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A B S T R A C T

In this work we reveal certain intrinsic relationships between the remarkable points of an I–V curve of
a photovoltaic panel. Specifically, we carry out a thorough statistical study to determine the existing
interconnections between the open-circuit and short-circuit points with the maximum power point, which
constitute the so-called remarkable points of an I–V curve. To accomplish this, we analyse nearly one million
I–V curves from the National Renewable Energy Laboratory database of the US. Although we find out clear
generic relationships, we also provide concrete expressions that connect the remarkable points with a high level
of confidence for each of the technologies analysed, which implies that the open-circuit and the short-circuit
points can be estimated only with information from the solar panel operating in real time near the maximum
power point. Specifically, we provide the regression coefficients of the linear relationships, as well as empirical
bounds covering 95% of the samples for the distributions of the ratios between the remarkable points. The
results indicate the high reliability of the given estimates.
1. Introduction

Photovoltaics (PV) is a field of research and technology that deals
with the conversion of light energy from the sun into electrical energy.
Solar energy has become increasingly popular in recent years due
to the growing concern for the environment and the need to reduce
reliance on fossil fuels. Photovoltaics has emerged as a key technology
in this regard, offering a clean, renewable and reliable source of energy.
PV panel modelling has become a crucial tool to predict the panel
behaviour and maximise its energy production. One of the most widely
used models in the literature, due to its relatively simple handling, is
the single-diode model (SDM). Fig. 1 is an example of real voltage-
current data from a PV panel and a theoretical curve, coming from
the SDM, that adjusts these data. Knowing the parameters of the SDM,
whose characteristic curve fits the measured data of a panel, allows for
example, to predict the behaviour of the panel under other temperature
and irradiance conditions [1–4] and, therefore, to know the maximum
power point (MPP) of the panel under these other conditions, which
results in maximising energy production. As we will see a little later in
the introduction, the knowledge of the SDM parameters also allows the
panel’s operating point to be adjusted in real time around the maximum
power point with the so-called MPP tracking algorithms (MPPT).

∗ Corresponding author.
E-mail addresses: xmoreno-vassart@umh.es (X. Moreno-Vassart), javier.toledo@umh.es (F.J. Toledo), mavi.herranz@umh.es (V. Herranz), vgaliano@umh.es

(V. Galiano).
1 Irradiance 1000 W∕m2 and temperature 25 ◦C.
2 Irradiance 800 W∕m2 and temperature 20 ◦C.

Predicting the behaviour of solar panels can also be a key tool to
detect failures in the systems that govern their operation. For example,
if the data measured by a panel at a specific time provides information
that contradicts the information given by the manufacturer in the
panel’s technical datasheet, we can assume the system is failing, which
could be caused by a broken electronic component, by shadows on the
panels, or by the simple aging of the panel.

The remarkable points, also called notable points, consisting on the
maximum power point 𝑀 𝑃 𝑃 = (𝑉𝑀 𝑃 𝑃 , 𝐼𝑀 𝑃 𝑃 ), the short-circuit point
𝑆 𝐶 𝑃 = (0, 𝐼𝑆 𝐶 ) and the open-circuit point 𝑂 𝐶 𝑃 = (𝑉𝑂 𝐶 , 0), are also
indicated in Fig. 1. These points, measured in standard test conditions1

(STC) and in nominal operating cell temperature2 (NOCT), are part
of the technical information that solar panel manufacturers provide in
their datasheets. Many works try to obtain from the SDM a single I–V
curve by using the remarkable points in STC but, it is known (see [5,6])
that with only these three points there are infinitely many possible
SDM I–V curves that cross the three points and also satisfy the slope
condition in the MPP given by 𝐼 ′𝑀 𝑃 𝑃 = −𝐼𝑀 𝑃 𝑃 ∕𝑉𝑀 𝑃 𝑃 . Therefore, to
obtain a single curve using only the remarkable points, at least one
more piece of information would be needed (see again [5,6] to find
some particular examples on how to achieve that).

A solar panel working in real conditions can operate in several
configurations, the most naive ones, but also the least efficient, work
https://doi.org/10.1016/j.renene.2024.121661
Received 21 May 2024; Received in revised form 7 October 2024; Accepted 19 Oct
vailable online 28 October 2024 
960-1481/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
ober 2024

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/renene
https://www.elsevier.com/locate/renene
mailto:xmoreno-vassart@umh.es
mailto:javier.toledo@umh.es
mailto:mavi.herranz@umh.es
mailto:vgaliano@umh.es
https://doi.org/10.1016/j.renene.2024.121661
https://doi.org/10.1016/j.renene.2024.121661
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2024.121661&domain=pdf
http://creativecommons.org/licenses/by/4.0/


X. Moreno-Vassart et al.

m
T
t

c
t
p
o

o

a
o

p
m
T
a
f

2
m
b
o
i

c
m
I

Renewable Energy 237 (2024) 121661 
Fig. 1. Sample of I–V curve with corresponding P–V curve and remarkable points.
i
v

at a prefixed point, for example that where the panel obtains its
aximum performance on average or at a certain time of the day.
he most efficient configurations, although the most complex, use MPP
racking (MPPT) algorithms that try to maintain the panel operating

at its maximum power at all possible times (see, for example, the
MPPT techniques review articles [7–9], and [10]). In this last type of
onfigurations, despite the fact that there is continuous monitoring of
he panel, only data close to the MPP are available, and thus, it is not
ossible to obtain the other remarkable points, the SCP and the OCP,
f the panel in real time, information that is relevant in the modelling

of the panel and in the analysis of its behaviour. Please note that to
btain the SCP or OCP, the solar panel has to be set in its extreme

conditions which, in addition to leaving the panel without generating
power, could endanger the system. Therefore, it is evident that being
ble to predict the values of SCP and OCP only with the MPP could be
f great support in the modelling of a solar panel in real time.

Despite the difficulties of knowing the open-circuit voltage or the
short-circuit current in real working conditions, there are MPPT algo-
rithms that use these data to predict the maximum power point, these
are the so-called Fractional Open-Circuit Voltage (OCV) and Fractional
Short-Circuit Current (SCC) methods [11–14]. These methods are based
on the assumption that the voltage at the maximum power point is
roportional to the open circuit voltage, and that the current at the
aximum power point is proportional to the short circuit current.
he proportionality constant is key in both methods, although usu-
lly only provided in approximate intervals in which the constant is
ound, without studying the confidence of these intervals in depth.

Some reliable relationships can be found in the literature, for example,
∕3𝐼𝑆 𝐶 ≤ 𝐼𝑀 𝑃 𝑃 [6] deduced from the data provided in the 8835
odules included in the Energy Commission’s Solar Equipment Lists,

ut it is only a bound in a unique direction. In any case, the existence
f the Fractional OCV or SCC methods is also a good rationale for the
n-depth study of the relationships between the remarkable points.

The objective of this work is to demonstrate the existence of rela-
tionships between the MPP, and the SCP and OCP, and also estimate
with the greatest possible precision and reliability the formulas that
quantify these relationships. Possible dependencies on factors such as
the environmental conditions or the type of panel technology will
be analysed. The statistical analysis will be done on the data pro-
vided by the National Renewable Energy Laboratory (NREL) of United
States [15] which have been obtained on approximately one million
urves measured from solar panels in different locations and environ-
ental conditions. The NREL, formerly known as Solar Energy Research

nstitute, was established in 1974 and is the national laboratory of the

U.S. Department of Energy.

2 
Fig. 2. Electrical circuit associated to the PV single-diode model cell.

2. Preliminaries

In this section we introduce the basic concepts and tools necessary
for the development of this study.

Although there are several physical models capable of simulating
the behaviour of a PV panel, in this work we use the single-diode
model, usually named by the acronym SDM, due to its balance between
accuracy and simplicity. The SDM, also called five-parameter model,
has been used extensively to better understand and represent the state
of a PV panel at a given time, that is, for a given illumination and
temperature. Fig. 2 shows the equivalent circuit associated to the SDM.

If we have a PV panel with 𝑛𝑠 cells connected in series, after
applying the Kirchoff’s current law, one obtains the equation

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡

(

exp
(

𝑉 + 𝐼 𝑅𝑠
𝑛𝑠𝑛𝑉𝑇

)

− 1
)

−
𝑉 + 𝐼 𝑅𝑠

𝑅𝑠ℎ
(1)

where the 5 parameters appearing in the previous equation are:

• 𝐼𝑝ℎ: photocurrent [A]
• 𝐼𝑠𝑎𝑡: diode reverse saturation current [A]
• 𝑅𝑠: series resistance [𝛺]
• 𝑅𝑠ℎ: shunt resistance [𝛺]
• 𝑛: diode ideality factor

The thermal voltage 𝑉𝑇 present in Eq. (1) is given by

𝑉𝑇 = 𝑘𝑇
𝑞

(2)

where 𝑇 is the temperature in Kelvin degrees, 𝑘 = 1.3806488 × 10−23 J/K
the Boltzmann’s constant, and 𝑞 = 1.60217653 × 10−19 C the electron
charge.

In many implementations, the number of cells in series 𝑛𝑠, the
deality factor 𝑛 and the thermal voltage 𝑉𝑇 are combined into a single
ariable/parameter 𝑎, specifically
𝑎 = 𝑛𝑠𝑛𝑉𝑇 (3)
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Fig. 3. Slope at the MPP versus Mean Slope between Short-Circuit and Open-Circuit Points.
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So, Eq. (1) can be rewritten in a more compact way as

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡

(

exp
(

𝑉 + 𝐼 𝑅𝑠
𝑎

)

− 1
)

−
𝑉 + 𝐼 𝑅𝑠

𝑅𝑠ℎ
(4)

The SDM has been widely tested and shown to be accurate, that is,
t is able to adjust the measured voltage-current data from a solar panel
ith relatively small errors and using different metrics. This is feasible
nder a minimum of illumination, above one-half AM1 [16], although

it is sometimes valid even for lower illumination.
Multiple algorithms have been developed to extract the SDM pa-

rameters with great accuracy, i.e. with parameters whose associated
I–V curve fits precisely the measured experimental data of the panel at
constant environmental conditions such as [17–20], by minimising the
current distance, or [21] by minimising the Euclidean distance.

Besides the parameters, there are several key points that are often
entioned when comparing or characterising I–V curves [22], we will

shortly present the short-circuit current, the open-circuit voltage, and
the maximum power point, which are usually called the remarkable
points of an I–V curve.

• The short-circuit current, 𝐼𝑆 𝐶 , is the maximum current that is
produced by a PV panel that is exposed to solar radiation. This
current corresponds to a 0𝛺 load and a voltage of 0 V.

• The open-circuit voltage, 𝑉𝑂 𝐶 , is defined as the maximum voltage
that the PV panel can produce with an infinite load and 0𝐴
current.

• The maximum power point, MPP, with coordinates
(

𝑉𝑀 𝑃 𝑃 ,
𝐼𝑀 𝑃 𝑃

)

, is the point at which a PV panel produces the maximum
power output.

The 𝐼𝑆 𝐶 , 𝑉𝑂 𝐶 , and MPP depend on several factors, including the
solar cell’s design, the amount of light received, the temperature of the
solar cell [3,23], but also the age and the corresponding degradation
f the cell [24,25]. This means that the point where the solar panel

produces the maximum power output changes over time and should be
monitored to maximise the power output.

Manufacturers typically provide all 3 remarkable points measured
nder standard test conditions (STC).

One important well-known property, that is derived from the MPP
of an I–V curve, is the fact that the derivative of current with respect
to the voltage at this point can be expressed only in terms of the MPP
oordinates 𝐼𝑀 𝑃 𝑃 and 𝑉𝑀 𝑃 𝑃 . We know that power function is given

by 𝑃 = 𝐼 𝑉 , and thus, its derivative with respect to 𝑉 at the MPP is
𝑃 ′
𝑀 𝑃 𝑃 = 𝐼 ′𝑀 𝑃 𝑃 𝑉𝑀 𝑃 𝑃 + 𝐼𝑀 𝑃 𝑃 . Since 𝑃 has a relative maximum at the

MPP, indeed a global maximum, then 𝑃 ′
𝑀 𝑃 𝑃 = 0, and therefore, the

slope of the I–V curve at the MPP is given by

𝐼 ′ = d𝐼 |

| = − 𝐼𝑀 𝑃 𝑃 . (5)
𝑀 𝑃 𝑃 d𝑉 |

|𝑀 𝑃 𝑃 𝑉𝑀 𝑃 𝑃
3 
Another interesting characteristic of the I–V curve that we will
anage throughout this study is the mean slope of the I–V curve, that

s, the slope of the segment that joins
(

0, 𝐼𝑆 𝐶
)

and
(

𝑉𝑂 𝐶 , 0
)

. We will
call it 𝐼 ′𝑀 𝑆 𝑃 which is simply given by

𝐼 ′𝑀 𝑆 𝑃 = − 𝐼𝑆 𝐶
𝑉𝑂 𝐶

. (6)

Fig. 3 helps with the geometrical interpretation of both 𝐼 ′𝑀 𝑃 𝑃 (the
lope of the dash-dotted line, the tangent at the MPP) and 𝐼 ′𝑀 𝑆 𝑃 (the
lope of the dotted segment).

In this work we will use the so-called Two-Step Linear Least-Squares
(TSLLS) method, provided in [19], to obtain the SDM parameters (𝐼𝑝ℎ,
𝐼𝑠𝑎𝑡, a, 𝑅𝑠, 𝑅𝑠ℎ from Eq. (4)), since it has been proven to be one of
he fastest and most accurate extraction methods, and in addition,
nly requires 5 or more points of the I–V curve and is not tied to

the prior knowledge and accuracy of 𝐼𝑆 𝐶 , 𝑉𝑂 𝐶 , 𝐼𝑀 𝑃 𝑃 , or 𝑉𝑀 𝑃 𝑃 . The
TSLLS method finds the quintet of SDM parameters that minimises the
oot mean square error (RMSE) with respect to the current distance

— the difference between the measured intensity and the intensity
reconstructed from each proposed parameter set. Once the parameters
are obtained, we will calculate the 3 remarkable points correspond-
ing to the theoretical I–V curve by means of the fast and efficient
methodologies described in [22].

As commented in the introduction section, this work will explore the
relationships between the remarkable points corresponding to the SDM
I–V curves obtained from a dataset of around a million I–V curves of the
NREL. As one of many lines of research, the NREL has been measuring
I–V curves for 8 different technologies and a total of 22 different PV
modules across different vendors. They are located not only at their
Golden facility but also Eugene, Oregon, and Cocoa, Florida. Some of
that data are available to the public for research purposes and was
decisive to this study. The public data utilised is comprised of I–V
curves, temperature and irradiance readings taken every 5 min [26].
The data covers several years of data, from January 2011 to September
2013.

3. Methodology, results and discussion

3.1. Data under study

The data for this analysis comes from the NREL as explained at the
nd of the preliminary section. Recall that the initial dataset contains a
otal of 1025600 curves. The PV modules utilised are comprised of the
ollowing technologies (and their contractions as used by the NREL) in
lphabetical order:

• Amorphous silicon (a-Si)
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Fig. 4. Distribution of RMSE from TSLLS.
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Table 1
PV Modules and their locations, with area measured in squared metres.

Module I–V curves per city Area Ns Np

Eugene Cocoa Golden

aSiMicro03036 43 343 39 037 0 1.4200 180 1
aSiTandem72–46 43 266 39 186 0 0.7900 38 1
aSiTriple28324 42 705 38 485 0 1.0100 11 2
CdTe75638 42 248 39 080 0 0.7200 116 1
CIGS8–001 43 146 38 939 0 0.7290 66 2
CIGS39017 42 674 34 775 0 1.7500 72 1
HIT05667 43 271 38 377 0 1.2600 72 1
mSi0166 43 268 36 765 0 0.3429 36 1
mSi0188 43 127 39 102 0 0.3429 36 1
mSi460A8 43 115 38 929 0 0.6470 36 1
xSi12922 43 185 38 990 0 0.6470 36 1
aSiMicro03038 0 0 12 148 1.4200 180 1
aSiTandem90–31 0 0 12 070 0.7900 38 1
aSiTriple28325 0 0 11 445 1.0100 11 2
CdTe75669 0 0 11 953 0.7200 116 1
CIGS1–001 0 0 12 011 0.7290 66 2
CIGS39013 0 0 11 437 1.7500 72 1
HIT05662 0 0 11 876 1.2600 72 1
mSi0247 0 0 11 912 0.3429 36 1
mSi0251 0 0 11 887 0.3429 36 1
mSi460BB 0 0 11 919 0.6470 36 1
xSi11246 0 0 11 929 0.6470 36 1

• Amorphous silicon hybrid tandem (a-Si-tandem)
• Amorphous silicon hybrid triple-junction (a-Si-triple)
• Cadmium Telluride (CdTe)
• Copper Indium Gallium Selenide (CIGS)
• Hetero junction intrinsic thin layer (HIT)
• Monocrystalline silicon (mono-Si)
• Polycrystalline silicon (multi-Si)

Crystalline silicon is the most common PV technology, it makes up
95% of photovoltaic energy production (82% of total from monocrys-
talline panels and 13% from polycrystalline ones). The remaining 5% is
produced by Thin-film panels, mostly comprised of Cadmium Telluride
(4.1% of total).

The 22 modules from NREL are distributed unevenly across all three
cities as shown in Table 1, with half of them being present in both
ugene and Cocoa and the rest in Golden. Nevertheless, the studied
 p

4 
PV technologies are represented in all 3 locations. Table 2 describes
geographical details of each site.

3.2. Methodology

The first step is to extract the 5 parameters of each I–V curve with
the TSLLS method. Indeed, we will extract the parameters minimising
he root mean square error (RMSE) with respect to the current, which is
he most commonly used error in the literature [19,27,28]. Fig. 4 shows
he distribution of RMSE for all the NREL curves. Curves beyond 3
tandard deviations (3.64% of curves) have been discarded because are
omprised of curves from shadowed PV panels and with measurement
rrors.

The second step calculates the 3 remarkable points of each I–V
urve, from the SDM parameters, with the methodologies proposed
n [22].

The third and final step evaluates the following three linear regres-
sions without vertical intercept:

• 𝐼𝑆 𝐶 = 𝛼𝐼𝐼𝑀 𝑃 𝑃
• 𝑉𝑂 𝐶 = 𝛼𝑉 𝑉𝑀 𝑃 𝑃
• 𝐼 ′𝑀 𝑆 𝑃 = 𝛼𝑆𝐼 ′𝑀 𝑃 𝑃

Regression’s fit is evaluated with RMSE (vertical distance between
sample and linear regression) and the coefficient of determination
(𝑅2), which is equivalent, in this case, to the square of the Pearson
correlation coefficient. The distribution of quotients 𝐼𝑆 𝐶

𝐼𝑀 𝑃 𝑃 , 𝑉𝑂 𝐶
𝑉𝑀 𝑃 𝑃 , and

𝐼 ′𝑀 𝑆 𝑃
𝐼 ′𝑀 𝑃 𝑃 are also plotted, displaying a behaviour that might be missed

harder to spot only from a scatter plot (Figs. 5(a), 5(c) and 5(e)).
dditionally, for each distribution of quotients, a lower and an upper
ound are provided, so that the interval they form encloses 95% of
amples and its amplitude is the smallest possible.

3.3. Discussion

Firstly, curves from all technologies are considered as a single
dataset (Fig. 5). Linear trends are already visible (Figs. 5(b), 5(d)
and 5(f)) from this first approach. Fig. 5(a) in particular displays a
imodal distribution with third smaller peak in between. The vertical
ink dashed lined through the distribution represents the regression
Table 2
PV modules locations, with latitude and longitude expressed in degrees, elevation in metres, and modules’ tilt and azimuth in degrees.

City State Time Zone Latitude Longitude Elevation Module tilt Module azimuth

Cocoa Florida −5 28.39 −80.46 12 28.5 180.0
Eugene Oregon −8 44.05 −123.07 145 44.0 180.0
Golden Colorado −7 39.74 −105.18 1798 40.0 180.0
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Fig. 5. Distribution of remarkable quotients and regressions — all technologies.
coefficient, while the 95% bounds are shown with dash-dotted grey
lines. These observations motivate the analysis on subsamples of the
data, first on a per technology basis and, if inconclusive, on a per panel
basis.

When treating technologies separately, the bimodal behaviour (see
Fig. 5(a)) leaves place to unimodal distributions of the quotient 𝐼𝑆 𝐶

𝐼𝑀 𝑃 𝑃
(Fig. 6) and displays low dispersion. In fact, the analysis has been
repeated on a per module basis with near identical quotient results
for modules of the same technology, which justifies grouping them up.
CIGS I–V curves are the only notable exception (Fig. 6(e)). For that
reason CIGS modules are also treated individually in this study. See also
that 25% of samples of CIGS technology do not satisfy the inequality
2∕3𝐼𝑆 𝐶 ≤ 𝐼𝑀 𝑃 𝑃 from [6].

Fig. 7 shows the resulting regressions for each technology. The
values for each technology are available in Table 3a, except CIGS
technology ( Table 3b). The coefficient of determination of HIT panels
is 𝑅2 = 0.99995 but appears rounded up.
5 
Figs. 8 and 9 display the aforementioned distribution and regression
for 𝑉𝑂 𝐶 = 𝛼𝑉 𝑉𝑀 𝑃 𝑃 . The regression itself (Fig. 9) shows a higher
dispersion for all technologies compared to the previous 𝐼𝑆 𝐶 (Fig. 7),
as also illustrated by a lower 𝑅2.

The interval enclosing 95% of the samples of the distribution of
𝐼𝑆 𝐶
𝐼𝑀 𝑃 𝑃 (Fig. 6) has an amplitude of approximately 10.15% of 𝛼𝐼 , with
the exception of CIGS 𝐼𝑀 𝑃 𝑃 . Besides, the interval amplitude for 𝑉𝑂 𝐶

𝑉𝑀 𝑃 𝑃
is close to 8.3t % of 𝛼𝑉 . In both cases, the small percentage indicates
that the distributions of 𝐼𝑆 𝐶

𝐼𝑀 𝑃 𝑃 and 𝑉𝑂 𝐶
𝑉𝑀 𝑃 𝑃 are very concentrated. These

results support their use (see Table 3a) as more refined estimations, for
the proposed technologies, of the inverse of the voltage factor 𝐾𝑝𝑣 and
𝐾𝑣 shared, respectively, in [13,14]. It is also true, with the previous
exception, that 2∕3𝑉𝑂 𝐶 ≤ 𝑉𝑀 𝑃 𝑃 .

Finally, the distribution of 𝐼 ′𝑀 𝑆 𝑃
𝐼 ′𝑀 𝑃 𝑃 and regression 𝐼 ′𝑀 𝑆 𝑃 = 𝛼𝑆𝐼 ′𝑀 𝑃 𝑃 are

respectively shown in Figs. 10 and 11. We must pay attention to the low
dispersion for each technology shown in Fig. 10 where the coefficients
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Table 3
Regression coefficients overview.

(a) Regression coefficients per technology

Technology 𝐼𝑆 𝐶 = 𝛼𝐼𝐼𝑀 𝑃 𝑃 𝑉𝑂 𝐶 = 𝛼𝑉 𝑉𝑀 𝑃 𝑃 𝐼 ′
𝑀 𝑆 𝑃 = 𝛼𝑆𝐼 ′

𝑀 𝑃 𝑃
𝛼𝐼 𝑅2 RMSE 95% bounds 𝛼𝑉 𝑅2 RMSE 95% bounds 𝛼𝑆 𝑅2 RMSE 95% bounds

Lower Upper Lower Upper Lower Upper

a-Si 1.2256 0.9997 0.0000 1.1852 1.2797 1.3428 0.8911 0.0195 1.2924 1.3839 0.9006 0.9998 0.0000 0.8835 0.9597
a-Si-tandem 1.2316 0.9995 0.0002 1.2002 1.3191 1.3179 0.7175 0.0309 1.2751 1.3604 0.9175 0.9994 0.0002 0.9036 0.9962
a-Si-triple 1.2293 0.9997 0.0014 1.1923 1.2851 1.3263 0.6862 0.0251 1.2604 1.3931 0.9035 0.9996 0.0015 0.8887 0.9915
CdTe 1.1612 0.9996 0.0001 1.1467 1.4380 1.3191 0.5089 0.0224 1.2650 1.3994 0.8599 0.9984 0.0002 0.8377 1.0357
CIGS 1.2996 0.9972 0.0013 1.1262 1.8012 1.4079 0.9366 0.0296 1.2319 1.7486 0.9128 0.9961 0.0028 0.8799 1.0625
HIT 1.0732 1.0000 0.0002 1.0609 1.0950 1.1831 0.7345 0.0115 1.1543 1.2310 0.8864 0.9995 0.0008 0.8719 0.9346
multi-Si 1.0951 0.9999 0.0004 1.0828 1.2028 1.2359 0.7691 0.0134 1.1948 1.3174 0.8772 0.9991 0.0019 0.8586 0.9311
mono-Si 1.0939 0.9999 0.0005 1.0781 1.1539 1.2232 0.5720 0.0144 1.1841 1.2881 0.8665 0.9992 0.0024 0.8490 0.9435
all 1.1583 0.9934 0.0035 1.0579 1.4892 1.3000 0.9851 0.0390 1.1569 1.4681 0.8840 0.9986 0.0023 0.8469 1.0302

(b) Regression coefficients for CIGS modules

Module 𝐼𝑆 𝐶 = 𝛼𝐼𝐼𝑀 𝑃 𝑃 𝑉𝑂 𝐶 = 𝛼𝑉 𝑉𝑀 𝑃 𝑃 𝐼 ′
𝑀 𝑆 𝑃 = 𝛼𝑆𝐼 ′

𝑀 𝑃 𝑃
𝛼𝐼 𝑅2 RMSE 95% bounds 𝛼𝑉 𝑅2 RMSE 95% bounds 𝛼𝑆 𝑅2 RMSE 95% bounds

Lower Upper Lower Upper Lower Upper

CIGS1-001 1.1385 0.9996 0.0001 1.1244 1.3109 1.2635 0.8242 0.0059 1.2262 1.3177 0.8938 0.9986 0.0008 0.8766 0.9991
CIGS8-001 1.2119 0.9953 0.0004 1.1359 1.5802 1.3387 0.4773 0.0208 1.2469 1.6183 0.9307 0.9969 0.0012 0.8960 1.0412
CIGS39013 1.3341 0.9964 0.0017 1.2949 1.8134 1.4560 0.8550 0.0262 1.3684 1.7609 0.9184 0.9932 0.0042 0.8834 1.0689
CIGS39017 1.3009 0.9974 0.0015 1.2670 1.8882 1.4422 0.8971 0.0302 1.3497 1.8586 0.9093 0.9950 0.0036 0.8805 1.0683
Fig. 6. Distribution of 𝐼𝑀 𝑃 𝑃
𝐼𝑆 𝐶 per technology.
Fig. 7. 𝐼𝑆 𝐶 = 𝛼𝐼𝐼𝑀 𝑃 𝑃 per technology.
6 
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Fig. 8. Distribution of 𝑉𝑀 𝑃 𝑃
𝑉𝑂 𝐶 per technology.
Fig. 9. 𝑉𝑂 𝐶 = 𝛼𝑉 𝑉𝑀 𝑃 𝑃 per technology.
Fig. 10. Distribution of 𝐼 ′𝑀 𝑃 𝑃
𝐼𝑀 𝑆 𝐷 per technology.
of determination (𝑅2) are close to the good results obtained for 𝐼𝑆 𝐶 =
𝛼𝐼𝐼𝑀 𝑃 𝑃 , with a similarly low dispersion. Now, the amplitude of the
interval covering 95% of samples of the 𝐼 ′𝑀 𝑆 𝑃

𝐼 ′𝑀 𝑃 𝑃 distribution, including
CIGS modules, is 11.3% of 𝛼𝑆 . This fact shows that 𝐼 ′𝑀 𝑆 𝑃 = 𝛼𝑆𝐼 ′𝑀 𝑃 𝑃 is
a suitable estimation for all the technologies.
7 
The estimation of 𝑉𝑂 𝐶 from 𝑉𝑀 𝑃 𝑃 can benefit from regression with
a vertical intercept, as particularly noticeable on Figs. 9(d) and 9(h).
Table 4 provides the coefficients for the new regressions. In Table 4a
we can observe an improvement of the coefficient of determination (𝑅2)
and RMSE for 𝑉 across all technologies. Nevertheless, the vertical
𝑂 𝐶
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Fig. 11. 𝐼 ′
𝑀 𝑆 𝑃 = 𝛼𝑆𝐼 ′

𝑀 𝑃 𝑃 per technology.
Table 4
Regression coefficients overview with vertical intercept.

(a) Regression coefficients with intercept per technology

Technology 𝐼𝑆 𝐶 = 𝛽1,𝐼𝐼𝑀 𝑃 𝑃 + 𝛽0,𝐼 𝑉𝑂 𝐶 = 𝛽1,𝑉 𝑉𝑀 𝑃 𝑃 + 𝛽0,𝑉 𝐼 ′
𝑀 𝑆 𝑃 = 𝛽1,𝑆𝐼 ′

𝑀 𝑃 𝑃 + 𝛽0,𝑆
𝛽1,𝐼 𝛽0,𝐼 𝑅2 RMSE 𝛽1,𝑉 𝛽0,𝑉 𝑅2 RMSE 𝛽1,𝑆 𝛽0,𝑆 𝑅2 RMSE

a-Si 1.2251 0.0000 0.9997 0.0000 1.4464 −0.0870 0.8957 0.0191 0.8943 0.0000 0.9999 0.0000
a-Si-tandem 1.2274 0.0001 0.9995 0.0002 1.1230 0.2125 0.7398 0.0297 0.9059 −0.0002 0.9997 0.0001
a-Si-triple 1.2298 −0.0001 0.9997 0.0014 1.2451 0.0581 0.6891 0.0250 0.8934 −0.0018 0.9998 0.0010
CdTe 1.1493 0.0001 0.9998 0.0001 0.8456 0.2544 0.7428 0.0162 0.8382 −0.0003 0.9995 0.0001
CIGS 1.2883 0.0004 0.9974 0.0013 1.3665 0.0123 0.9376 0.0294 0.8872 −0.0025 0.9977 0.0021
HIT 1.0735 0.0000 1.0000 0.0002 0.9410 0.1343 0.7866 0.0103 0.8762 −0.0008 0.9997 0.0006
multi-Si 1.0892 0.0004 0.9999 0.0003 0.8650 0.1678 0.9434 0.0067 0.8644 −0.0019 0.9995 0.0014
mono-Si 1.0939 0.0000 0.9999 0.0005 0.8359 0.1789 0.7289 0.0115 0.8532 −0.0027 0.9996 0.0016
all 1.1592 −0.0001 0.9934 0.0035 1.3293 −0.0193 0.9856 0.0382 0.8749 −0.0013 0.9989 0.0021

(b) Regression coefficients with intercept for CIGS modules

Module 𝐼𝑆 𝐶 = 𝛽1,𝐼𝐼𝑀 𝑃 𝑃 + 𝛽0,𝐼 𝑉𝑂 𝐶 = 𝛽1,𝑉 𝑉𝑀 𝑃 𝑃 + 𝛽0,𝑉 𝐼 ′
𝑀 𝑆 𝑃 = 𝛽1,𝑆𝐼 ′

𝑀 𝑃 𝑃 + 𝛽0,𝑆
𝛽1,𝐼 𝛽0,𝐼 𝑅2 RMSE 𝛽1,𝑉 𝛽0,𝑉 𝑅2 RMSE 𝛽1,𝑆 𝛽0,𝑆 𝑅2 RMSE

CIGS1-001 1.1205 0.0002 1.0000 0.0000 0.9347 0.0790 0.9411 0.0034 0.8717 −0.0011 0.9996 0.0004
CIGS8-001 1.1738 0.0004 0.9971 0.0003 0.8071 0.1155 0.8591 0.0108 0.9075 −0.0011 0.9979 0.0009
CIGS39013 1.2765 0.0027 0.9994 0.0007 1.0786 0.1313 0.9790 0.0100 0.8685 −0.0063 0.9980 0.0023
CIGS39017 1.2572 0.0020 0.9996 0.0006 1.1237 0.1115 0.9809 0.0130 0.8709 −0.0046 0.9983 0.0021
intercept for 𝐼𝑆 𝐶 and 𝐼 ′𝑀 𝑆 𝑃 regressions, respectively 𝛽0,𝐼 and 𝛽0,𝑆 are
close to 0. This justifies the use of Table 3 as a reference and the validity
of the 95% bounds for 𝐼𝑆 𝐶 and 𝐼 ′𝑀 𝑆 𝑃 . Table 4b shows significantly
different values of 𝛽1,𝑉 and 𝛽0,𝑉 for each different model of CIGS
technology, improving the results given in Table 3b.

We would like to point out that the previous results do not de-
pend on the environmental conditions, in particular temperature and
irradiance, in which I–V curves have been measured.

4. Conclusions

This study has proved statistical relationships, 𝐼𝑆 𝐶 = 𝛼𝐼𝐼𝑀 𝑃 𝑃 ,
𝑉𝑂 𝐶 = 𝛼𝑉 𝑉𝑀 𝑃 𝑃 and 𝐼 ′𝑀 𝑆 𝑃 = 𝛼𝑆𝐼 ′𝑀 𝑃 𝑃 , which link the MPP to the
SCP and the OCP with high correlation regardless of temperature and
irradiance, given a minimum of illumination and no partial shading. It
is interesting to note that the first and last ones have been particularly
strong. We provide not only the regression coefficients, 𝛼𝐼 , 𝛼𝑉 and 𝛼𝑆 ,
of the linear relationships, but also empirical bounds enclosing 95%
of the samples for the distributions of the quotients 𝐼𝑆 𝐶

𝐼𝑀 𝑃 𝑃 , 𝑉𝑂 𝐶
𝑉𝑀 𝑃 𝑃 , and

𝐼 ′𝑀 𝑆 𝑃
𝐼 ′𝑀 𝑃 𝑃 . We point out that the intervals associated to the previous bounds
have a relatively small amplitude with respect to the corresponding
regression coefficients. This indicates the high concentration of samples
which justifies the reliability of the estimations. Although we have
obtained good estimations valid across the PV technology, it has also
8 
been observed that the studied relationships are more strongly linked to
the physical properties of the panel, and therefore, for greater accuracy,
the estimations may require an individual analysis (such as for CIGS
modules). So, we recommend replicating the study for a particular PV
installation (e.g., a solar farm comprised of a single PV model) and
perform an approach fined-tuned per technology that offers a tighter fit
than a generic estimator. Based on our analysis performed over more
than a million curves of the NREL, we propose the use of Tables 3
and 4 to estimate respectively 𝐼𝑆 𝐶 and 𝑉𝑂 𝐶 from MPP for the panel
technology analysed. It would be very interesting to make a study of
the relationships analysed in this work, discriminating by the aging of
the panels for the same technology. Since this factor influences the
values of the remarkable points of the panels, it is expected that the
relationships with this casuistry will be stronger for panels with the
same aging.
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