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a b s t r a c t

Sewage sludge application to agricultural soils is a common practice in several countries in the

European Union. Nevertheless, the application dose constitutes an essential aspect that must be taken

into account in order to minimize environmental impacts. In this study, near infrared reflectance

spectroscopy (NIRS) was used to estimate in sewage sludge samples several parameters related to

agronomic and environmental issues, such as the contents in organic matter, nitrogen and other

nutrients, metals and carbon fractions, among others. In our study (using 380 biosolid samples), two

regression models were fitted: the common partial least square regression (PLSR) and the penalized

signal regression (PSR). Using PLSR, NIRS became a feasible tool to estimate several parameters with

good goodness of fit, such as total organic matter, total organic carbon, total nitrogen, water-soluble

carbon, extractable organic carbon, fulvic acid-like carbon, electrical conductivity, Mg, Fe and Cr, among

other parameters, in sewage sludge samples. For parameters such as C/N ratio, humic acid-like carbon,

humification index, the percentage of humic acid-like carbon, the polymerization ratio, P, K, Cu, Pb, Zn,

Ni and Hg, the performance of NIRS calibrations developed with PLSR was not sufficiently good.

Nevertheless, the use of PSR provided successful calibrations for all parameters.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The encouragement of the wastewater purification processes
has aggravated the storage and management problems of the
sludge generated after wastewater treatment. After reducing the
moisture content and treating sewage sludge, when it is
appropriate, the main destinations of this waste are the agricul-
tural use, incineration with energy recovery and removal in
refuse dump.

Sludge application to agricultural soils can imply several
benefits, provided that this application is in accordance with the
current legislation and a proper fertilization. For this, it is
necessary to know the sludge composition and the crop needs
to calculate the application dose. The incorporation of sewage
sludge to agricultural soils must be done properly, paying special
attention to the form and timing of the application, in order to
ll rights reserved.
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improve soil properties, such as soil structure or nutrient content
and because of the positive effects on soil microbial activity. Soil
microorganisms are key players in the turnover of plant nutrients
and organic material and have important roles in maintaining soil
structure [1]. But, despite the benefits of this application on
agricultural soil, there are some disadvantages, for example, the
risk for humans and animals due to the presence of xenobiotics
and pathogenic microorganisms [2]. Furthermore, pollution pro-
blems may arise from toxic heavy metals that are mobilized into
the soil solution and are either taken up by plants or transported
in drainage water [3]. After the biosolids have been separated
from wastewater, land applied sludges must be treated to reduce
pathogens through one of a number of processes including
anaerobic digestion, lime stabilization or composting. Each of
these processes has effects on the fate of both pathogens and the
organic contaminants in the sludge [4], so the contamination
potential is lower after a treatment process.

Sewage sludge production in Spain was about 1205,124 t (in
dry matter) in 2009, 82.6% of this amount being used for
agricultural purposes [5]. The best strategy to decide the applica-
tion rate should be based on the specific composition of the
biosolids in each area, in order to verify the maximum sewage
sludge application. However, in many cases, sewage sludge is
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applied to soils without this information, due to the cost and time
taken for a full characterization.

A promising alternative could be the estimation of different
parameters in the sewage sludge samples, based on the use of
near infrared reflectance spectroscopy (NIRS). There are several
studies using NIRS for estimating some parameters in sewage
sludge or in composted sewage sludge samples. Albrecht et al. [6]
reported the use of NIRS technology to determinate carbon and
nitrogen contents in sewage sludge and green waste compost and
Vergnoux et al. [7] studied physico-chemical parameters, organic
matter, total organic carbon and concentrations of different
nitrogen forms in sewage sludge compost. The heavy metal
contents have been studied in sewage sludge samples [8] and in
compost from sewage sludge [9,10]. Also, Galvez-Sola et al. [11]
evaluated the nitrogen content in sewage sludge samples.

On the other hand, different mathematical tools, such as the
use of multivariate calibration [12], have been considered to
establish a model that helps to understand the signal obtained
from NIRS and to optimize the output of information. Several
aspects raised in this framework are non-trivial and include: [a]
the number of regressors (p wavenumbers) can widely exceed
training observations (n); [b] the regressors are highly correlated
and thus, it appears a very ill-conditioned statistical problem [13].
There are two general approaches that can be used to solve these
aspects: (1) a reduction of the regression bases, including partial
least squares, principal components, or projection onto bases of
splines [14] and (2) penalized regression, such as ridge regression
or penalized signal regression [15]. With smooth spectra, pena-
lized signal regression constitutes a very promising approach,
since it forces the vector of regressor coefficients to vary smoothly
with wavenumber.

Therefore, the aim of this study was to explore the potential of
NIRS technique for the estimation of several parameters in
sewage sludge samples, using different regression tools: the
commonly used partial least square regression (PLSR) and the
promising penalized signal regression (PSR).
2. Materials and methods

2.1. Sewage sludge samples

Three hundred and eighty sewage sludge samples were col-
lected from 82 different wastewater treatment plants located in
southern Spain, during the period 2001–2008. The accumulated
equivalent population of the considered area is over 400,000
inhabitants. The treated volume of wastewater per year was
about 200 hm3, with a sludge production of 80,000 t, approxi-
mately. All samples were dried at 50 1C, ground, dried again at
105 1C and stored prior to their analysis.

2.2. Analytical methods

The electrical conductivity (EC) and pH of the sewage sludge
samples were determined in a 1:10 (w/v) water extract; total
organic matter content (TOM) was determined by loss on ignition
at 540 1C for 4 h after the extraction of inorganic matter with HCl
[16]. Total organic carbon (TOC) and total nitrogen (TN) were
determined by dry combustion at 950 1C using elemental analyzer
(Truspec CN, Leco, St. Joseph, Mich., USA) according to Navarro et al.
[17] and Paredes et al. [18]. After microwave digestion with HNO3, P
was assessed colorimetrically as molybdovanadate phosphoric acid
[19], K and Na were determined by flame photometry (Jenway PFP7
Flame Photometer, Jenway Ltd., Felsted, Dunmow, Essex, UK) and
Ca, Mg, Fe, Mn, Cd, Cr, Cu, Pb, Zn, Ni and Hg by atomic absorption
(Varian 220FS Atomic Absorption Spectrometer, Varian Inc.,
Melbourne, Australia). Water-soluble carbon and nitrogen frac-
tions (CWS and NWS) and organic carbon fractions were deter-
mined by automatic microanalysis [17] (TOC-VCSN, Shimadzu
Corporation, Kyoto, Japan), as were the 0.1 M NaOH-extractable
organic carbon (CEX) and fulvic acid-like carbon (CFA), the latter
after precipitation of the humic acid-like carbon (CHA) at pH 2.0
[20]. The CHA was calculated by subtracting the CFA from the CEX.
The humification ratio (HR), the humification index (HI) and the
percentage of humic acid-like carbon (PHA) were calculated as
(CEX/TOC)�100; (CHA/TOC)�100 and (CHA/CEX)�100, respec-
tively. The polymerization ratio (PR) was calculated as CHA/CAF.
All the analytical determinations were done in quadruplicate.

2.3. NIRS analysis

NIRS analyses were performed using a Fourier transform NIR
spectrometer (MPA, Bruker Optik GMBH, Germany) in the range of
wavenumber from 12,000 to 3800 cm�1 (830–2600 nm) with a step
of 8 cm�1, producing a spectrum with 2126 data points per sample.
Each sample was poured in a glass plate and scanned three times
using Opus software, version 6.0 (Bruker Optik) remixing the
individual sample between scans. The three spectra of each sample
were averaged obtaining a new one used for calibration and
validation. Fig. 1 shows the NIRS spectra of the sewage sludge
samples. Partial least square regression (PLSR) was used in the
calibration step. The validation step was carried out using the full
cross-validation method, following the leave-one-out procedure. To
ensure a good correlation between the spectral data and the
concentration values and find the best one, different pre-
treatments of the spectra and combinations of them were tested
(1)
 Vector normalization (VN): normalizes a spectrum by an
initial calculation of the average intensity value and subse-
quent subtraction of this value from the spectrum. Then, the
addition of the squared intensities is calculated and the
spectrum is divided by the square root of this addition.
(2)
 Minimum–maximum normalization (Nmin–max): first sub-
tracts a linear offset and then sets the y-maximum to a value
of 2 by multiplication with a constant. Used similar to the
vector normalization.
(3)
 First derivative (FD): it calculates the first derivative of the
spectrum. This method emphasizes steep edges of a peak. It is
used to emphasize pronounced, but small features over a
broad background. Spectral noise is also enhanced.
(4)
 Second derivative (SED): similar to the first derivative, it is
another treatment carried out separately from the first
derivative and that provides a more drastic result.
(5)
 Multiplicative scatter correction (MSC): performs a linear
transformation of each spectrum for it to best match the
mean spectrum of the whole set.
(6)
 Straight line subtraction (SLS): fits a straight line to the
spectrum and subtracts it. This accounts for a tilt in the
recorded spectrum.
(7)
 Linear offset subtraction (LOS): shifts the spectra in order to
set the y-minimum to zero.
To evaluate the estimation, several statistical parameters were
performed, such as: R2 (coefficient of determination for calibra-
tion); RMSEE (root mean square error of estimation); F (number
of factors or principal components); r2 (coefficient of determina-
tion for validation); RMSECV (root mean square error of cross
validation) and RPD (calculated as the standard deviation of the
reference data of the validation set divided by the standard error
of prediction). Malley et al. [21] suggested a guideline for
describing the performance of calibrations for environmental



Fig. 1. NIRS spectra of sewage sludge samples (wavenumber (cm�1) in abscissa and absorbance in ordinate).
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samples, as follows: excellent calibrations R240.95, RPD44;
successful, R2

¼0.9–0.95, RPD¼3–4; moderately successful,
R2
¼0.8–0.9, RPD¼2.25–3; and moderately useful, R2

¼0.7–0.8,
RPD¼1.75–2.25. Some calibrations with R2o0.7 may be useful
for screening purposes.

2.4. Mathematical model

A penalized signal regression (PSR) procedure was used to
establish a prediction model for all the parameters from the
absorbance signal given by the NIRS, similar to that proposed by
Eilers and Marx [15]. This is the notation of the model

Yi, i ¼1,y,n, the value of the parameters measured by the
analytic procedure in every sample.
X¼[xij], i¼1,y,n y j¼1,y,p is the absorbance matrix observed
from the spectra, where p denotes the number of wavelengths
considered and n the number of samples.

Then, the model corresponding to the concentration of each
parameter can be formulated by

logð
ffiffiffiffi
Y
p

iÞ ¼ a0þ
Xp

j ¼ 1

xij � aji, ð1Þ

where a0 represents intercept and aji gives the weight of the
wavenumber wj to predict the concentration of the parameter of
interest. However, this formulation encounters a conditioning
problem as the number of samples is quite fewer than the
number of the wavelengths considered. To solve this problem,
Eilers and Marx [15] proposed to project a onto a known basis of
smooth functions, so making use of the ordered feature of the
wavenumbers.

In this model, the number of initial predictors p is given by the
number of wavelengths considered. To reduce that number, a fixed
number of nodes are established on the wavelength range con-
sidered, nw, small enough to solve the problem of estimation and
large enough to capture the general behavior of the spectrum. The
proposed modelization states that the coefficients a of the predic-
tion model (1) can be written in terms of a B-spline basis
conformed from wavenumbers as

a¼
Xnw

m ¼ 1

Bmgm ¼ BC,

where C¼[gm] is the vector of unknown coefficients associated
with the base of B-splines. Then, (1) can be rewritten as

logð
ffiffiffiffiffi
Yi

p
Þ ¼ a0þXBa¼ a0þUG,

with U¼XB, where B is the base of cubic B-splines presented along
the axis defined by the wavenumber considered.

Galvez-Sola et al. [22] used a similar model to estimate the
phosphorous content in compost samples. To verify the predictive
ability of the model proposed, the set of samples was divided into
two groups. The first one, with the 66% of the samples was used to
adjust the proposed model, while the other 33% of the samples
was used in the validation step.

The analysis has been resolved with the R package, version
2.9.2 [23]. The functions used are based on those programmed by
Brian D. Marx and are available at http://www.stat.lsu.edu/
faculty/marx. To obtain the value of a and G the criteria of the
smallest prediction mean square was used.
3. Results and discussion

Table 1 shows the range of values of the different parameters
studied in the sewage sludge samples. A wide range was obtained
in most of the parameters considered, as a result of the high
variability among the different wastewater treatment systems,
but mainly due to the nature of the influent water quality [24]. In
spite of a wide range in the constituent values as compared to the
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Table 1
Range of the different parameters studied in the sewage sludge samples.

Parameter Range Mean value SD Parameter Range Mean value SD

TOM (%) 14.0–82.0 53.3 10.9 P (%) 0.24–2.35 0.93 0.21

TOC (%) 12.0–46.3 33.2 6.1 K (%) 0.05–1.27 0.33 0.18

TN (%) 1.16–8.40 4.80 1.43 Ca (%) 1.01–25.40 7.52 3.69

C/N 1.9–14.3 5.8 2.0 Mg (%) 0.03–5.17 0.80 0.65

CWS (%) 0.43–20.88 4.17 3.52 Na (%) 0.02–4.66 0.26 0.37

CEX (%) 1.46–17.23 7.94 2.73 Fe (mg kg�1) 1007–150549 12684 23998

CFA (%) 1.14–13.61 5.84 2.21 Mn (mg kg�1) 29–836 128 89

CHA (%) 0.07–8.73 2.10 1.37 Cd (mg kg�1) 0.20–189.00 7.08 15.62

NWS (%) 0.06–5.77 0.91 0.91 Cr (mg kg�1) 0.5–32662 535.4 2935.9

HR 9.30–54.92 23.65 6.14 Cu (mg kg�1) 26–4912 421 444

HI 0.30–32.31 6.23 3.78 Pb (mg kg�1) 0.5–1119 122 108

PHA (%) 36.4–98.2 74.1 12.4 Zn (mg kg�1) 152–24634 927 1346

PR 0.02–1.75 0.39 0.26 Ni (mg kg�1) 2–1500 46 113

pH 3.92–7.73 6.51 0.45 Hg (mg kg�1) 0.01–7.00 0.69 0.87

EC (dS/m) 0.50–19.40 2.36 1.66

TOM: total organic matter; TOC: total organic carbon; TN: total nitrogen; CWS: water-soluble carbon; CEX: extractable organic carbon; CFA: fulvic acid-like carbon; CHA:

humic acid-like carbon; NWS: water-soluble nitrogen; HR: humification ratio; HI: humification index: PHA: percentage of humic acid-like carbon; PR: polymerization ratio;

EC: electrical conductivity; SD: standard deviation.

Table 2
NIRS calibration and validation results for organic-matter related parameters.

Parametera Calibrationb Validationc PSR validation

R2 RMSEE RPD r2 RMSECV RPD Bias Factors r2 RMSECV

TOM (%) 0.84 3.76 2.46 0.78 4.27 2.13 �0.017 14 0.997 0.401

TOC (%) 0.88 1.79 2.93 0.87 1.88 2.73 0.005 13 0.999 0.219

TN (%) 0.89 0.43 2.99 0.87 0.45 2.77 0.001 12 0.995 0.156

C/N 0.68 0.97 1.73 0.58 1.06 1.54 �0.003 18 0.983 0.315

CWS (%) 0.80 1.24 2.26 0.76 1.35 2.03 �0.001 16 0.935 0.519

CEX (%) 0.85 0.93 2.62 0.80 1.05 2.26 �0.008 16 0.987 0.323

CFA (%) 0.85 0.87 2.59 0.78 1.04 2.12 �0.002 17 0.986 0.283

CHA (%) 0.69 0.65 1.79 0.58 0.73 1.55 �0.003 17 0.918 0.416

NWS (%) 0.85 0.25 2.59 0.78 0.30 2.14 �0.007 16 0.922 0.438

HR 0.76 2.74 2.06 0.68 3.11 1.76 0.033 17 0.921 0.704

HI 0.64 1.96 1.66 0.51 2.23 1.43 0.006 14 0.995 0.593

PHA (%) 0.67 7.01 1.71 0.51 8.12 1.43 0.035 20 0.906 0.192

PR 0.57 0.15 1.53 0.46 0.16 1.36 �0.001 17 0.922 0.265

a TOM: total organic matter; TOC: total organic carbon; TN: total nitrogen; CWS: water-soluble carbon; CEX: extractable organic carbon; CFA: fulvic acid-like carbon;

CHA: humic acid-like carbon; NWS: water-soluble nitrogen; HR: humification ratio; HI: humification index: PHA: percentage of humic acid-like carbon; PR:

polymerization ratio.
b R2: Coefficient of determination for calibration; RMSEE: root mean square error of estimation; RPD: calculated as the standard deviation divided by the standard error

of prediction.
c r2: Coefficient of determination for validation; RMSECV: root mean square error of cross validation; RPD: calculated as the standard deviation divided by the standard

error of prediction.
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error of individual measurements is a requirement for NIRS to
maximize the correlation coefficient and minimize the error of
prediction [25], we proceeded to the elimination of some samples
detected as outliers by the software application, depending on the
studied parameter, because of the high standard deviation in
some elements, e.g., Fe and heavy metals.

3.1. Parameters related to organic matter fractions

In Table 2 are shown the NIRS calibration and validation
results for the main parameters related to organic matter in the
sewage sludge samples. For TOM, the coefficient of determination
was 0.84 for calibration and 0.79 for cross-validation (Table 2).
RMSEE was acceptable and the RPD obtained in the calibration
process was higher than 2.25, so the results for this parameter
were moderately successful, using the SLS pre-treatment of the
absorbance signal. However, using the PSR method, the R2 was
improved (R2

¼0.997) and the RMSECV was lower, obtaining a
better predictive model using this penalized signal regression.
The determination of this parameter is important, not only for
what it represents, also because it is one of the parameters that, at
least, should be analyzed in sewage sludge for agriculture,
according to the Spanish legislation [26].

On the other hand, the results obtained for TOC were better;
R2 was 0.88 for the calibration process, with RPD¼2.93, and
similar results were obtained in the cross-validation step.
Albrecht et al. [27] obtained a value of r2

¼0.87 for the calibration
of C in samples of sewage sludge and green waste compost, using
the same regression but in the Visible-NIR region. Our results
were moderately successful and could be improved using the PSR
model, increasing the R2 to 0.999 with RMSECV¼0.219. Similar
results to those obtained for TOC were obtained for TN, according
to the coefficients of determination and RPD. Galvez-Sola et al.
[11], in a previous study using NIRS to evaluate the nitrogen
content in sewage sludge samples, reported a R2

¼0.94 for TN
using the PLSR model with the normalization as signal transfor-
mation but with higher error of estimation. Albrecht et al. [27]
obtained an r2

¼0.89 in the Visible-NIR region in composted
sewage sludge samples, while Vergnoux et al. [7] obtained a
R2
¼0.98. For both TOC and TN, the best results were obtained



Fig. 2. NIRS cross-validation plots between predicted values (in ordinate) and real values (in abscissa) using PLSR for total organic matter (TOM), total nitrogen (TN), C/N

ratio, electrical conductivity (EC), P, K, Cu and Pb (dotted lines represent perfect correlations).
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with no pre-treatments of the absorbance signal. On the other
hand, for C/N ratio, results were not satisfactory, because of the
low determination coefficients and RPD and the high residual
errors. This situation could be arranged using the PSR model,
obtaining a R2

¼0.983 for this ratio. Fig. 2 shows the calibration
plots for TN and C/N ratio using PLSR and Fig. 3 shows the
calibration plots for the same parameters, but using the PSR
calibration method. Analyzing the nitrogen content and the C/N
ratio is a requirement of the Spanish legislation associated to the
application of sewage sludge in agriculture [28].

Regarding the water-soluble carbon and nitrogen fractions,
CWS calibration was moderately successful (R2

¼0.80, RPD¼2.26)
using the PLSR method. Nevertheless, calibration for CEX was
better, reaching R2 the value of 0.85 and RMSEE value was 0.92.
Similar results were obtained for CFA after combining the NV and
FD as pre-treatment of the signal obtained by NIRS. No successful
results were obtained for CHA, due to the high prediction error and
the low determination coefficients in both calibration and valida-
tion processes, using in this case the LOS pre-treatment. Finally,
calibration for NWS was moderately successful. With the use of
the PSR method the determination coefficients obtained were
better for all the parameters previously mentioned and higher
than 0.91, with lower prediction error (except for NWS), demon-
strating the good goodness of fit achieved with this regression



Fig. 3. PSR validation results for total organic matter (TOM), total nitrogen (TN), C/N ratio, electrical conductivity (EC), P, K, Cu and Pb (square root of the measured values

in abscissa and square root of the predicted values in ordinate).
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Table 3
NIRS calibration and validation results for chemical parameters and elements.

Parametera Calibrationb Validationc PSR Validation

R2 RMSEE RPD r2 RMSECV RPD Bias Factors r2 RMSECV

pH 0.79 0.19 2.18 0.71 0.22 1.87 �0.001 17 0.999 0.065

EC (dS m�1) 0.85 0.42 2.55 0.77 0.5 2.09 0.004 18 0.942 0.370

P (%) 0.49 0.19 1.39 0.31 0.22 1.21 0.001 8 0.981 0.134

K (%) 0.64 0.08 1.66 0.60 0.08 1.57 0.001 9 0.96 0.114

Ca (%) 0.77 1.51 2.09 0.74 1.58 1.95 0.009 13 0.978 0.404

Mg (%) 0.89 0.18 3 0.86 0.19 2.68 0.002 12 0.923 0.249

Na (%) 0.79 0.10 2.16 0.65 0.12 1.7 0.019 18 0.834 0.208

Fe (mg kg�1) 0.84 9840 2.49 0.79 1110 2.17 �34.80 15 0.868 42.727

Mn (mg kg�1) 0.75 27.9 2.00 0.68 30.7 1.77 0.294 18 0.970 1.962

a EC: Electrical conductivity.
b R2: Coefficient of determination for calibration; RMSEE: root mean square error of estimation; RPD: calculated as the standard deviation divided by the standard error

of prediction.
c r2: Coefficient of determination for validation; RMSECV: root mean square error of cross validation; RPD: calculated as the standard deviation divided by the standard

error of prediction.

Table 4
NIRS calibration and validation results for heavy metal content.

Parameter Calibrationa Validationb PSR Validation

R2 RMSEE RPD r2 RMSECV RPD Bias Factors r2 RMSECV

Cd (mg kg�1) 0.73 3.53 1.91 0.62 4.09 1.62 �0.040 13 0.829 1.102

Cr (mg kg�1) 0.89 981 3.07 0.81 1280 2.3 9.140 17 0.732 1211.2

Cu (mg kg�1) 0.67 258 1.74 0.44 334 1.33 9.060 8 0.925 5.638

Pb (mg kg�1) 0.28 56.7 1.18 0.21 58.6 1.13 �0.095 8 0.891 3.648

Zn (mg kg�1) 0.56 188 1.51 0.47 204 1.37 0.304 11 0.924 8.418

Ni (mg kg�1) 0.60 72.4 1.58 0.24 98.7 1.15 0.621 6 0.787 3.148

Hg (mg kg�1) 0.42 0.48 1.31 0.32 0.51 1.21 0.004 7 0.745 0.418

a R2: Coefficient of determination for calibration; RMSEE: root mean square error of estimation; RPD: calculated as the standard deviation divided by the standard error

of prediction.
b r2: Coefficient of determination for validation; RMSECV: root mean square error of cross validation; RPD: calculated as the standard deviation divided by the standard

error of prediction.
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method. The performed calibrations for humification rates were
not successful by PLSR, except for HR (R2

¼0.76). However, with
the PSR model, we obtained good correlations for all rates with
determination coefficients higher than 0.90 (Table 2).

3.2. Chemical parameters and elements

The NIRS calibration and validation results for chemical para-
meters and elements are shown in Table 3. In relation to the
chemical parameters, the calibration obtained for pH was mod-
erately good. The resulting RPD was 2.18, with a R2

¼0.79.
However, in case of EC, the performed model was better, obtain-
ing a RPD higher than 2.25 and a R2

¼0.85 and pre-treating the
signal using the SLS pre-treatment. Once again, with the PSR
model, measures of goodness of fit improve, reaching more
accurate results. R2 for pH and EC were 0.999 and 0.942,
respectively, and RMSECV were low enough for both parameters,
as it is shown in Table 3.

For P, the resulting calibration was not satisfactory using the
PLSR model, this fact being confirmed by the low values obtained
for R2. For K, although the statistics were better than for P
(Table 3), these were not good enough, even when using the
model for monitoring purposes. Using the PSR model, the coeffi-
cients of determination were 0.98 and 0.96, respectively (Fig. 3).
On the other hand, results for Ca were moderately useful,
according to the values of R2 and RPD obtained using PLSR, which
were higher than 0.75 and 1.75, respectively. In addition, no
signal pre-treatment was needed for K and Ca. With PSR, the r2

was 0.978, improving the goodness of fit of the prediction and
decreasing the estimation error. Similar results were performed
for Mn. For Na, the coefficient of determination obtained with PSR
was also better than the obtained with PLSR, which constituted a
moderately useful calibration with this regression. However,
better results were obtained for Mg (R2

¼0.89). This calibration
was moderately successful with PLSR, improving the results with
PSR. For Fe, R2 was 0.84 for calibration and r2

¼0.79 for the cross-
validation process with the minimum–maximum normalization
pre-treatment. So, the result obtained was moderately successful
for this element, but with less estimation error using the calibra-
tion performed with the penalized regression tool. The analyses of
P, K, Ca, Mg and Fe are essential from the point of view of plant
nutrition; also, the Spanish legislation about the use of sewage
sludge in agriculture requires that the determination of these
parameters prior to sludge application [28].

3.3. Heavy metal content

The estimation of the heavy metal contents in sewage sludge
samples using NIRS is complex, as it was reported by Moral et al.
[8] in a study to evaluate the efficiency of NIRS to ascertain heavy
metal contents in sewage sludge samples. Table 4 shows the NIRS
calibration and validation results for the heavy metal contents in
the sewage sludge samples studied. Using PLSR, R2 for Cd was
0.73 with RPD¼1.91, but this result can improve with the PSR
model, increasing the coefficient of determination up to 0.83. On
the other hand, the prediction of Cr using PLSR and the VN pre-
treatment was possible, because the results were moderately
successful, with R2

¼0.89 and RPD¼3.07. The cross-validation
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process confirmed the good results obtained. In this case, despite
the value of r2 is lower using PSR, it is also lower using RMSECV
and therefore, the method PSR supposes lower estimation error.
The coefficient of determination was 0.73 and the estimation
error was higher (Table 4).

For Cu, the estimation model was better with PSR, with a
coefficient of determination higher than 0.90 and obtaining no
successful results using PLSR (Figs. 2 and 3). Similar results were
obtained for Pb and Zn, these results being successful and
moderately successful with the PSR model respectively and not
successful using PLSR. For Ni, the coefficient of determination
by PSR was moderately useful (r2

¼0.79 and RMSECV¼
3.148 mg kg�1) and not successful with PLSR using the VN pre-
treatment. Similar outcomes were obtained for the estimation of
Hg in the sewage sludge samples using the PSR model (r2

¼0.75
and RMSECV¼0.418 mg kg�1). In relation to the calibrations for
the heavy metal content using PLSR, the results in this study were
similar to those obtained in a previous research by Galvez-Sola
et al. [29], but improving in this case the coefficient of determina-
tion for Cd and Hg and reducing the RMSEE for all heavy metals
except for Cr. As it has been previously mentioned for other
elements, these heavy metals must be analyzed in sewage sludge
for agriculture, according to the Spanish legislation.

As it was shown, PSR calibrations in this study were better
than the typical PLSR calibrations widely used for NIRS prediction
models. PSR attacks the high dimensionality and correlation in
the regressors by projecting the regression coefficients onto a
fewer basis of smooth functions, linearly related to them. More-
over, penalties are included in order to smooth the curve by
avoiding neighbour regressors. Details and comparisons are
explained in Marx and Eilers [14] for a similar example on NIRS
signals.
4. Conclusions

Our results indicated that near infrared reflectance spectro-
scopy is a feasible tool for estimating total organic matter, total
organic carbon, total nitrogen, water-soluble carbon, extractable
carbon, fulvic acid-like carbon, electrical conductivity, Mg, Fe and
Cr in sewage sludge samples using the PLSR tool. Besides, with the
same regression tool, for pH, Ca, Na, Mn, Cd and also the
humification ratio, the goodness of fit in the validation process
was lower but useful. For C/N ratio, humic acid-like carbon,
humification index, the percentage of humic acid-like carbon,
the polymerization ratio, P, K, Cu, Pb, Zn, Ni and Hg, the goodness
of fit between observed and predicted values of NIRS with PLSR
was not good enough. Using PSR, all the parameters can be
estimated with better goodness of fit than with PLSR, with
coefficient of determination in the validation step higher than
0.90 for most of the studied parameters.
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