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A B S T R A C T

The bi-objective resource-constrained project scheduling problem with time-dependent resource costs was
recently introduced and consists of scheduling a set of activities subject to precedence and resource constraints,
minimizing the makespan and the total cost for resource usage. Precisely, costs are determined by the resource
being considered together with the time it is used. Although this generalization of the traditional resource-
constrained project scheduling problem is rather recent, it has garnered substantial interest as it succeeds in
meeting a wide range of real-world demands. In such a multi-objective context, solving the aforementioned
problem poses a challenge, as both objectives conflict with each other, giving rise to a set of trade-off
optimal solutions, commonly known as the Pareto front (PF). Given that many medium or large-sized instances
of this problem cannot be solved by exact methods, the development of metaheuristics to find the PF is
necessary. So far, only one metaheuristic had been developed to solve this problem. In this work we have
implemented six additional multi-objective evolutionary algorithms (MOEAs), representing different paradigms,
and subsequently, an exhaustive comparison of their performance has been carried out. In particular, all
the compared MOEAs share the same encoding and main operators, focusing the comparison on the general
algorithm framework rather than specific versions. Metaheuristic algorithms typically yield an approximation
of the optimal PF, prompting the question of how to assess the quality of the obtained approximations.
To this end, a computational and statistically supported study is conducted, choosing a benchmark of bi-
criteria resource-constrained project scheduling problems and applying a set of performance measures to the
solution sets obtained by each methodology. The results show that there are significant differences among the
performance of the metaheuristics evaluated.
1. Introduction

Project scheduling is an intrinsic part of project management,
wherein teamwork is employed to achieve all project goals within the
given constraints. A well-known formalized problem in this field is the
resource-constrained project scheduling problem (RCPSP) consisting
of scheduling a set of activities subject to precedence and resource
constraints. Typically, the objective of the RCPSP is to minimize the
makespan, i.e., the completion time of the project in a schedule. A
first discussion of the ongoing problem can be found in Blazewicz
et al. (1983), where the RCPSP was shown to belong to the strongly
NP-hard problems. A pioneer mathematical model was introduced
in Pritsker et al. (1969). Since the 1990s, countless generalizations
of the standard RCPSP have been developed, aiming to capture man-
ifold realistic situations needed for successful practical applications.
A comprehensive review of the literature, including multiple problem
variants, is available in Hartmann and Briskorn (2022). This work
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furnishes an up-to-date account on Hartmann and Briskorn (2010),
offering an overview of the current state-of-the-art contributions to
the RCPSP literature. Both of the above reviews focus on deterministic
strategies. The stochastic approach can be found in Neumann (1990)
and Herroelen and Leus (2005). Regarding complementary surveys
reported on the RCPSP, Hartmann and Briskorn (2022) discuss the
extensive literature on the multi-mode setting (see, e.g., Florez-Perez
et al., 2013; Qi et al., 2014; Coughlan et al., 2015).

In order to address more realistic scenarios that may occur in
project scheduling, a multi-objective framework is adopted in this
work. The existing literature in the presence of multiple objectives
is addressed in several survey papers (see, e.g., Ballestín and Blanco,
2015; Habibi et al., 2018; Hartmann and Briskorn, 2022). Specifically,
we focus on the resource-constrained project scheduling problem with
time-dependent resource costs, henceforth RCPSP_TDRC, introduced
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by Alcaraz et al. (2022). This is a bi-objective problem, considering
the makespan and the total cost for resource usage as the objectives to
minimize. Furthermore, the costs are dependent on both, the resource
being utilized and the specific instant at which it is employed, leading
to a much more realistic problem. Many practical scenarios can be
modeled employing time-dependent resource costs. In the context of
production, this holds, for example, with energy costs that may be
much cheaper during off-peak times. The costs of some other resources,
such as labor, equipment, and raw materials, are subject to variation
over time. Likewise, in transportation logistics, the cost of resources
such as vehicles, fuel, and drivers can vary significantly depending on
the time of day and traffic conditions. For more realistic applications of
time-dependent resource costs, we refer to Alcaraz et al. (2022). More
specifically, although other authors also consider a bi-objective RCPSP
(see, e.g., Wang et al., 2021), to the best of the authors’ knowledge,
only the aforementioned work has addressed the RCPSP considering
time-dependent resource costs from a multi-objective perspective. Fre-
quently, more than one objective emerges as relevant in the context
of project management, and this justifies the abundant research and
the large number of multicriteria techniques for these problems. In any
case, capturing more realistic scenarios, makes it possible to develop
tools that can provide a decision-maker with a rich set of alternative
solutions from which a better decision can certainly be made.

In contrast to single-objective optimization problems, the concept of
optimum is no longer applicable in a multi-objective scenario. Solving
multi-objective optimization problems give rise to a set of trade-off
optimal solutions, commonly known as the Pareto front (PF), which can
be computationally expensive to generate. Moreover, the search space
can be too large and too complex to employ exact methods, which has
led to the use of heuristic algorithms for approximating the PF. Among
these approximate techniques, multi-objective evolutionary algorithms
(MOEAs) are widely used (see, e.g., Fonseca and Fleming, 1993; Zitzler,
1999; Emmerich and Deutz, 2018). MOEAs belong to the family of
metaheuristic algorithms, which comprises various different methods,
such as genetic algorithms (GA), particle swarm optimization (PSO),
ant colony optimization, tabu search, differential evolution or scatter
search. We refer to Durillo et al. (2010) for an in-depth study of some
of the aforementioned techniques.

The unique algorithm developed so far to solve the bi-objective
RCPSP_TDRC is the recent metaheuristic proposed by Alcaraz et al.
(2022), which is a NSGA-II-based technique (Deb et al., 2002). The aim
of this paper is to make several different metaheuristic paradigms avail-
able for solving the problem and to conduct a comparative analysis of
their performance. To achieve this, we have implemented six additional
MOEAs to solve the bi-objective RCPSP_TDRC based on well-known
paradigms in the literature: SPEA2 (Zitzler et al., 2001), MOCell (Nebro
et al., 2009), PESA-II (Corne et al., 2001), IBEA (Zitzler and Kün-
zli, 2004), SMS-EMOA (Emmerich et al., 2005) and MOEA/D (Zhang
and Li, 2007). This selection forms a diverse group of metaheuristics
that belong to different categories and make use of very different
approaches, as we will describe later. All the new metaheuristics we
have implemented make use of the encoding and operators employed
by the NSGA-II approach proposed recently. Therefore, the comparison
carried out focuses on the performance of the different paradigms to
solve the problem rather than the specific versions of the algorithms
themselves.

An appropriate comparison of existing techniques to solve a given
problem is important to determine which of them offer the best results
(see, e.g., Schlünz et al., 2016; Danloup et al., 2018; Govindan et al.,
2019). As we are dealing with a bi-objective problem, the results of
the algorithms when solving an instance of the problem consists of an
approximation of the PF and not a single solution. Zitzler et al. (2003)
demonstrate the importance of comparing algorithms quantitatively
to obtain the best PF approximation of a given problem and show
how challenging this task can be in the context of multi-objective
2

optimization when comparing approximation sets. a
The performance of the seven algorithms considered in this work is
assessed in a benchmark set of bi-objective RCPSP_TDRC. In detail, the
largest instances available in the PSPLIB library (Kolisch and Sprecher,
1997) are employed as a base. Regarding the performance indicators,
we select five measures to obtain a detailed description of the character-
istics of the PF approximations. For an in-depth understanding of the
various metrics available in the field of multi-objective optimization,
along with their classification, we refer to Audet et al. (2021). In
addition, a statistical analysis of the results obtained is carried out so
that they can be compared with a certain level of confidence.

In short, the contribution of this paper is twofold:

1. We implement six different metaheuristics following the main
features of the NSGA-II previously developed in Alcaraz et al.
(2022), to solve the bi-objective RCPSP_TDRC.

2. We analyze the performance assessment of the considered
paradigms when solving a large number of instances of the
problem. A previous calibration step allows the algorithms to
be configured in order to make a comparison on a equal foot-
ing. Furthermore, statistically supported conclusions are derived
from the obtained results.

The rest of the paper is organized as follows. In Section 2, the basic
notions of multi-objective optimization are discussed and the recently
introduced bi-criteria RCPSP_TDRC is formally described. In Section 3,
we outline the general framework and classification of MOEAs, along
with the shared specific features of all the metaheuristics, before de-
scribing the seven algorithms subject to comparison. In Section 4, the
five performance measures and the statistical analysis are described.
Section 5 is dedicated to presenting and analyzing the experiments
conducted and their results. Finally, conclusions and future research
directions are given in Section 6.

2. Motivation and problem description

As we have stated previously, this work aims at showing a compre-
hensive comparison of several metaheuristic algorithms in the context
of multi-objective optimization. In this section, we commence with
some background on multi-objective optimization. Likewise, we present
the problem on which we center our study.

Multi-objective optimization refers to an area of multi-criteria
decision-making which deals with optimization problems having more
than one objective function to be optimized at a time. It can be
applied to many domains of science, where it is necessary to take
optimal decisions with trade-offs between two or more conflicting
objectives. Given a decision space 𝑋, a multi-objective optimization
problem is defined as the process of finding a decision vector 𝐱∗ ∈
𝑋 which satisfies the set of constraints of the problem, as well as
minimizing (or maximizing) the vector of objective functions 𝐟 (𝐱) =
𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑛(𝐱))𝑇 . Furthermore, the set of values satisfying the
onstraints of the problem, known as the feasible region, is denoted as
. A point 𝐱 ∈ 𝛺 is said to be a feasible solution.

In the context of multi-objective optimization, there is no longer
unique optimal solution to the problem. We address this issue by

inding the set of non-dominated solutions or Pareto optimal solutions,
he so-called Pareto optimal set, for which one objective cannot be
mproved without deteriorating at least one of the other objective
unctions. The image under the vector function 𝐟 (𝐱) of the Pareto
ptimal set is referred to as the PF. For detailed information on Pareto
ominance and other important definitions associated with it, we refer
o Emmerich and Deutz (2018).

The RCPSP is a well-known combinatorial optimization problem
onsisting of a set 𝑉 = {0, 1,… , 𝑛, 𝑛 + 1} of activities subject to
recedence and resource constraints. Activity 0 represents the start of
he schedule, while activity 𝑛 + 1 corresponds to the end of it. Both

re ‘‘dummy’’ activities with null processing times (or duration) and no
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Fig. 1. An example of the RCPSP with time-dependent resource costs.
resource consumption. The processing time of an activity 𝑗 ∈ 𝑉 is de-
noted as 𝑑𝑗 . Preemption is not allowed, i.e., activity 𝑗 must be executed
during 𝑑𝑗 time periods from its start, without interruption. Precedence
relations are given by sets of immediate predecessors 𝑃𝑗 , indicating that
an activity 𝑗 may not be started before each of its predecessors in 𝑃𝑗
is completed. On the other hand, renewable resources are formalized
by set 𝐾. Each activity 𝑗 ∈ 𝑉 demands 𝑟𝑗𝑘 units of resource 𝑘 ∈ 𝐾 per
time unit. Lastly, availability of resource 𝑘 in each time unit is given
by 𝐵𝑘.

Formally, a schedule 𝑆 is an assignment of a non-negative start time
𝑆𝑗 to each activity 𝑗 ∈ 𝑉 . Traditionally, the objective of the RCPSP
is to find a schedule which results in the earliest possible end of the
project, i.e., the completion time of end activity (makespan). In their
work, Pritsker et al. (1969) propose a model for this problem based on
the maximum time required to complete all the activities, the so-called
planning horizon 𝑇 , which should represent a sharp upper bound of the
project optimal makespan.

Taking the RCPSP and the model by Pritsker et al. (1969) as a
starting point, Alcaraz et al. (2022) introduce time-dependent resource
costs, i.e., the cost depends on the resource being considered as well
as the time period in which it is being used. This type of costs are
very common in projects when scarce resources are considered. For-
mally, the authors denote by 𝑐𝑘𝑡 the cost of employing one unit of
resource 𝑘 during the interval of time [𝑡, 𝑡 + 1), ∀𝑘 ∈ 𝐾 and 𝑡 ∈
{0,… , 𝑇 − 1}. In this context, they propose adding a second objec-
tive to be minimized in the problem, the total cost of the resource
usage. In this way, the authors define a new variant of the RCPSP, a
multi-objective problem with two objectives to minimize, the so-called
resource-constrained project scheduling problem with time-dependent
resource costs (RCPSP_TDRC). The mathematical model of this problem
is shown in Appendix A.

An example of the above problem is given in Fig. 1. The project
comprises 6 activities that utilize a single renewable resource with
an availability of 7 units per period. Each activity is paired with its
duration and the resource requirement. Dummy activities 0 and 7 are
included to represent project start and completion, and the planning
horizon is determined by summing the processing times of all activities
in the project. Finally, the time-dependent resource costs are shown in
the figure with two possible values.

In the presence of two objectives, makespan and total cost of
resource usage, we can obtain different solutions to the problem,
depending on the objective we are prioritizing. In Fig. 2, we present two
feasible solutions and calculate their respective objective values. The
schedule shown in Fig. 2(a) achieves a lower makespan value compared
to the one in Fig. 2(b), while the cost of resource usage exhibits the
opposite trend. Hence, both solutions are non-dominated, in the sense
that no objective can be improved without deteriorating the other.
3

We refer to Alcaraz et al. (2022) for a detailed example of this
problem, as well as an illustration of the main differences with re-
spect to the traditional single-objective problem. In that work, the
authors demonstrate that exact techniques fail when solving medium
or large-sized instances of the problem and propose a metaheuristic as
alternative. Specifically, the authors compare the fronts given by the
metaheuristic approach with the exact PF given by the AUGMECON
method (Mavrotas, 2009). In small and medium-sized instances (30
and 60 activities respectively), where the exact techniques can solve
up to proven optimality the optimization models, the metaheuristic
demonstrates its efficiency in much lower computation times. In the
set of instances where the exact techniques fail, the metaheuristic
gives approximations of the PF with very good characteristics. Taking
these experiments as a starting point and aiming to compare several
metaheuristic paradigms, large-sized projects with 120 activities are
mainly considered in this work. However, in order to better support the
conclusions, experiments with medium-sized projects with 60 activities
are also included in an appendix. The general template of the algorithm
proposed by Alcaraz et al. (2022), which is the basis of the algorithms
implemented in this work and that will be later compared, is described
in the following section. It should be highlighted that we have chosen
seminal variants of the metaheuristics selected for the comparison,
allowing us to focus on the performance of the different paradigms to
solve the problem rather than the specific versions of the algorithms
themselves.

3. Multi-objective evolutionary algorithms

In this section, we first describe the general template of MOEAs, as
well as the specific algorithm-features needed to solve the bi-objective
RCPSP_TDRC. Next, we briefly discuss the seven metaheuristics consid-
ered to carry out the experimental studies.

3.1. General framework and taxonomy for MOEAs

In the context of multi-objective optimization, multi-objective evo-
lutionary algorithms, based on paradigms from natural evolution arise.
In general, MOEAs employ a variety of procedures, such as selection,
crossover and mutation operators that are applied to a set of individu-
als, the so-called population, in order to guide the process towards the
set of Pareto optimal solutions or, at least, a good approximation of it.

Following Emmerich and Deutz (2018), MOEAs can be classified
into three main categories based on the paradigms used to define the
selection operators:
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Fig. 2. Different solutions to project in Fig. 1.
1. Pareto-based MOEAs. Individuals are ranked according to two
different criteria: the Pareto dominance relation and the con-
tribution of each point to diversity. The first criterion groups
points which do not dominate each other and prioritize the non-
dominated solutions, that is, those not dominated by any other
population member. Next, the second ranking is performed on
the groups created using the previous dominance relation.

2. Indicator-based MOEAs. The main idea in this category is the use
of indicator functions to distinguish when one approximation set
outperforms another. Fitness values obtained by means of these
indicators are assigned to the population members, guiding the
selection procedure towards the set of Pareto optimal solutions.

3. Decomposition-based MOEAs. The last approach opts to decom-
pose the original problem into several subproblems, through
which a specific part of the PF is addressed. To construct each
subproblem, a certain weighted scalarization method is used.

Most of the MOEAs we can find in the literature to solve very
different optimization problems fall within the first category. Specif-
ically, the most popular MOEAs, those that have been more widely
used, are also Pareto-based MOEAs. Therefore, the majority of the seven
MOEAs selected for the comparison belong to this category, which
includes the NSGA-II used in Alcaraz et al. (2022) to solve the bi-
objective RCPSP_TDRC. Additionally, SPEA2, MOCell and PESA-II have
also been chosen. To extend the comparison with MOEAs of the three
categories, we have also selected two of the best known indicator-
based algorithms, IBEA and SMS-EMOA, and one of the most popular
decomposition-based algorithms, MOEA/D.

As stated above, MOEAs shared different structures and procedures
that do not depend on the specific problem being considered. Algorithm
1 shows the general template of MOEAs, which is common to all the
algorithms of this type. The procedure begins by creating an initial
population and evaluating all its individuals. The main loop represents
the evolution process and will continue until the stopping criterion
4

is satisfied. Common criteria include a maximum number of function
evaluations or a CPU time limit. During this phase, the current popu-
lation undergoes the three genetic operators to generate the offspring
population, which is subsequently evaluated. At this stage, individuals
from both populations participate in the replacement procedure, where
the best solutions are chosen to form the population of the next
generation.

Algorithm 1 Evolutionary Algorithm Template
1: 𝑖 ← 0;
2: 𝑃𝑖 ← create_initial_population(𝑁);
3: 𝑃𝑖 ← evaluate_population(𝑃𝑖);
4: while not stopping_criterion do
5: 𝑅𝑖 ← selection(𝑃𝑖);
6: 𝑅𝑖 ← crossover(𝑅𝑖);
7: 𝑅𝑖 ← mutation(𝑅𝑖);
8: 𝑅𝑖 ← evaluate_population(𝑅𝑖);
9: 𝑃𝑖+1 ← replacement(𝑃𝑖, 𝑅𝑖);

10: 𝑖 ← 𝑖 + 1;
11: end while

Although the general template described above gives an idea of how
MOEAs work, implementing these algorithms for solving a particular
problem implies the design of several features, which necessarily incor-
porate problem-specific knowledge that will guarantee the efficiency
of the technique. In particular, we refer to the way to encode the
solutions, and the genetic operators, crossover and mutation, to manage
this encoding.

3.2. Specific encoding and operators for the RCPSP_TDRC

As stated above, Alcaraz et al. (2022) propose a metaheuristic to
solve the bi-criteria RCPSP_TDRC. Specifically, the authors design a
solution encoding and genetic operators in order to implement the
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algorithm and solve the problem being considered. These features, that
are described in detail by Alcaraz et al. (2022), are summarized below:

• Activity list with scheduling objective. The solutions are en-
coded by a double-list, an activity list where each activity must
appear after all its predecessors and a binary list representing, for
each activity, one of the two objectives considered: the makespan
or the total cost for resource usage. This encoding is an extension
of the one proposed by Alcaraz and Maroto (2006) for dealing
with the RCPSP with only one objective. The order given by the
activity list is followed when scheduling the activities in order to
build the schedule. Nevertheless, the binary list determines which
scheduling objective we prioritize for each activity. Thus, when
prioritizing the makespan, activities must be executed the mo-
ment there is availability of resources, whereas when considering
the second scheduling objective, i.e., the cost, the start time of an
activity can be delayed a maximum number of time periods until
its processing cost is cheaper, provided that there are sufficient
resources to execute it.
The design of the solution encoding is crucial, since the good
performance of the algorithm depends, to a great extent, on it.
Fig. 3 shows a solution encoded with the activity list with schedul-
ing objective representation for the project example presented in
Fig. 1. We observe that the first list orders activities according
to their precedence relationships in the project, i.e., an activity
will always appear after all its predecessors. In the second list,
activities 1, 2, 4, and 6 prioritize minimizing the makespan when
they are scheduled, as their scheduling objective is 0. Meanwhile,
activities 3 and 5 have a scheduling objective of 1, indicating
a priority on the cost when they are going to be placed in the
schedule. More examples of this double-list encoding and its
subsequent transformation into a schedule are available in the
work by Alcaraz et al. (2022).

• Double-list crossover. The crossover operator is applied to a
pair of solutions, where information from each double-list is
combined to create an offspring. To achieve this goal, a two-step
procedure is carried out. In a first stage, the activity lists of the
parents undergo the two-point crossover (Hartmann, 1998). Next,
the activities conforming the offsprings inherit the scheduling
objectives from their parents, taking into account the provenance
of each activity.
Fig. 4 illustrates an example of the double-list crossover proce-
dure. In this example, we have two solutions derived from the
project shown in Fig. 1: the mother (M) and the father (F). The
crossover operation begins by choosing two random crossover
points 𝑘1 and 𝑘2. Let us suppose that 𝑘1 = 2 and 𝑘2 = 4
are selected. The double lists of the parents are divided into
three sections, resulting in the daughter (D) inheriting the first
two positions in the activity list from the mother. The next two
positions are inherited from the father, following a specific rule:
we identify the first two activities in the father that are not
already present in the daughter, maintaining their relative order
in the father’s list. Finally, the last two activities are taken from
the mother, ensuring that their relative order on the mother is
maintained. The procedure for generating the son’s activity list (S)
is analogous to that of the daughter but interchanging the role of
the parents. After the crossover of the activity lists of the parents,
the activities in the offspring inherit the scheduling mode from
the respective parent they were copied from.

• Double-list mutation. As for the crossover operator, the mu-
tation mechanism is performed in two steps. First, each of the
activities in the sequence is moved to a random position (between
the last of its predecessors and the first of its successors, generat-
ing a feasible solution) with a determined mutation probability
(Boctor, 1996; Alcaraz and Maroto, 2001). The scheduling ob-
jective list of all the activities is preserved after this procedure.
Afterwards, the binary list is altered with certain probability,
5

changing from 0 to 1 or vice versa.
Fig. 3. Example of the activity list with scheduling objective representation.

The features described above make the algorithm unique and its
performance highly depends on them. These features will be employed
as a common basis in all the metaheuristics compared in this work.
Furthermore, in all the metaheuristics, the procedure begins by creating
an initial population through the same random mechanism. First, an ac-
tivity list is generated by randomly selecting activities from an eligible
list while maintaining the precedence relationships. After selecting an
activity, the eligible list is updated to ensure that no activity is chosen
more than once. Second, the scheduling objective for each activity
is randomly determined from the two possible values with a 50%
probability for each. Then, each solution from the initial population is
evaluated, i.e., we obtain the values of makespan and cost for every
individual. Therefore, if the different metaheuristics show different
performance, these differences cannot be attributed to the encoding
or the operators used but to the general scheme of the algorithm. The
specific characteristics of all the metaheuristics considered in this work
are described in the following subsections.

3.3. NSGA-II

Within the Pareto-based MOEAs, we begin by describing the non-
dominated sorting genetic algorithm II (NSGA-II) introduced by Deb
et al. (2002), which has been successfully applied to a wide range of
problems in very different contexts. Firstly, the random mechanism
previously described is applied to obtain the initial population, that is,
the set of initial solutions. Next, the first ranking scheme is performed
by assigning a fitness (or rank) to each solution, thus sorting the popu-
lation into different fronts. To elaborate, the first front consists of those
solutions that are not dominated by any other individual in the popula-
tion, while the second front comprises population members dominated
by one or more solutions from the first front. This non-domination
ranking process continues until all the fronts are identified.

Hereafter, the typical genetic operators, i.e., binary tournament
selection, crossover and mutation, are used to obtain an offspring popu-
lation of the same size as the initial one. Both populations are combined
resulting in a double-sized population, on which the non-domination
ranking process previously outlined is performed. This procedure yields
several sets, so that the best solutions in the combined population are
the ones belonging to the first front. In order to build a new population
with the original size, individuals of the different fronts are chosen in
order, starting with the first front. If the size of the first front is less
than the original population size, all the individuals are chosen for
the new population. As for the remaining members, they are selected
from the subsequent non-dominated fronts, until no more sets can be
fully accommodated. When all the individuals of a front cannot be
placed in the new population, a procedure is employed to determine
the individuals in that front to be copied in the new population. The
crowding distance of all the solutions in that front are calculated,
representing the distance between a given solution and the rest of
solutions in the front, and a higher value is desirable, i.e., solutions
located in a lesser crowded area of the objective space are preferred.
Then, solutions are sorted in descending order with respect to this
distance, and copied one by one, until the new population is fulfilled.
Thereby, the first rank of fronts enable us to identify which solutions
are preferable based on the non-domination relationship, while the
second sorting procedure allows us to choose between the solutions
belonging to the same front. Further details on this metaheuristic are
described in Deb et al. (2002).
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Fig. 4. Example of the double-list crossover.
3.4. SPEA2

We shall now present the improved version of the strength pareto
evolutionary algorithm (SPEA) (Zitzler and Thiele, 1999), namely
SPEA2, which is a Pareto-based MOEA for finding or approximating
the Pareto optimal set of solutions. Attempting to overcome the short-
comings of its predecessor, SPEA2 incorporates a fitness assignment
procedure, which considers for each solution the individuals dominated
by the solution as well as the ones that dominate it. Moreover, SPEA2
employs a regular population and an archive. The archive is an external
population which stores the non-dominated solutions attained by the
algorithm during the optimization process. Precisely, it serves as a
representation of the non-dominated front among all the evaluated
solutions considered so far. Following the ideas presented in Zitzler
et al. (2001), let 𝐱 be an individual belonging to either the archive,
𝑃 , or the population, 𝑃 . We denote by 𝑆(𝐱) the strength value of 𝐱,
and it can be calculated as follows:

𝑆(𝐱) = |{𝐲 ∶ 𝐲 ∈ 𝑃 + 𝑃 ∧ 𝐱 ≺𝑃𝑎𝑟𝑒𝑡𝑜 𝐲}|,

where |·| denotes the cardinality of a set, + represents the multiset
union and ≺𝑃𝑎𝑟𝑒𝑡𝑜 stands for the Pareto dominance relation. Thus, the
trength value of an individual represents the number of population
embers it dominates. Subsequent to the above, the raw fitness 𝑅(𝐱)

of an individual 𝐱 is obtained:

𝑅(𝐱) =
∑

𝐲∈𝑃+𝑃 ,𝐲≺𝑃𝑎𝑟𝑒𝑡𝑜𝐱

𝑆(𝐲).

ence, the raw fitness of a solution 𝐱 is given by the strength values
f the individuals which it is dominated by. Although the raw fitness
alue indicates the extent to which an individual is dominated, it may
ail when most of the individuals in a population do not dominate
ach other. For that reason, a density estimation based on the near-
st neighbor technique is combined with the raw fitness in order to
iscriminate between population members with the same raw fitness.
s a result, selection process is biased towards minimizing the fitness
alues, thus preferring the exploration of less populated regions of the
bjective space. A detailed description on how to obtain the fitness of
n individual 𝐱, as the sum of the two values included above, can be
ound in Zitzler et al. (2001).

Starting with an initial population and an empty archive, we now
escribe the main loop of this algorithm. First of all, the fitness values
f the individuals in both, the original population and the archive,
re calculated. We refer to this step as the fitness assignment. Then,
he non-dominated individuals are copied into the archive of the next
eneration. At this point, the environmental selection procedure takes
lace. If the number of non-dominated solutions is greater than the
rchive size, a truncation operator based on calculating the distances
o the 𝑘th nearest neighbor is employed. Otherwise, the archive of the
ext generation is filled with dominated solutions. Finally, similarly to
ther MOEAs, the algorithm continues to the mating selection phase,
here the mating pool is created by selecting individuals belonging to

he previous archive. Afterwards, the variation procedure takes place,
nd the crossover and mutation operators are applied to the mating
6

ool in order to obtain the resulting population. If a stopping criterion
is satisfied, the process stops and the obtained archive which contains
the non-dominated individuals will represent the approximation of the
Pareto optimal set, that is, the solution of our problem. Again, we
refer to Zitzler et al. (2001) for a more detailed explanation of this
methodology.

3.5. MOCell

Belonging to the Pareto-based MOEAs class, we now discuss a
cellular genetic algorithm (cGA) called MOCell (Nebro et al., 2009),
which is based on two chief components: a bounded external archive
to store the non-dominated solutions and the small neighborhoods.
Here, we concentrate on the concept of small neighborhood, as it
constitutes a fundamental element of this technique. When we refer to
a neighborhood, we address how individuals interact with each other
and, in particular, which kind of cooperation is allowed and which is
not. Hence, genetic operators may only be applied to an individual
and its immediate neighbors, i.e., within the neighborhood. A neigh-
borhood, in this sense, is a subset of solutions or individuals within the
overall population that are considered ‘‘close’’ to each other in terms
of their objective values. In this context, we can assume population
size is greater or even much greater than the size of a neighborhood.
Moreover, this algorithm works with overlapping small neighborhoods
within which solutions are shared, inducing a gradual exploration of
the search space that guarantees diversification. Besides, exploitation
(intensification) occurs inside each neighborhood by means of genetic
operators (Alba and Dorronsoro, 2008).

Regarding the breeding loop of MOCell, it starts by considering a
bounded and empty external archive and by arranging the population
members in a two-dimensional toroidal grid. Next, for each individ-
ual, two parents are selected from its neighborhood and undergo the
crossover and mutation operators to obtain an offspring. At this stage,
the resulting individual is compared to the current one, making use of
the crowded-comparison operator introduced in NSGA-II. Hence, the
current individual is replaced if it is dominated by the offspring. On
the other hand, if both individuals are not comparable according to the
Pareto dominance relation, a population made up of nine neighbors,
using the 𝐶𝑜𝑚𝑝𝑎𝑐𝑡9 criterion (Whitley, 1993; Alba and Dorronsoro,
2008; Jie et al., 2017) is considered. Therefore, the crowding distance
of both individuals in the reduced population is computed, whereby
the individual with the worst value is rejected. Lastly, the altered
population replaces the old one after undergoing a feedback process
where several individuals are selected from the archive with the pur-
pose of replacing the corresponding randomly selected ones in the new
population.

With regard to the Pareto set, i.e., the external archive, a ranking
based on the crowding distance is performed to decide whether a non-
dominated solution is inserted into the archive once it is already full.
Specifically, the individual with the worst crowding distance value
is discarded, ensuring that the diversity of solutions on the PF is

preserved.
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3.6. PESA-II

To conclude with the Pareto-based MOEAs we present PESA-II
(Corne et al., 2001), a version of the Pareto envelope-based selection
algorithm (PESA) (Knowles and Corne, 2000), which outperforms its
predecessor providing significantly superior results. Both algorithms
share the habitual structure of MOEAs, already presented in previous
techniques, in which genetic operators act to gradually approximate the
Pareto optimal set. Nevertheless, differences arise when it comes to the
selection procedure followed by each of them. In this section, we firstly
provide an overview of PESA as it represents the basis of PESA-II, and
subsequently describe the latter.

Individual-based selection employed in PESA relies on the adaptive
hyper-grid division adopted in Knowles and Corne (1999), i.e., a subdi-
vision of the objective space into hyperboxes within which the number
of individuals is computed. Notice that the adaptive grid depends on
the number of bi-sections considered, 𝑆, which conforms a configurable
parameter of this algorithm. For each individual, this method keeps a
track of the number of other solutions inside the same hyperbox, the
so-called selective fitness or squeeze factor. After this fitness assignment
procedure, a general selection scheme is used, through which the
parents for genetic operators are chosen among the individuals with
small squeeze factors. Furthermore, an external archive stores non-
dominated solutions and utilizes the adaptive grid discussed earlier
as a density estimator for the selection process. Notice the difference
between this algorithm and previously described ones, in which the
selection is conducted on the entire population.

On the contrary, PESA-II employs an internal population from which
parents are selected to create an offspring, and an external population
to store non-dominated solutions. This external population also uses the
adaptive hyper-grid division of the objective space adopted by PESA.
Nonetheless, a region-based selection scheme is adopted. In region-
based selection, the unit of selection is a hyperbox rather than an
individual. Therefore, the procedure consists of selecting a hyperbox
by any traditional selection method, within which an individual is
randomly chosen. This alteration in the selection procedure leads the
algorithm to choose isolated individuals instead of non-isolated ones
with higher probability than in PESA (Corne et al., 2001.) The resulting
individuals are subjected to the crossover and mutation operators.
Finally, in the environmental selection process, several non-dominated
individuals from the current population are asked to enter in the
archive one by one. Like in other MOEAs, if an individual is not
dominated by any solution in the archive, then it is included in the
external set and all the archive members dominated by the new one
are removed from the set. Finally, if the archive is full, the density of
the hyperboxes (number of solutions within it) is used so the individual
in the most crowded hyperbox is removed.

3.7. IBEA

The indicator-based evolutionary algorithm (IBEA) (Zitzler and Kün-
zli, 2004) is an indicator-based MOEA which utilizes binary quality
indicators adaptable to arbitrary decision maker’s preferences. A binary
quality indicator is defined as a function that maps two approximations
of the Pareto optimal set to a real number. Therefore, these indicator
functions can be considered as performance measures that allow us to
compare the quality of two approximation sets. As an example of a
binary indicator function we refer to the binary additive 𝜖-indicator, 𝐼𝜖+
(see Zitzler et al., 2003 and Section 4.1), which returns the minimum
distance that a Pareto optimal set approximation must be translated
in the objective space in order to be weakly dominated by another
approximation set. In particular, binary quality indicators can be used
for the fitness assignment procedure directly as they constitute a nat-
ural extension of the Pareto dominance relation. In IBEA, the fitness
assignment of an individual 𝐱 is performed as follows:

𝐹 (𝐱) =
∑

−𝑒−𝐼({𝐲},{𝐱})∕(𝑐·𝜅),
7

𝐲∈𝑃∖{𝐱} p
where 𝐼 represents the binary quality indicator, 𝑃 refers to the popula-
tion, the parameter 𝜅 is a scaling factor and 𝑐 represents the maximum
absolute indicator value. Note that in this work we focus on the
adaptive IBEA template described in Zitzler and Künzli (2004), where
indicator values are scaled to lie in the interval [−1, 1] for all indi-
viduals. Further considerations should be taken into account when
determining whether an indicator is ‘‘appropriate’’ or not. In this con-
text, the notion of preserving dominance emerges as a requirement for
indicators to be compliant with Pareto dominance. We refer to Zit-
zler and Künzli (2004) for the proof of the compliance with Pareto
dominance of the previously introduced fitness scheme.

Next, we shall briefly describe the main loop of the IBEA algorithm.
Firstly, the initialization phase generates an initial population, followed
by the fitness assignment scheme procedure, where the objective and
indicator values are scaled. Hence, a fitness value is assigned to each
population member and the individual with the worst value is removed
from the population. Afterwards, the fitness values of the remaining
individuals are updated. The former environmental selection step is
iterated until a fixed population size is reached. At this stage, the algo-
rithm must decide whether the procedure ends or whether it continues
with the mating selection and variation steps. If no stopping criterion
satisfied, the selection operator is applied to the population in order to
fill the mating pool. Hereafter, this mating pool undergoes the crossover
and mutation operators in order to obtain an offspring population.
Again, we refer to Zitzler and Künzli (2004) for further details of the
algorithm.

3.8. SMS-EMOA

Regarding the indicator-based MOEAs, we conclude with the -
etric selection evolutionary multi-objective optimization algorithm

SMS-EMOA) (Emmerich et al., 2005). As previously stated, binary
uality indicators allow us to compare the quality of two approxi-
ation sets of the PF. Nevertheless, there are performance indicators
hich compute the quality of a PF approximation, providing an ab-

olute measure of its quality. We refer to the latter as unary quality
ndicators or just unary indicators. In particular, the hypervolume
easure or -metric introduced in Zitzler (1999) is a function of

uch type. SMS-EMOA evolves around this unary indicator, which
etermines the selection procedure biasing the search towards the
et of non-dominated solutions or Pareto optimal solutions. Precisely,
he hypervolume indicator calculates the dimensions of the dominated
pace regarding a reference point, which bounds it and must be fixed in
dvance. This measure is described in detail in Section 4.1. Obviously,
set of non-dominated solutions with a large number of points that are
ell-distributed along the PF would attain a vaster dominated area.

SMS-EMOA aims at maximizing the hypervolume indicator of a pop-
lation of size 𝑁 , in which the employment of an external archive is not
ecessary. As we contend with a multi-objective scenario, the proposed
lgorithm adopts a ranking criterion based on the non-domination
elation, as in NSGA-II. Therefore, the selection procedure, which is
overned by the -metric, takes place at the worst-ranked layer derived
rom the ranking scheme. Moreover, it must be emphasized that we
re facing a steady-state (𝑁 + 1)-EMOA, meaning only one offspring
esults from the genetic operators per iteration. Hence, population size
s increased to 𝑁+1, so one individual must be removed from the set by
he end of the loop. In a first scenario, if all the population members are
on-dominated, the individual with the smallest hypervolume contribu-
ion is removed from the set of solutions. Nonetheless, in the presence
f dominated solutions, SMS-EMOA employs the aforementioned rank-
ng scheme and selects the solution with the smallest hypervolume
ontribution from the worst-ranked layer. We refer to Emmerich et al.
2005) for a detailed explanation of this metaheuristic, including its

seudocode.
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3.9. MOEA/D

So far, we have described several MOEAs, including Pareto and
indicator-based ones. Henceforth, we comment on an algorithm of
the remaining category, that is, a multi-objective evolutionary algo-
rithm based on decomposition (MOEA/D) (Zhang and Li, 2007). This
metaheuristic consists in decomposing a multi-objective optimization
problem into 𝑁 scalar optimization subproblems to be optimized si-

ultaneously. Ideally, each of these subproblems attaches a specific
egion of the objective space and, all at once, aim at approximating the
F of the problem. In particular, this procedure reports less computa-
ional issues compared to other methods, such as NSGA-II. Among the
ifferent decomposition approaches, the Tchebycheff approach is the
ne adopted by the current algorithm. Following the ideas introduced
n Miettinen (1998), the 𝑗th subproblem of this kind can be expressed
s follows:

inimize 𝑔𝑡𝑒(𝐱 ∶ λ𝑗 ,𝐩∗) = max
1≤𝑖≤𝑛

{𝜆𝑗𝑖 ∶ 𝑓𝑖(𝐱) − 𝑝∗𝑖 }

ubject to 𝐱 ∈ 𝛺

here 𝐩∗ = (𝑝∗1 ,… , 𝑝∗𝑛)
𝑇 is the reference point defined as 𝑝∗𝑖 =

max{𝑓𝑖(𝐱) ∶ 𝐱 ∈ 𝛺} for each 𝑖 = 1,… , 𝑛 and λ𝑗 = (𝜆𝑗1,… , 𝜆𝑗𝑛)𝑇 is
amed the 𝑗th weight vector. As usual, 𝛺 refers to the feasible region,
.e., the set of values satisfying the constraints of the problem. In
his context, given a multi-objective optimization problem and a non-
ominated solution 𝐱∗, there exists an appropriate λ such that 𝐱∗ is also
n optimal solution of 𝑔𝑡𝑒(𝐱 ∶ λ,𝐩∗). Likewise, each optimal solution
f this Tchebycheff scalarization subproblem provides a point in the
ptimal PF of the original problem. Hence, varying the weight vector
llows for obtaining different non-dominated solutions. In particular,
he continuity of 𝑔𝑡𝑒 at λ ensures the closeness of the optimal solutions
f the 𝑗th and the 𝑖th scalar optimization subproblems. Therefore,
iven the 𝑗th subproblem, information from the remaining subproblems
hose weight vectors are close to λ𝑗 , is of interest. At this point, the

oncept of neighborhood of the 𝑗th subproblem arises, and it is defined
s the set of subproblems whose weight vectors are the closest to λ𝑗
n the Euclidian distance. Clearly, the number of weight vectors in the
eighborhood is to be fixed beforehand.

As for the main loop of MOEA/D, a population of 𝑁 solutions
1,… , 𝐱𝑁 is considered, where each of the individuals corresponds
o the best solution found so far by the scalar subproblems obtained
y decomposition. Moreover, an external population or archive is
aintained to store non-dominated solutions. In the first place, Eu-

lidean distances between pairs of weight vectors are computed, and
o neighborhoods are established. Next, for each individual 𝐱𝑗 , we
onsider the neighborhood of the 𝑗th subproblem and randomly select
wo other solutions within it. The chosen parents undergo genetic
perators to obtain an offspring 𝐲. At this stage, a problem-specific
mprovement procedure is applied resulting in a new individual 𝐲′,
hich is compared to the current solution and replaces it in case of
btaining an improvement in the value of the objective function of
he 𝑗th subproblem. As an improvement procedure, we have employed

basic local search based on the double-list mutation described in
ection 3.2. Lastly, neighborhoods are conveniently updated, as well
s the external archive, regarding the dominance relation. As usual,
urther details on this algorithm can be found in Zhang and Li (2007).

. Proposed methodology

In this section, we describe the different metrics used to carry out
he comparison, together with the statistical tests considered in the
8

tudy. p
4.1. Performance indicators in multi-objective optimization

When solving a multi-objective optimization problem it is desirable
to obtain the set of non-dominated solutions that forms the PF. Com-
paring the performance of different algorithms when solving a specific
multi-objective problem implies determining which of the fronts have
the best characteristics. The most important desirable characteristics of
a front make reference to distribution, convergence and spread and they
can be measured by different metrics (see, e.g., Fonseca and Fleming,
1996; Zitzler, 1999; Deb et al., 2002). Following Audet et al. (2021),
the distribution metrics measure how well each region of the objective
space is represented. Convergence quantifies how close a set of non-
dominated solutions is from the PF in the objective space. Spread
focuses on the aspect that points should be far away from each other.

There are several different metrics to measure these characteristics
and for a complete review of them we refer to Audet et al. (2021).
We have selected five performance indicators that cover the above
desirable characteristics. The selection has been carried out taking into
account that these indicators have been widely used in the literature
and, in addition, they are easy to interpret. Capturing both the proper-
ties of convergence and distribution, two measures are used to evaluate
the fronts produced by the proposed methodologies:

• Hypervolume (𝐻𝑉 ) (Zitzler, 1999). Named also 𝑆-metric, the
hypervolume metric was previously introduced along with the
SMS-EMOA metaheuristic. In further detail, let 𝐴 = (𝐱1, 𝐱2,… ,
𝐱𝑘) ⊂ 𝑋 be a set of 𝑘 decision vectors. Considering a bi-objective
optimization problem, we denote by (𝐴) the volume enclosed
by the union of the rectangles 𝑝1, 𝑝2,… , 𝑝𝑘, where each 𝑝𝑖 is
defined by the points (0, 0) and (𝑓1(𝐱𝑖), 𝑓2(𝐱𝑖)). This measure was
first proposed for a maximization problem, so the obtained front
must be inverted to apply the original metric implementation.
Moreover, the decision vectors are normalized, restricting the
performance indicator to the interval [0, 1]. Note that a value
closer to 1 indicates a better approximation.

• Modified Inverted Generational Distance (𝐼𝐺𝐷+) (Ishibuchi
et al., 2015). Overcoming the drawbacks of its predecessors, GD
and IGD measures (see Audet et al., 2021), this second con-
vergence and distribution performance indicator computes the
distance between two fronts integrating the dominance relation.
In particular, it takes into account the dominance relation when
computing the Euclidean distance within elements of both fronts.
For this indicator, a lower value is desirable.

As for the distribution and spread indicators, another two measures
re considered in the computational study carried out in this work:

• Spread (𝛥) (Deb et al., 2002). The spread measure takes into ac-
count the dispersion of the points within the front. Hence, isolated
solutions are preferred. Lower values correspond to better fronts
and, in particular, a spread equal to zero represents the most
widely and evenly distributed set of non-dominated solutions.

• 𝜇-indicator (𝜇) (Alcaraz, 2022). This metric is defined as the ratio
of two well-known performance measures, the 𝛤 indicator (Custó-
dio et al., 2011) and Zitzler’s ∗

3 metric (Zitzler et al., 2000).
The 𝛤 indicator computes the maximum distance in the infinity
norm between two consecutive points in the considered front.
Hence, a lower value of this metric is preferred. Likewise, when
considering two objective functions, the ∗

3 metric equals to the
distance of the two outer solutions. Therefore, a higher value of
this measure is desired. By combining both performance indica-
tors, the 𝜇-indicator provides a more dependable measure of how
well the points are distributed along the front. In particular, 𝜇 is
to be minimized.

Finally, the convergence to the PF is measured by the following

erformance indicator:
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• The additive 𝜖-indicator (𝐼𝜖+ ) (Zitzler et al., 2003). This metric
has been already mentioned when discussing the IBEA meta-
heuristic. Formally, given two fronts 𝐹1 and 𝐹2 it is defined, for
the two-objective case, as follows:

𝐼𝜖+ (𝐹1, 𝐹2) = min𝜖{∀𝐲 ∈ 𝐹2 ∃𝐱 ∈ 𝐹1 ∶ 𝑓𝑖(𝐱)− 𝜖 ≤ 𝑓𝑖(𝐲) for 𝑖 ∈ {1, 2}}.

The function returns the minimum additive factor by which one
front must be translated in the objective space to weakly domi-
nate the other front. Thus, we lean toward lower values of this
measure.

4.2. Statistical test

As is stated above, the main goal of this work is to compare the
behavior of the considered metaheuristics when solving the bi-criteria
RCPSP by measuring the quality of the PF approximations in terms of
several performance indicator values. Notice that we are dealing with
evolutionary techniques, and therefore, with stochastic algorithms,
whose mechanism relies on certain probabilistic operations. Under
these circumstances, performance assessment is attained by using an
appropriate statistical test, which allows for comparing the obtained
results with a certain level of confidence. In this section, we present
a two-way standard analysis of variance (ANOVA), which considers
two independent categorical variables that can affect the response and
interact with each other. In particular, the response variables for the
two-way ANOVA are the different performance indicators presented in
Section 4.1.

Consider A and B as two distinct factors. For factor A we can find I
possible values, while factor B admits J possibilities. We are interested
in determining the effect of each of these two factors, and also their
interaction. Therefore, we assume that besides the effect that each one
can have separately, an interaction can be produced by adding certain
values of both factors and combining them to produce a mixed effect.
Moreover, for each of the 𝐼 × 𝐽 possibilities, let 𝑛𝑖𝑗 be the number
of samples for level 𝑖 of factor A and level 𝑗 of factor B. Overall, a
parametrization of the described model can be defined as follows:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + 𝜖𝑖𝑗𝑘, (1)

where 𝑖 ∈ {1,… , 𝐼}, 𝑗 ∈ {1,… , 𝐽}, 𝑘 ∈ {1,… , 𝑛𝑖𝑗}, 𝜖𝑖𝑗𝑘 ∈ 𝑁(0, 𝜎2) and
are independent. Parameter 𝜇 represents the overall mean, parameters
𝛼𝑖 represent the main effect of factor A, parameters 𝛽𝑗 represent the
main effect of factor B, and parameters 𝛾𝑖𝑗 represent the interaction
between the two factors. Notice that all necessary ANOVA hypotheses
should be checked. In particular, errors are assumed to follow a normal
(Gaussian) distribution. Nonetheless, the error term can be thought of
as the sum of minor influences of unpredictable factors and their levels.
Hence, the Central Limit Theorem guarantees that the distribution
of the error term approximates normal distribution, due to the large
volume of data.

Lastly, we employ Tukey’s Honest Significant Difference (HSD)
test to determine whether or not the means values of the different
performance indicators are significantly different from each other. As
for both, the two-way ANOVA and Tukey’s HSD test, a confidence level
99% (i.e., significance level of 1% or 𝑝-value under 0.01) is used. Note
that normality of errors is verified following the same argument as
previously mentioned, whereas all the remaining necessary hypotheses
are also checked.

So far, a general formulation of the statistical model has been
presented. In the following section, we will provide further details on
9

the specific elements involved at each stage of the two-way ANOVA.
5. Computational results

5.1. Experimental setup

The instances to test the performance of the proposed methodolo-
gies are based on the available instances in the PSPLIB library (http:
//www.om-db.wi.tum.de/psplib/ for the RCPS problem). This library
comprises the J30, J60, J90 and J120 data sets, where the number
indicates the activity count of the projects belonging to each set. In
particular, we consider the J120 data set, which includes the largest
projects, with 120 activities per project. A total of 600 instances make
up this data set, which were generated by a procedure which combines
three different factors: Network complexity (NC), resource factor (RF),
and resource strength (RS) (Kolisch and Sprecher, 1997). The first fac-
tor relates to the average number of direct activity successors, while the
second evaluates the proportion of resource requirements per activity.
This value falls between 0 and 1, with values close to 1 implying high
resource demands. Resource strength assesses the average tightness of
resource constraints, also on a scale from 0 to 1. A value approaching 1
indicates ample resources for activities to start at their earliest starting
time, whereas values nearing zero indicate resource limitations.

Each factor has different levels and, therefore, their combination
provides specific parameter settings from which instances were gener-
ated. In the J120 data set, we can find three different levels for NC (1.5,
1.8, and 2.1), and four levels for RF (0.25, 0.5, 0.75, and 1). Besides,
there are five levels for RS (0.1, 0.2, 0.3, 0.4, and 0.5). All combinations
of the previous instance factors lead to a total of 60 possibilities. Lastly,
10 instance replicates were generated for each possible combination,
yielding to a total of 600 projects, as stated above. We refer to these
problems as J120Y_Z, where Y ranges from 1 to 60, and Z ranges from
1 to 10. Note that none of the PSPLIB instances considered include
time-dependent costs for the resources, so we have generated them
following the procedure proposed by Alcaraz et al. (2022). Finally, the
planning horizon, 𝑇 , has been set to the sum of the processing times of
all activities.

To evaluate the seven algorithms, we adopt the standard procedure
in experimental design. Firstly, a calibration phase is carried out on a
calibration set of instances, deciding which is the best configuration for
each of the considered metaheuristics. Subsequently, all the algorithms,
employing the configuration chosen in the first phase, are compared on
an evaluation set of instances, determining whether an algorithm (or
some of them) outperforms the others. The benchmark consists of the
previously presented J120 data set. In particular, we employ 2 instance
replicates from each of the 60 possibilities, considering a total of 120
instances for the calibration set. Hence, 8 instance replicates of each
problem remain, yielding a total of 480 instances for the evaluation set.
Given that obtaining the optimal PF of the instances considered in this
work is not possible, a reference PF for each instance must be computed
instead. In each one of the phases, the reference front of an instance is
built by collecting all the non-dominated solutions generated by all the
runs performed over the instance.

All the executions reported in this work have been performed on
the Dantzig Cluster of the Miguel Hernandez University (UMH). This
computer equipment uses Rocky Linux release 8.7. In particular, only
node g-0 was used. This node is a Supermicro SYS-120GQ-TNRT model
with 2 Intel(R) Xeon(R) Silver 4316 CPU at 2.30 GHz (80 cores in
total) and 768 Gigabyte of RAM. On the other hand, the considered
metaheuristics, defined in Section 3, have been coded in Java (Arnold
et al., 2005). Precisely, the open-source jMetal framework (Durillo and
Nebro, 2011; Nebro et al., 2015) has been used to implement them.

5.2. Comparison criterion

Before explaining the calibration and the comparison phases in
further detail, we must decide on how to compare the results obtained.

We are dealing with several performance indicators to assess the quality

http://www.om-db.wi.tum.de/psplib/
http://www.om-db.wi.tum.de/psplib/
http://www.om-db.wi.tum.de/psplib/
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of results provided by the different metaheuristics and their respective
configurations, depending on whether we are in the comparison or
calibration phase, respectively. Hence, a preference order among the
metrics must be established in order to rank the best approaches con-
sidered so far. At this point, we adopt a discarded criterion. Suppose,
for example, that we are in the calibration phase. Thus, we start off
by selecting the best configurations with regard to a specific measure,
i.e., those configurations belonging to the first group given by Tukey’s
HSD test. If there is just one element in the group the process finishes.
Otherwise a second metric is consulted, checking Tukey’s HSD test
results and deciding which of the previous best configurations has
a better performance. Once again, the procedure continues unless a
unique best configuration can be chosen.

The measures chosen for the discarded criterion are ordered as
follows: hypervolume (𝐻𝑉 ), spread (𝛥), additive 𝜖-indicator (𝐼𝜖+ ),

odified inverted generational distance (𝐼𝐺𝐷+) and 𝜇-indicator (𝜇).
e prioritize the first three metrics as they are widely used in the

iterature (see, e.g., Deb et al., 2002; Durillo et al., 2010; Yepes-Borrero
t al., 2021). 𝐻𝑉 measures both convergence to the PF and diversity of
he obtained solutions. Similarly, the additive 𝜖-indicator also measures
onvergence to the optimal front. In contrast to the latter two metrics,
nd providing a wider range of information, 𝛥 aims at measuring the
xtents of the spread achieved among the obtained solutions. As will
e seen in the comparison phase (Section 5.4), the three previous
etrics are insufficient to determine the best metaheuristic, so we also

onsider the 𝐼𝐺𝐷+ measure, which is also a widely used convergence
nd distribution performance indicator. On the other hand, the 𝜇-
ndicator combines two well-known performance indicators, providing

distribution and spread measure that summarizes the information
rom both. Zitzler et al. (2003) prove that the number of criteria
hat determine what a good approximation set is, is infinite. Thus, an
ptimal order cannot be found and we can only achieve a convenient
ne, summarizing various aspects of the obtained approximation sets.

.3. Calibration of the algorithms

In this work, we deal with algorithms that depend on different
ets of parameters. To compare them, an extensive computational and
tatistical study is carried out. Nonetheless, a first stage, where those
ethodologies are calibrated, must be performed. As mentioned above,

his first stage is referred to as the calibration phase where each
lgorithm is calibrated separately, considering a full factorial design
f experiments (DOE), with all combinations of factors and levels. In
articular, we have chosen a set of parameter values in order to allow
fair comparison between all the metaheuristics.

All the MOEAs considered share these three parameters: population
ize, 𝑁 , crossover probability, 𝑝𝑐 , and mutation probability, 𝑝𝑚. Note
hat the archive size is not included in the DOE since it has been
et to match the population size. After some preliminary experiments,
e have set three different values for 𝑁 , 50,100 and 200 individuals.
n the other hand, we have set two possible levels for the crossover
robability, 0.7 and 0.9, and for the mutation probability, 1.0∕𝑛 and
.0∕𝑛, being 𝑛 the number of activities in the project. Regarding the
ast parameter, mutation probabilities that depend on 𝑛 are commonly
sed in the literature (see, e.g., Durillo et al., 2010, Deb, 2011, Salto
nd Alba, 2019). In the PESA-II metaheuristic, we consider two possible
umber of bi-sections, 𝑆, 5 or 10. Likewise, in the IBEA algorithm,
e have used three possible values for 𝜅: 0.025, 0.05, 0.1. Finally, the
eighborhood selection probability, 𝑝𝑛, in MOEA/D has two levels:
.7, 0.9. An overview of the number of tuning parameter values involved
n the calibration phase is included in Table 1, together with the
umber of possible configurations for each technique.

Since all the metaheuristics employ the same solution encoding and
lso the same operators, crossover and mutation, to manage this type
f encoding (Section 3.2), differences in behavior of the algorithms
10

annot be due to the use of a better or worse encoding or the use of
Table 1
Number of different parameter values and possible configurations.

Possible values Number of configurations

𝑁 𝑝𝑐 𝑝𝑚 𝑆 𝜅 𝑝𝑛
NSGA-II 3 2 2 – – – 12
SPEA2 3 2 2 – – – 12
MOCell 3 2 2 – – – 12
PESA-II 3 2 2 2 – – 24
IBEA 3 2 2 – 3 – 36
SMS-EMOA 3 2 2 – – – 12
MOEA/D 3 2 2 – – 2 24

specific procedures that could be more efficient. Differences between
two different metaheuristics should indicate that the basic scheme of
one outperforms the other to solve the problem considered.

Once we have presented the different elements regarding the
parametrization of the metaheuristics, we should focus on the cali-
bration procedure. At this point, we consider, for example, the SPEA2
algorithm and we elaborate the DOE for this specific technique. We will
not go into detail about the remaining metaheuristics, since the steps
to follow and the statistical models are similar to those presented for
the current algorithm. Therefore, taking a close look to Table 1, we
check that the factorial design for SPEA2 gives a total of 3 × 2 × 2 =
12 possible configurations. On the other hand, each configuration is
tested in the 120-instance calibration set, performing 3 independent
runs by problem. Hence, this first phase results in 4320 runs of SPEA2.
Regarding the stopping criterion, it has been set to 2 minutes per run
(for all the metaheuristics). Thus, each one of the twelve configurations
requires 43,200 s, i.e., to configure SPEA2 we employ a total of 6 days
of CPU time to complete the calibration phase.

Next, we present the corresponding two-way ANOVA needed for the
statistical study. As one can notice, there is one model for each response
variable. Consequently, let us select one of the performance indicators,
e.g. 𝐼𝜖+ , and introduce the elements implicated in model (1). Hence,
we must determine the two independent variables that participate and
interact with each other. As we are in the calibration phase, we hold a
total of 120 problems to carry out the experiments. Therefore, factor
A corresponds to the set of instances, with 120 possible levels. On
the other hand, there are a total of 12 different configurations, which
are the possible values for factor B. Lastly, for each of the 120 × 12
possibilities, we select 3 random samples from the response variable.
Considering the above-mentioned elements, the current model is as
follows:

(𝐼𝜖+ )𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + 𝜖𝑖𝑗𝑘, (2)

here 𝑖 ∈ {1,… , 120}, 𝑗 ∈ {1,… , 12} and 𝑘 ∈ {1,… , 3}. Additional
explanation of the present model is omitted as it does not differ from
the one offered in model (1). Furthermore, one should note that factor A
remains the same for all the algorithms. However, the number of con-
figurations depends on the possible parameter combinations, varying
among the metaheuristics and, consequently, modifying the number of
levels in factor B of the two-way ANOVA.

We will now look at the computational results derived from this
study. First of all, regarding the analysis of variance, we obtain that
both factors and their interaction are statistically significant for all the
metaheuristics and the different response variables, i.e., performance
indicators. As previously stated, significant results show that the dif-
ferences are unlikely to have occurred by chance with a probability
of 99%. In consequence, the aforementioned Tukey’s HSD test is used
to identify the best configurations found so far, with respect to each
metric. In particular, all the configurations are classified by groups
(observed means in our case); those belonging to different groups being
significantly different.

Following the discarded criterion described in Section 5.2, best

configurations of each metaheuristic have been selected. Results are
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Table 2
Selected configurations from the calibration phase (𝑛 = number of activities).

Parameter values

𝑁 𝑝𝑐 𝑝𝑚 𝑆 𝜅 𝑝𝑛
NSGA-II 200 0.9 2.0∕𝑛 – – –
SPEA2 100 0.7 2.0∕𝑛 – – –
MOCell 50 0.9 1.0∕𝑛 – – –
PESA-II 200 0.7 2.0∕𝑛 5 – –
IBEA 200 0.7 2.0∕𝑛 – 0.05 –
SMS-EMOA 50 0.9 2.0∕𝑛 – – –
MOEA/D 200 0.7 1.0∕𝑛 – – 0.7

Table 3
Solutions evaluated by each metaheuristic in two minutes of computation time.

NSGA-II SPEA2 MOCell PESA-II IBEA SMS-EMOA MOEA/D

Mean 184 205 153 720 170 487 383 550 182 856 166 986 90 139
Median 178 400 148 850 163 328 368 000 182 800 162 306 85 100
IQR 55 450 47 225 55 900 121 650 46 050 47 745 31 850

Table 4
Average number of non-dominated solutions of each metaheuristic.

NSGA-II SPEA2 MOCell PESA-II IBEA SMS-EMOA MOEA/D

51.752 65.147 45.441 50.083 8.990 45.201 9.963

shown in Table 2, where each column of the table corresponds to one
of the tuning parameters. In particular, parameters not involved in all
the metaheuristics, e.g. the number of bi-sections, 𝑆, are marked with
he ‘‘−’’ symbol.

Finally, regarding the full calibration phase, the 120-instance set has
een executed by every single metaheuristic separately, resulting in a
otal of 7 experiments. As was stated above, SPEA2 requires 6 days of
PU time to complete the calibration phase. Following the same pro-
edure, we can calculate the execution times for all the metaheuristics,
esulting in a CPU time of 66 days to complete the full calibration phase.

.4. Computational comparison among the best configurations

This section presents the numerical results that allow to evaluate
he performance of the seven metaheuristics considered in this work.
he objective is to compare the obtained best configurations on the 480-

nstance evaluation set. As in the calibration phase, the same stopping
riteria is adopted for every algorithm, with a CPU time limit of
minutes per run. Likewise, 3 independent runs are performed per

nstance, attaining 1440 runs per algorithm. A total of 10,080 fronts
re obtained as a result. Thus, each of the seven metaheuristics needs
72,800 s to finish all the executions, for a total of 1, 209, 600 seconds,
r 14 days of CPU time to complete the comparison phase.

Table 3 shows the average, median and interquartile range of the
umber of solutions evaluated by the different algorithms within the
ime limit of 2 min. As one can notice, PESA-II obtains the greater
alue, resulting in an average of almost 400,000 solutions computed
hen solving the evaluation set instances. Conversely, the MOEA/D
lgorithm evaluates near 90,000 in the same time. Nonetheless, per-
orming a larger number of evaluations does not necessarily mean
etting better results, as we will observe later. On the other hand,
able 4 contains the average number of non-dominated solutions ob-
ained by each of the seven algorithms. It is remarkable how IBEA and
OEA/D achieve the lowest number of optimal solutions, showing the

hallenge these metaheuristics face in discovering new non-dominated
11

olutions in the search space. m
The boxplots in Fig. 5 show, for each performance indicator, the
bserved values attached by every considered metaheuristic when solv-
ng the 480-instance evaluation set. A higher value is preferred when
onsidering the hypervolume, while a smaller value is desirable for the
est of the metrics. Focusing on one of the graphs, e.g. the boxplot with
𝑉 as the response variable, one can observe the poor behavior of

BEA and MOEA/D compared to the five remaining ones. In particular,
BEA shows a median close to 0.30, almost half of the value reached
y the rest of the metaheuristics, excluding the MOEA/D algorithm. As
or the latter, the median is over 0.5, so it is closer to the 0.75 value
ttached by the five best algorithms. Nevertheless, we can appreciate
ome outliers in MOEA/D, the minimum value being similar to the one
ttained by IBEA. Regarding 𝛥 and the 𝜇-indicator (second and last
oxplots), a slightly different behavior can be observed, with MOEA/D
eporting the worst results. In detail, IBEA behaves decently when
onsidering the spread measure, outperforming the SPEA2 algorithm.
till, this does not change the fact that IBEA reports unsatisfactory
esults in terms of convergence and distribution.

To summarize, the graphs report that five of the metaheuristics
NSGA-II, SPEA2, MOCell, PESA-II and SMS-EMOA) attain high-quality
esults in terms of convergence to the PF, diversity of solutions and
xtents of the spread achieved within the set of non-dominated solu-
ions. At the same time, we can infer the worst behavior of the IBEA
nd MOEA/D algorithms when solving the test problems, as the results
re consistent. To support statistically the observed performance and
ecide on the best technique, we proceed to introduce the two-way
NOVA employed in this section, as well as Tukey’s HSD test.

Regarding the two-way ANOVA, we consider again five statistical
odels, one per performance indicator. As in the calibration phase, let
s fix the 𝐼𝜖+ as the response variable and introduce the elements of
odel (1). As for the two independent variables, factor A corresponds

o the evaluation set, holding a total of 480 possible levels. Likewise,
actor B is made up of the 7 best configurations of the metaheuristics
erived from the previous phase. Note that both variables remain the
ame regardless of the performance indicator considered. Lastly, for
ach of the 480 × 7 possibilities we select 3 random samples from the
utput, obtaining the following model:

𝐼𝜖+ )𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + 𝜖𝑖𝑗𝑘, (3)

here 𝑖 ∈ {1,… , 480}, 𝑗 ∈ {1,… , 7} and 𝑘 ∈ {1,… , 3}. Again,
urther hypotheses from model (1) are omitted. As for the results, the
ain effects and their interaction are statistically significant for all the
erformance indicators considered in the study. Thus, the value of the
etric is affected, not only by the algorithm considered, but also by the

nstance being solved and the interaction between these two factors.
Given the above results, we guarantee the effect of the algorithm

s significant over the performance indicator value. We now aim at
eciding on the best metaheuristic, which is the final purpose of this
ork. As in the previous section, Tukey’s HSD test is employed to
erform a single-step multiple comparison procedure to determine
hich is the best algorithm among the best configurations. Table 5

hows the average values of the five performance indicators presented
n Section 4.1, following the order given by the discarded criterion.
t the same time, groups given by Tukey’s HSD test are displayed

n a second column for each of the metrics. Precisely, we now have
hat algorithms belonging to different HSD groups report significantly
ifferent mean values. In the table, algorithms that achieved the best
esults are marked in bold, whereas italic is used to show that a
etaheuristic belonged to the best treatment group in the previous
odel. Additionally, we include one last row in Table 5, showing the

est results found so far following the lexicographic order.
Next, we further comment on the aforementioned discarded crite-

ion, which is necessary to determine the best metaheuristic. Hence,
e begin labeling NSGA-II, PESA-II and SMS-EMOA, as they fall into

he first group regarding the hypervolume. Next, we consult the second

etric, i.e., spread, and we rank the previous metaheuristics based on
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Fig. 5. Boxplots of the performance indicators for the best configuration of each metaheuristic.
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Table 5
Computational results for the best configurations of the algorithms.

𝐻𝑉 𝛥 𝐼𝜖+ 𝐼𝐺𝐷+ 𝜇

Mean Group Mean Group Mean Group Mean Group Mean Group

NSGA-II 0.765 a 0.610 b 0.045 a 0.018 a 0.099 a
SPEA2 0.756 c 0.749 e 0.055 b 0.023 c 0.099 a
MOCell 0.761 b 0.540 a 0.046 a 0.020 b 0.102 a
PESA-II 0.765 a 0.686 c 0.047 a 0.018 a 0.103 a
IBEA 0.339 e 0.725 d 0.502 d 0.313 e 0.353 c
SMS-EMOA 0.765 a 0.611 b 0.046 a 0.018 a 0.112 b
MOEA/D 0.558 d 1.170 f 0.293 c 0.132 d 0.486 d

BEST NSGA-II NSGA-II NSGA-II NSGA-II NSGA-II
PESA-II SMS-EMOA SMS-EMOA SMS-EMOA
SMS-EMOA
this new measure. As a result, PESA-II is discarded, as it falls into the
third treatment group. The procedure is repeated for the 𝜖-indicator.
Nonetheless, the best technique cannot be decided yet. For this reason,
two performance indicators are added to the sequence: the IGD+ and
he 𝜇-indicator. Finally, we observe that the last metric, the 𝜇-indicator,

is necessary in order to draw a final conclusion for this experimental
study.

On average, we have noticed that the NSGA-II algorithm reports
a slightly better performance in all the five measures. It belongs to
the first treatment group in each of them, except for spread, where
it falls into the second group. Similarly, the SMS-EMOA and MOCell
algorithms offer competitive results, ranking the second group in only
two metrics. As discussed above, the noticeable poor performance of
IBEA and MOEA/D is confirmed by the numerical results.

In order to get additional insights from the above results, we rep-
resent the means plot of the five performance indicators with Tukey’s
HSD 99% confidence intervals for the selected best configurations of
the metaheuristics. In Fig. 6, algorithms are ranked depending on the
group they belong to. Therefore, group a is shown in the first place,
and corresponds to those methods with better average values of the
performance indicators. As discussed above, when HSD groups differ,
there are significant differences between the observed means. Hence,
the following representation allows us to have an accurate picture of
the best algorithms depending on the metric considered, together with
the range of these indicator values.

From these graphs and Table 5, we can draw some final conclusions
of our study. It is worth noting that the performance of NSGA-II and
SMS-EMOA compared to the remaining metaheuristics is noticeably
superior. These algorithms provide high-quality average values for each
of the measures considered. Moreover, treatment groups are reported
together with these mean values, showing how NSGA-II falls into the
first group in four out of the five statistical models, while SMS-EMOA
attains it in three of them. Precisely, we can conclude that the NSGA-
II metaheuristic reports a significantly better performance, following
our discarded criterion. At the same time, graphs in Fig. 6 evidence
how MOEA/D and IBEA occupy bottom positions with respect to the
treatment groups.

To better support the above conclusions, further experimental re-
search has been conducted using instances of a different size. Partic-
ularly, we have carried out the calibration and comparison phases in
the medium-sized projects with 60 activities of the PSPLIB library (J60
data set). The results are detailed in Appendix B, where we can observe
a behavior similar to the experiment with the J120 data set.

To conclude with the experimental results, Fig. 7 shows two repre-
sentations of the PF approximation attained by the seven metaheuristics
when solving two instances belonging to the evaluation set. In order
to provide extensive information, we select the eighth replicate of
instance 1 (J1201_8) and the fifth replicate of instance 30 (J12030_5),
which report slightly different behaviors with regard to the algorithms.
In particular, we notice that MOEA/D obtains better results when
solving the first instance in terms of convergence, while it differs from
13
the remaining front approximations in the second case. Likewise, the
resulting number of non-dominated solutions in the final population is
much less compared to that obtained by the other techniques, except for
IBEA. The latter reports poor results in terms of convergence and distri-
bution. Moreover, the given fronts have a considerably lower number
of points. Regarding the spread measures, the worst performance is
observed with MOEA/D. Overall, for all aspects of convergence, spread
and distribution of solutions, NSGA-II, PESA-II, SPEA2, MOCell and
SMS-EMOA report a better performance than the previous algorithms.

6. Final remarks

In this work, we have implemented a set of state-of-the-art meta-
heuristics to solve the bi-criteria RCPSP_TDRC in order to compare their
performance. The benchmark has been built from instances available
in the PSPLIB library, using the largest projects, those made up of
120 activities. The computational study has been divided into two
differentiated stages. The first one corresponds to the calibration phase,
where algorithms are adequately configured on a calibration set of
instances. The second stage comprises the comparison among the best
configuration of each metaheuristic on an evaluation set of instances.

The seven metaheuristics compared employ the same encoding
and operators and therefore, the differences in their performance can-
not be attributed to those features but to the basic template of the
methodology. Such considerations are crucial to attain an appropriate
comparison of the performance of the methodologies considered in this
survey when solving the present variant of the RCPSP. Results show
that majority of the studied methods provide sharp approximations of
the reference PF. Moreover, the high-quality approximation sets are
found within a CPU time limit of 2 minutes per execution, which is
a considerably small amount of time.

Results are consistent along the five performance indicators in-
cluded in the study. Our work has revealed that NSGA-II is one of the
most promising approaches to deal with the bi-criteria RCPSP_TDRC.
Specifically, regarding the comparison criterion, it has reported signifi-
cantly superior results. Conversely, MOEA/D and IBEA have performed
poorly compared to the remaining algorithms. Results with other in-
stance sizes support the previous conclusions. In any case, considering
the overall performance of the methodologies assessed in this paper,
decision-makers have access to a rich range of first-rate algorithms
that can report different solutions, thereby enhancing their ability to
determine the best choice.

Different research lines are open with this work. The consideration
of uncertainty in this problem makes it harder but adds a very common
feature in real-world projects. Moreover, the multi-mode variant of
the RCPSP could also be studied when incorporating time-dependent
resource costs from a multi-objective perspective, leading to a much
more realistic problem. Lastly, given that NSGA-II seems to be one
of the most promising paradigms to solve this problem, some other
variants of this metaheuristic, such as r-NSGA-II (Said et al., 2010), U-
NSGA-III (Seada and Deb, 2015) or CHIM-NSGA (Filatovas et al., 2020)
could be implemented and compared.
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Fig. 6. Performance indicator mean plots with Tukey’s HSD 99% confidence intervals.
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Fig. 7. Approximations of the PF.
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Appendix A. Mathematical model for the bi-objective RCPSP_TDRC

We need to define some elements in order to present the mathe-
matical formulation of the bi-objective RCPSP_TDRC. Firstly, given an
activity 𝑗 ∈ 𝑉 , we define its earliest and latest starting time, denoted
by 𝐸𝑗 and 𝐿𝑗 , respectively. We state the former as the minimum time
required to execute all the direct and transitive predecessors of 𝑗, while
the latter is the maximum time 𝑗 can be held up without causing
a delay in the project, i.e., the duration of the project surpasses the
15
planning horizon, 𝑇 . On the other hand, the binary response variables
are defined as

𝑦𝑗𝑡 =

{

1 if 𝑗 starts at time 𝑡,
0 otherwise,

∀𝑗 ∈ 𝑉 and 𝑡 ∈ {𝐸𝑗 ,… , 𝐿𝑗}. Hence, the problem can be formulated as
follows:

minimize

𝐟 (𝐲) =
( 𝑇

∑

𝑡=𝐸𝑛+1

𝑡 𝑦(𝑛+1),𝑡,
∑

𝑗∈𝑉 ∖{𝑛+1}

min{𝑇−1,𝐿𝑗}
∑

𝑡=max{0,𝐸𝑗}

(

𝑦𝑗𝑡

𝑡+𝑑𝑗−1
∑

𝜏=𝑡

∑

𝑘∈𝐾
𝑟𝑗𝑘𝑐𝑘𝜏

))

(4)

s.t.:
𝐿𝑗
∑

𝑡=𝐸𝑗

𝑦𝑗𝑡 = 1 ∀𝑗 ∈ 𝑉 , (5)

𝐿𝑗
∑

𝑡=𝐸𝑗

𝑡𝑦𝑗𝑡 −
𝐿𝑖
∑

𝑡=𝐸𝑖

𝑡𝑦𝑖𝑡 ≥ 𝑑𝑖 ∀𝑖, 𝑗 ∈ 𝑉 ∶ 𝑖 ∈ 𝑃𝑗 , (6)

∑

𝑗∈𝑉
𝑟𝑗𝑘 ·

min{𝑡,𝐿𝑗}
∑

𝜏=max{𝑡−𝑑𝑗+1,𝐸𝑗}
𝑦𝑗𝜏 ≤ 𝐵𝑘 ∀𝑘 ∈ 𝐾, 𝑡 ∈ {0,… , 𝑇 − 1},

(7)

𝑦𝑗𝑡 ∈ {0, 1} ∀𝑗 ∈ 𝑉 , 𝑡 ∈ {𝐸𝑗 ,… , 𝐿𝑗}. (8)

The two objectives of the problem, the makespan and the total
cost for resource usage, respectively, are defined in (4). Constraints
(5) guarantee the execution of every activity of the project, beginning
at a particular time period between its earliest and latest starting
times. Constraints (6) refer to the precedence relationship, ensuring
no activity starts before its predecessors have been completed. The
resource constraints are included in (7), making sure the availability
of each resource is not exceeded during any time period. Finally, (8)
restrict the decision variables to the subset {0, 1}.

Appendix B. Computational results for J60 data set

Experimental results for the J60 data set are shown next. This
set is conformed by a total of 480 instances, with 60 activities per
project. The instances in this set were also generated by a procedure
which combines the same factors considered for the J120 data set:
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Fig. B.1. Boxplots of the performance indicators for the best configuration of each metaheuristic.
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Fig. B.2. Performance indicator mean plots with Tukey’s HSD 99% confidence intervals.
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Table B.1
Selected configurations from the calibration phase (𝑛 = number of activities).

Parameter values

𝑁 𝑝𝑐 𝑝𝑚 𝑆 𝜅 𝑝𝑛
NSGA-II 100 0.9 1.0∕𝑛 – – –
SPEA2 100 0.7 1.0∕𝑛 – – –
MOCell 50 0.9 1.0∕𝑛 – – –
PESA-II 200 0.9 2.0∕𝑛 5 – –
IBEA 200 0.7 2.0∕𝑛 – 0.05 –
SMS-EMOA 50 0.9 2.0∕𝑛 – – –
MOEA/D 200 0.7 2.0∕𝑛 – – 0.7

Table B.2
Average number of non-dominated solutions of each metaheuristic.

NSGA-II SPEA2 MOCell PESA-II IBEA SMS-EMOA MOEA/D

38.308 39.347 34.480 37.553 7.945 35.555 9.464

Network complexity (NC), resource factor (RF), and resource strength
(RS) (Kolisch and Sprecher, 1997). In particular, we can find three
different levels for NC (1.5, 1.8, and 2.1), four levels for RF (0.25, 0.5,
0.75, and 1) and four levels for RS (0.2, 0.5, 0.7, and 1), which gives
a total of 48 different combinations. From the 480 instances available,
a total of 96 instances are considered for the calibration set, while 384
instances remain for the evaluation set, chosen in the same way as for
the J120 data set.

Table B.1 includes the best configurations selected during the cali-
bration phase. The values of the parameters considered in this phase are
the same as those described in Section 5.3. Once again, the discarded
criterion (Section 5.2) is used to decide the best set of parameters for
each metaheuristic. Regarding the results, it is worth highlighting the
similarities to the best parameter values obtained for the J120 data set.
Following the same procedure as before, we can calculate the execution
times for all the algorithms resulting in a CPU time of almost 53 days
to complete the full calibration phase.

As for the comparison phase, we first include in Table B.2 the
average number of non-dominated solutions obtained by each of the
seven algorithms. Like before, IBEA and MOEA/D found the fewest
optimal solutions.

Observed values of the performance indicators attained by each of
the seven metaheuristics are included in Fig. B.1. By examining the
boxplots, we can observe a behavior similar to the experiment with the
J120 data set. Overall, we may discern a markedly worse performance
of IBEA and MOEA/D compared to the other five algorithms. However,
slight differences can be seen when it comes to the spread measure,
where IBEA does not appear to perform as poorly.

Finally, we have included in Fig. B.2 the graphs with the mean
values of the performance indicators, as well as the Tukey’s HSD confi-
dence intervals. Algorithms are ranked following the treatment groups
provided by the statistical test. Following the discarded criterion, we
begin by examining the results for the hypervolume. We get that NSGA-
II and SPEA2 are the algorithms that report the best results, i.e., there
is no significant difference between their observed means. Hence, we
consult the following metric: spread. The results indicate that SPEA2
can be eliminated, so we conclude that NSGA-II exhibits significantly
better performance.

As we can see, the remaining three metrics are not necessary in
order to draw a conclusion for the comparison phase. Nonetheless, they
provide valuable information regarding the behavior of the different
metaheuristics. For example, it may be observed that, in general,
MOEA/D and IBEA tend to fall into the worst treatment groups, while
NSGA-II consistently occupies the top positions in most of the statistical
models. To conclude, the total CPU time necessary to complete the
comparison phase is approximately 11 days.
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