1.397 0.083 0.149 1.56
J6043_1 36 100% 0.331 70.69 28 1.262 0.087 0.161 1.37
J6045_1 1 3.45% — 200 58 — — — 1.04
J6046_1 11 94.74% 0.252 52.34 38 1.742 0.18 0.105 1.61
J6047_1 14 78.26% 0.2 136.09 23 3.242 0.6 0.25 1.84
J6048_1 17 78.95% 0.257 85.74 19 1.868 0.314 0.143 1.69

Average 22.4 – – 88.1 39.8 – – – 1.8

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

518

for each instance. After these parameters were set, we ran the different
instances with different numbers of iterations and 20 million seemed a
good trade-off between the computational time employed and the
quality of the results. Therefore, the following combination of these
parameters was set in all the runs:

• Pcross = 0.9
• Pmut_act = Pmut_obj = 1∕n; being n the number of activities in the

project
• Population size: 100
• Total number of evaluations: 20 million

The parameter max_shiftj, for all j ∈ V, must be set before the eval-
uation of each solution in order to allow the transformation of an

individual in the population into a schedule. After some preliminary
experiments, we set an upper bound of T∕2 for this maximum delay of
each activity. Next, we performed some test experiments setting the
same value of the parameter max_shiftj for all activities in the project, as
well as obtaining a different parameter value for each activity. We also
analyzed how the behavior of the metaheuristic was influenced by the
fact of always randomly generating the parameter max_shiftj in the in-
terval [1, T∕2], or allowing this parameter to be progressively larger,
that is, allowing that, as the metaheuristic search process evolves, the
activities can be more delayed. After some test experiments, we ended
up defining four different strategies for setting the maximum shift for the
activities in the project when a schedule is to be built (evaluation
performed):

Table 9
Metrics and CPU time for the J90 instances such that AUGMECON could not successfully solve all the MILP problems.

AUGMECON Metaheuristic

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ Time (hrs)

J901_1 13 82.76% 0.24 104.3 87 1.831 0.253 0.079 3.94
J9010_1 10 36.36% 0.375 130.77 55 22.547 6 0.599 3.16
J9020_1 13 60% 0.222 88.42 25 4.842 1.333 0.213 2.93
J9030_1 2 71.43% 1 88.07 21 8.266 1.333 0.778 5.73
J9040_1 8 45.83% 0.385 180.91 24 5.858 0.714 0.357 3.29

Average 9.2 – – 118.5 42.4 – – – 3.8

Fig. 7. Approximate Pareto solutions for 4 selected instances.

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

519

• Strategy 1. A unique random integer number, max_shift, is generated
in the interval [1, T∕2] and max_shiftj = max_shift for all j ∈ V.

• Strategy 2. For each j ∈ V, a random integer number, max_shiftj, is
generated in the interval [1, T∕2].

• Strategy 3. A unique random integer number, max_shift, is generated
in the interval [A, B] and max_shiftj = max_shift for all j ∈ V. Now, the
interval where to choose the parameter depends on the number of
evaluations performed so far. In the first 10% of the evaluations, [A,
B] = [1, T∕8], in the next 20% [A, B] = [T∕8 + 1, T∕4], in the
following 30% of evaluations [A, B] = [T∕4 + 1, 3T∕8] and in the
last 40% [A, B] = [3T∕8 + 1, T∕2].

• Strategy 4: For each j ∈ V, a random integer number, max_shiftj, is
generated in the interval [A, B]. The interval [A, B] is formed as in
strategy 3 and it depends on the number of schedules built so far.

In strategies 3 and 4, all the intervals have the same length and the
percentage of evaluations considered to determine the corresponding
interval has been set after some test experiments. Moreover, preliminary
experiments showed that none of these criteria performed the best in all
the instances. On the other hand, it was possible to find that each one of
the criteria performed the best in one or more instances. Therefore, we
decided to combine the four criteria in the resolution of every instance.
Given that the maximum number of evaluations is set to 20 million per
instance, we have performed 4 independent runs employing one of the
four criteria in each, setting a total of 5 million evaluations per run. The
non-dominated solutions of each run are included in a set and the result
of the metaheuristic is formed with the non-dominated solutions of this
set, which forms a front.

6.2.3. Metrics for evaluating the approximate Pareto front
A good review of metrics to measure the quality of Pareto front ap-

proximations in multi-objective optimization can be found in [10]. The
authors classify the metrics according to their properties: cardinality,
convergence, distribution and spread. Cardinality indicators quantify the
number of non-dominated points generated by an algorithm. Conver-
gence indicators quantify how close a set of non-dominated points is from
the Pareto front in the objective space. Distribution and spread indicators
quantify the distribution of a Pareto front approximation. Coverage
measures how well every region of the objective space is represented,
while spread focuses on the aspect that points should be far away from
each other. There are also some convergence and distribution indicators
which capture both the properties of convergence and distribution.
Following this classification by Audet et al. [10], we detail below the
metrics used in this work. The selection of the metrics has been made in
such a way that all the categories are covered and, moreover, the in-
formation given by them all give us a detailed description of the char-
acteristics that the front has. Moreover, the metrics have been selected
because they are easy to interpret and have been widely used in the
literature.

For instances in which the optimal Pareto front cannot be obtained,
we decided to calculate the following metrics to compare two fronts: .

• Cardinality:
– Overall non-dominated Vector Generation (OVNG), proposed by

van Veldhuizen and Lamont [50]: returns the number of
non-dominated points on the front.

– C-metric, proposed by Zitler and Thiele [61]: gives for two fronts,
F1 and F2, the fraction of solutions in F1 that are dominated by one
or more solutions in F2, C(F1, F2).

• Distribution and spread:
– Γ-metric, proposed by Custòdio et al. [17]: when considering a

bi-objective problem, reduces to consider the maximum distance
between two consecutive points in the Pareto front approximation,
therefore, a lower value of Γ is desirable.

– M*3-metric, proposed by Zitler et al. [60]: in the case of two ob-
jectives, this equals the distance of the two outer solutions and,
consequently, a higher distance is desired.

• Convergence:
– ϵ-indicator, proposed by Zitzler et al. [63]: gives the minimum

additive factor by which the approximation set has to be translated
in the objective space in order to (weakly) dominate the reference
set. A lower value is desirable.

In addition to the above metrics, for the instances where the optimal
Pareto front is known, we also calculate the following metrics: .

• Convergence and distribution:
– Hypervolume ratio, HVR, proposed by Zitzler [62]: the hyper-

volume indicator determines the volume of the space in the
objective space dominated by the front generated by a given
method. Therefore, the HVR computes the proportion of the space
dominated by the optimal Pareto front which is dominated by the
approximation method.

– IGD+, proposed by Ishibuchi et al. [29]: overcomes the drawbacks
presented by GD [50] and IGD [16]. Following [10], this measure
takes into account the dominance relation between the elements of
the fronts to be compared when computing the Euclidean distance
and it is weakly Pareto compliant. As it represents a distance be-
tween the fronts, a lower value is considered to be better.

• Distribution and spread:
– Spread, proposed by Deb et al. [18]: takes into account the extent

of the Pareto front approximation. A lower value is preferable. A
spread value equal to 0 represents the most widely and evenly
distributed set of non-dominated solutions.

6.3. First results using AUGMECON

We start by reporting on some results obtained when using the
AUGMECON algorithm for finding the Pareto front of the problem we
are investigating. The exact Pareto front could be obtained only for the
J30 and J60 instances, although not for all. For the larger instances,

Table 10
Metrics and CPU time for the J120 instances such that AUGMECON could not successfully solve all the MILP problems.

AUGMECON Metaheuristic

Instance OVNG C (F1, F2) Γ Time (hrs) OVNG M*3 Γ ϵ Time (hrs)

J1201_1 1 0% — 124.05 45 — — — 6.07
J12010_1 1 30.3% — 200 33 — — — 5.55
J12020_1 3 40.54% 0.748 140.08 37 6.652 1.143 0.667 10.21
J12030_1 1 30.56% — 200 36 — — — 9.18
J12040_1 0 — — 200 47 — — — 7.4
J12050_1 1 20% — 200 20 — — — 6.97
J12060_1 1 16.13% — 200 31 — — — 7.68

Average 1.1 – – 180.6 35.6 – – – 7.6

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

520

AUGMECON could not find an exact single Pareto front.
In Table 3, we present the analysis for the instances with 30 and 60

activities. In this table, we detail the instances according to three project
characteristics: Network complexity (NC), resource factor (RF), and
resource strength (RS) which were described above. Observing Table 3
we realize that for 12 out of the 48 instances with 30 activities, the
optimal Pareto front could not be obtained. For the J60 this number
raises to 34.

To devise some possible relation between the difficulty in finding the
optimal Pareto front and the specific features of the instances, we pre-
sent Tables 4a and 4b, where a 1 indicates that for the corresponding
instance, the optimal Pareto front could be obtained and a 0 indicates
the contrary.

In these tables, we conclude for a clear tendency of AUGMECON to
find the optimal Pareto fronts more easily when the resource factor
decreases and when the resource strength increases. This is not sur-
prising since a smaller RF indicates that the activities are not very
resource-demanding which makes it ‘easier’ to allocate the resources.
On the other hand, an increased resource strength makes it more diffi-
cult to process activities in parallel and thus makes it ‘easier’ to find a
schedule for the activities.

In what follows, we use the instances for which the optimal Pareto
front was obtained to benchmark the metaheuristic. Once this has been
done and it becomes clear that the metaheuristic provides a good
approximation of the Pareto front, we apply the heuristic to the other
instances (the optimal Pareto front is not known) and analyze the
results.

6.4. Heuristic benchmarking

The quality of the metaheuristic developed in Section 5 can be
assessed by considering the instances for which AUGMECON could solve
up to proven optimality all the MILP models called by the algorithm. For
these instances we computed all the metrics described in Section 6.2.3.

To obtain reliable results, before calculating any metric, the objec-
tive values of each of the objective functions of the problem were
normalized, according to the following formula:

f ′i(y) = (fi(y) − min
x

fi(x))∕(max
x

fi(x) − min
x

fi(x))

where max
x

fi(x) and min
x

fi(x) are the maximum and minimum values

of the i-th objective function on the reference Pareto front, that is, on the
front obtained by AUGMECON.

Table 5 shows all the metrics for the J30 instances such that AUG-
MECON could successfully solve all the MILP problems, as well as the
CPU time (in hours) required by each method to solve the problems. Let
us recall that for each instance in J30 and J60, AUGMECON has a time
limit of 200 h (100 breakpoints, 2 h per breakpoint) and the meta-
heuristic a limit of 20 million of evaluations. As described in Section
6.2.3, OVNG gives the number of non-dominated points on the front. We
can observe that, in most instances with 30 activities, OVNG is similar
for both methods. Specifically, the average OVNG for AUGMECON was
around 39 and for the metaheuristic around 36. C(F1, F2) measures the
fraction of solutions in the approximate Pareto front that are dominated
by one or more solutions on the front provided by AUGMECON. We see
that there are 5 instances where this metric is less than 100% which
means that some of the solutions of the approximate front are not
dominated by solutions on the exact front. C(F2, F1), i.e., the fraction of
solutions on the optimal Pareto front that are dominated by the
approximate front, is not shown as it is always 0% in the instances of this
table. Γ measures the size of the holes on the front, therefore, a lower
value of this metric is desirable. The values for this metric are very
similar in both methods, indicating that the maximum distance between
adjacent points on both fronts is similar. Regarding M*3, it measures the
extent of the front. Note that, due to normalization, the M*3-metric for
the AUGMECON method is always equal to

̅̅̅
2

√
≈ 1.414 and for this

reason, it is not shown in the table. In the approximate front, the min-
imum value for the M*3-metric is 1.193 and the maximum value is
1.528, therefore, the extent of the approximate Pareto front is not very
different from the optimal Pareto front. The ϵ indicator gives the mini-
mum additive factor by which the approximation set has to be translated
in the objective space in order to (weakly) dominate the reference set.
The values of this metric are, as we can observe in the table, quite low,
which is desirable. Regarding HVR, we can observe that in 30 of the 36
instances it is greater than 90%. Let us recall that HVR computes the
proportion of the space dominated by the optimal Pareto front which is
dominated by the approximation method. The last two metrics,
IGD+ and Spread, are mainly useful for comparing our metaheuristic
with other methods in future research. IGD+ measures the distance
between the set offered as an approximation to the Pareto front and the
optimal Pareto front. We can see that IGD+ is quite low in all cases,
which indicates that the approximate front is quite close to the optimal
Pareto front. The spread takes into account the extent of the Pareto front
approximation. A spread value equal to 0 represents the most widely and
evenly distributed set of non-dominated solutions. In our case, these
values are between 0.445 y 0.852.

In general, and taking into account all the metrics considered, we can
conclude that the approximate Pareto fronts provided by the meta-
heuristic are quite good with respect to cardinality, distribution, spread
and convergence. Moreover, the average CPU time to solve the instances
in Table 5 was 3.9 h for AUGMECON and 0.6 h for the metaheuristic.
Therefore, the results demonstrate that the metaheuristic is a good
alternative to the exact method when solving these instances, which are
the smallest of all those selected.

Table 6 shows the metrics for the J60 instances such that AUGME-
CON could successfully solve all the MILP problems, and the CPU time
employed by both methods. For these 14 instances, AUGMECON gives
fronts with, on average, 57 points in an average CPU time of 20 h per
front. By contrast, the fronts obtained by the metaheuristic in 1.8 h, on
average, have around 43 points. Regarding C(F1, F2), we see that there
is 1 instance where this metric is less than 100% which means that some
of the solutions of the approximate front are not dominated by solutions
on the exact front. Again, C(F2, F1) is not shown, as it is always 0% in
these instances. In most cases, the Γ values are very similar in both
methods, i.e., the maximum distance between adjacent points in both
fronts is similar. In the approximate front, the M*3-metric is between
0.971 and 1.587, compared with the value of

̅̅̅
2

√
which AUGMECON

always reports. Again, the values of the ϵ indicator are rather low, which
is desirable. Regarding HVR, we can observe that in 11 of the 14 in-
stances it is greater than 80%. IGD+ are quite low in all cases, indicating
that the approximate front is close to the optimal Pareto front. Finally,
we can see that the spread values are between 0.543 y 0.857. As in the
analysis of the J30 instances, these results show that the metaheuristic
provides approximations of the optimal Pareto fronts with good features
in much lower computation times.

Fig. 6 graphically shows the Pareto fronts obtained, both by AUG-
MECON and by the metaheuristic, for two selected instances, one with
30 activities and the other with 60. As can be seen from the analysis of
the previous metrics, in this figure we once again observe that the exact
fronts and those obtained by the proposed metaheuristic are rather
similar. Furthermore, we see that these similarities are stronger for
shorter makespan, which will generally be the schedules in which a
decision maker is usually more interested.

6.5. In search for approximate Pareto fronts

We now focus on the results for the instances for which AUGMECON
could not find the exact Pareto front. Table 7 shows the metrics for the
J30 instances such that AUGMECON could not successfully solve all the
MILP problem, which happened in 12 of the 48 instances selected with
30 activities. The table also shows the CPU time (in hours) employed by

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

521

AUGMECON and the metaheuristic. In most of these instances, the
metaheuristic was able to find more non-dominated solutions than
AUGMECON. Specifically, the average OVNG for AUGMECON was
around 27 and for the metaheuristic it was near 33. Regarding the C-
metric, in most cases there are solutions on the front provided by the
metaheuristic that are non-dominated by the solutions on the front
provided by AUGMECON, that is, C(F1, F2) is less than 100%. In cases
where AUGMECON cannot find the optimal Pareto front, the fraction of
solutions on the front provided by AUGMECON that are dominated by
one or more solutions on the front provided by the metaheuristic, C(F2,
F1), may be nonzero. In the instances of Table 7, this happens in in-
stances J3013_1, J3025_1, J3029_1, J3041_1 and J3045_1 where C(F2,
F1) was 4.55%, 62.5%, 5.26%, 25%, and 16.67%, respectively. We can
see that the Γ values are very similar in both methods in most cases,
which means that the maximum distance between adjacent points on
both fronts is similar. The M*3-metric for the metaheuristic is greater
than

̅̅̅
2

√
in 7 of the 12 instances, that is, the extent of the metaheuristic

front is greater than that of AUGMECON. Regarding the ϵ indicator, the
values are rather low, which is desirable. Note that the metrics HVR,
IGD+ and Spread are not calculated since we do not know the optimal
Pareto front. Therefore, in these instances, the metaheuristic also ob-
tains good fronts in 0.5 h on average in contrast to the more than 58 h
needed by AUGMECON.

Table 8 details the metrics and the CPU time for the 34 instances with
60 activities such that AUGMECON could not successfully solve all the
MILP problems. In most of the instances of Table 8, the metaheuristic
was able to find more non-dominated solutions than AUGMECON, near
40 vs 22, on average. In four of the instances, the exact technique only
obtains one point on the front in 200 h of execution time while the
metaheuristic obtains for those instances, fronts with on average 50
points in 1.6 h, on average. Regarding the C-metric, in 21 of the 34 in-
stances C(F1, F2) is less than 100%. C(F2, F1) was nonzero only in
instance J605_1, with a value of 16.67%. In 16 of the instances, the Γ
metric is better in the metaheuristic, in 13 instances this happens the
other way around. Note that when the payoff table could not be
approximated because one of the extreme points could not be calculated
by AUGMECON, normalization could not be performed and, therefore,
most of the metrics could not be calculated. This is the case for instances
J6013_1, J6025_1, J6037_1 and J6045_1. The M*3-metric for the met-
aheuristic is greater than for AUGMECON in 20 of the 30 instances for
which it can be calculated, that is, the extent of the metaheuristic front is
better than that of AUGMECON. Regarding the ϵ indicator, the values
are rather low again, which is desirable. For these instances, the average
CPU time for the metaheuristic was 1.8 h, while for AUGMECON it grew
to 88.1 h.

The results presented so far indicate that the metaheuristic proposed
is a very good alternative to the exact method because it has demon-
strated a good performance in the instances in which the exact method is
able to give a front in extremely lower CPU times.

For the J90 and J120 instances selected, AUGMECON was run for a
maximum of 200 h (50 breakpoints, 4 h per breakpoint) and it could not
find the optimal Pareto front in any of the instances. Table 9 shows the
metrics and CPU time for the J90 instances. In all the J90 instances, the
metaheuristic was able to find more non-dominated solutions than
AUGMECON. The average OVNG for AUGMECON was around 9 and
near 42 for the metaheuristic. We can see that C(F1, F2) is less than 100%
in all cases. For example, in J9010_1, the 63.64% of the front given by
the metaheuristic is not dominated by solutions on the AUGMECON
front. Regarding the Γ and M*3 metrics, it is worth highlighting the case
of the instance J9010_1 where the value for the metaheuristic is very
high but, if we analyze in detail the fronts given by both methods (see
Fig. 7c below), we can see that this is due to the little extent of the
reference front provided by AUGMECON, which is also shown by the
high value of the M*3 metric for the metaheuristic. The ϵ indicator, as
always, takes quite good values. The average CPU time for the

metaheuristic was 3.8 h, while for AUGMECON it was 118.5 h.
Table 10 details the metrics and CPU time for the J120 instances

selected. As we can see, only in one of the instances with 120 activities,
AUGMECON was able to find more than one point on the front, which
allows the calculation of the analyzed metrics. What’s more, for one of
the instances (J12040_1) it was not able to find any point. For these
instances, AUGMECON gives fronts with a number of points which
varies from 0 to 3 in around 180 h of CPU time, on average, and the
metaheuristic gives, in less than 8 h per instance, fronts with, on
average, near 36 points. C(F1, F2) is less than 50% in all cases. Regarding
the high values of the Γ and M*3 metrics for instance J12020_1, these are
explained again by the little extent of the reference front obtained by
AUGMECON (see Fig. 7d below).

The last results show that the exact method performs as intractable to
solve the problem considered in large instances. In these cases, the
metaheuristic, which has demonstrated a good performance in small or
medium sized instances, has nowadays become the only practical
alternative and can find good approximate fronts in reasonable
computation times.

Fig. 7 shows the Pareto fronts obtained, both by AUGMECON and by
the metaheuristic, for 4 instances, one for each one of the sets in PSPLIB
we have considered in this work. These are only four examples where
the metaheuristic gives fronts with better characteristics than the exact
method with regard to the different type of features considered for
comparing the fronts: cardinality, convergence, distribution and spread.

7. Conclusions and future research

In this paper, we have presented a bi-criteria resource-constrained
project scheduling problem considering as objective functions the
makespan and the total cost associated with resource usage, which is
time-dependent. Several major conclusions can be drawn from the work
carried out. First, only for small to medium sized instances was it
possible to find exact Pareto solutions. Still, in many cases, the
computational effort required is significant. Second, the problem we are
investigating is quite rich in terms of the Pareto solutions found. This
means that, in general, each instance of the problem leads to a large set
of Pareto solutions. Third, the metaheuristic developed for the problem
is quite effective in finding the approximate Pareto front. We could
observe results that often correspond to sharp approximations of the
Pareto front. Furthermore, the CPU time required by the metaheuristic is
rather small given the quality of the solutions found. Moreover, when
the use of AUGMECON, even as an approximate method failed to find
Pareto solutions to the problem, the metaheuristic was able to deliver a
rich set of approximate solutions in reasonable computation times.
Overall, finding a perfect cost-time trade-off for the RCPSP is far from
possible since many compromise solutions can be adopted. In any case,
the methodologies proposed in this paper make it possible to provide a
decision maker with a rich set of alternative solutions from which a
better decision can certainly be made.

Several research avenues are opened with this work. In fact, the set of
objective functions investigated in this work can be extended to consider
other possibilities such as resource leveling to ensure an even use of the
resources throughout the planning horizon. The use of non-renewable
resources is also an interesting research direction to explore. Above
all, multicriteria resource-constrained project scheduling problems
define a very challenging area in which much work still remains to be
done. The use of time dependent costs for the resources is an interesting
area that is still very much unexplored.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

J. Alcaraz et al.

Journal of Manufacturing Systems 63 (2022) 506–523

522

Acknowledgments

The authors thank the grants PID2019-105952GB-I00 funded by
Ministerio de Ciencia e Innovación/ Agencia Estatal de Investigación
/10.13039/501100011033, Spain, PROMETEO/2021/063 funded by
the government of the Valencian Community, Spain and UIDB/04561/
2020 by National Funding from FCT—Fundação para a Ciência e Tec-
nologia, Portugal.

References

[1] Abbasi B, Shadrokh S, Arkat J. Bi-objective resource-constrained project scheduling
with robustness and makespan criteria. Appl Math Comput 2006;180:146–52.

[2] Abdolshah M. A review of resource-constrained project scheduling problems
(RCPSP) Approaches and solutions. Int Trans J Eng, Manag, Appl Sci Technol 2014;
5:253–86.

[3] Abello MB, Michalewicz Z. Multiobjective resource-constrained project scheduling
with a time-varying number of tasks. Sci World J, Artic 2014:420101.

[4] Achuthan NR, Hardjawidjaja A. Project scheduling under time dependent costs–a
branch and bound algorithm. Ann Oper Res 2001;108(1–4):55–74.

[5] Al-Fawzan M, Haouari M. A bi-objective model for robust resource-constrained
project scheduling. Int J Prod Econ 2005;96:175–87.

[6] Alcaraz J, Maroto C. A robust genetic algorithm for resource allocation in project
scheduling. Ann Oper Res 2001;102(1–4):83–109.

[7] Alcaraz J, Maroto C. A hybrid genetic algorithm based on intelligent encoding for
project scheduling. In: Józefowska J, Weglarz J, editors. Perspectives in Modern
Project Scheduling, volume 92 of International Series in Operations Research and.
Springer; 2006. p. 250–74.

[8] Alcaraz J, Maroto C, Ruiz R. Solving the multi-mode resource-constrained project
scheduling problem with genetic algorithms. J Oper Res Soc 2003;54(6):614–26.

[9] Artigues C, Koné O, Lopez P, Mongeau M. The resource-constrained project
scheduling problem: mixed-integer linear programming formulations. In:
Schwindt C, Zimmermann J, editors. Handbook on project management and
scheduling. Cham: Springer International Publishing; 2015. p. 17–41.

[10] Audet C, Bigeon J, Cartier D, Digabel SL, Salomon L. Performance indicators in
multiobjective optimization. Eur J Oper Res 2021;292:397–422.

[11] Ballestín F, Blanco R. Multi-criteria objectives in project scheduling: theoretical
and practical fundamentals. In: Schwindt C, Zimmermann J, editors. Handbook on
project management and scheduling. Cham: Springer International Publishing;
2015. p. 411–27.

[12] Boctor F. Resource-constrained project scheduling by simulated annealing. Int J
Prod Res 1996;34:2335–51.

[13] Boland N, Charkhgard H, Savelsbergh M. A criterion space search algorithm for
biobjective integer programming: the balanced box method. INFORMS J Comput
2015;27:735–54.

[14] Cervantes M, Lova A, Tormos P, Barber F. A dynamic population steady-state
genetic algorithm for the resource-constrained project scheduling problem.
Applied Artificial Intelligence. Berlin, Heidelberg: Springer; 2008. p. 611–20. . In
N.T., N., L., B., A., G., and M., A., editors.

[15] Chaleshtarti AS, Shadrokh S, Khakifirooz M, Fathi M, Pardalos PM. A hybrid
genetic and lagrangian relaxation algorithm for resource-constrained project
scheduling under nonrenewable resources. Appl Soft Comput J 2020:94.

[16] Coello C, Cortés C. Solving multiobjective optimization problems using an artificial
immune system. Genet Program Evol Mach 2005;6:163–90.

[17] Custòdio AL, Madeira J, Vaz A, Vicente L. Direct multisearch for multiobjective
optimization. SIAM J Optim 2011;21:1109–40.

[18] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objec- tive genetic
algorithm: NSGA-II. IEEE Trans Evolut Comput 2002;6:182–97.

[19] Durillo JJ, Nebro AJ. jMetal: A Java framework for multi-objective optimization.
Adv Eng Softw 2011;42:760–71.

[20] Fang C, Wang L. An effective shuffled frog-leaping algorithm for resource-
constrained project scheduling problem. Comput Oper Res 2012;39(5):890–901.

[21] Fernandes A, Rodrigues C, daCosta FA. A path-relinking algorithm for the multi-
mode resource-constrained project scheduling problem. Comput Oper Res 2018;92:
145–54.

[22] Florez L, Castro-Lacouture D, Medaglia AL. Sustainable workforce scheduling in
construction program management. J Oper Res Soc 2013;64:1169–81.

[23] Habibi F, Barzinpour F, Sadjadi S. Resource-constrained project scheduling
problem: review of past and recent developments. J Proj Manag 2018;3:55–88.

[24] Habibi F, Barzinpour F, Sadjadi SJ. A multi-objective optimization model for
project scheduling with time-varying resource requirements and capacities. J Ind
Syst Eng 2017;10:92–118.

[25] Hartmann S. A competitive genetic algorithm for resource-constrained project
scheduling. Nav Res Logist 1998;45:733–50.

[26] Hartmann, S. (2006). Project Scheduling under Limited Resources. Models,
Methods, and Applications, volume 478 of Lecture Notes in Economics and
Mathematical Systems. Springer-Verlag Berlin Heidelberg.

[27] Hartmann S, Briskorn D. A survey of variants and extensions of the resource-
constrained project scheduling problem. Eur J Oper Res 2010;207:1–14.

[28] Hartmann S, Briskorn D. An updated survey of variants and extensions of the
resource-constrained project scheduling problem. Eur J Oper Res 2022;297(1):
1–14.

[29] Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y. Modified distance calculation in
generational distance and inverted generational distance. In: Gaspar-Cunha A,
Antunes CH, Coello C, editors. Evolutionary multi-criterion optimization. Springer;
2015. p. 110–25.

[30] Kelley, J. and Walker, M. (1959). Critical-path planning and scheduling. In Heart,
F., editor, IRE-AIEE-ACM ’59 (Eastern): Papers presented at the December 1–3,
1959, eastern joint IRE-AIEE-ACM computer conference. Association for
Computing Machinery, New York, NY, United States.

[31] Kolisch R, Hartmann S. Heuristic algorithms for solving the resource constrained
project scheduling problem: classification and computational analysis. In:
Weglarz J, editor. Project scheduling: recent models, algorithms and applications.
Kluwer; 1999. p. 147–78.

[32] Kolisch R, Sprecher A. PSPLIB - A project scheduling problem library: OR software -
ORSEP operations research software exchange program. Eur J Oper Res 1997;96:
205–16.

[33] Lin Q, Li J, Du Z, Chen J, Ming Z. A novel multi-objective particle swarm
optimization with multiple search strategies. Eur J Oper Res 2015;247(3):732–44.

[34] Liu Y, Dong H, Lohse N, Petrovic S, Gindy N. An investigation into minimising total
energy consumption and total weighted tardiness in job shops. J Clean Prod 2014;
65:87–96.

[35] Martins P. Integrating financial planning, loaning strategies and project scheduling
on a discrete-time model. J Manuf Syst 2017;44:217–29.

[36] Mavrotas G. Effective implementation of the ε -constraint method in multi-
objective mathematical programming problems. Appl Math Comput 2009;213:
455–65.

[37] Mejía G, Pereira J. Multiobjective scheduling algorithm for flexible manufacturing
systems with petri nets. J Manuf Syst 2020;54:272–84.

[38] Möhring RH, Schul AS, Stork F, Uet M. Solving project scheduling problems by
minimum cut computations. Manag Sci 2003;49:330–50.

[39] Moon J-Y, Park J. Smart production scheduling with time-dependent and machine-
dependent electricity cost by considering distributed energy resources and energy
storage. Int J Prod Res 2014;52(13):3922–39.

[40] Nabipoor Afruzi E, Najafi AA, Roghanian E, Mazinani M. A multi-objective
imperialist competitive algorithm for solving discrete time, cost and quality trade-
off problems with mode-identity and resource-constrained situations. Comput Oper
Res 2014;50:80–96.

[41] Nebro AJ, Durillo JJ, Vergne M. Redesigning the jMetal multi-objective
optimization framework. Proceedings of the companion publication of the 2015
annual conference on genetic and evolutionary computation. New York, NY, USA:
Association for Computing Machinery; 2015. p. 1093–100.

[42] Pellerin R, Perrier N, Berthaut F. A survey of hybrid metaheuristics for the
resource-constrained project scheduling problem. Eur J Oper Res 2020;280:
395–416.

[43] Pottel S, Goel A. Scheduling activities with time-dependent durations and resource
consumptions. Eur J Oper Res 2022;301(2):445–57.

[44] Pritsker A, Watters L, Wolfe P. Multi-project scheduling with limited resources: a
zero-one programming approach. Manag Sci 1969;16:93–108.

[45] Sato H, Aguirre HE, Tanaka K. Self-controlling dominance area of solutions in
evolutionary many-objective optimization. In: Deb K, Bhattacharya A,
Chakraborti N, Chakroborty P, Das S, Dutta J, et al., editors. Simulated Evolution
and learning. Berlin, Heidelberg: Springer; 2010. p. 455–65 (Berlin Heidelberg).

[46] Serrano-Ruiz JC, Mula J, Poler R. Smart manufacturing scheduling: a literature
review. J Manuf Syst 2021;61:265–87.

[47] Srinivas N, Deb K. Multiobjective function optimization using nondominated
sorting genetic algorithms. Evolut Comput 1995;2:221–48.

[48] Szmerekovsky JG, Venkateshan P. An integer programming formulation for the
project scheduling problem with irregular time-cost tradeoffs. Comput Oper Res
2012;39(7):1402–10.

[49] Ulusoy G, Serifoglu F, Sahin S. Four payment models for the multi-mode resource
constrained project scheduling problem with discounted cash flows. Ann Oper Res
2001;102:237–61.

[50] van Veldhuizen, D.A., Lamont, G.B. (1999). Multiobjective evolutionary
algorithms: classifications, analyses, and new innovations. Technical report, School
of Engineering of the Air Force Institute of Technology, Dayton, Ohio.

[51] Wang J, Hu X, Demeulemeester E, Zhao Y. A bi-objective robust resource allocation
model for the RCPSP considering resource transfer costs. Int J Prod Res 2021;59:
367–87.

[52] Wang, X., Dugardin, F., and Yalaoui, F. (2016). An exact method to solve a bi-
objective resource constraint project scheduling problem. IFAC-PapersOnLine, 49:

J. Alcaraz et al.

http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref1
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref1
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref2
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref2
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref2
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref3
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref3
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref4
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref4
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref5
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref5
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref6
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref6
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref7
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref7
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref7
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref7
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref8
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref8
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref9
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref9
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref9
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref9
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref10
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref10
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref11
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref11
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref11
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref11
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref12
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref12
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref13
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref13
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref13
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref14
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref14
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref14
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref14
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref15
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref15
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref15
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref16
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref16
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref17
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref17
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref18
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref18
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref19
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref19
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref20
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref20
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref21
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref21
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref21
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref22
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref22
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref23
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref23
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref24
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref24
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref24
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref25
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref25
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref26
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref26
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref27
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref27
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref27
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref28
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref28
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref28
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref28
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref29
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref29
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref29
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref29
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref30
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref30
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref30
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref31
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref31
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref32
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref32
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref32
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref33
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref33
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref34
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref34
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref34
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref35
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref35
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref36
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref36
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref37
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref37
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref37
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref38
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref38
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref38
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref38
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref39
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref39
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref39
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref39
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref40
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref40
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref40
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref41
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref41
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref42
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref42
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref43
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref43
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref43
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref43
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref44
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref44
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref45
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref45
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref46
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref46
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref46
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref47
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref47
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref47
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref48
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref48
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref48

Journal of Manufacturing Systems 63 (2022) 506–523

523

1038–1043.8th IFAC Conference on Manufacturing Modelling, Management and
Control MIM 2016.

[53] Wang, X., Yalaoui, F., and Dugardin, F. (2017). Genetic algorithms hybridized with
the self controlling dominance to solve a multi-objective resource constraint
project scheduling problem.In 2017 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), 39–44.

[54] Wang X, Yalaoui F, Dugardin F. Non-dominated sorting genetic algorithms for a
multi-objective resource constraint project scheduling problem. J Intell Syst 2019;
28:791–806.

[55] Wu C-C, Bai D, Zhang X, Cheng S-R, Lin J-C, Wu Z-L, et al. A robust customer order
scheduling problem along with scenario-dependent component processing times
and due dates. J Manuf Syst 2021;58:291–305.

[56] Yuan Y, Xu H, Wang B, Yao X. A new dominance relation-based evolutionary
algorithm for many-objective optimization. IEEE Trans Evolut Comput 2016;20(1):
16–37.

[57] Yuan Y, Xu H, Wang B, Zhang B, Yao X. Balancing convergence and diversity in
decomposition-based many-objective optimizers. IEEE Trans Evolut Comput 2016;
20(2):180–98.

[58] Zamani R. An effective mirror-based genetic algorithm for scheduling multi-mode
resource constrained projects. Comput Ind Eng 2019;127:914–24.

[59] Zheng X, Wang L. A multi-agent optimization algorithm for resource constrained
project scheduling problem. Expert Syst Appl 2015;42(15):6039–49.

[60] Zitler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolut Comput 2000;8:173–95.

[61] Zitler E, Thiele L. Multiobjective optimization using evolutionary algorithms–a
comparative case study. In et al., A. E., editor, Parallel Problem Solving from
Nature. Springer; 1998. p. 292–301.

[62] Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization:
Methods and applications. PhD thesis, Swiss Federal Institute of Technology.

[63] Zitzler E, Thiele L, Laumanns M, Fonseca CM, daFonseca VG. Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evolut
Comput 2003;7:117–32.

J. Alcaraz et al.

http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref49
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref49
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref49
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref50
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref50
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref50
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref51
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref51
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref51
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref52
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref52
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref52
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref53
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref53
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref54
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref54
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref55
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref55
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref56
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref56
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref56
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref57
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref57
http://refhub.elsevier.com/S0278-6125(22)00072-3/sbref57

	Bi-objective resource-constrained project scheduling problem with time-dependent resource costs
	1 Introduction
	2 Relation with the existing literature
	2.1 Multicriteria optimization in the context of the RCPSP
	2.2 Time-dependent costs
	2.3 Contribution provided by the current work

	3 Problem details
	4 Finding exact Pareto solutions
	5 A multi-objective metaheuristic for the RCPSP with time-dependent resource costs
	5.1 Solutions encoding
	5.1.1 Activity list with scheduling objective

	5.2 Initial population
	5.3 Selection
	5.4 Crossover
	5.5 Mutation

	6 Empirical analysis
	6.1 Test data
	6.2 Experimental setting
	6.2.1 AUGMECON
	6.2.2 Metaheuristic
	6.2.3 Metrics for evaluating the approximate Pareto front

	6.3 First results using AUGMECON
	6.4 Heuristic benchmarking
	6.5 In search for approximate Pareto fronts

	7 Conclusions and future research
	Declaration of Competing Interest
	Acknowledgments
	References

