
Universidad Miguel Hernández de Elche

MÁSTER UNIVERSITARIO EN
ROBÓTICA

"LiDAR-based Autonomous Power-line Perching with
Multirotors"

Trabajo de Fin de Máster

2022/2023

Autor: Iván Gutiérrez Rodríguez
Tutores: Oscar Reinoso García,
José Ramiro Martínez de Dios

Agradecimientos

Agradecer en primer lugar a mi familia, pareja y amigos todo el apoyo recibido durante esta difícil
e intensa etapa que llega a su fin. También, a todos los profesores del Master Universitario

en Robótica, por la buena acogida y la gran formación que nos han proporcionado, en especial, a
Oscar Reinoso por su dedicación. Agradecer también a Ramiro su constante motivación y apoyo,
así como a todo el equipo del GRVC Robotics Lab de la Universidad de Sevilla, sin el que no habría
sido posible este trabajo. En especial a Raúl, del que he tenido la suerte de poder aprender a diario
y el que ha sido un gran apoyo durante esta etapa. Por último, agradecer a la fundación VALGRAI
la ayuda para los estudios que me ha permitido llegar hasta aquí.

Iván Gutiérrez Rodríguez
Elche, 2023

I

Resumen

Este trabajo trata sobre el desarrollo de un método para permitir que vehículos aéreos de tipo
multirotor puedan colgarse autónomamente de líneas eléctricas. Se ha desarrollado un sistema

de percepción basado en dos LiDARs 2D rotacionales que se encarga de obtener con exactitud la
posición y orientación relativa de la línea eléctrica con el robot. Estas estimaciones son recibidas
por el sistema de control, que actúa sobre la velocidad del multirotor para alcanzar la posición que
permite la actuación del mecanismo de enganche. El método se ha validado con un quadrotor real
en el que se ejecutaba todo el software a bordo para controlar de forma precisa la posición relativa
del robot con la línea.

III

Abstract

This work addresses the development of a method to enable autonomous multirotors to perch on
power-lines. A perception system based on two rotatory 2D LiDARs has been designed and

implemented to accurately estimate the pose of the power-line. These estimations are received by the
control system of the aerial robot, which acts on the velocity of the platform to achieve the relative
pose with the power-line that allows the actuation of a mechanism to grab the line. The method has
been evaluated with a real multirotor that executed all the software on board to accurately control
its relative pose with respect to a real power-line cable.

V

Contents

Resumen III
Abstract V

1 Introduction 1
1.1 Motivation 1
1.2 Objective 1
1.3 Structure 3

2 Related work 5
2.1 Autonomous power-line perching 5
2.2 2D LiDAR sensors 7

3 Perception system architecture 9
3.1 Introduction 9
3.2 Hypotheses 9
3.3 Detection stages 10
3.4 System modules 10
3.5 Conclusion 12

4 Implementation of the perception system 13
4.1 Introduction 13
4.2 Intersection detection module 13
4.3 Power-line filter module 19
4.4 Power-line detection module 24
4.5 Conclusion 26

5 Control system 27
5.1 Introduction 27
5.2 Autopilot 27
5.3 UAL 28
5.4 Velocity control 28
5.5 Conclusion 30

6 Experimental results 31
6.1 Introduction 31
6.2 Perception system performance 31

VII

VIII Contents

6.3 Simulated experiments 33
6.4 Flight experiments 37
6.5 Conclusion 41

7 Conclusion 43
7.1 Conclusion 43
7.2 Future work 43

Appendix A Elements of the H matrix 45

List of Figures 51
List of Tables 53
Bibliography 55

1 Introduction

1.1 Motivation

Performing autonomous perching with multirotors on power-lines is considered to be a key point in
the development of aerial robots for inspection and maintenance of power-grids. Inspection and
maintenance tasks on transmission lines and towers have traditionally been performed by means
of extensive manpower. However, they involve high risks for workers and high costs for electric
companies. As a consequence, several works have found Unmanned Aerial Vehicles (UAVs) to be a
promising technology to automatize and reduce the costs of these tasks. In particular, multirotors
offer a large number of possibilities due to their high maneuverability and relatively high payload
compared to other types of aerial platforms. However, their flight endurance is not enough for many
applications due to the large dimensions of power-grids.

Recent works propose multirotor designs that can recharge their batteries by perching on power-
lines and harvesting energy from them [1] [2] [3]. The autonomous execution of the perching
maneuver by a multirotor with one of these systems would allow its operation along long power-
lines without the need of the intervention of a human to change its batteries. In addition, perching
on the power-lines would facilitate the physical interaction with the environment, which is required
for many tasks such as the installation of bird diverters, and the tightening of screws, among others.

1.2 Objective

The goal of this work is the development of a method to allow multirotors to autonomously perch
on power-lines. The UAV must be able to estimate the pose of the power-line and to use these
estimations to control its relative pose with the line. Once the robot is able to properly control its
relative pose with respect to the power-line, the perching maneuver will consist in establishing the
appropriate references for the control system to achieve those relative poses that allow the actuation
of the mechanism which grabs the line.

The actuation of most perching mechanisms requires first aligning the robot with the power-line
to then reach a certain distance from the power-line at which the line enters the mechanism that grab
it. Therefore, the perception system must be able to detect the orientation of the power-line, and
the horizontal and vertical distance with it. The robot must be able to perform the detection under
difficult illumination conditions. On the one hand, power-lines are outdoor installations directly
exposed to sunlight. On the other hand, the robot may be used at night, which implies being able to
detect the power-line in dark conditions. Thus, visual cameras are not suitable for this application,
since their performance is severely compromised under these conditions. In contrast, most 3D

1

2 Chapter 1. Introduction

LiDARs do not suffer from this problem and allow the estimation of the aforementioned variables if
their scans are not exceedingly sparse. However, they are usually very heavy. Some current rotatory
2D LiDARs are lightweight, robust against sunlight, and able to work at night. As a consequence, the
robot developed in this work relies on 2 rotatory 2D LiDARs to estimate the pose of the power-line
to perch on. Note that it uses 2 sensors since the orientation of the power-line is required and they
only measure distances within single planes. The angular resolution of the LiDARs and the width
of the power-lines define the distance from the power-lines at which the maneuver can start. The
robot developed in this work must be able to perch on 1 cm diameter power-lines from at least
2 meters from the power-line, a position that would be achieved by the manual control of the platform.

Both the control system and the perception system must be able to run in real time on the onboard
computer. For the sake of simplicity, the LiDARs are assumed to be configured as shown in Fig-
ure 1.1. The detection planes of the LiDARs (XY planes) must be parallel, and their rotational axes
(z axes) aligned with each other. This configuration allows the proper estimation of the orientation
of the line and simplifies the equations of the probabilistic filter used to estimate the pose of the
power-line. As a result, the computational performance of the filter is also improved, which is very
important in software for aerial robots, whose limited payload restricts the power of the onboard
computers.

Figure 1.1 Configuration of the LiDARs on board the aerial platform.

The performance of the developed method must be validated with a real multirotor. The software
must run on its onboard computer to accurately control the relative pose of the UAV with a power-
line. Concurrently, in order to provide a quantitative evaluation of the capabilities of the robot, the
errors of the perception system and of the control system must be measured.

1.3 Structure 3

1.3 Structure

This work is organized as follows. First, in Chapter 2, the most relevant prior works related to the
performance of autonomous perching on cables are analyzed. In addition, a brief overview of the
characteristics of current 2D LiDARs is addressed. Chapter 3, describes the architecture of the
perception system of the developed robot. Once the different modules for the estimation of the
power-line pose are presented, their implementation is explained in Chapter 4. Next, the control
system that processes the output of the perception system to perform the maneuver is detailed in
Chapter 5. Finally, the experiments to validate the correct functioning of the systems are described
in Chapter 6 together with the obtained results.

2 Related work

2.1 Autonomous power-line perching

Power-lines represent a significant part of the infrastructure of many countries. They are composed
of a large number of kilometric high voltage cables supported on large metallic towers which require
periodic inspection and maintenance tasks. For instance, the detection of defects, the measurement
of the distance to the vegetation to anticipate future collisions, and the installation of bird diverters,
among others. These tasks have traditionally been performed by means of extensive manpower,
involving significant risks due to the great height at which the power-lines hang and their high
voltage. This dangerous work must be performed by highly qualified personnel, making it difficult
to achieve a sufficient performance to properly maintain current power grids. In addition, these
operations are also really expensive since companies not only have to pay the costs related to the
operation itself, but also have to shut down the section of the power-grid for safety reasons. Together
with the large dimensions of current power grids, these facts have led to a strong interest in the
development of technologies for the automation and cost reduction of power-line inspection and
maintenance.

Most research on the automation of these tasks has focused on robotic solutions. The ability of
robots to operate without the intervention of humans avoids all the risks that workers still take today.
Additionally, they can operate continuously without compromising the quality of the operations.
There are numerous works that focus on mobile robots for these purposes [4]. However, the need
of retrieving them on the power-lines and their difficulty to operate in cables that are separated
by towers are common problems that restrict their capabilities. As discussed in the following,
Unmanned Aerial Vehicles (UAVs) have attracted a significant attention from researchers to perform
inspection and maintenance tasks on power-lines. These platforms can easily reach inaccessible
areas where power-lines are usually located and have the ability to operate at any height, which
makes them ideal platforms to perform these tasks.

A first step in the automation of power grid inspection with aerial vehicles was collecting data
with sensors onboard manned or unmanned helicopters. In [5], the authors rely on the data obtained
with a LiDAR sensor to obtain a 3D reconstruction of the electrical system. Other works such as
[6] and [7] use visual and thermal cameras to take pictures and perform the inspection by their
posterior analysis. However, helicopters are inefficient platforms that are not suitable for long flights
following the kilometric power-lines.

Despite fixed-wing platforms being considered considerably efficient, there are not many works
that suggest them as proper candidates to perform inspection and maintenance tasks on power-lines

5

6 Chapter 2. Related work

due to their lack of maneuverability. On the contrary, Vertical Take Off and Landing (VTOL)
vehicles are efficient while being able to hover and move as multirotors. For this reason, authors as
those in [8], [9], and [10] suggest them as proper options to perform inspection tasks. Nevertheless,
their limited payload severely restricts the use of certain onboard sensors, the available onboard
computation, and the possibility of carrying heavy mechanisms for manipulation.

Recently, multirotors have attracted considerable attention due to their high maneuverability and
lower payload restrictions compared to VTOLs. On the one hand, works in [11], [12], and [13] use
multicopters with onboard LiDARs and/or visual cameras to collect data and perform inspection
tasks. On the other hand, works such as those in [14], [15], and [16] propose systems to physically
interact with power-lines and perform maintenance tasks as the installation of bird diverters.

Similarly to helicopters, multicopters are not efficient platforms, and their flight endurance is not
enough for many inspection applications. Nevertheless, this problem might be tackled by perching
on the power-lines to recharge batteries. Several studies have found this as an interesting solution to
increase the duration of multicopter flights. In [17] and [2] the authors propose multirotor systems
with mechanisms that allow both perching on power-lines and recharging the battery by harvesting
energy. Authors in [18] suggest a wireless drone recharging station that could allow the recharging of
drones without sufficient payload to carry an energy harvester. Moreover, perching on the power-line
might facilitate the physical manipulation with the environment of the robot.

Although the perching maneuver appears to be a key point in the development of aerial systems
for autonomous power-line inspection and maintenance with UAVs, there is little agreement on the
approach to perform it autonomously. The work [19] presents a method to generate trajectories
for perching with multirotors. Although the trajectories are generated to improve the performance
of the perception system, the work does not address the estimation of the power-line pose with
onboard sensors to close the control loop. In [20], a camera and a LiDAR on board a UAV are used
to assist a pilot and perform the perching maneuver semi-autonomously. The work [21] proposes a
perception system based on electromagnetic fields near power-lines to allow a UAV to perch on
them. There are many other works that rely on the electromagnetic fields to allow UAV navigation
around power lines [22], or even grasping them [23]. Nevertheless, these approaches are only useful
with active power-lines, usually assume very specific characteristics of the power-lines, and none of
them have been validated with software executed onboard a UAV in a fully autonomous mission.

Authors in [24] propose a multirotor design that can estimate the pose of a cable and perch on
it with two solid-state 8-segment LiDARs. However, they do not consider the case of multiple
lines and use sensors with very low angular resolution, severely limiting the capabilities of the
system. The accurate estimation of the power-line pose at several meters requires sensors with very
high angular resolution since most power-lines are much thinner than the cables used in their work
(38 mm). After a preliminary study of the most suitable sensor to detect and estimate the pose of
power-lines [25], the same athors conclude that mmWare radars are remarkable sensors for detecting
multiple power-lines. In [26], they used a mmWare radar together with an RGB camera on board
a multicopter to autonomously approximate different lines. Nonetheless, the sparsity of the 3D
point-clouds provided by mmWare sensors hampers the calculation of the power-line orientation.
Thus, the system requires processing images of the RGB camera to calculate the orientation of
the power-line, which involves certain computational power and is sensitive to the illumination
conditions.

The system presented in this work relies on two rotatory 2D LiDARs to estimate the pose of
the power-line and perform a perching maneuver. As noted below, certain models of these sensors

2.2 2D LiDAR sensors 7

have sufficient angular resolution to detect thin power-lines at several meters. Furthermore, they
are robust to challenging illumination conditions. Whereas other works require a visual camera
to estimate the orientation of the power-line, the estimation of the power-line pose in this work is
completely based on LiDAR sensors. Cameras are susceptible to failure if the Sun appears in their
field of view and are not able to work properly at night. On the contrary, LiDARs do not suffer from
these problems and can be used to detect power-lines both at night and during the day, regardless
of the position of the Sun. Although there are numerous cameras lighter than these sensors, their
use results in a more robust perception system for those platforms that are able to carry them. In
fact, most platforms used for inspection and maintenance tasks use heavy equipment such as 3D
LiDARs, high-resolution cameras with stabilization systems, or robotic arms for manipulation. In
this way, the weight of two rotatory 2D LiDARs involves a small increase of the payload compared
to that required due to the task to be performed.

2.2 2D LiDAR sensors

2D LiDAR sensors provide distance measurements to objects at different angles within a plane, the
detection plane. They are Time of Flight (ToF) sensors that emit infrared laser light and calculate
the distance to the object the ray intersects from the time elapsed until the LiDAR receives the
light reflected by the object. Since laser light its remarkably directional, they provide accurate
geometrical information of the environment which is difficult to obtain with other sensors as sonars
or visual cameras. Thus, they are extensively used in localization of mobile robots [27] and of UAVs
when the payload of the platform is compatible [28] [29].

The purpose of this work is to enable an UAV to autonomously perch on power-lines of 1
cm diameter. The detection of such thin cables from a considerable distance with rotatory 2D
LiDARs requires a demanding angular resolution for the sensors. The angular resolution defines the
maximum distance at which the lines are always detected. As shown in Figure 2.1, at that distance,
the separation of the laser rays is approximately equal to the line width. The maximum detection
distance given a certain angular resolution can be calculated as d = lw

2tan(ψ

2)
, where d, lw, and ψ are

defined in the figure. If the power-line is further than that distance, LiDAR rays might not collide
with the 1 cm diameter cable, and might not be detected. Although the line could still be detected if
a single ray intersects it, this situation is not taken into account for the calculation of the maximum
detection distance.

Current LiDAR models of the company SLAMTEC [30] are lightweight, robust against difficult
illumination conditions, and have a very high angular resolution. In this way, they are fully suitable
for the proposed application. Table 2.1 shows the angular resolution of some of the last LiDAR
models of this company together with their maximum detection distance with lines of 1 cm diameter,
and other relevant properties such as their weight and blind rate (minimum detection distance). As
shown, S2 and S3 models have almost the same angular resolution and are able to detect power-
lines of 1 cm diameter from more than 4 meters. They also have a similar blind range, but, since
RPLIDAR S3 is lighter than the S2, it would be the best sensor for this specific application. On the
contrary, RPLIDAR A3 has the lowest angular resolution, the highest blind range, and is the heaviest.
However, it is still able to detect power-lines of 1 cm of diameter at up to 2.54 m. The blind range is
also important, but, however, in case it is necessary to detect at shorter distances, the problem can
be solved by installing the LiDAR on the aerial robot such that a higher cable-LiDAR distance is
obtained. As shown, the characteristics of current rotatory 2D LiDAR models allow the detection of
power-lines from a considerable distance. The suitability of a specific model for a given application
depends on the payload of the platform to be used and the required maximum detection distance. In

8 Chapter 2. Related work

Figure 2.1 Variables to calculate the maximum detection distance given a certain angular resolution.
lw is the width of the power-line, d is the maximum detection distance, and ψ is the
angular resolution.

the case of this work, all the models might be used since all provide a sufficient maximum detection
distance for power-lines of 1 cm diameter, and the payload of the platform used for the experiments
is much higher than the weight of the LiDARs.

Table 2.1 Properties of SLAMTEC LiDARs suggested for power-line detection on board a UAV. ψ

is the angular resolution, d is the maximum detection distance with power-lines of 1cm
diameter, BR is the blind range, and W is the weight.

LiDAR ψ [º] d [m] BR [m] W [g]
RPLIDAR A3 0.225 2.54 0.2 200
RPLIDAR S2 0.12 4.77 0.05 190
RPLIDAR S3 0.1125 5.09 0.05 115

3 Perception system architecture

3.1 Introduction

Despite 2D LiDARs appear to be suitable sensors for power-line pose estimation, robustly perform-
ing it requires the use of certain assumptions about the scenario and the maneuver to be performed.
On the one hand, distinguishing power-line intersections from other objects in the scans implies pre-
vious knowledge about the geometry of the scenario. On the other hand, ensuring the correct match
of the points detected with each LiDAR to get the pose of the power-line requires following a certain
methodology for the detection. The following sections describe all these assumptions and how
the perception system has been designed to robustly and accurately estimate the pose of a power-line.

This chapter is organized as follows. First, the hypotheses about the scenario and the usage of the
system are listed. After that, it presents the stages followed by the perception system to estimate
the pose of the power-line. Finally, it discusses the different modules implemented to perform the
stages.

3.2 Hypotheses

In order to simplify the development of the perception system, some assumptions have been made
regarding the maneuver performed, the geometry of the environment in which it will be used, and
the available knowledge.

First, the maneuver consists of two steps that facilitate the accurate estimation of the power-line
pose. Initially, the UAV is in a static position below or above the power-lines at a certain distance
within the LiDAR detection interval. It must also be approximately aligned with the power-lines to
ensure that the detection planes cut the power-lines. The first step consists in the alignment with
one of the power-lines while maintaining the initial height. Then, it moves straight to the power-line
until the perching mechanism is able to actuate. The power-line must be out of the blind range of the
LiDARs in the perching position, involving an important design requirement for the configuration of
the robot. Hence, the LiDARs are always able to see the power-lines, which is another hypothesis.

Secondly, in order to perform the detection of the intersections of the power-lines in the measured
scans, the width and separation of the lines are supposed to be known. Furthermore, the separation
of the lines from other objects of the environment is assumed to be greater than their separation
from other lines, which is usually true for safety reasons.

9

10 Chapter 3. Perception system architecture

Lastly, power-lines are assumed to be closer to the robotic platform than any object in the
environment. Consequently, if the robot detects more possible lines than those at the electric asset,
it rejects the farthest. The number of power-lines is also supposed to be known.

3.3 Detection stages

The objective of the perception system is to estimate the pose of a power-line. However, 2D LiDAR
sensors can only measure the intersection point between the detection plane and the power-line.
Therefore, the estimation is performed following a series of steps that will result in a robust and
accurate perception system.

As shown in Figure 3.1, once both LiDAR drivers are initialized and provide scans, the detection
of the intersection points of the power-lines starts. Although the perching maneuver is done on
a single line, all line intersections must be detected due to the need of matching them to identify
the different power-lines. This detection is supposed to be done in a static manner, allowing for an
accurate estimation of the positions where the lines intersect.

After that, each of them has to be matched with an intersection detected in the opposite detection
plane. Therefore, the different power-lines are distinguished and their accurate pose estimation is
now possible, which is done during the last detection stage, the power-line tracking.

Since the maneuver is performed on a single line, the tracking of the power-line is performed
for that specific line and not for all of them, which would imply an unnecessary computational
cost. The tracked power-line would be the closest in order to minimize the time in which the
maneuver is performed. Tracking is performed by detecting all intersection points and updating
an Extended Kalman Filter (EKF) with the points most compatible with the previous estimation.
The measurements are rejected and identified as outliers if the distance between the detected points
and the intersection of the estimated line with the detection planes is greater than a threshold. If a
significant number of outliers are received in a row, the estimation is assumed to be inconsistent,
and the system returns to the stage for the detection of the intersections.

3.4 System modules

The system is composed of three different modules that collaborate to perform the previous stages.
As shown in Figure 3.2, LiDAR scans are sent to the Power-line Detection module, which is the
main module and uses the others to achieve the objective of the active stage.

If scans from both LiDARs have been received and, therefore, the stage to detect intersection
points is active, the Power-line Detection module forwards them to the Intersection Detection
module. This module uses an algorithm to detect possible power-line intersection points by taking
advantage of their known fixed size and isolation, as will be detailed in Chapter 4. At first, before
the matching stage, the system needs an accurate estimation of every intersection point position in
each plane. However, intersection detections are noisy and might not be performed in all the scans
so that some processing is required to reject outliers and filter them. Consequently, the Intersection
Detection module uses EKFs to estimate the position of each line intersection in each detection
plane. Since the position of each line intersection must be estimated independently, the module
uses two EKFs for each of the power-lines to be detected.

3.4 System modules 11

Figure 3.1 Diagram of the perception system stages.

Figure 3.2 Diagram of the perception system modules.

Once every EKF has been initialized and there is a robust position estimation of each intersection,
the matching stage starts. The Power-line Detection module is responsible for the matching opera-
tion, which is based on the geometry of the lines and the detection planes. This will be explained in
Chapter 4.

After the identification of the different power-lines, the Intersection Detection module stops
filtering the detected points and returns their location without any processing. Next, the Power-line
Detection module gets the closest line and starts its tracking by estimating the pose and updating
it with the closest points detected by the Intersection Detection module. The estimation of the
line is performed by forwarding the detected points to the Power-line Filter module. This module
implements the EKF for the pose estimation, whose measurement model takes into account the
geometry of the problem to provide an accurate estimation of the power-line pose.

The Power-line Detection module forwards to the Power-line Filter module those detected
intersection points which are closest to the intersections of the estimated line with the detection
planes. As mentioned above, if the distance between them is larger than a threshold, they are rejected
since they are possible outliers which the filter cannot manage. If a significant number of them

12 Chapter 3. Perception system architecture

are received in a row, the power-line is assumed to be lost and the system returns to the stage for
detecting intersection points.

3.5 Conclusion

This chapter has presented the different modules of the perception system and the functionalities
for which they are responsible. The characteristics of the problem impose the usage of different
detection stages. Each of them relies on some hypotheses to achieve a certain objective. The
achievement of the different objectives results in the identification and accurate estimation of the
pose of the power-line, allowing the feedback of the control system.

The architecture is designed based on the different stages necessary for the detection and the
functionalities required during each one, resulting in a simple system in which each module has a
specific role. The following chapter deals with how each of these modules has been implemented.

4 Implementation of the perception
system

4.1 Introduction

The implementation of the modules presented in the previous chapter requires the selection of the
proper algorithms and techniques to process the data and obtain the desired results. This chapter
presents a comprehensive overview of how the different modules have been implemented and the ap-
proaches selected to achieve their objectives. All the software has been developed in C++ using ROS.

Each section of this chapter describes the implementation of each module of the perception system,
which are the Intersection Detection module, the Power-line Filter module, and the Power-line
Detection module.

4.2 Intersection detection module

The Intersection Detection module has been implemented as a C++ class that provides the public
member functions shown in Table 4.1, which represent the interface of the module with the others.
The module is in charge of processing LiDAR scans and returning possible line intersection points.
The computation of these points is performed with the computeScan() function, which receives
a scan and returns a list of possible line intersection points defined in polar coordinates by their
range (ρ) and angle (θ) in the LiDAR detection plane. Nevertheless, the processing of the scans
is not always the same. As mentioned in the previous chapter, the detected points are initially
filtered to allow a robust matching of the intersection points detected with the different LiDARs.
The filtering is executed by this module, but the selection of the active stage is performed by the
Power-line Detection module. That is why this module has to provide a mechanism to activate and
deactivate the filtering. At first, this module always filters the points. It uses as many filters as lines
in the environment, and they are initialized as new intersections are detected. The matching of the
points cannot start until every filter has been initialized. Thus, the Power-line Detection module
will call the isInitialized() function to check if the initialization has been completed. Once the
filters are initialized and the matching has been done, the Power-line Detection module will call the
stopFilter() function to stop the filtering. After that, the module returns the points directly detected
and the filtering is performed by the Power-line Filter module. Finally, the reset() function allows
recovering the module to the initial state, in which the detected points are filtered. This might might
be necessary if the line tracking fails and the perception system needs to get back to a previous

13

14 Chapter 4. Implementation of the perception system

stage.

Table 4.1 Public member functions provided by the Intersection Detection module.

Name Description

computeScan() Receives a 2D LiDAR scan and applies an algorithm to detect possible line
points. The function allows the tracking and filtering of the detected points. The
rest of the public functions are related to this filtering functionality.

isInitialized() Returns whether or not the module has detected all the lines in the scenario and,
therefore, has started the separated filtering of their position. The number of
lines is assumed to be known.

stopFilter() After a call to this function, the module stops filtering the detected points and
returns the set of points directly obtained with the detection algorithm.

reset() This functions recovers the system to the initial state in which the points are
filtered.

The main element of this module is the algorithm for differentiating line points within the laser
scan. In most cases, power-lines are completely separated from other objects, resulting in a few
isolated points associated with the intersection points. The system has been designed to perch on
power lines above or below the robot. When the lines are above the robot, the LiDAR scan within
the angle interval near the lines would only consist of the isolated lines, since the sky would not
produce any detection. In this case, the detection might be easily performed by using a clustering
algorithm such as K-means. However, when the lines are below the robot, other objects might appear
in the scan, preventing the use of a simple clustering algorithm. This might be avoided by filtering
those measured points farther than a certain threshold, but would result in a less adaptive and robust
system. As a consequence, the algorithm used is based on the hypothesis of knowing the width and
separation of the power-lines as well as that about the greater separation of random objects from the
lines than between the lines themselves. In this way, it detects those points that meet these distance
conditions, assuming that they can only be generated by power lines. It would fail if there are other
lines in the environment apart from those related to the electrical system but, however, this problem
is taken into account in the development so that it would not produce a failure of the detection system.

Although checking the distance condition for each point in the scan might seem an easy solution
for the detection problem, it is not valid due to the extensive computational cost required for that. It
would consist in iterating through the points measured by the LiDAR and, for each one, iterating
through them again to check that there are no points closer than the line separation and farther than
the line width at the same time. If any point meets the condition, it would be assumed to be related
to the intersection of a line. Nevertheless, it would imply a number of operations in the order of the
number of measured points up to two, which is usually a large number of operations that would
prevent a real-time implementation of the algorithm. Therefore, the chosen approach takes advantage
of the way in which the rotatory 2D LiDARs measure the scans to avoid extensive computation.
Since scans consist of distance measurements at different angles, discarding a significant part of the
scan is possible by studying the difference of distances at adjacent angles. Algorithm 1 shows how
to perform that.

The points are studied in pairs, checking the distance between them. At first, the two points
associated with the first two angles are selected and are assumed to be part of a cluster of points
corresponding to an intersection point. The starting point is also saved in order to check the width

4.2 Intersection detection module 15

Algorithm 1 Obtains potential line intersection points within LiDAR scans. S represents the set
of points of the scan and their elements are represented as Sindex. The consecutive elements are
assumed to be associated with measurements at adjacent angles. I is the set of intersection points
the algorithm must return. Variables lw and ls represent the line width and separation, respectively.
Input: S, lw, ls
Output: I

pstart ← S0
ClusterStart← T RUE
for ix← 0 to getMaxIndex(S) do

p f irst ← Six
psecond ← Six+1
if distance(p f irst , psecond) > ls and distance(pstart , p f irst) < lw then

add p f irst to CurrentCluster
add centroid(CurrentCluster) to I
clear CurrentCluster

else if distance(pstart , psecond) > lw then
ClusterStart← FALSE
clear CurrentCluster

else
add p f irst to CurrentCluster

end if
if distance(p f irst , psecond) > ls then

ClusterStart← T RUE
pstart ← psecond

end if
end for

of the cluster afterwards. This situation is shown in Figure 4.1 top. After that, the algorithm iterates
through the following points (angles) checking if its distance with the previous point is further than
the line separation or the line width. When the distance of the second point from the initial point
exceeds the width of the line, that cluster cannot be related to an intersection, and the cluster is
discarded as shown in Figure 4.1 bottom.

A possible intersection is assumed to start again if the separation of the second point from the
first is greater than the separation of the lines as shown in Figure 4.2 top. After that the algorithm
continues studying the following points. As already mentioned, the possible cluster would be
discarded if the distance between the starting point and the second one is greater than the width
of the lines. In contrast, if the distance between the first and the second point is greater than the
distance between the lines and the distance between the starting and the first point is smaller than
the line width, the cluster is assumed to be related to an intersection of a line and its centroid would
be calculated as shown in Figure 4.2 bottom. After processing the complete scan, the centroids of
all the detected clusters would be returned.

When the algorithm reaches the last point, the centroid of the last cluster must be included if
and when its width is smaller than the width of the power-lines. In this way, the last cluster is
also taken into account, but the fact that the following point to the last one is the initial one is
not being considered. Therefore, an incorrect detection might be performed. Additionally, the
algorithm only takes into account the previous and posterior points to the studied cluster so that
there might be points at other angles which are closer than the distance between the power-lines
but would not avoid the detection. As a consequence, although the algorithm is not valid for per-

16 Chapter 4. Implementation of the perception system

Figure 4.1 Example of rejection of a possible cluster of points related to the intersection of a line
when its width is greater than the power-line width.

Figure 4.2 Example of detection of a possible cluster of points related to the intersection of a line
when its width is smaller than the power-line width and the separation with the previous
and posterior points is grater than the power-line separation.

forming the detection itself, it is a useful tool to drastically reduce the number of points to be studied.

To perform a valid and robust detection, after applying the previous algorithm, the module checks
that each detected cluster meets the distance conditions with every point of the initial scan. Whereas

4.2 Intersection detection module 17

performing the check for each point of the scan is not always a feasible operation for a real-time
implementation, the output of the algorithm will consist of a small number of points whose check
can be done in a short interval of time. This step allows discarding those clusters incorrectly detected
due to the aforementioned problems.

Finally, the functioning of LiDAR sensors is not ideal, and there might be points related to
random objects between a set of points related to the same power-line. If there is a point further
than the power-line separation between points of the same power-line, the Algorithm 1 would return
two possible intersections, one before the far point and another after it very close to each other.
These points would meet the distance conditions with all the points of the scan. Thus, a last step is
necessary to merge those clusters whose separation is smaller than the power-line width.

It is assumed that the resulting set of points would be associated with the intersections of the
power-lines with the detection plane and, as mentioned, their positions must be filtered to allow their
accurate estimation. The tool chosen to perform this filtering is the EKF algorithm described in
[31], which is widely used in robotics due to its computational efficiency. This filter uses Gaussian
representation for the estimation and the noises. Thus, it is assumed that range and angle measure-
ments have only Gaussian noise and that the position of an intersection can be represented by a
multivariable unimodal probability distribution, which are reasonable statements for this application.
Furthermore, the EKF algorithm works properly in most situations even if these assumptions are
not fully met.

Using the EKF algorithm requires the previous definition of the variables related to the state (x),
which is represented by the mean (µ) and covariance (Σ) of a multivariable normal distribution.
Then, the functions to obtain the state probability (g(x,u)) and the measurement probability (h(x))
must also be defined. Finally, the algorithm requires the definition of the jacobians G, and H in
addition to the covariances related to the prediction and measurement noise, which are defined by
the matrices R, and Q, respectively.

The matching to identify the different power-lines requires obtaining the position of each inter-
section. Thus, each of them is estimated with a different EKF. The state of each filter is defined
as x = [x,y]T and represents the coordinates of the detected intersection referred to the LiDAR
coordinate frame, which is assumed to be placed as shown in Figure 4.3. The points are assumed
to be static as the filtering is only used during the matching stage, in which the UAV does not
move. Therefore, the prediction stage of the filter operates on the assumption of static behavior
(g(x,0) = x). Thus, the G matrix is equal to the identity matrix. The variance of the Gaussian noise
related to the prediction is produced mainly by the movement of the UAV. However, this value is
highly variable depending on different factors such as the wind, the type of aerial platform, or the
control algorithm. Thus, this value is empirically selected to obtain a proper performance of the
filter. It is assumed that the movement along both axes has a similar variance. Once the value of
this variance (σprediction) is estimated, the matrix R can be calculated as R = σ2

predictionI.

The measurement vector is defined as z = [ρ,θ]T . It is composed of the range (ρ) and the angle
(θ) at which the intersection is detected. The EKF algorithm involves calculating the measurement
associated to the prediction to then perform the update with the received measurement. Hence, the
measurement probability h(x) is needed. The function is just a conversion from Cartesian to polar
coordinates as shown in Equation 4.1. Then, from this function, the jacobian H = ∂h(x)

∂x can be
calculated as shown in Equation 4.2.

18 Chapter 4. Implementation of the perception system

Figure 4.3 Visual representation of the position of the coordinate frame of the LiDARs. The LiDAR
is represented as two cylinders. The smaller cylinder would contain the spinning laser
which measures the distances. The center of the reference frame is therefore placed in
the middle of this cylinder. The Z axis is perpendicular to the detection plane and its
direction is defined by the spinning direction following the right hand rule. Lastly, the X
axis is oriented in the direction at which the LiDAR measures an angle equal to 0. This
direction depends on the LiDAR model and is usually indicated by an marker.

h(x) = [
√

x2 + y2,atan2(y,x)]T (4.1)

H =

 x√
x2+y2

y√
x2+y2

−y√
x2+y2

x√
x2+y2

 (4.2)

Lastly, the variance of the noises related to the measurements is related mainly to the errors of
the LiDAR. The values of the variances associated with the range (σρ) and angle (σθ) noises can

usually be consulted in the datasheet. Hence, the Q matrix is expressed as Q =

[
σ2

ρ 0
0 σ2

θ

]
.

The update of the filters requires associating the measured points with the filters for the different
line intersections, which is performed by distance criteria. However, the finite resolution of LiDAR
sensors often means that lines are not always detected. Furthermore, as mentioned previously,
erroneous lines might be detected if there are random objects in the environment. As a result,
there might be less or more detections than expected and some of them might not be related to the
intersection of the lines of interest.

To tackle the problems described above, if there are more detected points than lines in the envi-
ronment, the farthest exceeding points are discarded since the power-lines are assumed to be closer
to the robot than any other object of the environment. Then, the remaining points update the filter
with the closest estimation. At first, all the filters are initialized at the center of the LiDAR. As
the points are detected, the filters are initialized. The algorithm to associate the detected points
takes into account that each detected point must only update a filter if it is the closest point to the
estimation of the filter and if that point is not closer to the estimation of another filter. In this way,
when a filter is initialized, the other filters are never initialized in the same position, and there are
no problems with the update if any of the intersections have not been detected. Finally, to deal
with those possible far measurements related to other objects of the environment, the update is only
performed if the detection is less than a distance threshold apart from the estimation. If not, it is

4.3 Power-line filter module 19

assumed to be an outlier. When a series of outliers is received in a row, the filter is initialized again
with the following detections as it could have been initialized with an erroneous point.

As outlined above, once the matching stage has finished and there is an initial estimation of the
pose of the line, the tracking stage starts. This stage consists in providing measurements of the
intersections to an EKF which is in charge of the filtering and, therfore, which must receive raw
measurements. That is why, after a call to the stopFilter() function, the points detected with the
algorithm are not filtered and are directly returned.

As already mentioned, if the estimation is inconsistent with the received measurements, the line
would be assumed lost and the system would get back to the previous stages. Consequently, the
points must be filtered again. For this reason, the module provides the reset() function, whose call
returns the module to the initial state in which the points are filtered.

4.3 Power-line filter module

The Power-line Filter module has been implemented as another C++ class with the public member
functions shown in Table 4.2. As well as those related to the prior module, these functions constitute
its interface with the others. As previously mentioned, this module implements the EKF to estimate
the pose of the power-line on the basis of the received measurements, that are the intersections
detected with the Intersection Detection module. It is worth mentioning that a single measurement
is assumed to be composed of the two intersection points of the power-line of interest, one with
each detection plane. The problem of not detecting the intersection in one or any of the scans will
be discussed in the next section, since it is the Power-line Detection module that is responsible
for obtaining the measurements and calling the function. As for the implementation of the EKF
described in the previous section, the algorithm used for the implementation is in [31]. The
module provides a function to initialize the filter and functions to perform its prediction and update,
which must be performed recursively after the initialization. The module also allows obtaining
the intersection of its estimation with the detection planes since the Power-line Detection module
requires this information to select the detected points more suitable to perform the update.

Table 4.2 Public member functions provided by the Power-line Filter module.

Name Description

initialization(p0, p1) Initializes the state of the filter with a line that joins the spatial points p0
and p1.

prediction() Perform the prediction of the filter.
update(p0, p1) Perform the update of the filter with the measured points p0 and p1.
getPoint0() Returns the intersection of the estimated line with the detection plane of

the LiDAR 0.
getPoint1() Returns the intersection of the estimated line with the detection plane of

the LiDAR 1.
getLine() Returns the current estimation of the power-line pose.

This module has to provide an estimation of the relative pose of the power-line with respect to
the UAV. The coordinate frame fixed to the power-line is placed as shown in Figure 4.4, with its
x axis aligned with the power-line. The orientation of this x axis is the only orientation that the
designed perception system can estimate since a rotation of the power-line around this x axis would
not have any effect in the scans. As a result, only 2 of 3 Degrees Of Freedom (DOG) related to the

20 Chapter 4. Implementation of the perception system

orientation can be obtained. In a similar way, the perception system cannot estimate the position of
the power-line along its direction, restricting the estimation of the position to an estimation with 2
of 3 DOF. Thus, what the filter will actually provide is the intersection of the middle plane between
the LiDARs and the orientation of the x axis of the reference frame of the power-line. However, this
does not limit the capabilities of the system since, as noted in Chapter 5, the missing DOFs are not
required to feed back the control system.

Figure 4.4 Representation of the coordinates frames related to the perception problem.

To use an EKF to estimate this relative pose, it is necessary to define the state vector of the filter.
For the sake of simplicity, since the extrinsic calibration of the LiDARs with the aerial platform
is known, the filter works referring everything to the coordinate frame related to the LiDAR 0.
Theoretically, the variables included in the state vector must represent the system as completely
as possible, but, however, using simpler representations is a common practice in robotics due to
the reduction of the computational complexity of the implementation and the minor effect on the
performance of the filter. Therefore, the filter is just composed of 4 variables for the aforementioned
4 DOF and 2 more for the linear velocity. The accelerations has not been included in the vector
because, to increase the safety of the operation, the maneuver will be performed with low and
constant velocities. Additionally, since the UAV is assumed to keep aligned with the power-line
during the performance of the maneuver, the angular velocities have not been taken into account.
The resulting state vector is defined as x =

[
x y vx vy α β

]T , where the first two elements
are the x and y coordinates of the intersection of the power-line with the middle plane between the
LiDARs (the z coordinate is therefore constant), the next two represent the velocity of this point,
and the last ones represent the orientation of the x axis.

The points used to define the filter equations are shown in Figure 4.5. The intersection of the
power-line with the middle plane between the LiDARs is defined as p, and the intersections with
the detection planes of the LiDARs 0 and 1 are defined as p0 and p1, respectively. In the following,
all the points have 3 spatial coordinates and are referred to the LiDAR 0.

The output of the module, which is accessible by a call to the getLine() function, is the initial
position and the orientation of the −−→pp0 vector, which are calculable from the state vector. The first
two coordinates of the initial position are explicitly included in the state vector, whereas the third
one is constant and equal to half the separation of the LiDARs. Regarding the orientation, it is fully
represented by the angles α and β in the state vector. These angles are related to the variables ∆x,

4.3 Power-line filter module 21

Figure 4.5 Points to define the equations of the filter.

∆y, and ∆z, which are the coordinates of the vector −−→pp1 =
[
∆x ∆y ∆z

]T . In this way, the
angles α and β can be calculated as α = atan(∆y

∆z) and β = atan(∆x√
∆z2+∆y2

), respectively. A visual
representation of the angles is shown in Figure 4.6.

Figure 4.6 Angles defined to represent the orientation of the power-line (α and β).

As for the EKF used in the previous section, the functions for the prediction (g(x,u)) and the
update (h(x)), and the matrices G, H, R, and Q must be defined to use the filter. The prediction is
made assuming a constant velocity model for the position and a static model for the orientation as
shown in Equation 4.3. Once this function is defined, the jacobian G can be calculated as shown in
Equation 4.4.

22 Chapter 4. Implementation of the perception system

g(xt ,ut) =

xt
yt
vxt
vyt
αt
βt

=

xt−1 + vxt−1T
yt−1 + vyt−1T

vxt−1
vyt−1
αt−1
βt−1

 (4.3)

G =
∂g(x)

∂x
=

1 0 T 0 0 0
0 1 0 T 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.4)

where T is the elapsed time between the iterations of the filter.

The measurement vector must be defined before the definition of the function h(x) and the matrix
H. It is composed of the ranges and angles of the detected points with each LiDAR. Additionally,
the range and angle of the previous measurement are also included to introduce temporal infor-
mation and allow estimation of the velocity. In this way, the measurement vector is defined as
z =

[
ρ0 θ0 ρb0 θb0 ρ1 θ1 ρb1 θb1

]T , where ρ and θ represent ranges and angles, respec-
tively. The variables with the subscripts 0 and 1 are related to LiDAR 0 and 1, respectively. And
lastly, the subscript b indicates that the measurement is related to the detected intersection before
the current one.

The aforementioned points p, p0, and p1 are defined as shown from Equation 4.5 to Equation 4.7
and are associated with the variables in the measurement vector as shown from Equation 4.8 to
Equation 4.11. Additionally, they can be obtained from the state vector as detailed below, which
allows calculation of the measurement model h(x).

p =
[
x y z

]T (4.5)

p0 =
[
x0 y0 z0

]T (4.6)

p1 =
[
x1 y1 z1

]T (4.7)
x0 = ρ0cos(θ0) (4.8)
y0 = ρ1sin(θ1) (4.9)
x1 = ρ0cos(θ0) (4.10)
y1 = ρ1sin(θ1) (4.11)

To obtain the function h(x) from the state vector, as shown from Equation 4.12 to Equation 4.15,
the values of the variables ∆x and ∆y are calculated from the angles α and β , and the variable ∆z,
which is equal to half the distance between the LiDARs. Then, as shown in Equation 4.16 and
Equation 4.17, the points p0 and p1 can be easily calculated from the point p. Lastly, with the
conversion from Cartesian to polar coordinates shown in Equation 4.18 to Equation 4.21 and the
assumption that the Equation 4.22 and Equation 4.23 are satisfied, the function h(x) is calculated as
shown in Equation 4.24.

4.3 Power-line filter module 23

tan(α) =
∆y
∆z

(4.12)

∆y = tan(α)∆z (4.13)

tan(β) =
∆x√

∆z2 +∆y2
(4.14)

∆x = tan(β)
√

∆z2 +∆y2 (4.15)

p+−−→pp1 =

x
y
z

+
∆x

∆y
∆z

= p1 (4.16)

p−−−→pp1 = p0 (4.17)

ρ0 =
√

x2
0 + y2

0 (4.18)

θ0 = atan2(y0,x0) (4.19)

ρ1 =
√

x2
1 + y2

1 (4.20)

θ1 = atan2(y1,x1) (4.21)
xt−1 = xt − vx

t T (4.22)
yt−1 = yt − vy

t T (4.23)

h(xt) =

√
(xt −∆xt)

2 +(yt −∆yt)
2

atan2(yt −∆yt ,xt −∆xt)√
(xt −T vx

t −∆xt)
2 +(yt −T vy

t −∆yt)
2

atan2(yt −T vy
t −∆yt ,xt −T vx

t −∆xt)√
(xt +∆xt)

2 +(yt +∆yt)
2

atan2(yt +∆yt ,xt +∆xt)√
(xt −T vx

t +∆xt)
2 +(yt −T vy

t +∆yt)
2

atan2(yt −T vy
t +∆yt ,xt −T vx

t +∆xt)

(4.24)

Once the function h(x) is obtained, the jacobian H can be calculated by deriving the function
with respect to the variables in the state vector x. However, these derivatives are very complex to be
calculated by hand. That is why they have been calculated with the software wxMaxima. Due to the
long length of the resulting equations, the expressions to obtain the different elements of the matrix
are attached in the Appendix A.

Lastly, the matrices R and Q related to the covariance of the noise of the prediction model and
the measurements must also be defined. In the same way as for the EKF implemented for the
Intersection Detection module, the covariances of the noises related to the prediction model are
manually selected to achieve a good performance of the filter. The resulting R matrix is shown in the
Equation 4.25, in which the σp, σv, and σa are the variances of the noise related to the position, the
velocity, and the angles, respectively. In contrast, similarly as for the EKF in the previous section,
the Q matrix can be calculated with the specifications of the sensors which usually provide the
variances of the noises related to measurements of range (ρ) and angles (θ). The resulting Q matrix
is shown in Equation 4.26.

24 Chapter 4. Implementation of the perception system

R =

σ2
p 0 0 0 0 0

0 σ2
p 0 0 0 0

0 0 σ2
v 0 0 0

0 0 0 σ2
v 0 0

0 0 0 0 σ2
a 0

0 0 0 0 0 σ2
a

 (4.25)

Q =

σ2
ρ 0 0 0 0 0 0 0

0 σ2
θ

0 0 0 0 0 0
0 0 σ2

ρ 0 0 0 0 0
0 0 0 σ2

θ
0 0 0 0

0 0 0 0 σ2
ρ 0 0 0

0 0 0 0 0 σ2
θ

0 0
0 0 0 0 0 0 σ2

ρ 0
0 0 0 0 0 0 0 σ2

θ

(4.26)

4.4 Power-line detection module

The module presented in this section is the core of the perception system. It is responsible for
receiving the LiDAR scans, making use of the other modules to obtain an accurate estimation of the
power-line pose, and feedbacking the control system with it. The communications of this module
with the control system and with the LiDARs are based on ROS topics. Thus, it is subscribed to the
topics in which each LiDAR driver publishes the scans and publishes the resulting estimation in a
topic to which the control system would be subscribed.

First, the module creates a class object of the Power-line Filter module and two of the Intersection
Detection module, one to process the scans of each LiDAR. The scans are processed with separated
class objects to filter the detections related to each LiDAR separately during the matching stage.
Once the functionalities of the other modules are available, the module starts the execution of the
state machine shown in Figure 4.7.

The first two states of the module are a wait until both LiDAR drivers are initialized and provide
measurements. The following is the No Points Detected state, which will leave once the Intersection
Detection class object for processing the scans of the LiDAR 0 returns true to a call to its isIni-
tialized() member function. As mentioned, this function returns whether or not the module has
detected all the intersections of the lines, and, therefore, there is an available set of points to match.
Then it would enter the Points 0 Initialized and wait until the Intersection Detection class object
for the LiDAR 1 has also detected all the intersections. Then, the module would go to the Points 1
Initialized state and the matching operation would start. After performing the matching, the filter of
the Power-line Filter module is initialized with a call to its initialization(p0, p1) member function
with the matched points as arguments. At this moment, the pose estimation of the closest line would
start, which requires switching between the states Wait Detection 0 and Wait Detection 1. The
module leaves the first one after receiving a scan from the LiDAR 0 and obtaining a set of possible
intersections with the Intersection Detection module. Then it would pass to the Wait Detection 1
until a scan from the LiDAR 1 is received. Once obtained the set of possible intersection points in
the scans of both LiDARs, the module would take the closest ones to the intersection of the estimated
line with the detection planes and would perform the prediction and update of the filter with a
call to the pertinent member functions of the Power-line Filter module. After that, it would return
to the Wait Detection 0 and would continue switching between them if and when the estimation

4.4 Power-line detection module 25

Figure 4.7 State machine executed by the Power-line Detection module.

is consistent with the measurements and the module does not enter the No Points Detected state again.

As noted earlier, before starting the estimation of the power-line pose, the points associated with
the same power-lines must be identified to initialize the Power-line Filter module. This matching
operation is performed during the Points 1 Initialized state, in which the stopFilter() function of
the Intersection Detection module would not have been called yet, and consequently, the returned
sets of points are filtered to provide a more accurate estimation of their position. To match them,
the module first takes the closest intersection detected with the LiDAR 0 (point 0) and associates it
with one of the intersections detected with the LiDAR 1. Then, it calculates the intersections with
the detection plane of the LiDAR 1 of the lines that start at each point detected with the LiDAR 0
and that have the same direction of the line that joins the point 0 and the associated point. After
that, the sum of the distances from each calculated intersection to the closest detected intersection
in the LiDAR 1 is calculated. As shown in Figure 4.8 left, when the point 0 is associated with
the intersection of its line, the sum of these distances would ideally be 0. However, as shown in
Figure 4.8 right, when the association is performed with the intersection of other power-line, the
sum of distances would be a higher value in the order of the distance between the lines. Therefore,
the module calculates the sum of distances for each point detected with the LiDAR 1 and uses them
as a quality metric for the points to be matched. The module matches the point 0 with that point
detected with the LiDAR 1 which minimizes this sum of distances.

Once the points are matched, the module calls the method stopFilter() for each class object of
the Intersection Detection module, initializes the filter of the Power-line Filter module with the
matched points, and goes to the Wait Detection 0 state to start the estimation of the power-line pose.
After receiving scans from both LiDARs, the module has to provide the filter with a measurement

26 Chapter 4. Implementation of the perception system

Figure 4.8 Visual representation of the matching operation. A correct matching is shown at the left
example whereas an erroneous matching is shown at the right.

to update it. This measurement must consist of 2 detected intersections, one with each LiDAR.
However, as there are usually several power-lines, the number of intersections detected with each
LiDAR will rarely be 1, and, consequently, the module takes the intersections that are closer to the
intersections of the estimated line with the detection planes of the LiDARs, which are provided
by the Power-line Filter module. The module uses a distance threshold in the distance between
these points to detect inconsistent measurements. When the distance is greater than the threshold,
the detection is not taken into account, and the update is performed with the previous detection
assuming a static model. If a certain number of inconsistent detections is received in a row, the
module gets back to the No Points Detected, resetting the class objects of the Intersection Detection
module to detect all the intersections again. In contrast, if the line is properly estimated, the module
predicts and updates the filter with the pertinent functions of the Power-line Filter class object. This
last operations are repeated over the time, switching between the states Wait Detection 0 and Wait
Detection 1 to ensure that the filter is updated with a detection of each LiDAR and publishing the
estimated line every time the filter is updated.

4.5 Conclusion

This chapter has described the implementation of the perception system, addressing the functioning
of each module independently. Each of them has been carefully designed to achieve the required
performance in terms of robustness, accuracy, and efficiency. These properties are essential for
software executed on board aerial robots because of the danger they imply and their limited payload,
which restricts the power of the onboard computers.

As proved in Chapter 6, the resulting software allows its real-time execution on board an aerial
platform and is accurate enough to properly feedback the control system described in the following
chapter.

5 Control system

5.1 Introduction

Performing the perching maneuver on a power-line requires both being able to detect and esti-
mate its pose and moving the platform to achieve certain relative poses with the line to allow the
actuation of the perching mechanism. The previous chapter has presented a perception system
that is able to obtain an estimation of this relative pose. The following describes how the robot
uses these measurements to set its velocity and reach the required positions to perform the maneu-
ver. In the same way as the perception system, all the software has been developed in C++ using ROS.

The structure of this chapter is as follows. First, a brief explanation is given of how quadrotors
can perform autonomous flies. Then, the tool used to simplify the implementation of the control
system is presented. Finally, the algorithm developed to process the estimations of the power-line
pose and close the loop is described.

5.2 Autopilot

The control of a quadrotor to navigate autonomously is usually based on a cascade controller with
two loops, one related to its position and the other to the velocity of the motors [32]. To feedback
the control with the position and orientation of the platform, they must first be estimated by means
of the measurements from the onboard sensors, which are usually an Inertial Measurement Unit
(IMU) and a Global Positioning System (GPS). Over the last few years, a multitude of commercial
devices have emerged to perform this control [33]. They are known as Autopilots and include all the
hardware and software required to estimate the pose of the UAV, calculate the proper control signals,
and provide the Pulse Width Modulation (PWM) references to the motors. These off-the-shelf
devices lead to results that are hard to beat. Moreover, they include all the safety features required
due to the danger associated with aerial platforms. Hence, the control of most current UAVs is
based on these devices.

The low-level control of the platform to perform the perching maneuver is assumed to rely on an
Autopilot. Therefore, it is assumed that the UAV has a reliable localization system, that it is properly
controlled by the Autopilot, and that it can receive and handle velocity commands.

27

28 Chapter 5. Control system

5.3 UAL

The UAV Abstraction Layer (UAL) [34] is a software that allows the easy development of high-level
algorithms for aerial platforms regardless of the model or the version of the Autopilot. It is able to
connect with the Autopilot and provide common functionalities related to aerial platforms which
can be accessed by calls to the public member functions of an object of the UAL C++ class. For
instance, it allows taking-off and landing the platform, going to waypoints, or controlling its linear
velocity and yaw rate, among others. Additionally, the UAL also allows the easy simulation of
quadrotors, which will be an interesting tool to test the system before its test with a real platform.

The algorithm developed to control the UAV receives the estimation about the pose of the power-
line and calculates the required velocities to achieve certain poses. Since these velocities can be
easily commanded to the platform via the UAL, the velocity control of the UAV is assumed to be
solved and what follows will focus on how to calculate its references.

5.4 Velocity control

In most cases perching on a power-line consists in reaching a certain relative pose with respect to the
line to allow the actuation of a mechanism which grabs the line. Consequently, it is this mechanism
that establishes the final relative pose. Both the final pose and the configuration of the LiDARs in
the platform can be any, as long as the detection planes cut the power-line during the maneuver.
Nevertheless, despite not being required, a set of hypotheses about them are used to simplify the
description of the control approach in this work.

First, the following will focus on the control of an UAV to perform perching with a mechanism
similar to that in [1]. Since multicopters always fly horizontally, the mechanism requires that the
power-lines are also horizontal or almost horizontal. The UAV must start the maneuver under
the power-line, align the mechanism with the direction of the power-lines while maintainign its
center under one of them, and then go up until the power-line enters the grasper. Regarding the
configuration of the LiDARs, it is assumed that their z axes are aligned with the orientation of the
mechanism and that their x axes are vertical and point upwards. As mentioned, these assumptions
are not really necessary, and the control approach might be extended to many other applications
with minor changes. However, they are really useful to simplify the description of the developed
algorithm.

For the sake of simplicity, all the variables are referred to the LiDAR 0, the same coordinate frame
to which the output of the perception algorithm is referred. The variables that must be controlled
are shown in Figure 5.1. First, since the z axis of the LiDAR is aligned with the orientation of the
mechanism and the y axis is horizontal, the orientation of the projection of the detected line in the
yz plane (α) must be similar to that of the z axis. Then, the y coordinate of the power-line (∆y) must
be controlled to align the aperture of the mechanism with the power-line. Lastly, the relative height
of the power-line (∆x) must also be controlled to enter the power-line in the mechanism.

The UAV is assumed to be already close to the power-line and approximately aligned with it
before starting the maneuver, a position that might be reached by following a georeferenced path or
by the manual control of the platform. Once the robot is there, and the perception system starts the
pose estimation of the power-line, a velocity control of the robot would start to reach the desired
positions. The α angle can be controlled by changing the yaw rate of the platform, which would
have a direct effect on the variable if the prior assumptions are met. Similarly, ∆x can be controlled

5.4 Velocity control 29

Figure 5.1 Variables related to the velocity control.

by setting the velocity of the UAV on the x axis of the LiDAR. In contrast, a movement along the y
axis of the LiDAR is only fully reflected in ∆y if the z axis is completely aligned with the power-line
(α = 0). But taking into account that the control on the α angle would force this condition, the
velocity component in the direction of the power-line can be neglected.

Therefore, the variables to be controlled are α , ∆y, and ∆x, which are visually represented in
Figure 5.1. These variables are controlled by setting the yaw rate and the linear velocity on the y
and x axes of the LiDAR 0, respectively. Each variable is controlled with a different control signal,
and it has been assumed that they are independent so that acting on a single control signal only
causes effect in its associated control variable.

To track references and reject perturbations, simple proportional controllers have been used. In
addition, all the applied control signals are saturated to improve the stability of the systems. The
saturations ensure that the commanded velocities are low, which avoids the failure of the controller
and the safety of the operation. As a consequence, the systems will evolve slowly, and a derivative
part in the controller is not necessary. Furthermore, as the systems to be controlled are of type
0, applying a constant control signal produces a constant change of the output. Thus, an integral
controller is also not required to achieve small steady-state errors.

Lastly, the references for the final pose can not be given to the controllers directly because it
would probably result in aggressive movements that might worsen the estimation of the power-line
pose and of the control. Thus, the state machine shown in Figure 5.2 is used to change the target
pose sequentially. Initially, the UAV would maintain its ∆x distance while setting the α angle and the
∆y distance to 0 to align the mechanism with the power-line. The change of state is produced when
the error with the reference of all the variables is lower than a threshold during a certain elapsed
time. Once the perching mechanism is aligned with the line, the UAV would set the reference on
the x axis so that the power-line enters the mechanism. Lastly, once all variables are within the
threshold during the defined elapsed time, the mechanism would act.

30 Chapter 5. Control system

Figure 5.2 State machine that establishes the reference of the controllers. ex, ey, and eα are the
errors with the reference of the variables ∆x, ∆y, and α , respectively. thx, thy, and thα are
their thresholds to assume that a variable has successfully reached its reference. Lastly, t
is the elapsed time since the value of all the errors is below the thresholds, and tht the
threshold on this time to switch to the following state..

5.5 Conclusion

This chapter has addressed how the estimation of the power-line pose obtained with the prior
perception system can be used to allow the actuation of a perching mechanism onboard an aerial
robot. Moreover, it could be used to perform the inverse operation and takeoff the platform from the
power-line by just executing the state machine in Figure 5.2 inversely.

The following chapter will address the experimental results that validate the correct functioning
of both the perception system and the control system. Although their design required the assumption
of multiple hypotheses, it will be proved that they are well-founded and that the system is still able
to perform the autonomous perching maneuver safely and robustly.

6 Experimental results

6.1 Introduction

This chapter addresses a quantitative evaluation of the perception and control systems developed in
this work. The evaluation consisted of different experiments designed to test the different parts of the
systems in isolation and flight experiments with a real quadrotor in which both the control and the
perception system collaborated to achieve given relative poses with a power-line. The experiments
provide measurements of the errors committed by the perception system to estimate the pose of the
power-line and by the control system to achieve a given reference. These errors indicate how valid
the systems are and whether or not they can be used to perform perching with a multirotor.

The organization of this chapter is as follows. First, the perception system is tested with the pose
estimation of a moving power-line from a static pose. Then, the correct functioning of the control
system is tested with a simulation. Finally, the results of the flight experiments are described.

6.2 Perception system performance

The correct functioning of the perception system is essential to properly feedback the control system
and execute the desired maneuver. Therefore, the performance of the perception system was first
evaluated in isolation. First, the robustness of the LiDARs under hard illumination conditions was
checked by comparing scans with metallic objects obtained indoors, indoors in dark conditions,
and outdoors with direct sunlight on the LiDAR. Since no differences in the performance were
noted, the sensor is assumed to be suitable for the proposed application. Then, the accuracy of the
estimations was measured. The LiDARs were placed in a fixed pose and the metallic stick shown in
Figure 6.1 of 1 cm diameter was moved in front of them. Although the system is designed to detect
the pose of static power-lines from a moving aerial robot, the line was moved instead to facilitate
the execution of more abrupt relative movements that could compromise the performance of the
system. The estimations of the perception systems were compared with a ground truth generated
with a motion capture system, which is a set of infrared cameras that detect the position of small
markers attached to rigid bodies to then calculate a remarkably accurate estimation of their pose.
Specifically, a set of 24 OptiTrack Primex 13 cameras was used to obtain millimeter accuracy robot
pose estimations. The ground truth was obtained by recording the pose of the LiDARs and of the
line to be detected. After that, the data were processed to calculate the position and orientation
theoretically estimated by the perception system at all times.

The stick was moved toward and away from the sensors while making random oscillations and
changes of orientation. In this way, the relative movement was similar to performing consecutive

31

32 Chapter 6. Experimental results

Figure 6.1 Stick with markers for the motion capture system to simulate the relative movement
between the LiDARs and a power-line.

perching maneuvers with severe perturbations that might occur during the execution of the maneuver.
The results obtained in one of the experiments are shown in Figure 6.2. All variables are correctly
estimated with a small delay related to filtering. However, this delay is only notable when the
movements are fast, which will not occur during the execution of the maneuver. From second 35 to
40 the error increases momentarily due to an abrupt movement in the x axis when the distance from
the LiDAR to the stick is relatively large (note the y axis coordinate). The error is probably higher
because the functioning of the LiDARs is not ideal when the power-line is close to the maximum
detection distance. Thus, the line might not appear in certain scans, resulting in a worse performance
of the detection system. Nevertheless, the error is not very significant and is quickly reduced once
the movement stops. Moreover, the grab of the power-line is supposed to be performed at close
distances, and, therefore, a momentary increase of the error when the UAV is far from the power-line
would not produce a failure in the execution of the maneuver.

Figure 6.2 Line pose estimated by the perception system and ground truth obtained with a motion
capture system.

6.3 Simulated experiments 33

The absolute error of each estimated variable with the ground truth during the experiment is
represented in Figure 6.3. The mean and standard deviation of the absolute error for each variable
are shown in Table 6.1. Neither the mean nor the standard deviation of the absolute error related
to the variable x are greater than twice the width of the simulated power-line (1 cm). The mean
and standard deviation of the error related to the variable y are slightly higher than those of the
x error. However, this error is only considerably higher from second 18 to 22, and from second
35 to 40, when power-line is far from the power-lines (see y graph in Figure 6.2). As mentioned,
being far from the power-line might result in a worse performance of the perception system but
is not a problem since the critical part of the maneuver is performed at a close distance from the
power-line. Nevertheless, they are always smaller than 10 cm. Regarding orientation, the mean and
standard deviation of the absolute error of both variables are less than 3 degrees. The errors also
reach higher values when the power-line moves away, which is neither a problem since the errors
are moderately low (10°approximately) and the entrance of the line in the mechanism is performed
when the distance is short.

The experiments prove the ability of the perception system to estimate the pose of a power-line
with considerably low errors. Together with the errors of the control system to track references,
the errors of the perception system are important to determine the characteristics of the perching
mechanisms that can be used with the proposed approach. Although the observed performance
would probably allow the use of a large number of perching mechanisms, the perception system has
been evaluated under challenging conditions that were not taken into account during its development.
The experiments involved quick random movements that would not occur during the use of the
system and that severely compromise the performance of the filter, which assume constant linear
velocities and a static orientation. Thus, these results should not be used to draw conclusions
about the suitability of the approach for a given application, but about its robustness and proper
functioning. In Section 6.4, the accuracy of the perception system is again evaluated with the
concurrent performance of the control system, providing a fairer measure of the accuracy the system
can achieve.

Table 6.1 Mean Absolute Error (MAE) and STandard Deviation of the Absolute Error (STDAE) of
the perception system to detect a moving line from a static pose.

Variable MAE STDAE Unit
x 1.36 1.22 cm
y 2.47 1.98 cm
α 1.43 1.34 °
β 2.36 2.31 °

6.3 Simulated experiments

The control system has been initially tested in a simulation, to ensure its proper functioning before
its use on board the real platform and to obtain an initial estimation of the control parameters. To use
the robot models provided by the UAL (which is described in Chapter 5), the framework selected
for the simulation is Gazebo. As shown in Figure 6.4 the robot was provided with 2 simulated
LiDARs whose properties are similar to those of RPLIDAR A3, which is the sensor used in the
flight experiment described in the next section. Besides, a set of 4 power-lines was placed in the
world model to approximate one of them autonomously.

Due to the availability of a set of power-lines, the matching algorithm have been tested with the
simulation. First, the UAV received waypoints above the power-lines with different yaw references.

34 Chapter 6. Experimental results

Figure 6.3 Absolute errors of the perception system to detect a moving line from a static pose.

Figure 6.4 Simulation setup in Gazebo. The robot has 2 LiDARs (white cylinders) and the world
includes 4 power-lines that the robot must detect to then simulate the perching maneuver
on one of them.

Once the robot reached the desired pose, the perception system was initialized and the success of the
matching algorithm was visually checked by the representation of the detected points and the vector
that joins the matched points. The algorithm was tested with a large number of different initial yaw
references and no failures were detected. Figure 6.5 shows 2 examples of the matching operation,
the first was performed when the robot had a relative yaw of 45°with the power-line and the second
when it was aligned with the lines. The first is probably the most failure-prone case, since there are
points related to different lines that are detected with different LiDARs and are closer to each other

6.3 Simulated experiments 35

than to the points of the same power-line. The second is the most likely since the UAV will usually
start almost aligned with the power-line. As shown, in both cases the matching algorithm is able to
identify the power-line correctly.

(a) 45°with the lines. (b) 0°with the lines.

Figure 6.5 Examples of performance of the matching algorithm. The red dots are the points detected
with the LiDARs. The shortest grey arrow joins the points matched by the perception
system.

Once the functioning of the matching algorithm was tested, the control system was used to align
the robot with the closest power-line and then reach a pose at 20 cm from the power-line. Figure 6.6
shows the estimations of the perception system during the execution of one of the maneuvers
performed together with the ground truth, which is known because it is a simulation. It should be
noted that the perception system obtains estimations even more accurate than those shown in the
previous section, which is due to the smoother movements compared to the movements in the prior
experiments and to the ideal functioning of the simulated LiDARs. In this way, the control system
can be properly tested, ensuring that it receives a reliable estimation of the power-line pose.

In order to align the robot with one of the lines and then control its relative height, the control
system acts on the horizontal distance from the UAV to the power-line (H), the vertical distance
(V), and the relative yaw. The mock power-line with which the flight experiments are performed
has a support that prevents the perching from below. Thus, although Chapter 5 described a control
system to perch on power-lines above the robot, the maneuver is performed on lines below the robot.
In this way, the software tested in simulation is the same as that executed on board the real aerial
platform. It should be noted that this change does not compromise the test of the control system as
the only differences are the initial height and the final reference.

The evolution of the control variables together with the references of the control system during
the performance of the maneuver are shown in Figure 6.7. The mean and standard deviation of the
steady-state errors are shown in Table 6.2. Since the control performed as expected in simulation,
without high steady-state errors or over-oscillations, the experiments were repeated with a real
quadrotor. The following section describes the obtained results and provides a further analysis of

36 Chapter 6. Experimental results

Figure 6.6 Line pose estimated by the perception system and ground truth during a simulated
perching maneuver.

the errors of the system while controlling its relative position with a power-line.

Figure 6.7 Control variables measured with the perception system and references during a simulated
experiment.

Table 6.2 Mean Absolute Error (MAE) and STandard Deviation of the Absolute Error (STDAE) of
the control system during the steady-state in a simulated experiment.

Variable MAE STDAE Unit
H 1.04 0.88 cm
V 1.13 0.61 cm

Yaw 0.09 0.09 °

6.4 Flight experiments 37

6.4 Flight experiments

After the successful tests of the perception and control systems, the software was executed on board
a real quadrotor. The platform used for the experiments is shown in Figure 6.8. Its onboard computer
is an Intel NUC i7 that receives scans from two LiDARs RPLIDAR A3. The experiments were
performed inside the motion capture system, which was used as a ground truth of the relative pose
of the UAV with respect to the power-line. Since they were not available, the GPS measurements
required by the Autopilot to fly autonomously were replaced by those of the motion capture system.
Figure 6.9 shows the mock powe-line used for the experiments, which is a real power-line cable
with a diameter of 1 cm. As previously mentioned, the mock power-line prevents perching from
below. Thus, the robot controls its pose with a line below it, which does not compromise the testing
of the control system as the only differences are the initial height and the final reference.

Figure 6.8 Aerial platform used for the flight experiments.

The UAV performs a maneuver similar to that of the simulated platform. First, a pilot manually
places the UAV above the lines approximately aligned with them. Secondly, the automatic control
starts and the robot aligns itself with the power-line to then approach it at a distance of 35 cm.
Finally, the UAV tries to maintain this position to measure the errors of the entire system to reach the
desired pose, which will indicate how valid the system is and whether or not a perching mechanism
can be used. Figure 6.10 shows a time lapse of the flight with the final pose of the UAV above the
power-line completely aligned with it.

Figure 6.11 shows a comparison between the estimations of the perception system and the ground
truth obtained with the motion capture system during one of the experiments. The absolute errors
between the estimations and the ground truth are represented in Figure 6.12. The mean and standard
deviation of the absolute errors of each variable are shown in Table 6.3. Since the relative movement
between the LiDARs and the power-line is now the expected one, the errors are much lower than
those presented in section 6.2, being in the order of 1 cm for the position and 1°for the orientation.
To draw conclusions about the suitability of the system, the performance of the control system should

38 Chapter 6. Experimental results

Figure 6.9 Mock power-line used for the flight experiments.

Figure 6.10 Time lapse of the performed flight.

6.4 Flight experiments 39

also be taken into account. The control variables have been represented together with the references
in Figure 6.13. The mean and standard deviation of the absolute steady-state errors are shown in
Table 6.4. As in simulation, the control system performs properly, without high steady-state errors
or over-oscillations.

Figure 6.11 Line pose estimated by the perception system and ground truth obtained with the motion
capture system during a flight experiment.

Table 6.3 Mean Absolute Error (MAE) and STandard Deviation of the Absolute Error (STDAE) of
the perception system to estimate the pose of a power-line during a real flight.

Variable MAE STDAE Unit
x 0.22 0.19 cm
y 0.34 0.31 cm
α 0.31 0.27 °
β 0.37 0.26 °

Table 6.4 Mean Absolute Error (MAE) and STandard Deviation of the Absolute Error (STDAE) of
the control system during the steady-state in a flight experiment.

Variable MAE STDAE Unit
H 0.67 0.57 cm
V 0.38 0.30 cm

Yaw 0.22 0.17 °

40 Chapter 6. Experimental results

Figure 6.12 Absolute errors of the perception system during a flight experiment.

Figure 6.13 Control variables measured with the perception system and references during a flight
experiment.

6.5 Conclusion 41

6.5 Conclusion

The experiments described in this chapter prove the correct functioning of the perception and control
systems and provide a quantitative evaluation of their capabilities. The perception system was first
evaluated with a challenging test that proved its robustness and its ability to track and estimate the
pose of a power-line performing random movements. Despite being considerably low, the errors
measured in this experiments are not representative of the capabilities of the perception system,
which was designed to estimate the pose of the power-line during the performance of a slow perching
maneuver. The control system performed properly in simulation as well as the matching algorithm,
which was tested in simulation due to the available set of power-lines and the fact that there is
no difference between the test with measurements from simulated or real LiDARs. Finally, both
systems were tested together in flight experiments with a real aerial platform. During the experiment,
all the software was executed on board, and the robot was able to properly align itself with the
power-line and approximate it at the desired distance.

All the experiments had successful results with remarkably low errors of the perception system
while estimating the pose of a power-line, and of the control system while tracking references. In the
case of the flight experiment, which is the most representative, the absolute errors of the estimations
of the perception system had a mean and a standard deviation lower than 1 cm for the position and
1°for the orientation. Similarly, the mean and standard deviation of the absolute steady-state errors
of the control system were lower than 1 cm for the position and 1°for the orientation.

7 Conclusion

7.1 Conclusion

This work has addressed the development of a method to enable multirotors to autonomously perch
on power-lines. Since aerial platforms are dangerous and have limited computational power, the
method has been designed to ensure its robustness, efficiency, and accuracy. Two systems have
been developed, one in charge of the perception and the other for the control of the platform. The
perception system is in turn composed of 3 modules: the Intersection Detection, Power-line Detec-
tion, and Power-line Filter modules. This modular architecture has facilitated the development and
might allow the extension to other applications, for instance, to perch on pipes if the Intersection
Detection module is modified to detect pipe intersections instead of power-line intersections.

The suitability of the developed method has been validated in simulation and using a real quadro-
tor, providing a quantitative evaluation of its capabilities. The goal of the method is to perform
perching on a power-line, which involves the entrance of the line in a certain mechanism to grab
it. Most perching mechanisms have an aperture of a certain width and an interval of angles within
which the power-line can enter the mechanism. To use the autonomous perching method presented
in this work, the width and interval of allowed angles for the entrance must be compatible with
the errors of the control and perception systems, which, as shown, are in the order of 1 cm for the
position and 1°for the orientation (see Chapter 6).

Taking into account that an error of 1°in the orientation is remarkably low and that the position
error is in the order of the width of the power-line, it has been assumed that the presented method is
compatible with a large number of perching mechanisms and that the goal of the work has been
achieved.

7.2 Future work

The achieved errors in the robot relative pose with respect to the power-line are considered low
enough to allow the use of the method in a large number of applications. Nevertheless, there is still
some future work that might improve its capabilities.

First, the perception system can only track single lines. However, there are usually several lines
between electrical towers whose cross-section describes a specific pattern. The accuracy and ro-
bustness of the system might be improved by the simultaneous estimation of all the lines and the
comparison of the estimations with the pattern.

43

44 Chapter 7. Conclusion

Second, this work has been completely focused on the perching maneuver. However, achieving
relative poses with power-lines might be required by other applications, as the physical interaction
with the power-line. Despite the good performance of the control system during the validation
experiments, it is based on simple proportional controllers and might not be suitable in the presence
of hard perturbations, such as the aforementioned physical interaction or the wind. Therefore, the
use of more complex controllers is an interesting topic to research.

Lastly, the low-level control of the platform relies on the GPS control of the Autopilot. Although
power-lines are usually located in clear outdoor spaces and GPS is almost always available, this
requirement is still a limitation of the method. The estimation of the pose of the power-line might
be used to localize the robot and avoid the use of GPS. Nevertheless, the perception system is not
able to estimate the pose of the robot along the direction of the power-line. There are multiple
options to estimate the missing DOF. For example, the odometry estimated by the Autopilot or the
addition of a sensor. Since multirotors fly horizontal and require tilting to move, the orientation of
the power-line might also be used to avoid movements in the direction of the line. However, more
research is required to confirm the suitability of these approaches.

Appendix A

Elements of the H matrix

In this appendix the elements of the H matrix for the EKF in the Power-line Filter module are listed.

∂ρ0

∂x
=

x−
√

∆z2 tan(α)2 +∆z2 tan(β)√(
x−
√

∆z2 tan(α)2 +∆z2 tan(β)
)2

+(y−∆z tan(α))2

(A.1)

∂ρ0

∂y
=

y−∆z tan(α)√(
x−
√

∆z2 tan(α)2 +∆z2 tan(β)
)2

+(y−∆z tan(α))2

(A.2)

∂ρ0

∂vx = 0 (A.3)

∂ρ0

∂vy = 0 (A.4)

∂ρ0

∂α
=
−

2∆z2 sec(α)2 tan(α) tan(β)
(

x−
√

∆z2 tan(α)2+∆z2 tan(β)
)

√
∆z2 tan(α)2+∆z2

−2∆zsec(α)2 (y−∆z tan(α))

2

√(
x−
√

∆z2 tan(α)2 +∆z2 tan(β)
)2

+(y−∆z tan(α))2

(A.5)

∂ρ0

∂β
=−

√
∆z2 tan(α)2 +∆z2 sec(β)2

(
x−
√

∆z2 tan(α)2 +∆z2 tan(β)
)

√(
x−
√

∆z2 tan(α)2 +∆z2 tan(β)
)2

+(y−∆z tan(α))2

(A.6)

45

46 Appendix A. Elements of the H matrix

∂ρb0

∂x
=

−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx√(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(−∆z tan(α)+ y−T vy)2

(A.7)

∂ρb0

∂y
=

−∆z tan(α)+ y−T vy√(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(−∆z tan(α)+ y−T vy)2

(A.8)

∂ρb0

∂vx =−
T
(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx
)

√(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(−∆z tan(α)+ y−T vy)2

(A.9)

∂ρb0

∂vy =− T (−∆z tan(α)+ y−T vy)√(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(−∆z tan(α)+ y−T vy)2

(A.10)

∂ρb0

∂α
=
−

2∆z2 sec(α)2 tan(α) tan(β)
(
−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)

√
∆z2 tan(α)2+∆z2

−2∆zsec(α)2 (−∆z tan(α)+ y−T vy)

2

√(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(−∆z tan(α)+ y−T vy)2

(A.11)

∂ρb0

∂β
=−

√
∆z2 tan(α)2 +∆z2 sec(β)2

(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx
)

√(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(−∆z tan(α)+ y−T vy)2

(A.12)

∂θ0

∂x
=− y−∆z tan(α)(

x−
√

∆z2 tan(α)2 +∆z2 tan(β)
)2
(

(y−∆z tan(α))2(
x−
√

∆z2 tan(α)2+∆z2 tan(β)
)2 +1

) (A.13)

∂θ0

∂y
=

1(
x−
√

∆z2 tan(α)2 +∆z2 tan(β)
)(

(y−∆z tan(α))2(
x−
√

∆z2 tan(α)2+∆z2 tan(β)
)2 +1

) (A.14)

∂θ0

∂vx = 0 (A.15)

47

∂θ0

∂vy = 0 (A.16)

∂θ0

∂α
=

∆z2 sec(α)2 tan(α)(y−∆z tan(α)) tan(β)√
∆z2 tan(α)2+∆z2

(
x−
√

∆z2 tan(α)2+∆z2 tan(β)
)2 − ∆zsec(α)2

x−
√

∆z2 tan(α)2+∆z2 tan(β)

(y−∆z tan(α))2(
x−
√

∆z2 tan(α)2+∆z2 tan(β)
)2 +1

(A.17)

∂θ0

∂β
=

(y−∆z tan(α))

√
∆z2 tan(α)2 +∆z2 sec(β)2(

x−
√

∆z2 tan(α)2 +∆z2 tan(β)
)2
(

(y−∆z tan(α))2(
x−
√

∆z2 tan(α)2+∆z2 tan(β)
)2 +1

) (A.18)

∂θb0

∂x
=− −∆z tan(α)+ y−T vy(

−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2
(

(−∆z tan(α)+y−T vy)2(
−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 +1

)
(A.19)

∂θb0

∂y
=

1(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)(
(−∆z tan(α)+y−T vy)2(

−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 +1

)
(A.20)

∂θb0

∂vx =
T (−∆z tan(α)+ y−T vy)(

−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2
(

(−∆z tan(α)+y−T vy)2(
−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 +1

)
(A.21)

∂θb0

∂vy =− T(
−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)(
(−∆z tan(α)+y−T vy)2(

−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 +1

)
(A.22)

∂θb0

∂α
=

∆z2 sec(α)2 tan(α)(−∆z tan(α)+y−T vy) tan(β)√
∆z2 tan(α)2+∆z2

(
−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 − ∆zsec(α)2

−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx

(−∆z tan(α)+y−T vy)2(
−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 +1

(A.23)

48 Appendix A. Elements of the H matrix

∂θb0

∂β
=

(−∆z tan(α)+ y−T vy)

√
∆z2 tan(α)2 +∆z2 sec(β)2(

−
√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2
(

(−∆z tan(α)+y−T vy)2(
−
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 +1

)
(A.24)

∂ρ1

∂x
=

√
∆z2 tan(α)2 +∆z2 tan(β)+ x√(√

∆z2 tan(α)2 +∆z2 tan(β)+ x
)2

+(∆z tan(α)+ y)2

(A.25)

∂ρ1

∂y
=

∆z tan(α)+ y√(√
∆z2 tan(α)2 +∆z2 tan(β)+ x

)2

+(∆z tan(α)+ y)2

(A.26)

∂ρ1

∂vx = 0 (A.27)

∂ρ1

∂vy = 0 (A.28)

∂ρ1

∂α
=

2∆z2 sec(α)2 tan(α) tan(β)
(√

∆z2 tan(α)2+∆z2 tan(β)+x
)

√
∆z2 tan(α)2+∆z2

+2∆zsec(α)2 (∆z tan(α)+ y)

2

√(√
∆z2 tan(α)2 +∆z2 tan(β)+ x

)2

+(∆z tan(α)+ y)2

(A.29)

∂ρ1

∂β
=

√
∆z2 tan(α)2 +∆z2 sec(β)2

(√
∆z2 tan(α)2 +∆z2 tan(β)+ x

)
√(√

∆z2 tan(α)2 +∆z2 tan(β)+ x
)2

+(∆z tan(α)+ y)2

(A.30)

(A.31)

∂ρb1

∂x
=

1

2
√(

∆z2 tan(α)2 +∆z2
)

tan(β)2 +(∆z tan(α)+ y−T vy)2 + x−T vx

(A.32)

∂ρb1

∂y
=

∆z tan(α)+ y−T vy√(√
∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(∆z tan(α)+ y−T vy)2

(A.33)

49

∂ρb1

∂vx =−
T
(√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx
)

√(√
∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(∆z tan(α)+ y−T vy)2

(A.34)

∂ρb1

∂vy =− T (∆z tan(α)+ y−T vy)√(√
∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(∆z tan(α)+ y−T vy)2

(A.35)

∂ρb1

∂α
=

2∆z2 sec(α)2 tan(α) tan(β)
(√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)

√
∆z2 tan(α)2+∆z2

+2∆zsec(α)2 (∆z tan(α)+ y−T vy)

2

√(√
∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(∆z tan(α)+ y−T vy)2

(A.36)

∂ρb1

∂β
=

√
∆z2 tan(α)2 +∆z2 sec(β)2

(√
∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)
√(√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2

+(∆z tan(α)+ y−T vy)2

(A.37)

∂θ1

∂x
=− ∆z tan(α)+ y(√

∆z2 tan(α)2 +∆z2 tan(β)+ x
)2
(

(∆z tan(α)+y)2(√
∆z2 tan(α)2+∆z2 tan(β)+x

)2 +1

) (A.38)

∂θ1

∂y
=

1(√
∆z2 tan(α)2 +∆z2 tan(β)+ x

)(
(∆z tan(α)+y)2(√

∆z2 tan(α)2+∆z2 tan(β)+x
)2 +1

) (A.39)

∂θ1

∂vx = 0 (A.40)

∂θ1

∂vy = 0 (A.41)

∂θ1

∂α
=

∆zsec(α)2
√

∆z2 tan(α)2+∆z2 tan(β)+x
− ∆z2 sec(α)2 tan(α)(∆z tan(α)+y) tan(β)√

∆z2 tan(α)2+∆z2
(√

∆z2 tan(α)2+∆z2 tan(β)+x
)2

(∆z tan(α)+y)2(√
∆z2 tan(α)2+∆z2 tan(β)+x

)2 +1
(A.42)

50 Appendix A. Elements of the H matrix

∂θ1

∂β
=−

(∆z tan(α)+ y)
√

∆z2 tan(α)2 +∆z2 sec(β)2(√
∆z2 tan(α)2 +∆z2 tan(β)+ x

)2
(

(∆z tan(α)+y)2(√
∆z2 tan(α)2+∆z2 tan(β)+x

)2 +1

) (A.43)

∂θb1

∂x
=− ∆z tan(α)+ y−T vy(√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2
(

(∆z tan(α)+y−T vy)2(√
∆z2 tan(α)2+∆z2 tan(β)+x−T vx

)2 +1

)
(A.44)

∂θb1

∂y
=

1(√
∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)(
(∆z tan(α)+y−T vy)2(√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 +1

)
(A.45)

∂θb1

∂vx =
T (∆z tan(α)+ y−T vy)(√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2
(

(∆z tan(α)+y−T vy)2(√
∆z2 tan(α)2+∆z2 tan(β)+x−T vx

)2 +1

)
(A.46)

∂θb1

∂vy =− T(√
∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)(
(∆z tan(α)+y−T vy)2(√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2 +1

)
(A.47)

∂θb1

∂α
=

∆zsec(α)2
√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
− ∆z2 sec(α)2 tan(α)(∆z tan(α)+y−T vy) tan(β)√

∆z2 tan(α)2+∆z2
(√

∆z2 tan(α)2+∆z2 tan(β)+x−T vx
)2

(∆z tan(α)+y−T vy)2(√
∆z2 tan(α)2+∆z2 tan(β)+x−T vx

)2 +1
(A.48)

∂θb1

∂β
=−

(∆z tan(α)+ y−T vy)

√
∆z2 tan(α)2 +∆z2 sec(β)2(√

∆z2 tan(α)2 +∆z2 tan(β)+ x−T vx

)2
(

(∆z tan(α)+y−T vy)2(√
∆z2 tan(α)2+∆z2 tan(β)+x−T vx

)2 +1

)
(A.49)

List of Figures

1.1 Configuration of the LiDARs on board the aerial platform 2

2.1 Variables to calculate the maximum detection distance given a certain angular resolution 8

3.1 Diagram of the perception system stages 11
3.2 Diagram of the perception system modules 11

4.1 Example of rejection of a possible cluster 16
4.2 Example of detection of a possible cluster 16
4.3 Visual representation of the position of the coordinate frame of the LiDARs 18
4.4 Representation of the coordinates frames related to the perception problem 20
4.5 Points to define the equations of the filter 21
4.6 Angles defined to represent the orientation of the power-line 21
4.7 State machine executed by the Power-line Detection module 25
4.8 Visual representation of the matching operation 26

5.1 Variables related to the velocity control 29
5.2 State machine that establishes the reference of the controllers 30

6.1 Stick with markers for the motion capture system to simulate the relative movement
between the LiDARs and a power-line 32

6.2 Line pose estimated by the perception system and ground truth obtained with a motion
capture system 32

6.3 Absolute errors of the perception system to detect a moving line from a static pose 34
6.4 Simulation setup in Gazebo 34
6.5 Examples of the performance of the matching algorithm 35
6.6 Line pose estimated by the perception system and ground truth during a simulated perching

maneuver 36
6.7 Control variables measured with the perception system and references during a simulated

experiment 36
6.8 Aerial platform used for the flight experiments 37
6.9 Mock power-line used for the flight experiments 38
6.10 Time lapse of the performed flight 38
6.11 Line pose estimated by the perception system and ground truth obtained with the motion

capture system during a flight experiment 39
6.12 Absolute errors of the perception system during a flight experiment 40
6.13 Control variables measured with the perception system and references during a flight experiment 40

51

List of Tables

2.1 Properties of SLAMTEC LiDARs suggested for power-line detection on board a UAV 8

4.1 Public member functions provided by the Intersection Detection module 14
4.2 Public member functions provided by the Power-line Filter module 19

6.1 MAE and STDAE of the perception system to detect a moving line from a static pose 33
6.2 MAE and STDAE of the control system during the steady-state in a simulated experiment 36
6.3 MAE and STDAE of the perception system to estimate the pose of a power-line during a real flight 39
6.4 MAE and STDAE of the control system during the steady-state in a flight experiment 39

53

Bibliography

[1] Nicolai Iversen, Aljaž Kramberger, Oscar Bowen Schofield, and Emad Ebeid. Novel power
line grasping mechanism with integrated energy harvester for uav applications. In 2021 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 34–39, 2021.

[2] Ryan Kitchen, Nick Bierwolf, Sean Harbertson, Brage Platt, Dean Owen, Klaus Griessmann,
and Mark A. Minor. Design and evaluation of a perching hexacopter drone for energy harvesting
from power lines. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1192–1198, 2020.

[3] Gerd vom Bögel, Linda Cousin, Nicolai Iversen, Emad Samuel Malki Ebeid, and Andreas
Hennig. Drones for inspection of overhead power lines with recharge function. In 2020 23rd
Euromicro Conference on Digital System Design (DSD), pages 497–502, 2020.

[4] Jaka Katrasnik, Franjo Pernus, and Bostjan Likar. A survey of mobile robots for distribution
power line inspection. IEEE Transactions on Power Delivery, 25(1):485–493, 2010.

[5] Yoonseok Jwa, Gunho Sohn, and HB Kim. Automatic 3d powerline reconstruction using
airborne lidar data. Int. Arch. Photogramm. Remote Sens, 38(Part 3):W8, 2009.

[6] Binhai Wang, Lei Han, Hailong Zhang, Qian Wang, and Bingqiang Li. A flying robotic system
for power line corridor inspection. In 2009 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 2468–2473. IEEE, 2009.

[7] Hongmei Li, Binhai Wang, Liang Liu, Gangyin Tian, Tianru Zheng, and Jingjing Zhang. The
design and application of smartcopter: An unmanned helicopter based robot for transmission
line inspection. In 2013 Chinese automation congress, pages 697–702. IEEE, 2013.

[8] Walter de Britto Vidal Filho and André Murilo de Almeida Pinto. Vtol aerial robot for
inspection of transmission line. In Proceedings of the 2014 3rd International Conference on
Applied Robotics for the Power Industry, pages 1–4. IEEE, 2014.

[9] Mingxin Wang. Inspection technology of remote transmission towers based on a vertical
take-off and landing fixed-wing uav. In Journal of Physics: Conference Series, volume 1865,
page 022076. IOP Publishing, 2021.

[10] Rishav Bhola, Nandigam Hari Krishna, KN Ramesh, J Senthilnath, and Gautham Anand.
Detection of the power lines in uav remote sensed images using spectral-spatial methods.
Journal of environmental management, 206:1233–1242, 2018.

55

56 Bibliography

[11] J Paneque, V Valseca, JR Martínez-de Dios, and A Ollero. Autonomous reactive lidar-based
mapping for powerline inspection. In 2022 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 962–971. IEEE, 2022.

[12] Kenta Takaya, Hiroshi Ohta, Valeri Kroumov, Keishi Shibayama, and Masanao Nakamura.
Development of uav system for autonomous power line inspection. In 2019 23rd International
Conference on System Theory, Control and Computing (ICSTCC), pages 762–767. IEEE,
2019.

[13] Jiang Bian, Xiaolong Hui, Xiaoguang Zhao, and Min Tan. A novel monocular-based navigation
approach for uav autonomous transmission-line inspection. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1–7. IEEE, 2018.

[14] Alejandro Suarez, Rafael Salmoral, Pedro J. Zarco-Periñan, and Anibal Ollero. Experimental
evaluation of aerial manipulation robot in contact with 15 kv power line: Shielded and long
reach configurations. IEEE Access, 9:94573–94585, 2021.

[15] Jonathan Cacace, Santos M. Orozco-Soto, Alejandro Suarez, Alvaro Caballero, Matko Orsag,
Stjepan Bogdan, Goran Vasiljevic, Emad Ebeid, Jose Alberto Acosta Rodriguez, and Anibal
Ollero. Safe local aerial manipulation for the installation of devices on power lines: Aerial-core
first year results and designs. Applied Sciences, 11(13), 2021.

[16] Alejandro Suarez, Saeed Rafee Nekoo, and Anibal Ollero. Ultra-lightweight anthropomorphic
dual-arm rolling robot for dexterous manipulation tasks on linear infrastructures: A self-
stabilizing system. Mechatronics, 94:103021, 2023.

[17] Nicolai Iversen, Oscar Bowen Schofield, Linda Cousin, Naeem Ayoub, Gerd Vom Bögel, and
Emad Ebeid. Design, integration and implementation of an intelligent and self-recharging drone
system for autonomous power line inspection. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4168–4175. IEEE, 2021.

[18] Dario Stuhne, Viet Duong Hoang, Goran Vasiljevic, Stjepan Bogdan, Zdenko Kovacic, Anibal
Ollero, and Emad Samuel Malki Ebeid. Design of a wireless drone recharging station and
a special robot end effector for installation on a power line. IEEE Access, 10:88719–88737,
2022.

[19] Julio L. Paneque, Jose Ramiro Martínez-de Dios, Anibal Ollero, Drew Hanover, Sihao Sun,
Angel Romero, and Davide Scaramuzza. Perception-aware perching on powerlines with
multirotors. IEEE Robotics and Automation Letters, 7(2):3077–3084, 2022.

[20] François Mirallès, Philippe Hamelin, Ghislain Lambert, Samuel Lavoie, Nicolas Pouliot,
Matthieu Montfrond, and Serge Montambault. Linedrone technology: Landing an unmanned
aerial vehicle on a power line. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6545–6552. IEEE, 2018.

[21] Joseph Moore and Russ Tedrake. Magnetic localization for perching uavs on powerlines. In
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2700–2707,
2011.

[22] Dean Martinović, Stjepan Bogdan, and Zdenko Kovačić. Mathematical considerations for
unmanned aerial vehicle navigation in the magnetic field of two parallel transmission lines.
Applied Sciences, 11(8):3323, 2021.

Bibliography 57

[23] Goran Vasiljević, Dean Martinović, Matko Orsag, and Stjepan Bogdan. Grabbing power line
conductors based on the measurements of the magnetic field strength. In 2021 Aerial Robotic
Systems Physically Interacting with the Environment (AIRPHARO), pages 1–7, 2021.

[24] Nicolai Iversen, Oscar Bowen Schofield, and Emad Ebeid. Locator-lightweight and low-cost
autonomous drone system for overhead cable detection and soft grasping. In 2020 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 205–212.
IEEE, 2020.

[25] Nicolaj Haarhøj Malle, Frederik Falk Nyboe, and Emad Ebeid. Survey and evaluation of sen-
sors for overhead cable detection using uavs. In 2021 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 361–370. IEEE, 2021.

[26] Nicolaj Haarhøj Malle, Frederik Falk Nyboe, and Emad Samuel Malki Ebeid. Onboard
powerline perception system for uavs using mmwave radar and fpga-accelerated vision. IEEE
Access, 10:113543–113559, 2022.

[27] Yi Kiat Tee and Yi Chiew Han. Lidar-based 2d slam for mobile robot in an indoor environment:
A review. In 2021 International Conference on Green Energy, Computing and Sustainable
Technology (GECOST), pages 1–7. IEEE, 2021.

[28] Matěj Petrlík, Tomáš Báča, Daniel Heřt, Matouš Vrba, Tomáš Krajník, and Martin Saska. A
robust uav system for operations in a constrained environment. IEEE Robotics and Automation
Letters, 5(2):2169–2176, 2020.

[29] Matěj Petrlík, Tomáš Krajník, and Martin Saska. Lidar-based stabilization, navigation and
localization for uavs operating in dark indoor environments. In 2021 International Conference
on Unmanned Aircraft Systems (ICUAS), pages 243–251, 2021.

[30] SLAMTEC. Slamtec, 2023.

[31] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.

[32] Roohul Amin, Li Aijun, and Shahaboddin Shamshirband. A review of quadrotor uav: control
methodologies and performance evaluation. International Journal of Automation and Control,
10(2):87–103, 2016.

[33] VI Kortunov, OV Mazurenko, AV Gorbenko, Watheq Mohammed, and Ali Hussein. Review
and comparative analysis of mini-and micro-uav autopilots. In 2015 IEEE international
conference actual problems of unmanned aerial vehicles developments (APUAVD), pages
284–289. IEEE, 2015.

[34] Fran Real, Arturo Torres-Gonzalez, Pablo Ramón-Soria, Jesús Capitán, and Anıbal Ollero.
Ual: An abstraction layer for unmanned aerial vehicles. In 2nd International Symposium on
Aerial Robotics, 2018.

	Resumen
	Abstract
	Introduction
	Motivation
	Objective
	Structure

	Related work
	Autonomous power-line perching
	2D LiDAR sensors

	Perception system architecture
	Introduction
	Hypotheses
	Detection stages
	System modules
	Conclusion

	Implementation of the perception system
	Introduction
	Intersection detection module
	Power-line filter module
	Power-line detection module
	Conclusion

	Control system
	Introduction
	Autopilot
	UAL
	Velocity control
	Conclusion

	Experimental results
	Introduction
	Perception system performance
	Simulated experiments
	Flight experiments
	Conclusion

	Conclusion
	Conclusion
	Future work

	Appendix Elements of the H matrix
	List of Figures
	List of Tables
	Bibliography
	End/Last page
	First page

