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ARTICLE INFO ABSTRACT

Editor: Manuel Esteban Lucas-Borja After wildfires in Mediterranean ecosystems, ruderal mosses are pioneer species, stabilizing the soil surface previous to

the establishment of vascular vegetation. However, little is known about the implication of pioneer moss biocrusts for

K_")'W"rdS: the recovery and resilience of soils in early post-fire stages in semi-arid areas. Therefore, we studied the effects of the
Bl?cms.t . . burgeoning biocrust on soil physicochemical and biochemical properties and the diversity and composition of micro-
xi:;':lal community composition bial communities after a moderate-to-high wildfire severity. Seven months after the wildfire, the biocrust softened the
Postfire management strong impact of the fire in soils, affecting the diversity and composition of bacteria and fungi community compared to
Wildfire the uncrusted soils exposed to unfavourable environmental stress. Soil moisture, phosphorous, and enzyme activities

representing the altered biogeochemical cycles after the fire, were the main explanatory variables for biocrust micro-
bial community composition under the semi-arid conditions. High bacterial diversity was found in soils under mosses,
while long-lasting legacies are expected in the fungal community, which showed greater sensitivity to the fire. The
composition of bacterial and fungal communities at several taxonomical levels was profoundly altered by the presence
of the moss biocrust, showing a rapid successional transition toward the unburned soil community. Pioneer moss
biocrust play an important role improving the resilience of soil microbial communities. In the context of increasing
fire intensity, studying the moss biocrust effects on the recovery of soils microbiome is essential to understanding
the resistance and resilience of Mediterranean forests to wildfires.
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1. Introduction

Wildfires, one of the most important disturbances shaping soil biochem-
istry, vegetation and microbial communities in Mediterranean ecosystems
(McLauchlan et al., 2020), are currently increasing in intensity favoured
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by warmer and drier conditions driven by decades of land-use change and
fire suppression policies (Moreira et al., 2020). Understanding how ecosys-
tems regenerate after a fire is essential for the development of measures to
improve post-fire ecosystem recovery, of special importance in semi-arid
areas, the most sensitive to climate change-induced scenarios (IPCC,
2013). After wildfires, the fast colonization of ruderal mosses preceding
vascular vegetation establishment effectively stabilizes the soil surface
and counteracts erosion in early post-fire stages (Silva et al., 2019). Ruderal
mosses pioneer colonization by responding to fire with wide dispersal of di-
aspores and rapid protonemal and gamethophye growth, facilitated by
their ability to develop on unstable substrates like charred surfaces and
ashes (Esposito et al., 1999; Smith et al., 2014). Although biocrust recovery
rates tend to be slow (Root et al., 2017), under favourable climatic and sta-
ble soil conditions mosses initiate the biocrust succession development,
often been observed after fire disturbances (Weber et al., 2016; Weber
et al., 2022). Moreover, forests affected by high-intensity fires in Mediterra-
nean ecosystems are largely dominated by ruderal moss biocrusts during
the first 2-3 years (De las Heras et al., 1994; Esposito et al., 1999; Stinca
et al., 2020), revealing the high resilience to the post-fire environment
of mosses (Reed et al., 2016; Condon and Pyke, 2018). Despite the rele-
vance in the vegetation succession dynamics, it is rather unknown if the
pioneer moss biocrust play a key role in the resilience of post-fire disturbed
ecosystems.

Biocrusts are complex assemblages of cyanobacteria, lichen, and/or
bryophyte that support a huge diversity of microorganisms (Warren
et al., 2019), which provide key ecosystem functions such as stabiliza-
tion of soil surface, increase soil fertility, control of local hydrological
dynamics, facilitate plant germination and establishment, and promote
microbial abundance (Belnap and Lange, 2013). Considering their
functional roles in ecosystems, the pioneer moss biocrust may accel-
erate the recovery of the ecosystem functioning in the early stages
after the fire disturbance, through the mitigation of the detrimental
consequences of fires in soils. Nevertheless, growing biocrust to reha-
bilitate fire-affected soils has been recently studied as a promising
stabilizing technique, either inoculating cyanobacteria (Mufioz-Rojas
et al., 2021) or cultivating mosses (Grover et al., 2020). Apart from
soil stabilization, the repercussion for soil microbial biodiversity is far
to be understood and still needs to be elucidated. Understanding the
soil biochemistry and microbiome response to the early biocrust emer-
gence is required to provide valuable information to apply in manage-
ment strategies toward accelerating recovery in semi-arid ecosystems
prone to degradation.

Fire dramatically alters the aboveground and belowground soil
communities. Extremely high temperatures usually decline microbial
biomass and profoundly reshape the microbial communities, whose re-
silience to fire is indirectly modulated via alterations in biogeochemical
soil properties, microclimate, and vegetation presence (Pressler et al.,
2019; Whitman et al., 2019; Pérez-Valera et al., 2020). Moreover, soil
microorganisms differ in their sensitivity to fire; fungal communities
usually report drastic decline with long-lasting legacies, whereas bacte-
ria express faster recovery rates after wildfires (Adkins et al., 2020;
Ammitzboll et al., 2022). Biocrust emergence on recently burned soils
in semi-arid areas may act as an intermediary that softens the harsh
conditions providing soil stability, shade, moisture, and enriching the
underlying mineral soil with organic matter and nutrients (Bao et al.,
2019; Garcia-Carmona et al., 2020). Therefore, microbial communities
living in soils under the influence of the pioneer ruderal mosses might
be benefited from its early presence, recovering faster in biomass and
diversity after the disturbance, ultimately accelerating the ecosystem
productivity and functionality restoration (Maestre et al., 2012).

Knowing their relevance in the post-fire vegetation succession dynamics
in Mediterranean ecosystems, we speculated that pioneer moss biocrust
plays an important role in the recovery and resilience of soils and microbial
communities in recently fire-affected soils. To test the hypothesis, physico-
chemical and biochemical soil properties and the microbial communities
were studied in moss biocrust soils and soils without mosses seven months
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after a wildfire and intensive logging operations, compared to unaffected
soils. It was tested whether (1) the altered by the fire physicochemical
and biochemical soil properties recover faster under the moss biocrust,
(2) the moss biocrust supports higher microbial diversity and abundance
compared to the uncrusted bare soils exposed to unfavourable environmen-
tal stress (3) the structure of the microbial communities responds to the
biocrust presence and the physicochemical and biochemical soil properties,
and, (4) dominant bacterial and fungal taxa, and the ecological roles of fun-
gal community, are resilient to fire disturbance thanks to the moss biocrust.

2. Materials and methods
2.1. Site description

The study area is located in “Sierra de la Replana” in Beneixama,
Alicante, Spain (38°44’15” N, 0°44’56” W, 940 m). The area has a warm
Mediterranean climate, 3—4 months of summer droughts, dry-hot summer,
and wet-warm spring, autumn and winter. The average temperature is
14.9 °C and the average annual precipitation is 456 mm. The vegetation is
mainly composed of50 years old Pinus halepensis Mill. trees from afforesta-
tion, and Quercus ilex L., and typical Mediterranean shrubs species such as
Quercus coccifera L., Rosmarinus officinalis L., Juniperus phoenicea L., Juniperus
oxycedrus L., Ulex parviflorus Pourr., Erica multiflora L., Stipa tenacissima L.,
and Stipa offneri Breistr. The steep slopes are terraced facing south, where
soil was classified as a Typic Xerorthent (Soil Survey Staff, 2014) with low
depth and clay loam texture (29 % clay, 49 % silt, 22 % sand).

A wildfire in July 2019 burned a total of 862 ha. Fire severity was clas-
sified as moderate to high according to Keeley (2009), understory plants
were charred or consumed, fine dead twigs on soil surface were consumed
and log charred, and soils were covered by grey colour ash. In early Septem-
ber, salvage logging operations were carried out in the area, consisting of a
complete extraction of the burned wood using heavy machinery. After that,
soils were exposed to erosion processes, triggered by events of strong pre-
cipitations (40 mm in an hour in October 2019). Seven months after the
wildfire, slopes facing south showed evidences of surface runoff and
soil erosion, and harsher conditions for plant regrowing. Ruderal mosses
forming an emergent biocrust colonized the fire-affected soils, creating
spatial heterogeneity through a mosaic of moss patches surrounded by
bare soils.

2.2. Experimental design, biocrust monitoring, and soil sampling

Sampling was conducted in February 2020, seven months after the
fire event. In order to facilitate the monitoring of the moss biocrust
cover, experimental plots (2 m X 2 m) were placed in the study area.
Plots were randomly established along the same hillside to minimize en-
vironmental factors, nine sampling plots in the fire-affected area, and
another three sampling plots in a nearby-unburned area used as control
at a distance of approximately 500 m. The unburned plots were at least
100 m away from any fire edge. Since the salvage logging effects on soils
cannot be evaluated separately from the wildfire effects, the fire distur-
bance discussed in the manuscript includes the additional effects of
burnt wood extraction.

A biocrust monitoring study was performed before the soil sampling
using four random replicates of a 25 cm x 25 c¢cm quadrat (divided into
100 cells) at each experimental plot, revealing an average of 30 = 14 %
of soils covered by ruderal mosses. In the unburned area (50-year afforesta-
tion), the presence of mosses was almost negligible (<5 %), possibly due
to bryophytes communities are displaced in later successional stages in
Mediterranean vegetation dynamics (De las Heras et al., 1994; Esposito
et al., 1999), in addition to the high density of pine needles covering
soils reducing the sunlight in soil surface that hinder the moss develop-
ment. Therefore, we did not consider the presence of mosses in the
unburned area for the experimental design due to the high differences
of the conditions with the burned area.
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Soil samples were collected from the top 2.5 cm of the soil surface.
Within each experimental plot in the burned area, four soil samples were
collected, two of them consisting of soils under the moss-biocrust and
the other two in bare soils. At the unburned area, two soil samples
were collected per plot at 2.5 cm after the removal of organic debris.
From the total number of samples representative of the area, for opera-
tive purposes in the present study we randomly selected 15 samples
representing bare soils, 15 samples under mosses, and 5 samples from
the unburned soils (n = 35).

For each soil sample, one part was sieved at 2 mm and frozen at —20 °C
for DNA extraction and lipid fatty acid analyses, another part was kept
at 4 °C to measure biological and biochemical parameters, and the
remainder was dried at room temperature. From the dry sample, one
part was sieved between 4 mm and 0.25 mm for the aggregate stability
test, and the remaining was sieved at 2 mm for the physicochemical
analyses.

2.3. Laboratory analyses

Soil pH and electrical conductivity were measured in a 1:2.5 and a
1:5 (w/v) aqueous extract, respectively. Soil organic carbon was deter-
mined by the potassium dichromate oxidation by the Walkley-Black
method (Nelson and Sommers, 1983); total nitrogen was analysed by
the Kjeldahl method (Bremner and Mulvaney, 1982); and available
phosphorus was extracted and measured by the Burriel-Hernando
method (Diez, 1982). The aggregate stability was measured as the pro-
portion of aggregates that remain stable after the soil sample (sieved be-
tween 4 and 0.25 mm) is subjected to an artificial rainfall of known
energy (279J min~! m™ 1) (Roldan et al., 1994). Soil moisture was
determined by gravimetry from field wet soils after drying for 24 h at
105 °C.

The soil microbial biomass carbon was determined by the
fumigation- extraction method (Vance et al., 1987). Soil basal respira-
tion was measured in an automated impedance-meter (BacTrac 4200
Microbiological Analyser, Sylab, Austria), based on the changes in the
impedance of a KOH solution (2 %) due to the CO5 emissions by soil
microorganisms incubated at 30 °C for 24 h. The estimation of urease
activity was based on the release of NH** from hydrolytic reactions
where soil samples were exposed to the substrate urea (Nannipieri
et al., 1981). B-Glucosidase and alkaline phosphomonoesterase activi-
ties were quantified colorimetrically as the p-nitrophenol produced
during the incubation of soil with the substrates p-nitrophenyl-3-D-
glucopyranoside (Tabatabai, 1983) and p-nitrophenyl phosphate
disodium salt, respectively (Naseby and Lynch, 1997).

To estimate the biomass of the microbial community, phospholipid
fatty acid analysis (PLFA) and neutral lipid fatty acid analysis (NLFA)
were used. Lipids were extracted with a chloroform-methanol-phosphate
buffer mixture (1:2:0.8), and then fractionated using solid-phase extraction
cartridges (LiChrolut Si 60, Merck), eluted in three fractions containing
neutral lipids, glycolipids and phospholipids with 2 mL of chloroform,
6 mL of acetone and 2 mL of methanol, respectively. The first fraction
and the third fractions were subjected to mild alkaline methanolysis.
The free methyl esters of NLFA and PLFAs were analysed by gas
chromatography-mass spectrometry (450-GC, 240-MS ion trap detector,
Varian, Walnut Creek, CA, USA), the instrument and program settings de-
scribed in Frouz et al. (2016). Methylated fatty acids were identified ac-
cording to their mass spectra and by using a mixture of chemical
standards from Sigma-Aldrich (Prague, Czech Republic) and Matreya LLC
(Pleasant Gap, PA, USA). Fungal biomass was quantified based on the
18:2w6,9 content, and bacterial biomass was quantified as the sum of the
contents of the fatty acids i14:0, i15:0, al15:0, 16:1w7t, 16:1w9, 16:1w7,
10Me-16:0, i17:0, al7:0, cyl17:0, 17:0, 10Me-17:0, 10Me-18:0, and
cy19:0 (Stella et al., 2015). The content of arbuscular mycorrhiza biomass
was estimated using 16:1w5 concentration in the NLFA fraction (Baath,
2003). The total PLFA was calculated as the sum of all the fatty acids.
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2.4. DNA extraction and sequencing analysis of bacterial and fungal
communities

DNA was isolated using the DNeasy PowerSoil Pro DNA isolation kit
(Qiagen), strictly following the manufacturer's instructions. DNA was resus-
pended in a final volume of 100 pL and quantified using the Qubit High
Sensitivity dsDNA Assay (Thermo Fisher Scientific).

For library preparation, a fragment of the ITS2 region of fungal rRNA
was amplified using the primers ITS86F and ITS4 (De Beeck et al., 2014),
and the V4 region of bacterial 16S rRNA was amplified using the primers
515F-Y (Parada et al., 2016) and 806R (Apprill et al., 2015). [llumina se-
quencing primers were attached to these primers at their 5’ ends. PCRs
were carried out in a final volume of 12.5 pL, containing 1.25 pL of template
DNA, 0.5 uM of the primers, 6.25 pL of Supreme NZYTaq 2 X Green Master
Mix (NZYTech), and ultrapure water up to 12.5 pL. The reaction mixture
was incubated as follows: an initial denaturation step at 95 °C for 5 min,
followed by 35 cycles of 95 °C for 30 s, 49 °C for 30 s, 72 °C for 45 s, and
a final extension step at 72 °C for 7 min. A negative control that contained
no DNA was included in every PCR round to check for contamination dur-
ing library preparation. The libraries were run on 2 % agarose gels stained
with GreenSafe (NZYTech), and imaged under UV light to verify the library
size. The oligonucleotide indices which are required for multiplexing differ-
ent libraries in the same sequencing pool were attached in a second PCR
round with identical conditions but only 5 cycles and 60 °C as the annealing
temperature. Libraries were purified using the Mag-Bind RXNPure Plus
magnetic beads (Omega Biotek), following the instructions provided by
the manufacturer. Then, libraries were pooled in equimolar amounts ac-
cording to the quantification data provided by the Qubit dsDNA HS Assay
(Thermo Fisher Scientific). The pool was sequenced in a fraction of a
NovaSeq PE250 lane (Illumina). The sequence data have been deposited
into the National Centre for Biotechnology Information database under
the accession number PRINA857296.

The amplicon sequencing data were processed using the SEED 2 pipe-
line (Vétrovsky et al., 2018). Briefly, paired-end reads were joined using
fastq-join (Aronesty, 2013), reads were quality filtered based on a quality
score of 30, short and long sequences were trimmed (sequences with <40
bases were removed for ITS, <200 and >350 bases for 16S). The ITS2 re-
gion was extracted using the ITSx software before processing (Bengtsson-
Palme et al., 2013). Chimeric sequences were detected and deleted using
Usearch 8.1.1861 (Edgar, 2010). Sequences were clustered into operational
taxonomic units (OTUs) using UPARSE implemented within USEARCH
(Edgar, 2013) at a 97 % similarity level. After singleton removal, 2896
OTUs for ITS and 23,914 OTUs for 16S were kept for further analyses.
The most abundant sequence of each OTU was selected to represent it
and perform cluster identification. The identification of bacterial
and fungal sequences was performed using BLASTn at the Ribosomal
Database Project (Cole et al., 2014) and UNITE (Nilsson et al., 2019), re-
spectively. Sequences identified as non-bacterial or non-fungal were
discarded. Identification at genus-level was performed at =97 % simi-
larity and =95 % coverage to merged into a single taxon, and when
lower similarity, lower coverage or both, the genus-level identification,
or the best available identification, was used. Based on the published lit-
erature, fungal genera were used to assign putative ecophysiological
categories using the FungalTraits (P6lme et al., 2020).

2.5. Statistical analysis

All the analyses were performed using RStudio v. 4.0.5 (RStudio Team,
2021). In order to study the recovery of soil properties and PLFAs and NLFA
content in the presence of the moss biocrust in burned soils, linear mixed
models were fitted including the distribution of samples along the experi-
mental plots as random effects, using the “lmer” function from “lme4” pack-
age. The relationship of the microbial biomass (PLFA and NLFA) with the
physicochemical and biochemical parameters in soils under mosses and
bare soils was explored using principal component analysis (PCA) with
the “FactoMineR” package (Lé et al., 2008).
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Diversity parameters were estimated from OTU tables in which all sam-
ples were resampled to equal the smallest library size to reduce the effect
of variation in sequencing depth using the “rarefy_even_depth” function
in “phyloseq” package. Previous to further statistical analysis, exploring
distance-decay patterns, we discarded the possible effects of the geographic
distance among experimental plots along the slope on the microbial com-
munity structure (Morlon et al., 2008). For that, we determined the level
of similarity in the microbial communities, examining the correlations
between the OTU abundance matrix (i.e., Bray-Curstis dissimilarities of
OTU relative abundance) and the spatial distance matrix (i. e., cartesian co-
ordinates). From the rarefied matrices, we calculated OTU richness
(function “specnumber”) and a-diversity indices for both bacteria and
fungi to identify whether moss biocrust support higher diversity indices
for bacterial and fungal diversity. Non-metric multidimensional scaling
(NMDS) ordination analysis based on Bray-Curtis distances of OTU rel-
ative abundances was performed for recognize variations in the struc-
ture of the bacterial and fungal communities, using the “metaMDS”
function from the “vegan” package. The effect of the biocrust presence
on the microbial community structure was statistically tested by permu-
tational multivariate analysis (PERMANOVA) with the “adonis2” func-
tion using 9999 permutations comparing the communities in biocrust
and bare soils.

To understand which factors among the fire-affected soil physico-
chemical and biochemical properties are related with bacterial and fun-
gal community composition in burned soils, soils under mosses and bare
soils, canonical correspondence analyses (CCA) were performed with
“cca” function. In order to avoid multicollinearity, variance inflation
factor was calculated and variables with values >10 were removed
sequentially. The remaining variables were subjected to a forward
selection procedure to select the subset of constraining variables that
better explain the communities' variation in the CCA final model with
“ordistep” function. The significance of the CCA final models was tested
by Monte-Carlo permutational test (999 permutations). The composi-
tional matrices were transformed using Hellinger transformation before
the statistical analysis.

With the aim of identifying shifts in the dominance of bacterial and fun-
gal taxa in response to the moss biocrust presence and to the fire event, the
microbial community composition was analysed for significant differences
systematically at different taxonomic ranks using relative abundances with
non-parametric “kruskal” function with p-values correction based on
Benjamini-Hochberg false-discovery rate with 95 % confidence interval.
It was also performed for the ecological categories in fungi community to
detect the recovery state of the fungal functionality after the fire event
and the emergence of the moss biocrust. The identification of indicator
taxa of bacteria and fungi (at genus and OTUs level) representative of the
conditions in each soil studied (moss biocrust soils, bare soils, and un-
burned soils), was provided with the Indicator Value (IndVal), a predictive
value for each “specie” (biological taxa) as indicators of each soil (De
Caceres et al., 2013), after the “multipatt” function at the “indicspecies”
package.

Table 1
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3. Results

3.1. Fire and biocrust effects on soil properties, and the relationship with the
microbial biomass

Seven months after the wildfire and the subsequent forest management,
fire legacies were visible on most soil properties (Table 1). The severity of
the fire was reflected in the significant reduction of organic carbon and ni-
trogen content and the strong impact on the biological and biochemical
properties measured, with significantly lower values reported for basal res-
piration, microbial biomass, and enzyme activities in fire-affected soils.

The moss biocrust influenced the underlying burned soils (Table 1).
Soils under mosses registered a significant decrease (more than two-
fold) in available phosphorous content compared to the bare soils, pre-
sumably consumed by mosses after being highly released by the fire
event. Significantly higher soil moisture was observed in soils under
mosses. In addition, the microbial biomass carbon was a sensitive pa-
rameter to the moss biocrust presence, showing significantly higher
values in soils under mosses compared to bare soils, 296 mg C kg ~*
and 184 mg Ckg ™, respectively, both values markedly lower compared
to the biomass carbon in the unburned soils (753 mg C kg’l).

The total PLFAs, significantly reduced in the fire-affected soils in
all cases (Fig. 1), did not significantly respond to the moss biocrust,
although a trend to higher biomass was found for bacterial and total bio-
mass in soils under mosses (Fig. 1). In comparison with bare soils, moss
biocrust soils concentrated higher bacteria biomass and thus higher ex-
tracellular enzyme activities associated (Supplementary data, Fig. Al).
With lesser effect, soils under moss biocrust also concentrated higher
fungi biomass, correlated to the higher moisture in those soils. Contrary,
the arbuscular mycorrhizal biomass was highly correlated to the slight
increase in organic carbon and nitrogen content and basal respiration
found in bare soils (Fig. Al).

3.2. Microbial community diversity and composition, and their relationship with
soil variables

Alpha diversity values for soil bacterial community were higher
under the moss biocrust (Fig. A2), reaching the same levels as in un-
burned soils, while bare soils were identified to have significantly
lower bacterial richness (i.e., number of phylotypes) and diversity indi-
ces (Shannon and Chaol). In contrast, the fire strongly impacted the
fungal community, significantly decreasing values for richness and
diversity indices, without registering any effect due to the moss biocrust
(Fig. A2).

Regarding the structure of the microbial communities, both bacterial
and fungal communities were drastically altered by the fire, and then
reshaped after the biocrust emergence. Fig. 2 shows bacterial communities
in unburned soils and burned soils to cluster separately, and moss commu-
nities and bare soil in burned soils to cluster separately as well. The effect of
a biocrust in burned soils was confirmed by the PERMANOVA analysis,

Mean + standard deviation of soil physical-chemical and biochemical properties of burned soils, with mosses and without mosses bare soils, and unburned soils. Lowercase

letters indicate statistical differences at p < 0.05 (post-hoc Tukey test).

Bare soil Mosses Unburned
pH (H,0. 1:2.5) 8.45 = 0.11a 8.41 + 0.13ab 8.28 = 0.06b
Electrical conductivity (pS/cm) 180 + 26b 217 + 36a 208 + 47ab
Organic carbon content (%) 4.18 = 1.25ab 3.97 + 0.86b 5.53 * 1.64a
Total nitrogen (%) 0.26 += 0.07b 0.25 + 0.05b 0.36 = 0.11a
Available phosphorus (mg kg~ %) 27.22 + 19.60a 13.21 * 4.44b 4.07 = 1.25b
Aggregate stability (%) 78.82 + 8.59a 69.14 = 8.78b 75.87 + 12.5ab
Soil moisture (%) 13.53 = 3.97b 18.67 * 4.86a 12.74 = 5.69b
Basal soil respiration (ug C-CO, h™* g~ ! soil) 7.64 + 1.36b 7.63 = 0.678b 12.3 + 3.36a
Microbial biomass carbon (mg C kg ™! soil) 184 + 55¢ 296 + 113b 753 + 179a
B-Glucosidase (umol PNP g~ ' h 1) 1.27 + 0.41ab 1.21 + 0.30b 1.67 * 0.22a
Urease (umol N-NH; g 'h™1) 0.57 = 0.39b 0.92 = 0.27b 2.1 = 1.07a
Alkaline phosphatase (umol PNP g~ * h™ 1) 1.03 + 0.33b 1.33 + 0.34b 2.45 + 0.528a




M. Garcia-Carmona et al.

Bacteria Fungi
a 1.00 4
10.04

. b 0754

‘bD 75 =

o ]

& b = 0.50 b F

s S b .

307 #I 0.25 # $
Barc Soil  Moss  Unburned Bare Soil  Moss Unburned
Arbuscular Mycorrhiza Total PLFA
151 a a
161

7. 107 iy b

= 212

5] =]

g b £ 5

g 54 b =

L & kG
0 <4
Bare Soil  Moss  Unburned Bare Soil  Moss  Unburned

Fig. 1. Box-plot of bacterial, fungal, arbuscular mycorrhiza biomass and total PLFAs,
measured in of burned soils, with mosses and without mosses bare soils, and
unburned soils. Lowercase letters indicate statistical differences at p < 0.05 (post-
hoc Tukey test).

which showed bacterial communities under mosses statistically differ
from those in bare soils (F = 3.273, p-value < 0.001). The effect of burn-
ing on fungal community structure was even more marked than for
bacteria, separating the unburned and burned communities along the
X-axis (Fig. 2). Communities of fungi under mosses clustered separately
along the Y-axis from those in bare soils, a difference that was confirmed
after the PERMANOVA analysis (F = 2.343, p-value < 0.001).

The environmental and soil properties related to the community
composition of bacteria and fungi were similar in both cases (Fig. 3).
The significant constraining variables for the bacterial communities
were the enzymatic activities (3-glucosidase, phosphatase and urease),
soil moisture (H), and available phosphorous, although explaining
only 22.75 % of the total inertia in the CCA model. The composition of
bacterial communities under mosses showed strong association with
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the enzymatic activities and soil moisture, while communities in bare
soils associated with the high content of phosphorous in soils (Fig. 3).

The fungal community structure was related to the variables glucosi-
dase activity, soil moisture (H) and available phosphorous, all of them se-
lected for the final CCA model after forward selection and explaining the
13.07 % of the total inertia. As for the bacteria, the available phosphorous
in bare soils markedly associated with fungal community composition,
while glucosidase and soil moisture associated with fungal communities
under mosses (Fig. 3).

3.3. Bacterial community composition

The study of the bacterial community showed a drastic shift in
burned soils. However, the biocrust buffered the effect of fire on the
bacterial community, for which the relative abundances of most of
the dominant phyla showed values intermediate between the values
for unburned soils and those for bare soils. The dominant phylum,
Actinobacteria, significantly decreased after burning, shifting the
dominance to Proteobacteria in bare soils (see Supplementary data,
Fig. A3). Fire promoted Firmicutes and Bacteroidetes, in this case with
lower values in soils under mosses than in bare soils. Similarly, higher
abundances compared to bare soils were found under mosses for phy-
lum Planctomycetes and Chloroflexi, which decreased with burning.

At the genus level, around 50 % of sequences belong to genera
with mean relative abundance <1 %, especially found in unburned
soils. The most abundant genera in soils revealed important changes
after the fire event and the moss biocrust presence (Fig. 4). Arthrobacter
(Micrococcaceae), was the dominant genus in biocrust soils and bare soils,
and experienced a high increase after burning. Similarly, genera increased
after the fire were Bacillus (Firmicutes), Blastococcus (Actinomycetales),
Massilia (Burkholderiales), Sphingomonas (Alphaproteobacteria),
Paenisporosarcina (Firmicutes), and Comamonas (Burkholderiales), express-
ing significantly lower values in soils under mosses Massilia, Shingomonas
and Comamonas. On the other hand, several genera were significantly re-
duced by the fire, e. g. Solirubrobacter and Conexibacter (Solirubrobacterales),
both with the highest abundance in the unburned soils, but showing
intermediate values under mosses.

A high number of responsive OTUs were found for bare soils (441),
mosses (318), and unburned soils (2152) (Supplementary data, Tables Al
and A2), the majority corresponding to taxa with low abundance in soils.
At the genus level, Arthrobacter highlighted as the most abundant indicator

Bacteria Fungi
A
0.2 Stress value = 0.0966 : Stress value = 0.1096
A 4 A, 02
A A,
0.1 A A:
0.1
A
A
~ a
wn OO ................................................................................................. A 0 0
a g 00
= A A =
Z Z
-0.1 -0.1
A
-0.2
-0.2
: _0‘3 b
-0.50 -0.25 0.00 0.25 0.50 -0.8 -0.4 0.0 04
NMDSI1 NMDSI1
Bare Soil A Moss Unburned Bare Soil A Moss Unburned

Fig. 2. Two-dimensional non-metric multidimensional scaling (NMDS) ordination based on Bray-Curties dissimilarities at OTU level for bacterial and fungal communities.
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for soils under mosses (8 % versus 3.2 % in bare soils and 0.12 % in
unburned soils), whereas indicator genera at bare soils reported were
Blastococcus, Bacillus, Massilia, Comamonas, Shingomonas, Paenisporosarcina,
Adhaeribacter, and others.
3.4. Fungal community composition

The fire disturbance strongly changed the composition of the dominant

groups of the fungal community; additionally, the moss biocrust influenced
some fungal taxa that expressed intermediate abundances between the
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unburned soils and bare soils (Fig. A3, Fig. 4). An increment in the domi-
nance of Ascomycota after fire was revealed (60-70 %) in detriment of
the Basidiomycota (from 34.1 % in unburned soils to 23.6 % in bare soils
values in soils under mosses in between). In fire-affected soils, a significant
increment in phyla Chytridiomycota was found (genera Phlyctochytrium
and Spizellomyces), and a significant decrease in Glomeromycota with
values almost negligible in bare soils. The increase in Ascomycota in
burned soils was highly represented by the dominant Penicillum,
followed by the increase in Naganishia (Basidiomycota) and Sporormiella
(order Pleosoporales), among others. Contrary, genera that were negatively
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Fig. 4. Relative abundances of the dominant bacterial and fungal genera of burned soils, with mosses and without mosses bare soils, and unburned soils.
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affected by fire were represented by the common yeast Solicoccozyma
or Paraphoma (Pleosoporales). Fungal genera in moss biocrust that showed
the same abundance than in unburned soils were Geminibasidium (Basidio-
mycota) and Rhizopogon (Boletales). Contrary, soils under mosses regis-
tered a significant decrease (2-fold) of Fusarium (Hypocreales).

The indicator species analysis, performed at both genus and OTUs level
(Tables A3, A4), highlighted the saprotroph Coniothyrium as the major indi-
cator of bare soils, followed by Pyronema, Filobasidium, and Papilotrema,
with fungal parasite decomposer function, or the yeasts Naganishia and a
Saitoella. For soils under mosses, the most representative and abundant in-
dicator was the saprotroph Penicillium, followed by the other saprotrophs as
Clonostachys or Geminibasidium.

The study of the fungal functional roles showed how the wildfire altered
the main functions associated with fungal communities (Fig. 5). A signifi-
cant decrease in ectomycorrhizal (36.6 % in unburned while around
2.6 % in burned soils) in favour of significant increases in saprotrophs
was detected in the fire-affected soils (unburned with 41.8 %, bare soils
and mosses around 74 %). In addition, a significant increase was detected
in yeast (from 3.8 % to 16.5 % in mosses and 18.5 % in bare soils). Different
abundances were found between bare soils and mosses in fungal parasite
decomposers, being higher in bare soils.

4. Discussion

Seven months after the fire disturbance, the reduction of organic carbon
and nitrogen content and the unfavourable response of the biological prop-
erties, with the microbial activity and biomass severely affected, reflected
the legacies of a medium to high severity fire. The posterior emergence of
the moss biocrust in the affected soils, creating a mosaic of heterogeneous
soil microenvironments, greatly influenced the physicochemical soil prop-
erties and, consequently, the microbial composition and activity. Knowing
that biocrusts help to stabilize the soil surface (Silva et al., 2019; Cania
et al., 2020), together with the fact that mosses as primary producers
with significant contributions to nutrient cycling (Cheng et al., 2021; Xu
et al.,, 2022), an increment in soil fertility compared to their neighbouring
bare soils was expected. However, contrary to expected, bare soils regis-
tered the highest aggregate stability, which is presumably related to a selec-
tion of the most stables aggregates after the erosion processes occurred
post-fire in those soils (Mataix-Solera et al., 2021). In addition, soils
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beneath moss biocrust registered a slight lower OC content, either due to
the exhaustion of labile forms released after the wildfire by the burgeoning
microbial community, or the preference of mosses to establish where lower
recalcitrant organic matter concentrates after the fire (Gonzélez-Pérez
etal., 2004). The strong impact observed in the soil properties is commonly
found after high severity fires, nutrients cycling is profoundly altered and
the microbial activity immediately reduced, which is expected to takes
time to recover to pre-fire levels under semi-arid conditions (Pérez-Valera
et al., 2020).

Shifts in the microbial community composition in moss biocrust soils
positively favour the extracellular enzymatic activities, suggesting a rela-
tive indirect contribution of moss biocrust to the nutrient cycling through
microbial activities (Xu et al., 2022), an influence in soil expected to be
greater at the early successional stages of the biocrust than in the later
(Ferrenberg et al., 2022). The improvement in soil moisture thanks to the
moss biocrust enhancing the water sorption capacity on soil surface (Li
etal.,, 2021), would in turn promote the microbial activity and biochemical
processes in the fire-affected soils under semi-arid conditions (D'Ascoli
etal., 2005; Baldrian et al., 2010). Therefore, the post-fire harsh conditions
on the soil surface (e.g., desiccation, high temperature, and solar radiation),
were counteracted by the biocrust emergence providing favourable micro-
habitats that promoted the microbial growth, most probably benefiting
from the pulse of easily mineralizable compounds after the fire (Goberna
et al., 2012; Xiao et al., 2019). While the higher microbial biomass carbon
found under the moss biocrust compared to bare soils supports the idea of
microbial growth thanks to the biocrust, the PLFA content as indirect mea-
sure of total biomass (bacteria and fungi) did not significantly differ be-
tween moss biocrust soils and bare soils. However, the expected increase
in soil stability and softening of severe conditions over time are expected
to boost bacteria and fungi abundance and diversity in soils under biocrust
(Garcia-Pichel et al., 2003; Maier et al., 2016). Nevertheless, the forest
management, removing all the burned wood, possibly hindered the spread-
ing of moss cover as reported in a previous work (Garcia-Carmona et al.,
2020), thus creating less opportunities for microbial establishment affect-
ing at larger scales.

Despite the drastic decrease in the microbial abundance, only seven
months after the fire, bacterial community in moss biocrust reached diver-
sity values comparable to the unburned soils. Under favourable conditions
bacteria reproduce rapidly; hence, increases in Chaol and Shannon indices
may indicate an increment in rare species simultaneously to frequent spe-
cies, suggesting higher community complexity as described by Miralles
etal. (2020) under later successional biocrust. On the contrary, fungi diver-
sity, known as more sensitive than bacteria to disturbances (Bastida et al.,
2017), remained low in burned soils regardless the biocrust presence.
Biocrusts are considered as hotspots of fungal and bacterial diversity, but
it highly depends on their successional stage (Maier et al., 2016; Liu
etal., 2017). Immediately after fires, stochastic processes strongly structure
the microbial community, but subsequent evolution of soil properties acts
as an intense filter on the biocrust microbial composition (Ferrenberg
et al., 2013; Li and Hu, 2021). Soil properties related to the for microbial
community shifts described in the study (i.e., soil moisture and phospho-
rous) are common restrictive soil properties for microbial development
after fires, as well as important factors for biocrust microbial assembly in
semi-arid conditions (Ghiloufi et al., 2019; Warren et al., 2019). The struc-
ture of the bacterial community was highly determined by the soil nutrient
status, observed in how the enzymatic activities responded to the commu-
nity structure. The urease and glucosidase enzymes correlated well with
the nitrogen and OC content, while the phosphatase and available phospho-
rous showed an opposite pattern, the enzyme probably inhibited after the
high release of available P after fire (Lopez-Poma and Bautista, 2014;
Turner and Wright, 2014). On the other hand, the enzyme glucosidase
was related with the fungal community, enzyme that is involved in the deg-
radation of complex carbon substrates (Rousk and Baath, 2011).

The dominance of the major phyla of bacteria and fungi shifted after the
wildfire, recolonization being pioneered by microorganisms with spore-
formers or fast-growth strategies and with adaptations to the high nutrients
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release (Goberna et al., 2012). That was reflected in the relative abundance
increment of Firmicutes, Bacteroidetes, and Ascomycota, all positively
influenced by fire disturbances (Prendergast-Miller et al., 2017; Pérez-
Izquierdo et al., 2020). Generally, copiotrophic taxa dominate in early
post-fire environments, replaced later by more oligotrophic taxa to
consume the remaining less labile substrates (Fierer et al., 2012). Despite
the strong effects of burning and forest management, microbial communi-
ties under moss biocrust registered intermediate composition between the
bare soils and unburned soils for the dominant phyla, suggesting a rapid
successional transition to a more complex and oligotrophic environment,
expected to occur in later successional stages with changes in nutrient
availability (Ortiz-Alvarez et al., 2018; Zhou et al., 2020). However,
the high available P content in bare soils did not suppose the promotion
of taxa with traits for P consumption as other studies have reported
under P fertilization (Leff et al., 2015), just decreases in oligotrophic
taxa as Acidobacteria and Planctomycetes. In addition, the extraction
of burned wood is a disturbance that induces alterations in soil moisture
and C cycling, driving changes in microbial communities (Serrano-Ortiz
et al., 2011; Garcia-Carmona et al., 2021), particularly in fungal com-
munities, highly sensitive to logging management expressing long-
term legacies (Ammitzboll et al., 2022).

The fire-associated Firmicutes, Bacteroidetes and Betaproteobacteria
were favoured in the severely burned soils (Prendergast-Miller et al.,
2017; Rodriguez et al., 2018). Arthrobacter (Microccocaceae), the major
indicator found for moss biocrust soils, is known to play an important
role in the nitrogen cycle and plant growth in Mediterranean burned
forests (Cobo-Diaz et al., 2015; Ferndndez-Gonzélez et al., 2017),
while Blastococcus, the indicator of bare soils, is commonly described
as pioneers in extreme environments (Xing et al., 2020; Miralles et al.,
2020). Whereas Proteobacteria dominate in bare soils, Actinobacteria
dominate in moss biocrust soils, suggesting key roles in initial crust
development (Belnap and Lange, 2013). Copiotrophic Proteobacteria
presumably increased with the release after fire of labile carbon
(Goldfarb et al., 2011), then decreasing in abundance once consumed
by the higher bacterial biomass growth under moss biocrust soils.
Lower abundance in moss biocrust was detected for Massilia and
Comamonas (Burkholderiales), usually found in burned soils due to their
ability to degrade labile and recalcitrant carbon compounds (Puentes-
Téllez and Salles, 2020; Stinca et al., 2020) and in biocrust in drylands
(Moquin et al., 2012; Li and Hu, 2021), and Sphingomonadaceae, espe-
cially associated with bryophyte crusts (Cutler et al., 2017; Maier et al.,
2018). Bacillales family (mainly Bacillus), increased after fire and indi-
cator, is described as desiccation-tolerant copiotrophs with the ability
to degrade hydrocarbons accumulated after fires (Ferrenberg et al.,
2013), and families of Bacteroidetes Cytophagaceae (genus Adhaeribacter)
and Sphingobacteriacea were already described as indicators of Mediterra-
nean burned soils (Stinca et al., 2020; Garcia-Carmona et al., 2021) and
moss biocrust in drylands (Moquin et al., 2012).

Seven months after the fire, shifts in the fungal composition at the
phylum level revealed the common detriment after fires in Basidiomy-
cota in favour of Ascomycota (Smith et al., 2017; Ammitzboll et al.,
2022), the decrease in Glomeromycota, as obligate symbionts forming
arbuscular mycorrhiza (Treseder et al., 2004), and the increase in
Chytridiomycota. This phylum has been often associated with mosses
thanks to their capacity to retain soil moisture (Letcher and Powell,
2002; Davey et al., 2012). Ascomycota indicators in burned soils were
the common saprobe Penicillium (Whitman et al., 2019), and the
pyrophilous fungi Pustularia and Pyronema (Reazin et al., 2016;
Pulido-Chavez et al., 2021), responsible for aggregating soil particles
after fires and enhancing moisture retention (Filialuna and Cripps, 2021),
also found in moss crusts (Raudabaugh et al., 2020). Moss biocrust was
dominated by the Ascomycota phyla, the majority saprotrophs as fre-
quently reported (Maier et al., 2016; Liu et al., 2017; Xiao and Veste,
2017). Among the indicators in moss biocrust soils highlighted the
yeast Naganishia, common in dry soils resistant to UV radiation (Solon
et al., 2018), and the fire-adapted saprobe Geminibasidium, known to
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initiate post-fire succession (Reazin et al., 2016; Pulido-Chavez et al.,
2021).

Despite the compositional differences in the fungal community
found between bare soil and mosses, both resulted functionally similar
at community level. Wildfire leads to indirect long-term effects in
fungi via host mortality and shifts in plant dominance (Fox et al.,
2022), especially ectomycorrhiza fungi, although in fire adapted ecosys-
tems the spore bank can remain intact even after high severity fires
(Glassman et al., 2016). Through changes in the composition and recal-
citrance of the soil organic matter, the decomposition ability of micro-
bial communities is affected determining the community composition
(Treseder et al., 2004; Ling et al., 2021). Since fungi are primary decom-
posers, monitoring the changes in fungal communities associated to
moss biocrust is of particular relevance to understanding the function-
ing of burned Mediterranean forest, and predict the nutrient cycling
changes in a context of increasing severity fires.

5. Conclusions

Seven months after the wildfire, the burgeoning biocrust softened the
impact of the fire disturbance in soils and in the bacterial and fungal com-
munities at several taxonomical levels. Moss biocrust soils harboured
higher bacteria diversity, and the relative abundances of most of the domi-
nant taxa showed intermediate values between the values for unburned
soils and bare soils. Biocrust growing in patches along the landscape
contributes to biological diversity and accelerates the ecosystem recovery
in the vulnerable semi-arid areas, which is particularly important in the
case of soil fungi, given their slow recovery and important functional
roles in soils. Our results emphasize the necessity of minimizing the dis-
turbances to moss biocrust during their spreading right after fire distur-
bance, to secure the potential recovery of soils thanks to more complex
and developed microbial communities. In addition, more research on
the dynamics of microbial communities associated with moss biocrust
will be essential for other common forest management practices in the
Mediterranean forest.
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