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Abstract
The objective of this paper is to provide the exact sets of initial data ensuring the convergence
or divergence of a special class of real towers of powers and logarithms. All the terms forming
these towers have a common value except the cusp element, that is indeed the initial data of
the sequences defining the towers. The results obtained will be applied to some Lambert W
function sequences, providing also thewhole set of initial datawhich ensure their convergence
or divergence.
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1 Introduction

It is a well-known fact from Euler’s work [17], that the infinite power tower

a(a(a(a
..
.

))) (1)

converges if, and only if, the real value a belongs to the interval
[
1/ee, e1/e

]
. Many authors

have rediscovered or tried to generalize this result, see for instance the survey paper by
Knoebel [22], see also [2] for interesting explanations of some historical facts. In the complex
plane, Carlsson [9] provided in 1907 a necessary condition for the convergence of the tower.
Different sufficient conditions were succesively given by Thron [35] and Shell [34], but in
1983 Baker and Rippon [4], see also [5], provided a sufficient condition which generalized
the previous ones. An interesting illustration of the fractal boundary of the set where the
power tower converges in the complex plane can be found in [24], see also the nice 2004
Lambert W poster http://www.orcca.on.ca/LambertW/.
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Tower (1) can be seen as the limit, when it exists, of the tetration sequence1 defined as

na =
{
1, if n = 0

a
(
n−1a

)
, if n = 1, 2, . . .

(2)

The limit of (2) should be expressed from right to left as

..
.a

(

a(a
1)

)

(3)

In the current paper we are interested in the study of the convergence of the following
tower

..
.a

(
a(a

c)
)

(4)

in terms of the cusp value c. Tower (4) is the limit of a sequence similar to the tetration with
c as the initial data instead of 1. We are going to provide the exact range of values of the
cusp ensuring the convergence or divergence of this power tower. In particular, we will see
that, even when a ∈]1, e1/e] which is a subinterval of the Euler’s result, the tower (4) can be
divergent for a set of values of c and, it is convergent for any real value of the cusp whenever
a ∈ [

1/ee, 1
]
. We will also see what happens when a ∈]0, 1/ee[ for each value of c.

One of the most outstanding and complete works related to the study of infinite power
towers can be found in the paper of Barrow [6], where he dealt with the convergence of the
following infinite tower with generic real exponents

a
(a

(a
(a

..
.

3 )

2 )

1 )

0 (5)

which generalizes the tower (1). We would like to emphasize that tower (4) is not a particular
case of tower (5) except for the tetration limit, so the test of convergence of Barrow does
not provide information on (4). For complex exponents, (4) was also analyzed by Shell in
[34] whose results, particularized to the real case, provide, for each a in

[
1/ee, e1/e

]
, an

interval for the cusp value where the tower is convergent. This interval for the cusp is indeed
a neighborhood of the limit value of the infinite tower when it converges, we will state what
happens for any real cusp.

In the general complex case for tower (5), that is, all the exponents of the tower can be
different complex numbers, Bachman, in [3], proved and generalized to the complex case a
result that Ramanujan wrote in [28], one of his notebooks, consisting of a test of convergence
of the generic real tower. It must be said that the results of Ramanujan/Bachman applied to
the real case, do not give more information than the results obtained by Barrow, except in the
case when ai ≥ e1/e and ai ≤ 1/ee. It is worth saying again that, as (4) is not a particular
case of (5), the test given in [3] does not provide information on the behavior of (4).

It is clear that the limit, when it exists, of the infinite power tower (3) is a solution of the
real equation

x = ax (6)

whose solutions are represented in Fig. 1.

1 The notation used in (2) is Rudy Rucker’s [29], but it is also usual the Knuth’s up-arrow notation a � n
[23].
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Fig. 1 Solutions of Eq. (6)

In the case that a ∈]1, e1/e], the limit of the power tower when exists is indeed the smallest
solution of the Eq. (6). An immediate and logical question arises when one visualizes the
graph of Fig. 1, namely, are the solutions of Eq. (6) the limit of a sequence “related to the
infinite power tower” in the case a ∈]0, 1/ee[ ? And the same question can be asked in the
case of the largest solutions of (6) for a ∈]1, e1/e[. The answer is yes, and it is as beautiful
as surprising. The key idea lies in rewriting Eq. (6) as

x = loga x (7)

Now, observe that Eq. (7) suggests the following infinite “tower” of logarithms

· · · (loga
(
loga

(
loga (b)

)))
. (8)

Obviously, the limit, when it exists, of this tower is a solution of Eq. (7). As a curiosity, the
expression (8) can actually be rewritten with the shape of an inverted tower, specifically as

⎛

⎜
⎝

. . . ..
.

− log(

− log
(− log1/b a)

a

) a

⎞

⎟
⎠

−1

Also, (8) can be expressed in terms of the natural base of logarithms as

· · · 1

ln a
ln

(
1

ln a
ln

(
1

ln a
ln b

))
.

In the logarithm tower (8) it is essential the value of b, first because of the existence of the
logarithms composition involved and second, but not least, because of its convergence. Cho
and Park in [11] proved for a ∈]0, 1/ee[ and b = 1/e that the logarithm tower (8) converges
to the solutions of Eq. (7)≡(6) and, for a ∈]1, e1/e[ and b = e, that the logarithm tower (8)
converges to the largest solutions of Eq. (7)≡(6). Our contribution in the current paper will be
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again to provide the exact intervals for the value b that make the infinite tower of logarithms
convergent, also we will detail the behavior of this tower when it is not convergent.

It is a well known fact that the towers of powers and logarithms are closely related to the
Lambert W function, that is, to the solutions of the equation

yey = z

with data z and unknown y. One of the most relevant works in this subject is the paper of
Corless et al. [13] where it is stated that

W (z) = z

exp z
exp z

...

for |W (z)| < 1 (9)

and

W (z) = ln
z

ln z
ln z

...

for |W (z)| > 1 (10)

whereW is the LambertW function (see [13,Eq. (98) and (99)]). These formulas are obtained
from rewriting the expressionsW (z) = z/ expW (z) andW (z) = ln (z/W (z)) as iterations,
more specifically, (9) and (10) are, respectively, the limits of the iterative processes

yn = z

exp (yn−1)
, n = 1, 2, 3, . . . (11)

and

yn = ln

(
z

yn−1

)
, n = 1, 2, 3, . . . (12)

under certain specific initial data y0 which are not specified in [13]. As we will see, from
the paper of Cho and Park [11] it is possible to deduce a particular initial data for which the
previous sequences are convergent. As an application of our results in the current paper, we
will be able to provide the whole set of real initial data ensuring the convergence of these
two sequences.

The towers of powers and logarithms appear naturally in many mathematical problems
associated to physical phenomena, indeed, the towers (limits) are the solutions of the equa-
tions modeling these phenomena and frequently the equations are rewritten as the Lambert
equation yey = z. This is one of the many reasons why the LambertW function is so impor-
tant and well known. Some examples of problems where the Lambert W function appears
can be found in https://en.wikipedia.org/wiki/Lambert_W_function. Consequently, a wild
amount of papers related to these problems can be found in the literature, here we only cite
a small sample of them, for instance, [8, 10, 15, 21, 25, 26, 36] and, [18]. The relevance of
the Lambert equation lead also to the researchers to look for good approximations and tight
bounds on its solutions, see for example, [1, 7, 19, 20, 32, 33] and, [30].

The structure of the paper is as follows. After the introductory Sect. 1, we give in Sect. 2
the basic definitions, notations and preliminary results which will be used later on. The main
results of the work are given in Sect. 3, where the exact sets of initial data ensuring the
convergence of the towers of powers and logarithms, (4) and (8), are specified. The complete
behavior of the towers, not only the convergence, is described in terms of the initial data
values. The previous results are applied in Sect. 4 to describe the set of initial values which
ensure the convergence of some iterative schemes derived from the Lambert W function.
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2 Preliminaries

To start with, let us introduce a notation for the power and logarithm tower sequences under
study in this paper. We propose a similar notation for both towers in order to write our results
in a more unified way. Moreover, we think it could help the reader with intuition on some
parallel ideas.

The general term of the power tower sequence is defined as

Pn (a, c) :=
{
c, if n = 0
aPn−1(a,c), if n = 1, 2, . . .

(13)

and, similarly, the general term of the logarithm tower sequence for a �= 1 is defined as

Ln (a, b) :=
{
b, if n = 0,
loga (Ln−1 (a, b)) , if n = 1, 2, . . . ,

(14)

The limit of these sequences, when it exists, will be denoted, respectively, by

P (a, c) := ..
.a

(
a(a

c)
)

and

L (a, b) := · · · (loga
(
loga

(
loga (b)

)))
.

When c = 1, Pn(a, 1) is nothing else but the tetration sequence of base a and height n
defined in (2), so, sequence (13) can be seen as a generalization of tetration.

Aswehave already commented, but not specified, Eq. (6) has a unique solution ifa ∈ [0, 1]
and, two solutions if a ∈]1, e1/e[, for a = e1/e the equation has also a unique solution. We
will use the following notation for these solutions regarding the usual notation of the two
real branches of the Lambert W function (we will see the correspondence in Sect. 4)

{
x0 (a) is the smallest solution of (6) for a ∈]0, e1/e]
x−1 (a) is the largest solution of (6) for a ∈]1, e1/e[ (15)

For the extreme a = e1/e, we will use the notation, when it is necessary, x−1
(
e1/e

) :=
x0

(
e1/e

) = e.
For a ∈]1, e1/e[, the following result gathers somewell-known properties about the unique

two solutions of Eq. (6).

Lemma 1 Let a ∈]1, e1/e[, one has:
1. a < x0 (a) < e < x−1 (a)

2. ax < x if x0(a) < x < x−1 (a)

3. ax > x if x > x−1 (a) or x < x0(a)

It is a well known fact that, see for example [6,Th. 5], if a belongs to the interval ]0, 1/ee[
and c = 1, the power tower sequence (13) is not convergent, indeed their subsequences of
odd and even terms, (P2n−1 (a, 1))n and (P2n (a, 1))n , are convergent to different values,
Podd (a, 1) and Peven (a, 1), respectively, for each a. Moreover, they are closely related with
the equation

x = a(ax ) (16)

whose solutions can be visualized in Fig. 2.
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Fig. 2 Solutions of Eq. (16)

For the sake of simplicity, let us denote

P2n−1 (a) := P2n−1 (a, 1) , P2n (a) := P2n (a, 1)
Podd (a) := Podd (a, 1) , Peven (a) := Peven (a, 1) .

The next results provide some properties of the subsequences (P2n−1 (a))n and (P2n (a))n
(see, for instance, [6], [14], [22], [27], [31], for proofs and other details).

Lemma 2 If a ∈]0, 1/ee[, then:
1. (P2n−1 (a))n is an increasing sequence convergent to Podd (a), and (P2n (a))n is a

decreasing sequence convergent to Peven (a). Moreover

a < Podd (a) < x0 (a) <
1

e
< Peven (a) < 1.

2. The subsequences limits Podd (a) and Peven(a) satisfy

aPodd (a) = Peven(a) and aPeven(a) = Podd(a).

Lemma 3 One has that:

1. If a ∈]0, 1/ee[, the unique solutions of (16) are Podd (a) , x0 (a) , and Peven (a) and it
is satisfied that

ax < loga x if 0 < a < Podd(a) or x0(a) < x < Peven(a),

ax > loga x if Podd(a) < x < x0(a) or Peven(a) < x .

2. If a ∈]1/ee, 1[, the unique solution of (16) is x0 (a) and it is satisfied that

ax < loga x if 0 < x < x0 (a) ,

ax > loga x if x > x0 (a) .
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3. If a ∈]1, e1/e[, the unique solutions of (16) are x0 (a) and x−1 (a) and it is satisfied that

ax > loga x if 0 < x < x0 (a) or x > x−1 (a) ,

ax < loga x if x > x0 (a) .

3 On the convergence of the tower sequences for general initial data

As we have already commented, solutions of Eq. (6) can be represented by means of infinite
towers of powers and logarithms. These infinite towers are indeed the limits of the sequences
(Pn (a, c))n and (Ln (a, b))n starting from specific initial data c and b, respectively. Never-
theless, it is interesting to show a general description of convergence/divergence depending
on the initial values chosen c and b. This is the goal of the current section, where the functions
Podd (a) and Peven (a), as well as x0 (a) and x−1 (a), will play an important role delimiting
the initial data regions that can be seen as the basins of attraction of the tower sequences.

In the next result we state the initial data sets for which the logarithm tower sequence
converges. Obviously, these sets contain the initial data of Cho and Park, so that the following
result can be seen as a generalization of [11,Th.1, statements b and c], in fact, the proofs have
certain similarities.

Recall that we are using the notation x−1
(
e1/e

) := x0
(
e1/e

) = e.

Theorem 4 The limit of the logarithm tower sequence defined in (14) satisfies that:

L (a, b) =
{

x0 (a) if a ∈]0, 1/ee[ and b ∈]Podd (a) , Peven (a) [,
x−1 (a) if a ∈]1, e1/e] and b > x0 (a) .

Proof Let us prove first that L (a, b) = x0 (a) if a ∈]0, 1/ee[ and b ∈]Podd (a) , Peven (a) [.
Since we are assuming Podd(a) < b < Peven(a) and 0 < a < 1/ee < 1, being Podd(a) >

0, then

loga Peven(a) < loga b < loga Podd(a).

From statement 2 of Lemma 2 one has, taking there logarithms base a, Podd(a) =
loga Peven(a) and loga Podd(a) = Peven(a), so the previous inequalities becomes

Podd(a) < L1 (a, b) < Peven(a)

which leads, proceeding analogously, to the sequence (Ln(a, b))n be well defined with

Podd(a) < Ln(a, b) < Peven(a) ∀n.

Let us see that subsequences (L2n(a, b))n and (L2n−1(a, b))n are monotone. Remember
first that, from statement 1 of Lemma 2, one has

Podd(a) < x0(a) < Peven(a),

whenever a ∈]0, 1/ee[, so, we can distinguish the following three possible cases for b: (i)
x0(a) < b < Peven(a), (ii) Podd(a) < b < x0(a), and (iii) b = x0(a).

(i) If x0(a) < b < Peven(a), we have from statement 1 of Lemma 3 that

ab < loga b = L1(a, b)

and, taking logarithms base a (< 1) in the previous inequality, one obtains

b > loga L1(a, b) = L2(a, b).
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Taking again logarithms one gets

L1 (a, b) < L3(a, b)

and continuing so on one arrives to

(L2n(a, b))n is decreasing,

and

(L2n−1(a, b))n is increasing.

Observe also that, since x0(a) < b, taking once more logarithms base a (< 1), and
remembering that loga x0(a) = x0(a), one gets

L1(a, b) < x0(a) < b.

Therefore one obtains that

L1(a, b) < L3(a, b) < L5(a, b) < · · · < x0(a) < · · · L4(a, b) < L3(a, b) < b.

Consequently, (L2n(a, b))n is convergent to a certain β1 (a, b) =: β1 and (L2n−1(a, b))n
is convergent to a certain β2 (a, b) =: β2 with

Podd(a) < β1 ≤ x0 (a) ≤ β2 < Peven(a).

Now, since aLn(a,b) = Ln−1 (a, b), it is obvious that

aβ1 = β2 and a
β2 = β1,

and, consequently,

a
(
aβ1

)
= aβ2 = β1 and a

(
aβ2

)
= aβ1 = β2

which implies that β1and β2 are both solutions of the equation a(ax ) = x , different from
Podd(a) and Peven(a). Therefore, again from statement 1 of Lemma 3 one has necessarily
that

β1 = β2 = x0(a),

and, hence,

lim
n

Ln (a, b) = x0(a).

(ii) If Podd(a) < b < x0(a), the proof is analogous to i). Just observe that, under the
current hypothesis, subsequences (L2n(a, b))n and (L2n−1(a, b))n are increasing and
decreasing, respectively.

(iii) If b = x0(a), we simply have that the subsequences (L2n(a, b))n and (L2n−1(a, b))n are
constantly equal to x0(a).

Let us prove now that L (a, b) = x−1 (a) if a ∈]1, e1/e] and b > x0 (a).
It is an immediate consequence of Lemma 1. Indeed, we can distinguish again three cases:

(i) x0(a) < b < x−1(a), (ii) b > x−1(a), and (iii) b = x−1(a).
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(i) If x0(a) < b < x−1(a), which is the case, for instance, of b = e, it is easy to see that
(Ln (a, b))n is increasing and bounded above by x−1(a), then (Ln(a, b))n converges to
certain γ (a, b) =: γ with

x0(a) < γ ≤ x−1(a),

but, since loga Ln−1(a, b)) = Ln(a, b), then loga(γ ) = γ and γ is a solution of equation
ax = x different from x0(a), which necessarily implies

γ = x−1(a).

(ii) If b > x−1(a), the proof is analogous to i). Just observe that, under the current hypothesis,
(Ln (a, b))n is decreasing and bounded below by x−1(a).

(iii) If b = x−1(a), we simply have that the sequence (Ln(a, b))n is constantly equal to
x−1(a). �	

Remark 5 Observe that b = 1/e is the unique common initial datum for all a ∈]0, 1/ee[, and
b = e is the unique common initial datum for all a ∈]1, e1/e].

The next result describes the behavior of the sequence (Ln (a, b))n when the initial data
lies outside the intervals of convergence given in Theorem 4.

Proposition 6 One has that:

1. In the following cases there exists n ≥ 1 such that Ln(a, b) ≤ 0 and, therefore,
(Ln(a, b))n is not a sequence of real numbers:

(a) a ∈]0, 1/ee[ and 0 < b /∈ [Podd(a), Peven(a)].
(b) a ∈ [1/ee, 1[ and 0 < b �= x0 (a).
(c) a ∈]1, e1/e] and 0 < b < x0 (a).

2. In the case a ∈]0, 1/ee[, it is satisfied that:

(a) If b = Podd(a) then L2n(a, b) = Podd(a) and L2n−1(a, b) = Peven(a).

(b) If b = Peven(a) then L2n(a, b) = Peven(a) and L2n−1(a, b) = Podd(a).

Proof Statement 1.

(a) We distinguish two cases:
• If 0 < b < Podd(a), we have by using Lemma 2 (2) that

L1(a, b) = loga b > loga Podd(a) = Peven (a)

which implies

L2(a, b) = loga L1 (a, b) < loga Peven(a) = Podd (a)

and, by other hand, Lemma 3 (1), gives

ab < loga b = L1 (a, b) ,

and, consequently,

b > loga L1 (a, b) = L2 (a, b) .

Assume, reasoning by contradiction, that L2n (a, b) > 0 for all n ≥ 1, then we have that
0 < L2(a, b) < Podd(a) and we can repeat the previous procedure obtaining

Podd (a) > L2 (a, b) > loga L3 (a, b) = L4 (a, b) .
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Proceeding analogously we obtain that (L2n (a, b))n is a strictly positive decreasing
sequence, consequently convergent to a certain non-negative α(a, b) =: α < Podd(a).
Since loga loga L2n (a, b) = L2n (a, b) one has that α = aa

α
, that is, α is a solution of

(16) strictly less than Podd(a) which is a contradiction with Lemma 2 (1) together with
Lemma 3 (1).
• In the case b > Peven(a), if b ≥ 1 then L1 (a, b) = loga b ≤ 0 and the proof is finished,
in the remaining case Peven(a) < b < 1 which implies

0 < L1 (a, b) < Podd (a)

and we can proceed analogously to the previous case, through the subsequence of odd
terms, to achieve the same conclusion.

(b) The proof is completely analogous to the previous statement, specifically, if we distin-
guish the cases 0 < b < x0 (a) and b > x0 (a), then x0 (a) plays the role of Podd(a)

in the first case and of Peven(a) in the second case, only take into account that now it is
used Lemma 3 (2) with x0 (a) being the unique solution of (16).

(c) It is similar as the previous ones but usingLemma3 (3) instead. In this case oneobtains that
L2n(a, b) is an increasing sequence bounded above by x0 (a), consequently converging
to a certain α(a, b) =: α ≤ x0 (a), indeed α < 1 since in other case the proof is finished,
but if α < 1 < x0 (a) it leads to a contradiction with the fact that α is solution of (16).
Statement 2. It is a straightforward consequence of Lemma 2 (2).

�	
Remark 7 From the previous results we can detail the behavior of the sequence (Ln (a, b))n
in terms of the initial data chosen in the non-trivial cases b �= x0 (a) and b �= x−1 (a),
with b > 0. In the cases b = x0 (a) or b = x−1 (a) the sequence remains constant at the
corresponding value.

• If a ∈]0, 1[, the sequence (Ln (a, b))n jumps alternatively to both sides of x0 (a).

– In the case a ∈]0, 1/ee[ and b ∈]Podd (a) , Peven (a) [, the subsequences of above
and of below monotonically converge to x0 (a). If b is one of the extremes of the
interval, the sequence keeps jumping from one extreme to the other indefinitely.

– When a ∈]0, 1/ee[ and b is outside of [Podd (a) , Peven (a)], or a ∈ [1/ee, 1[, the
subsequences of above and of below become negative or zero at some n.

• If a ∈]1, e1/e], the sequence (Ln (a, b))n is monotone. Moreover:

– In the case b > x−1 (a) the sequence converges decreasingly to x−1 (a) .

– In the case x0 (a) < b < x−1 (a) the sequence converges increasingly to x−1 (a) .

– In the case b < x0 (a) the sequence is decreasing and become negative or zero at
some n.

The following result describes the behavior of the power tower sequence in terms of the
initial data. In the proof, we will give some more details than in the main statement of the
theorem. Recall again that we are using the notation x−1

(
e1/e

) := x0
(
e1/e

) = e.

Theorem 8 The limit of the power tower sequence defined in (13) satisfies that:

P (a, c) =
⎧
⎨

⎩

� if a ∈]0, 1/ee[ and c �= x0(a),

x0 (a) if a ∈ [
1/ee, 1

]
(∀c ∈ R) or a ∈]1, e1/e] and c < x−1 (a) ,

+∞ if a ∈]1, e1/e] and c > x−1 (a) .
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Proof First of all observe that, if c ≤ 0, then P1(a, c) > 0, hence, the behavior of the sequence
(Pn(a, c))n with non-positive initial data is completely described through the positive ones,
so, let us assume that c > 0 and also that we are not in the trivial cases c = x0 (a) or
c = x−1 (a) where the sequence keeps constant at the corresponding value. The proof is
directly obtained from the following easily verifiable facts which are, indeed, the counterpart
of the logarithm tower sequence behavior described in Remark 7:

• If a ∈]0, 1[, the sequence (Pn (a, c))n jumps alternatively to both sides of x0 (a).

– In the case a ∈]0, 1/ee[, the subsequences of above and of belowmonotonically con-
verge to Peven (a) and Podd (a), respectively. Moreover, if the sequence (Pn (a, c))n
starts in the interval [Podd (a) , Peven (a)] (i.e., if c ∈ [Podd (a) , Peven (a)]) their
terms always stay in it while, if it starts outside this interval, the terms always stay
out.
For example, if the sequence starts with a positive initial data below Podd (a), the
subsequence of odd terms will converge decreasingly to Peven (a), and the sequence
of even terms will converge increasingly to Podd (a).

– In the case a ∈ [1/ee, 1[, the subsequences of above and of below monotonically
converge to x0 (a).

• The case a = 1 is trivial, specifically one has, for any c ∈ R, that (Pn (a, c))n =
P (a, c) = 1 for all n ≥ 1.

• If a ∈]1, e1/e], the sequence (Pn (a, c))n is monotone. Moreover:

– In the case c < x0 (a) the sequence converges increasingly to x0 (a) .

– In the case x0 (a) < c < x−1 (a) the sequence converges decreasingly to x0 (a) .

– In the case c > x−1 (a) the sequence is increasing and diverges to +∞. �	
Remark 9 Although it is not evident, an alternative proof of Theorem 8 can also be obtained
using the preliminary lemmas of [6] but, it is a key tool to know a priori the role of the
functions Podd (a), Peven (a), x0 (a), and x−1 (a).

Figure 3 shows in colors the basins of attraction of the power and logarithm towers, that
is, the regions of points (a, c) and (a, b) where the power and tower sequences converge.

4 Applications to the LambertW function sequences

The inverse of the real function f (y) = yey , y ∈ R, is called the Lambert W function, it
is a multivalued function because f is not injective over all R. Nevertheless, f is injective
on the intervals ] − ∞,−1[ and [−1,+∞[. The inverse of f on the interval [−1,+∞[ is a
single-valued function defined on [−1/e,+∞[, denoted by W0 and called principal branch
of the Lambert W function, and the inverse on the interval ]−∞,−1[ is also a single-valued
function defined on ] − 1/e, 0[, denoted by W−1 and called negative branch of the Lambert
W function.

To compute the images W0 (z) and W−1 (z), one must solve the equation yey = z, with
unknown y and datum z, in the corresponding intervals.

In the case z �= 0 one has the following equivalence

yey = z ⇔ y

z
= (

e−z)y/z ⇔ x = ax (17)

where a = e−z and x = y
z . Therefore, the images of the inverse functions are determined by

the solutions of the equation x = ax , and vice versa, specifically:
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• W0 (z) = zx0
(
e−z

)
for z ∈ [−1/e,+∞] or x0 (a) = W0 (− ln a)

− ln a
for a ∈]0, e1/e]\ {1}.

The case a = 1 corresponds to z = 0 where x0 (1) = 0 and W0 (0) = 0.

• W−1 (z) = zx−1
(
e−z

)
for z ∈]−1/e, 0[ or x−1 (a) = W−1 (− ln a)

− ln a
for a ∈]1, e1/e]

The previous assertions justify the notation x0 (a) and x−1 (a) in (15).
As we already commented in the introduction, equation

yey = z (18)

expressed in different ways can give rise to different types of sequences which are indeed
closely related to the two tower sequences (see, for instance, [13]). These Lambert sequences
are well known and used in the literature and our contribution will consist in specifying for
which range of the initial data each sequence converges to its corresponding limit.

• Equation (18) written as y = ze−y suggests the iterative scheme (see expansion (98) in
[13])

yn = ze−yn−1 (19)

Observe that it is equivalent to yn
z = e−yn−1 = (

e−z
)yn/z and, for a = e−z and c = y0

z ,
one has

yn
z

= Pn (a, c) .

• Taking into account that yey = z implies
z

y
> 0 whenever y �= 0, one can write Eq. (18)

as y = ln

(
z

y

)
which suggests the iterative scheme (see expansion (99) in [13])

yn = ln

(
z

yn−1

)
(20)

123



On the convergence of infinite towers of powers and logarithms. . . Page 13 of 15 71

Fig. 4 Basins of attraction of the Lambert sequences

Observe that it is equivalent to yn
z = 1

z ln

(
z

yn−1

)
= 1

z ln

((
yn−1

z

)−1
)

=

1
−z ln

(
yn−1

z

)
= 1

ln a ln

(
yn−1

z

)
= loga

(
yn−1

z

)
and, for a = e−z and b = y0

z ,

one has
yn
z

= Ln (a, b) .

Therefore, one has the following consequences from the results of Sect. 3.

Corollary 10 The Lambert sequences satisfy that:

1. If −1
e ≤ z < 0 and y0 > zx−1

(
e−z

) = W−1 (z), the sequence (19) converges to

y = zP

(
e−z,

y0
z

)
= W0 (z) ∈ [−1, 0[.

2. If 0 < z ≤ e and y0 ∈ R, the sequence (19) converges to

y = zP

(
e−z,

y0
z

)
= W0 (z) ∈]0, 1].

In the case z = 0, (19) converges to y = 0 = W0 (0) for any y0 ∈ R.
3. If z > e and y0 ∈]zPodd

(
e−z

)
, zPeven

(
e−z

) [, the sequence (20) converges to

y = zL

(
e−z,

y0
z

)
= − ln

(
L

(
e−z,

y0
z

))
= W0 (z) ∈]1,+∞[.

In the case z = e, (20) converges to y = 1 = W0 (e) if, and only if, y0 = 1.
4. If −1

e ≤ z < 0 and y0 < zx0
(
e−z

) = W0 (z), the sequence (20) converges to

y = zL

(
e−z,

y0
z

)
= − ln

(
L

(
e−z,

y0
z

))
= W−1 (z) ∈] − ∞,−1[.

Remark 11 From [11,Cor. 3] it is also obtained the convergence of the Lambert sequences
for specific initial data, concretely, using our notation they proved that (19) converges to
y = zP

(
e−z, 1

)
with y0 = zwhenever −1

e ≤ z ≤ e, (20) converges to y = − ln
(
L

(
e−z, 1

e

))

with y0 = z
e whenever z ≥ e and, (20) converges to y = − ln

(
L

(
e−z, e

))
with y0 = ze

whenever −1
e ≤ z < 0. Note that all these statements are particular cases of Corollary 10.
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Figure 4 shows in colors the basins of attraction of the Lambert sequences, that is, the
regions of points (z, y0) where the sequences (19) and (20) converge.
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