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A B S T R A C T

The current–voltage curve (I–V curve) associated to the photovoltaic (PV) single-diode model (SDM) is an
important tool to analyze the behavior of a PV panel, nevertheless, obtaining it is not easy due to the implicit
nature of the SDM equation that requires a lot of computation to solve it accurately. In this paper we provide
a simple, accurate and almost instantaneous method to obtain the I–V curve which can be easily programmed,
for example, in a microcontroller. The main tool is a recent parametrization of the SDM I–V curve which
allows to compute the I–V points explicitly when the slope of the curve is known. Then, an iterative sequence
of points based in the mean slope between the points of the previous step is constructed. The new methodology
is compared with the most common method and the superiority of our proposal is demonstrated with a large
repository of curves. Moreover, using the distribution of points obtained with the new methodology, it is
possible to represent, with high precision and speed, other curves such as the power and the curvature functions
providing a deeper information of the SDM.
1. Introduction

The representation of a data set or the graph of a function pro-
vides important information about its behavior, allowing to find out
analytic-geometric properties such as monotonicity, convexity, asymp-
totic behavior, and, even detect singularities that would be difficult to
notice with basic data analytics. For example, a graphical representa-
tion of the I–V curve is essential for understanding the performance of
the PV module and optimizing its operation. This is why the first thing
that is done when one has a set of data or a function is to represent
it graphically. In the particular case of graphing functions, a piecewise
linear approximation is normally performed from a selection of points
in an interval. The simplest approach is to take a uniform partition of
the interval, compute the images of the function at each element of the
partition, and perform a linear interpolation with the corresponding
computed points of the function, providing a piecewise linear approxi-
mation whose quality will depend on the size of the interval partition.
If the function does not have a very complex expression, the calculation
of the points can be more or less fast and precise and the computational
cost will not vary much depending on the number of points, but if the
expression of the function is complex and it is required a numerical
algorithm for the calculation of the points, which happens, for example,
if the function is given implicitly, then it is important to reduce the
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number of calculations as much as possible, and a way to implement
this is with a good selection of the points to be calculated.

The selection of points providing efficient piecewise approximations
of a curve, is a mathematical problem which has been thoroughly
studied in the field of digital image processing [1–5]. It has been shown
that some strategies based on the curvature of the curve [6,7], are
capable to select a reduced number of points efficiently distributed
on the curve that allows to construct a piecewise linear interpolation
providing an approximation with an error below a previously fixed
tolerance. Nevertheless, it is difficult to find in the literature generic
algorithms that are easily implementable in practice and, then, the
ad-hoc construction of a distribution for each curve is practically
necessary. This is precisely the case of the I–V curve of the PV SDM,
in which the curve is implicitly given by an equation whose solutions
require numerical calculus. The most usual way to represent the SDM
I–V curve is to compute a set of points between the short-circuit point
(corresponding to zero voltage) and the open circuit-point (correspond-
ing to zero current) distributed uniformly with respect to the voltage.
It is very well-known that the SDM equation can be rewritten with the
Lambert W function giving rise to explicit expressions of the current in
terms of the voltage and vice versa. Although the Lambert W function
also requires numerical calculus, there exist very fast and accurate
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algorithms to compute its images [8–11]. However, the shape of the
I–V curve with two clearly differentiated parts, one linear and the
other exponential, [12,13], means that a uniform distribution of points
requires a large number of points for the piecewise linear interpolation
to provide an accurate approximation and, furthermore, so that the
segments of the representation are not appreciable to the naked eye.

In this work we will provide a distribution of points on the SDM
I–V curve that has the following advantages: (i) the points are eas-
ily calculable, in fact they will be obtained explicitly except for the
extreme ones, (ii) the points are efficiently distributed, in fact they
will automatically adapt to the shape of the curve and will provide an
efficient piecewise linear approximation. The key tool to do this will
be a recent parametrization of the SDM [14] which allows the explicit
calculation of the unique mean slope point between two arbitrary
points of the I–V curve. A detailed algorithm that has the virtue of
supplying the points distribution in order will be described. We will
compare our distribution with the uniform one for different PV modules
to demonstrate the advantages of our proposal. Moreover, we will use
the obtained distribution to represent other curves associated to the
SDM which will be previously parametrized.

2. Preliminaries

2.1. The single-diode model

The single-diode model (SDM) equation associated to a solar panel
with 𝑛𝑠 cells in series is given by

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡

(

𝑒
𝑉 +𝐼𝑅𝑠

𝑎 − 1
)

−
𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ
(1)

here 𝐼 is the panel current measured in Amperes, 𝑉 is the panel
oltage measured in Volts, 𝐼𝑝ℎ is the panel photocurrent in Amperes,
𝑠𝑎𝑡 is the panel diode saturation current in Amperes, 𝑅𝑠 is the panel
eries resistance in Ohms and, 𝑅𝑠ℎ is the panel shunt resistance in
hms. On the other hand, 𝑎 = 𝑛𝑠𝑛𝑉𝑇 where 𝑛 is the ideality factor and
𝑇 = 𝑘

𝑞 𝑇 is the so-called thermal voltage, being 𝑇 the temperature in
elvin degrees, 𝑘 = 1.3806488 × 10−23 J∕K the Boltzmann’s constant
nd, 𝑞 = 1.60217653 × 10−19 C the electron charge.

The solutions of Eq. (1) generate the so-called I–V curve of the SDM.
he point of the I–V curve corresponding to voltage zero is called short-
ircuit point, it is denoted by 𝑆𝐶𝑃 =

(

0, 𝐼𝑠𝑐
)

. The point corresponding
o current zero is called the open-circuit point and it is denoted by
𝐶𝑃 =

(

𝑉𝑜𝑐 , 0
)

.

.1.1. The SDM in terms of the lambert 𝑊 function
It is well-known that the current 𝐼 and the voltage 𝑉 of the SDM

an be alternatively expressed through the Lambert W function as [15]

= 1
𝑅𝑠ℎ + 𝑅𝑠

(

𝑅𝑠ℎ
(

𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡
)

− 𝑉
)

− 𝑎
𝑅𝑠

𝑊0

(

𝐼𝑠𝑎𝑡𝑅𝑠ℎ𝑅𝑠

𝑎
(

𝑅𝑠ℎ + 𝑅𝑠
) exp

(

𝑅𝑠ℎ
(

𝑅𝑠
(

𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡
)

+ 𝑉
)

𝑎
(

𝑅𝑠ℎ + 𝑅𝑠
)

))

(2)

=𝑅𝑠ℎ
(

𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡
)

−
(

𝑅𝑠ℎ + 𝑅𝑠
)

𝐼

− 𝑎𝑊0

(

𝐼𝑠𝑎𝑡𝑅𝑠ℎ
𝑎

exp

(

𝑅𝑠ℎ
(

𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡 − 𝐼
)

𝑎

))

(3)

where 𝑊0 is the positive branch of the real Lambert W function, that
is, the inverse of the function 𝑓 (𝑥) = 𝑥𝑒𝑥 in the interval [−1,+∞[ [16].
In [8] a fast and accurate algorithm was proposed to compute the
Lambert W function that is capable of evaluating 𝑊0 in very large
arguments. Applying this algorithm to (2) and (3) we straightforwardly
obtain, as particular cases, the values of the short-circuit current and
the open-circuit voltage which are usually the extreme points of the I–V
2

curve to be computed and plotted.
2.1.2. A parametrization of the SDM
In [14] was proved that any point of the I–V curve can be expressed

as

⎧

⎪

⎨

⎪

⎩

 (𝑥) = 𝑎(𝑅𝑠+𝑅𝑠ℎ)
𝑅𝑠ℎ

(

ln 𝑥 − 𝑅𝑠
𝑎

(

𝑅𝑠ℎ
(

𝐼𝑝ℎ+𝐼𝑠𝑎𝑡
)

𝑅𝑠+𝑅𝑠ℎ
− 𝑥

)

− ln
(

𝐼𝑠𝑎𝑡𝑅𝑠ℎ
𝑅𝑠ℎ+𝑅𝑠

)

)

 (𝑥) =
𝑅𝑠ℎ

(

𝐼𝑝ℎ+𝐼𝑠𝑎𝑡
)

−(𝑥)
𝑅𝑠+𝑅𝑠ℎ

− 𝑥
(4)

for certain parameter 𝑥 > 0. This parameter is indeed the vertical
distance from the I–V curve to its oblique asymptote [12,14]

𝑥 =
𝐼𝑠𝑎𝑡𝑅𝑠ℎ
𝑅𝑠ℎ + 𝑅𝑠

𝑒
𝑉 +𝐼𝑅𝑠

𝑎

n [14] was also proved that, if the slope 𝐼 ′ of the I–V curve at a point
is known, the parameter 𝑥 corresponding to this point is given by

𝑥 = − 𝑎
𝑅𝑠ℎ + 𝑅𝑠

𝐼 ′
(

𝑅𝑠ℎ + 𝑅𝑠
)

+ 1
1 + 𝐼 ′𝑅𝑠

(5)

Expressions (4) and (5) will be essential in the development of this
work.

3. An efficient self-adaptive representation of the SDM I-V curve

It is well known [12] that Eq. (1) defines 𝐼 as a function of 𝑉
which is indefinitely differentiable over the whole real line. The graph
of 𝐼 , that is the I–V curve, is parametrized through (4) as ( (𝑥) , (𝑥)).

hus, to represent the I–V curve, it will be sufficient to take a set of
alues for the parameter 𝑥 and draw the corresponding set of points
 (𝑥) , (𝑥)) connected by a line segment, giving rise to a piecewise
inear function that will interpolate the I–V curve with more or less
recision depending on the number of points and their distribution. It
s evident that what one wants is to have the best representation with
he least amount of points possible, and for this it is essential to achieve
n efficient distribution of the points to be drawn, which is generally
ot a uniform distribution as we will see later. Next we describe how
o obtain a distribution of points that, as we will see, is, among other
hings, computationally efficient.

.1. A mean slope points sequence

As we have seen in the preliminary section, if we know the slope
f the I–V curve at a point, automatically we get its corresponding
arameter with (5) and, then, the coordinates of the point with (4).
hen, if we take two arbitrary points of the I–V curve,

(

𝑉1, 𝐼1
)

and

𝑉2, 𝐼2
)

, the mean slope between them is 𝐼 ′12 =
𝐼2 − 𝐼1
𝑉2 − 𝑉1

and (5) provides
the parameter

𝑥12 = − 𝑎
𝑅𝑠ℎ + 𝑅𝑠

𝐼 ′12
(

𝑅𝑠ℎ + 𝑅𝑠
)

+ 1

1 + 𝐼 ′12𝑅𝑠

which gives the mean slope point
(

𝑉12, 𝐼12
)

=
(


(

𝑥12
)

,
(

𝑥12
))

com-
puted with (4).

Taking this idea in mind, we can start with the short-circuit and the
open-circuit points, compute the mean slope point, and then continue
computing the mean slope points between the pairs of consecutive
points available in the previous step. This strategy obtains a self-
adaptive distribution of points on the I–V curve in the sense that,
the greater the curvature of the curve, the greater the accumulation
of points. The pseudocode for this strategy is given in algorithm 1.
This algorithm provides 2𝑁 + 1 points of the I–V curve and it has the
virtue of directly providing the position of the points that orders them
increasingly with respect to the voltage.

In Fig. 1 it is graphically illustrated the operation of Algorithm 1
with N = 2, which generates 5 points, for the I–V curve corresponding
to Module 1 of Table 1.
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Algorithm 1: Pseudocode MSP sequence
Input: Input 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡, 𝑎, 𝑅𝑠ℎ, 𝑅𝑠, 𝑁 // 𝑎 = 𝑛𝑠𝑛𝑉𝑇 , 2𝑁 + 1 is the number

of points
Output: (𝑉 , 𝐼)

1 𝐼𝑠𝑐 =
𝑅𝑠ℎ

(

𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡
)

𝑅𝑠ℎ + 𝑅𝑠
− 𝑎

𝑅𝑠
𝑊0

(

𝐼𝑠𝑎𝑡𝑅𝑠ℎ𝑅𝑠

𝑎
(

𝑅𝑠ℎ + 𝑅𝑠
) exp

(

𝑅𝑠ℎ𝑅𝑠
(

𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡
)

𝑎
(

𝑅𝑠ℎ + 𝑅𝑠
)

))

2 𝑉𝑜𝑐 = 𝑅𝑠ℎ
(

𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡
)

− 𝑎𝑊0

(

𝐼𝑠𝑎𝑡𝑅𝑠ℎ

𝑎
exp

(

𝑅𝑠ℎ
(

𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡
)

𝑎

))

3 𝑉0 = 0, 𝐼0 = 𝐼𝑠𝑐 , 𝑉2𝑁 = 𝑉𝑜𝑐 , 𝐼2𝑁 = 0
4 for 𝑗 = 1 to 𝑁 do
5 for 𝑘 = 1 to 2𝑗−1 do

6 𝐼 ′
(2𝑘−1)2𝑁−𝑗 =

𝐼𝑘2𝑁−𝑗+1 − 𝐼(𝑘−1)2𝑁−𝑗+1

𝑉𝑘2𝑁−𝑗+1 − 𝑉(𝑘−1)2𝑁−𝑗+1

7 𝑥(2𝑘−1)2𝑁−𝑗 = − 𝑎
𝑅𝑠ℎ + 𝑅𝑠

𝐼 ′
(2𝑘−1)2𝑁−𝑗

(

𝑅𝑠ℎ + 𝑅𝑠
)

+ 1

1 + 𝐼 ′
(2𝑘−1)2𝑁−𝑗𝑅𝑠

8
(

𝑉(2𝑘−1)2𝑁−𝑗 , 𝐼(2𝑘−1)2𝑁−𝑗

)

=
(


(

𝑥(2𝑘−1)2𝑁−𝑗

)

,
(

𝑥(2𝑘−1)2𝑁−𝑗

))

ig. 1. Graphical illustration of Algorithm 1. Data corresponding to Module 1 of
able 1.

. Computational experiments

In this section we are going to prove the advantages of our new
ethodology, let us call Mean Slope Point (MSP) method, compared to

ne of the options most used by researchers due to its simplicity and
ccuracy, let us call usual (USU) method.

The USU method consists of representing the SDM model I–V
urve between the short-circuit point

(

0, 𝐼𝑠𝑐
)

and the open-circuit
oint

(

𝑉𝑜𝑐 , 0
)

taking a uniform voltage distribution in the interval
0, 𝑉𝑜𝑐

]

, and calculating the corresponding currents with the explicit
ormula (2) using the MATLAB’s built-in lambertw function. Then, a
iecewise linear function is traced across the computed points which,
n fact, provides an approximation of the exact I–V curve. Our new
roposal, the MSP method, is based in the Mean Slope Point sequence
onstructed in Algorithm 1, then, the explicitly obtained points are used
o trace the corresponding piecewise linear function. As commented
reviously, we will compute 𝐼𝑠𝑐 and 𝑉𝑜𝑐 with the formulas (2) and (3)
ut using the algorithm proposed in [8] to compute the Lambert W
unction images, although the lambertw function of MATLAB or any
ther numerical method could be used to compute 𝐼𝑠𝑐 and 𝑉𝑜𝑐 without
ffecting significantly the effectiveness of the MSP method.

To estimate the precision of the USU and MSP methods, for a given
oltage 𝑉𝑖, we will take as benchmark the corresponding current value
btained with the formula (2) computed with MATLAB and its function
ambertw, this current will be denoted by 𝐼𝑏 (the superindex 𝑏 comes
3

𝑖

Table 1
Parameters of the 9 theoretical SDM I–V curves.

Module 𝐼𝑝ℎ(A) 𝐼𝑠 (A) 𝑎 𝑅𝑠 (𝛺) 𝑅𝑠ℎ (𝛺)

1 15.880 7.44E−10 14.670 2.0400 425.2
2 1.032 2.51E−06 1.300 1.2390 744.7
3 3.654 4.00E−21 0.516 2.6900 2329.0
4 0.578 1.34E−10 0.012 0.0127 612.0
5 0.761 3.11E−07 0.039 0.0370 52.9
6 4.802 4.02E−07 0.037 0.5906 1167.0
7 4.942 1.84E−07 1.222 0.2460 387.0
8 2.501 1.13E−07 1.228 0.2283 442.2
9 0.991 5.47E−07 1.398 0.0386 844.4

from benchmark). In this way, the discrepancy between the reference
I–V curve and an approximation (in our approach a piecewise linear
function) of it will be measured with the root mean square error (RMSE)
given by the formula

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑀

𝑀
∑

𝑖=1

(

𝐼𝑏𝑖 − 𝐼𝑎𝑖
)2

where 𝐼𝑎𝑖 (the superindex 𝑎 comes from approximated) is the current
value corresponding to the approximated I–V curve for the voltage 𝑉𝑖.
The number of points (distributed uniformly with respect to the voltage
in

[

0, 𝑉𝑜𝑐
]

) taken to compute accurately the RMSE will be 𝑀 = 212+1 =
4097.

Remark 1. Since the USU method also makes use of the lambertw
function, the difference 𝐼𝑏𝑖 − 𝐼𝑎𝑖 in the selected points of the interval
[

0, 𝑉𝑜𝑐
]

will be zero, which will entail an advantage of the USU method
front the MSP one, nevertheless, we will see that despite this fact, the
MSP method is always more accurate than the USU method except in
one extreme case with a large number of points in the interval, where
the USU method is insignificantly more accurate than the MSP method
although significantly slower. But, any case, we must point out that
this advantage of the USU method in this extreme case is actually
misleading, because machine errors in the calculation of the explicit
values obtained with the MSP method are inherent to the procedure
and, in this case, they cannot offset the above null differences of the
USU method.

In order to obtain the computational time and to make it reliable,
we will repeat each experiment 1000 times and take the average time.

The experimentation has been carried out in two settings, a theoret-
ical one with 9 I–V curves used in previous papers [8], that cover the
widest range of possible situations and the shapes of the I–V curves are
significantly different, and a real context where 1000 curves have been
randomly selected from the National Renewable Energy Laboratory
(NREL) dataset of the USA [17], specifically from the mSi460A8 panel
at the Cocoa location.

4.1. Computational experiments with theoretical I–V curves

The SDM parameters corresponding to the 9 theoretical I–V curves
are provided in Table 1.

Fig. 2 illustrates the piecewise linear interpolation functions approx-
imating the I–V curve corresponding to Module 1 (with parameters in
Table 1). It is interesting to observe how the points are distributed with
the two methods, especially with the MSP method, which accumulates
more points in the area of greatest curvature, which is where it is
most needed. With very few points it is evident that the MSP method
manages to capture the shape of the I–V curve with much better
fidelity.

Table 2 provides the RMSE obtained with the USU and the MSP
methods for each one of the theoretical I–V curves corresponding of
Table 1. The RMSE has been computed for piecewise linear functions
computed with 2𝑘 + 1 points, 𝑘 = 2,… , 10, included the short-circuit
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Fig. 2. Piecewise linear approximations of the I–V curve corresponding to Module 1 of Table 1 with MSP and USU methods with four different amount of points.
and the open circuit points. As can be observed, the RMSE is always
approximately one order of magnitude smaller with the MSP method,
except in the I–V curve 6 in which both methods have errors of the
same order of magnitude. In this case, although the MSP method is
still slightly better than the USU method for all the sets of points
selected for the piecewise linear representations, there is one exception
for 1025 points where the USU method break the norm in a negligible
amount, but with a logical explanation because, in this case, the I–V
curve is practically a line and the points are almost all computed with
the lambertw function taking deceptive advantage the USU method as
commented in Remark 1.

Table 3 shows the computational times needed to obtain each set of
points for the piecewise linear functions.

It is evident from Table 1 that the MSP method is much faster than
the USU method, but the difference is much clearer if we calculate
the percentage of time saved with the MSP method compared to the
USU method, indeed, in the worst case, time saving with MSP method
reaches 82.6% although is capable of reaching a time saving of 96.9%.
Another way of visualizing the difference between the computation
times can be seen in Fig. 3, where the time of each method is repre-
sented as a function of the number of points used. We only show the
graph of the I–V curve corresponding to Module 1 since the graph of
the remaining I–V curves is similar.

4.2. Computational experiments with NREL I-V curves

In this subsection we want to validate the superiority of the MSP
method with I–V curves measured in real conditions. As previously
stated, 1000 curves have been randomly taken from the NREL database
4

[17]. The parameters corresponding to the NREL curves have been
computed with the Two-Step Linear Least-Squares (TSLLS) method [13]
(online accessible at https://pvmodel.umh.es/) and the average of the
RMSE and the computational times measured on the 1000 curves are
shown in Table 4.

As can be seen in Table 4, similarly to what happens with the
theoretical modules analyzed in the previous subsection, the RMSE and
the computational time with the NREL curves are approximately of
one lower magnitude order with the MSP method than with the USU
method, which confirms the superiority of the MSP method, both for
its precision as well as speed, with a large amount of real data.

Remark 2. Apart from linear interpolation, there are many other
forms of interpolation of points that are known to be more accurate
than linear interpolation, for example, interpolation by cubic splines.
Although it is not included in this work, we have verified that using
few points, linear interpolation with the MSP distribution remains the
most accurate, but as the number of points increases, cubic spline in-
terpolations improve the RMSE of the linear ones, ending up being the
best one which uses the distribution obtained with MSP distribution.
However, the computing time used for the graph representation of the
I–V curve with spline interpolations is significantly higher than with
linear interpolations and, in addition, the graphical representation of
the I–V curve with few points is distorted because with splines, regions
of current growth occur that do not correspond to the behavior of
a solar panel. In any case, it is interesting the use of cubic spline
interpolation together with MSP distribution of points because this
combination is capable of achieving a very small RMSE and this could
be interesting in other applications of photovoltaic modeling.

https://pvmodel.umh.es/
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Table 2
RMSE with the I–V curves of Table 1 and the piecewise linear functions obtained with different sets of points.

5 9 17 33 65 129 257 513 1025

Module 1 USU 1.19E−01 2.66E−02 6.81E−03 1.71E−03 4.27E−04 1.07E−04 2.66E−05 6.55E−06 1.54E−06
MSP 2.00E−02 4.89E−03 1.22E−03 3.04E−04 7.58E−05 1.89E−05 4.62E−06 1.09E−06 3.08E−07

Module 2 USU 2.74E−04 6.69E−05 1.68E−05 4.19E−06 1.05E−06 2.62E−07 6.52E−08 1.61E−08 3.77E−09
MSP 7.50E−05 1.84E−05 4.59E−06 1.15E−06 2.86E−07 7.13E−08 1.76E−08 4.21E−09 1.04E−09

Module 3 USU 5.10E−04 1.65E−04 4.00E−05 9.99E−06 2.51E−06 6.27E−07 1.56E−07 3.85E−08 9.04E−09
MSP 1.51E−04 3.69E−05 9.18E−06 2.29E−06 5.72E−07 1.43E−07 3.52E−08 8.53E−09 2.32E−09

Module 4 USU 5.50E−06 1.78E−06 4.48E−07 1.12E−07 2.81E−08 7.02E−09 1.75E−09 4.31E−10 1.01E−10
MSP 7.04E−07 1.73E−07 4.30E−08 1.07E−08 2.68E−09 6.63E−10 1.60E−10 3.77E−11 1.70E−11

Module 5 USU 9.83E−06 2.53E−06 6.34E−07 1.59E−07 3.97E−08 9.91E−09 2.47E−09 6.08E−10 1.43E−10
MSP 2.00E−06 4.92E−07 1.22E−07 3.06E−08 7.63E−09 1.90E−09 4.66E−10 1.10E−10 2.95E−11

Module 6 USU 2.90E−09 7.26E−10 1.82E−10 4.54E−11 1.13E−11 2.83E−12 7.06E−13 1.74E−13 4.09E−14
MSP 2.87E−09 7.17E−10 1.79E−10 4.48E−11 1.12E−11 2.80E−12 6.96E−13 1.72E−13 4.09E−14

Module 7 USU 2.44E−03 6.07E−04 1.52E−04 3.80E−05 9.50E−06 2.37E−06 5.91E−07 1.46E−07 3.42E−08
MSP 4.54E−04 1.12E−04 2.78E−05 6.93E−06 1.73E−06 4.30E−07 1.06E−07 2.49E−08 6.92E−09

Module 8 USU 1.55E−03 4.65E−04 1.18E−04 2.96E−05 7.42E−06 1.85E−06 4.62E−07 1.14E−07 2.67E−08
MSP 2.48E−04 6.10E−05 1.52E−05 3.79E−06 9.46E−07 2.35E−07 5.72E−08 1.34E−08 4.75E−09

Module 9 USU 6.30E−04 2.16E−04 6.01E−05 1.55E−05 3.90E−06 9.75E−07 2.43E−07 5.98E−08 1.41E−08
MSP 1.04E−04 2.57E−05 6.40E−06 1.60E−06 3.99E−07 9.89E−08 2.40E−08 5.75E−09 2.57E−09
Table 3
Computational times to obtain the sets of points for the piecewise linear functions approximating the I–V curves of Table 1.

5 9 17 33 65 129 257 513 1025

Module 1 USU 2.37E−05 2.12E−05 2.18E−05 2.62E−05 4.02E−05 3.87E−05 6.02E−05 7.54E−05 1.15E−04
MSP 1.83E−06 1.41E−06 1.66E−06 1.94E−06 2.75E−06 4.32E−06 7.50E−06 1.11E−05 1.56E−05

Module 2 USU 6.37E−05 2.27E−05 2.25E−05 2.57E−05 3.02E−05 3.86E−05 5.99E−05 7.30E−05 1.12E−04
MSP 3.19E−06 1.40E−06 1.61E−06 1.98E−06 2.64E−06 4.39E−06 7.48E−06 1.04E−05 1.50E−05

Module 3 USU 2.33E−04 2.46E−05 2.65E−05 3.01E−05 3.69E−05 5.05E−05 7.96E−05 1.11E−04 1.39E−04
MSP 1.89E−06 1.46E−06 1.66E−06 1.92E−06 2.82E−06 4.18E−06 7.03E−06 1.07E−05 1.55E−05

Module 4 USU 2.43E−05 2.10E−05 2.17E−05 2.62E−05 2.98E−05 3.83E−05 5.82E−05 7.15E−05 1.06E−04
MSP 1.45E−06 1.49E−06 1.59E−06 1.90E−06 2.91E−06 4.27E−06 7.50E−06 1.17E−05 1.78E−05

Module 5 USU 2.94E−05 2.08E−05 2.21E−05 2.50E−05 2.97E−05 3.83E−05 5.92E−05 7.25E−05 1.10E−04
MSP 1.55E−06 1.47E−06 1.70E−06 1.99E−06 2.61E−06 4.09E−06 7.51E−06 1.11E−05 1.55E−05

Module 6 USU 7.35E−05 3.01E−05 3.23E−05 3.76E−05 4.73E−05 6.38E−05 6.95E−05 9.62E−05 1.49E−04
MSP 1.48E−06 1.41E−06 1.62E−06 1.90E−06 2.62E−06 4.33E−06 7.61E−06 1.14E−05 1.54E−05

Module 7 USU 2.91E−05 2.09E−05 2.23E−05 2.45E−05 2.96E−05 3.83E−05 6.21E−05 7.16E−05 1.32E−04
MSP 1.48E−06 1.51E−06 1.60E−06 2.03E−06 2.70E−06 4.27E−06 7.45E−06 1.05E−05 1.50E−05

Module 8 USU 9.04E−05 2.10E−05 2.20E−05 2.57E−05 3.07E−05 3.89E−05 6.03E−05 6.99E−05 1.04E−04
MSP 1.71E−06 1.52E−06 1.66E−06 2.05E−06 2.70E−06 4.26E−06 7.40E−06 1.16E−05 1.64E−05

Module 9 USU 4.67E−05 2.42E−05 2.55E−05 2.87E−05 3.29E−05 3.97E−05 5.07E−05 6.62E−05 9.45E−05
MSP 1.47E−06 1.54E−06 1.70E−06 2.26E−06 2.57E−06 4.48E−06 7.90E−06 1.25E−05 1.60E−05
Fig. 3. Computational time (in seconds) behavior of USU and MSP methods in terms of the number of points used. Data corresponding to Module 1 of Table 1.
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Table 4
Average of the RMSE and the computing time for different number of points in 1000 I–V curves from NREL.

5 9 17 33 65 129 257 513 1025

RMSE USU 2.36E−01 6.52E−02 1.67E−02 4.20E−03 1.05E−03 2.63E−04 6.58E−05 1.64E−05 3.98E−06
MSP 4.39E−02 1.08E−02 2.69E−03 6.72E−04 1.68E−04 4.20E−05 1.05E−05 2.62E−06 6.55E−07

Time USU 2.36E−05 2.57E−05 2.67E−05 2.77E−05 3.29E−05 3.65E−05 8.94E−05 1.09E−04 1.52E−04
MSP 2.10E−06 1.84E−06 1.84E−06 2.18E−06 2.92E−06 5.16E−06 1.09E−05 1.53E−05 2.18E−05
4.3. Graphical representation of other SDM curves

In this section we show how to represent other important SDM
curves, namely, the power function, the first and the second derivatives
of 𝐼 , and the curvature of the I–V curve. We must point out that
he usual graphic representation of these curves is cumbersome since
t requires the previous calculation of the images of other functions,
or example, to calculate the curvature it is necessary to previously
alculate 𝐼 ′(𝑉 ) and 𝐼 ′′(𝑉 ) for the selected set of voltages. However,
ur proposal is practically immediate, we will use a parametrization
f these curves, with the same parameter 𝑥 given in (4), together with
he distribution of 𝑥 obtained for the I–V curve. It must be said that,
lthough it would be ideal to be able to obtain a sequence of mean
lope points for each of the curves, we have not found a simple way
o calculate them. Nevertheless, the distribution used contains intrinsic
nformation about the curves and the result that is obtained with a
oderate amount of points is highly satisfactory by its quality but

bove all for its simplicity.
Next we provide the parametrizations of other curves associated

ith the SDM.

• The power function 𝑃
From the parametrization (4), one obtains straightforwardly the
parametrization of the power function 𝑃 = 𝑉 𝐼 as ( (𝑥) , (𝑥))
where  (𝑥) =  (𝑥) (𝑥).

• The first derivative function 𝐼 ′

From the expression (5) of parameter 𝑥 as a function of the slope
𝐼 ′ of the I–V curve at the point (𝑉 , 𝐼), one obtains 𝐼 ′ as a function
of 𝑥 as

𝐼 ′ = −
𝑎 + 𝑥

(

𝑅𝑠ℎ + 𝑅𝑠
)

(

𝑎 + 𝑥𝑅𝑠
) (

𝑅𝑠ℎ + 𝑅𝑠
) = 𝑝1 (𝑥) (6)

It leads to the parametrization ( (𝑥) ,𝑝1 (𝑥)) of the graph of the
first derivative function 𝐼 ′.

• The second derivative function 𝐼 ′′

It is also easy to write the second derivative of 𝐼 in terms of 𝑥 [14]

𝐼 ′′ = −
𝑥𝑅2

𝑠ℎ𝑎
(

𝑎 + 𝑥𝑅𝑠
)3 (𝑅𝑠ℎ + 𝑅𝑠

)2
= 𝑝2 (𝑥) (7)

which gives the parametrization ( (𝑥) ,𝑝2 (𝑥)) of the graph of
the second derivative function 𝐼 ′′.

• The curvature function 𝑘
By using the expressions of 𝐼 ′ and 𝐼 ′′ in terms of 𝑥, we can
directly obtain the curvature 𝑘 = |𝐼 ′′|

(

1+(𝐼 ′)2
)3∕2 as a function of 𝑥.

A simplified expression of this function [14] is

𝑘 = 𝛿2𝑥
(

𝛼 + 2𝛽𝑥 + 𝛾𝑥2
)3∕2

=  (𝑥)

where

𝛼 = 1 + 1
(

𝑅𝑠ℎ + 𝑅𝑠
)2

, 𝛽 =
𝑅𝑠
𝑎

+ 1
𝑎
(

𝑅𝑠ℎ + 𝑅𝑠
)

𝛾 =
1 + 𝑅2

𝑠

𝑎2
, 𝛿 = 1

𝑎
−

𝑅𝑠

𝑎
(

𝑅𝑠ℎ + 𝑅𝑠
) (8)

Therefore, a parametrization of the graph of the curvature func-
tion is given by  𝑥 , 𝑥 .
6

( ( ) ( ))
The graph of the curves parametrized above associated to Module
1 can be visualized in Fig. 4. Only 65 points have been used for the
graphic representations.

Just to quantitatively illustrate the goodness of the distribution
obtained with MSP to represent the other curves related to the SDM, in
Table 5 we show the RMSE obtained for the power function with the
USU and MSP distributions. It can be seen, similarly as it happened with
the I–V curve, that in almost all modules and for any amount of points
used, the error obtained with MSP is an order of magnitude smaller
than the one obtained with USU, which confirms what we said at the
beginning of this section about the intrinsic information contained in
the MSP point distribution.

5. Conclusions

In this work we obtain a distribution of points on the I–V curve of
the SDM that has the following properties: (i) all the points, except the
extreme ones, are calculated explicitly and, therefore, the computation
time in comparison with numerical methods is almost negligible, (ii)
the points are efficiently distributed since they give rise to a piecewise
linear approximation that minimizes the RMSE, in addition, they are
obtained automatically without user intervention. With this distribu-
tion, the number of points to be used can be considerably reduced
and, therefore, cheapen the computational cost. The key tool used to
achieve this has been a recent parametrization of the SDM [14] that
allows the explicit calculation of the unique mean slope point between
two arbitrary points on the I–V curve. A detailed algorithm has been
described that has the virtue of ordering the points of the distribution
in real time. We have compared our distribution with the uniform one
for different PV modules that supports the advantages of our proposal.
In addition, we have seen that the distribution obtained can be used
to represent other parametrized curves associated with the SDM, such
as the power curve. Finally, it could be interesting to obtain efficient
piecewise linear approximations by interpolation, to use the idea of
constructing a sequence of points based on the mean slope to other
curves, particularly concave or convex curves, in which it is possible to
easily calculate the mean slope point between two arbitrary points.
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Fig. 4. Power, first and second derivative and curvature functions corresponding to Module 1 of Table 1.
Table 5
RMSE with the power curves of Table 1 and the piecewise linear functions obtained with different sets of points.

5 9 17 33 65 129 257 513 1025

Module 1 USU 5.44E+02 1.28E+02 3.25E+01 8.13E+00 2.03E+00 5.08E−01 1.27E−01 3.18E−02 7.93E−03
MSP 9.90E+01 2.65E+01 8.80E+00 3.70E+00 1.63E+00 6.57E−01 2.28E−01 6.81E−02 1.83E−02

Module 2 USU 1.33E+00 3.36E−01 8.45E−02 2.11E−02 5.29E−03 1.32E−03 3.31E−04 8.26E−05 2.06E−05
MSP 3.60E−01 8.95E−02 2.24E−02 5.64E−03 1.42E−03 3.55E−04 8.87E−05 2.22E−05 5.53E−06

Module 3 USU 2.51E+00 6.48E−01 1.58E−01 3.95E−02 9.90E−03 2.47E−03 6.19E−04 1.55E−04 3.86E−05
MSP 2.35E+00 6.65E−01 1.72E−01 4.33E−02 1.09E−02 2.79E−03 7.53E−04 2.21E−04 6.71E−05

Module 4 USU 2.35E−02 7.91E−03 2.03E−03 5.11E−04 1.28E−04 3.20E−05 8.00E−06 2.00E−06 4.99E−07
MSP 3.09E−03 7.61E−04 1.90E−04 4.74E−05 1.19E−05 2.98E−06 7.47E−07 1.88E−07 4.70E−08

Module 5 USU 4.49E−02 1.21E−02 3.06E−03 7.66E−04 1.92E−04 4.79E−05 1.20E−05 3.00E−06 7.48E−07
MSP 9.20E−03 2.28E−03 5.71E−04 1.44E−04 3.63E−05 9.15E−06 2.29E−06 5.74E−07 1.44E−07

Module 6 USU 6.93E−03 1.73E−03 4.33E−04 1.08E−04 2.71E−05 6.77E−06 1.69E−06 4.23E−07 1.06E−07
MSP 6.99E−03 1.75E−03 4.37E−04 1.09E−04 2.73E−05 6.84E−06 1.71E−06 4.27E−07 1.07E−07

Module 7 USU 1.11E+01 2.90E+00 7.29E−01 1.83E−01 4.57E−02 1.14E−02 2.85E−03 7.13E−04 1.78E−04
MSP 2.10E+00 5.20E−01 1.30E−01 3.31E−02 8.46E−03 2.16E−03 5.47E−04 1.37E−04 3.44E−05

Module 8 USU 6.79E+00 2.12E+00 5.47E−01 1.38E−01 3.45E−02 8.62E−03 2.16E−03 5.39E−04 1.34E−04
MSP 1.10E+00 2.74E−01 6.97E−02 1.83E−02 4.93E−03 1.32E−03 3.43E−04 8.71E−05 2.18E−05

Module 9 USU 2.73E+00 9.63E−01 2.72E−01 7.02E−02 1.77E−02 4.43E−03 1.11E−03 2.77E−04 6.92E−05
MSP 4.55E−01 1.13E−01 2.88E−02 7.42E−03 1.93E−03 4.93E−04 1.25E−04 3.13E−05 7.79E−06
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