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A B S T R A C T   

In this work, we extend the Fourier transform Jones (FTJ) matrix approach to handle input scalar fields with 
spatially variant transverse profiles. Additionally, we integrate the FTJ matrix with the beam coherence- 
polarization (BCP) matrix, suitable for describing partially coherent and partially polarized light. This 
approach is particularly effective when the polarization diffractive optical element is illuminated with a quasi- 
monochromatic paraxial scalar field with transverse spatial coherence, but with any degree of polarization and 
transverse profile. We apply the method to a meaningful example: a rectangular aperture with orthogonal 
polarizers on each half, illuminated with uniform randomly polarized light. We provide experimental validation 
using a randomly polarized He-Ne laser and a specially fabricated double polarizer mask. Furthermore, by 
placing a polarizer behind the polarization diffractive optical element, we generate a scalar beam with spatial 
incoherence across two distinct zones, suggesting the potential use of randomly polarized lasers with binary 
patterned polarizers to encode arbitrary binary coherence functions.   

Introduction 

The analysis of polarization is a fundamental topic in Optics. While 
traditionally polarized beams feature a uniform polarization in the 
beam’s cross section, in the last decades there has been a great interest in 
analyzing vector beams, light beams with a spatial polarization distri
bution in the transverse plane [1]. Current available technologies based 
on metamaterials or on liquid-crystals allow to produce diffractive op
tical elements based on the local modification of the state of polarization 
[2]. Polarization diffraction gratings [3], polarization-splitting flat len
ses [4,5] or q-plates [6] are a few salient examples of such polarization 
diffractive elements. Indeed, the emergence of these new micro
fabrication technologies is leading to a revolution in optical design, 
where a vast number of works dealing with new digital polarization 
diffractive optical elements (PDOE) and vectorial holographic compo
nents [7–9] have recently been reported within the field of structured 
light [10]. 

Within the paraxial approximation, the beam coherence-polarization 
(BCP) matrix [11] is a simplification of the general Wolf’s coherence 
matrix [12], useful to describe propagation of vectorial paraxial quasi- 
monochromatic fields. This method evaluates the spatial correlations 
between orthogonal polarization components and is valid for light 
beams with arbitrary degree of polarization and degree of spatial 
coherence. The technique has been applied for instance to analyze po
larization diffraction gratings under illumination with partially coherent 
light beams [13,14]. Based on this theory, classical optical Fourier 
processing systems have been used to control partially coherent light or 
the degree of polarization [15,16], and the diffraction generated by 
partially coherent light in the Fourier domain has been analyzed [17]. 

A complementary simplified approach based on Fourier optics con
cepts and Jones matrix formalism was proposed for the first time in [18] 
and probed experimentally in [19], valid for fully polarized quasi- 
monochromatic plane waves illuminating the PDOE in the paraxial 
approximation. Initially developed to analyze diffraction from spatial 
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light modulators, this Jones matrix generalization of the Fourier optics 
formalism has recently received a renewed interest as a mathematical 
advantageous and intuitive tool for designing metamaterials’ PDOE 
without specifying the input polarization state [20,21]. The method 
calculates the Fourier transform (FT) of each element in the Jones matrix 
describing the PDOE and provides a description of the diffracted field in 
terms of a Fourier transformed Jones matrix − which we refer to as 
Fourier transform Jones (FTJ) matrix- which accounts simultaneously 
for the polarization transformation in the PDOE plane and in the prop
agation to the Fourier plane. An enlightening description of how the FTJ 
formalism relates the scalar, the vector and the matrix regimes can be 
found in [2]. 

In this work, we show that the FTJ matrix can be extended to 
describe beams with arbitrary spatially variant transverse profiles. In 
addition, we extend the applicability of the FTJ matrix approach by 
combining it with the BCP matrix, thus modelling a more general sce
nario where partial spatial coherence or arbitrary degree of polarization 
can also be considered. The combination is particularly useful when the 
input beam has any transverse profile and is not fully polarized, but has 
an arbitrary and spatially uniform state and degree of polarization as 
well as transverse spatial coherence. We apply the combined FTJ and 
BCP approach to describe the diffracted field generated by a simple 
PDOE consisting of a rectangular aperture with two orthogonal linear 
polarizers superposed on each half aperture. Such diffractive element 
was introduced by Gori et al in [22] to introduce a scalar treatment for 
partially polarized beams. We derive analytical relations of the intensity 
distribution and the state of polarization in the diffracted field when the 
input light is spatially uniform but fully polarized. Then, we compare the 
results when the input beam is unpolarized. Finally, in addition to this 
theoretical analysis, the experimental verification using a patterned 
polarizer and a randomly polarized laser is presented. 

Upon illuminating the patterned polarizer with unpolarized light, the 
polarization states in each half of the aperture are orthogonal. Each half 
of the aperture exhibits full coherence with the points within its own 
region, while demonstrating complete incoherence with respect to 
points in the opposite half. Introducing another polarizer immediately 
after the rectangular aperture transforms the vector field into a field 
with a single well-defined polarization state. Subsequently, after passing 
through the second polarizer, both halves exhibit the same polarization 
state. Each half of the aperture then demonstrates full spatial coherence 
with the points within its respective region, while maintaining complete 
incoherence with respect to points in the opposite half. The absolute 
value of the complex degree of correlation of the resulting scalar field 
was measured. These results indicate the feasibility of generating 
spatially variant binary spatial coherence patterns, comprising fully 
correlated areas juxtaposed with uncorrelated zones, through 
segmented binary polarizers. The segmented polarizer preserves the 
global amplitude and phase spatially variant functions of the randomly 
polarized input field, enabling independent selection from the desired 
binary spatial coherence pattern. Moreover, the technique takes 
advantage of the fast depolarization dynamics inherent in a randomly 
polarized laser [23]. Consequently, achieving spatially incoherent bi
nary patterns within shorter temporal periods compared to those pro
vided by rapidly changing digital micro-mirror devices is feasible 
[24,25], with an energy trade-off. 

The paper is organized as follows: after this introduction, Section 2 
summarizes the FTJ matrix approach and introduces its extension to 
describe nonuniform scalar beams. In Section 3 it is applied to analyze 
the diffraction by the double polarizer aperture under an input quasi- 
monochromatic fully-polarized plane wave with uniform polarization. 
Then, Section 4 briefly reviews the BCP formalism and Section 5 pre
sents the combination of the two (FTJ and BCP) approaches. Section 6 
provides its application to analyze the diffraction produced by the 
double polarizer aperture. Section 7 includes the experimental verifi
cation using a patterned polarizer and Section 8 extends the experiment 
to show the coherence properties when a polarizer is included behind 

the aperture to create a binary uncorrelated scalar pattern. Section 9 
presents the conclusions of the work. The work thus represents a useful 
theoretical and experimental tool to understand the physical insights of 
diffraction, polarization and coherence, connecting these concepts to 
classical Fourier optics theory. 

The Fourier transform Jones matrix approach 

In this section we review the FTJ matrix approach [18] for describing 
PDOE and extend its applicability to nonuniform beams. Fig. 1 depicts 
the considered problem. The PDOE plane, which is considered as a thin 
element, is described by a spatially dependent Jones matrix m̂(r): 

m̂(r) =
(

mxx(r) mxy(r)
myx(r) myy(r)

)

, (1)  

where mαβ(r), α,β = x,y, are the Jones matrix elements which, in gen
eral, are complex-valued functions, and r = (x, y) denotes the spatial 
coordinates in the PDOE transversal plane. This diffractive element is 
illuminated with a fully coherent and fully polarized input paraxial field, 
but with a spatially-variant state of polarization. The transverse spatial 
properties of the field are described by the Jones vector e1(r) =
[
e1x(r)e1y(r)

]T, where e1x and e1y are the transverse spatial electric field 
components in the x and y directions. Then, the beam right behind the 
PDOE is given by e2(r) = m̂(r)e1(r). 

To obtain the field in the Fourier domain, we consider the usual 
approximations in Fourier optics [26]: the paraxial approximation and 
the assumption that the spatial variations in the PDOE are larger than 
the wavelength. In this situation, the diffracted field in the Fourier plane 
(obtained either by free propagation in the Fraunhofer approximation or 
by a lens system) can be described by a Jones vector E2(u) whose 
components are given by E2α(u) = F (2)[e2α(r) ], where the subindex α =

x, y indicates the electric field components in the horizontal and vertical 
directions and F (2) ≡ F r→u indicates the 2D Fourier transform typi
cally used in diffraction problems, that maps the spatial coordinates r =

(x, y) to the spatial frequencies u = (u, v). We write this relation 
compactly as E2(u) = F (2)[e2(r) ] understanding that the Fourier 
transform applied to each component of the Jones vector. Thus, E2(u)
can be calculated as 

E2(u) = F
(2)[e2(r) ] = F

(2)
[(

mxx(r)e1x(r) + mxy(r)e1y(r)
myx(r)e1x(r) + myy(r)e1y(r)

)]

. (2) 

Considering the FT properties, this relation can be written as: 

E2(u) =
(

Mxx(u)*E1x(u) + Mxy(r)*E1y(u)
Myx(u)*E1x(u) + Myy(u)*E1y(u)

)

, (3)  

where * indicates the convolution operation, Mαβ(u) = F (2)[mαβ(r)
]

and E1α(u) = F (2)[e1α(r) ], α, β = x, y. Functions E1α(u) are the two 
components of the Fourier transformed input Jones vector, E1(u) =
F (2)[e1(r) ] and functions Mαβ(u) define the FTJ matrix M̂(u) that 
characterizes the PDOE in the Fourier domain as: 

M̂(u) = F
(2)[m̂(r) ] =

(
Mxx(u) Mxy(u)
Myx(u) Myy(u)

)

. (4) 

Then, Eq. (3) can be rewritten in a compact way as: 

Fig. 1. Scheme of the polarization transformations in the Jones-Fourier ma
trix method. 
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E2(u) = M̂(u) * E1(u), (5)  

where the symbol * denotes the usual matrix product, but where regular 
scalar multiplications between two functions are substituted by convo
lutions, so the result in Eq. (3) is retrieved. Note that the matrix M̂(u)
contains the full information of the PDOE element, described in the 
Fourier domain, thus containing the propagation. This matrix is inde
pendent of the input beam characteristics, which are described by E1(u). 

Equation (5) can be further simplified if the input beam has uniform 
polarization. Then the input Jones vector can be written as e1(r) =

e1a(r), where e1 is a constant Jones vector, independent of r, and a(r) is 
a complex scalar function providing the beam amplitude and phase 
spatial profile. In this case, E2(u) is 

E2(u) = M̂A(u)e1, (6)  

where M̂A(u) = F (2)[m̂(r)a(r) ] = M̂(u)*A(u) with A(u) = F (2)[a(r) ]. 
Equation (6) provides the diffracted field as the standard Jones matrix 
multiplication of M̂A(u) by e1, which describes the polarization state of 
the input field. Matrix M̂A(u) characterizes the PDOE and the input field 
profile as long as the latter remains unchanged, regardless of the input 
polarization state. When the beam is considered a plane wave (a(r) =

1), the propagated field can be computed simply as the product of the 
FTJ matrix in Eq. (4) (containing exclusively information about the 
PDOE) by the input constant Jones vector e1, which solely describes the 
input field: 

E2(u) = M̂(u)e1. (7) 

Such a simplification, despite being strong, explains rich polarization 
and diffraction phenomena, as shown next with a simple example. 

Application to a double polarizer rectangular aperture 

Fig. 2(a) shows the rectangular aperture proposed by Gori et al in 
[22], which is taken to illustrate the method for an input plane wave. It 
is a square aperture of size a, where the left half is covered with a vertical 
linear polarizer, while the right half is covered with a horizontal 
polarizer. For simplicity we consider only the variation along the hori
zontal dimension. The Jones matrix describing this PDOE is given by: 

m̂(r) = rect
(

x − a/4
a/2

)(
1 0
0 0

)

+ rect
(

x + a/4
a/2

)(
0 0
0 1

)

=

⎛

⎜
⎜
⎜
⎝

rect
(

x − a/4
a/2

)

0

0 rect
(

x + a/4
a/2

)

⎞

⎟
⎟
⎟
⎠
, (8)  

where the rectangle function is defined as rect(x) = 1 if |x| ≤ 1/2 and 
rect(x) = 0 elsewhere. The corresponding Fourier-Jones matrix is given 
by: 

M̂(u) =
a
2

sinc
(au

2

)( e− iπau/2 0
0 e+iπau/2

)

, (9)  

where sinc(u) = F [rect(x) ] = sin(πu)/(πu).
The Jones matrix in Eq. (9) provides the physical insight of the po

larization transformation that occurs in the aperture and upon propa
gation to the Fourier plane. Note that the same matrix is valid for any 
input state of polarization, thus giving a complete description of the 
PDOE and the pattern that generates. The sinc term in Eq. (9) acts as an 
envelope function that is the Fourier transform of a rectangular aperture 
of width a/2, i.e., one of the two polarizer apertures. Its first null occurs 
at the spatial frequency u = ±2/a. The Jones matrix on the right part of 
Eq. (9) describes a linear retarder with neutral axes aligned along the 
x − y axes, and with a retardance that depends on the spatial frequency u 
and the aperture size a as ϕ(u) = πau. 

Therefore, if the aperture in Fig. 2(a) is illuminated with a fully 
polarized quasi-monochromatic plane wave with a linear polarization 
oriented at 45◦, the two aperture halves feature the same intensity 
transmission, but the light right after the aperture is polarized vertically 
in the left half, and horizontally in the right part. 

Using Eq. (7), the diffracted field in the FT plane is given by the 
following Jones vector: 

E2(u) = M̂(u)
1̅
̅̅
2

√

(
1
1

)

=
a
2

sinc
(au

2

) 1̅
̅̅
2

√

(
e− iπau/2

e+iπau/2

)

. (10) 

The diffracted field intensity (understood as the modulus square of 
the electric field) is: 

I(u) = E†

2(u)⋅E2(u) =
a2

4
sinc2

(au
2

)
, (11)  

where the dagger † indicates the Hermitian conjugate. The diffracted 
field intensity I(u) in Eq. (11) is shown as the black curve in Fig. 2(b). 

Equation (10) also provides the state of polarization, given by the 
normalized Jones vector 

(
1/

̅̅̅
2

√ )(
e− iπau/2 e+iπau/2

)T where T denotes 
the transposed matrix. The center of the diffracted field (u = 0) is line
arly polarized oriented at 45◦, like the input polarization. At spatial 
frequencies u = ±1/a the retardance becomes ϕ(u) = ±π, i.e., equiva
lent to a half-wave retarder. Therefore, the state of polarization at these 
points is linear but oriented at − 45◦. On the contrary, at spatial fre
quencies u = ±1/2a and u = ±3/2a the retardance is ϕ(u) = ±π/2 and 
ϕ(u) = ±3π/2 respectively, i.e., equivalent to a quarter-wave and a 
three-quarter wave retarder. Therefore, the polarizations are circular at 
these locations. In the rest of the diffracted field, the polarization 

Fig. 2. (a) PDOE consisting in a square aperture with two orthogonal linear polarizers in each half side. (b) Horizontal profile of the diffracted field when illu
minating the PDOE with a plane wave with uniform linear polarization oriented at 45◦. 
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progressively changes ellipticity with u, but the azimuth remains aligned 
along ±45◦. At the spatial frequencies u = ±2/a, where the first in
tensity nulls occur, the state of polarization would be again linear ori
ented at +45◦. These polarization states are indicated on top of the sinc 
squared function in Fig. 2(b). 

The additional red and blue curves shown in Fig. 2(b) correspond to 
the intensity of the diffracted field resulting from projecting the Jones 
vector in Eq. (10) onto a linear polarizer analyzer oriented either diag
onal (+45◦) or antidiagonal (− 45◦) respectively. For the case of the 
diagonal analyzer, the two halves of the aperture project in the same 
way onto the analyzer transmission axis. Therefore, the result (red curve 
in Fig. 2(b)) is equivalent to the scalar diffraction from the complete 
rectangular aperture of width a, i.e., a sinc squared curve whose central 
lobe reaches zero intensity at spatial frequencies u = ±1/a (note that at 
these spatial frequencies is where the diffracted field becomes linearly 
polarized at − 45◦, i.e., crossed with respect to the analyzer). On the 
contrary, when the analyzer is oriented antidiagonal (− 45◦), the in
tensity shows a zero at the center, where the state of polarization is 
diagonal, and exhibits two lateral lobes before reaching the next null 
points at frequencies u = ±2/a. The explanation is that the vertical and 
horizontal polarizations project in opposite direction onto the anti
diagonal analyzer transmission axis, thus resulting in a π phase shift 
between the contribution of each half aperture in Fig. 2(a), thus 
changing the interference condition. 

It is interesting noting that the above analysis of the double polarizer 
rectangular aperture can be applied directly extended to problems with 
circular symmetry. Let us consider an aperture with circular symmetry 
and maximum radius R whose transmission is described with a scalar 
complex function m(r), r being the radial coordinate, illuminated with a 
plane wave. Then, by defining the variable s = (r/R)2 − 0.5, the trans
mission function is described by a function m(s) that varies from − 0.5 to 
+0.5 and the diffracted field distribution along the propagation axis can 
be calculated with the following 1D Fourier transform [27,28]: 

E(ρ = 0,W20) =
1
2

exp(iπW20)

∫+0.5

− 0.5

m(s)exp(i2πsW20)ds, (12)  

where ρ is the normalized radial coordinate in the Fourier transform 
plane, and W20 is the defocus parameter typically employed to calculate 
the point spread function (PSF) in defocused planes. This W20 parameter 
is related to the propagation distance z around the focusing plane as 
W20 =

(
NA2/2λ

)
z, where NA is the numerical aperture of the lens 

focusing the beam and λ is the wavelength [29]. Since the function m(s)
is null outside the limits of integration in Eq. (12), these limits can be 
extended to infinity and the Fourier transform relation E(W20)∝ 
F (1)[m(s) ] can be concluded, where F (1) ≡ F s→W20 now indicates the 
1D FT mapping the variable s and the defocus parameter W20. 

This is a well-known result from the theory of imaging apodizing 
filters that was extended to a binary polarization apodizer in [29]. Fig. 3 
illustrates the case for a circular aperture of maximum radius R con
sisting in a central disc of radius R/

̅̅̅
2

√
with a vertical polarizer and an 

annulus of horizontal polarizer for r ∈
(
R/

̅̅̅
2

√
,R

]
. This aperture can be 

described by a Jones matrix m̂(r), which after the coordinate trans
formation s = (r/R)2

− 0.5 is described with a matrix m̂(s) that is 
formally equivalent to that in Eq. (8). Therefore, all the conclusions 
derived in this section, in particular the intensity and polarization dis
tribution in Fig. 2(b), can be directly extended by analogy to the axial 
distribution (ρ = 0) when substituting the spatial frequency u by the 
defocus parameter W20. 

The beam coherence-polarization (BCP) matrix approach 

If the aperture in Fig. 2(a) is illuminated with a quasi- 
monochromatic unpolarized plane wave, the polarization distribution 
right after the aperture is the same as in the previous case with illumi
nation with linearly polarized light oriented at 45◦. In both cases, the 
two rectangles transmit half of the input intensity and light is linearly 
polarized vertical / horizontal on the left / right rectangle. However, the 
spatial coherence properties are very different. The previous FTJ matrix 
approach cannot be applied directly with either non-fully coherent non- 
fully polarized light. In this situation the BCP matrix [11] is suitable. 

Given a quasi-monochromatic paraxial electric field whose trans
verse spatial and temporal variation at a given plane is defined by the 
vector e1(r, t) =

(
ex(r, t)ey(r, t)

)T, the BCP matrix at this plane is defined 
as 

ĵ(ra, rb) =
〈
e1(ra, t)e†

1(rb, t)
〉
=

(
jxx(ra, rb) jxy(ra, rb)

jyx(ra, rb) jyy(ra, rb)

)

, (13)  

where jαβ(ra, rb) =
〈

eα(ra, t)e*
β(rb, t)

〉
are the correlations between the α,

β = x, y electric field components at transversal locations ra and rb, and 
〈 • 〉 denotes time averaging. If the BCP matrix is evaluated at the same 
location, the result is the spatially variant polarization matrix p̂(r) =

ĵ(r = ra = rb), which provides information about the local polarization 
properties of the field. The total intensity of the field described by Eq. 
(12) is obtained as: 

I(r) = Tr[p̂(r) ] = jxx(r) + jyy(r), (14)  

where Tr[ • ] stands for the trace of the matrix. The degree of polariza
tion is given by 

p(r) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
4Det[p̂(r) ]
{Tr[p̂(r) ] }2

√

, (15) 

Fig. 3. (a) PDOE consisting in a circular aperture with a central disc with vertical polarizer surrounded by an annulus of horizontal polarizer. (b) Corresponding one 
dimensional function after coordinate transformation s = (r/R)2

− 0.5. 
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where Det[ • ] stands for the determinant of the matrix. 
Let us highlight that the BCP matrix characterizes the light beam, 

while the Jones matrix characterizes an optical element transforming 
the polarization. The transformation rule for the BCP matrix of a light 
beam when traversing a polarization element characterized by a Jones 
matrix m̂(r) is [11]: 

ĵ2(ra, rb) = m̂(ra )̂j1(ra, rb)m̂†(rb). (16) 

Then, the diffracted field in the FT plane has electric field compo
nents given by E2α(u, t) = F [e2α(r, t) ], leading to a Ĵ2(ua,ub) matrix 
whose elements are given by the FT and inverse FT of the corresponding 
elements of ̂j2(ra, rb) over the ra and rb coordinates [11,12]:  

where F (4) ≡ F (ra ,rb)→(ua ,− ub) indicated in the last part of the equation 
means that the operation is a 4D Fourier transform where the co
ordinates ra and rb are mapped to the spatial frequencies ua and − ub, 
respectively. This process is illustrated in Fig. 4. Note that for consis
tency we denote with capital letters J the BCP matrix and its elements in 
the Fourier domain while we use j to denote the BCP matrix and its el
ements in the spatial domain. 

Combination of the FTJ and BCP matrix approaches 

We next derive a theoretical framework that combines both FTJ and 
BCP matrix approaches. The components of the matrix in Eq. (16) are 
given by j2αβ(ra, rb) = mαγ(ra)j1γδ(ra, rb)m†

δβ(rb), where we use Einstein’s 
summation convention, implying summation over repeated indices 
without explicitly writing the summation symbol. We substitute these 
terms into Eq. (17) and assume that the PDOE does not depend on time, 
so the elements of the matrix m̂ describing the PDOE are constant during 
the temporal average for each value J2αβ(ua,ub). This allows us to ex
press the matrix components in Eq. (17) as: 

J2αβ(ua,ub) = F
(4)[mαγ(ra)

]
*F

(4)
[
j1γμ(ra, rb)

]
*F

(4)
[
m†

μβ(rb)
]
, (18)  

where again these 4D Fourier transforms must consider the mapping 

F (ra ,rb)→(ua ,− ub), as in Eq. (17). The entries F (4)
[
j1γδ(ra, rb)

]
are the 

components of the BCP matrix of the propagated input beam, i.e.: 

Ĵ1(ua,ub) =

∫∫ +∞

− ∞
ĵ1(ra, rb)e− i2π(ra ⋅ua − rb ⋅ub)dradrb = F

(4) [̂j1(ra, rb) ], (19) 

This matrix contains information on the polarization and spatial 

coherence of the input beam illuminating the PDOE, described in the FT 
domain. 

The 4D FTs regarding the matrix components of the PDOE can be 
expressed as 2D FTs: F (4)[mαγ(ra)

]
= F (2)

ra→ua

[
mαγ(ra)

]
δ(ub) and 

F (4)
[
m†

μβ(rb)
]
= F (2)

rb→− ub

[
m†

μβ(rb)
]
δ(ua), where δ represents the Dirac 

delta distribution. These are elements of the matrices 

M̂(ua) =

∫ ∞

− ∞
m̂(ra)e− i2πra ⋅ua dra = F

(2)
ra→ua

[m̂(ra) ], (20a)  

M̂†(ub) =

∫ ∞

− ∞
m̂†(rb)e+i2πrb ⋅ub drb = F

(2)
rb→− ub

[m̂†(rb) ], (20b)  

which are analogous to the FTJ matrix discussed in Section 2. The matrix 

of the propagated field after the PDOE can then be written as: 

Ĵ2(ua,ub) = [M̂(ua)δ(ub) ]* Ĵ1(ua,ub)* [M̂†(ub)δ(ua) ]. (21)  

where the symbol * denotes again the matrix multiplication where 
standard products are substituted by convolutions. 

The above relation in Eq. (21) can be further simplified in a limiting 
case that matches our experiment in Section 7. We consider an input 
beam that is transversely spatially coherent with uniform polarization 
state and uniform degree of polarization. Therefore, the transverse 
spatial and temporal properties of the input field are separable and can 
be described with a vector e1(r, t) = a(r)e1(t), where a(r) is a complex 
scalar function of the transverse position, and e1(t) is a vector that only 
depends on time. The corresponding input BCP matrix is then also 
separable as ĵ1(ra, rb) = a(ra)a*(rb)p̂1 where p̂1 =

〈
e1(t)e†

1(t)
〉

is the 
constant polarization matrix describing the uniform polarization of the 
input beam, which now can have arbitrary degree of polarization. Then 
Eq. (19) can be written as 

Ĵ2(ua,ub) = M̂A(ua)p̂1M̂
†

A(ub), (22)  

where M̂A(u) = F (2)[m̂(r)a(r) ] = M̂(u)*A(u), as described after Eq. 
(6). As mentioned in Section 2, this matrix contains the information 
about the input beam and the PDOE and it is separable from the input 
beam polarization. This approach thus extends the applicability of the 
FTJ matrix to input scalar quasi-monochromatic light with transverse 
spatial coherence, but that can be partially polarized and have any 
transverse profile. 

In the case of an input plane wave, taking a(r) = 1, the above 
equation can be further simplified to: 

Ĵ2(ua,ub) = M̂(ua)p̂1M̂†(ub). (23) 

This relation thus gives the BCP matrix in the Fourier plane, now 
calculated as the usual transformation rule of the BCP matrix expressed 
in Eq. (16) but now using the FTJ matrix M̂(u) in Eq. (4) that charac
terizes the PDOE in the Fourier domain. This way the diffracted field can 
be calculated directly, simultaneously accounting for the action of the 
PDOE on the input beam and for the propagation, as indicated in Fig. 3. 

Fig. 4. Scheme equivalent to that in Fig. 1considering the BCP matrix.  

J2αβ(ua,ub) =
〈

E2α(ua, t)E*
2β(ub, t)

〉
=

∫∫+∞

− ∞

j2αβ(ra, rb)e− i2π(ra ⋅ua − rb ⋅ub)dradrb

= F
(4)
[
j2αβ(ra, rb)

]
,

(17)   
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Application to analyze the double polarizer rectangular aperture 

To illustrate the combined FJT and BCP method, let us consider again 
the PDOE in Fig. 2(a), which is described by the FTJ matrix in Eq. (4). 
We regard two cases that can be easily implemented experimentally, as 
described in the next section. In both cases, the input light beam is 
considered a plane wave, so Eq. (23) can be applied. We compare the 
situation when it is fully polarized with linear polarization at 45◦, with a 
second case where the beam is fully unpolarized. In both cases, the 
spatial distribution of the intensity and polarization states right after the 
aperture is the same, but the diffracted field is very different, as shown 
next. 

Case 1: Illumination with linearly polarized light oriented at 45o 

This case was already analyzed in Section 2 within the Jones matrix 
Fourier optics formalism, and it is included here to show that the same 
results are obtained. The BCP matrix for this input light beam is 

p̂1 =
1
2

(
1 1
1 1

)

. (24) 

The BCP matrix at the Fourier plane is obtained with Eq. (23) using 
the FTJ matrix in Eq. (9): 

Ĵ2(ua, ub) =
a2

8
sinc

(aua

2

)
sinc

(aub

2

)( e− iπa(ua − ub)/2 e− iπa(ua+ub)/2

e+iπa(ua+ub)/2 e+iπa(ua − ub)/2

)

. (25) 

If we are only interested in the intensity and polarization distribu
tion, we can directly use the polarization matrix p̂2(u) obtained by 
considering u = ua = ub, leading to 

p̂2(u) =
a2

8
sinc2

(au
2

)( 1 e− iπau

e+iπau 1

)

. (26) 

The intensity I(u) = Tr[p̂2(u) ] = 1
4a

2sinc2(au/2) coincides with the 
result already derived in Eq. (11), and the degree of polarization (Eq. 
(14)) is p(u) = 1 at all points. The local normalized state of polarization 
is given by the polarization matrix normalized by the intensity, i.e.: 

p̂2(u)
I(u)

=
1
2

(
1 e− iπau

e+iπau 1

)

. (27) 

This reveals that the polarization depends on the spatial frequency u 
in the same manner as shown in Fig. 2(b) since the normalized Jones 
vector in Eq. (10) provides exactly the polarization matrix in Eq. (27) 
when calculating E2(u)E†

2(u). 
Therefore, these calculations recover the results previously obtained 

with the FTJ matrix approach, as it should be expected for a fully 
polarized input quasi-monochromatic plane wave. 

Case 2: Illumination with unpolarized light 

We now consider the situation of an input totally unpolarized quasi- 
monochromatic plane wave. Note that this case cannot be treated 
directly with the FTJ approach. Now the input BCP matrix is 

p̂1 =
1
2

(
1 0
0 1

)

, (28) 

and the corresponding BCP matrix at the Fourier plane (Eq. (22)) is 

directly given by Ĵ2(ua,ub) = 1
2M̂(ua)M̂

†
(ub), which leads to 

Ĵ2(ua, ub) =
a2

8
sinc

(aua

2

)
sinc

(aub

2

)( e− iπa(ua − ub)/2 0
0 e+iπa(ua − ub)/2

)

. (29) 

Note the difference with respect to Eq. (25) in the off-diagonal ele
ments, which are now zero indicating the null correlation between the x 
and y components of the electric field. Again, we consider u = ua = ub to 
calculate the polarization matrix: 

p̂2(u) =
a2

8
sinc2

(au
2

)( 1 0
0 1

)

, (30)  

which shows that the diffracted field is now unpolarized at all points 
(p(u) = 0). The intensity I(u) = Tr[p̂2(u) ] provides the same result as in 
Eq. (11): 

I(u) = Tr[p̂2(u) ] =
a2

4
sinc2

(au
2

)
. (31) 

These results under unpolarized illumination reveal some interesting 
features with respect to the previous case: (i) the intensity of the dif
fracted field is the same, but (ii) the diffracted field is now completely 
unpolarized at all points. The physical explanation is related to the 
correlation between the electric field components ex and ey at different 
points of the aperture. When the aperture is illuminated with unpolar
ized light, there is no correlation between the electric field component ey 

transmitted at points on the left part of the aperture with ex transmitted 
at points on the right part of the aperture. As a consequence, the two 
halves are mutually incoherent, and the diffracted field is the incoherent 
superposition of the two diffraction patterns corresponding to rectan
gular apertures of width a/2, one with vertical polarization and the 
other one with horizontal polarization. Although the unpolarized input 
light becomes fully polarized right after the aperture due to the polar
izers, the propagation results in a diffracted field that remains unpo
larized at all points. This occurs due to the incoherent superposition of 
two equal diffracted patterns with orthogonal polarizations. 

Experimental verification 

In this section we present a simple experiment to probe the above- 
described theory. Fig. 5 shows a scheme of the optical setup. As light 
source we use a continuous wave (CW) randomly polarized He-Ne laser 
(Melles-Griot 05-LGR-193), having a wavelength of 543 nm and 0.5 mW 
power. Two sets of orthogonal linearly polarized longitudinal modes 
with slightly different frequencies are generated by the laser, causing the 
resulting polarization ellipse to rapidly vary on a nanosecond time scale. 
The laser is spatially filtered and collimated by means of lens (L1), so we 
consider that the light beam after L1 is quasi-monochromatic, unpo
larized, and has transverse spatial coherence. A linear polarizer (Pol) is 
added before the spatial filter when the input light must be fully 
polarized. The key element is the optical component developed by 
Codixx [30] consisting in two rectangular polarizers placed side by side, 
one aligned vertically and the other horizontally. 

Each rectangle has a size of 5 mm × 10 mm, with a gap between them 
slightly less than 0.1 mm. This double polarizer element could serve as 
the aperture described in Fig. 2(a). However, its dimensions are rather 
big, so the diffractive pattern would be very small. Thus, to better 
visualize the effects and to achieve an accurate control on the aperture 
dimensions, we inserted a slit of adjustable width (Owis SP60). Since the 
slit mount prevents us from placing the double polarizer right after the 
slit, we use a relay optics system, composed by lenses L2 and L3, to 
image the adjustable slit onto the Codixx polarizer plane. Finally, lens L4 
focuses the FT on a camera. Since we are interested in evaluating the 
polarization spatial distribution of the diffracted field, we employ a 
detection system consisting in a polarization state analyzer (PSA) 
composed of a polarization camera and a quarter-wave plate (QWP) 
[31]. The polarization camera (Thorlabs CS505MUP Kiralux) is a 
monochrome sensor with 2448 × 2048 square pixels of 3.45 μm side. 
The sensor includes an integrated micro-polarizer array attached to the 
pixel detectors that captures in a single shot the images for horizontal 
(H), vertical (V), diagonal (D) and antidiagonal (A) linear analyzers. A 
QWP is included before the camera to measure the circular polarization 
components. The camera also provides the total intensity capture (as if 
measured without analyzers) by summing the images for crossed 
analyzers. 
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Fig. 6 illustrates the alignment of the slit image onto the double 
polarizer. In this experiment, we insert the input polarizer (Pol) into the 
system. As a result, the input light beam impinging onto the adjustable 
slit is fully polarized with linear diagonal polarization (45◦), although 
equivalent results are obtained if the input is unpolarized. The bottom 
row shows the intensity of the diffracted field measured at the camera as 
the image of the adjustable slit shifts laterally along the double polar
izer. The schemes on the top row illustrate the corresponding location of 
the slit image (green rectangle) relative to the double polarizer element. 

The results in Fig. 6(a), 6(c) and 6(e) clearly show the sinc square 
pattern characteristic of the diffraction from a rectangular aperture. 
Note that we intentionally saturated the camera in the central part, to 
clearly visualize the whole diffraction pattern. However, the scale of the 
sinc function along the horizontal direction is different when the light 
fully passes through one single polarizer (Fig. 6(a) and Fig. 6(e)), with 
respect to the case in Fig. 6(c), where the slit image lies just in the middle 

of the two polarizers. In Fig. 6(a) and 6(e), light emerging from all points 
of the rectangular aperture (whose horizontal width is a) all have the 
same polarization. In this situation, the expected diffracted field is that 
of the full aperture. 

Hence, the width of the central lobe of the sinc function is propor
tional to 1/a, as indicated in Fig. 5(a) and 5(e). On the contrary, as 
discussed in Section 2, when the left part of the aperture is vertically 
polarized and the right part is horizontally polarized, the scale of the 
sinc function doubles along the horizontal direction. As a result, the 
width of the central lobe is proportional to 2/a (Fig. 6(c)). At interme
diate situations, as shown in Fig. 5(b) and 5(d), one polarization area is 
wider than the other and the diffracted field presents an intermediate 
pattern. 

Next, the system was set with the slit image aligned with the double 
polarizer (as in Fig. 6(c)), and the polarization of the diffracted far field 
is analyzed. For that purpose, we captured the intensity pattern analyzed 

Fig. 5. Experimental setup. An adjustable slit is imaged onto a double rectangular polarizer. Pol (linear polarizer), SF (spatial filter), L (lens), QWP (quarter- 
wave plate). 

Fig. 6. Top: Scheme of the alignment of the slit image (green rectangle) onto the double polarizer. Bottom: Experimental diffraction pattern captured without 
analyzer. When the image of the slit lies in the middle of the double polarizer, the sinc pattern doubles its size. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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by linear polarizers (oriented horizontal, vertical, diagonal and anti
diagonal), and by right and left circular polarizers. The results are shown 
in Fig. 7 for unpolarized input light and in Fig. 8 for input light linearly 
polarized at 45◦. The intensity captures without analyzer (Fig. 7(a) and 8 
(a)) reveal the same sinc squared pattern in both cases. However, clear 
differences are visible in the polarization content. 

In the first case (unpolarized input light), Fig. 7 shows the same in
tensity pattern for all analyzers, thus revealing that the diffracted field is 
unpolarized. Although the light is polarized by the polarizers in the 
aperture, the lack of coherence between points from each lateral 
polarizer produces this effect, as explained at the end of Section 4. On 
the contrary, the diffraction pattern behind the different polarization 

analyzers changes notably when the input beam is linearly polarized, as 
Fig. 8 shows. When the linear analyzer is oriented vertical or horizontal 
(Fig. 8(b) and 8(e)), the diffraction pattern retains the same shape as 
without analyzer (Fig. 8(a)). This can be understood as only the 
contribution from one rectangular polarizer is transmitted to the de
tector. Since the width of this single rectangular aperture is a/2, the 
corresponding sinc squared function central lobe width is proportional 
to 2/a. When the linear analyzer is oriented diagonal at 45◦, i.e., the 
same orientation as the input polarization, the resulting diffraction 
pattern is again the sinc squared function (Fig. 8(d)), but now the width 
of the central lobe is reduced to 1/a. Since the input beam is fully 
polarized and has transverse spatial coherence, there is full correlation 

Fig. 7. Intensity of the diffracted field when the aperture is illuminated with unpolarized light. (a) No analyzer. (b-e) Linear polarizer analyzer with vertical, di
agonal, antidiagonal, and horizontal orientations. (f-g) Circular polarizer analyzers. 

Fig. 8. Intensity of the diffracted field when the aperture is illuminated with linearly polarized light oriented at 45◦. (a) No analyzer. (b-e) Linear polarizer analyzer 
with vertical, diagonal, antidiagonal, and horizontal orientations. (f-g) Circular polarizer analyzers. 
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between the light transmitted by the points on the left and on the right 
polarizer. Therefore, when projected onto a linear analyzer with 45◦

orientation, the whole rectangular behaves equivalently to a single 
aperture of width a illuminated with a coherent beam. When the linear 
analyzer is oriented antidiagonal at − 45◦ (Fig. 8(c)), now the center 
becomes dark and the central lobe splits in two lateral lobes. Finally, for 
the circular analyzers (Fig. 8(f) and 8(g)), the splitting is asymmetric. All 
these results show an excellent agreement with the expected profiles 
shown in Fig. 1(c). 

Producing a binary uncorrelated scalar spatial pattern 

Now, let us consider the double polarizer rectangular aperture in 
Fig. 2(a), but this time, covered behind it with an additional linear 
polarizer oriented at 45◦. As a result, the vectorial problem is trans
formed into a scalar one (the polarization is the same now over the 
whole aperture). If the aperture is now illuminated with the quasi- 
monochromatic unpolarized plane wave, the effective resulting aper
ture consists of two equally intense rectangles each with a width of a/2. 
Each rectangle contains fully coherent points, but the points in the left 
rectangle are fully incoherent with those in the right rectangle. The lack 
of correlation between the vertical and horizontal polarization compo
nents emerging from each side of the double rectangular aperture is now 
transformed into a lack of correlation between the scalar fields at the left 
and the right rectangles. 

This example illustrates a simple way of generating a binary uncor
related scalar spatial pattern: the binary pattern must be encoded in the 
orientation of a patterned polarizer with zones oriented either at 0◦ or 
90◦; then, by illuminating it with unpolarized light and placing a linear 
polarizer behind it oriented at 45◦, the two regions become spatially 
uncorrelated. 

We experimentally select this configuration for the double polarizer 
rectangular aperture, which provides an intensity distribution as the one 
shown in Fig. 7(d). The BCP matrix Ĵ2(ua, ub) in Eq. (29) that describes 
the diffracted field must be now modified by the presence of the addi
tional polarizer with 45◦ orientation, leading to a new BCP matrix: 

Ĵ’2(ua, ub) =
1
2

(
1 1
1 1

)

Ĵ2(ua, ub)
1
2

(
1 1
1 1

)

= G(ua, ub)
1
2

(
1 1
1 1

)

.

(32) 

As expected, Eq. (32) shows that the polarization is a uniform linear 

state oriented at 45◦, with the maximum degree of polarization. The 
function G(ua, ub) is the mutual intensity, now the same in all matrix 
elements, which is given by: 

G(ua, ub) =
a2

8
sinc

(aua

2

)
sinc

(aub

2

)
cos

[πa
2
(ua − ub)

]
. (33) 

The intensity is I(u) = (a2/8)sinc2(au/2), i.e., equal to Eqs. (11) and 
(31) except for a 1/2 factor due to the absorption at the added polarizer. 
The complex degree of coherence is: 

g(ua, ub) =
G(ua, ub)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I(ua)I(ub)

√ =

= sgn
[
sinc

(aua

2

)
sinc

(aub

2

) ]
cos

[πa
2
(ua − ub)

]
,

(34)  

where sgn[ • ] indicates the signum function. The correlation is 
maximum when ua − ub = 2m/a, while it is null when ua − ub =

2(m+1/2)/a, where m represents integer values. 
To verify these properties, we modified the experimental setup in 

Fig. 5 by placing a liquid–crystal on silicon (LCOS) spatial light modu
lator (SLM) in the Fourier transform plane, as indicated in Fig. 9(a). The 
SLM is from Santec, model SLM-100–01–0001–12, with 1440 × 1050 
pixels and a pixel size of 10.0 μm × 10.4 μm. It is used to display a 
uniform image except within two narrow rectangles having width Δ and 
separated a distance d, as shown in Fig. 8(b). These two rectangles 
display blazed diffraction gratings, thus acting as two slits that diffract 
light in the vertical direction. The reflected beam is then directed to 
another converging lens that performs another Fourier transform which 
is focused onto the camera. Fig. 8(c) shows an experimental example of 
what it is observed in the camera. The bottom part shows a highly 
saturated distorted image of the double polarizer rectangle aperture, 
while the upper part shows the characteristic interference pattern 
generated by two narrow slits. The predictions in Eq. (34) can be verified 
by measuring the visibility of these interference fringes through modi
fying the location of the slits displayed on the SLM. 

In the experiments, we used two slits located symmetrically with 
respect to the center of the diffracted field, as shown in Fig. 9(b), i.e., 
ua = u and ub = − u. This arrangement allowed us to select two lateral 
positions of the diffracted field with equal intensity, with a slit separa
tion of d = 2u. For these positions the modulus of the complex degree of 
coherence follows: 

Fig. 9. (a) Modified experimental setup where a SLM is included in the Fourier transform plane. (b) A double slit blazed grating is displayed on the SLM. (c) 
Experimental capture at the camera detector showing the interference pattern. 
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|g(ua = u, ub = − u) | = |cos(πau) |. (35) 

Fig. 10(a) illustrates the profile of the function sinc2(au/2), which 
represents the expected intensity generated by the double incoherent 
rectangular aperture, normalized to its maximum value, together with 
the modulus of the expected complex degree of coherence at |g(u, − u) |. 
Within the central lobe of the sinc squared function, |g(u, − u) | = 1 at 
u = 0, which is trivial since the same point is considered. Additionally, 
|g(u, − u) | = 1 also when the two slits are placed at u = ±1/a. In be
tween, |g(u, − u) | is reduced, becoming null when u = 1/(2a) and u =

3/(2a). 
The corresponding verification is illustrated in the experimental 

captures shown in Fig. 10. The slits have a width of Δ = 8 pixels, so there 
is enough light being diffracted to the interference region. The blazed 
gratings inside have a small period of only 8 pixels, so the interference 
pattern is vertically shifted enough distance to be separated from the 
central image. The results in Fig. 10 show the cropped image area where 
the interference is observed, together with the corresponding intensity 
profile, normalized to the maximum value in each case. 

Note that, because of the width Δ of the slits, the interference region 
has the shape of a sinc squared function. The captures in Fig. 10(b-k) 
present the interference patterns as we progressively increase the dis
tance d between the two slits. The fringes are wide when the two slits are 
very close (Fig. 10(b)), and they become narrower as d increases. The 

other feature clearly observed is the change in the visibility of the fringes 
as d changes, as expected from Eq. (35). It is easy to identify when the 
slits are located at u = ±2/a because there is no light in the interference 
region, since I(ua) is zero at these points. Then, the slits can be placed at 
u = ±1/(2a) (Fig. 10(f)), where it is observed how the visibility is almost 
zero. Conversely, for u = 1/a (Fig. 10(j)), the visibility of the fringes is 
almost one, in accordance with the result expected from Eq. (35). 

The value of |g| is determined experimentally from the visibility of 
the interference patterns in Fig. 9(b-m) and it is plotted in Fig. 9(a) for 
comparison with Eq. (35). Measurements are presented up to u = 1/a. 
Points beyond this range were not considered due to the low intensity 
and rapid variation of the fringes. To account for the sinc squared en
velope resulting from the slits limited size, we also measured the in
tensity within the interference region when only one slit was displayed 
on the SLM. Since the slit width and the total intensity passing through 
each slit are the same, the diffraction pattern caused by each slit sepa
rately appears nearly identical. Consequently, |g| =
(
Ímax − Í min

)
/(Í max + Í min) where Í max,min are the intensity values at two 

adjacent maximum and minimum in the interferograms in Fig. 10, each 
one normalized by the intensity measured at the same points when a 
single slit is displayed. The red and blue vertical lines indicated on Fig. 9 
(b)-(k) denote the location of Imax and Imin used to calculate the visibility. 

Fig. 10. (a) Theoretical curves for the intensity and for the absolute value of complex degree of coherence |g(u, − u) | of the diffracted field generated by the double 
incoherent rectangular aperture. The figure also includes the measured |g(u, − u) |. (b)-(k) Intensity measurements in the interference region as the distance between 
slits increases. Red and blue vertical lines indicate the location of Imax and Imin to calculate the visibility. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article). 
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Conclusions 

In summary, we have considered an analytical problem proposed by 
Gori and coworkers [21], consisting in a rectangular aperture where the 
left half is a vertical linear polarizer while the right half is a horizontal 
linear polarizer, and we used it to illustrate the calculation of the dif
fracted field in the Fourier transform domain. 

First, we analyzed it within the Fourier transform Jones (FTJ) matrix 
formalism [18]. The interesting feature of the FTJ matrix M̂(u) is that it 
characterizes the diffractive element in the Fourier domain, thus 
including the polarization transformation at the PDOE plane and the 
polarization transformation due to the propagation. When the PDOE is 
illuminated with a uniformly polarized plane wave M̂(u) directly pro
vides the diffracted field simply by multiplying it by the input Jones 
vector. If the input wave is not a plane wave, the diffracted field is given 
by the convolutional relation in Eq. (5). This expression can be simpli
fied (Eq. (6)) when the input beam is scalar. We provided the analytical 
expression for the FTJ matrix describing the double polarizer rectan
gular aperture illuminated with a plane wave and used it to derive re
lations of the intensity and the local state of polarization on the 
diffracted field. However, this approach holds only for fully polarized 
light that is spatially coherent. 

On the other hand, the BCP matrix [11] is a powerful formalism to 
analyze PDOE, which can be applied to input beams with arbitrary po
larization and coherence properties. We derived a general relation (Eq. 
(21)) of the BCP matrix in the FT domain, resulting in double convolu
tion functions involving the FTJ matrix M̂(u). The result becomes 
particularly simple when the PDOE is illuminated with an input scalar 
partially polarized field with transverse spatial coherence. When the 
incident state is a partially polarized plane wave of uniform polariza
tion, the relation further simplifies, since it results in the usual BCP 
transformation rule using M̂(u) (Eq. (23)). But note that other illumi
nation situations can be considered using the general relation in Eq. 
(21). 

There are methods for the experimental fully determination of the 
BCP matrix [32]. Here, instead, we use intensity measurements of the 
diffraction pattern generated by a simple double polarizer rectangular 
aperture that evidence the different correlations between the electric 
field components. We compare the diffraction when the double polarizer 
rectangular aperture is illuminated with spatially coherent input beam 
but different polarizations: 1) fully polarized linear polarization ori
ented at 45◦, and 2) completely unpolarized input beam. For each case, 
we applied the combined BCP-FTJ approach to calculate the intensity 
and polarization spatial distribution in the Fourier plane. The polari
zation distribution right after the aperture is the same in both cases, and 
the intensity of the diffracted field is also the same. However, the po
larization distribution at the diffraction plane is very different: while in 
the first case the polarization state changes with the spatial frequency, in 
the second case the diffraction pattern is completely unpolarized. This 
behavior is explained by the fact that the two orthogonal linearly 
polarized fields diffracted by each polarizer in the aperture are totally 
correlated in the first case, whereas they are totally uncorrelated in the 
latter. We also noted the analogy of this double polarizer rectangular 
aperture with the case of a circular aperture with two radial regions with 
orthogonal polarizers which, after a convenient coordinate trans
formation, it is shown to produce an equivalent behavior along the 
propagation axis. 

An experiment to verify the results was designed, where we used a 
patterned polarizer. A Fourier optics setup was built, with a randomly 
polarized He-Ne laser as light source and a polarization camera that 
captures polarimetric images of the diffracted field. The diffraction 
pattern in the Fourier domain has been analyze experimentally, 
analyzing not only the intensity but also the state of polarization by 
means of a polarization camera. The experiments confirm all the theo
retical predictions. 

A final experiment is also included where we measure the coherence 
between points of the diffracted field in the case where a polarizer ori
ented at 45◦ is included after the aperture. This experiment illustrates 
how by employing a suitable patterned binary polarizer illuminated 
with randomly polarized light, becomes feasible to attain a desired bi
nary spatial coherence pattern while preserving the field’s amplitude 
and phase functions of a scalar field unaltered. Moreover, the laser’s 
rapid depolarization dynamics offers a faster alternative to digital 
micromirror devices [24] for achieving spatial coherence patterns. 
Exploring spatial coherence patterns beyond binary would involve 
employing spatially variant polarizers with more than two orientations. 
This results in intensity loss in certain regions upon traversing the sec
ond polarizer, depending on the desired coherence function. Compen
sating for this loss would require a more sophisticated experiment. 

The emergence of new PDOEs based on metamaterials and spatially 
patterned liquid-crystals is pushing the applications of structured light. 
We envisage that this framework could be useful in this field since it 
provides a mathematical tool for analyzing the performance of such 
metasurface and geometric phase diffractive elements. 
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