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Abstract
Thepresent paper is devoted to the computation of theLipschitzmodulus of the optimal
value function restricted to its domain in linear programming under different types of
perturbations. In the first stage, we study separately perturbations of the right-hand
side of the constraints and perturbations of the coefficients of the objective function.
Secondly, we deal with canonical perturbations, i.e., right-hand side perturbations
together with linear perturbations of the objective. We advance that an exact formula
for the Lipschitz modulus in the context of right-hand side perturbations is provided,
and lower and upper estimates for the corresponding moduli are also established in the
other two perturbation frameworks. In both cases, the corresponding upper estimates
are shown to provide the exact moduli when the nominal (original) optimal set is
bounded. A key strategy here consists in taking advantage of the background on
calmness in linear programming and providing the aimed Lipschitz modulus through
the computation of a uniform calmness constant.
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1 Introduction

This paper deals with the Lipschitz continuity of the optimal value in linear program-
ming (LP for short). Specifically, we consider the optimal value function restricted to
its domain (where the value is finite), denoted by ϑ R, and analyze its behavior around
a fixed (referred to as nominal) LP problem. Along this work different type of per-
turbations of the nominal problem are considered and, in each of these perturbation
frameworks, our goal is to compute (or at least estimate) the Lipschitz modulus of
the corresponding optimal value (see Sects. 2.1 and 2.2 for the formal definitions).
Roughly speaking, this Lipschitz modulus provides a local measure of the greatest
rate of variation of the optimal value with respect to data perturbations. In this sense,
the present research is focussed on a local aspect of the sensitivity analysis in LP,
in contrast to the classical theory of parametric linear optimization (see, e.g., [1] and
[2]).

First, we consider the case of right-hand-side (RHS in brief) perturbations of the
constraints, where a formula for the exact Lipschitz modulus of ϑ R at a nominal prob-
lem is obtained. Secondly, we deal with linear perturbations of the objective function
(c-perturbations, for simplicity). After that, we tackle the problem of computing the
Lipschitz modulus of ϑ R in the setting of the so-called canonical perturbations, i.e.,
RHS perturbations together with c-perturbations. In the last two settings, lower and
upper estimates for the aimed moduli are derived. In both cases the upper estimates
turn out to be the exact moduli when the nominal optimal set is bounded.

The systematic study of stability in LP with canonical perturbations started in the
1970s. Specifically, the continuity of ϑ R was proved through different approaches
(see [3–6]). One can find a second line of research based on variational analysis like
Berge’s theory or Hoffman’s error bounds; see [4,6–12].

The immediate antecedents of this work can be traced out from [13] and [14]. The
first one, instead of ϑ R, deals with the optimal value function, ϑ, defined on the whole
space (and, so, taking values in the extended real line). As a counterpart, the local study
is made around a problem which is in the interior of the domain of ϑ . This interiority
condition characterizes the Lipschitz continuity of ϑ at such a problem (this fact is
held in the more general setting of linear semi-infinite optimization; see [15, Lemma
10.2]) and it is equivalent to the well-known Slater constraint qualification together
with the boundedness (and nonemptiness) of the nominal optimal set. Specifically,
[13, Theorem 4.3] provides a formula for a particular Lipschitz constant for ϑ in
terms of the so-called distance to ill-posedness. (See also the pioneer works [16] and
[17], developed in the context of conic linear problems.) Let us point out that the new
results of the current paper constitute an improvement of [13, Theorem 4.3] in different
directions: first, here we do not require any interiority assumption; moreover, the Lip-
schitz modulus provides—roughly speaking—the more accurate Lipschitz constant;
and, finally, we also tackle the case of partial perturbations (RHS or c-perturbations).

Paper [14] is focussed on the calmness of ϑ R , which is known to be a weaker
property than Lipschitz continuity. In that paper, the calmness of ϑ R is approached
through the calmness from above and calmness from below, which roughly speaking,
measure the local rate of increase and decrease, respectively, with respect to the nom-
inal problem. While calmness property compares the nominal optimal value with the
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optimal value of a perturbed problem, Lipschitz property involves the optimal values
of two different perturbed problems around the nominal one. This fact entails notable
differences between both properties and their moduli. In particular, the new contribu-
tions of the current paper are not direct consequences of the ones of [14], as we shall
emphasize in the corresponding proofs. In any case, we take advantage of the back-
ground on calmness. In particular, a key strategy (inspired by [18, Section 2]) based
on computing the aimed Lipschitz modulus through a uniform calmness constant is
appealed to.

Finally, let us comment that both calmness and Lipschitz properties have extensions
for multifunctions, closely related to metric regularity notions, which are important
concepts in the field of variational analysis; see the monographs [19–22] for addi-
tional references and details. The analysis of pseudo-Lipschitz (Aubin) property for
the particular case of the argmin mapping (resp. the feasible set mapping) has been
addressed in [23,24] (resp. [25]).

The structure of the paper is as follows. Section 2 introduces the model we are deal-
ing with, the main goals of this work, as well as the necessary notation and preliminary
results on calmness (from [14]) which are used later on. Section 3 is devoted to the
study of the Lipschitz modulus of ϑ R under RHS perturbations. The main result of
this section is Theorem 3.1. Section 4 is developed in the context of c-perturbations,
and mainly consists of Theorem 4.1, where the announced lower and upper estimates
(exact value when the nominal optimal set is nonempty and bounded) for the aimed
modulus are provided. Section 5 deals with canonical perturbations. Theorem 5.1 pro-
vides a lower estimate of the corresponding Lipschitz modulus, while Theorem 5.2
provides an upper estimate based on a certain uniform calmness constant which is
established in Lemma 5.1. The last theorem also provides the exact Lipschitz mod-
ulus under the boundedness (and nonemptiness) of the nominal optimal set. Finally,
Sect. 6 gathers some conclusions.

2 Preliminaries andMain Goals

This section is devoted to formalize the main goal of the paper and to connect it with
the immediate antecedents. The section is divided into three subsections: First, we
introduce the parameterized optimizationmodel and themappingswhich are dealtwith
in the paper; secondly, we make precise the main goal of this work, which consists
in computing (or estimating) the Lipschitz modulus of the optimal value function
under different type of perturbations. The third subsection gathers some results about
calmness of the same function traced out from [14].

2.1 The ParameterizedModel

We consider a parameterized linear optimization problem, in R
n, given in the form

π : minimize c′x
subject to a′

t x ≤ bt , t ∈ T := {1, 2, . . . ,m}, (1)
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where x ∈ R
n is the vector of decision variables, a ≡ (at )t∈T ∈ (Rn)T is fixed, c ∈ R

n

and b ≡ (bt )t∈T ∈ R
T . Any z ∈ R

n is considered as a column vector and z′ denotes
its transpose. Our problem π is identified with the pair (c, b) ∈ R

n × R
T , which

constitutes our parameter to be perturbed. So, as mentioned above, we are working in
the setting of the so-called canonical perturbations.

The space of variables, Rn, is endowed with an arbitrary norm, ‖·‖ , while the
parameter space Rn × R

T is endowed with the norm

‖π‖ := max {‖c‖∗ , ‖b‖∞} , π ≡ (c, b) ∈ R
n × R

T ,

where ‖u‖∗ := max‖x‖≤1
∣
∣u′x

∣
∣ , and ‖b‖∞ := maxt∈T |bt |. Observe that, in relation to

vector c of the objective function, we use the dual norm since it is seen as a functional.
Along the paper we deal with the following mappings: The feasible set mapping,

F : RT ⇒ R
n , defined as

F(b) := {x ∈ R
n : a′

t x ≤ bt , t ∈ T }, b ∈ R
T ;

the optimal value function, ϑ : Rn × R
T → [−∞,+∞], given by

ϑ(π) := inf{c′x : x ∈ F(b)},

(with the convention ϑ(π) := +∞ when F(b) = ∅); and the optimal set mapping,
Fop : Rn × R

T ⇒ R
n , which assigns to each problem π ≡ (c, b) its optimal set

Fop(π) := {x ∈ F(b) : c′x = ϑ(π)}.

The domain of F , denoted by domF , is formed by all b ∈ R
T , whose associated

linear inequality systems are consistent; formally,

domF :=
{

b ∈ R
T : F (b) �= ∅

}

.

Analogously, the domain of Fop, domFop, is formed by all problems π ≡ (c, b) ∈
R
n × R

T having a nonempty optimal set. It is known from standard arguments in LP
that domFop coincides with the domain of ϑ . It is also known that both domF ⊂ R

T

and domFop ⊂ R
n × R

T are closed and convex sets.
This paper mainly deals with the optimal value function restricted to its domain,

ϑ R : domFop →] − ∞,+∞[, i.e.,

ϑ R := ϑ |domFop ,

and two other functions coming from considering perturbations of b and c indepen-
dently. Specifically, given a nominal (fixed) π ≡ (

c, b
) ∈ domFop we define

ϑ R
c : domF →] − ∞,+∞[ and ϑ R

b
: C →] − ∞,+∞[,
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with
C = −cone{at , t ∈ T }, (2)

(where ‘cone’ means conical convex hull) given, respectively, by

ϑ R
c (b) = ϑ R(c, b) and ϑ R

b
(c) = ϑ R(c, b).

Observe that the previous two functions are finite valued, since we are not perturbing
a, which entails that {c} × domF and C × {b} are both included in domFop (recall
that, in LP, optimality is equivalent to primal and dual feasibility).

One can find different proofs (from different approaches) for the next theorem; see,
e.g., [4, Theorem 4.5.2], [5, Theorem 2.7] and [6, Theorem 14]; see also [11, p. 214]
for a stronger version (ϑ R is Lipschitz on bounded subsets of domFop) in the more
general context of canonically perturbed convex quadratic problems; see also [6, p.
25] and [9] for (generally non-convex) quadratic programs.

Theorem 2.1 ϑ R is continuous on domFop.

Finally, the following theorem is a well-known result of stability theory in LP (see,
e.g., [26, p. 232] or [8, Chapter IX (Section 7)]). In it, we appeal to the Painlevé-
Kuratowski convergence of sequences of sets. More in detail, given Xr ⊂ R

n, r ∈ N,

Lim infr Xr consists of all points which may be written as limr xr with xr ∈ Xr for
r large enough; whereas elements of Lim supr Xr are those of the form limk xk with
xk ∈ Xrk for some subsequence r1 < r2 < ... Obviously, Lim infr Xr ⊂ Lim supr Xr ,

and when both coincide, we just write Limr Xr .

Theorem 2.2 Let c ∈ C .For any {br }r∈N ⊂ domF converging to b, we have

Fop(π) = LimrFop (

c, br
)

.

Remark 2.1 In general, the boundedness of a Painlevé–Kuratowski limit of sets does
not imply the boundedness of those sets. For instance, Limr {1} ∪ [r ,+∞[= {1}.
Nevertheless, in the previous theorem the boundedness ofFop(π) does imply, indeed,
the uniform boundedness of {Fop (c, br )}r∈N. This follows from the convexity of each
Fop (c, br ) or, alternatively, from [15, Corollary 6.2.1] together with Theorem 2.1.

2.2 Main Goals

This subsection is devoted to formalize the main goals of the current work and to
integrate them in the existing literature. At this moment, we advance that our aim
is focussed on the Lipschitzian behavior of the optimal value function in different
frameworks of perturbations; specifically, on the Lipschitzian behavior of ϑ, ϑ R, ϑ R

c ,

and ϑ R
b
.

Recall that a function f : A ⊂ R
p → [−∞,+∞], p ∈ N, is said to be Lipschitz

continuous at z ∈ A, with f (z) finite, if there exist a constant κ ≥ 0 (called Lipschitz
constant) and a neighborhood U of z such that

| f (z) − f (̃z)| ≤ κ ‖z − z̃‖ , for all z, z̃ ∈ U ∩ A. (3)
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The infimum of constants κ for which (3) holds, for some associated neighborhood,
is the Lipschitz modulus of f at z, denoted by lip f (z). Observe that the Lipschitz
modulus can be expressed as

lip f (z) = lim sup
z,̃z→z
z,̃z∈A

| f (z) − f (̃z)|
‖z − z̃‖ . (4)

(In the previous expressions, we do not exclude coincidences among z, z̃, and z, under
the convention 0

0 := 0 and ∞ − ∞ := 0.)
In relation to the optimal value function, it is well known that ϑ is Lipschitz contin-

uous at π ≡ (

c, b
)

if and only if π ∈ int domFop (the interior of domFop ). In fact,
as commented above, this characterization is held in the more general framework of
linear semi-infinite problems (with—possibly—infinitely many constraints); see, [15,
Lemma 10.2]. Moreover, it is also known (see, e.g., [15, Theorem 6.1 and Lemma
10.2]) that condition ‘π ∈ int domFop’ is equivalent to the simultaneous fulfillment
of two conditions: Fop(π) is nonempty and bounded, and the Slater constraint quali-
fication (SCQ, in brief) is satisfied at b. Recall that SCQ is satisfied at b if there exists
x̂ ∈ R

n , called a Slater point , such that a′
t x̂ < bt for all t ∈ T .

Remark 2.2 Observe that, in the casewhenπ ∈ int domFop one clearly has lipϑ(π) =
lipϑ R(π). On the other hand, if π ∈ bd domFop (bd standing for boundary), one has
lipϑ(π) = +∞, whereas lipϑ R(π) is still finite, as it is shown in the current work (as
a consequence of Theorem 5.2).

The previous remark motivates that we focus this paper on computing (or at least
estimating) lipϑ R(π). For solvable problems, lipϑ R(π) is always finite and provides
a quantitative measure of the stability of the optimal value under data perturbations
(provided that they yield solvable problems).

We advance that lipϑ R
c (b) is completely determined through a point-based formula

(depending only on the nominal data)without any assumption (seeTheorem3.1),while
lipϑ R

b
(c) and lipϑ R(π) are upper and lower estimated in general (see Theorems 4.1,

5.1, and 5.2). It is also shown that under the boundedness of Fop(π), both lipϑ R
b
(c)

and lipϑ R(π) are also completely determined. All the mentioned estimates (or exact
values) are given exclusively in terms of π ≡ (

c, b
)

.

2.3 Antecedents on Calmness

This subsection mainly gathers some results about the calmness of ϑ R, traced out
from [14], which are used in the remaining sections.

Recall that the calmness property is weaker than the Lipschitz one, as far as it comes
from fixing z̃ = z in (3). With the notation before (3), the calmness modulus of f at z
is given by

clm f (z) = lim sup
z→z, z∈A

| f (z) − f (z)|
‖z − z‖ .

Obviously, clm f (z) ≤ lip f (z).
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At this moment, we introduce some necessary notation used along the paper. To
start with, given X ⊂ R

p, p ∈ N, we denote by convX , spanX , and extrX the convex
hull, the linear hull of X , and the set of extreme points of X , respectively. Recall that
coneX stands for the conical convex hull of X .

For b ∈ domF and x ∈ F (b) , we denote by Tb (x) the set of active indices at x;
i.e.,

Tb (x) := {

t ∈ T : a′
t x = bt

}

.

Associated with π ≡ (c, b) ∈ domFop, we consider the following family of minimal
Karush–Kuhn–Tucker (KKT) subsets of indices

Mπ :=
{

D ⊂ Tb(x) : −c ∈ cone{at , t ∈ D},
D is minimal for the inclusion order

}

, (5)

for some x ∈ domFop. Observe thatMπ is correctly defined since the rightmember of
(5) indeed does not depend on x (this comes froma standard fact in LP; see [14, Remark
2]). It is also standard that {at , t ∈ D} is linearly independent for any D ∈ Mπ , and
this fact justifies the well definedness of the following elements associated with our
nominal problem π ≡ (

c, b
) ∈ domFop, which were already introduced in [14]:

k− := min
D∈Mπ

∥
∥
∥λD

∥
∥
∥
1
and k+ := max

D∈Mπ

∥
∥
∥λD

∥
∥
∥
1
, (6)

where, for D ∈ Mπ , λD = (

λD
t

)

t∈T ∈ R
T+ is the unique element such that −c =

∑

t∈D λD
t at and λD

t = 0 for all t ∈ T \D, and
∥
∥λD

∥
∥
1 := ∑

t∈T λD
t .

Paper [14] analyzes the calmnessmodulus of the optimal value function under right-
hand-side perturbations, clmϑ R

c (b), as well as the calmness modulus under canonical
perturbations, clmϑ R(π). In that paper, each of the moduli is studied by splitting it
into the so-called calmness from above and calmness from below moduli. The reader
is addressed to [14] for details, since these concepts do not have their counterpart for
the Lipschitz modulus. Nevertheless, we need some tools from that paper.

Recall (see, e.g., [27, p. 65]) that any non-empty convex set F can be decomposed
as the direct sum

F = LF +
(

F ∩ L⊥
F

)

,

where LF is the lineality space of F and L⊥
F is the orthogonal complement of LF . In

our case, when either F = F(b) for b ∈ domF or F = Fop(π) for π ∈ domFop,
one has that L⊥

F = span{at , t ∈ T }. In [14, Section 2.2] we appeal to the following
set of extreme points:

Eop (π) := extr
(Fop (π) ∩ span {at , t ∈ T }) , π ∈ domFop, (7)

which is clearly nonempty and finite.
The following lemmas will be used later on. The first one comes from [14, Lemma

2] together with a standard argument of LP. Specifically, the uniform boundedness of
the sequence {Eop (πr )}r∈N comes from the fact that any point of Eop (πr ) , r ∈ N, is
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the unique solution of a Cramer’s system. The proof of the second one can be directly
extracted from the proof of [14, Theorem 5] (see equation (20) therein). The third
comes from [14, Lemma 4].

Lemma 2.1 Let π ∈ domFop. For any {πr }r∈N ⊂ domFop converging to π, we have
that {Eop (πr )}r∈N is uniformly bounded and

∅ �= Lim supr Eop (

πr ) ⊂ Eop (π) .

Lemma 2.2 Let π ≡ (c, b) ∈ domFop and {πr ≡ (cr , br )}r∈N be a sequence con-
verging to π, with br ∈ domF for all r ∈ N. If x �→ (cr )′x is bounded from below
on Fop(c, br ) for all r , then

πr ∈ domFop

for r large enough.

Lemma 2.3 Let π ≡ (c, b) ∈ domFop and {πr ≡ (cr , br )}r∈N ⊂ domFop be a
sequence converging to π . Then

Fop (

πr ) ⊂ Fop (

c, br
)

for r large enough.

From now on e (Eop(π), 0n) denotes the Hausdorff excess of Eop(π) over
{0n}, which may be written alternatively as maxx∈Eop(π) ‖x‖. On the other hand,
d (0n,Fop (π)) represents the distance from the origin to the set Fop (π) ; i.e.,
d (0n,Fop (π)) = minx∈Fop(π) ‖x‖.
Theorem 2.3 [14, Theorem 4, Corollary 3, and Section 5] Let π ≡ (c, b) ∈ domFop.
Then

(i) clmϑ R
c (b) ≤ k+, and equality holds when SCQ is satisfied at b.

(ii) clmϑ R(π) ≤ max{k− + e (Eop (π) , 0n) , k+ + d (0n,Fop (π))}, and equality
holds when π ∈ int domFop.

3 Lipschitz Modulus Under RHS Perturbations

This section is devoted to compute the Lipschitz modulus of the optimal value under
perturbations of b (RHS perturbations); i.e., to compute lipϑ R

c (b). First, we recall a
useful result which provides an explicit expression (as themaximum of a finite amount
of linear functions) for the optimal value function in the current perturbation setting.
Recall that we are considering a nominal problem π ≡ (

c, b
)

.

Lemma 3.1 [14, Lemma 3 and Corollary 1] Let π ∈ domFop. There exists a neigh-
borhood Ub ⊂ R

T of b such that

ϑ(c, b) = max
D∈Mπ

−b′λD, for all b ∈ domF ∩Ub.
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Observe that, by the KKT conditions, with respect to the nominal problem, we have

ϑ(π) = −b
′
λD, for all D ∈ Mπ . (8)

The next proposition follows an analogous argument to the one used for establishing
[14, Corollary 2]. Nevertheless, due to its simplicity, and for completeness purposes,
we include its proof. Along this section, we use indistinctlyϑ R

c (b) orϑ(c, b), provided
that b ∈ domF . Indeed, for the sake of simplicity in the notation, we usually write
ϑ R
c when referring to the function itself and ϑ(c, b), b ∈ domF , for its images.

Proposition 3.1 Let π ∈ domFop and let Ub be as in the previous lemma. Then,

∣
∣ϑ(c, b) − ϑ(c, b̃)

∣
∣ ≤ k+‖b − b̃‖∞ for all b, b̃ ∈ domF ∩Ub.

Consequently
lipϑ R

c (b) ≤ k+.

Proof Take b, b̃ ∈ domF ∩Ub. Applying the previous lemma, we have

ϑ(c, b) − ϑ(c, b̃) = max
D∈Mπ

(

−b′λD
)

− max
D∈Mπ

(

−b̃′λD
)

,

and let us assume the first maximum is reached at D̂ ∈ Mπ , then

ϑ(c, b) − ϑ(c, b̃) = −b′λD̂ + min
D∈Mπ

b̃′λD ≤ −b′λD̂ + b̃′λD̂

= (̃b − b)′λD̂ ≤ k+‖b − b̃‖∞.

Since b and b̃ have been arbitrarily chosen, switching them in the preceding argument
we obtain the aimed inequality. �
Theorem 3.1 Let π ≡ (

c, b
) ∈ domFop. Then, ϑ R

c is Lipschitz continuous at b and

lipϑ R
c (b) = k+. (9)

Proof According to the previous proposition, it remains to prove lipϑ R
c (b) ≥ k+. To

do that take any D ∈ Mπ such that
∥
∥
∥λD

∥
∥
∥
1

= k+ and let us construct two sequences

{br } , {̃br } ⊂ domF converging to b such that

lim supr

∣
∣ϑ (c, br ) − ϑ

(

c, b̃r
)∣
∣

∥
∥br − b̃r

∥
∥∞

=
∥
∥
∥λD

∥
∥
∥
1
, (10)

which will establish our aimed inequality.
Let x ∈ Fop (π). Fix an arbitrary r ∈ N. Observe that

Wr :=
{

x ∈ R
n : a′

t x < bt + 1

r
, t ∈ T \D

}
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is a neighborhood of x . Now, since a′
t x = bt , t ∈ D, and

{

at , t ∈ D
}

is linearly
independent, a standard argument in LP yields the existence of 0 < δr < 1

r such that
the systems of linear equations

{

a′
t x = bt − δr , t ∈ D

}

and
{

a′
t x = bt + δr , t ∈ D

}

(11)

have solutions insideWr ; pick xr and x̃r as solutions of the respective systems in (11)
and such that xr , x̃r ∈ Wr .

Now, let us define br = (

brt
)

t∈T and b̃r = (

b̃rt
)

t∈T as follows

brt :=
{

bt − δr , if t ∈ D,

bt + 1
r , if t ∈ T \D,

and b̃rt :=
{

bt + δr , if t ∈ D,

bt + 1
r , if t ∈ T \D.

In particular, xr ∈ F (br ) and x̃r ∈ F (

b̃r
) ; in fact, xr ∈ Fop (c, br ) and x̃r

∈ Fop
(

c, b̃r
)

, since D ⊂ Tbr (xr ) ∩ T̃br (̃xr ). Moreover, according to the KKT

conditions and taking into account that λD is a vector of KKT multipliers associated
with both problems (c, br ) and

(

c, b̃r
)

, by duality in LP we have that

ϑ
(

c, br
) = − (

br
)′

λD and ϑ
(

c, b̃r
) = − (

b̃r
)′

λD. (12)

In this way, and since clearly both sequences {br }r∈N and {̃br }r∈N converge to b,

by applying (12) and, recalling that λD
t = 0 for t ∈ T \D, we have

lim supr

∣
∣ϑ (c, br ) − ϑ

(

c, b̃r
)∣
∣

∥
∥br − b̃r

∥
∥∞

= lim supr

∣
∣
∣− (

br − b̃r
)

λD
∣
∣
∣

2δr

= lim supr

∣
∣
∣−

∑

t∈D
(

−2δrλD
t

)∣
∣
∣

2δr

=
∥
∥
∥λD

∥
∥
∥
1
,

which finishes the proof. �

The following corollary is a direct consequence of the previous theorem, together
with Theorem 2.3(i).

Corollary 3.1 Let π ∈ domFop and assume that SCQ holds at b. Then we have

lipϑ R
c (b) = clmϑ R

c (b) = k+.

The next example, inspired in [14, Example 1], shows that clmϑ R
c (b) can be strictly

less than lipϑ R
c (b) when SCQ fails. Observe that in this example lipϑc(b) = +∞,

since b ∈ bd domF , while lipϑ R
c (b) is finite.
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Example 3.1 Consider the problem in R given by

π : minimize x
subject to −x ≤ 0, t = 1,

−2x ≤ 0, t = 2,
2x ≤ 0, t = 3.

Observe that c = 1 and b̄ = 03. Obviously, ϑ (π) = 0, Mπ = {{1}, {2}}, λ{1} = 1,
λ{2} = 1

2 , and so k+ = 1 = lipϑ R
c (b). Let us check that clmϑ R

c (b) = 1
2 .

According to Lemma 3.1 we have

clmϑ R
c (b) = lim sup

b→b, b∈domF

|ϑ (c, b) − ϑ (π)|
∥
∥b − b̄

∥
∥∞

= lim sup
b→b, b∈domF

∣
∣max{−b1,− 1

2b2}
∣
∣

‖b‖∞
≤ 1

2
,

where we have appealed to the fact that b ∈ domF implies−b1 ≤ 1
2b3. Wemay attain

1
2 by considering (br ) = ( 1

r ,
1
r ,

1
r

)′
, r ∈ N.

4 Lipschitz Modulus Under c-Perturbations

This section is devoted to study lipϑ R
b
(c), where b ∈ domF is fixed. Recall the

notation C = −cone{at , t ∈ T }, and the standard fact (in LP) that c ∈ C if and only
if (c, b) ∈ domFop. Recall also that ϑ R

b
(c) := ϑ

(

c, b
)

, for any c ∈ C .
The next proposition is intended to clarify the role played by the set of extreme

points (7) when we deal with perturbations of parameter c.

Proposition 4.1 Let π ∈ domFop. Then, there exists a neighborhoodUc of c such that

ϑ(c, b) = min
x∈Eop(π)

c′x for (c, b) ∈ domFop and c ∈ Uc.

Proof Clearly, for c ∈ C , Eop(c, b) ⊂ extr
(F(b) ∩ span {at , t ∈ T }), which is a

fixed finite set. This fact, combined with Lemma 2.1, yields Eop(c, b) ⊂ Eop(π) for
c in some neighborhood Uc of c. Since Eop(π) ⊂ F(b), the thesis of the proposition
holds. �

The following theorem provides a lower and an upper estimate for the aimed Lips-
chitz modulus. Moreover, it shows that the upper estimate becomes the exact modulus
when Fop(π) is bounded.

Theorem 4.1 Let π ∈ domFop. Then,

d(0n,Fop(π)) ≤ clmϑ R
b
(c) ≤ lipϑ R

b
(c) ≤ e

(Eop(π), 0n
)

.
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Moreover, if we assume that Fop(π) is bounded, then

lipϑ R
b
(c) = clmϑ R

b
(c) = e

(Fop(π), 0n
)

.

Proof First, let us see clmϑ R
b
(c) ≥ d(0n,Fop(π)) in the nontrivial case

d(0n,Fop(π)) > 0. Let x ∈ Fop(π) with ‖x‖ = d
(

0n,Fop(π)
)

. According to
[28, Lemma 9], there exists u ∈ R

n with ‖u‖∗ = 1 such that u′x ≥ u′x = ‖x‖ for all
x ∈ Fop(π). Define

cr := c + 1

r
u, for each r ∈ N.

For all x ∈ Fop(π) we have

(

cr
)′
x = c′x + 1

r
u′x ≥ c′x + 1

r
u′x = (

cr
)′
x . (13)

This implies that x �→ (cr )′ x is bounded from below on Fop(π) and, by Lemma 2.2,
(cr , b) ∈ domFop for r large enough (say for all r ). Lemma 2.3 entails Fop(cr , b) ⊂
Fop(π), for r large enough, and indeed (13) yields x ∈ Fop(cr , b). Then, we have

clmϑ R
b
(c) ≥ lim supr

ϑ(cr , b) − ϑ(π)

‖cr − c‖∗

= lim supr
(cr − c)′ x

1
r ‖u‖∗

= u′x = ‖x‖ = d
(

0n,Fop(π)
)

.

Recall that clmϑ R
b
(c) ≤ lipϑ R

b
(c) is always true. Now let us check lipϑ R

b
(c) ≤

e (Eop(π), 0n). Write

lipϑ R
b
(c) = lim supr

∣
∣ϑ(cr , b) − ϑ(̃cr , b)

∣
∣

‖cr − c̃r‖∗
, (14)

for appropriate sequences {cr }r , {̃cr }r ⊂ C converging to c. Because of the symmetry
of the quotients in (14), it is not restrictive to assume ϑ(cr , b) − ϑ(̃cr , b) ≥ 0 for all
r .

According to Lemma 2.1, there exist a certain x ∈ Lim supr Eop(̃cr , b) and asso-
ciated xk ∈ Eop(̃crk , b) ⊂ Fop(̃crk , b), for r1 < r2 < . . . < rk < . . ., such that
xk → x ∈ Eop(π). Then, for all k ∈ N we have

0 ≤ ϑ(crk , b) − ϑ(̃crk , b) ≤ (

crk
)′
xk − (

c̃rk
)′
xk ≤ ‖crk − c̃rk‖∗‖xk‖,

which implies

lipϑ R
b
(c) = lim supk

ϑ(crk , b) − ϑ(̃crk , b)

‖crk − c̃rk‖∗
≤ lim supk ‖xk‖ = ‖x‖ ≤ e

(Eop(π), 0n
)

.
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Finally, let us assume that Fop(π) is bounded, which entails span{at , t ∈ T } =
R
n , hence Eop (π) = extrFop (π) and e (extrFop(π), 0n) = e (Fop(π), 0n) (this

last follows a standard argument by using the convexity of the norm). Observe that
we only have to prove clmϑ R

b
(c) ≥ e (Fop(π), 0n). Let x ∈ Fop(π) with ‖x‖ =

e (Fop(π), 0n). Take u ∈ R
n with ‖u‖∗ = 1 be such that u′x = ‖x‖. Define the

perturbation cr := c− 1
r u for all r . SinceFop(π) is bounded, from [15, Lemma 10.2]

(cr , b) ∈ domFop for r large enough. Then, since both problems (cr , b) and π have
the same feasible set, we have

ϑ(cr , b) ≤ (cr )′x = c′x − 1

r
u′x = ϑ(π) − ‖cr − c‖∗‖x‖.

Therefore,

clmϑ R
b
(c) ≥ lim sup

r

ϑ(π) − ϑ(cr , b)

‖c − cr‖∗
≥ ‖x‖ = e

(Fop(π), 0n
)

.

Finally, since

lipϑ R
b
(c) ≥ clmϑ R

b
(c) ≥ e

(Fop(π), 0n
) ≥ lipϑ R

b
(c),

we get the aimed equality. �

The next two examples are intended to show that all the inequalities in the state-
ment of Theorem 4.1 may be strict. The first example is concerned with the two first
inequalities.

Example 4.1 Consider the nominal problem, in R3 with the Euclidean norm,

π : minimize x3 s.t. x1 ≤ −1, − x2 ≤ 2, − x3 ≤ 0.

Clearly, d(03,Fop(π)) = 1, Eop (π) = {

(−1,−2, 0)′
}

, and hence e (Eop(π), 03)
= √

5. Let us prove that clmϑ R
b
(c) = 2 and lipϑ R

b
(c) = √

5. Consider any 0 < ε < 1

and any c ∈ R
3 with ‖c − c‖∗ = ε, which may be written as c = (ε1, ε2, 1 + ε3)

′
with ε21 + ε22 + ε23 = ε2. Then

(

c, b
) ∈ domFop if and only if ε1 ≤ 0 and ε2 ≥ 0, in

which case ϑ
(

c, b
) = c′ (−1,−2, 0)′ = −ε1 − 2ε2. Accordingly,

min‖c−c‖∗=ε
(

c,b
)∈domFop

ϑ
(

c, b
) = min

ε21+ε22=ε2

ε1≤0, ε2≥0

−ε1 − 2ε2 = −2ε, (15)

attained at c = (0, ε, 1)′. The corresponding maximum equals ε and is attained at
c = (−ε, 0, 1)′. Consequently, for any 0 < ε < 1,

max‖c−c‖∗=ε
(

c,b
)∈domFop

∣
∣ϑ

(

c, b
) − ϑ (π)

∣
∣ = 2ε,
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which, clearly entails clmϑ R
b
(c) = 2. Now let us compute the Lipschitz modulus of

ϑ R
b
at c. As a motivation of such computation note that

max
ε21+ε22=ε2

−ε1 − 2ε2 = √
5ε,

and this maximum is attained at (ε1, ε2) =
(

−ε/
√
5,−2ε/

√
5
)

. Let us consider

c :=
(

−ε/
√
5, 0, 1

)′
and c̃ :=

(

0, 2ε/
√
5, 1

)′
. Then

∣
∣ϑ

(

c, b
) − ϑ

(

c̃, b
)∣
∣

‖c − c̃‖∗
=

ε/
√
5 −

(

−4ε/
√
5
)

ε
= √

5.

Since this happens for all 0 < ε < 1, we conclude lipϑ R
b
(c) ≥ √

5. The converse
inequality comes from Theorem 4.1.

Next we provide an example where lipϑ R
b
(c) ≤ e (Eop(π), 0n) holds strictly.

Example 4.2 Consider R2 endowed with the norm given by

‖x‖ := max {|2x1 + x2| , |2x1 + 3x2|} ,

whose dual norm ‖·‖∗ has as its closed unit ball the set

B∗ := conv{±(2, 1)′,±(2, 3)′}.

Alternatively, we may start by considering B∗ and define ‖·‖ as (‖·‖∗)∗. Consider the
nominal problem in R2

π : minimize x1
subject to −x1 ≤ −2,

i.e., c = (1, 0)′ and b = −2. Then Eop (π) = {

(2, 0)′
}

and, accordingly,
e (Eop(π), 02) = ∥

∥(2, 0)′
∥
∥ = 4. On the other hand,

(

c, b
) ∈ domFop if and only

if c = (1 + α, 0)′ for some α ≥ −1, in which case ϑ(c, b) = c′ (2, 0)′ = 2α + 2.
Therefore, recalling our convention 0

0 := 0,

lipϑ R
b
(c) = lim

α1,α2→0

|(2α1 + 2) − (2α2 + 2)|
∥
∥(1 + α1, 0)′ − (1 + α2, 0)′

∥
∥∗

= 2,

since (1, 0)′ is in the boundary of B∗.

Remark 4.1 Note that the norm under consideration plays a key role in the previous
example. If R2 were endowed with the Euclidean norm, we would have lipϑ R

b
(c) =

2 = e (Eop(π), 02) (for the same π ). See [27, Theorem 15.2] for a characterization of
all possible norms in Rn in terms of their closed unit balls.
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5 Lipschitz Modulus Under Canonical Perturbations

The objective of this section is to compute (or at least estimate) the Lipschitz modulus
of the optimal value function, restricted to domFop, at a nominal parameter π ∈
domFop under canonical perturbations, i.e., when the RHS of the constraints and the
coefficients of the objective function can be simultaneously perturbed.

The following theorem provides a lower bound of the Lipschitz modulus lipϑ R(π).

Theorem 5.1 Let π ∈ domFop. Then

lipϑ R(π) ≥ k+ + d
(

0n,Fop(π)
)

.

Proof The case 0n ∈ Fop(π) is trivial due to the fact that lipϑ R(π) ≥ lipϑ R
c (b). So,

let us assume 0n /∈ Fop(π). Take x ∈ Fop(π) with ‖x‖ = d (0n,Fop(π)). Let us
consider sequences {br }r , {̃br }r ⊂ domF such that

k+ = lipϑ R
c (b) = lim

r

ϑ(c, br ) − ϑ(c, b̃r )

‖br − b̃r‖∞
.

The next step is analogous to its counterpart for calmness in the proof of [14,
Theorem 5], so that we will focus on the differences. As in formula (18) in the referred
proof, there exist sequences {xr }r and {ur }r in R

n , with ‖xr‖ → ‖x‖, such that, for
each r , xr ∈ Fop(c, br ), ‖ur‖∗ = 1 and

(ur )′x ≥ (ur )′xr = ‖xr‖ = d
(

0n,Fop(c, br )
)

, whenever x ∈ Fop(c, br ).

Now, we define cr := c + ‖br − b̃r‖∞ur . For x ∈ Fop(c, br ) one has

(cr )′x = c′x + ∥
∥br − b̃r

∥
∥∞ (ur )′x ≥ ϑ(c, br ) + ∥

∥br − b̃r
∥
∥∞

∥
∥xr

∥
∥ , (16)

so x �→ (cr )′x is bounded from below on Fop(c, br ). Because of Lemma 2.2, there
exists r0 ∈ N such that πr ≡ (cr , br ) ∈ domFop for r ≥ r0. Then Lemma 2.3 yields
Fop(πr ) ⊂ Fop(c, br ) for r ≥ r0 large enough. Accordingly, by the restriction of
(16) to points x ∈ Fop(πr ), we get

ϑ(πr ) = (cr )′x ≥ ϑ(c, br ) + ∥
∥br − b̃r

∥
∥∞

∥
∥xr

∥
∥ .

Let us define π̃r :≡ (c, b̃r )which belongs to domFop (because {̃br }r ⊂ domF and
c ∈ C ). Note that ‖πr − π̃r‖ = ∥

∥br − b̃r
∥
∥∞.

Then we have

lipϑ R(π) ≥ lim sup
r

|ϑ(πr ) − ϑ(π̃r )|
‖πr − π̃r‖

≥ lim sup
r

ϑ(πr ) − ϑ(c, br ) + ϑ(c, br ) − ϑ(c, b̃r )

‖br − b̃r‖∞
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= lim
r

ϑ(c, br ) − ϑ(c, b̃r )

‖br − b̃r‖∞
+ lim sup

r

ϑ(πr ) − ϑ(c, br )

‖br − b̃r‖∞
≥ lipϑ R

c (b) + lim
r

‖xr‖ = k+ + ‖x‖,

which completes the proof. �
In order to establish an upper bound for the Lipschitz modulus of ϑ R at π , we

appeal to the technique developed in [18, Section 2]. Specifically, Wu Li proved
that if a set-valued mapping is Hausdorff lower semicontinuous, a uniform upper
Lipschitz constant for thatmapping in a convexneighborhoodof the nominal parameter
becomes a Lipschitz constant in such a neighborhood (see [18, Theorem 2.1] for
details). Translating it into our context, a uniform calmness constant for ϑ R in a
neighborhood (relative to domFop ) of π becomes a Lipschitz constant at π . This
technique was already applied in [24] for obtaining the so-called sharp Lipschitz
constant for Fop under suitable hypotheses.

Lemma 5.1 Let π ∈ domFop. For all ε > 0, there exists δ > 0 such that

k+ + e
(Eop(π), 0n

) + ε

is a calmness constant of ϑ R at any π ∈ (domFop)∩B(π, δ) (the closed ball centered
at π of radius δ).

Proof Westart by observing that, fromLemma2.1,Eop : domFop ⇒ R
n isHausdorff-

upper semicontinuous at π; i.e., limπ→π e (Eop (π) , Eop (π)) = 0.
Now, let us abuse the notation and identify also constant k+ as a function k+ :

domFop −→ R+ defined as k+(π) = maxD∈Mπ

∥
∥λD

∥
∥
1, where k

+(π) is our original
k+ as defined in (6).We need to prove that function k+ is also upper semicontinuous at
π , that is, for all ε > 0 there exists δ > 0 such that if ‖π − π‖ < δ, for π ∈ domFop,
then k+(π) ≤ k+(π) + ε. Reasoning by contradiction, suppose that there exists
a sequence {πr }r ⊂ domFop converging to π such that k+(πr ) ≥ k+(π) + ε0
for a certain ε0 > 0. Suppose that the maximum defining k+(πr ) is attained at a
certain Dr ∈ Mπr . Since T is finite, we can assume the existence of a constant
subsequence, say Dr = D for all r . The fact that −cr ∈ cone{at , t ∈ D} entails
−c ∈ cone{at , t ∈ D}, although we cannot ensure the minimality of D for π . Recall
that {a′

t , t ∈ D} is linearly independent. Write

−cr =
∑

t∈D
λrt at for all r , and − c =

∑

t∈D
λD
t at .

Using a standard argument it is easy to see that
{∑

t∈D λrt
}

r is bounded so, taking a
subsequence, if necessary, it may be assumed to converge to

∑

t∈D λD
t . Although, we

cannot assume D ∈ Mπ , we know that D contains at least a minimal element for π ,
so let D̃ ∈ Mπ with D̃ ⊂ D and λD

t = 0 for all t /∈ D̃. Therefore, we have

k+(πr ) =
∑

t∈D
λrt −→

∑

t∈D
λD
t =

∑

t∈D̃
λD
t ≤ k+(π),

123



Journal of Optimization Theory and Applications (2019) 182:133–152 149

hence we attain a contradiction.
Applying the upper semicontinuity of both, Eop and k+, for any ε > 0, there exists

δ > 0 such that

e
(Eop(π), 0n

) ≤ e
(Eop(π), 0n

) + ε/2

and k+(π) ≤ k+(π) + ε/2,

for all π ∈ domFop with ‖π − π‖ < δ, and therefore

clmϑ R(π) ≤ k+(π) + e
(Eop(π), 0n

) ≤ k+(π) + e
(Eop(π), 0n

) + ε ,

taking Theorem 2.3(i i) into account. �
Theorem 5.2 Let π ∈ domFop. Then

lipϑ R(π) ≤ k+ + e
(Eop(π), 0n

)

. (17)

If, additionally, Fop(π) is bounded, then equality hods in (17), which reads as

lipϑ R(π) = k+ + e
(Fop(π), 0n

)

.

Proof Recall that domFop is convex in R
n × R

T and Theorem 2.1 establishes the
continuity of ϑ R on domFop. Then, the previous lemma and its preceding comments
ensure that k+ + e (E(π), 0n) + ε is a Lipschitz constant of ϑ R at π for each ε > 0.
Letting ε ↓ 0 we obtain (17).

Now, assume that Fop(π) is bounded. In order to establish the converse inequality,
consider sequences {br }r , {̃br }r ⊂ domF such that

k+ = lipϑ R
c (b) = limr

ϑ(c, b̃r ) − ϑ(c, br )

‖b̃r − br‖∞
.

Apply Theorem 2.2 and Remark 2.1 to conclude that Fop(c, br ) is nonempty and
bounded for r large enough (say for all r ). For each r ∈ N take xr ∈ Fop(c, br )
such that ‖xr‖ = e (Fop(c, br ), 0n) and let ur ∈ R

n be such that ‖ur‖∗ = 1 and
(ur )′ xr = ‖xr‖.

The sequence {xr }r∈N may not converge, although it has for sure a convergent
subsequence, but we can ensure, again by Theorem 2.2, that ‖xr‖ → e (Fop(π), 0n).

For each r let us define cr := c − ‖b̃r − br‖∞ur . Obviously x �→ (cr )′ x is
bounded from below on Fop(c, br ), because this set is compact; so that, Lemma 2.2
yields (cr , br ) ∈ domFop for r large enough, and then

ϑ(c, br ) − ϑ(cr , br ) ≥ (

c − cr
)′
xr = ‖b̃r − br‖∞

∥
∥xr

∥
∥ .

Therefore

lipϑ R(π) ≥ lim supr
ϑ(c, b̃r ) − ϑ(cr , br )

‖(c, b̃r ) − (cr , br )‖
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= lim supr
ϑ(c, b̃r ) − ϑ(c, br ) + ϑ(c, br ) − ϑ(cr , br )

‖b̃r − br‖∞

= lipϑ R
c (b) + lim supr

ϑ(c, br ) − ϑ(cr , br )

‖b̃r − br‖∞
≥ k+ + limr ‖xr‖ = k+ + e

(Fop(π), 0n
)

,

which yields the asserted formula. �

Corollary 5.1 Let π ∈ domFop, with Fop (π) bounded. Then

lipϑ R(π) = lipϑ R
c (b) + lipϑ R

b
(c).

Proof It comes from Theorems 3.1, 4.1 and 5.2. �

6 Conclusions

The main original contributions of the present paper are focussed on the Lipschitz
moduli of the optimal value functions restricted to their domains in different parametric
contexts (ϑ R

c , in the context of RHS perturbations, ϑ R
b
, in the one of c-perturbations,

and ϑ R, for canonical perturbations; see Sect. 2.1 for the definitions). The analysis is
developed around a nominal LP problem π , which is identified with the pair formed
by a nominal vector of the objective function, c, and a nominal RHS, b. As a brief
discussion about the convenience of dealing with such functions, restricted to their
domains, we underline the fact that it allows us to avoid a typical interiority assumption
under which some preliminary results are stated (see [15, Lemma 10.2] and [13]).
Specifically, the nominal elements b, c, and π are not required to be in the interior of
the respective domains of ϑ R

c , ϑ R
b
, and ϑ R .

In contrast, [15, Lemma 10.2] and [13] deal with the optimal function ϑ defined
on the whole space, and in this case the condition ‘π is in the interior of the domain
of ϑ’ is not avoidable as far as it characterizes the Lipschitz continuity of ϑ at π (so,
the Lipschitz modulus of ϑ is infinite when the interiority condition does not hold). It
is known that this interiority condition is equivalent to the simultaneous fulfillment of
the Slater CQ and the boundedness (and nonemptiness) of the nominal optimal set. In
the next paragraphs, we comment themost important contributions of this work and, at
the same time, we try to clarify the role played by the two assumptions, Slater CQ and
boundedness, separately, in relation to the computation/estimation of our Lipschitz
moduli. The boundedness of the optimal set does play an important role:

– When π is a solvable problem (without any extra assumption), the Lipschitz mod-
ulus of ϑ R

c is completely determined (Theorem 3.1), and the correspondingmoduli
for ϑ R

b
, and ϑ R are lower and upper estimated (Theorems 4.1, 5.1, and 5.2). In

particular, all these functions are always Lipschitz continuous at π .
– When π is solvable and Slater CQ holds, we additionally have that the Lipschitz
modulus of ϑ R

c does coincide with its calmness modulus (Corollary 3.1 ).

123



Journal of Optimization Theory and Applications (2019) 182:133–152 151

– When π is solvable and the nominal optimal set is bounded, the upper estimates
of ϑ R

b
and ϑ R turn out to be the exact moduli. Moreover, in this case, the Lipschitz

modulus of ϑ R coincides with the sum of the corresponding moduli of ϑ R
c and ϑ R

b
(Corollary 5.1).

– When π is in the interior of solvable problems (Slater CQ together with bounded-
ness of the nominal optimal set), then, in addition to the previous statements, the
Lipschitz modulus of ϑ does coincide with the one of ϑ R . Moreover, the reader
can easily check that the calmness modulus of ϑ may be strictly less than the
Lipschitz one from the exact expressions of both moduli (Theorems 2.3 and 5.2).

Finally, let us comment that all formulas obtained in this work for computing or
estimating our aimed moduli are point-based, in the sense that all ingredients used
in them only involve the nominal elements (the nominal point and problem’s data),
not appealing to parameters or points in a neighborhood. In this way they are imple-
mentable in practice.
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