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Abstract
The objective of this paper is to address the localization problem using omnidirectional 
images captured by a catadioptric vision system mounted on the robot. For this purpose, 
we explore the potential of Siamese Neural Networks for modeling indoor environments 
using panoramic images as the unique source of information. Siamese Neural Networks 
are characterized by their ability to generate a similarity function between two input data, 
in this case, between two panoramic images. In this study, Siamese Neural Networks com-
posed of two Convolutional Neural Networks (CNNs) are used. The output of each CNN 
is a descriptor which is used to characterize each image. The dissimilarity of the images is 
computed by measuring the distance between these descriptors. This fact makes Siamese 
Neural Networks particularly suitable to perform image retrieval tasks. First, we evalu-
ate an initial task strongly related to localization that consists in detecting whether two 
images have been captured in the same or in different rooms. Next, we assess Siamese 
Neural Networks in the context of a global localization problem. The results outperform 
previous techniques for solving the localization task using the COLD-Freiburg dataset, in 
a variety of lighting conditions, specially when using images captured in cloudy and night 
conditions.

Keywords  Localization · Omnidirectional imaging · Holistic description · Mobile robots · 
Siamese Neural Network

1  Introduction

During the past few years, vision sensors have been used extensively in the field of map 
building and localization with mobile robots (Hu et al. 2020; Zhong et al. 2018). In par-
ticular, the ability to localize in the map is of paramount importance in order to develop 
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autonomous robots that can navigate in real operating conditions. The interest in using 
vision sensors to capture information from the environment is still high. Cameras can cap-
ture a big amount of information from the environment with a relatively low cost and they 
can be used in both, indoor and outdoor areas. Additionally, the images permit carrying out 
other highly specialized tasks such as object recognition and people detection.

Among the available configurations to capture visual information, the use of omnidi-
rectional vision sensors in mobile robotics has become common. Omnidirectional cameras 
obtain images that cover a field of view of 360° around the robot (Junior et al. 2016). As a 
result, they are commonly used to address navigation tasks (Rituerto et al. 2010).

The large amount of information provided by cameras requires robust techniques to 
extract and describe the relevant visual information. Different paradigms have been consid-
ered to extract this relevant information. A first group of techniques concentrate on detect-
ing, describing and tracking some landmarks or local features along the scenes (Cao et al. 
2020; Lin et  al. 2020). Different local features have been used in mapping and localiza-
tion tasks, including SIFT, SURF and ORB descriptors (E. Rublee and Bradski 2011). A 
global description of each image can then be obtained, for example, by means of the Bag of 
Words model (Raúl Mur-Artal and Tardós 2015). A second group of techniques work with 
each scene as a whole, and build a unique descriptor per image that contains information 
on its global appearance (Korrapati and Mezouar 2017; Khaliq et al. 2019). Finally, hard-
ware developments have led many authors to use Artificial Intelligence (AI) techniques 
to extract relevant information from images. Specifically, Convolutional Neural Networks 
(CNNs) have been proposed to address different computer vision and robotics tasks. For 
example, Xu et  al. (2019) and Leyva-Vallina et  al. (2019) proposed global appearance 
descriptors based on a CNN to obtain the most probable pose of the robot.

In general terms, holistic description methods lead to maps in which a set of robot poses 
and their associated descriptors are stored. In this way, each pose of the robot is repre-
sented by a holistic descriptor and this representation leads to straightforward localization 
algorithms, based on the pairwise comparison between descriptors.

In this manuscript we assess the usage of Siamese Neural Networks in the context of 
image description and robot localization. Siamese Neural Networks permit evaluating two 
images at the same time in such a way that they provide a similarity measurement at the 
output. Therefore, they have the potential to address visual recognition of places and esti-
mate the position of a mobile robot. In the present paper, we evaluate this potential. The 
main contributions of this paper can be summarized as follows. 

1.	 We explore the capability of Siamese Neural Networks for modeling indoor environ-
ments, using panoramic images as the unique source of information.

2.	 We train and evaluate Siamese Neural Networks with the purpose of detecting whether 
two images have been captured in the same or in different rooms.

3.	 We train Siamese Neural Networks capable of estimating robot position as a global 
image retrieval problem.

4.	 We conduct an exhaustive study on the influence of the Siamese Neural Networks’ 
architecture and the most relevant parameters. Moreover, we analyze the robustness 
against some common visual phenomena that may occur in real operating conditions, 
such as changes of the lighting conditions or image blur.

The following sections are structured as follows. First, in Sect. 2 we present a review of the 
state of the art on visual localization and mapping using Artificial Intelligence techniques. 
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Second, in Sect. 3 we introduce Siamese Neural Networks for both room discrimination 
and global localization. After that, Sect. 4 presents the CNN architectures, the dataset and 
the proposed data augmentation. Furthermore, in this section we also describe the pro-
posed method for room discrimination and global localization by means of Siamese Neural 
Networks. Then, Sect. 5 describes the experiments carried out to test and validate the pro-
posed method. Finally, conclusions and future works are outlined in Sect. 6.

2 � State of the art

As stated before, Siamese Neural Networks are able to generate a similarity function from 
pairs of input data. They can be regarded as a superstructure that includes two Neural Net-
works. These architectures accept two different inputs and offer a single output. The under-
lying networks share the same weights and different functions can be used to conform a 
single output. They were first proposed in 1993 in order to distinguish correct signatures 
from forgeries (Bromley et al. 1993). Since then, these architectures have been proposed 
in different areas of knowledge. For example, Thiolliere et al. (2015) proposed a Siamese 
Neural Network for audio and speech signal processing, Zheng et al. (2019) used this archi-
tecture for the comparison of DNA sequences or Jeon et al. (2019) used it for drug discov-
ery purposes. Furthermore, Parajuli et al. (2017) developed a Siamese Neural Network to 
track cardiac motion and Sandouk and Chen (2017) proposed a Siamese architecture in 
order to recognize music tags. Recently, Suljagic et al. (2022) use this kind of architecture 
for multi-object tracking (MOT) and person re-identification.

During the past few years, AI in general and CNNs in particular have been used in the 
field of mobile robotics for a variety of purposes. For instance, for mapping (Sinha et al. 
2018; Moolan-Feroze et  al. 2019), localization (Weinzaepfel et  al. 2019; Cattaneo et  al. 
2019), navigation (Zhao et  al. 2018; Ma et  al. 2019) and simultaneous localization and 
mapping (Lu and Lu 2019; Liu et al. 2019). A complete state-of-the-art review on mobile 
robotics tasks based on the use of AI can be found in (Cebollada et al. 2020). Other appli-
cations of AI in the context of mobile robotics include: self-driving navigation (Polvara 
et al. 2018; Organisciak et al. 2020), face detection and recognition (Wang et al. 2017; Hu 
et al. 2021), object recognition and categorization (Zaki et al. 2019; Feng et al. 2020) and 
mapping and localization (Holliday and Dudek 2018; Ruan et al. 2019).

Convolutional Neural Networks (CNNs) are the most popular techniques among 
AI tools. Currently, they are used in many mapping and localization tasks due to their 
successful performance in many practical applications. They are designed to receive 
images as input and their structures are specially created to obtain descriptors that syn-
thesize the information in them (Chollet et  al. 2018). Therefore, they can be used to 
describe the global appearance of an image. In this sense, Cebollada et al. (2019) pro-
posed holistic descriptors obtained with a CNN to perform localization within topo-
logical models, studying their strength against illumination variations. Also, Xu et  al. 
(2019) and Leyva-Vallina et  al. (2019) proposed these techniques to obtain the most 
probable robot position. Additionally, Ballesta et  al. (2021) studied localization tasks 
using CNNs and regression layers as global appearance descriptors. Recently, Rost-
kowska and Skrzypczyński (2023) employed the EfficientNet model (Tan and Le 2019) 
to embed an omnidirectional image into a single descriptor followed by a K-Nearest 
Neighbours (KNN) algorithm to robustly predict the topological position in a given 
database (map). In this regard, this work implements the Facebook AI Similarity Search 
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(FAISS) library (Johnson et al. 2019) to efficiently perform the nearest neighbour search 
using a KD-Tree.

Some well known architectures have been used as basic structures to develop new 
modified networks for robotic navigation purposes. AlexNet (Krizhevsky et  al. 2012), 
VGG16 (Simonyan and Zisserman 2014), GoogleNet (Szegedy et  al. 2015) or NetV-
LAD (Arandjelovic et al. 2016) are some of them.

The Convolutional Neural Networks presented above can be used to form a Siamese 
Neural Network. In the field of robotics, they have been rarely used and some stud-
ies that proposed this structure in this field are mentioned below. For example, Utkin 
et al. (2017) use a Siamese Neural Network to support the security control of a robot by 
detecting anomalies in its behaviour and Zeng et al. (2018) present a robotic pick-and-
place system capable of identifying and grasping both known and novel objects in clut-
tered environments using a Siamese Neural Network. Moreover, Li and Zhang (2019) 
use the VGG16 network to conform a Siamese structure for object detection and track-
ing. Additionally, Zhang and Peng (2019) presented a study in which Siamese Networks 
are followed by Fully Connected layers or Region Proposal Network structures in the 
context of real-time visual tracking.

Regarding robot localization tasks, Leyva-Vallina et al. have proposed the use of Sia-
mese Neural Networks to address the place recognition problem in garden environments 
(Leyva-Vallina et  al. 2019, 2021). Moreover, this architecture has been proposed for 
localization using LiDAR scans (Yin et al. 2018; Chen et al. 2022).

In the present paper, we address the localization of a mobile robot using panoramic 
images in such a way that we study in detail different architectures and training configu-
rations of Siamese Neural Networks. For this purpose, we propose as an initial approach 
to train and test the capability of the network to distinguish between images captured in 
the same and different rooms. In addition, in this study we also tackle the global locali-
zation problem using Siamese Neural Networks.

3 � Visual localization using Siamese Neural Networks

Siamese Neural Networks can be described as a superstructure that includes, at least, two 
different Neural Networks beneath. Weights are shared between the networks and a single 
output is generated by combining the outputs of both networks. Figure 1 shows a general 
representation of a Siamese Neural Network architecture. In the present work, we use Con-
volutional Neural Networks to conform the two branches of the Siamese Neural Network. 
The output of each CNN is a descriptor which is used to characterize each input image. 
The dissimilarity of the input images is computed by measuring the distance between 
these descriptors. In this way, Siamese Neural Networks can be trained to generate similar 
descriptors when the training images belong to the same category. This fact makes Siamese 
Neural Networks particularly suitable to perform image retrieval tasks. Additionally, it is 
worth noting that the outputs, training, and performance of the network depend directly on:

•	 The architectures used in subnetworks W1 and W2 to extract the main features of 
the images.

•	 The conversion of the feature maps from the convolutional layers to a descriptor 
vector.
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•	 The dimension of the output descriptors that embed the pair of input images.
•	 The training carried out with the available images. In particular, the labelling and the 

ratio of images of each category.

In this manuscript, we analyze the influence of these items on the visual localization of the 
robot. In this sense, we assume that a visual map of the environment is initially available. To 
obtain this map, the robot has moved throughout the area capturing omnidirectional images 
along the trajectory. Firstly, the images are transformed to a panoramic format (with size 
128x512 in the present work), resulting in the set {I1, I2,… , IN} . These images are captured 
from N points of view, whose poses are known and stored P⃗i = (xi, yi, 𝜃i), i = 1,… ,N . 
Additionally the room where the picture has been captured is known too, so a set of labels 
is available: R⃗i = (ri), i = 1,… ,N . Each image will be embedded into a single descriptor 
during the localization, using the proposed architecture, yielding {f⃗1, f⃗2,… , f⃗N} . The trajec-
tory followed by the robot includes different rooms with different visual information. In 
this work, these rooms include a corridor, some offices, a library and a bathroom.

Taking these facts into account, the initial map is composed by the set of images, their poses 
and the room in which the images are captured {(I1, P⃗1, r1), (I2, P⃗2, r2),… , (IN , P⃗N , rN)} . 
Using this information, some Siamese Neural Networks are trained to address localization.

3.1 � Room discrimination

In this subsection an initial task related to localization is evaluated to study whether a Sia-
mese Neural Network is able to distinguish between images captured from the same or 
from different rooms. For this purpose, the model will be trained and tested with pairs of 
random images captured from the same and/or different room.

Fig. 1   Representation of the architecture of a general Siamese Neural Network
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3.2 � Global localization

In this study we consider that a map of the environment is available, as described before. 
The absolute localization problem is solved by comparing the test image directly with all 
the images in the map. This comparison is performed using the descriptors f⃗i associated to 
each image in the map. The pose of the robot is found as the most similar descriptor con-
tained in that map. The problem is approached with pure visual information and assuming 
that no information about the previous pose of the robot is available.

4 � Architecture and training of the deep learning tools

The structure of a classical CNN used for classification tasks can be split into two differ-
ent stages (Cebollada et al. 2019): the feature learning and the classification stages. Fea-
tures are extracted using several convolutional layers whereas the classification task can 
be constructed using fully connected layers and a final Softmax function. In our approach, 
the classification stage is replaced by a feature aggregation phase. In this sense, the fea-
ture extraction phase outputs multiple feature maps which are flattened to a vector and 
dimensionally reduced by fully connected layers. This phase permits generating a single 
description vector per input image. As a result, the model provides two vectors f⃗0 and f⃗1 
(one per input image). These descriptors are compared using the Euclidean distance in the 
comparison phase (d(f⃗0, f⃗1) = ‖f⃗0 − f⃗1‖2) . This architecture is shown in Fig. 2. Therefore, 
during training, the weights of the networks are updated in order to obtain the optimal 
global descriptors. After the comparison, the distance between them and the similarity 
label (1 ∶ dissimilar, 0 ∶ similar) are used as data for the loss function. In our case the loss 
function used is the Constrastive Loss Function.

Fig. 2   Detailed representation of a Siamese Neural Network with AlexNet in the feature extraction and fea-
ture aggregation phase
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Where y is the similarity label and 𝛼 > 0 is a margin. The margin defines a radius around 
the descriptor so that dissimilar pairs of images contribute to the loss function only if their 
distance is within this radius (Hadsell et al. 2006).

4.1 � Parameters and networks

In this manuscript we compare different networks in the feature learning stage. As 
inputs to the feature aggregation stage we consider the representation computed in the 
last convolutional layer of Alexnet (Krizhevsky et al. 2012), DenseNet (He et al. 2016), 
VGG11, VGG13, VGG16 and VGG19 (Simonyan and Zisserman 2014). AlexNet is a 
pioneering CNN architecture known for its success in the ImageNet Large Scale Vis-
ual Recognition Challenge (ILSVRC) 2012. Visual Geometry Group (VGG) networks 
further contributed to the advancement of image classification problem, outperforming 
benchmarks on a variety of tasks and datasets outside of ImageNet (Bayraktar et  al. 
2019, 2020). The main difference between VGG networks is the number of convolu-
tional layers: 11, 13, 16 and 19 layers respectively. In Table 1 the feature extraction lay-
ers of those CNNs are presented. Additionally two simple networks created with three 
conv2d layers are also evaluated (Table 2). The ReLU activation layers are not shown 
for brevity, but they have been used after each conv2d layer. The feature extraction lay-
ers are shown with black color in Tables 1 and 2. The different feature learning struc-
tures are evaluated in the Sect. 5.

In all the cases, the feature extraction stage outputs a high dimensional vector obtained 
by flattening the feature maps from the last maxpool or averagepool layer. Therefore, if 
the descriptor was extracted from this layer, comparing descriptors through nearest neigh-
bour search would be computationally expensive. To alleviate this problem, we use fully 
connected layers to compress the flattened vector into a compact global vector descriptor, 
which can be used for efficient retrieval as demonstrated in (Schaupp et al. 2019). These 
layers are shown with blue color in Tables 1 and 2. As a global baseline three fully con-
nected layers are used, but different versions are considered, with different number of neu-
rons. The different layers used during the evaluation are presented in Table 3.

Other parameters are also tested during the training phase with the aim of obtaining 
the best Siamese Neural Network for our application. The hyperparameters considered 
during the evaluation are the following: the batch size (number of samples processed 
before the model is updated), the epochs (number of complete passes through the train-
ing dataset) and the percentage of images (percentage of training pairs of images from 
the same or different rooms, so that the network can learn adequately similarities and 
dissimilarities between rooms). In the experiments, the learning rate is kept constant at 
0.001 (rate of change of the model in response to the estimated error) and the momentum 
is 0.9 (contribution of the parameter update step of the previous iteration upon the cur-
rent iteration).

(1)L(f⃗0, f⃗1) =
1

2
(1 − y)d(f⃗0, f⃗1)

2 + y
1

2
max(𝛼 − d(f⃗0, f⃗1), 0)

2
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Table 1   Configuration of the feature extraction neural networks. (Color table online)

The ReLU activation layers have been omitted for brevity
∗ Blue color layers correspond to the feature aggregation layers
∗∗VGG networks have their Batch Normalize (bn) version where after each conv2d layer a BatchNorm2d 
layer normalizes the results

Table 2   Simple convolutional neural networks without pretraining. (Color table online)

Blue color layers correspond to the feature aggregation layers
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4.2 � Datasets and data augmentation

4.2.1 � Training and test datasets

The images used in the experiments are obtained from an indoor dataset (Pronobis and 
Caputo 2009). This database was captured by an omnidirectional vision sensor mounted 
on a mobile robot which followed different trajectories that visited 9 different rooms. A 
variety of lighting conditions was considered to capture the sets of images.

Table 4 shows the number of images per room for each of the datasets used in this 
research. Two training sets are considered: training set 1 consists of 8486 images cap-
tured under cloudy, sunny and night illumination conditions (COLD-Freiburg Part 
A Path 2 Cloudy 3, Freiburg Part A Path 2 Night 1, Freiburg Part A Path 2 Sunny 
3). Training set 2 has been obtained by applying a data augmentation to the cloudy 
sequence of training set 1, thus generating 977,856 images. With respect to the test sets, 
four different sets are considered: test set 1 consists of 2595 images under cloudy light-
ing condition (COLD-Freiburg Part A Path 2 Cloudy 2), test set 2 contains images cap-
tured under night lighting condition and consists of 2707 images (COLD-Freiburg Part 
A Path 2 Night 2), test set 3 consists of 2114 images under sunny lighting condition 
(COLD-Freiburg Part A Path 2 Sunny 2) and test set 4 is composed of all the images in 
the previous test sets. It should be noted that the images in the test sets are different, in 
all cases, from the images that constitute the training sets. Finally, the visual map has 
been obtained after sampling the path under the cloudy lighting condition of the test set 
1, obtaining a total of 556 images.

Table 3   Configuration of the 
feature aggregation phase in our 
approach

Version 1 Version 2 Version 3

fc-500 fc-500 fc-1000
fc-500 fc-100 fc-1000
fc-5 fc-10 fc-10

Table 4   Summary of the training and test datasets

This table shows the number of images per room and the total of images of each dataset

Room Training dataset 
1

Training dataset 
2

Test dataset 1 Test dataset 2 Test dataset 3 Visual map

1P0-A 518 76,736 218 168 123 44
2P01-A 694 82,016 233 215 187 46
2P02-A 428 55,616 158 168 109 31
CR-A 3258 416,416 1183 1114 793 238
KT-A 674 80,608 229 270 213 46
LO-A 395 46,464 132 121 102 26
PA-A 804 99,968 284 241 191 57
ST-A 495 53,152 151 198 180 30
TL-A 619 66,880 190 212 216 38
Total 8486 977,856 2595 2707 2114 556
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In this way, the training sets will be used to carry out the training of the Siamese 
Neural Networks, and the test sets will evaluate the performance of the networks under 
the three lighting conditions. The visual model is the map available for the robot to carry 
out the localization, so it will be used in the testing phase of the global localization.

4.2.2 � Data augmentation

Additionally, a data augmentation technique is proposed as a method to improve the per-
formance of the network. It increases the number of images in the training dataset. Hav-
ing a larger number of training images reduces the overfitting of the model and boosts its 
robustness against real operating conditions. Cabrera et al. (2021) and Sakkos et al. (2019) 
demonstrated the use of data augmentation in CNNs to improve their effectiveness under 
changing lighting conditions.

Our proposed data augmentation is focused mainly on such lighting conditions and 
concentrates on editing local regions by simulating lights, reflections and shadow effects 
caused by light sources from different angles. Moreover global illumination changes are 
also taken into account. Other effects not related with the illumination but that can appear 
when images are captured in real operating conditions are also used. 

Local effects:	� Light sources that fall on a specific area or the surface of an object 
are reproduced. We call this local illumination changes since only 
a small patch of the image is being affected. The shape of differ-
ent light sources can vary meaningfully. Circular shapes from light 
bulbs or square and trapezoid shapes from reflections or windows 
are common. We edit the intensity of different regions following 
these shapes to simulate the light source; the pixel intensity is 
increased to reproduce more bright or it is decreased to simulate 
a shadow effect. In order to replicate a realistic fading effect, the 
intensity of brightening/darkening is gradually decreased from the 
center to the edge as an attenuation of the light. The size of the 
shapes and the position is selected randomly to simulate the effect 
in different ways and so does the maximum value to consider dif-
ferent intensities. In our experiments these figures are built with 
sizes between 15 and 40 pixels, different intensities are applied 

Fig. 3   Individual local effects for data augmentation based on illumination
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and the patch is degraded from intensity values ± 160 or 100 to 5. 
The effects and shapes are shown in the Fig. 3.

Global illumination:	� Global illumination variations can occur in some cases. To model 
such illumination changes, we need to alter pixels across the 
whole image, rather than in a small region. A constant value c is 
added to all the pixels to model a global brightness effect on the 
image or it is subtracted to simulate a global darkness. The value 
of c varies from 35 to 75 in this work. Figure 4b and c shows the 
effect.

Sharpness/Blurring:	� Finding sharper borders among diverse objects will contribute to 
provide a better separation among them and between foreground 
and background. In contrast, blurring effects are caused by low 
illumination and movements of the camera, which are common 
in mobile robotics. Both effects are incorporated in the data aug-
mentation. They can be observed in Fig.  4d and e. Both can be 
achieved by a convolution operation using the following masks.

Fig. 4   Global effects for data augmentation



	 J. J. Cabrera et al.

1 3

  198   Page 12 of 26

Sharpness effect Blurring effect

m
sh
=

⎡
⎢
⎢⎣

0 −1 0

−1 5 −1

0 −1 0

⎤
⎥
⎥⎦ m

bl
=

1

25

⎡
⎢
⎢
⎢
⎢⎣

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎤
⎥
⎥
⎥
⎥⎦

Contrast variation:	� The contrast of the image plays an important role in highlighting 
different objects in the scene. Low contrast images usually look 
softer and with less shadows and reflections. The effect is pro-
posed for this data augmentation to improve the robustness of the 
framework. The contrast is modified following the next equation: 

 where Is is the resulting image, I the original image and c is the contrast factor. For c > 1 
the contrast increases and c < 1 decreases the contrast. Additionally, an equalization of the 
image is also added to the data augmentation set. It evenly distributes the histogram values, 
which permits obtaining a new contrast augmentation effect. Figure 4f shows this effect.
Saturation changes:	� The colour saturation of the image deals with the intensity of the 

colour. The less saturation, the less colourful the image is, even it 
can resemble a grey-scale image if the saturation is very low. In 
contrast, more vivid colours are obtained when the colour satura-
tion is high. It can simulate situations when illumination changes 
significantly. The colour saturation can be edited by converting 
the RGB image to HSV, after that, it is possible to directly change 
the saturation channel by multiplying it by a constant factor c. If 
the saturation attribute is multiplied by c > 1 the colours become 
more saturated and by c < 1 the colour saturation decreases. The 
effect can be seen in Fig. 4g.

Rotation:	� The original image covers 360° around the robot. For that rea-
son the image can be rotated without losing any piece of infor-
mation. This effect will simulate the situation in which the robot 
is in the same position but the orientation is different. Moreover, 
having a training dataset containing this type of effect is expected 
to provide the Neural Network with rotation invariance. Figure 4h 
shows a rotation effect of 115°. Random rotations between 10 and 
350° are applied to the training images.

Combined changes:	� Additionally some effects are combined to obtain a larger data 
augmentation, but not all the effects are combined together. 
Global illumination and a single local effect are combined in all 
the possible variations, e.g. global darkness is combined with a 
brightening circle shape effect, global brightness is combined 
with a brightening trapezoidal effect, etc. Additionally, the local 
effects are also combined. The circle shape effect is combined 
with the square effect, the trapezoidal effect or another circle 
shape effect, the combinations can be brightened+brightened, 
brightened+darkness and darkness+darkness; the circle shape 
effect is also combined with other two circle shape effects, 

Is = 64 + c ∗ (I − 64)
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obtaining an image with three light bulb effects. Finally, the rota-
tion effect is individually combined with all the effects and the 
combinations described above.

4.3 � Training and testing the Siamese Neural Network

As presented in Sect. 4.1, different CNNs architectures can be used as the base of Sia-
mese Neural Networks. Initially, we start from pretrained networks with known weights 
and biases. Then, we retrain the network to fit it to our application. This transfer learn-
ing technique is well-known and has previously been used in mobile robotics (Cabrera 
et al. 2021).

Ssection 4.3.1 will address an initial task which consists in training and evaluating the 
capability of a Siamese Neural Network to identify whether two images were captured 
from the same or different rooms. Finally, in Sect. 4.3.2 we will detail the characteristics 
of the training and test to address the absolute localization problem with siamese architec-
tures. Emphasis will be placed on the labelling required to perform the desired task.

4.3.1 � Room Discrimination

The main goal of this task is to evaluate whether a Siamese Neural Network is capable 
of determining if two images belong to the same or different room. It is an important 
capability to perform localization tasks.

The training phase is performed by feeding the network with pairs of images. These 
pairs are labelled with 0 if they have been captured from the same room and 1 if not. 
The ratio same/different room pairs is varied in the training phase to study its influence.

During the test phase, pairs of images are fed into the network. At the output, the net-
work labels them with a number between 0 and 1; if the result is under 0.5 we interpret 
that the images have been captured from the same room. On the contrary, the images 
belong to different rooms. The images used to test the network are different from the 
training images, they are captured in the same building but in different times, in a vari-
ety of lighting conditions. Also the trajectory followed by the robot to capture the test 
images is similar to the one used to capture the training images, but the images are cap-
tured from different robot poses (Fig. 5).

4.3.2 � Global localization

The global localization problem considers the estimation of the robot pose within the 
whole floor of the building. For this purpose, a Siamese Neural Network is trained. The 
training is carried out with image pairs labelled with the following equation:

where Ii and Ij are two images and p⃗i and p⃗j are their corresponding positions (coordi-
nates of the capture points). This constitutes a normalized Euclidean distance between the 

(2)Label(Ii, Ij) =

�
‖p⃗i−p⃗j‖2

Kb

if Ii and Ij belong to the same room

1 otherwise
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capture points. Kb corresponds to the maximum distance between two images in the build-
ing. Table 5 shows different examples according to Fig. 5.

Once the network has been trained, the test is performed by using the map which is 
composed by the set of image descriptors and their positions {(f⃗1, p⃗1), (f⃗2, p⃗2),… , (f⃗N , p⃗N)} . 
Each descriptor has been calculated by the trained Siamese Neural Network. The absolute 
localization is performed as a pairwise comparison between image descriptors. Given a test 
image It , the Siamese Neural Network outputs its corresponding descriptor f⃗t . Finally, the 
position of the robot is estimated by selecting the pose associated to the descriptor in the 
map that minimizes the distance ‖f⃗t − f⃗i‖2 , with i = 1,… ,N.

Fig. 5   Example of different trajectories of the robot

Table 5   Example pairs and 
its label value for the absolute 
localization task

The labels of the images are shown in Fig. 5
18.99 m is the maximum distance between two images in the target 
environment

Pair Euclidean distance (m) Label value

I
1
− I

2
0.33 0.33

18.99
= 0.017

I
1
− I

3
12.82 12.82

18.99
= 0.675

I
1
− I

4
– 1

I
1
− I

5
– 1

I
4
− I

5
– 1

I
5
− I

6
2.48 2.48

18.99
= 0.131
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5 � Experiments

The set of experiments is designed to test the performance of the Siamese Neural Network 
as global descriptor generator to tackle the room discrimination and global localization 
task as explained in Sects. 4.3.1 and 4.3.2.

5.1 � Room Discrimination

In this subsection we assess the ability of the network to predict whether two images are 
taken from the same room. The effectiveness of the Siamese Neural Network is calculated 
by comparing pairs of images and checking their label. The results are expressed in per-
centage of accuracy. Several experiments have been conducted while varying different 
parameters: the feature extraction architecture, the feature aggregation layers and the per-
centage of similar/dissimilar images. As common parameters, we train the network using 
8486 pairs of images per epoch from the training dataset 1 and we use the Stochastic Gra-
dient Descent (SGD) optimiser, with a learning rate of 0.001 and momentum of 0.9. More-
over, we test the network with 7000 pairs of images extracted from the test dataset 4.

5.1.1 � Influence of the architecture on the feature extraction process

In this subsection we compare different models in the feature extraction stage of a Siamese 
Neural Network. The different models used can be observed in Table 1. The training has 
been performed using a batch size of 256 and 5 epochs. During training, the dataloader 
presents a 50% of images from the same room and a 50% of images from the different 
rooms. During these experiments, the feature aggregation is performed with 3 fully con-
nected layers composed by 500–500-5 neurons in each.

Results are presented in Table 6 in terms of global accuracy. Additionally, the test accu-
racy for the same and different room predictions is also presented. The table shows that the 
best networks are VGG13 and VGG16. They obtain the best accuracy for predicting pairs 
of images in the same room (99.44% and 99.47% respectively). In addition, VGG13 and 
VGG16 present the best accuracy predicting if two images are taken from different rooms 
(79.86% and 78.91%). Moreover, the ‘Simple 1’ and ‘Simple 2’ networks obtain consider-
ably good results using only three convolutional layers. Finally, in general terms, it can be 

Table 6   Accuracy using different feature extraction neural networks. (Color table online)
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observed that all the architectures perform better in predicting whether two images belong 
to the same room. For this reason, we consider below the possibility of varying the per-
centage of images of each category in the training phase.

5.1.2 � Influence of the training parameters

In the light of the previous results, next, different training parameters are evaluated. As 
we explain in the previous subsection, the ratio of training pairs of images in each cat-
egory is expected to have a substantial influence upon the results. In consequence, we pro-
pose to change the percentage of pairs of images at the training phase. The percentage of 
images taken from the same and different rooms varies from 5% to 40% and from 95% to 
60% respectively. For brevity, we only show the results obtained with VGG13, VGG16 
and AlexNet networks. The rest of the training parameters is tuned as before, using 256 as 

Table 7   Accuracy of VGG13. (Color table online)

The table presents a variation in the total number of images and in the same-different ratios of training 
images

Table 8   Accuracy of VGG16. (Color table online)

The table presents a variation in the total number of images and in the same-different ratios of training 
images
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batch size and a feature aggregation phase with three fully connected layers composed by 
500, 500 and 5 neurons. The results are presented in Tables 7, 8 and 9. They show a cor-
relation between the percentage of images of same/different room and its respective accu-
racy, i. e., when the percentage of pairs of images in the same room increases, its associ-
ated accuracy also does and a similar phenomenon occurs with the different room category.

Until this moment, all the experiments have been performed using 256 as batch size, 
but other values have been tested in order to check the best configuration. Tables 10 and 11 
show the accuracy using different batch sizes. They show that the global accuracy increases 
when the batch size is lower.

These tables show that relatively good performances can be achieved with some config-
urations. Notwithstanding that, we observe that in general terms, the same-room accuracy 
tends to decrease when the different-room accuracy increases and vice versa. This will be 

Table 9   Accuracy of AlexNet. (Color table online)

The table presents a variation in the total number of images and in the same-different ratios of training 
images

Table 10   Accuracy using VGG16 and different batch sizes. (Color table online)
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analyzed deeply in future works, but it may be due to the use of the Contrastive Loss func-
tion (Sun et al. 2020a).

5.1.3 � Influence of the architecture of the feature aggregation layers

As explained in Sect. 4.1, the feature extraction layers output a matrix that is flattened and 
compressed in the feature aggregation phase. Different combinations of fully connected 
layers are also evaluated. All these experiments have been performed training the network 
with a 10 of pairs of images taken from the same room and a 90 of pairs of images from 
different rooms.

Tables  12 and 13 show the results using 3 different combinations of fully connected 
layers. Each variation is described in Table 3. Similar results are obtained with the 3 dif-
ferent variations. The best result is obtained with 3 fully connected layers with 1000-1000-
10 neurons each. Finally, if we analyse jointly all the results of the room discrimination 
experiment, the best result is obtained using VGG16 as the feature extraction network, 3 
fully connected layers (1000-1000-10), 7 epoch and a batch size of 16; with this configura-
tion 96.16% global accuracy is obtained: 98.90% same room accuracy and 93.41% different 
room accuracy.

Table 11   Accuracy using AlexNet and different batch sizes. (Color table online)

Table 12   Accuracy using VGG16 and different feature aggregation layers. (Color table online)
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5.2 � Global localization

The global localization is performed as explained in Sect. 4.3.2. The VGG16 network is 
employed in this task since it led to the best results in the room discrimination task. Dif-
ferent experiments have been performed in order to choose the best configuration. We 
will mainly analyze the ratio of same/different room pairs, which is the parameter that has 
shown the greatest influence on the results. Moreover, in this subsection we will assess the 
influence of the data augmentation on the results. Each pair of images is labelled according 
Eq. 2.

First, concerning the experiment to evaluate the influence of the ratio same/different 
room pairs, we train the network using 8486 pairs of images per epoch from the training 
dataset 1. Second, with respect to the experiment to assess the effect of the data augmenta-
tion, 977,856 pairs of images per epoch from the training dataset 2 are used. These two 
experiments are described in Sect. 5.2.1. In both cases, the fully connected layers are con-
figured with 500-500-5 neurons. Moreover, Sect. 5.2.2 evaluates the influence of the fea-
ture aggregation layers. In this case, the training dataset 1 is used. As common parameters, 
we use 16 as batch size, the Stochastic Gradient Descent (SGD) optimizer, with a learning 
rate of 0.001 and a momentum of 0.9 and 30 epochs.

Table 13   Accuracy using AlexNet and feature aggregation layers. (Color table online)

Table 14   Localization error in terms of mean absolute error (MAE), mean square error (MSE) and average 
recall (%) at top 1% (Recall@1%) with VGG16. (Color table online)

The table presents the global localization results with variations in the same-different ratio of training 
image pairs
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5.2.1 � Influence of the training parameters

Ratio of same/different room pairs:	� Table 14 shows the results using VGG16 in the fea-
ture extraction part and three fully connected layers 
with 500-500-5 neurons in the feature aggregation 
part. The training of the model has been performed 
with different percentages of pairs of images belong-
ing to the same and different rooms. The results show 
that the lowest localization error is obtained when 
the training is performed using 40% of images from 
the same room and 60% of images from different 
rooms. In general, The CNN shows excellent overall 
performance, especially when tested under the same 
lighting conditions as the training images (cloudy). 
However, the performance decreases in sunny condi-
tions which are the most challenging test conditions. 
Studying the results, as a general rule, training with a 
large percentage of image pairs from the same room 
deteriorates the localization error.

Data Augmentation:	� Next, we evaluate the influence of the data augmen-
tation on the localization task. Table 15 presents the 
results using the training dataset 2 (augmented) and 
test datasets 1, 2 and 3. For this purpose, we will 
start from the best configurations obtained so far and 
show the results according to the percentage of train-
ing image pairs. When the training is performed with 
the augmented dataset, remarkable results in terms of 
average error are obtained, especially in cloudy and 
night conditions. In this sense, the Mean Average 
Error decreases by 10  cm in cloudy conditions and 
by 20 cm in night conditions comparing to Table 14 
(no data augmentation). However, training with this 
dataset shows a decrease in the performance of the 

Table 15   Localization error in terms of mean absolute error (MAE), mean square error (MSE) and average 
recall (%) at top 1% (Recall@1%) with VGG16 and data augmentation. (Color table online)

The table presents the global localization results with variations in the same-different ratio of training 
image pairs
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network in sunny circumstances. Therefore, the data 
augmentation proves to be beneficial, unless the test 
images experience substantial changes.

 

5.2.2 � Influence of the architecture of the feature aggregation layers

To conclude the experimental section, Table 16 shows the results after evaluating different 
fully connected layers. Using 4096-4096-1000 neurons in these three layers demonstrated 
a consistent localization error for cloudy and night conditions. However, its performance 
degraded in sunny conditions. When the size of the fully connected layers is 1000-1000-10 
the best result in cloudy conditions is achieved, but also the worst result for sunny sce-
narios. In contrast, the configuration 500-500-5 neurons consistently maintained low errors 
across all conditions, showing its adaptability to diverse lighting environments and gener-
alization capabilities. The Siamese Neural Network is able to perform the localization with 
an average error of 0.5821  m when using as feature aggregation method three different 
fully connected layers with 500, 500 and 5 neurons.

5.2.3 � General comparison with other methods

Finally, the Siamese Neural Networks are compared with other previous global-appearance 
techniques which include the use of a single AlexNet structure and two classic analytic 
descriptors: HOG and gist, as described in the work by Cebollada et al. (2022). Table 17 
compares all the methods in a global localization task using, in all cases, the COLD-
Freiburg Dataset. This table shows that the siamese structures with the VGG architecture 

Table 16   Localization error in terms of mean absolute error (MAE), mean square error (MSE) and average 
recall (%) at top 1% (Recall@1%) with VGG16 and different configurations of the fully connected layers 
when training 30 epochs and 50% of images from the same room and 50% of images from different rooms. 
(Color table online)

Table 17   Comparison with other methods. (Color table online)
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and the data augmentation proposed in the present work provide the best results in terms 
of localization error for cloudy and night conditions. Also, the approach proposed by Rost-
kowska and Skrzypczyński (2023) achieves good results in the case of sunny conditions. 
Apart from using a different architecture, the main difference between their approach and 
the one presented here is that they use a cross-entropy loss (single input) during training, 
while in the present paper we employ the contrastive loss (double input). Furthermore, in 
the present paper, the model is fed with an omnidirectional image transformed to a pano-
ramic view, whereas in Rostkowska and Skrzypczyński (2023) directly use the omnidirec-
tional image without conversion. In addition, they embed the image with an EfficientNet 
model (Tan and Le 2019) architecture which is followed by the Facebook AI Similarity 
Search (FAISS) KD-Tree, while in the approach proposed in the present paper the pairwise 
euclidean distance between descriptors is computed and employed to retrieve the closest 
descriptor in the database.

6 � Conclusions

In this paper, a global localization method using Siamese Neural Networks has been pro-
posed and evaluated. Localization, along with mapping, is one of the main tasks to be 
addressed by an autonomous mobile robot. First, an initial task of discriminating same and 
different rooms has been proposed in order to assess the ability of Siamese Neural Networs 
and know the influence of the most relevant parameters. After that, the global localization 
problem is addressed.

In the experiments, several well known architectures have been tested to conform the 
Siamese Neural Network, some of which are AlexNet, VGG11, VGG13, VGG16, VGG19, 
VGG11bn, VGG13bn, VGG16bn and VGG19bn. The best performance in the initial task 
has been achieved by VGG13 and VGG16. In general terms, the VGG architectures have 
provided the best results.

Apart from these feature extraction architectures, a group of Fully Connected layers 
have been added to carry out the conversion of the activation maps resulting from the con-
volutional layers to a description vector. In the present work, different sizes of the Fully 
Connected layers have been studied, as well as the size of the final descriptor. For the ini-
tial task, the performance of the network is slightly higher when the Fully Connected lay-
ers sizes are 1000-1000-10. In contrast, in the global localization, the localization error 
decreases drastically in those networks that have a set of Fully Connected layers of size 
500-500-5 neurons.

The training parameter that contributes most to the performance of the network is the 
percentage of image pairs belonging to the same and different rooms. In this sense, there 
is a correlation between the percentage of images of same/different room and its respective 
accuracy, i.e., when the percentage of pairs of images in the same room increases, its asso-
ciated accuracy also does and a similar effect occurs with the different room category. Fur-
thermore, when the same room accuracy increases, the different room accuracy decreases, 
and vice versa. This situation may be caused by the Contrastive Loss function which has an 
associated lack of flexibility in the optimization. Other loss functions used in other applica-
tions could improve localization results, such as Circle Loss (Sun et al. 2020b) and will be 
considered in future studies.
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In addition, a data augmentation technique has been proposed in order to improve the 
performance of the network. The proposed effects try to simulate real operating conditions. 
In addition, a set of effects specially designed to increase the robustness against changes of 
the lighting conditions in the scene have been generated. As for the results obtained, the 
performance of the network is especially benefited when working in cloudy and night light-
ing conditions. In the case of the cloudy lighting condition, when the training is performed 
with data augmentation, the average localization error is reduced around 12 cm. As for the 
night illumination condition, the average error is reduced around 20 cm. On the contrary, 
in sunny illumination condition the average localization error increases 34 cm when data 
augmentation is used. Thus, the siamese architecture is very efficient at solving the locali-
zation problem in real operating conditions, if the changes in the lighting conditions are not 
considerable, i.e., when working in cloudy and night scenarios. However, it is less effective 
at describing images in the presence of significant changes in lighting conditions, such as 
in the sunny scenarios. Other methods (such as HOG or gist) describe the image glob-
ally and give equal importance to all its regions, thus providing better resilience to large 
illumination changes. The reduced performance on sunny conditions when using siamese 
architectures can be explained by the lack of flexibility associated to the fact of having two 
networks with identical weights. In addition, the training process may have introduced an 
imbalance that causes the network to be more capable of detecting similarities than dis-
similarities or vice versa. Additionally, the training dataset 1 (without data augmentation) 
comprises images from all illumination conditions, whereas the training dataset 2 (with 
data augmentation) is limited to cloudy images and attempts to replicate other illumina-
tion conditions by applying global and local effects. In this context, the proposed effects 
for data augmentation are beneficial in cloudy and night conditions, thus enhancing the 
performance of the model in these scenarios. However, the illumination effects that simu-
late different sunny conditions have been proven to be less effective than using real images 
captured at this particular illumination condition.

As future works, the proposed localization techniques will be extended to outdoor envi-
ronments, which are more challenging because of their unstructured and changing condi-
tions. In addition, other types of sensors will be considered to carry out the localization 
robustly, such as LiDAR.
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