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Abstract. This work focuses on the mechanical characterisation of adhesives with hyperelastic behaviour, and on the 
determination of the behavioural laws that best represent them, in order to be able to introduce them into simulation models. 
There are virtually no references to the characterisation of these materials in the literature, so it has been decided to use the 
methodologies commonly employed with other hyperelastic materials, such as rubber, whose behaviour is similar to that of 
highly flexible adhesives. Firstly, a test plan is carried out on simple specimens, uniaxial and planar configurations, designed to 
measure the non-linear behaviour of the adhesives in both tension and shear. Subsequently, using finite element models of the 
tested specimens, different behavioural laws from those usually used for the representation of hyperelastic materials are tested. 
Based on the experimental results, the parameters of the different laws proposed are adjusted, and the results are compared. In 
conclusion, it has been determined that the Mooney-Rivlin model is the one that allows the best fit, and therefore may be the 
most suitable to represent the behaviour of hyperelastic adhesives. For the adhesive used in this work, the obtained law has been 
validated by comparing the results of tests on single lap adhesive join (SLJ) specimens with the results predicted by the 
simulation. 

Keywords: Flexible adhesive, Hyperelastic models, Mechanical characterisation, Finite element analysis. 

1. Introduction 

In recent years, the use of composite materials has become widespread in a wide range of applications, with a particularly 
marked increase in the aerospace and automotive industries. This is due to the excellent stiffness-to-weight and strength-to-
weight ratios of these materials. Highly flexible structural adhesives in particular are increasingly being used in engineering [1]. 
They are predominantly used where considerable expansion and contraction are expected at the joint, in the case of materials 
with different coefficients of thermal expansion (CTE), in joints between different metals, fibre-reinforced plastics, or glass panels, 
or where a highly flexible bond is required [2]. Hyperelastic adhesives also offer good sealing properties when tolerances and gaps 
are high. They also have advantages such as the ability to withstand impact, high vibration, and safety, which are critical values in 
the automotive industry. Finally, a safety advantage of hyperelastic adhesives over rigid adhesives is that they prevent sudden 
failure, as they have a high resistance to tear propagation, allowing damaged joints to be identified and repaired before complete 
rupture.  

The adhesives used in this research behave in a similar way to rubber and other elastomers, they show elastic behaviour in 
the large deformation range, showing a non-linear relationship between load and deformation [3], but maintaining their capacity 
for a total recovery of the deformation when the stress ceases. It is for this reason that its modelling as a hyperelastic material is 
proposed, which we will see in detail in the following sections.  

The extended area of use of these adhesives requires an extensive and detailed testing methodology to certify the behaviour 
and reliability of the joints. Different appropriate methodologies have been proposed to experimentally analyse the hyperelastic 
behaviour of flexible adhesives [4-7]. However, there are very few studies dedicated to the analytical modelling of flexible bonds 
[8-9]. Almost all existing bond models have been developed for rigid adhesives [10]. 
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The Finite Element Method (FEM) is currently the usual calculation procedure in structural mechanics and solid mechanics in 
general. The aim is always to reduce the time required for the project or for placing the product on the market. When this tool 
was not available, it was necessary to manufacture prototypes, test them and make improvements iteratively, which entailed a 
high cost, both financially and in terms of development time. Most of the analyses carried out are still based on the solution of 
static linear problems, where the value of the load does not vary as a function of time and there is a linear relationship between 
force and deformation (Hooke's Law) [11], which require the determination of few properties to characterise the behaviour of the 
material. Nevertheless, there is a growing development of numerical tools that allow an accurate prediction of the different 
behaviours and failure scenarios that can occur in complex composite materials. However, the modelling of non-linear or time- 
and strain rate-dependent behaviour, which is now possible thanks to the advance of these calculation capabilities, requires a 
much more complex characterisation, using the most appropriate techniques for each material. This is the case for flexible 
adhesives, which tend to have a viscous hyperelastic behaviour, which, in many cases, has not been sufficiently studied. 

The first objective of this research is to analyse the behaviour and performance of different hyperelastic adhesives currently 
used on the industrial level, using the manufacture and testing of Halterio and Single Lap Shear (SLJ) specimens [7]. Based on the 
results obtained in the tests, the adhesive with the best performance is selected, and its hyperelastic behaviour is characterised, 
to subsequently undertake its numerical modelling. For this modelling, different hyperelastic constitutive models were first 
studied, which a priori could be valid to reproduce the mechanical behaviour of the flexible adhesive. Characterisation tests have 
been carried out on different specimens, subjected to uniaxial tension and pure shear, using specific test geometries taken from 
standards and previous works [12-13]. From the data of these tests and with the help of finite element programmes, the 
parameters of the different hyperelastic models have been adjusted, finally selecting those with which a better adjustment has 
been achieved by simulation of the stress-strain relationships extracted in the tests. Once the hyperelastic model has been 
adjusted, it should be possible to use it to simulate the behaviour of different joint configurations. To corroborate this, and to 
validate the selected material model, SLJ joints with different adhesive thicknesses have been computationally modelled, 
comparing the results with those obtained experimentally by testing specimens with the same configurations.   

2. Hyperelastic Models and Methodology for Adjustment and Selection 

The behaviour of hyperelastic materials is usually characterised using the strain energy density function [14]. This function 
acts as a potential of the stresses, unlike an elastic material, where there is a function that can directly relate the stresses to the 
strains in a linear fashion. 

Elastic: 

( )Fσ = ε  (1) 

Hyperelastic: 

W
σ
∂

=
∂ε

 (2) 

where  is a dimensional strain of a solid and W (sometimes written as U) is the strain energy density or stored energy function 
defined per unit volume. 

In order to characterise the mechanical behaviour of materials with hyperelastic behaviour, many theoretical models have 
been developed (Mooney-Rivlin, Ogden, Yeoh, etc.), obtained from the study of simple geometries and stresses (uniaxial 
compression, uniaxial tension, shear, etc.) [15]. 

The implementation of such models would be very complex without the help of finite element programmes, which have 
become a fundamental tool to determine in each case the most appropriate material model to reproduce the behaviour, and to 
help in the identification of the parameters. Among the large number of models proposed, this work focuses on those most 
commonly implemented by commercial finite element programs. 

2.1 Common hyperelastic models 

There is a considerable amount of literature on the modelling of materials with hyperelastic behaviour. The choice of model 
depends on the application, the relevant variables, and the data available to determine the material parameters. In order to 
achieve good results, the validity of the possible models should be studied, and the simplest model that can provide sufficient 
accuracy should be selected. 

An efficient hyperelastic model can be explained by four main qualities [16]: 
 It must be able to reproduce the full S-shaped response of the rubber exactly. 
 The change of deformation modes should not be problematic, i.e. if the model works in uniaxial tension, it should also 

be accurate in shear or equibiaxial tension. 
 The number of fit material parameters should be small, in order to reduce the number of experimental tests for their 

determination. 
 The mathematical formulation must be simple so that the numerical performance of the model is feasible. 

Rivlin proposed [17], that the strain energy density function (W ) could be expressed as a polynomial of: 

The main elongations 

( )1 2 3, ,W W λ λ λ=  (3) 

Deformation invariants 

( )1 2 3, ,W W= Ι Ι Ι  (4) 

where: 
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0

L

L
λ =  (5) 

where  is principal elongation  (the ratio of the length of the deformed element (L) to the initial length (L0) for each of the 
principal directions)[18]. 

Deformation invariants: 

( ) ( ) ( )
2 2 2

1 1 2 3λ λ λΙ = + +  (6) 

( ) ( ) ( )
2 2 2

2 1 2 2 3 3 1λ λ λ λ λ λΙ = ⋅ + ⋅ + ⋅  (7) 

( )
2

3 1 2 3λ λ λΙ = ⋅ ⋅  (8) 

For incompressible materials [19]: 3 1Ι = . 

If the material can be assumed to be incompressible, as is often the case with rubbers, the volumetric terms are neglected. 
However, this requires that the Poisson's ratio is close to 0.5 at low stresses, which is the property of the adhesives used in this 
research. 

Starting from the proposition made by Rivlin, the deformation energy density function shown below was arrived at [17] : 

1

2
1 2

1
( 3) ( 3) ( 1 )

N
jc i c c i

i j
i

N

i ij

W c J R
D+ −

= ⋅ ⋅Ι − Ι − + ⋅ − −∑ ∑  (9) 

where:  
W : Strain energy density function. 

N : A positive determining the number of terms in the strain energy function (N = 1,2,3). 

ijc : Are empirically determined material constants. 

1 2,Ι Ι : First and second deformation invariants. 

J : Elastic volume ratio. 

iD : Coefficient defining the compressibility of the material.  

R :  Coefficient defining the volumetric expansion with temperature change. 

The Rivlin expression given above is somewhat complex to apply, and successive researchers have developed particular cases 
of this expression, which have subsequently been implemented in the various finite element programmes. 

Two types of models of hyperelastic materials are available in the Abaqus programme (one of the most widely used in this 
field of application) and each model defines the strain energy function in a different way [20-21]. One is phenomenological 
models that treat the problem from the perspective of continuum mechanics and characterise the stress-strain behaviour without 
reference to the microscopic structure. Another is physically motivated models that consider the material response from the 
perspective of microstructure. A brief review of the phenomenological hyperelastic models available in Abaqus, and used during 
this study, is given below. 

Mooney-Rivlin model 

It is a phenomenological model based on the deformation invariants and has as its general expression [22]:  

1
1 2( 3) ( 3)ji

i

N

j
i j

W c
+ =

Ι − ⋅ Ι −= ⋅∑  (10) 

Other models have been derived from this model, such as Neo-Hookean, James-Green-Simpson, Signiorini, Yeoh, Peng, Peng-
Landel.  

Neo-Hookean model 

This model is a special case of the Mooney-Rivlin form with c01 = 0 and can be used when material data is insufficient. It is 
easy to use and can make a good approximation at relatively small deformations. 

10 1( 3)W c Ι −=  (11) 

where 10c is a material constant and 1Ι first deformation invariant. 

Polynomial model 

This strain energy function model is commonly used in modelling the stress-strain behaviour of elastomers, with four or five 
terms. The polynomial model represented in equation is in the compressible form, based on the invariants 1 2Ι − Ι of the Cauchy-
Green deviatoric tensor [14], making W become: 

2
1 2

1 1

1
( 3) ( 3) ( 3)

N
ji i

e
i

N

i
li j

i

W c J
D= =

Ι= − Ι −⋅ ⋅ + ⋅ −∑ ∑  (13) 

elJ : Elastic volume Ratio. 

1 2,Ι Ι : First and second deformation invariant. 
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ijc : Describes the shearing behaviour of the material. 

iD : Determines compressibility, zero for totally incompressible materials. 

N : Determines the number of terms in the strain energy function (N = 1,2,3). 

Yeoh model 

Yeoh [23] developed a new phenomenological model based on cubic invariants and proposed the following form as the 
deformation energy density equation: 

31 110 120 0( 3) ( 3) ( 3)W c c cΙ − + Ι + Ι −= −  (13) 

where c10, c20 and c30 are material constant and 1Ι first deformation invariant. 
This model has the characteristic that the shear modulus varies with deformation and only depends on the first deformation 

invariant. Yeoh established the cubic equation to predict the stress-strain behaviour in different deformation modes, but 
especially in parts with high shear influence such as a tyre.  

Ogden model 

It is a model [24] based on the principal deformations, its general expression being: 

1 2
1

3( 3)n n na a a
N

n

n n

W λ λ λ
α

µ

=

= ⋅ + + −∑  (14) 

where n and μn are empirically determined material constants and the second term represents volumetric changes. 
These models make the following assumptions: the material behaviour is elastic, the material behaviour is isotropic, the 

material is incompressible, the simulation will include non-linear geometrical effects[25]. 
Research carried out by various authors yields the following conclusions [16]: 

 The Ogden model requires more computational time as it is an exponential function. 
 The determination of the values of the Mooney-Rivlin constants from experimental tests is easier than the Ogden 

constants. 
 The potential strain energy equation of the Mooney-Rivlin model is considered the most widely used constitutive law in 

the stress analysis of elastomers. 

2.2 Model fitting based on tests 

Equation (9) shows the typical equation for hyperelastic models according to which the behaviour is determined, on the one 
hand by the principal invariants, and, on the other hand, by the volumetric properties. The deviatoric properties are determined 
from experimental test data under various stress states. To define the input requirements of the models, several tests are 
required. Before defining the types of tests that will allow the most accurate model fitting, different sources of information have 
been consulted. On many occasions, these were publications related to the characterisation of rubbers [26], as we have already 
mentioned, the adhesives used in this research behave in a similar way to rubber. The manuals of the finite element programmes 
normally suggest that the most accurate way to determine the hyperelastic coefficients is to estimate them from a combination 
of two or three of the following tests: uniaxial tension, planar tension and equibiaxial tension tests. In this study, we decided to 
use the combination of the planar and uniaxial test for the adjustment. 

Uniaxial stress 

A very common experiment on materials with hyperelastic behaviour. The most important requirement is that the length of 
the sample must be greater than the width and thickness. The aim is to create an experiment where there are no lateral 
restrictions for sample thinning [26].  

Principal deformations: 

1 2 3
0

1
;

L

L
λ λ λ

λ
= = =  (15) 

where ( 1,2,3)j jλ =  is the principal stretch ratio. Also A and L , respectively, mean the cross-sectional area and length of a 

specimen. 

Principal stresses: 

1 3 2
0

; 0
P

A
σ σ σ σ= = = =  (16) 

where P is the load and j (j =1,2,3) is the axial stress. 
The most common specimen geometry for this type of test and material with hyperelastic behaviour is the shape of a 

dumbbell or dog bone, defined in the standard ISO 37:2005 [27] (Fig. 1). 
In this study, adhesive sheets of dimensions 200 x 130 with a thickness of 3 mm were created to produce the specimens. After 

7 days of curing, dog bone shaped specimens were made from the sheet with suitable punching tools. 
As very low forces were expected, due to the cross-section of the specimen and the low adhesive strength compared to other 

materials, a load cell with 1000 N full scale was used, using an universal testing machine (Fig. 2), with a test speed of 500 mm/min. 
Strain data were extracted using the DIC technique, according to the standard. 
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Fig. 1. Uniaxial tension specimen. 

 

 

Fig. 2. Uniaxial tensile test. 

 

Fig. 3. Planar specimen. 

Planar tension 

The pure shear test is applied on several occasions to characterise the stress-strain, strength and fatigue properties of soft 
materials. It consists of a thin rectangular sheet that is clamped along its long edges to prevent lateral shrinkage (in direction 2) 
while stretched in the direction of its short edges (direction 1). The sheet can shrink freely in its thickness dimension (direction 3), 
to achieve homogeneity, and the width of the specimen should be greater than the height. The test piece is shown schematically 
in Fig. 2, and some examples can be found in the literature [25], [28]. The important feature of the pure shear test is that, unlike 
the uniaxial test described above (dog bone), no lateral deformations are induced, providing pure shear.  

The states of deformation and stress are determined as follows: 

Principal deformations: 

1 2 3

1
; 1;λ λ λ λ

λ
= = =  (17) 

Principal stresses: 

1 2 3; 0; 0σ σ σ σ= = =  (18) 

The dimensions of the effective tested area of the specimen in the planar test were 130 x 13 x 3 mm (Fig. 3). The specimens 
were obtained by cutting a previously cured sheet, in the same way as the dog bone specimens. In this case, the experiments were 
carried out at a deformation rate of 100 mm/min. Deformation data were also extracted using DIC [29], in addition to being able to 
detect possible debonding, or slippage, at the adhesive-metal interfaces (Fig. 4). 
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Fig. 4. Machine mounted planar tensile test. 

 

Fig. 5. SLJ specimen geometry (dimensions in mm). 

2.3 Fitting of the material models. Estimation of hyperelastic constants  

For the comparison between the different applicable models, and the estimation of the corresponding hyperelastic constants, 
the adjustment utility for these materials offered by the Abaqus software has been used. This material curve fitting utility allows 
the user to compare different hyperelastic material models, using data from uniaxial and planar tests. The input data to the 
programme are the nominal stress-nominal strain curves, from which the programme estimates the constants of the different 
possible models.  

Of the various hyperelastic material models available, which can reproduce material behaviour at various levels of complexity, 
the material models initially considered were: Mooney-Rivlin, Neo-Hookean, Ogden ( N = 1 and N = 2), Polynomial ( N = 2). It should 
be noted that, in this case, the compressibility constants ijD are zero for any of the models, as it is assumed to be an 

incompressible material. 
The stress-strain curves obtained from simulation using each model are compared with the experimental ones. And the best 

fitting models are selected. 

2.4 Validation and material model selection 

The models of the hyperelastic material obtained, and the set of parameters adjusted experimentally with the help of Abaqus, 
have to be validated. To this end, it is proposed to test their performance in the simulation of standardised joint configurations. 
The simulation of tests of SLJ specimens with adhesive thicknesses of 1 and 3 mm is considered, comparing these with the 
experimental results obtained in the specimen tests using the same configuration and boundary conditions, as shown in Fig. 5. In 
this way, the best fitting model can be finally selected and, if necessary, fine tuning of the hyperelastic constants can be 
considered. 

Despite recent developments, shear testing of materials using SLJ specimens is still the most widely used method, due to the 
performance and simplicity of fabrication. For the fabrication of these specimens, two key points must be taken into account: the 
alignment of the substrates and the control of the uniform thickness over the entire overlap surface. In order to carry out and 
guarantee a correct fabrication of these specimens, the use of forming tools is used. The most common standards describing the 
method are: ASTM D1002[30] and ISO 9664 [31]. In this research, it is intended that only shear stresses are produced, which are 
distributed evenly along with the adhesive layer. To achieve this, the joints have been manufactured in steel with dimensions of 
100 x 25 x 10 mm, with an overlap length of 25 mm and adhesive thickness of 1 mm, as shown in Fig.5. With this geometry and 
material, no uncontrolled deformations occur in the adhesives during the test, avoiding the appearance of unwanted peeling 
stress components in the adhesive. 
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For the quasi-static simulation, as well as in the previous section, the commercial finite element software Abaqus has again 
been used. Quadratic hexahedral elements with reduced integration were used, in order to reduce the mesh density without 
affecting the accuracy of the solution (Fig. 6). A mesh convergence study was performed, comparing the results obtained  with 
progresively finer mesh densities in the bonding area, until no significative differences were found in the final results using a 
higher mesh density than the one selected.  

The force-displacement response was analysed up to a displacement range of 6 mm for the 1 mm thick specimen, and up to 
12 mm for the 3 mm thick specimen. Non-linearities dues to material law and large displacements were taken into account, but 
considering only the moments prior to the onset of failure. As fracture is not studied at this stage of the work, mesh refinement in 
the stress concentration zones was not considered necessary. For the non-linear calculation, the displacement range was divided 
into 900 steps. The convergence tolerances of the solver for the residuals were maintained at the default values offered by 
Abaqus, calculated respectively as 0.5% of the average forces and 1% of the displacement increment. 

3. Experimental Development and Results 

3.1 Adhesive selection 

Four adhesives from different manufacturers are available, from which the one with the best performance will be selected to 
develop the following phases of this research work. The desired performance of these adhesives, in joints applied in the 
automotive field, is as follows:  

 High elasticity. 
 Low viscosity, thus avoiding heating of the adhesive in cyclic loading situations. 
 Cohesive failure 

The adhesives considered for the first part of this research are three one-component polyurethanes (PUR): SikaFlex 252, 
Korapur 140 and Bostik PU 2639 and another one based on silane-modified polymers (SMP) Teroson MS 939 (manufactured by 
Henkel), all designed to manufacture highly flexible seals. These products cure on reaction with moisture, forming high-
performance elastomers. Depending on the adhesive, and according to the manufacturer's specifications, an adhesion promoter, 
in most cases, primer, is applied as part of the formulation.  

To assess each adhesive with respect to these three points, two types of tests were performed: dog bone shaped specimens, 
based on ISO 37:2005[21] (Fig. 2), and SLJ joints (Fig. 5). The results are shown in Table 1 and Fig. 7.  

In this first part of the research, 5 samples of each adhesive were tested using an Instron universal testing machine. The tests 
were carried out at constant speed, controlling the displacement at a rate of 5 mm/min for the SLJ specimen and 500 mm/min for 
the dog bone specimen. 

Different types of failure (cohesive and adhesive) were observed, depending on the adhesive. The joints made with Bostick PU 
2639 and Teroson MS 939 adhesive showed adhesive failure. Both have been discarded for this reason for the subsequent fitting of 
the hyperelastic model, as the model could not be validated until the elastic limit of the material was reached, due to the fact that 
the adhesive failure was reached earlier. Furthermore, it should be noted that Bostick PU 2639 adhesive has a high viscosity, 
which is also why it could not be considered a suitable material for cyclic loading resistance.  

On the contrary, both SikaFlex 252 and Korapur 140 adhesive showed the desired type of cohesive bonding failure. Although 
Korapur 140 adhesive has a higher breaking strength, it has a significantly higher stiffness than SikaFlex 252. For this reason, 
SikaFlex 252 adhesive was finally selected for the next phases of the study, as the elasticity of the material is a key point in the 
selection of the adhesive, as mentioned above.  

 

Fig. 6. FE simulation of SLJ specimen using Abaqus. 

 

Fig. 7. Experimental result from SLJ tests using different adhesives. 
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Table 1. Mechanical properties obtained for different adhesives. 

Adhesive 
Tensile strength 

(ISO 37) MPa 
Shear strength 

(SLJ) MPa 
Elongation at tear 

(ISO 37)% 
100 % Young module 

(ISO 37) MPa 

Sika Flex 252 3.13 (±0.23) 2.46(±0.3) 480(±47.96) 1.17(±0.047) 
Korapur 140 3.18(±0.08) 2.7(±0.09) 381(±23.29) 1.81(±0.02) 

Bostik Pu 2639 1.07(±0.03) 1.06(±0.12) 975(±27.1) 0.4(±0.01) 
Terason ms 939 2.36(±0.23) 2.42(±0.24) 350(±8.6) 1.22(±0.13) 

 

3.2 Model definition and estimation of hyperelastic constants 

Figs. 8 and 9 show the stress-strain curves obtained respectively in the uniaxial tensile and planar tests, and compare them 

with those obtained for the same tests using the different material models automatically adjusted by the programme. The aim is 
to find a hyperelastic model that gives a good correlation between model and test for both types of test simultaneously. 

Analysing the curves obtained in the low deformation zone, several of the models considered could be considered as a good 
option for predicting the experimental behaviour of the adhesive, both in the uniaxial tension and the planar test. On the other 
hand, for large deformations, a large dispersion is observed between the results obtained with the different models. The models 
with the best acceptable correlation over the whole deformation range are the following: 

 The material model that appears to offer the most balanced fit for both test types, and over the entire strain range, is the 
Ogden model of order 2.    

 The proposed Mooney-Rivlin model shows a much better correlation with the uniaxial tensile test results in the large 
strain range. Nevertheless, it shows an excessively high stiffness in the planar test simulation. 

These material models will be the ones selected a priori to validate, in the following section, their behaviour in shear.  

 

 

Fig. 8. Uniaxial test curves obtained for SikaFlex 252, using different behaviour laws. 

 

 

Fig. 9. Planar test curves obtained for SikaFlex 252, using different behaviour laws. 
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3.3 Validation through SLJ tests and final model selection 

Next, the validation of the models of the a priori selected hyperelastic materials is addressed, following the methodology 
detailed in section 2.  

Firstly, the Ogden N=2 model is used, with the adjusted constants shown in Table 2. Fig. 10 shows an acceptable correlation of 
results between simulation and test for the case of the specimen with 3 mm thick adhesive. But the model does not give good 
results in the simulation of the SLJ specimen with 1 mm thick adhesive (Fig. 11). Better results are obtained for the 1 mm thick 
when simulating the Ogden N=1 model, with the parameters adjusted for it in the previous section and shown in Table 3. 
However, the results obtained for the 3 mm thickness are vastly different from the experimental ones. 

In view of these results, the objective of selecting and fitting a single hyperelastic model capable of reproducing the behaviour 
of end-joints with different configurations and thicknesses with acceptable accuracy, could not be considered to have been 
achieved. On the contrary, the results obtained with the Ogden model of orders 1 and 2 would corroborate the opinions of several 
authors regarding the need to perform characterisation tests with the same thickness of adhesive to be used in the final joints, as 
the only way to obtain a reliable adjustment of the material model, whose validity is thus restricted to the simulation of a very 
narrow range of possible joints. 

An attempt was then made to validate the Mooney-Rivlin model fitted in the previous section, which offered a good 
correlation only in the simulation of the uniaxial tensile test. The first results showed that the model offered curves with shapes 
close to the experimental ones for both adhesive thicknesses, although not sufficiently accurate. After a slight iterative 
modification, the Mooney-Rivlin constants were set to the values shown in Table 4, with which a very good correlation was finally 
obtained for both SLJ tests, as shown in Figs. 10 and 11. 

 
 

 

Fig. 10. Experimental and computational results for SLJ-3 mm of SikaFlex 252. Comparison between Ogden N =2, Ogden N =1 and Mooney Rivlin 
models. 

 

 

Fig. 11. Experimental and computational results for SLJ-1 mm of SikaFlex 252. Comparison between Ogden N =2, Ogden N =1 and Mooney Rivlin 
models.  
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Table 2. Ogden N=2 hyperelastic constants for SikaFlex 252. 

N µ α D1 
1 1.32493862 1.19452984 0 
2 -0.677801657 -1.35713429 0 

 

Table 3. Ogden N=1 hyperelastic constants for SikaFlex 252. 

N µ α D1 
1 0.641945321 1.49567371 0 

 

Table 4. Mooney-Rivlin hyperelastic constants for SikaFlex 252. 

N c10 c01 D1 
1 0.24159316 -0.05185012 0 

 

Table 5. Relative error obtained with the different models for the SikaFlex 252 SLJ joints. 

Model Relative error (SLJ 1mm) Relative error (SLJ 3mm) 

Ogden N=2 75 % 18 % 

Ogden N=1 13 % 43 % 
Mooney Rivlin 2.6 % 4.2 % 

 
 

Finally, in order to quantify the differences between the performances observed for the different material models, the relative 
error between the experimental curve and the one obtained with each model, has been integrated over the whole measurement 
range. The results are shown in Table 5. 

4. Conclusions 

In this study, a methodology has been defined to characterise high flexibility adhesives. After a preliminary experimental 
study of different adhesives, the best performing one was selected as representative for further charateristion. Uniaxial tensile 
and pure shear tests (planar test) were then used to characterise the material. From there, simulation was used to fit the 
constants of different theoretical models of hyperelastic material, in order to select those that offered the best fit. Subsequently, 
to validate the performance offered by these models, specimens working in shear (SLJ) were simulated, and the following 
conclusions were reached: 

 The Ogden model of order 2, which was selected a priori as the best, has given a good correlation in SLJ tests with adhesive 
thicknesses of 3 mm (the same thickness used in the characterisation tests in the previous phase). However, it does not 
provide valid results at lower thicknesses. 

 The best results have been obtained with a Mooney-Rivlin model, starting from the one that had given good results in the 
characterisation of the uniaxial tensile test, after a small iterative modification of the parameters. 

 These results show that it is possible to obtain a single hyperelastic material behaviour law, valid to represent the 
behaviour of different configurations and thicknesses of highly flexible adhesive. However, in the process of selecting and 
fitting the material model and its constants, the validity of the adhesive material characterisation tests used in this study, 
and in particular the planar test as defined here, is called into question. 

As future lines of research, it is proposed precisely to define the appropriate characterisation tests, specifically defined for this 
type of hyperelastic adhesives, which will allow a more precise adjustment of the behavioural law. 
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