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1 Introduction

The aim of this paper is to study a proposed modification of the Linear Ordering Problem
(LOP), generally known in the field of optimisation by its acronym Linear Ordering Problem.
Specifically, it is a combinatorial optimisation problem first studied in 1958 by Chenery and
Watanabe. Since its appearance, it has been applied in many fields of study, including archaeol-
ogy (Glover et al., 1972), economics (Leontief, 2008), graph theory (Charon and Hudry, 2007),
translation (Tromble and Eisner, 2009) and mathematical psychology (Kemeny, 1959). It has
also seen a wide variety of methods for its solution. Initially, it began to be solved using exact
techniques, however, the amount of data it supported in certain investigations was of such a size
that it caused a computational time that made it impossible to achieve an answer. This nuance
was solved with the use of heuristic techniques, and later by applying the advances made in
meteheuristic optimisation. Nowadays, the Memetic Algorithm (MA) and the Iterated Local
Search (ILS) proposed by Schiavinotto and Stutzle in 2004, are the algorithms that represent
the most avant-garde way of solving the LOP.

Combinatorial optimisation problems are certainly curious, because as we have seen for most
of them, the complexity of the problem depends not only on the size of the instance, but also
on a series of additional parameters that are generally unknown. The scientific community has
been trying for years to understand what these characteristics are in order to guide algorithms
to ensure their robustness. In 2004 Schiavinotto and Stutzle came up with certain properties
characterising the robustness of LOP instances, the authors defined: disparity, coefficient of
variation, skewness and fitness distance correlation.

The modification of the LOP to be addressed in this paper seeks to study a possible im-
provement of the algorithm by grouping the individuals, so that the most similar subjects
are compared and there is no iteration between the disparate ones, thus obtaining internally
homogeneous and externally heterogeneous groups, which would guarantee the quality of the
response offered.

This paper is the result of the collaboration with the Department of Statistics of the Miguel
Hernandez University justified through the Collaboration Grant, code 998142, offered by the
Ministry of Education. As a result of this collaboration we will deal with solutions of the LOP
in real applications in the field of education, relevant modifications in the data of the problem
to improve the accuracy of the resolution, the modification of the model mentioned above and
a proposal for the application of the model in the system of academic recognition awarded in
each academic year by the Miguel Herndndez University of Elche to the best student of the
promotion.



2 Linear Ordering Problem

2.1 Introduction

As we have seen in the first point, the LOP is a classical combinatorial problem that seeks to
find the order that best classifies the individuals of a set. Let us suppose a set of elements
to be ordered V = {1,...,n} on which we apply a one-to-one pairwise comparison to obtain a
square matrix D of order n. In this way, the row 7 of the matrix D, will contain the respective
information to compare the element ¢ with the rest of the elements of the initial set. Thus, each
value of within the matrix D, such that d;; will be the unit of goodness that will summarise
the extent to which the element ¢ comes before j.

The LOP is powered by the square preference matrix D, where each element of this matrix
can be viewed as the distance from i to j. The larger the distance of the value d;;, the greater
the proof that ¢ must precede j. The number of orders that we can create from a matrix of size
n, is n!, that is, if we have a set with 5 individuals, we can establish 120 different orders. It is
shown in an intuitive and graphic way in the T'able 2. 2. 1, where it is intended to illustrate the
following calculation: 5% 4% 3 2% 11 = 120.

Table 2.2.1: Graphical demonstration of the number of possible orders

U= W N =
QU= W N =
QU > W N~
U W N =
U= W N =

2.2 Preference matrix

The calculation of the preference matrix D and of the individuals d;; consists of counting the
number of times that individual 7 is better than individual j. Although this is apparently a
simple task, it can be complicated when the amount of information of each set of individuals
is not of the same size. In such cases we will have to consider the possibility of making
modifications to the data, which we will see clearly in the examples presented below, where
we will first see the origin of the data and how they are treated in order to move on to their
respective preference matrices.



Table 2.2.1: Voting list by judge

Judge 1: a b e d c
Judge 2: c a e b d
Judge 3: b a e ¢ d
Judge 4: ¢ d b e a
Judge 5: a d c e b
Table 2.2.2: Preference matrix from Table 2.2.1
Judge 1 Judge 2 Judge 3 Judge 4 Judge 5
Judge 1 0 3 3 4 4
Judge 2 2 0 2 3 3
Judge 3 2 3 0 3 3
Judge 4 1 2 2 0 2
Judge 5 1 2 2 3 0

In Table 2.2.1, we see the order established by each of the five judges for participants
a,b,c,d, and e. In this model, each of them is ranked from best to worst, so that Judge 1
considers individual a to be the best and ¢ the worst, and so on for the rest of the judges.
The way to reflect this order in a matrix of preferences, as it is observed in the Table 2.2.2.
As it can be intuited by everything explained up to this point, any position i j of the matrix
represents how many times ¢ is better than j, in the example, the position a b takes the value
3, representing that the individual a is better than b in three occasions. With respect to the
problem posed we must have a series of questions in mind for the correct resolution of the same:

1. The maximum value that any position ¢ j in the matrix can take is 5, in which case it
would mean that individual ¢ would rank ahead of its corresponding individual in all 5
trials. On the other hand, the minimum value of any individual is 0, which would also
imply a total consensus, as long as it ranks behind in all 5 judgements. So if we call D
the matrix of the Table 2. 2.2, it would be fulfilled that:
max{d;;} <=5 ; min{d;;} =>0V i, je{1,2,3,4,5}

2. As the list of participants is closed and in this case there are 5 individuals, the value of
position ¢ plus the value of position j2 must be equal to 5. Using the above nomenclature,
it is satisfied that:
dij+dj =5V i,j € {1,2,3,4,5}] i #j

3. The element of the matrix corresponding to the diagonal of the matrix will always be 0,
since at no time can we compare the position of an individual with itself. Using the above
nomenclature, it is satisfied that:
dz’j =0 VZ,j S {1,2,3,4,5}‘ Z:]



Table 2.2.3: Average mathematics score by school ID and country

ID Country Score
001 Spain 9,30
002 Spain 7,50
003 Spain 8,00
004 Spain 9,00
005 Spain 5,50
001 France 7,10
002 France 5,40
003 France 6,00
004 France 8,20
001 Germany 7,00
002 Germany 6,20
003 Germany 5,30
004 Germany 7,20
001 Brazil 5,90
002 Brazil 7,90
003 Brazil 7,30
004 Brazil 4,50
005 Brazil 6,90

Table 2.2.4: Preference matrix from Table 2.2.3

Spain France Germany Brazil
Spain 0 15 17 20
France 5 0 9 11
Germany 3 7 0 9
Brazil 5 9 11 0

As we have already mentioned, in this second example we see the creation of a preference
matrix from original data where the comparisons do not have the same size, T'able 2.2.3. In
the case of Spain and Brazil we have 5 individuals while in France and Germany we have only
4. In this case, as we can see in the preference matrix, the sum of the values d;; 4 dj; is still a
value that we can calculate, and that has a logic. In order to explain it, let us define V; forall
i € {Spain, French, Germany, Brazil}, which will represent the number of individuals of each
element, 50 Vspain = VBrazii = 5 and Vipance = Vaermany = 4 . Once we have defined these
concepts, we can already ensure that:

o dij+dy =VixV¥i,je{l,2, . ... I}i# (Property 2.2.1)

As we can see with the established formula, for the comparison Spain — Germany, we would
have 15 4+ 5 = 5% 4 = 20. Moreover, as in the other example, the two properties mentioned
above are fulfilled, now with the nuance that the size is different for the second of them, so we
would define:

® dij=0Vije{l,2,. I}i=] (Property 2.2.2)

o max{d;;} <= V;*V;; mind;; => 0 (Property 2.2.3)



As has been intuited in the procedure of creating the preference matrix, there is a small
disadvantage in the comparisons when the sizes are different. When comparing Spain — Brazil,
we obtain that Spain is 20 times larger than Brazil, while when compared to Germany, this
number is reduced to 17. Without taking into account the size of the groups of countries,
we could think that Spain has more superiority when competing against Brazil, than when
competing against Germany, however, it is only a question of totals, because if we translate it
into percentages, we would obtain the following result:

Table 2.2.5: Transformed preference matrix

Spain France Germany Brazil
Spain 0 0.75 0.85 0.8
France 0.25 0 0.56 0.55
Germany 0.15 0.44 0 0.45
Brazil 0.2 0.45 0.55 0

As is clearly reflected in the example of T'able 2. 2.5, actually the greatest superiority that
Spain finds is with Germany, being better in 85% of the occasions. The normalisation of the
preference matrix data is what we have to do if we want to guarantee a good solution in the
LOP, as we have seen, this simple change has transformed the way we look at the preference
matrix and we are able to offer a much more accurate conclusion. If we call 7" the matrix that
is reflected in Table 2.2.5, the transformation that is applied to Table 2.2.4 to obtain this
matrix is:

d; s |
o tij =747 Vi,je{l,2,.,I}|i#]j

2.3 Problem explanation

From what we have pointed out so far, we know that the LOP is a problem that tries to decipher
the best order to classify an indefinite number of individuals. We know that the greater the
number of individuals, the greater the complexity of the system to be solved and, therefore,
the greater the processing capacity required in our computer systems. We also know that to
find a solution to this problem we need a preference matrix, which we have already learned to
calculate in the point 2.2 Preference matrix.

If the preference matrix is reflecting for each pair ¢ — j, the number of times that individual
¢ is better than individual j, then, in the correct order, the first individual should have a higher
sum total than the rest. To understand this concept, we will use the T'able 2.2.5 on which we
will apply permutations in the rows to show different results.

Table 2.3.1: Permuted preference matrix from Table 2.5.5 (1)

Spain France Germany Brazil
Spain 0 0.8 0.75 0.85
France 0.2 0 0.45 0.55
Germany 0.25 0.55 0 0.56
Brazil 0.15 0.45 0.44 0




Table 2.3.2: Permuted preference matrix from Table 2.5.5 (2)

Spain France Germany Brazil
Spain 0 0.75 0.8 0.85
France 0.25 0 0.55 0.56
Germany 0.2 0.45 0 0.55
Brazil 0.15 0.44 0.45 0

If we carry out the sum by rows of the matrix of preferences, we will be obtaining the total
number of times that an individual is better than the rest, so, if we call P to the permuted
matrix represented in the T'able 2. 3. 1,, and we calculate the following expression:

. ijg;&%y pi; Vi € {Spain, Brazil, France, Germany}
We obtain the following results for each of the four countries:
Germany 94
i Zj:Spain PSpainj = 4-
Germany =19
d Zj:Spain PBrazilj = 1.
Germany -
b Zj:Spain PFrancej = 1.36

Germany —
o Zj:Spain PGermanyj = 1.04

As we can see in these results, the first individual will always be the one that obtains, as
we have said, the largest sum of all the comparisons, however, the same will not happen if we
keep looking at the rest of the individuals in the matrix. This first case results in such a way,
because we are using for the LOP all the individuals of the row, on the contrary, as we go down
the ranks, the number of possible individuals to sum is reduced, so that the solution of the
system strictly requires the application of the algorithm that we study in this work, and that
basically optimises the remaining spaces to obtain the optimal order.

The LOP as we already know is a classical combinatorial problem, so we have to be able
to solve what has been captured, in a mathematical programming model. If we look at the
Tables 2.2.5, 2.3.1, and 2. 3. 2., we will find that we can study the improvement of the solution
(the order) by looking at the individuals above the diagonal. If we add up the elements above
the matrix of the tables we get the following: T'able 2.2.5

e Table 2.2.5 = 3.96
e Table 2.3.1 = 3.96
e Table 2.3.2 = 4.06

The problem of the LOP is precisely to solve the action we have just explained, we start from
a preference matrix, in our case the T'able 2. 2.5, and we carry out a series of permutations that
make us arrive at the matrix whose upper diagonal is the maximum possible one (T'able 2. 3.2).



2.4 Mathematical model

After what we saw at the end of the previous section, we know that the mathematical model
we use to solve the LOP problem, and to obtain the maximum possible value in the upper
diagonal of the preference matrix, has the obvious objective of maximising, and is expressed as
follows:

max E MysTis

r,sEPiT#s

s.a Trs + Tgr =1 rseP:r<s (1)
Tps + Tor + T < 1 r,s,te P:r s tpwd (2)
x5 € {0,1} rseEP:r#s (3)

In this model we take into account that M is the indicative for the corresponding preference
matrix, so m,., is the individual of the preference matrix that we have explained in the previous
sections, and that reflects the number of times that the individual r is ahead of s. On the other
hand, the variable z,,, is a binary variable, which takes the value of 1, if we affirm that the
individual r is ahead in the ranking than s. Thus, the constraint (1), states that either r is
preferable to s, or vice versa, but at no time can both happen. The condition (2), indicates the
logical order when we have three individuals, where if 7 is better than s, and this better than
t, the sum will always be less than or equal to two. To understand this condition we will give
an example of an ordered ranking and show how the condition is fulfilled:

Table 2.4.1: Ranking

Position Ranking
1st

2nd
3rd
4th

gaQw >

o TAB +xpc + xoa < 2 e Tap +xpp+ x4 <2
e Tgc+Top+xpa <2 e pp +Tpc +xep < 2

For this order, the value of the variables shown accompanying the T'able 2. 4.1 should be as
follows:

e xap =1 e a0 =1 e xap =1 e xpp =1
e xpc =1 e xcp =1 e xpp =10 e tpc =10
e xoga =0 e xps =10 e tpa =0 e xop =0

With the proposed example and the value of the variables given, the simplicity and usefulness
of the restriction is clearly explained. In this example, we can also see how the restriction (1)
acts, since, for example, 2 + a4 = 1. The last restriction that remains to be resolved is
(3), which is more than a restriction, it is an indication that the variable x is a binary variable
between 1 and 0.



2.5 LOP Solution

Although the resolution of the LOP was carried out with a computer programme, without
which it would be impossible to study the matrices that will be seen later, we must emphasise
the correct interpretation of the results in order to be able to obtain solutions.

The method we will use will be the extraction of the software, mostly Lingo, although we
will also use Python, and its import into Excel to be treated. The steps that lead to the
resolution of any matrix using Lingo and the LOP algorithm will be detailed below.

Table 2.5.1: Preference matrix to solve

A B C D
A 0 13223 35725 142660
B 12233 0 30506 121701
C 223 426 0 91819
D 1648 2471 83532 0
MODEL:
SETS:

EJE I/EIL..EI4/;
EJE_J/EJL..EJ4/;

MARTRIZ(EJE_I,EJE J): MRT,X,Z:

ENDSETS
[DATA:

MAT= 0, 13223,35725,142660,
12233, 0, 30506, 121701,
223,426,0,91819,
1648,2471,83532,0;

ENDDATE
@FOR (MATRIZ (I, J) : RBIN(X(I,J)));
[CBJETIVO] MREX=QSUM(MATRIZ (I,J):MAT(I,J)*X(I,J));

BFCOR (EJE_I(I}:
BFCR(EJE_J{J) | J#GT#I:
E(L, R0 IV =1)):

BFOR(EJE_I(I)
BFCR{EJE_J(J) | J#NE$I:
@FOR(EJE J(T)| T4NEZJ $AND# T#HE$I:
KL, ) +X{J, T)+X(T,I)<=2))):
END



¥( EIl, EJ1) 0.000000 0.000000
¥ EIl, EJZ) 1.000000 -13223.00
¥( EIl, EJ3) 1.000000 -35725.00
¥( EIl, EJ4) 1.000000 -142660.0
¥( EIZ, EJL) 0.000000 -12233.00
X[ EIZ, EJZ) 0.000000 0.000000
¥( EIZ, EJ3) 1.000000 -30506.00
X[ EIZ, EJ4) 1.000000 -121701.0
¥( EI3, EJL) 0.000000 -223.0000
¥( EI3, EJZ) 0.000000 —42§,.0000
¥( EI3, EJ3) 0.000000 0.000000
¥( EI3, EJ4) 1.000000 -5181%.00
¥( EI4, EJL) 0.000000 -1648.000
¥( EI4, EJZ) 0.000000 -2471.000
¥( EI4, EJ3) 0.000000 —83532.00
¥( EI4, EJ4) 0.000000 0.000000

Starting from the Table 2. 5.1, the first thing we do is to dump the information into Lingo,
the program we will use to solve the model, although as we have mentioned, it can be Python
or any other program that generates confidence in what we do. Once we have the matrix, we
express the model by means of the corresponding programming. Due to the inconvenience of
explaining it in this work, we are not going to go into detail at any point about the programming
we use or how it works, but we will attach it in the Annex. When we calculate the result, the
solution of the model will be a single value that will reflect the maximum found; however, what
we are really interested in is the combination of the variables that give rise to that maximum.

In this case we do not use Excel to save space in the document and to be more concise and
practical, although in solutions with more data, we must undoubtedly resort to this software
to find solutions quickly. As we can see, we obtain 1 and 0, but since we know what this result
means after the previous sections, we are able to interpret it. As we see, T12, T13, T14, T23, T24,
234 = 1, which means the following result:

Table 2.5.2: Result

Position Ranking
1st 1
2nd 2
3rd 3
4th 4

Up to this point, all the indications have been given to be able to obtain the solution of the
LOP on any dataset, being now able to start from a raw database and step by step obtain the
necessary elements to solve the optimal order. From this point onwards, the complete realisation
of the LOP on PISA data will be presented, to later explain the possible improvements to the
model studied so far.
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3 LOP Resolution for PISA report

3.1 Problem context

The idea of solving the LOP problem with PISA data is the starting point of the research carried
out, and is discussed later in this paper. As a step towards the complete understanding of the
functioning of the LOP problem, the resolution of the PISA database was proposed, as it had
been used by the tutor Mercedes Landete and the co-tutor Juan Francisco Monge in the article
published in 2019 entitled “A linear ordering problem of sets”, added in the Bibliography of this
paper. It should be noted that in this publication we can only see the result of the application
of the LOP to this database, so it has served as a learning guide. In order to offer a much wider
range of knowledge regarding the resolution of this type of situation, the following points detail
exactly all the steps followed.

3.2 PISA report

First, we will describe what the Programme for International Student Assessment (PISA) report
is all about. It reflects the OECD’s global survey, which measures the academic performance of
15-year-old students in three different domains: mathematics, science and reading. The exams
are promoted in each country at the institutional level, i.e. the state is in charge of conducting
them. To guarantee a representative sample of the data, the state requires 4,500 to 10,000
students per country to take the exams, although in some cases, such as Mexico or the United
States, the number rises to more than 30,000 students.

The data file that we have used to solve the problem is a txt type divided into 6 columns:

e CNT: Indicates the country from which the study is collected. It is a
nominal qualitative variable.

e UNIT: Records the school number being evaluated among all countries. It
is an ordinal qualitative variable.

e SCHOOLID: Records the school number being evaluated within the same
country, starting from one for each new country. It is an ordinal qualitative
variable.

e PVMATH: Records the score obtained by that school in the mathematics
exam. It is a continuous quantitative variable.

e PVREAD: Records the score obtained by that school in the reading exam.
It is a continuous quantitative variable.

e PVSCIE: Records the score obtained by that school in the science exam.
It is a continuous quantitative variable.

Table 3.2.1 below shows a visualization that seeks to reflect the format of this file. As can
be seen, and taking into account the previous description of the variables, the last value in the
UNIT column, which corresponds to USA (in alphabetical order in the CNT variable), shows
the total number of schools used for the study 13,494.

11



Table 3.2.1: Preference matrix to solve

CNT UNIT SCHOOLID PVMATH PVREAD PVSCIE
AUS 1 1 559.09 604.22 630.65
AUS 2 2 483.7 514.43 501.76
ESP 4964 771 207.73 518.67 508.37
ESP 4965 772 494.15 737.9 518.43
USA 13494 162 342.38 291.83 331.01

3.3 Problem target

Once we know which is the database we are going to treat, the variables that compose it and the
type of each one, we only need to know what objective we want to achieve in order to establish
the steps to follow. In this case the objective of the application of the LOP is to obtain the
order of countries ordered from best to worst according to the score in the mathematics exam
in order to show the differences with respect to other types of sorting criteria.

3.4 Transforming database to preference matrix

To apply all the required transformations to the data that facilitate the resolution of the prob-
lem, we will import the txt database in our statistical computing software, R-Studio, hereinafter
R. Before continuing, it should be noted that all the programming related to what is discussed
in this section is reflected in the annex, being able to be consulted for a better understand-
ing. In R we will eliminate the columns that we do not need, these are UNIT, SCHOOLID,
PVREAD, and PVSCIE, so only CNT, and PVMATH will remain.

To obtain the preference matrix, we will separate the original database into as many tables
as there are countries in the database, then we will create a loop that can count how many
times one country is better than another, comparing individual to individual in each of the 39
countries.

The following tables attempt to simulate the step from entering the software to exiting in
the form of a preference matrix. In the T'able 3.4.1,, the first column is a representation of the
display in the software, and is indicative of the size of each table, which is why this column
does not have a header. With the T'ables 3.4.1 and 3. 4.2, we seek to represent the separation
of the countries in different tables, as there are 39 different countries we will represent only the
first two to avoid saturating the document.

In T'able 3.4.3 we see the matrix of preferences obtained from the comparison of all the
tables, as we can see, in the case of the Australia — Bulgaria comparison, we have that
Australia is superior to Bulgaria in 108,433 occasions, while on the contrary we only add
up to 37.257. With the representation of the Tables 2.4.1 and 2.4.2, we can prove the
veracity of Propiedad 2.2.1, since if we call D the preference matrix of Table 3.4.3, then
Davs_Bar+ Daar—avs = 145.700, which is the equivalent of making all possible combinations,
i.e. 775 % 188 = 145, 700.

12



Table 3.4.1: Representative table of mathematics scores in Australia

CNT PVMATH
1 AUS 559.09
AUS 483.7
775 AUS 468.53

Table 3.4.2: Representative table of mathematics scores in Bulgaria

CNT PVMATH
1 BGR 361.15

BGR 403.64
188 BGR 328.3

Table 3.4.3: Preference matrix obtained

AUS BGR BRA USA
AUS 0 110964 606105 69387
BGR 34736 0 117423 7922
BRA 44120 40309 0 11408
USA 25388 22142 125086 0

As can be seen in the tables shown above, the number of individuals in each country is not
the same, so following the explanations in the previous sections, the procedure to follow in this
case is to normalize the preference matrix to avoid problems caused by an excessively large or
small size in the comparisons. The new, now normalized, preference matrix is the one reflected
in theT'able 3.4.4

13



Table 3.4.4: Normalized preference matrix

AUS BGR BRA USA
AUS 0 0.7616 0.9321 0.5561
BGR 0.2384 0 0.744 0.2685
BRA 0.0679 0.2556 0 0.0740
USA 0.4439 0.7315 0.9260 0

We can check the adequacy of the executed calculation, first of all, because the sum of all
the pairs fulfills the following: N;;4+ Nji = 1, assuming that N is the matrix of the T'able 3.4. 4.
Furthermore, we see that there are significant differences between the two tables, if we take
USA as an example, we see how Dyga_aps = 55388 | and Dysa_par = 22142, however, when
these are normalized we have Nyga_aps = 0.4439, and Nysa_par = 0.7315.

With this matrix we can finish the data processing stage in R-Studio. Each time we process
the algorithm that compares the different tables to find the preference matrix we have just
studied, the software takes about 30 minutes for a data size equivalent to the given one. For
this reason we export the obtained matrix to a CSV file that can be further processed.

3.5 Optimization model solution

In this section we will work in another software, LINGO /LINDO, commonly used in mathemat-
ics for the resolution of linear systems. The complete code can be consulted in the appendix,
although it is exactly the same as the one used in Block 2.5 modifying the data matrix used
and its size.

Changing these two details, the calculation of the problem rises to the resolution of 1,521
variables, and 55.576 restrictions, whose resolution time in this program is insignificant. Ev-
idently, because of the size of the problem, it is impossible to interpret the solution without
external help, for this we will resort to Excel, where with a simple formula we will obtain the
solution.

The Table 3.5.1 represents the solution obtained that reflects the order generated by the

LOP model to rank the countries from best to worst. Although the table contains only two
variables RANKING, and COUNTRY , it is necessary to define what each one reflects, this
is represented in three columns to save space.

14



Table 3.5.1: LOP solution with PISA data

RANKING COUNTRY  RANKING COUNTRY  RANKING COUNTRY

1 SGP 14 AUS 27 SVN

2 HKG 15 ESP 28 HUN
3 KOR 16 FRA 29 ROU
4 JPN 17 NOR 30 THA
> POL 18 GBR 31 TUR
6 NLD 19 LVA 32 CHL

7 EST 20 SWE 33 BGR
8 FIN 21 USA 34 MEX
9 CHE 22 ITA 35 URY
10 DEU 23 RUS 36 TUN
11 CAN 24 SVK 37 COL

12 CZE 25 ISR 38 IDN

—
w

NZL 26 LTU 39 BRA
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4 Modifying the Linear Ordering Problem

4.1 Target

Once we know how to proceed correctly with the calculation and obtaining the solution of the
LOP, we can start thinking about possible modifications of the problem that give rise to a much
more robust solution. In our case, we suggest improving the model by comparing individuals
in subgroups, obviously of a smaller size than the initial one. The objective is to find internally
homogeneous and externally heterogeneous groups, with the idea of establishing comparisons
only with the most similar individuals, and to avoid comparing between very mismatched coun-
tries that simply create a greater weight, often unbalanced in the preference matrix.

In order to clarify the purpose of this paper, we will again use the PISA database, which
has been explained in detail in the previous section, including the transformation of the data.
We start from the matrix corresponding to the Table 3.4.4. Once we know this, we can specify
that with the application of such a model we want to get 3 groups of 13 individuals each with
the above mentioned characteristics, and we also want to internally sort the groups.

4.2 Model

To understand the model, we have to keep in mind the indications presented in the previous
section; in the case of the original LOP model, we seek to study all the values that lie above
the upper diagonal, however, now we have to study only the comparisons between individuals
belonging to the same group.

In addition, this model is modified according to the objective we are looking for, which is
why we have specified in the previous paragraphs the number of groups and individuals we
want to achieve. It will be observed in the model the use of the letters A for the constraint (6),
and B for (7), being these the only ones that find variations. Before presenting the new model,
we collect in the following points the explanation of the indexes and variables that interact in
this one and that will be useful to understand the mathematical mechanics:

e P: Set of individuals to be compared r;s € {1,2,...,39}.

e K: Set of groups to be carried out k,t € {1,2,3}.

Z,s: Binary variable, takes a value of 1 when we prefer individual r to s, and both are in
the same group.

e 2, Binary variable, takes a value of 1 when we prefer individual r to s, and both are not
in the same group.

e gi: Binary variable, takes value of 1 when we assign individual r to group k.
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(10)

zrs € {0, 1} Vr,seP:r+#s
(11)

gir € {0,1} VrePkeK
(12)

As we have mentioned, we make use of both z and z to study those individuals that are
inside the groups and look for that combination whose proportion of values inside and outside
all the groups is the maximum possible. Thus, if we look at the objective function, we max-
imize the values that we are going to introduce in the groups, and minimize those that are
outside; this is the sense of the objective function, and that allows us to establish internally
homogeneous groups, which are therefore externally heterogeneous.

With the constraint (4), we are indicating the preference regarding the comparison of two
individuals r, and s of the matrix, whether or not they are within the same group. The
constraint (5) seeks the same goal of establishing preferences now with three individuals r, s,
and ¢, and that these comply with the logical order, again interacting with individuals from
the same or different groups. The condition (6), characterized as we have commented above by
the use of the letter A, seeks to count how many individuals do not belong to the same group,
this calculation we obtain from the following reasoning explained with the T'able 4. 2. 1:

Table 4.2.1: LOP solution with PISA data

1 2 3 4
1 0 mi2 mis3 mig
2 may 0 ma3 Moy
3 may Mm32 0 M34
4 Mgy M2 M43 0
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In the hypothetical case of establishing the following groups G1 = {1,2}, y G2 = {3,4},
that is, individuals 1 and 2 belong to group 1, and individuals 3 and 4 to group 2, the only
comparisons that would be established would be those of the same group, leaving out the values
mi3,M14,Ma3, and Moy, and giving rise to the restriction:

° ZT’EP ZSEP:T#S Zrs = 4

This value can be calculated by hand as we have done, however, it would be very tedious to
repeat it for the matrix of order 39 that we have to study, so we can obtain the value with a
calculation. We advance that the value of A for the initial assumptions we have taken equals
507. To understand the formula described below it will be necessary to know that n; refers to
the size of the group 7, and N is the order of the preference matrix. We note that we use the
summation for the case in which the number of individuals per group is not always the same,
a case which we could apply to the model very simply. Thus we have the following calculation:

2
_ N?°-N n;—n; _ 16—4  4-2 | 4-2 _
e A= 2 Zie] 2 2 ;. T =4

The restriction (7), is another restriction that varies according to the objective, in this case
the calculation is reduced to the logic, giving to B the value of 13 for this case, because it is
the number of individuals of each group, in case we wanted that the groups did not have the
same number of individuals we could force it manually restricting for each group, the number
of individuals that compose it. The restriction (8), indicates that each individual must belong
to only one group, that is to say, we cannot leave any individual without a group, nor that the
same individual belongs to more than one, because the first would be a problem and the second
an inconsistency. Finally, the restriction (9) serves to associate the individuals to be compared
for being in the same group; x, with the group to which each individual belongs; ¢, and that
there are no divergences between both, to simplify the clarification, that the individuals 7, j
that are compared both belong to the same group.

For the realization of this model, many brutes have been studied before, which have not
given a good result, but have helped to obtain the solution that we will discuss later. Therefore,
these will be included in the appendix so that they can serve as a guide to which paths have
no solution, and serve as a help and idea for future work and research.

If we have looked at the model we want to study, we will realize that we are not dealing
with a linear model, therefore, we will have to apply a series of modifications to it so that
it can be perfectly studied by the available software. With these modifications, we observe
an important transformation, to which we need to add a series of variables; y, v, and w that
allow its linearization. In this work, we will not explain the procedures followed to linearize the
model, we will simply offer the final result.

If we have looked at the model we want to study, we will realize that we are not dealing
with a linear model, therefore, we will have to apply a series of modifications to it so that
it can be perfectly studied by the available software. With these modifications, we observe
an important transformation, to which we need to add a series of variables; y, v, and w that
allow its linearization. In this work, we will not explain the procedures followed to linearize the
model, we will simply offer the final result.
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4.3 Application to PISA data

Before commenting on the results of the application of the model presented on the PISA data,
it is worth mentioning that this is not the most optimal possible solution, since the model
loading time extends indefinitely, in fact, the longest processing that has been performed has
exceeded 358 hours, a capture of this load is attached in the Annex, i.e., about 15 days loading
to obtain a solution.

Due to the obstacle encountered, we have decided to limit the processing time of the program
to a few hours, which has resulted in the following solution; shown in the T'able 4.3. 1.
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Table 3.5.1: Model solution with PISA data

Ranking Group 1 Ranking Group 2 Ranking Group 3
1 POL 1 HKG 1 SGP
2 NLD 2 KOR 2 JPN
3 EST 3 CAN 3 FIN
4 CZE 4 FRA 4 CHE
5 NZL 5 NOR 5 DEU
6 ESP 6 GBR 6 THA
7 AUS 7 LVA 7 CHL
8 SWE 8 ITA 8 BGR
9 USA 9 RUS 9 MEX
10 SVN 10 SVK 10 URY
11 ROU 11 ISR 11 TUN
12 TUR 12 LTU 12 COL
13 IDN 13 HUN 13 BRA

We have observed that the longer the loading time, the better the solution we obtain, at
least in the sense of approximation to the initial objective. That is, the more homogeneous the
groups are internally, and the more heterogeneous externally, however, this matrix is not useful
for comparing the algorithms used.

Another very important point to comment on the algorithm is the current importance of this
type of models. During the past month of May 2024, in the congress International Symposium
on Combinatorial Optimization, the paper Cycle of Clusters was presented, added to the
bibliography of the work, a research whose objective is to generate clusters of individuals (as
it is understood, internally homogeneous and heterogeneous with respect to the others), and
then to order them among themselves. As we can see, the scope of this research is very similar
to ours, adding that we also sort the clusters internally, thus adding a point of complexity and
sophistication to the result.

Thanks to this research, we get ideas on how to shorten the processing time of the model; for
example, by means of inequality constraints, whether triangular, partitioning, or subtraversion,
which are detailed in the research paper. Thanks to the attendance to this congress of the
tutor Mercedes, we can understand how relevant is the model we are creating, and how current
is this topic in Operations Research.

4.4 Algorithm comparison

Due to the processing time required by the new model formulated to solve any large matrix,
we have trimmed the PISA data matrix to 12 individuals in order to test and compare how our
model performs with respect to the LOP.

In order to have effective comparisons, we must compare what solution the LOP offers us for
that matrix, what solution our model offers, and how good the solution is if we force the LOP
result into our model, which is equivalent to splitting the LOP solution into as many groups as
we have tested in our model. In the following T'able 4. 4.1, we will be able to consult the result
by sorting the individuals with the three criteria mentioned above. We also emphasize that, in
order to save space in the document, we will attach the Lingo code, together with the matrices
used in the Annex of the work.
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Table 3.5.1: New model solution using PISA data

LOP ranking Model ranking LOP applicating Model
1 SGP 1 SGP 1 SGP
2 HKG 2 HKG 2 HKG
3 FIN 3 FIN 3 FIN
4 DEU 4 ESP 4 DEU
5 ESP 5 DEU 5 ESP
6 NOR 6 NOR 6 NOR
7 ISR 7 ISR 7 ISR
8 ROU 8 COL 8 ROU
9 THA 9 ROU 9 THA
10 COL 10 THA 10 COL
11 IDN 11 IDN 11 IDN
12 BRA 12 BRA 12 BRA

For these results it should be noted that the model we have programmed considers 3 groups
with 4 individuals for each one, so the last two columns of the Table 4.4.1 | Classification
Model, and LOP applied to the Model, are divided into groups every 4 individuals, this we
have not represented because it is not relevant for the analysis of the results.

As we can see, there are differences between the result offered by the LOP and the one
offered by the Model, changing the order of the countries ESP — DEU — ROU —COL —THA.
What we seek to find now is whether the model we have created improves the solution of the
LOP, for this we will focus on the objectives of the models, which are the following:

e LOP: 52,11
e LOP applicated to the Model: 1,17989

e Model: 1,276524

Having seen the results, and knowing that the objective of the Model is to maximize the
objective, we can conclude that there are differences between the LOP (compare all possible
individuals) and our model (compare only those individuals that we classify in the same group),
and that this difference is advantageous on the one hand, in terms of the result obtained, and
on the other hand, in terms of the diversity of the response. Specifically, the Model solution
improves the LOP fit by 8.2%, so there is a significant increase. We emphasize in addition to
these three points mentioned above, that the LOP response cannot be compared with the other
two because it has a completely different objective, but it is useful as information reflecting the
three solutions.
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5 Application proposal for Universidad Miguel Hernandez

In this section we will describe the proposal we intend to make for the Miguel Hernandez
University, in which we will detail how the Model we have invented can be applied to offer an
alternative to improve a classification system that uses a not very robust criterion. The focus
of the proposal is none other than to give value to the work done by highlighting that it is not
simply a theoretical advance in the field of Operations Research, but also has relevant practical
implications, and can begin to be applied in internal systems of the University.

5.1 Proposal Context

The Miguel Hernandez University annually honors the best students of each university degree,
for this recognition, the selection criterion is based on the overall average of the total number
of subjects taken during the four years of study, and the student with the highest average is
awarded for his or her work. While we were working on the creation of the algorithm, the idea
arose internally to offer another criterion for the student ranking system.

5.2 Target

With this proposal we seek to demonstrate that the classification criterion that uses the mean
to reflect the order of the individuals is not the most robust, especially in this type of cases
where we have a large amount of data to work with, and where there are also cases in which the
graduate student has taken a different number of subjects than his or her classmates because
they have been validated.

With this demonstration, we intend to be able to work together with internal departments
of the Miguel Hernandez University to help choose the best file of each promotion in a more
sensible way, and taking into account the information of the total number of subjects taken.

5.3 Data & Model

Although we would have liked to be able to work with real data to make the application on an
existing case, it has not been possible to have access to these in any way, so we have had to
simulate the 40 grades of 12 students to be able to work. This simulation has been carried out
in Fxcel, and the data have been worked in R — Studio to then pass them to Lingo in order
to obtain results. The data used can be consulted in the Annex in the description.

The data have been created randomly using values between 5 and 10, this is because no
student can be considered for the extraordinary award if he/she has not finished the degree,
and for this it is required to have passed all the subjects. Regarding the simulation of the
data, the 12 observations have been very centered around 8.5, so the results will not be totally
faithful to the reality of the universities.

Regarding our model, it is important to note that we are going to work as we have done

during the previous applications, with 3 groups of 4 individuals each, so that in the T'able 5. 4.1,
it will be necessary to take into account that there is a separation of groups every 4 individuals.
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5.4 Solution

For the database we have chosen for these 12 individuals, we do not see any noticeable changes
in the top positions. This is due firstly to the fact that the database does not faithfully rep-
resent the distribution of the students’ grades, and there is no way to find such a distribution
because we do not have any original data to guide us. Secondly, and removing the effect of the
database, if there were no changes or modifications in the ranking order, it could be a mere
coincidence in the data, since the ranking criteria are completely different.

As we can appreciate with the following results, evident in T'able 5.4.1, just as there are
changes in the lower positions, this could have occurred in the higher ones, obtaining a totally
different result of the extraordinary prizes.

To understand the T'able 5. 4.1, we emphasize that when we indicate, A.X, being X a value
between one and twelve, we refer to A.X the number that identifies it in order to keep track of
its variation as we apply the different results.

Table 3.5.1: Solution for new model with PISA data

Average ranking LOP ranking Model ranking
A12 A12 A12
A8 A8 A9
A9 A9 A8
A2 A2 A2
A6 A6 A.6
AT AT A7
A3 A3 A3
A4 Al A.10
Al A.10 Al
A1l A4 A1l
A.10 A1l A4
A5 A5 A5

As mentioned before, the lowest positions have the most changes, but this is due to a mere
coincidence, since the data have been calculated in a random way, and not following any kind
of distribution, so the only way to test the change that such an algorithm would produce in
practice would be to obtain the real data.
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6 Conclusion

In this last section, we will discuss the conclusions we have drawn after many months of work
on this algorithm, as well as the assumptions we can make for the future.

First of all, it should be noted that thanks to this research, there is an advance in the clas-
sification of individuals and an improvement over the original LOP model, because now we are
dividing into internally homogeneous and externally heterogeneous groups, which in turn are
classified internally from largest to smallest. We know that there is an improvement, because
firstly we obtain a different solution to the LOP; i.e., it is not the same to classify by comparing
all individuals with each other, than to do so by comparing only those that are part of the same
group and, secondly, because doing so is, as we have seen in the paper, better.

On the other hand, it is important to comment as a negative point about the algorithm that
we have made, the loading time required to find solutions. It is very counterproductive to have
to wait the amount of hours seen in the document to be able to conclude and advance with
the investigations, this fact has slowed down the advances. This can occur because, one, in our
model (for a matter of time), we cannot add unequal constraints that speed up the search for
the objective, and with which we would advance many hours of work, and/or two, because the
software we use is not really powerful for the calculation of problems of this dimension, which
consequently require a really high number of constraints.

Supporting this negative point, it would be very interesting to continue this research by
adding the inequality constraints mentioned above to be able to study much larger matrices
with much less loading time, it would be at this moment when the Model would achieve its
maximum potential, reaching surprising results for many fields.

Rambling on about these scopes, we could create ranks of all kinds, with unrestricted group
sizes to study other types of information that require a larger volume of data, for example,
cities in a country, restaurants in a province, sports rankings, and many other options that
would appear as the problem is explored further.

Another point that can be further worked on in this Model is the assignment of individu-
als per group. Currently, we are the ones who must manually indicate the equal distribution
(or not) of individuals in each group, however, it could be very interesting to obtain the op-
timal value by letting the algorithm choose the distribution it requires. This problem has
been hovering in our heads during all these months, and now more than ever before it seems
very feasible thanks to the high quality of the model that we have generated, however, and as
we have been commenting, for a question of temporary budget we have had to abandon the task.

Just as we want to add in the Annex those models and tests that have not been successful,
we also consider it appropriate to comment, as we have done in the previous paragraph, on
those points that have been left pending, with the aim of returning as soon as possible to the
document and being able to continue where we left off without losing the ideas we have, as well
as being able to help future researchers who want to be enlightened with new ideas.
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8 Appendix

8.1 Databases used in the thesis

Table 8.8.1: Raw PISA database

CNT UNIT SCHOOLID PVMATH PVREAD PVSCIE
ESP 4679 486 442.73 4477.75 453.64
MEX 9054 13 336.9 322.45 324.39
CHL 3212 116 474.26 475.58 486.53
LTU 8637 21 442.91 456.58 467.1
EST 2157 62 464.49 454.55 513.6
MEX 10309 1269 392.12 375.89 395.79
LTU 8729 114 386.97 424.19 425.57
POL 11079 17 537.07 540.89 508.04
MEX 9110 69 411.51 410.07 421.31
IDN 6754 58 366.49 398.25 397.94
CHE 3014 329 539.16 509.31 501.88
BRA 1387 424 407.09 417.19 398.75
AUS 476 476 560.61 548.59 958.02
DEU 4032 69 459.13 468.95 474.94
HUN 6521 28 479.74 497.81 518.64
MEX 9302 261 534.13 581.3 532.09
RUS 11565 141 437.54 428.24 427.8
GBR 6140 302 459.91 463.54 484.62
NZL 11030 145 391.88 373.23 359.76
CHE 2967 282 459.68 452.47 421.51
RUS 11503 () 582.94 503.93 526.17
JPN 8349 80 659.02 663.32 657.33
LVA 9000 170 506.52 479.41 519.27
SVN 12150 100 479.47 438.35 497.54
THA 12742 150 393.27 395.57 416.32
MEX 9384 343 428.69 391.72 403.65
THA 12770 178 414.19 425.64 415.53
ESP 4518 325 510.95 495.44 499.96
ESP 4996 803 491.24 482.92 511.83
MEX 10011 971 390.1 387.64 373.03
AUS 617 617 507.84 519.99 515.19
SVK 11936 114 483.02 469.17 482.76
AUS 750 750 453.97 468.06 481.79
HUN 6669 177 348.27 346.64 376.49

Access to full table clicking on the following link: Link

Access to csv file clicking on the following link: Link
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Table 8.8.1: Raw university database (1)

Al A2 A3 Ad A5 A6
9,81 7.15 7.27 8,23 9,96 9,46
9,92 7.52 9,47 8,22 7.39 9,27
8,07 9,65 8,41 9,38 7,96 8,77
7.38 9,3 8,44 9,57 7,03 7,65
7,26 9,12 7,01 7,67 9,75 7.41
9,96 7,51 7.88 8,41 7.41 7.89
7,65 7,77 7,12 8,38 9,32 8,53
7.18 8,31 751 8,4 9,7 7,69
7,64 8,07 9,58 7 8,35 7,96
7,22 9,57 9,36 7.79 9,96 7,08
9,11 7,21 9,44 9,04 7.8 9,61
8,44 8,37 9,21 8,68 7,97 8,03
8,17 9,07 8,9 7,36 9,83 8,96
7.79 8,1 7,21 7.85 7.35 8,68
9,27 8,65 7,01 7,22 7,63 7,94
8,47 9,3 8,34 8,2 9,13 8,85
8,48 8,39 7,53 8,75 9,23 9,35
9,65 8,64 7,97 8,32 7,97 7,76
75 9,31 8,82 9,36 9,22 9,22
8,04 7,66 8,16 8,36 7,91 8,43
8,08 7,58 8,7 7.81 7.45 7,78
8,39 9,29 9,39 8,81 7,51 8,36
9,29 0,48 9,33 9,51 9,71 9,26
9,6 8,13 8,03 7.9 8,57 9,49
8,79 9,57 7,38 7.2 748 9,73
8,13 7,57 9,67 7,42 7,48 8,33
8,91 8,73 7.17 8,73 7,83 7,7

8,28 8,74 8,51 8,12 7,85 9,93
8,42 7.81 9,85 9,3 7,92 7,05
7.3 7,95 7,51 8,1 7,42 7,02
7,61 8,05 9,32 9,18 8,58 9,96
9,93 7,14 7,91 9,99 7,62 9,55
8,03 9,12 8,52 7.19 9,19 7,59
7,01 7,33 8,55 754 7.18 9,76
9,13 9,82 8,13 8,07 8,11 7.25
7.45 9,49 7,73 7.35 8,27 7,18
7,03 8,13 8,01 8,68 7.1 8,25
7,24 8,99 9,89 8,42 7.98 7.11
8,51 9,64 9,21 7,64 9,38 8,8

9,7 7,27 7,39 9,14 7,27 9,3
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Table 8.8.1: Raw university database (2)

AT A8 A9 A10 Al A12
7 8,99 9,08 7.35 8,13 8,35
7,57 7,63 7,46 9,53 9,36 8,66
9,61 8,15 9,16 8,25 7.18 7,74
9,74 8,53 7,08 9,68 9,01 8,99
8,29 9,56 9,15 9,84 7.24 8,79
9,39 7,43 7,38 7,14 7,36 9,93
7,01 7.12 8,53 8,15 7,76 8,76
9,69 7,25 7,39 7.1 7,07 7,61
9,18 9,78 7,36 7,69 8,01 9,15
9,95 9,98 9,48 8,01 9,13 8,57
7.85 9,87 9,16 8,45 9,43 9,7

8,96 9,83 9,04 8,66 78 7,14
8,11 8,94 9,47 7.88 8,18 7,15
8,62 9,19 8,65 7.89 9,71 8,4

8,46 7,08 8,18 8,38 7.67 7,7

8,45 8,62 7,73 8,6 8,67 9,98
9,81 9,21 9,61 8,49 7.7 9,3

9,48 8,75 7,96 7,25 8,17 9,72
8,49 7.19 9,96 7,22 9,29 811
8,33 9,56 7,11 9,66 8,34 8,41
8,82 8,25 9 8,71 7,89 7.5

7,73 8,45 7,77 7.53 7.4 8,37
9,41 9,85 9,61 755 8,5 9,79
9,13 7,61 9,28 9,28 9,83 8,09
8,04 9,91 8,2 7,73 7,96 9,29
8,37 7,97 8,65 9,01 7.59 9,69
8,21 10 8,01 7,42 9,21 7.7

7.11 8,75 9,79 8,15 9,42 8,87
7.13 7,62 8,66 9,51 8,61 7,75
7,76 8,81 8,03 9,24 9,64 8,45
7.81 8,54 8,87 7.39 7,82 9,49
7,29 9,2 8.8 7,44 7,94 9,68
8,61 8,05 8,3 7.72 8,52 8,94
8,49 8,75 8,38 9,39 7,63 9,77
9,57 7,81 7,31 8,77 7.84 7.92
7.71 8,21 7,86 9,84 8,55 7.11
7,69 9,66 8,56 9,04 8,2 8,59
75 8,02 7,46 9,67 7 8,71
7.85 7,57 9,83 754 9,79 9,14
7.83 8,84 7,51 7.13 7,29 8,25
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8.2 R-Studio code used to get the matrices

Code used to obtain PISA preference matrices

#library (tidyverse)
library (backports)

#Carga de datos

datos=read.table ("DATOS_PISA2012.txt”, header=T, sep="", dec=".")
datos

datos$CNT=as . factor (datos$CNT)

datos

paises=levels (datos$CNT)

base _mates=vector (mode="1ist” , length=length(paises))
for (i in 1l:length(paises)){

x=data .frame (subset (datos ,(N==paises [i]))

x=cbind (x[1] ,x[4])

base _mates [[1]]=x
}
base _read=vector (mode="1ist” , length=length(paises))
for (i in 1l:length(paises)){

x=data . frame (subset (datos ,(N==paises [i]))

x=cbind (x[1],x[5])

base_read [[i]]=x
}
base _read
base_scie=vector (mode="1list” , length=length(paises))
for (i in 1:length(paises)){

x=data.frame (subset (datos ,C(N=paises [i]))

x=cbind (x[1] ,x[6])

base_scie [[1]]=x
}
base_scie
length (base _mates)=—length (paises)

dim=length (base _mates)
matriz=matrix (0 ,nrow=dim, ncol=dim)
colnames (matriz)=paises [1:dim]|
rownames( matriz )=paises [1:dim]|
View (matriz)

#

contador=0
for (¢ in 1:(dim—1)){
for (d in (c+1):(dim)){
contador=0
for (i in l:nrow(base_mates|[[c
for (j in 1:nrow(base_mates |
contador=(contador+ifelse (

)

1)){
dJ])

A

}
}

matriz [c,d]=contador

}
}
matriz
View (matriz)

#
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contador=0
for (¢ in 1:(dim—1)){
for (d in (c+1):(dim)){
contador=0
for (i in l:nrow(base_read[[c]])){
for (j in l:nrow(base_read[[d]])){
contador=(contador+ifelse (b
}

}
matriz [c,d]=contador
}
}
matriz
View (matriz)
write.csv(matriz, "matriz_pisa_read.csv”)

#
7#

contador=0
for (¢ in 1:(dim—1)){
for (d in (c+1):(dim)){
contador=0
for (i in 1l:nrow(base_scie[[c]])){
for (j in 1l:nrow(base_scie[[d]])){
contador=(contador+ifelse (b
}
}
matriz [c,d]=contador

}

}

matriz

View (matriz)

write.csv(matriz, "matriz_pisa_scie.csv”)

# MATRIZ MATES
matriz=read.csv2(” matriz_pisa.csv”  sep=",")

rownames( matriz )=matriz [ ,1]
matriz=matriz [ ,2: ncol(matriz) ]
View (matriz)
matriz2=matrix (0 ,nrow=dim, ncol=dim)
for (i in 2:nrow(matriz)){

for (j in 1:(i—1)){

matriz2 [i,j]=((nrow(base_mates[[1]]) )*(nrow(base_mates[[j]])))

}
}

View (matriz2)
colnames (matriz2 )=rownames(matriz2 )=colnames (matriz)
View (matriz2)

nrow ( base _mates [[1]]) *xnrow( base _mates [[24]])

matrizb=matriz2—t (matriz)
View (matrizb)

for (i in 2:nrow(matriz)){
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for (j in 1:(i—1)){
matriz [i,]j]=matrizb[i,]]

}
}
View (matriz)

# MATRIZ READ

2 7

matriz=read.csv2(” matriz _pisa_read.csv” ;sep=",")
rownames( matriz )=matriz [ ,1]

matriz=matriz [ ,2: ncol(matriz) ]

View (matriz)

matriz2=matrix (0 ,nrow=dim, ncol=dim)
for (i in 2:nrow(matriz)){
for (j in 1:(i—1)){
matriz2 [i,]j]=((nrow(base_read[[1]]) )*(nrow(base_read[[j]])))

}
}

View (matriz2)
colnames (matriz2 )=rownames( matriz2 )=colnames(matriz)
View (matriz2)

nrow(base _read [[1]]) #nrow (base _read [[24]])

matrizb=matriz2—t (matriz)
View (matrizb)
for (i in 2:nrow(matriz)){
for (j in 1:(i—1)){
matriz [i,j]=matrizb[i,j]
}
}
View (matriz)

write.csv(matriz ,” matriz _pisa2_read.csv” ,row.names= F)

# MATRIZ SCIE
matriz=read.csv2(” matriz _pisa_scie.csv” sep=",")
rownames( matriz )=matriz [ ,1]

matriz=matriz [ ,2: ncol(matriz) ]

View (matriz)

matriz2=matrix (0 ,nrow=dim, ncol=dim)

for (i in 2:nrow(matriz)){
for (j in 1:(i—1)){
matriz2 [i,j]=((nrow(base_mates [[i]]) )*(nrow(base_mates[[j]])))

}
}

View (matriz2)
colnames (matriz2 )=rownames(matriz2 )=colnames(matriz)
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View (matriz2)

nrow ( base _mates [[1]]) *nrow( base _mates [[24]])

matrizb=matriz2—t (matriz)
View (matrizb)

for (i in 2:nrow(matriz)){
for (j in 1:(i—1)){
matriz [1,]j]=matrizb[i,]]
}
}
View (matriz)
## ejemplo de comprobacion — perfecto

write.csv(matriz ,” matriz _pisa2_scie.csv”)

which (verdad=—FALSE)
verdad

write.csv(matriz ,” matriz _pisa2_scie.csv” ,row.names=F)

matriz=read.csv2(” matriz_pisa2_scie.csv” ,sep=",")
matriz

nombres=colnames(matriz)

rownames( matriz )=nombres

verdad=c ()
for (i in 1:38){
for(j in (i+1):39){
verdad=c(verdad ,matriz [i,j]+matriz[j,i]==nrow(base_mates[[1]])*nrow(base_

mates [[j]]))
}
}

verdad
which (verdad=="TRUE" )
(39%39—39) /2==length (which(verdad=="TRUE" ) )

View (matriz)
### Visor de matrices #4#

#1) Read
matriz=read.csv(” matriz _pisa2 _read.csv”)
rownames( matriz )=colnames (matriz )
View (matriz)

#2) Scie
matriz=read.csv(” matriz_pisa2_scie.csv”)
rownames( matriz )=colnames (matriz )
View (matriz)

#3) Mat
matriz=read.csv(” matriz_pisa2 _mat.csv”)
rownames( matriz )=colnames(matriz)
View (matriz)
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## Cambio de matrices a tanto por 1 ##
# Mat

matriz=read.csv(”matriz _pisa2_mat.csv”)

rownames( matriz )=colnames (matriz )

View (matriz)

matriz _nueva_mat=matrix (0 ,ncol=39,nrow=39)
for (i in 1:39){
for (j in 1:39){
matriz _nueva_mat[i,j]=matriz[i,j]/(matriz[i,j]+matriz[j,i])
}
}

matriz _nueva_mat|[is.na(matriz _nueva_mat)]=0

matriz _nueva_mat=round ( matriz _nueva_mat, digits=4)

View (matriz _nueva _mat)

write.csv(matriz _nueva_mat,” mat_norm_mat.csv” ;row.names=F)
# Scie

matriz=read.csv(” matriz _pisa2 _scie.csv”)

rownames( matriz )=colnames (matriz )

View (matriz)

matriz _nueva_scie=matrix (0,ncol=39 nrow=39)
for (i in 1:39){
for (j in 1:39){
matriz _nueva_scie [i,]j]=matriz[i,j]/(matriz[i,j]+matriz[j,i])
¥
}

matriz _nueva_scie [is.na(matriz_nueva_scie)]=0

matriz _nueva_scie=round(matriz _nueva_scie ,digits=4)

View (matriz _nueva_scie)

write.csv(matriz _nueva_scie ,”mat_norm_scie.csv” ,row.names=F)
# Read

matriz=read.csv(” matriz_pisa2_read.csv”)

rownames( matriz )=colnames (matriz )

View (matriz)

matriz _nueva_read=matrix (0 ,ncol=39,nrow=39)
for (i in 1:39){
for(j in 1:39){
matriz _nueva_read[i,j]=matriz[i,j]/(matriz[i,j]+matriz[j,i])
}
}

matriz _nueva_read[is.na(matriz _nueva_read)]=0

matriz _nueva_read=round (matriz _nueva_read, digits=4)

View (matriz _nueva_read)

write.csv(matriz _nueva_read,”mat_norm_read.csv” ,row.names=F)

C:C ( 9 SGP77 , 77I_I[<G7’ , 9 IDN77 , 2 BRA77 )
seis=matrix (0 ,nrow=6,ncol=6)

matriz=read.csv(” matriz_pisa2 _mat.csv”)
paises=colnames(matriz)
colnames (matriz _nueva_mat)=paises
rownames( matriz _nueva_mat)=paises
for (i in 1:6){

for(j in 1:6){
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A=c|i]
B=c[j]
seis [i,j]=matriz _nueva_mat[A,B]

}
}

seis

mates=read . csv(”mat_norm_mat.csv”)
View (mates)

sumas=rowSums ( mates)

frame=data . frame ()

for (i in 1:39){
frame[i,1]=as.numeric(sumas[i])

}

frame

row .names(frame)=paises
frame

frame <— arrange (frame, vl)
library (dplyr)

# Prueba 2 matriz solucionada

mates=read.csv2(”mat_norm_mat.csv” ;sep=",")
colnames (mates)=paises

row.names(mates)=paises

View (mates)

eleccion=c (”SGP” ,”BRA” ,”DEU” ,”ROU” ;”ESP” ,”ISR”)
matriz62=matrix (nrow=6,ncol=6)

colnames (matriz62)=eleccion
row.names(matriz62)=eleccion

for (i in eleccion){
for(j in eleccion){
matriz62 [i,j]=mates[i,]]
}
}

View (matriz62)
write.csv(matriz62 ,” matriz62.csv”)

#
datos=read . table ("DATOS_PISA2012. txt” , header=T, sep="", dec=".")

datos$CNI=as. factor (datos$CNT)
paises=levels (datos$CNT)

mates=read.csv2(”mat_norm_mat.csv” ,sep=";")

colnames (mates)=paises

row.names(mates)=paises

View (mates)

eleccion=c (”SGP” ,”BRA” ,”DEU” ,”ROU” ,”ESP” ,”ISR” ,”COL” ,”HKG” ,” FIN” ,”THA” ,”NOR” ,”
IDN”)

matrizl2=matrix (nrow=12,ncol=12)

colnames (matrizl2)=eleccion

row.names( matrizl2)=eleccion

for (i in eleccion){

for(j in eleccion){
matrizl2[i,j]=mates[i,]]
}
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}

View (matrizl2)
write.csv(matrizl2 ,” matrizl2.csv” ;row.names=F)
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Code used to obtain university preference matrices

umh=read .csv2(”datosumh.csv”)

umh=umh | ,2:13]

umh

precedencias _umh=matrix (0 ,ncol=12 nrow=12)

contador=0
for (¢ in 1:11){
for (d in (c+1):12){
contador=0
for (i in 1:40){
for (j in 1:40){
contador=(contador+ifelse (umh[i,c]>umh[j,d],1,0))
}
}

precedencias _umh[c,d]=contador
}
}
precedencias _umh

contador=0
for (c in 1:11){
for (d in (c+1):12){
contador=0
for (i in 1:40){
for (j in 1:40){
contador=(contador+ifelse (umh[i,d]>umh[j,c],1,0))
}
}
precedencias _umh[d,c]=contador

}
}

write.csv(precedencias _umh,” precedencias _umh. csv” ,row.names=F)
precedencias _umh_norm=matrix (0,ncol=12 nrow=12)
for (i in 1:12){

for(j in 1:12){
if(i = j){

precedencias _umh_norm[i, j] =0
}
else {
precedencias _umh_norm[i, j] = precedencias_umh[i, j] / (precedencias_umh][i

} , j] + precedencias_umh[j, i])
}
}

precedencias _umh_norm
write.csv(precedencias _umh_norm,” precedencias _umh_norm.csv” ,row.names=F)
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8.3 LINGO code used to get the optimals
Code used to obtain LOP PISA data optimals

MODEL:

SETS:
EJE_I/EI1..EI39/;
EJE_J/EJ1..EJ39/;
MATRIZ(EJE_I ,EJE_J): MAT,X;

ENDSETS

DATA:

MAT= 0,0.7616,0.9321,0.4076,0.4003,0.7451,0.9308,0.4581,0.4324,0.4906,
0.3515,0.3953,0.5037,0.5284,0.2273,0.6248,0.9386,0.5975,0.5603,0.3244 ,
.2436,0.6186,0.5356,0.8721,0.3983,0.5056,0.4769,0.3398,0.7396,0.5883,
.1834,0.5837,0.6282,0.5492,0.7354,0.9204,0.7549,0.8564,0.5561,0.2384,
,0.7444,0.1798,0.1737,0.4853,0.706,0.2375,0.2261,0.2253.,0.142,0.1729,
.2865,0.2455,0.0957,0.382,0.7336,0.3517,0.315,0.1512,0.1052,0.3204 ,
.245,0.5665,0.2033,0.2218,0.223,0.1415,0.4326,0.2856,0.0735,0.3155 ,
.3652.,0.257,0.4586,0.6871,0.4814,0.5999,0.2685,0.0679,0.2556,0,0.042,
.0372,0.2409,0.4288,0.088,0.0795,0.0594,0.0267,0.0442,0.1133.,0.0616,
.0199,0.1776,0.4764,0.1581.,0.1255,0.0391.,0.0219,0.103,0.061,0.271,0.063,
.0516,0.0576,0.029,0.1703,0.079,0.0114,0.1225,0.1469,0.0704,0.197,
.4202,0.2125,0.3407,0.074,0.5924,0.8202,0.958,0,0.491,0.8041,0.9599,
.534,0.4987,0.5967,0.4347,0.489,0.553,0.6298,0.2707,0.6915,0.9676 ,
.6733,0.6294,0.3852,0.2861,0.7141,0.6461,0.9291,0.4565,0.6234,0.5633,
.423.,0.8115,0.6927,0.2172,0.6736,0.6929,0.6654,0.7905,0.9525.,0.7983,
.9093,0.6566,0.5997,0.8263,0.9628.,0.509,0,0.8098,0.9656,0.5469,
.5198,0.5978,0.4491,0.4969,0.5759,0.6335,0.3012,0.7006,0.9714,
.6809,0.642,0.4057,0.3203,0.7147,0.6461,0.9318,0.4817,0.6215,0.5744,
.4358,0.8165,0.6921,0.2499,0.6783,0.7048,0.6604,0.7997,0.9581,
.8103,0.9121,0.6582,0.2549,0.5147,0.7591,0.1959,0.1902,0,0.7218,
.2505,0.2362,0.2453,0.1589,0.1936,0.2905,0.2652,0.1002,0.3962,
.7507,0.3667,0.3275,0.1587,0.1061,0.339,0.2686,0.58,0.2106,0.2472,
.2404,0.1571,0.4487,0.3063,0.0723,0.3341,0.3756,0.2817,0.4682,
.6966.,0.4853.,0.6183,0.2877,0.0692,0.294,0.5712,0.0401,0.0344,
.2782,0,0.0923.,0.0866,0.058,0.0224,0.0423,0.1281,0.0618,0.0186,
.2027,0.5493,0.1773,0.1411,0.0403,0.0213,0.1121,0.0605,0.3149,
.0692,0.0469,0.0601,0.0254,0.1981,0.083,0.0099,0.1329,0.1686,
.0701,0.2321,0.4819,0.2506,0.3926,0.0769,0.5419,0.7625,0.912,
.466,0.4531,0.7495,0.9077,0,0.479,0.537,0.4164,0.4541,0.5463,

5654 ,0.2868,0.6457,0.9157,0.6265,0.5927,0.38,0.3143,0.6409,0.5716 ,
.8534,0.4476,0.5474,0.5208,0.4005,0.7401,0.6155,0.2565,0.6129,0.6489 ,
.5822,0.7378,0.8989,0.752,0.8438,0.5898,0.5676,0.7739,0.9205,0.5013,
.4802,0.7638,0.9134,0.521,0,0.5673,0.4563,0.4937,0.571,0.5885,0.3061,
.6626,0.9239,0.6513,0.6141,0.4031,0.3432,0.6585,0.5963,0.8544,0.465,
.5749,0.5488,0.4331,0.7504,0.6362,0.2884,0.6307,0.6631,0.6052,0.7458,
.9021,0.7532,0.8523,0.6151,0.5094,0.7747,0.9406,0.4033,0.4022,0.7547,
.942.,0.463,0.4327,0,0.3343,0.3857,0.4916,0.5446,0.2112,0.6328,0.9497,
.602,0.5626,0.3144,0.2219,0.6386,0.5554,0.8951,0.3968,0.5254,0.4782,
.3326,0.7596,0.6102,0.1511,0.6015,0.6363,0.5735,0.7459,0.9328,0.7639,
.8749.,0.5699,0.6485.,0.858,0.9733,0.5653,0.5509,0.8411,0.9776,0.5836 ,
.5437,0.6657,0,0.5586,0.5896,0.6902,0.3069,0.7349,0.9836,0.7254,
.6753,0.4291,0.3193,0.7698,0.7108,0.9608,0.4981,0.6947,0.6204,0.4827,
.8541,0.7537,0.2529,0.7263,0.7344,0.734,0.8255,0.9702,0.828,0.9375 ,
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.7219,0.6047,0.8271,0.9558,0.511,0.5031,0.8064,0.9577,0.5459.,0.5063 ,
.6143,0.4414,0,0.5455,0.6461,0.2724,0.6982,0.9658,0.6819,0.6334,
.3892,0.2812,0.729,0.6663,0.9349,0.4629,0.6481,0.573,0.4327,0.8206 ,
.7114,0.2103,0.6882,0.6975,0.6906,0.7935,0.9508,0.7982,0.9133,
.6749,0.4963,0.7135,0.8867,0.447,0.4241,0.7095,0.8719,0.4537,0.429 ,
.5084,0.4104,0.4545.,0,0.5163,0.2489,0.6036,0.8846,0.5949,0.5485,
.3455,0.2714,0.5876,0.5275,0.7888,0.3879,0.5107,0.4858,0.3826,0.6775,
.562,0.234,0.5594,0.5935,0.5379,0.6814,0.851,0.6889,0.7977,0.5486 ,
4716,0.7545,0.9384,0.3702,0.3665,0.7348,0.9382,0.4346,0.4115,0.4554 ,
.3098,0.3539,0.4837,0,0.2033,0.609,0.9457,0.5756,0.5399,0.2972,0.2192,
.5961,0.5052,0.8717,0.3803,0.471,0.4464,0.3042,0.7292,0.5635,0.1546 ,
.5626,0.6139,0.5184,0.7275,0.9258,0.7509,0.8556,0.5263,0.7727,0.9043 ,
.9801,0.7293,0.6988,0.8998,0.9814,0.7132,0.6939,0.7888,0.6931,0.7276,
.7511,0.7967,0,0.8228,0.9862,0.8299,0.7945,0.6028,0.5424,0.8458,0.8078,
.19661,0.656,0.7978,0.7612,0.6543,0.8985,0.8345,0.4806,0.8152,0.8265,
.8154,0.884,0.9789,0.8802,0.9545,0.8226,0.3752,0.618,0.8224.,0.3085,
.2994,0.6038,0.7973,0.3543,0.3374,0.3672,0.2651,0.3018,0.3964,0.391,
.1772,0,0.818,0.4755,0.4375,0.2487.,0.1906,0.466,0.3962,0.6934,0.3063 ,
.373,0.3555,0.2578,0.5714,0.4373,0.1474,0.4496,0.4894,0.4079,0.5791,
.7783,0.5939,0.7123,0.4139,0.0614,0.2664,0.5236,0.0324,0.0286,0.2493,
.4507,0.0843,0.0761,0.0503,0.0164,0.0342,0.1154,0.0543,0.0138,0.182,
,0.159.,0.1259,0.035,0.0161,0.0987,0.0515,0.2867,0.0612,0.0402,0.0523 ,
.0191,0.1754,0.0729,0.0062,0.1204,0.1523,0.061,0.2072,0.4471,0.229 ,
.3555,0.0683,0.4025,0.6483,0.8419,0.3267,0.3191,0.6333,0.8227,0.3735,
.3487.0.398,0.2746,0.3181,0.4051,0.4244,0.1701,0.5245,0.841,0,0.459 ,
.2559,0.1832,0.5047,0.4323,0.7364,0.3163,0.4102,0.38,0.2701,0.6095 ,
.4766,0.1333,0.4822.,0.5166,0.4483.,0.613,0.8097,0.6286,0.7446,0.4492,
.4397,0.685,0.8745,0.3706,0.358,0.6725,0.8589,0.4073,0.3859,0.4374,
.3247,0.3666,0.4515,0.4601,0.2055,0.5625,0.8741,0.541,0,0.2929,0.2225,
.5394,0.4677,0.7708,0.352,0.4446,0.4221,0.3112,0.6465,0.5105,0.1766,
.5151,0.5554,0.4803,0.6517,0.8413,0.6665,0.7777,0.4879,0.6756,0.8488,
.9609,0.6148,0.5943,0.8413,0.9597.,0.62,0.5969,0.6856,0.5709,0.6108 ,
.6545,0.7028,0.3972,0.7513,0.965,0.7441,0.7071,0,0.4302,0.764,0.7145,
.9266,0.5571,0.6987,0.6581,0.5435,0.8388,0.7479,0.3676,0.733.,0.7511,
.7255,0.8248,0.9496,0.8263,0.9167,0.7266,0.7564,0.8948,0.9781,0.7139,
.6797,0.8939,0.9787,0.6857,0.6568,0.7781,0.6807,0.7188,0.7286,0.7808,
.4576,0.8094,0.9839.,0.8168,0.7775,0.5698,0,0.8354,0.7962,0.9619,0.6119,
.7865,0.7459,0.6342,0.8905,0.8221,0.4485,0.796,0.8107,0.803,0.8731,
.9741,0.8668,0.9504,0.8121,0.3814,0.6796,0.897,0.2859,0.2853,0.661,
.8879,0.3591,0.3415,0.3614,0.2302,0.271,0.4124,0.4039,0.1542,0.534,
.9013,0.4953,0.4606,0.236,0.1646,0,0.4055,0.7884,0.3141,0.3704,0.3575,
.2298,0.6385,0.4626,0.1078,0.4756,0.5324,0.4199,0.6484,0.8675,0.6742,
7878 ,0.4287,0.4644,0.755,0.939,0.3539,0.3539,0.7314,0.9395,0.4284 ,
.4037,0.4446,0.2892,0.3337,0.4725,0.4948,0.1922,0.6038,0.9485,0.5677,
.5323,0.2855,0.2038,0.5945,0,0.8778,0.3734,0.464,0.4353,0.2878,0.7317,
.561,0.1355,0.5595,0.6109,0.5144,0.7275,0.9315,0.7524,0.8592,0.5206 ,
.1279,0.4335.,0.729.,0.0709,0.0682,0.42,0.6851,0.1466,0.1456,0.1049 ,
.0392,0.0651,0.2112,0.1283,0.0339,0.3066,0.7133,0.2636,0.2292,0.0734,
.0381,0.2116,0.1222,0,0.1271,0.0936,0.1186,0.044,0.348,0.1673,0.0142,
.2143,0.2837,0.1322,0.3915,0.6476,0.4208,0.5472,0.1489,0.6017,0.7967,
.937.,0.5435,0.5183,0.7894,0.9308,0.5524,0.535,0.6032,0.5019,0.5371,
6121,0.6197,0.344,0.6937,0.9388,0.6837,0.648,0.4429,0.3881,0.6859 ,
.6266,0.8729,0,0.6058,0.5862,0.4749,0.773,0.6618,0.3369,0.6593,0.6954 ,
.632,0.7744,0.9205,0.7822,0.87,0.6455,0.4944.,0.7782,0.9484.,0.3766 ,
.3785,0.7528,0.9531,0.4526,0.4251,0.4746,0.3053,0.3519,0.4893,0.529 ,
.2022,0.627,0.9598,0.5898,0.5554,0.3013,0.2135,0.6296,0.536,0.9064 ,
.3942,0,0.4603,0.3074,0.7623,0.5982,0.1392,0.5924,0.6361,0.5531,
.7508,0.9483,0.7758,0.8812,0.5532,0.5231,0.777,0.9424,0.4367,0.4256 ,
.7596,0.9399,0.4792,0.4512,0.5218.,0.3796,0.427,0.5142,0.5536,0.2388,
6445 ,0.9477,0.62,0.5779,0.3419,0.2541,0.6425,0.5647,0.8814,0.4138,
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.5397,0,0.3666,0.7548,0.6149,0.1949,0.6069,0.643,0.5818,0.7472,0.9257,
.7621,0.8686,0.5825,0.6602,0.8585,0.971,0.577,0.5642,0.8429,0.9746 ,
.5995,0.5669,0.6674,0.5173,0.5673,0.6174,0.6958,0.3457,0.7422,0.9809,
.7299,0.6888,0.4565,0.3658,0.7702,0.7122,0.956,0.5251,0.6926,0.6334,
,0.8544,0.7544.,0.2967,0.7318,0.7453,0.7297,0.83,0.97,0.8341,0.9356,
.7222,0.2604,0.5674,0.8297,0.1885,0.1835,0.5513,0.8019,0.2599,0.2496 ,
.2404,0.1459,0.1794,0.3225,0.2708,0.1015,0.4286,0.8246,0.3905,0.3535,
.1612,0.1095,0.3615,0.2683,0.652,0.227,0.2377,0.2452,0.1456,0,0.3205 ,
.0719,0.3505,0.4148,0.2807,0.528,0.7721,0.5551,0.6794,0.2974,
4117,0.7144,0.921,0.3073,0.3079,0.6937,0.917,0.3845,0.3638,0.3898 ,
.2463,0.2886,0.438,0.4365,0.1655,0.5627,0.9271,0.5234,0.4895,0.2521 ,
.1779,0.5374,0.439,0.8327,0.3382,0.4018,0.3851,0.2456,0.6795,0,0.1159,
.5079,0.5669,0.4526,0.6866,0.9021,0.715,0.8209,0.4622,0.8166,0.9265,
.9886,0.7828,0.7501,0.9277,0.9901,0.7435,0.7116,0.8489,0.7471,0.7897,
.766,0.8454,0.5194,0.8526,0.9938,0.8667,0.8234,0.6324,0.5515,0.8922,
.8645,0.9858,0.6631,0.8608,0.8051,0.7033,0.9281,0.8841,0,0.8521,0.8502,
.876.,0.9041,0.9833,0.8922,0.9745,0.8735,0.4163,0.6845,0.8775,0.3264,
.3217,0.6659,0.8671,0.3871,0.3693,0.3985,0.2737,0.3118,0.4406,0.4374,
.1848,0.5504,0.8796,0.5178,0.4849,0.267,0.204,0.5244,0.4405,0.7857 ,
.3407,0.4076,0.3931,0.2682,0.6495,0.4921,0.1479,0,0.5519,0.4498,0.6552 ,
.8554,0.6786,0.7814,0.461,0.3718,0.6348,0.8531,0.3071,0.2952.,0.6244,
.8314,0.3511,0.3369,0.3637,0.2656,0.3025,0.4065,0.3861,0.1735,0.5106,
.8477,0.4834,0.4446,0.2489,0.1893,0.4676,0.3891,0.7163,0.3046,0.3639,
.357,0.2547,0.5852,0.4331,0.1498,0.4481,0,0.3993,0.6012,0.8045,0.6187,
.7334.,0.4116,0.4508,0.743,0.9296,0.3346,0.3396,0.7183,0.9299,0.4178,
.3948,0.4265,0.266,0.3094,0.4621,0.4816,0.1846,0.5921,0.939,0.5517,
.5197,0.2745,0.197.,0.5801,0.4856,0.8678,0.368,0.4469,0.4182.,0.2703 ,
.7193,0.5474,0.124.,0.5502,0.6007,0,0.7156,0.9243,0.743,0.8482,0.5032,
.2646,0.5414,0.803,0.2095,0.2003,0.5318,0.7679,0.2622,0.2542,0.2541,
.1745,0.2065,0.3186,0.2725,0.116,0.4209,0.7928,0.387,0.3483,0.1752,
.1269,0.3516,0.2725,0.6085,0.2256,0.2492,0.2528,0.17,0.472.,0.3134,
.0959,0.3448,0.3988,0.2844,0,0.729,0.5179,0.6496,0.2937.,0.0796,0.3129,
.5798,0.0475,0.0419,0.3034,0.5181,0.1011,0.0979,0.0672,0.0298,0.0492,
.149,0.0742,0.0211,0.2217,0.5529,0.1903,0.1587,0.0504,0.0259,0.1325,
.0685,0.3524,0.0795,0.0517,0.0743,0.03,0.2279,0.0979,0.0167,0.1446 ,
.1955,0.0757,0.271,0,0.2985,0.4068,0.0905,0.2451,0.5186,0.7875,
.2017,0.1897,0.5147,0.7494,0.248,0.2468,0.2361,0.172,0.2018,
.3111,0.2491,0.1198,0.4061,0.771,0.3714,0.3335,0.1737,0.1332,
.3258,0.2476,0.5792,0.2178,0.2242,0.2379,0.1659,0.4449,0.285.,0.1078 ,
.3214,0.3813,0.257,0.4821,0.7015,0,0.6239,0.2695,0.1436,0.4001,0.6593 ,
.0907.,0.0879,0.3817,0.6074,0.1562,0.1477,0.1251,0.0625,0.0867,0.2023,
.1444,0.0455,0.2877,0.6445,0.2554,0.2223,0.0833,0.0496,0.2122,0.1408,
.4528,0.13,0.1188,0.1314,0.0644,0.3206,0.1791,0.0255,0.2186,0.2666 ,
.1518,0.3504,0.5932,0.3761,0,0.1629,0.4439,0.7315,0.926,0.3434,0.3418,
.7123,0.9231,0.4102,0.3849,0.4301,0.2781,0.3251,0.4514,0.4737,0.1774,
.5861,0.9317,0.5508,0.5121,0.2734,0.1879,0.5713,0.4794,0.8511,0.3545,
.4468,0.4175,0.2778,0.7026,0.5378,0.1265,0.539,0.5884,0.4968,0.7063 ,
.9095,0.7305,0.8371,0;
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ENDDATA

! Variable binaria;

@FOR(MATRIZ(I,J) :@BIN(X(I,J)));

[OBJETIVO] MAX=GSUM(MATRIZ (I ,J) :MAT(I,J)*X(1,J));

@FOR (EJE_I(I):
@QFOR(EJE_J(J) | J#NE#I :
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X(I,J)4X(J,I)=1));

@QFOR(EJE_I (1) :
QFOR(EJE_J (J) | J#NE#I :
QFOR(EJE_J(T) | T4NE#] #ANDY THNE# :
X(1,J)4X(J, T)4X(T,1)<=2))) ;
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Code used to obtain Model optimal using former PISA solution

MODEL:

SETS:
EJE_I/EIl..EI39/;
EJE_J/EJ1..EJ39/;
EJE K/EJ1..EJ3/;
MATRIZ(EJE_T1,EJE_J): MAT,X,Z,V,W;
GRUPOS(EJE_K,EJE_I) :G;

ENDSETS

DATA:

MAT= 0,0.7616,0.9321,0.4076,0.4003,0.7451,0.9308,0.4581,0.4324,0.4906,
0.3515,0.3953,0.5037,0.5284,0.2273,0.6248,0.9386,0.5975,0.5603,0.3244 ,
0.2436,0.6186,0.5356,0.8721,0.3983,0.5056,0.4769,0.3398,0.7396,0.5883,
.1834.,0.5837,0.6282,0.5492,0.7354,0.9204,0.7549,0.8564,0.5561,0.2384,
,0.7444,0.1798,0.1737,0.4853,0.706,0.2375,0.2261,0.2253.,0.142,0.1729 ,
.2865,0.2455,0.0957,0.382,0.7336,0.3517,0.315,0.1512,0.1052,0.3204 ,
.245.,0.5665,0.2033,0.2218,0.223,0.1415,0.4326,0.2856,0.0735,0.3155 ,
.3652,0.257,0.4586,0.6871,0.4814,0.5999,0.2685,0.0679,0.2556,0,0.042,
.0372,0.2409,0.4288,0.088,0.0795,0.0594,0.0267,0.0442,0.1133,0.0616,
.0199,0.1776,0.4764,0.1581.,0.1255,0.0391,0.0219,0.103,0.061,0.271,0.063,
.0516,0.0576,0.029.,0.1703,0.079,0.0114,0.1225,0.1469,0.0704,0.197,
.4202,0.2125,0.3407,0.074,0.5924,0.8202,0.958,0,0.491,0.8041,0.9599 ,
.534,0.4987,0.5967,0.4347,0.489,0.553,0.6298,0.2707,0.6915,0.9676 ,
.6733,0.6294,0.3852,0.2861,0.7141,0.6461,0.9291,0.4565,0.6234,0.5633,
.423.,0.8115,0.6927,0.2172,0.6736,0.6929,0.6654,0.7905,0.9525.,0.7983,
.9093,0.6566,0.5997,0.8263,0.9628.,0.509,0,0.8098,0.9656,0.5469,
.5198,0.5978,0.4491,0.4969,0.5759,0.6335,0.3012,0.7006,0.9714,
.6809,0.642,0.4057,0.3203,0.7147,0.6461,0.9318,0.4817,0.6215,0.5744,
.4358,0.8165,0.6921,0.2499,0.6783,0.7048,0.6604,0.7997,0.9581,
.8103.,0.9121,0.6582,0.2549,0.5147,0.7591,0.1959,0.1902,0,0.7218,
.2505,0.2362,0.2453,0.1589,0.1936,0.2905,0.2652,0.1002,0.3962,
.7507,0.3667,0.3275,0.1587,0.1061,0.339,0.2686,0.58,0.2106,0.2472,
.2404,0.1571,0.4487,0.3063,0.0723,0.3341,0.3756,0.2817,0.4682,
.6966,0.4853,0.6183,0.2877,0.0692,0.294,0.5712,0.0401,0.0344,
.2782,0,0.0923,0.0866,0.058,0.0224,0.0423,0.1281,0.0618,0.0186,
.2027,0.5493,0.1773,0.1411,0.0403,0.0213,0.1121,0.0605,0.3149,
.0692,0.0469,0.0601,0.0254,0.1981,0.083,0.0099,0.1329,0.1686,
.0701,0.2321,0.4819,0.2506,0.3926,0.0769,0.5419,0.7625,0.912,
.466,0.4531,0.7495,0.9077,0,0.479,0.537,0.4164,0.4541,0.5463,
.5654,0.2868,0.6457,0.9157,0.6265,0.5927,0.38,0.3143,0.6409,0.5716,
.8534,0.4476,0.5474,0.5208,0.4005,0.7401,0.6155,0.2565,0.6129,0.6489 ,
.5822,0.7378,0.8989,0.752,0.8438,0.5898,0.5676,0.7739,0.9205,0.5013,
.4802,0.7638,0.9134,0.521,0,0.5673,0.4563,0.4937,0.571,0.5885,0.3061,
.6626,0.9239,0.6513,0.6141,0.4031,0.3432,0.6585,0.5963,0.8544,0.465,
.5749,0.5488,0.4331,0.7504,0.6362,0.2884,0.6307,0.6631,0.6052,0.7458,
.9021,0.7532,0.8523.,0.6151,0.5094,0.7747,0.9406,0.4033,0.4022,0.7547,
.942.,0.463,0.4327,0,0.3343,0.3857,0.4916,0.5446,0.2112,0.6328,0.9497,
.602.,0.5626,0.3144,0.2219,0.6386,0.5554,0.8951,0.3968,0.5254,0.4782,
.3326,0.7596,0.6102,0.1511,0.6015,0.6363,0.5735,0.7459,0.9328,0.7639,
.8749,0.5699,0.6485,0.858,0.9733,0.5653,0.5509,0.8411,0.9776,0.5836 ,
.5437,0.6657,0,0.5586,0.5896,0.6902,0.3069,0.7349,0.9836,0.7254,
.6753,0.4291,0.3193,0.7698,0.7108,0.9608,0.4981,0.6947,0.6204,0.4827,
.8541,0.7537,0.2529,0.7263,0.7344,0.734,0.8255,0.9702,0.828.,0.9375 ,
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.7219,0.6047,0.8271,0.9558,0.511,0.5031,0.8064,0.9577,0.5459.,0.5063 ,
.6143,0.4414,0,0.5455,0.6461,0.2724,0.6982,0.9658,0.6819,0.6334,
.3892,0.2812,0.729,0.6663,0.9349,0.4629,0.6481,0.573,0.4327,0.8206 ,
.7114,0.2103,0.6882,0.6975,0.6906,0.7935,0.9508,0.7982,0.9133,
.6749,0.4963,0.7135,0.8867,0.447,0.4241,0.7095,0.8719,0.4537,0.429 ,
.5084,0.4104,0.4545.,0,0.5163,0.2489,0.6036,0.8846,0.5949,0.5485,
.3455,0.2714,0.5876,0.5275,0.7888,0.3879,0.5107,0.4858,0.3826,0.6775,
.562,0.234,0.5594,0.5935,0.5379,0.6814,0.851,0.6889,0.7977,0.5486 ,
4716,0.7545,0.9384,0.3702,0.3665,0.7348,0.9382,0.4346,0.4115,0.4554 ,
.3098,0.3539,0.4837,0,0.2033,0.609,0.9457,0.5756,0.5399,0.2972,0.2192,
.5961,0.5052,0.8717,0.3803,0.471,0.4464,0.3042,0.7292,0.5635,0.1546 ,
.5626,0.6139,0.5184,0.7275,0.9258,0.7509,0.8556,0.5263,0.7727,0.9043 ,
.9801,0.7293,0.6988,0.8998,0.9814,0.7132,0.6939,0.7888,0.6931,0.7276,
.7511,0.7967,0,0.8228,0.9862,0.8299,0.7945,0.6028,0.5424,0.8458,0.8078,
.19661,0.656,0.7978,0.7612,0.6543,0.8985,0.8345,0.4806,0.8152,0.8265,
.8154,0.884,0.9789,0.8802,0.9545,0.8226,0.3752,0.618,0.8224.,0.3085,
.2994,0.6038,0.7973,0.3543,0.3374,0.3672,0.2651,0.3018,0.3964,0.391,
.1772,0,0.818,0.4755,0.4375,0.2487.,0.1906,0.466,0.3962,0.6934,0.3063 ,
.373,0.3555,0.2578,0.5714,0.4373,0.1474,0.4496,0.4894,0.4079,0.5791,
.7783,0.5939,0.7123,0.4139,0.0614,0.2664,0.5236,0.0324,0.0286,0.2493,
.4507,0.0843,0.0761,0.0503,0.0164,0.0342,0.1154,0.0543,0.0138,0.182,
,0.159.,0.1259,0.035,0.0161,0.0987,0.0515,0.2867,0.0612,0.0402,0.0523 ,
.0191,0.1754,0.0729,0.0062,0.1204,0.1523,0.061,0.2072,0.4471,0.229 ,
.3555,0.0683,0.4025,0.6483,0.8419,0.3267,0.3191,0.6333,0.8227,0.3735,
.3487.0.398,0.2746,0.3181,0.4051,0.4244,0.1701,0.5245,0.841,0,0.459 ,
.2559,0.1832,0.5047,0.4323,0.7364,0.3163,0.4102,0.38,0.2701,0.6095 ,
.4766,0.1333,0.4822.,0.5166,0.4483.,0.613,0.8097,0.6286,0.7446,0.4492,
.4397,0.685,0.8745,0.3706,0.358,0.6725,0.8589,0.4073,0.3859,0.4374,
.3247,0.3666,0.4515,0.4601,0.2055,0.5625,0.8741,0.541,0,0.2929,0.2225,
.5394,0.4677,0.7708,0.352,0.4446,0.4221,0.3112,0.6465,0.5105,0.1766,
.5151,0.5554,0.4803,0.6517,0.8413,0.6665,0.7777,0.4879,0.6756,0.8488,
.9609,0.6148,0.5943,0.8413,0.9597.,0.62,0.5969,0.6856,0.5709,0.6108 ,
.6545,0.7028,0.3972,0.7513,0.965,0.7441,0.7071,0,0.4302,0.764,0.7145,
.9266,0.5571,0.6987,0.6581,0.5435,0.8388,0.7479,0.3676,0.733.,0.7511,
.7255,0.8248,0.9496,0.8263,0.9167,0.7266,0.7564,0.8948,0.9781,0.7139,
.6797,0.8939,0.9787,0.6857,0.6568,0.7781,0.6807,0.7188,0.7286,0.7808,
.4576,0.8094,0.9839.,0.8168,0.7775,0.5698,0,0.8354,0.7962,0.9619,0.6119,
.7865,0.7459,0.6342,0.8905,0.8221,0.4485,0.796,0.8107,0.803,0.8731,
.9741,0.8668,0.9504,0.8121,0.3814,0.6796,0.897,0.2859,0.2853,0.661,
.8879,0.3591,0.3415,0.3614,0.2302,0.271,0.4124,0.4039,0.1542,0.534,
.9013,0.4953,0.4606,0.236,0.1646,0,0.4055,0.7884,0.3141,0.3704,0.3575,
.2298,0.6385,0.4626,0.1078,0.4756,0.5324,0.4199,0.6484,0.8675,0.6742,
7878 ,0.4287,0.4644,0.755,0.939,0.3539,0.3539,0.7314,0.9395,0.4284 ,
.4037,0.4446,0.2892,0.3337,0.4725,0.4948,0.1922,0.6038,0.9485,0.5677,
.5323,0.2855,0.2038,0.5945,0,0.8778,0.3734,0.464,0.4353,0.2878,0.7317,
.561,0.1355,0.5595,0.6109,0.5144,0.7275,0.9315,0.7524,0.8592,0.5206 ,
.1279,0.4335.,0.729.,0.0709,0.0682,0.42,0.6851,0.1466,0.1456,0.1049 ,
.0392,0.0651,0.2112,0.1283,0.0339,0.3066,0.7133,0.2636,0.2292,0.0734,
.0381,0.2116,0.1222,0,0.1271,0.0936,0.1186,0.044,0.348,0.1673,0.0142,
.2143,0.2837,0.1322,0.3915,0.6476,0.4208,0.5472,0.1489,0.6017,0.7967,
.937.,0.5435,0.5183,0.7894,0.9308,0.5524,0.535,0.6032,0.5019,0.5371,
6121,0.6197,0.344,0.6937,0.9388,0.6837,0.648,0.4429,0.3881,0.6859 ,
.6266,0.8729,0,0.6058,0.5862,0.4749,0.773,0.6618,0.3369,0.6593,0.6954 ,
.632,0.7744,0.9205,0.7822,0.87,0.6455,0.4944.,0.7782,0.9484.,0.3766 ,
.3785,0.7528,0.9531,0.4526,0.4251,0.4746,0.3053,0.3519,0.4893,0.529 ,
.2022,0.627,0.9598,0.5898,0.5554,0.3013,0.2135,0.6296,0.536,0.9064 ,
.3942,0,0.4603,0.3074,0.7623,0.5982,0.1392,0.5924,0.6361,0.5531,
.7508,0.9483,0.7758,0.8812,0.5532,0.5231,0.777,0.9424,0.4367,0.4256 ,
.7596,0.9399,0.4792,0.4512,0.5218.,0.3796,0.427,0.5142,0.5536,0.2388,
6445 ,0.9477,0.62,0.5779,0.3419,0.2541,0.6425,0.5647,0.8814,0.4138,
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.5397,0,0.3666,0.7548,0.6149,0.1949,0.6069,0.643,0.5818,0.7472,0.9257,
.7621,0.8686,0.5825,0.6602,0.8585,0.971,0.577,0.5642,0.8429,0.9746 ,
.5995,0.5669,0.6674,0.5173,0.5673,0.6174,0.6958,0.3457,0.7422,0.9809,
.7299,0.6888,0.4565,0.3658,0.7702,0.7122,0.956,0.5251,0.6926,0.6334,
,0.8544,0.7544.,0.2967,0.7318,0.7453,0.7297,0.83,0.97,0.8341,0.9356,
.7222,0.2604,0.5674,0.8297,0.1885,0.1835,0.5513,0.8019,0.2599,0.2496 ,
.2404,0.1459,0.1794,0.3225,0.2708,0.1015,0.4286,0.8246,0.3905,0.3535,
.1612,0.1095,0.3615,0.2683,0.652,0.227,0.2377,0.2452,0.1456,0,0.3205 ,
.0719,0.3505,0.4148,0.2807,0.528,0.7721,0.5551,0.6794,0.2974,
4117,0.7144,0.921,0.3073,0.3079,0.6937,0.917,0.3845,0.3638,0.3898 ,
.2463,0.2886,0.438,0.4365,0.1655,0.5627,0.9271,0.5234,0.4895,0.2521 ,
.1779,0.5374,0.439,0.8327,0.3382,0.4018,0.3851,0.2456,0.6795,0,0.1159,
.5079,0.5669,0.4526,0.6866,0.9021,0.715,0.8209,0.4622,0.8166,0.9265,
.9886,0.7828,0.7501,0.9277,0.9901,0.7435,0.7116,0.8489,0.7471,0.7897,
.766,0.8454,0.5194,0.8526,0.9938,0.8667,0.8234,0.6324,0.5515,0.8922,
.8645,0.9858,0.6631,0.8608,0.8051,0.7033,0.9281,0.8841,0,0.8521,0.8502,
.876.,0.9041,0.9833,0.8922,0.9745,0.8735,0.4163,0.6845,0.8775,0.3264,
.3217,0.6659,0.8671,0.3871,0.3693,0.3985,0.2737,0.3118,0.4406,0.4374,
.1848,0.5504,0.8796,0.5178,0.4849,0.267,0.204,0.5244,0.4405,0.7857 ,
.3407,0.4076,0.3931,0.2682,0.6495,0.4921,0.1479,0,0.5519,0.4498,0.6552 ,
.8554,0.6786,0.7814,0.461,0.3718,0.6348,0.8531,0.3071,0.2952.,0.6244,
.8314,0.3511,0.3369,0.3637,0.2656,0.3025,0.4065,0.3861,0.1735,0.5106,
.8477,0.4834,0.4446,0.2489,0.1893,0.4676,0.3891,0.7163,0.3046,0.3639,
.357,0.2547,0.5852,0.4331,0.1498,0.4481,0,0.3993,0.6012,0.8045,0.6187,
.7334.,0.4116,0.4508,0.743,0.9296,0.3346,0.3396,0.7183,0.9299,0.4178,
.3948,0.4265,0.266,0.3094,0.4621,0.4816,0.1846,0.5921,0.939,0.5517,
.5197,0.2745,0.197.,0.5801,0.4856,0.8678,0.368,0.4469,0.4182.,0.2703 ,
.7193,0.5474,0.124.,0.5502,0.6007,0,0.7156,0.9243,0.743,0.8482,0.5032,
.2646,0.5414,0.803,0.2095,0.2003,0.5318,0.7679,0.2622,0.2542,0.2541,
.1745,0.2065,0.3186,0.2725,0.116,0.4209,0.7928,0.387,0.3483,0.1752,
.1269,0.3516,0.2725,0.6085,0.2256,0.2492,0.2528,0.17,0.472.,0.3134,
.0959,0.3448,0.3988,0.2844,0,0.729,0.5179,0.6496,0.2937.,0.0796,0.3129,
.5798,0.0475,0.0419,0.3034,0.5181,0.1011,0.0979,0.0672,0.0298,0.0492,
.149,0.0742,0.0211,0.2217,0.5529,0.1903,0.1587,0.0504,0.0259,0.1325,
.0685,0.3524,0.0795,0.0517,0.0743,0.03,0.2279,0.0979,0.0167,0.1446 ,
.1955,0.0757,0.271,0,0.2985,0.4068,0.0905,0.2451,0.5186,0.7875,
.2017,0.1897,0.5147,0.7494,0.248,0.2468,0.2361,0.172,0.2018,
.3111,0.2491,0.1198,0.4061,0.771,0.3714,0.3335,0.1737,0.1332,
.3258,0.2476,0.5792,0.2178,0.2242,0.2379,0.1659,0.4449,0.285.,0.1078 ,
.3214,0.3813,0.257,0.4821,0.7015,0,0.6239,0.2695,0.1436,0.4001,0.6593 ,
.0907.,0.0879,0.3817,0.6074,0.1562,0.1477,0.1251,0.0625,0.0867,0.2023,
.1444,0.0455,0.2877,0.6445,0.2554,0.2223,0.0833,0.0496,0.2122,0.1408,
.4528,0.13,0.1188,0.1314,0.0644,0.3206,0.1791,0.0255,0.2186,0.2666 ,
.1518,0.3504,0.5932,0.3761,0,0.1629,0.4439,0.7315,0.926,0.3434,0.3418,
.7123,0.9231,0.4102,0.3849,0.4301,0.2781,0.3251,0.4514,0.4737,0.1774,
.5861,0.9317,0.5508,0.5121,0.2734,0.1879,0.5713,0.4794,0.8511,0.3545,
.4468,0.4175,0.2778,0.7026,0.5378,0.1265,0.539,0.5884,0.4968,0.7063 ,
.9095,0.7305,0.8371,0;

OO OO OO DO DD DD OO0 DO DD ODOODDOD OO DOODDODOOOD DD OO0 OO0 oo oo oococooo

ENDDATA

!'Variable binaria;

@FOR(MATRIZ(I,J) :@BIN(X(I1,J)));
@FOR(MATRIZ(I,J) :@BIN(Z(I,J)));
@FOR(GRUPOS(K, I) :@BIN(G(K,I1)));
Q@QFOR(MATRIZ(1,J) :@BND(0 ,W(I,J) ,0.1));
@QFOR(MATRIZ(1,J) :@BND(0,V(I,J) ,0.1));
@BND(0,Y,0.1) ;
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! objetivo

[OBJETIVO] MAX=GSUM(MATRIZ (T ,J) | JANEAL :MAT(T ,J)sW(1,J)) :

! RESTRICCIONES
! 1
@QFOR (EJE_I(I):
QFOR(EJE_J(J)| J
(I,J)+X (J I)+Z(I J)+Z(J,1)=1));

! )
@FOR(EJE_I(1):
@FOR(EJE_J (J) | J#NEHI :
@QFOR(EJE_J (T) | T¥NE#] #ANDY THNEAI :
X(1,3)4X(J,T)4X(T, 1)+Z(1,3)+Z(J, T)+Z(T,1)<=2)) ) ;

1 3

@SUM(MATRIZ (1, J) | NEAI :Z(1,J) ) =507;

! 4
@SUM(MATRIZ(1 ,J) | HANEAL :MAT(1 ,J)*V(1,J))=

! 5.1

@QFOR (EJE_I(I):

QFOR(EJE_J(J) | J
WL, J)-Y<= ))
1 5.2
@QFOR (EJE_I(I):
QFOR(EJE_J(J) | J
W(T, J)—1x ( )< 0))
! 6.1

@QFOR (EJE_I(I):

@FOR(EJE_J (J) | J#NEHI :
V(I,J)-Y<=0));
! 6.2
@FOR (EJE_I(I):
QFOR(EJE_J(J) | J#NE#I :
V(I,J)—1+Z(1,J)<=0));
! 6.3

@FOR (EJE_I(I):
@QFOR(EJE_J(J)| J
V(I,J)-Y 1*2(1 J)>=—1));

! 71
@FOR (EJE_K(K) :

GSUM(EJE_I(1):G(K,I))=13);
! 7.2

@FOR (EJE_I(I):
@SUM(EJE _K(K) :G(K,1))=1);
! 7.2

@FOR(EJE_T (1) :
@QFOR(EJE_J (J) | J#NE#I :
QFOR(EJE _K(K) :
@QFOR(EJE_K(T
I

X(T,

) | THANEK:
J)HX(J,1)<=2-G(K,1)-G(T,J)))));
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30,22)=1;

2424 P4 P4 P4 24 24 P4 S < 24 24 P 4 0 X D P A S 4 2 P pd P P S 2 4l D P D P 8 4
ot
=
I

Note: In order to calculate the Model without restricting the PISA solution, we will need to
delete the addtional restrictions
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8.4 R-Studio code used to get the optimals
Code used to obtain Model optimals

#Modelo modificado Mercedes
# 12 individuos , 8 grupos 4, 4, y 4

I=range(12)
K=range (3)
mdl2= Model ()
#Variables
#binarias

x =[[mdl2. binary _var (name="x_i%d_j%d"%(i,j)) for j in I | for i in I ]

z =[[mdl2.binary _var(name="z_i%d_j%d"%(i,j)) for j in I | for i in I ]

g =[[mdl2.binary _var (name="g_k%d_i%d”%(k,i)) for i in I | for k in K |
#continuas

w =[[mdl2. continuous_var (name="w_i%d_j%d”%(i,j)) for j in I | for i in I ]
v =[[mdl2. continuous _var (name="v_i%d_j%d”%(i,j)) for j in I ] for i in I ]
y = mdl2. continuous _var (name="y”)

mdl2.add_constraints ( x[i][j] + x[j][i] + z[i][]j] 4+z[j][i] =1 for i in I
for j in I if il!=j )

mdl2.add_constraints ( x[i][j] + x[j][k] + x[k][i] +z[i][i] + z[j][k] + z[k][i
J<= 2 for i in I for j in I for k in I if i!=j and j!=k and k!= i )

mdl2.add_constraint ( mdl2.sum( z[i][j] for j in I for i in I if il=j) = 48

)

mdl2.add_constraint ( mdl2.sum( (df[i][j])*v[i][j] for j in I for i in I if il!=

i =)

mdl2.add_constraints( w[i][j] —y <=0 for i in I for j in I if il=j )
mdl2.add_constraints ( w[i][]j] — 1#x[i][j] <= 0 for i in I for j in I if il=j )
mdl2.add_constraints( v[i][j] — y <=0 for i in I for j in I if il!=j )
mdl2.add_constraints( v[i][j] — 1*z[i][j] <=0 for i in I for j in I if il=j )
mdl2.add_constraints( v[i][j] —y — 1*z[i][j] >= -1 for i in I for j in I if i!

=j )

#NUEVAS RESTRICCIONES
mdl2.add _constraints (mdl2.sum(g[k][i] for i in I)
mdl2.add_constraints (mdl2.sum(g[k][i] for k in K)

4 for k in K)
1 for i in I)

mdl2.add_constraints ( x[1][]j] + x[j][i] <=2 — glk][i] — g[t][j] for i in I
for j in I for k in K for t in K if i!=j and k!=t)

#
mdl2. maximize ( mdl2.sum( df[i][j]*w[i][]] for j in I for i in I if i!=j) )

mdl2. export _as _lp ("p_fraccional .lp”)

s = mdl2.solve (log _output=False)

print (” Solucion - del -MODELO-FRACCIONAL” )

20




print (mdl2.solution)
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8.5 Other content

Expected loading time to obtain the Model solution for PISA data

Solver Status

Model PILD
State: Fea=ible
Objective: 165652
Infeasibility: 1.11022=-01¢

lterations: 111576229

Extended Solver Status

Solver Type: B-and-B

Best Obj: 165652

Obj Bound: 208020

Steps: 7182

Active: ]
Update Interval: |27

Variables
Total: TELE
Monlinear: g
Integers: L

Constraints

Total: TAEES
Monlinear: =
MNonzeros
Total: HEEELE
Monlinear: T
Generator Memory Used [K]
10582
Elapsed Runtime [hh:mm:ss]
258:59:10
Interrupt Solver Close

Note: 360 hours equals 15 days waiting for a response.
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Relevant raw notes taken during the creation of the Model.
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Solucidén del MODELO FRACCIONAL
solution for: docplex model3
1.8627
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8.6 Links

Below are links to Google Drive folders, where you can download the files used for this work.

e Access to all CSV format matrices used during the work: Access

e Access to Lingo code used during the document: Access

o8


https://drive.google.com/drive/folders/1dOmMntcScMHjgRKYwjP7s9uAiH8taAy_?usp=sharing
https://drive.google.com/drive/folders/1js7vbfxp-FD-JodQaCkGDyJJcBKjH3Ik?usp=sharing
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