# UNIVERSIDAD MIGUEL HERNÁNDEZ DE ELCHE ESCUELA POLITÉCNICA SUPERIOR DE ELCHE GRADO EN INGENIERÍA MECÁNICA



## "MODELIZACIÓN ANALÍTICA DE ENFRIADOR EVAPORATIVO INDIRECTO BASADO EN EL CICLO TERMODINÁMICO DE MAISOTSENKO"

## TRABAJO FIN DE GRADO

Julio - 2024

AUTOR: Víctor Palau Pineda

DIRECTOR: Javier Ruiz Ramírez





## AGRADECIMIENTOS

Quisiera expresar mi más sincero agradecimiento a mi tutor, Javier Ruíz, por su invaluable apoyo y guía a lo largo de la realización de este trabajo de fin de grado. Su confianza en mis capacidades y su dedicación constante han sido fundamentales para el desarrollo y culminación de esta investigación.

Agradezco profundamente su paciencia, sus consejos siempre acertados y su disposición para resolver mis dudas y preocupaciones en cada etapa del proceso. Su implicación y compromiso han sido una fuente de inspiración, y sin su orientación, este proyecto no habría sido posible.

También quiero nombrar a una persona muy especial para mí, mi profesor de matemáticas, José María (Chema), quien me ha apoyado y confiado en mí desde que estaba en el grado superior y tuve la idea de entrar en la universidad. Sus consejos, tanto en lo académico como de la vida, han sido invaluables y han contribuido significativamente a mi desarrollo personal y profesional.

Muchas gracias a los dos por todo.









,

## ÍNDICE

| AGRADECIMIENTOS                                                                 | 2         |
|---------------------------------------------------------------------------------|-----------|
| ÍNDICE                                                                          | 4         |
| ÍNDICE DE ILUSTRACIONES                                                         | 6         |
| ÍNDICE DE TABLAS                                                                | 8         |
| RESUMEN 1                                                                       | 0         |
| Nomenclatura1                                                                   | 2         |
| 1. INTRODUCCIÓN, ANTECEDENTES Y OBJETIVO 1                                      | 4         |
| 1.1 INTRODUCCIÓN 1                                                              | 4         |
| 1.1.1 OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS) 1                                | 4         |
| 1.1.2 SECTOR DE PRODUCCIÓN DE ENERGÍA ACTUAL Y FUTURO 1                         | 5         |
| 1.1.3 CONSUMO DE ENERGÍA EN EL SECTOR DE LA CONSTRUCCIÓN 1                      | 8         |
| 1.1.4 ENFRIAMIENTO EVAPORATIVO                                                  | 20        |
| 1.1.5 ENFRIAMIENTO EVAPORATIVO DIRECTO                                          | 21        |
| 1.1.5 ENFRIAMIENTO EVAPORATIVO INDIRECTO                                        | 23        |
| 1.1.7 CICLO MAISOTSENKO (CICLO M) 2                                             | <u>24</u> |
| 1.2 Antecedentes                                                                | 27        |
| 1.2.1 Equipos de refr <mark>igeración</mark> basados en el ciclo de Maisotsenko | 28        |
| 1.2.2 Modelización d <mark>el Ciclo</mark> -M aplicado a la Refrigeración       | 32        |
| 1.3 Objeto de estudio                                                           | 34        |
| 2. METODOLOGÍA                                                                  | 36        |
| 2.1 Modelización del ciclo M 3                                                  | 36        |
| 2.2 Procedimiento en EES 4                                                      | 1         |
| 2.3 Procedimiento en Julia 4                                                    | 4         |
| 2.4 Análisis Paramétrico 4                                                      | 7         |
| 3. RESULTADOS Y DISCUSIÓN 4                                                     | 8         |
| 3.1 Introducción 4                                                              | 8         |
| 3.2 Validación de los Resultados 4                                              | 8         |
| 3.3 Análisis parámetro 5                                                        | 50        |
| 3.3.1 Análisis de las Condiciones Ambientales5                                  | 50        |
| 3.3.2 Análisis de las Condiciones Geométricas5                                  | 54        |
| 3.3.3 Análisis de las Condiciones Operativas5                                   | 6         |
| 3.6 Conclusiones                                                                | 58        |



| 4. CONCLUSIONES                        |     |
|----------------------------------------|-----|
| _4.1 INTRODUCCIÓN                      |     |
| 4.2 CONCLUSIONES PRINCIPALES           |     |
| 4.3 Futuras Líneas de investigación    |     |
| 5. ANEXOS                              |     |
| 5.1 ANEXO I: Código EES                |     |
| 5.2 ANEXO II: Resultados               |     |
| 5.3 ANEXO III: Resultados Graficados   | 118 |
| 5.3.1 Gráficos condiciones ambientales | 118 |
| 5.3.2 Gráficos Condiciones Geométricas | 127 |
| 5.3.3 Gráficos Condiciones Operativas  | 136 |
| 6. BIBLIOGRAFÍA                        |     |





## ÍNDICE DE ILUSTRACIONES

#### Introducción, Antecedentes y Objetivos

| FIGURA 1: Distancia a los objetivos de 2020 y 2030 para el consumo de energía primaria, EU-27. Fuente: Eurostat |
|-----------------------------------------------------------------------------------------------------------------|
| FIGURA 2: Evolución de la generación de energía de fuentes renovables/no renovables en España. Fuente: REE      |
| FIGURA 3: Generación de electricidad por fuentes renovables en España.<br>2019-2023. Fuente: REE                |
| FIGURA 4: Generación de electricidad por fuentes renovables en España.<br>2023. Fuente: REE                     |
| FIGURA 5: Emisiones de efecto invernadero en España18                                                           |
| FIGURA 6: Variación de las propiedades psicométricas del aire durante un enfriamiento evaporativo               |
| FIGURA 7: (a) Técnicas de enfriamiento evaporativo: panel refrigerativo (arriba), (b) spray (abajo)21           |
| FIGURA 8: Deluge cooling                                                                                        |
| FIGURA 9: Descripción esquemática del modelo de refrigeración indirecto y análisis psicrométrico                |
| FIGURA 10: Valeriy Maisotsenko con un prototipo de enfriadora basada en el ciclo que lleva su nombre            |
| FIGURA 11: Descripción esquemática del modelo de Ciclo M25                                                      |
| FIGURA 12: Refrigeración por ciclo de Maisotsenko. Adaptación de<br>Riangvilaikul y Kumar (2010)                |

#### Metodología

| FIGURA 13: Descripción esquemática del modelo de ciclo Maisotsenko     | 37   |
|------------------------------------------------------------------------|------|
| FIGURA 14: Descripción esquemática del modelo de ciclo Maisotsenko con |      |
| parámetros geométricos                                                 | . 38 |
| FIGURA 15: Simplificación en nodos del Ciclo de Maisotsenko en EES     | . 42 |
| FIGURA 16: Resultados de la modelización de EES representados en el    |      |
| diagrama psicrométrico                                                 | . 42 |



| FIGURA 17: Resultados representados en un dibujo esquemático del             |
|------------------------------------------------------------------------------|
| enfriador43                                                                  |
| FIGURA 18: Error recurrente del software EES a la hora de añadir variables43 |
| FIGURA 19: Esquema del ciclo Maisotsenko dividido en 10 nodos45              |
| FIGURA 20: Esquema que representa el bucle iterativo para obtener el ciclo   |
| Maisotsenko46                                                                |
| FIGURA 21: Esquema del ciclo M dividido en 10 nodos en funcionamiento47      |

#### **Resultados y Discusión**

| FIGURA 22: Gráficas con la validación del modelo                           | 49 |
|----------------------------------------------------------------------------|----|
| FIGURA 23: Resultados graficados de las condiciones ambientales            | 53 |
| FIGURA 24: Resultados graficados de las condiciones geométricas            | 55 |
| FIGURA 25: Ejemplo de resultados graficados de las condiciones operativas. | 57 |

#### Conclusiones



## ÍNDICE DE TABLAS

#### Metodología

| TABLA 1: Variables constantes y sus valores para realizar la modelización3 | 7  |
|----------------------------------------------------------------------------|----|
| TABLA 2: Valores asignados a las variables a analizar4                     | .9 |

#### **Resultados y Discusión**

| TABLA 3: Caso número 5 del capítulo 5.3.1 del ANEXO 2 | .53 |
|-------------------------------------------------------|-----|
| TABLA 4: Caso número 5 del capítulo 5.3.2 del ANEXO 2 | .55 |
| TABLA 5: Caso número 5 del capítulo 5.3.3 del ANEXO 2 | .57 |









## RESUMEN

El enfriamiento evaporativo mediante Ciclo de Maisotsenko es altamente eficiente para enfriar el aire, lo que lo convierte en una opción atractiva para diversas aplicaciones. Estas pueden incluir la climatización de espacios interiores, así como la mejora de la eficiencia energética en instalaciones como bombas de calor o plantas termosolares para la generación de energía eléctrica.

En este Trabajo de Fin de Grado (TFG), se demostrará cómo se puede modelar este ciclo en ordenador. Además, se llevará a cabo un análisis exhaustivo de las condiciones ambientales, operativas y geométricas que afectan al ciclo en cuestión. De esta manera, se identificaría con facilidad la configuración óptima para lograr la máxima eficiencia. Esta parte es crucial, ya que la eficiencia puede variar significativamente según la zona climática, dependiendo en gran medida de la humedad relativa y la temperatura ambiente. También es importante considerar las dimensiones geométricas del intercambiador y las condiciones operativas que favorecen al Coeficiente de Eficiencia Energética Refrigerativa (EER) y a la eficiencia del bulbo húmedo, así como la de punto de rocío.

Este estudio proporcionará información muy importante para determinar las condiciones ambientales, operativas y geométricas óptimas que debe tener este enfriador para alcanzar el mayor EER, eficiencia de bulbo húmedo y potencia frigorífica posible.







## Nomenclatura

| а                                                                | [m]                                                                                 | Anchura del canal.                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С р                                                              | [J kg <sup>-1</sup> K <sup>-1</sup> ]                                               | Calor específico.                                                                                                                                                                                                                                                                                                                                      |
| $\Delta p$                                                       | [Pa]                                                                                | Caída de presión.                                                                                                                                                                                                                                                                                                                                      |
| $\Delta T$                                                       | [°C]                                                                                | Variación de temperaturas.                                                                                                                                                                                                                                                                                                                             |
| G                                                                | [W m <sup>-2</sup> ]                                                                | Radiación global.                                                                                                                                                                                                                                                                                                                                      |
| $h_c$                                                            | [W m <sup>-2</sup> K <sup>-1</sup> ]                                                | Coeficiente de transferencia de calor por convección.                                                                                                                                                                                                                                                                                                  |
| $h_m$                                                            | [m s <sup>-1</sup> ]                                                                | Coeficiente de transferencia de masa.                                                                                                                                                                                                                                                                                                                  |
| L                                                                | [m]                                                                                 | Longitud del canal.                                                                                                                                                                                                                                                                                                                                    |
| Le                                                               | [-]                                                                                 | Número de Lewis.                                                                                                                                                                                                                                                                                                                                       |
|                                                                  | $[ka s^{-1}]$                                                                       | Fluio másico                                                                                                                                                                                                                                                                                                                                           |
|                                                                  | [1,9 0 ]                                                                            |                                                                                                                                                                                                                                                                                                                                                        |
| Q                                                                | [m <sup>3</sup> s <sup>-1</sup> ]                                                   | Caudal volumétrico.                                                                                                                                                                                                                                                                                                                                    |
| Q<br>Q.                                                          | [m <sup>3</sup> s <sup>-1</sup> ]<br>[W]                                            | Caudal volumétrico.<br>Ratio de transferencia de calor.                                                                                                                                                                                                                                                                                                |
| Q<br>Q <sup>.</sup><br>Q <sub>L</sub>                            | [m <sup>3</sup> s <sup>-1</sup> ]<br>[W]<br>[W]                                     | Caudal volumétrico.<br>Ratio de transferencia de calor.<br>Ratio de transferencia de calor latente.                                                                                                                                                                                                                                                    |
| Q<br>Q'<br>Q <sub>L</sub><br>Q <sub>S</sub>                      | [m <sup>3</sup> s <sup>-1</sup> ]<br>[W]<br>[W]<br>[W]                              | Caudal volumétrico.<br>Ratio de transferencia de calor.<br>Ratio de transferencia de calor latente.<br>Ratio de transferencia de calor sensible.                                                                                                                                                                                                       |
| Q<br>Q <sup>.</sup><br>Q <sub>L</sub><br>Q <sub>s</sub><br>r     | [m <sup>3</sup> s <sup>-1</sup> ]<br>[W]<br>[W]<br>[W]<br>[-]                       | Caudal volumétrico.<br>Ratio de transferencia de calor.<br>Ratio de transferencia de calor latente.<br>Ratio de transferencia de calor sensible.<br>Ratio de flujo másico de entrada de aire de trabajo.                                                                                                                                               |
| Q<br>Q'<br>Q <sub>L</sub><br>Q <sub>S</sub><br>T                 | [m <sup>3</sup> s <sup>-1</sup> ]<br>[W]<br>[W]<br>[W]<br>[-]<br>[°C]               | Caudal volumétrico.<br>Ratio de transferencia de calor.<br>Ratio de transferencia de calor latente.<br>Ratio de transferencia de calor sensible.<br>Ratio de flujo másico de entrada de aire de trabajo.<br>Temperatura.                                                                                                                               |
| Q<br>Q'<br>Q <sub>L</sub><br>Q <sub>s</sub><br>r<br>T<br>W'      | [m <sup>3</sup> s <sup>-1</sup> ]<br>[W]<br>[W]<br>[W]<br>[-]<br>[°C]<br>[W]        | <ul> <li>Caudal volumétrico.</li> <li>Ratio de transferencia de calor.</li> <li>Ratio de transferencia de calor latente.</li> <li>Ratio de transferencia de calor sensible.</li> <li>Ratio de flujo másico de entrada de aire de trabajo.</li> <li>Temperatura.</li> <li>Consumo de energía.</li> </ul>                                                |
| Q<br>Q'<br>Q <sub>L</sub><br>Q <sub>s</sub><br>r<br>T<br>W'<br>x | [m <sup>3</sup> s <sup>-1</sup> ]<br>[W]<br>[W]<br>[W]<br>[-]<br>[°C]<br>[W]<br>[m] | <ul> <li>Caudal volumétrico.</li> <li>Ratio de transferencia de calor.</li> <li>Ratio de transferencia de calor latente.</li> <li>Ratio de transferencia de calor sensible.</li> <li>Ratio de flujo másico de entrada de aire de trabajo.</li> <li>Temperatura.</li> <li>Consumo de energía.</li> <li>distancia de un elemento diferencial.</li> </ul> |

#### Abreviaciones

EER [-] Ratio de eficiencia energética.

#### Símbolos en latín

| Е | [-] | efectividad. |
|---|-----|--------------|
| η | [-] | eficiencia   |



| ρ  | [kg m <sup>-3</sup> ] | densidad                        |
|----|-----------------------|---------------------------------|
| φ  | [-]                   | humedad relativa                |
| ω  | [-]                   | humedad absoluta                |
| ωs | [-]                   | humedad absoluta de saturación. |

#### Subíndices y Superíndices

| W   | Corriente de aire del canal secundario (húmedo). |
|-----|--------------------------------------------------|
| f   | Ventilador.                                      |
| h   | Aire húmedo.                                     |
| in  | Entrada.                                         |
| out | Salida.                                          |
| ν   | vapor de agua.                                   |
| w   | agua.                                            |
| wbs | bulbo húmedo                                     |
|     |                                                  |





## 1. INTRODUCCIÓN, ANTECEDENTES Y OBJETIVO

## 1.1 INTRODUCCIÓN

El Programa de las Naciones Unidas para el Medio Ambiente (UNEP) subraya el papel fundamental de la energía en la economía y la sociedad, al mismo tiempo que destaca su impacto negativo. Según el UNEP, el sector energético es el principal contribuyente al calentamiento global, generando aproximadamente dos tercios de las emisiones de gases de efecto invernadero atribuidas a la actividad humana. Por lo tanto, reducir el consumo de energía y adoptar tecnologías de alta eficiencia y bajas o nulas emisiones de carbono son medidas esenciales para mitigar los efectos del cambio climático.

Para hacer la energía más sostenible, accesible y cuantificable en cuanto a progreso, la Unión Europea (UE) ha establecido tres indicadores de desarrollo sostenible: acceso a la electricidad, eficiencia energética y desarrollo y uso de energías renovables. Además, ha fijado metas para 2030, que incluyen un considerable aumento del 32% en la proporción de energía renovable con respecto al conjunto de fuentes energéticas y aumentar la tasa global de mejora en eficiencia energética al menos un 32,5% en la UE.

### 1.1.1 OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS)

El 2030 Climate & Energy Framework de la Unión Europea es el marco legislativo que rige las políticas en materia de sostenibilidad energética y cambio climático en el ámbito comunitario. Aquí se describen, entre otros, los principales objetivos políticos de la unión para el período de 2010 a 2030 en este ámbito. Las emisiones globales de CO<sup>2</sup> tendrían que disminuir en 2030 alrededor de un 55% respecto de los niveles de 1990, y seguir disminuyendo hasta alcanzar la neutralidad en 2050 para cumplir con este objetivo y evitar consecuencias catastróficas y cambios irreversibles. La temperatura media mundial en 2023 superó más de 1 grado centígrado la línea de base preindustrial, siendo los años anteriores, los más cálidos registrados. De acuerdo con el ODS 13, desde el año 1971 en España se observa cómo las temperaturas medias son cada vez más elevadas a lo largo del año, aunque el ascenso se aprecia con más claridad en verano,



habiendo además aumentado su duración casi 5 semanas más respecto a los comienzos de los años 80.

Tal y como se muestra en la *Figura 1*, los datos muestran que en 2022 la UE se acercó al objetivo de 992,5 Mtep para 2030 y la brecha se redujo al 26,7% después de registrar una diferencia más amplia en 2021 (un 31,2% de distancia del objetivo). El consumo de energía final alcanzó los 940 Mtep en 2022, un descenso del 2,8% respecto a 2021.



*Figura 1:* Distancia a los objetivos de 2020 y 2030 para el consumo de energía primaria, EU-27. Fuente: Eurostat.

### 1.1.2 SECTOR DE PRODUCCIÓN DE ENERGÍA ACTUAL Y FUTURO

Las energías renovables son, hoy en día, más importantes que nunca. Además del esfuerzo continuado por la descarbonización para combatir el calentamiento global, la UE priorizará estas energías debido al conflicto en Ucrania, buscando hacer a Europa independiente de los combustibles fósiles rusos. Debemos ser conscientes de que antes del conflicto, un 40% de todo el gas importado por Europa provenía de Rusia. Con esta idea, la UE ha desarrollado un programa para acelerar el desarrollo de tecnologías de alto rendimiento y de bajas emisiones de carbono, y su comercialización. El Plan Estratégico Europeo de Tecnología Energética (European Strategic Energy Technology Plan o SET Plan) [4] identifica 10 acciones para la investigación e innovación (SET Plan



key actions). Más específicamente, la acción clave número 1 (N.º 1 in renewables) incluye la integración de tecnologías renovables en los sistemas energéticos y la reducción de los costes de las tecnologías (Performant renewable technologies integrated in the system & Reduce the cost of technologies).



*Figura 2:* Evolución de la generación de energía de fuentes renovables/no renovables en España. Fuente: REE.

En el caso específico de España, en los últimos años se ha visto incrementado el porcentaje de producción de energía de fuentes renovables, como se observa en la *Figura 2*. En concreto, la generación de energía renovable respecto al total de energía producida ha pasado de un 38,9% en 2019 a un 52,6% en 2023. Más detalladamente, como muestran la *Figura 3* y la *Figura 4*, la tecnología más empleada está siendo la eólica con el 46% de la producción de energía renovable, seguida por la solar fotovoltaica (28%) y la hidráulica (19%). Todos los datos se han extraído de [5].





Figura 3: Generación de electricidad por fuentes renovables en España. 2019-2023.

|                        |                   | Fuente:                    | REE.    |             |                       |         |
|------------------------|-------------------|----------------------------|---------|-------------|-----------------------|---------|
| ALANCE ELÉCTRICO (GV   | Vh)   SISTEMA ELÉ | CTRICO: Nacional           |         |             |                       |         |
| 23                     |                   |                            |         |             |                       | e       |
| ▲ Eólica               | 62.569            | & Nuclear                  | 54.276  | (€) Gen     | (≩) Generación        |         |
| A Solar fotovoltaica   | 37.332            | Ciclo combinado            | 46.051  | Con:<br>bor | Consumos en<br>bombeo |         |
| () Hidráulica          | 25.273            | Cogeneración               | 17.291  |             | Importa               |         |
| :X: Solar térmica      | 4.694             | 0 <sup>©</sup> Turbinación | 5.195   | Francia     | 7.432                 | -9.063  |
| Otras renovables       | 3.590             | Garbón                     | 3.871   | Portugal    | 3.425                 | -13.655 |
| Residuos<br>renovables | 846               | Ön Motores diésel          | 2.511   | Andorra     | • 459<br>0            | -2.315  |
| Midroeólica            | 17                | Residuos no<br>renovables  | 1.319   | Seld        | o I.<br>rnacionales   | -13.95  |
|                        |                   | Turbina de vapor           | 1.218   |             |                       |         |
|                        |                   | ුම Turbina de gas          | 754     |             |                       |         |
|                        |                   | 日 Fuel + Gas               | 0       |             |                       |         |
| Generación renovabl    | e<br>47.4.224     | Generación no renova       | ble     |             |                       |         |
| 50,3%                  | 134.321           | 43,/70                     | 132.486 |             |                       |         |

Figura 4: Generación de electricidad por fuentes renovables en España. 2023.

Fuente: REE.



## 1.1.3 CONSUMO DE ENERGÍA EN EL SECTOR DE LA CONSTRUCCIÓN

Una de las áreas clave donde se pueden implementar medidas para combatir el cambio climático es en el sector de la construcción y la climatización de edificios. Los edificios son responsables de una parte significativa del consumo energético y las emisiones de gases de efecto invernadero a nivel mundial.

Según datos de la Agencia Internacional de Energía (AIE), las operaciones de los edificios representan el 39% del consumo global de energía final y, aproximadamente, constituye el 36% de las emisiones de CO<sup>2</sup> tal y como muestra la *Figura 5*.

De hecho, las emisiones del sector de la construcción han escalado continuamente, con un aumento promedio del 1% anual desde 2015. Es alarmante que este sector por sí solo represente más de un tercio del total de las emisiones globales. Alrededor de dos tercios de estas emisiones son indirectas, procedentes de la producción de electricidad y calor utilizados en los edificios.



Figura 5: Emisiones de efecto invernadero en España.



En los países del sur de Europa, como España, Italia y Portugal la refrigeración puede suponer hasta el 50% del consumo de energía final de los edificios. Es por ello por lo que el sector de la edificación es un objetivo central de la política de eficiencia energética comunitaria.

Esta alta proporción de gasto energético en calefacción destaca la importancia de implementar estrategias para mejorar la eficiencia energética en este ámbito.

En la directiva 2018/844 relativa a la eficiencia energética de los edificios, la UE fija como objetivo que todos los edificios de nueva construcción sean de consumo de energía casi nulo, NZEB (Nearly Zero Energy Buildings), para este año 2024. Este tipo de edificios se caracteriza por tener un consumo muy reducido de energía. Para alcanzar los estándares impuestos por las administraciones (la unión europea delega en los estados miembros los límites en sus territorios), se puede actuar en dos líneas de actuación: reducción de la demanda de energía y/aumento de la eficiencia de los equipos.

- La primera línea de actuación busca el uso de soluciones constructivas acordes a la funcionalidad y emplazamiento del edificio que permitan reducir la demanda de energía, por ejemplo, con la mejora del aislamiento del edificio.
- La segunda línea de actuación pasa por aumentar la eficiencia de conversión de energía primaria a energía final de los equipos de climatización que operan en los edificios, por ejemplo, con el uso de energías renovables.

Debido a la limitación existente en la reducción de demanda en edificios (por ejemplo, demandas como el agua caliente sanitaria sólo dependen del número de ocupantes y por tanto existe un valor de partida que no puede reducirse), el aumento de la eficiencia de los equipos adquiere una mayor relevancia.



### 1.1.4 ENFRIAMIENTO EVAPORATIVO

El enfriamiento evaporativo consiste en el enfriamiento de una corriente de aire por evaporación de agua líquida. Debido al escaso contenido en humedad de la corriente de aire, parte del agua se evapora, obteniendo la energía necesaria de la corriente de aire. De esta forma, el aire ve reducida su temperatura a costa de un aumento en su humedad específica.



*Figura 6:* Variación de las propiedades psicométricas del aire durante un enfriamiento evaporativo.

La *Figura 6* muestra la variación de las propiedades psicométricas del aire durante el enfriamiento evaporativo. Éste consiste en un proceso idealmente isoentálpico que tiene como límite de enfriamiento la temperatura de bulbo húmedo del aire. Esto se debe a que el aire tiene una capacidad límite de absorción de agua, a partir de la saturación ya no podrá evaporar más agua. Hay que resaltar que la eficiencia evaporativa depende de la técnica empleada pero nunca se alcanza la temperatura límite (bulbo húmedo). Cabe mencionar que, la eficacia de este proceso está muy influenciada por las propiedades del aire: cuanto más seco y caluroso sea el ambiente, mejor funcionará porque se podrá evaporar más cantidad de agua.

Existen diferentes métodos de enfriamiento evaporativo por lo tanto es preciso clasificarlos. Tradicionalmente se pueden dividir en enfriamientos evaporativos directos e indirectos.



### 1.1.5 ENFRIAMIENTO EVAPORATIVO DIRECTO

El enfriamiento evaporativo directo consiste precisamente en evaporar agua en una corriente de aire con el objetivo de disminuir su temperatura y con la consecuencia de aumentar su humedad, tal y como queda reflejado en la *Figura 7*.

Existen dos técnicas principales de preenfriamiento evaporativo directo: pre-cooling y deluge cooling.

El pre-cooling consiste en el pre-enfriamiento del aire a la entrada del condensador de la bomba de calor, permitiendo que este intercambie calor con aire que se encuentra a menor temperatura que la ambiente. Para conseguir este resultado existen dos métodos, el panel refrigerativo y el rociado de agua líquida (spray).



*Figura 7:* (a) Técnicas de enfriamiento evaporativo: panel refrigerativo (arriba), (b) spray (abajo).

El panel refrigerativo o cooling pad, *Figura 7 (a)*, que sería el método de superficie mojada, se fabrica de distintos materiales como fibras entretejidas, celulosa o plástico. El panel consiste en láminas corrugadas con distintos ángulos. Así que el agua se distribuye sobre la parte superior del relleno y fluye hacia abajo por gravedad para



humedecer todas las capas uniformemente. El aire ambiente circula a través del pad, hace que el agua se evapore y que el aire se enfríe. Su principal inconveniente reside en la pérdida de presión que sufre el aire al pasar por el panel, de manera que para mantener el mismo punto de funcionamiento se requerirá de un consumo extra de potencia.

Por otro lado, se puede rociar las gotas de agua directamente en el aire *Figura 7 (b)*, mediante boquillas atomizadoras (spray). El contacto directo entre las gotas de agua y el aire no saturado induce la evaporación del agua a costa del enfriamiento del aire. La ventaja de este sistema respecto el otro es que no hay pérdida de presión adicional en el aire. Sin embargo, es necesario instalar una bomba externa que aumente la presión del agua y permita el rociado del spray. Además, a menor diámetro de la boquilla del spray, mayor tendrá que ser el salto de presión que ofrezca la bomba y por tanto mayor consumo.

Por último, el deluge cooling se basa en el rociado directo sobre las superficies de intercambio de calor, obteniendo una alta eficiencia a cambio de necesitar un sistema de control contra la corrosión de la superficie del intercambiador, como se muestra en la *Figura 8*.



Figura 8: Deluge cooling.

Cada técnica tiene sus ventajas y limitaciones. Por ejemplo, la atomización es simple y de bajo costo, pero puede no evaporar completamente las gotas de agua, lo que puede



causar problemas de obstrucción y corrosión. La superficie mojada puede saturar el aire, pero introduce pérdidas de presión adicionales y puede reducir la eficiencia a caudales de aire altos. El sistema deluge es altamente eficiente, pero conlleva riesgos de obstrucción y corrosión.

### 1.1.5 ENFRIAMIENTO EVAPORATIVO INDIRECTO

El enfriamiento evaporativo indirecto se caracteriza por su capacidad para enfriar el aire hasta la temperatura de bulbo húmedo sin aumentar su humedad, a diferencia del enfriamiento directo.





Como se ilustra en la *Figura 9*, la refrigeración evaporativa directa puede enfriar el aire hasta la temperatura termodinámica de bulbo húmedo de las condiciones ambientales (aire de entrada) aumentando la humedad del aire útil. En contraste, la refrigeración evaporativa indirecta puede alcanzar un enfriamiento ideal hasta la temperatura de bulbo húmedo sin incrementar la humedad del aire. Este proceso se lleva a cabo mediante la transferencia sensible de calor entre dos corrientes de aire: una secundaria que se enfría y humedece mediante el contacto con agua líquida, y otra primaria que intercambia calor sensible con la primera, manteniendo constante su humedad.



Este método conserva las ventajas del enfriamiento evaporativo directo, evitando el inconveniente de la posible emisión de productos químicos y microorganismos a la atmósfera, como la bacteria Legionella, debido al arrastre de partículas de agua en la corriente de aire húmedo.

## 1.1.7 CICLO MAISOTSENKO (CICLO M)

En este contexto, el Ciclo Maisotsenko surge como una solución innovadora y eficiente para la climatización de edificios y la generación de energía térmica. Esta tecnología de enfriamiento evaporativo, desarrollada por el profesor Valeriy Maisotsenko y sus compañeros en la Unión Soviética a través de las patentes SU979796 y SU620745, *Figura 10*. El esquema de Maisotsenko se caracteriza por su capacidad para proporcionar un enfriamiento significativo con un consumo de agua notablemente reducido en comparación con los sistemas de refrigeración convencionales.



*Figura 10:* Valeriy Maisotsenko con un prototipo de enfriadora basada en el ciclo que *lleva su nombre.* 

El Ciclo Maisotsenko, de ahora en adelante "Ciclo M" mejora este proceso utilizando múltiples etapas de reutilización del aire enfriado, logrando temperaturas cercanas a la temperatura de rocio, y ofreciendo una eficiencia superior.



El Ciclo M (*Figura 11*) se basa en el principio de enfriamiento adiabático, donde el aire se enfría al entrar en contacto con un medio húmedo, lo que resulta en una reducción de la temperatura ambiente. Sin embargo, a diferencia de los sistemas convencionales de enfriamiento evaporativo, el Ciclo M incorpora una serie de mejoras que aumentan su eficiencia y rendimiento. Al combinar los principios de enfriamiento evaporativo con mejoras técnicas y tecnológicas, el Ciclo M ofrece un enfoque sostenible y rentable para combatir el cambio climático y promover la eficiencia energética en diversos sectores.



Figura 11: Descripción esquemática del modelo de Ciclo M.

Este ciclo se caracteriza por ser un tipo de sistema de enfriamiento evaporativo indirecto de múltiples etapas, donde se combinan procesos termodinámicos de transferencia de calor y enfriamiento evaporativo para conseguir que la temperatura del aire de trabajo alcance la temperatura de rocío de las condiciones ambiente. En otras palabras, se trata de un enfriamiento evaporativo indirecto multi-etapa por el cual el aire puede enfriarse teóricamente a la temperatura de rocío, en vez de a la temperatura del bulbo húmedo de las condiciones ambiente, gracias a que aprovecha la energía renovable psicrométrica disponible a partir del calor latente del agua que se evapora en el aire.





*Figura 12:* Refrigeración por ciclo de Maisotsenko. Adaptación de Riangvilaikul y Kumar (2010).

En el Ciclo M, el aire ambiente ingresa a un canal seco, que transfiere calor sensible hacia un canal húmedo. Como resultado, el aire de salida que sale del sistema es más frío que la temperatura ambiente. Resulta ventajoso redirigir una parte de este aire para que sirva como aire de trabajo en el canal húmedo. A continuación, este aire de trabajo se humidifica y absorbe calor del canal seco antes de ser expulsado a la atmósfera. En consecuencia, la temperatura del aire de salida desciende por debajo de la temperatura ambiente de bulbo húmedo sin alterar los niveles de humedad.

Una de las principales ventajas que presenta el Ciclo M ya se ha comentado con anterioridad y es la capacidad de generar aire en condiciones de temperatura inferior a la temperatura de bulbo húmedo de las condiciones del aire de entrada. La segunda ventaja radica en que la energía necesaria para hacer funcionar el ciclo se limita a la energía de accionamiento del ventilador. En condiciones normales de operación, el consumo de un ventilador es sustancialmente inferior al consumo de un compresor.

Es por ello por lo que, este tipo de sistemas posee un enorme potencial de ahorro de energía, ya que consumen 10 veces menos energía primaria en comparación con los sistemas basados en bomba de calor. Esto implica EERs del ciclo en el rango 200-600, **Cui et al. (2015).** 



## 1.2 Antecedentes

Numerosos estudios han investigado el potencial de los enfriadores evaporativos indirectos mediante ciclo de Maisotsenko.

Por ejemplo, Pandelidis, Anisimov y Worek (2015) desarrollaron un modelo bidimensional de intercambiador de calor de flujo cruzado M-Cycle, que arroja luz sobre su rendimiento en diversas condiciones operativas. Sus hallazgos resaltan la influencia de factores como los parámetros del aire de entrada, las características de diseño y las configuraciones del sistema en la eficiencia y efectividad energética, destacando así el importante potencial de estos dispositivos en los sistemas de aire acondicionado. De manera similar, Boukhanouf et al. (2017) presentaron un modelo informático y experimental de un sistema de refrigeración por evaporación indirecta con temperatura de bulbo subhúmedo para la refrigeración de espacios en edificios, logrando una capacidad de refrigeración de 225  $W/m^2$ . Caliskan et al. (2011) realizaron un análisis energético, exergético y de sostenibilidad del ciclo M comparándolo con tres tipos convencionales de sistemas de refrigeración por aire para aplicaciones de edificación, obteniendo mejores resultados para el ciclo M. Investigando sobre el diseño del enfriador evaporativo, Oh et al. (2019) desarrollaron un modelo matemático del enfriador evaporativo indirecto para comparar el rendimiento entre una configuración de purga única y de cuatro purgas. Kabeel et al. (2017) modificaron el intercambiador de calor comparando la adición de un deflector interno y encontraron mejoras significativas en la reducción de la temperatura del aire de suministro (21%) y el coeficiente de rendimiento (71%) con respecto a diseños anteriores.

*Zhao y cols.* (2009) investigaron la viabilidad del enfriamiento por evaporación indirecta mediante Ciclo M para el aire acondicionado en regiones de China y el Reino Unido. Concluyen que el sistema es adecuado para la mayoría de las zonas, especialmente aquellas con climas cálidos y secos, mientras que se necesitan medidas de adaptación para las regiones húmedas. También consideran que la temperatura del agua del grifo es adecuada para alimentar el sistema. Del mismo modo, *Jaber y Ajib* (2011) estudiaron su viabilidad en regiones mediterráneas con dos configuraciones diferentes, concluyendo su alto potencial y ahorro energético y económico. En la misma línea, *Pandelidis, Anisimov, Drag, et al.* (2018) utilizaron datos climáticos polacos para



comparar el rendimiento de los sistemas de aire acondicionado típicos y sin el ciclo M, concluyendo que el enfriamiento evaporativo mediante el ciclo Maisotsenko tiene un alto potencial de aplicación y permite generar importantes ahorros de energía.

### 1.2.1 Equipos de refrigeración basados en el ciclo de Maisotsenko

Las tecnologías HVAC basadas en el ciclo M están recibiendo mucha atención por parte de los investigadores debido al potencial de enfriamiento evaporativo del punto de rocío. En la bibliografía se han investigado muchos diseños de sistemas HVAC para alcanzar la carga sensible y latente de AC para diversas aplicaciones, entre las que se incluyen: AC convencional para edificios residenciales y de oficinas; techo frío y/o ventilación por desplazamiento; refrigeración de centros de datos; refrigeración del aire de entrada de turbinas de gas; AC de invernaderos; refrigeración electrónica; refrigeración de baterías de automóviles; procesos de fabricación y almacenamiento; formación de escarcha para recuperación de energía], etc.

*Riangvilaikul y Kumar (2010)* llevaron a cabo un estudio experimental de un refrigerador M para vencer la carga sensible de ventilación de una aplicación de climatización. Los autores estudiaron las condiciones del aire de salida y la eficiencia del sistema en diferentes condiciones de aire de entrada (temperatura, humedad y velocidad) características de climas secos, templados y húmedos. Los resultados mostraron que la eficiencia de bulbo húmedo varió entre 92 y 114% y la eficiencia de rocío entre el 58 y 84.

El mismo grupo de científicos llevó a cabo un análisis CFD para evaluar la influencia de los principales parámetros de operación, tales como velocidad del aire, dimensiones del equipo y ratio de flujos de aire *(Riangvilaikul y Kumar 2010)*. El modelo se utilizó para optimizar los parámetros de operación y para investigar la eficiencia del sistema funcionando bajo diversas condiciones de entrada de aire.

*Zhan et al. (2011)* llevaron a cabo un modelo analítico para evaluar el rendimiento térmico de un enfriador de ciclo M. Los resultados obtenidos permitieron obtener la relación entre la eficiencia de enfriamiento (bulbo húmedo), el COP del sistema con parámetros operativos. El mismo grupo de científicos estudiaron intercambiadores de calor basados en ciclo M con flujo cruzado y a contracorriente en *Zhan et al. (2012)*. Los



resultados mostraron que el intercambiador a contracorriente ofrecía una mayor capacidad de enfriamiento (aproximadamente un 20% más alta), así como una mayor eficiencia (15-23% más alta) en igualdad de tamaño físico y bajo las mismas condiciones de operación. Sin embargo, el sistema de flujo cruzado tenía una eficiencia energética (COP) mayor (10% más alta).

*Caliskan et al. (2011)* presentaron el análisis energético y exergético de un sistema novedoso (basado en ciclo M) y tres convencionales de para el enfriamiento de aire en aplicaciones de edificación. Los resultados obtenidos mostraron que la eficiencia exergética del sistema novedoso era mayor que las de los sistemas convencionales. A una temperatura de estado muerto de 50°C, la eficiencia de eficiencia del sistema de enfriamiento novedoso puede alcanzar el 60,33% como máximo, por el 35,87% que se puede alcanzar en un sistema convencional.

En *Weerts (2011), Weerts et al. (2012), Weerts (2012)* se describe la comparativa energética experimental entre un sistema convencional y un sistema de refrigeración basado en ciclo M en el National Snow and Ice Data Center (NSIDC) de la Universidad de Colorado. Se llevaron a cabo mediciones experimentales del consumo del equipo convencional, antes de ser reemplazado por el sistema basado en el ciclo M, y después de la instalación de este último. Los resultados mostraron una disminución de un 90% de la energía necesaria para la refrigeración.

En el estudio de *Miyazaki et al. (2011)*, se analiza una chimenea solar acompañada por un enfriador evaporativo M para la climatización pasiva de edificios.

Los resultados mostraron que el sistema podía afrontar las ganancias internas de calor de un edificio de oficinas. Además, se indicó la geometría óptima del canal de enfriamiento por evaporación.

En el trabajo de *Caliskan et al. (2012)* se estudiaron tres refrigeradores M para aplicaciones HVAC desde un punto de vista energético y exergético. Uno de los sistemas (Sistema II) analizados se acciona con energía fotovoltaica, siendo el primer refrigerador de estas características localizado en la bibliografía. Las eficiencias máximas calculadas (exergía) son del 35,13% para el Sistema III y 34,94% para el Sistema II, respectivamente. Las emisiones de gases de efecto invernadero de los



sistemas se calculan en 2119,68, 153,6 y 3840  $gCO_2/dia$  para los Sistemas I, II y III, respectivamente.

En *Chua et al. (2013)* se presenta una revisión de las tecnologías de enfriamiento y estrategias innovadoras, entre las que se incluye el ciclo M, que podrían reducir potencialmente la ratio consumo equipos de refrigeración/capacidad de refrigeración, desde la media actual de 0,9 kW/ Rton a 0,6 kW/R ton o menos.

En *Anisimov et al. (2014)* se describe el modelado numérico de la transferencia de calor y masa en cinco intercambiadores diferentes que utilizan el ciclo de Maisotsenko para el enfriamiento por evaporación indirecta. Las simulaciones realizadas revelan muchas características únicas de dispositivos considerados, lo que permite una predicción precisa de su rendimiento. Los resultados mostraron mejoras sustanciales en la eficiencia, pero sensibles a las condiciones de entrada.

**Pandelidis y Anisimov (2015)** llevaron a cabo un estudio comparativo analítico para diferentes configuraciones de intercambiadores de calor evaporativos basados en el ciclo M. Los autores concluyeron que el rendimiento de las unidades depende esencialmente de las condiciones del aire de entrada y que la eficiencia depende de parámetros operativos como la relación de gastos de aire y el gasto de aire primario.

En *Pandelidis et al. (2015)* se investiga la transferencia de calor y masa en dos intercambiadores de calor y masa basados en el ciclo Maisotsenko utilizados para el enfriamiento por evaporación indirecta en diferentes sistemas de aire acondicionado.

Los resultados del modelo permiten comparar los dos tipos de intercambiadores de calor en diferentes aplicaciones para sistemas de aire acondicionado para obtener una eficiencia óptima.

*Rogdakis et al. (2014)* estudiaron, desde un punto de vista experimental y numérico, la operación de un refrigerador M operando en un clima Mediterráneo (Grecia).

Los autores analizaron el efecto de las condiciones ambientales sobre el consumo de agua. Se reportan resultados de eficiencia entre el 97% y 115%, mientras que el consumo de agua está en el rango 2,5-3,0 kgw/kWhc.



En los últimos años, son numerosos los estudios que analizan el ciclo de refrigeración M desde diferentes enfoques con objeto de caracterizar y optimizar la eficiencia:

*Jia et al. (2019)* analizaron la eficiencia térmica de un refrigerador M. Los resultados mostraron que el enfriador recubierto con fibras de nylon demostró un mejor rendimiento de enfriamiento. La eficiencia de rocío del refrigerador con un recubrimiento de fibra de poliestireno + nylon (PS+NL) varió de 46,7% a 78,6%. Los autores señalan esta combinación de materiales para el intercambiador de calor para reducir su tamaño y peso, manteniendo las prestaciones. *Zhu et al. (2019)* realizaron un análisis teórico detallado de la transferencia de calor y masa en un ciclo M, e identificaron los parámetros adimensionales influyentes sobre la eficiencia de rocío. *Wan et al. (2020)* desarrollaron un modelo numérico, validado experimentalmente, para investigar los procesos de transferencia de calor y masa en un ciclo M, que incorporan el fenómeno de condensación. *Min et al. (2020)* analizó el condensado retenido en las superficies de los canales de aire primario y su impacto en el rendimiento de transferencia de calor del sistema

Tal y como se reporta en *Riangvilaikul y Kumar (2010), Anisimov et al. (2014)* y *Mahmood et al. (2016)*, entre otros, el principal factor que afecta el rendimiento de enfriamiento es la humedad del aire de entrada. Un aumento en la humedad del aire al entrar en el sistema, bajo los mismos parámetros operativos de referencia, provoca un aumento de la temperatura del aire de salida, disminuyendo el rendimiento de enfriamiento.

Este comportamiento es bastante predecible, ya que una humedad más baja en el aire de entrada implica una mayor capacidad del aire para absorber calor latente en el canal húmedo y, en consecuencia, se generar unas condiciones más favorables para la transferencia de calor sensible del canal seco al húmedo. El umbral de humedad específica señalado en la literatura se encuentra en torno a los 11 gv/kga. Este hecho puede suponer una limitación importante especialmente en zonas climáticas cálidas y húmedas, como es el sureste español.

Unas condiciones de 30°C y un 40% de humedad relativa son condiciones habituales de verano en la ciudad de Elche, por lo que en estos casos los sistemas de refrigeración basados en ciclo M no son tan atractivos.



Además, a diferencia de los sistemas convencionales, la capacidad de refrigeración está directamente relacionada con las condiciones ambientales, estando muy limitada la capacidad de maniobra.

El consumo de agua es otro aspecto a tener en cuenta. Aunque el consumo es inferior al de equipos como torres de refrigeración, y el mantenimiento del equipo por el uso de agua, debe considerarse.

### 1.2.2 Modelización del Ciclo-M aplicado a la Refrigeración

Changhong Zhan a,c, Zhiyin Duan b, Xudong Zhao b,\*, Stefan Smith b, Hong Jin a, Saffa Riffat demostraron que un intercambiador por ciclo de Maisotsenko de contracorriente puede ofrecer un mayor ahorro energético y una mejor capacidad de enfriamiento que el de flujo cruzado.

Los estudios resaltan la necesidad de optimizar las condiciones operativas, como el caudal de aire y la relación entre el aire de trabajo y el de admisión, para mejorar el rendimiento según las condiciones ambientales y las necesidades del usuario. Estas investigaciones permiten diseñar sistemas de refrigeración por punto de rocío eficientes para diferentes climas y estaciones secas.

Joohyun Lee 1 y Dae-Young Lee fabricaron un enfriador evaporativo mediante ciclo-M a contracorriente y lo examinaron experimentalmente en diversas condiciones de funcionamiento. Pudiendo llegar a varias conclusiones, estos son que la potencia frigorífica es máxima cuando el ratio es de 0.3, que el aire de entrada puede enfriarse por debajo de su temperatura de bulbo húmedo y que la caída de presión en el canal húmedo permanece invariable tanto si se suministra agua como si no.

Sergey Anisimov, Demis Pandelidis, Jan Danielewicz hicieron un análisis numérico de un intercambiador evaporativo por ciclo-M mediante el método NTU-e, estos investigadores llegaron a varias conclusiones, como que la máxima eficiencia nos la daría en climas cálidos y secos, que este depende en gran medida del número NTU, de la velocidad de aire y del ratio de flujos de aire entre canales. También se dieron cuenta de que tanto los intercambiadores de flujo cruzado y de contraflujo tienen efectividades muy similares, pero añadieron que el de flujo cruzado es la propuesta más razonable para propósitos comerciales.



**Demis Pandelidis a, \* Sergey Anisimov a, William M. Worek** realizaron una modelización del ciclo M utilizando métodos numéricos y llevaron a cabo un análisis exhaustivo de los resultados, incluyendo gráficos. Observaron que la eficiencia energética está influenciada por parámetros geométricos y operativos, como la longitud, el ancho y la forma del canal, así como la velocidad del aire y el ratio. Descubrieron que aumentar la longitud del intercambiador hace que la temperatura del aire de salida sea más baja, pero esto afecta negativamente la capacidad de refrigeración específica, ya que se requiere una gran superficie para una mejora relativamente pequeña.

También determinaron que la forma de canal más eficiente es la triangular, aunque complica la distribución uniforme del agua, por lo que es más práctico usar canales planos. En cuanto al ratio, encontraron que los valores óptimos se sitúan entre 0.3 y 0.45.

Existen numerosos estudios paramétricos en el campo de la climatización que examinan las variables ambientales, geométricas y operativas junto con el EER, la eficiencia de bulho húmedo y la potencia frigorífica del Ciclo de Maisotsenko. No obstante, estos estudios no se han realizado de manera conjunta, más bien, se ha evaluado la influencia de cada condición por separado, sin unificarlas en una única investigación.



## 1.3 Objeto de estudio

Como hemos ido comentando hasta ahora, el aumento de la eficiencia energética en instalaciones y a su vez el uso de energías renovables en nuestra sociedad, son muy importantes para afrontar los desafíos del cambio climático, el desarrollo sostenible y la energía limpia.

Una tecnología por desarrollar y con gran potencial es el Enfriamiento Evaporativo Indirecto mediante el Ciclo de Maisotsenko, este ha demostrado ser mucho más eficiente que los sistemas de enfriamiento convencionales como es la bomba de calor y el enfriamiento evaporativo estándar.

Por esta razón, en este trabajo de final de grado se ha decidido llevar a cabo un estudio paramétrico integral.

En él se analiza la influencia de las condiciones ambientales (temperatura ambiente y humedad relativa), geométricas (longitud y ancho) y operativas (velocidad del aire y ratio) sobre la potencia frigorífica proporcionada por el enfriador, el coeficiente de eficiencia energética y la eficiencia del bulbo húmedo.

Para ello, se ha modelado el ciclo de Maisotsenko mediante ordenador, validando dicho modelo con los resultados de un artículo experimental. Finalmente, se ha llevado a cabo un análisis paramétrico exhaustivo, incorporando 2025 casos distintos en la modelización.

- En el capítulo 2 se describe la metodología utilizada para realizar la modelización del ciclo M y el análisis paramétrico.

- En el capítulo 3 se presenta la validación de la modelización, los resultados del análisis paramétrico con algunos graficos y las conclusiones de estos.

- El capítulo 4 resume las conclusiones más significativas obtenidas en el

presente Trabajo Fin de Grado y sugiere posibles líneas de investigación

futuras.

- El capítulo 5 hace referencia a la Bibliografía consultada para la redacción de



este proyecto.

- En el anexo I incluye el código de EES para modelar el Ciclo M.
- En el anexo II hay una tabla con los resultados de la modelización.
- En el anexo III se encuentran los resultados graficados.




# 2. METODOLOGÍA

En esta sección se describen los procedimientos realizados para llevar a cabo la investigación, comenzando con la modelización del ciclo de Maisotsenko. Detallando las simplificaciones y criterios adoptados para esta, seguidos de una breve pero concisa explicación de las ecuaciones que constituyen el ciclo. Luego, se describe el procedimiento llevado a cabo para implementar la modelización en el software EES y en el lenguaje de programación Julia, incluyendo todos los problemas encontrados y las soluciones adoptadas a ellos. Concluyendo el apartado con una explicación de los criterios empleados para realizar el estudio paramétrico, especificando los valores asignados a las variables de las condiciones ambientales, geométricas y operativas, y presentando los KPIs a analizar.

El apartado concluye con una explicación de los criterios empleados para realizar el estudio paramétrico, especificando los valores asignados a las variables de las condiciones ambientales, geométricas y operativas, y presentando los KPIs que se analizarán.

UNIVERSITAS Miguel Hernánde:

## 2.1 Modelización del ciclo M

Para realizar la investigación, se ha desarrollado un modelo matemático detallado del ciclo M. Con el objetivo de simplificar el análisis, se han aplicado las siguientes suposiciones:

- No se consideran pérdidas de calor hacia el entorno.
- La resistencia térmica de la pared y la diferencia de temperatura de las superficies de la pared entre el lado seco y el húmedo se omiten debido a la resistencia térmica de la propia pared.
- El aire se trata como un fluido incompresible, por lo que todas sus propiedades son uniformes dentro del volumen de control incremental.
- Se asume que la corriente de aire secundaria está completamente saturada con la película de agua.
- Se considera que el número de Lewis es igual a 1 (Le=1).



| Material del Enfriador   | Aluminio: 209.3 $\frac{W}{m*K}$ |
|--------------------------|---------------------------------|
| Número de Lewis          | 1                               |
| Altura de los canales    | 5 mm                            |
| Separación entre canales | 1 mm                            |
| Presión                  | 101325 pascales                 |
| Flujo másico de agua     | $60 \frac{g}{h}$                |

#### PARÁMETROS VALOR

 Tabla 1: Variables constantes y sus valores para realizar la modalización.

La *Figura 13 y Figura 14* muestran una descripción esquemática del modelo de ciclo M. Las ecuaciones que describen los procesos termofísicos que tienen lugar en el enfriador evaporativo indirecto se definen para un volumen de control diferencial mediante las siguientes ecuaciones.



Figura 13: Descripción esquemática del modelo de ciclo Maisotsenko.





Figura 14: Descripción esquemática del modelo de ciclo Maisotsenko con parámetros geométricos.

Las ecuaciones que describen los procesos termofísicos que ocurren en el enfriador evaporativo indirecto se definen para un volumen de control diferencial mediante las siguientes ecuaciones.

Por un lado, a lo largo del canal seco sólo se produce transferencia de calor sensible desde la corriente de aire primario a la película de agua en el canal húmedo:

$$\delta Q_{s1} = h_{cd} a (T_d - T_w) dx \quad (1)$$

Por otra parte, a lo largo del canal húmedo se producen transferencias de calor tanto sensible como latente entre la película de agua y la corriente de aire, junto con la transferencia de masa debida a la evaporación del agua en la corriente de aire:

$$\delta Q_{s2} = h_{cd} a (T_w - T_a) dx \tag{2}$$

$$\delta Q_L = h_{Lv} * dm_w = -h_{Lv} * dm_w \tag{3}$$

$$dm_w = -h_m * \rho_w * a(\omega_s - \omega)dx \tag{4}$$

Donde el coeficiente de transferencia de masa entre la corriente de aire secundario y la película de agua está representado por la ecuación del número de Lewis y del coeficiente de transferencia de calor por convección.

$$h_m * \rho_m = \frac{h_c}{C_{ph} * Le} \tag{5}$$



- Víctor Palau Pineda -

En general, aplicando los balances de energía y masa a los diferentes volúmenes de control (canal seco, película de agua y corriente de aire secundaria), derivamos un sistema diferencial no lineal que comprende cinco ecuaciones. La primera ecuación es el balance de energía en el canal seco, donde la diferencia en la entalpía de la corriente de aire se debe a la pérdida de calor sensible.

$$-\delta Q_{s1} = m_d * C_{ph} * dT_d \tag{6}$$

La segunda ecuación es el balance de energía en la película de agua. La diferencia de entalpía del agua para un volumen diferencial se debe al intercambio de calor sensible entre la corriente de aire en el canal primario (ganancia de calor) y el intercambio de calor sensible y latente con la corriente de aire del canal secundario.

$$-\delta Q_{s1} + \delta Q_{s2} - \delta Q_L = m_w * C_{pw} * \partial T_w \tag{7}$$

La tercera ecuación es el balance de energías en un volumen diferencial de la corriente de aire del canal secundario. La diferencia de entalpía de la corriente de aire es resultado del intercambio de calor sensible con la película de agua.

$$\delta Q_{s2} = m_a * C_{ph} * \frac{\partial T_d}{\partial x}$$
(8)

La cuarta ecuación es el balance de masas en un volumen diferencial de la corriente de aire en el canal secundario. La ecuación describe como la humedad relativa cambia a lo largo de este conducto como resultado de la evaporación del agua en relación con el caudal másico de aire seco.

$$\delta\omega = \frac{\partial m_v}{\partial m_a} = \frac{h_m * \rho_v * a}{m_a} * (\omega_s - \omega) * dx$$
(9)

La quinta ecuación es el balance de masas aplicado a un volumen diferencial de la película de agua. Esta nos dice que el agua que se pierde en la película es la misma que gana la corriente de aire en forma de vapor de agua.

$$dm_w = -m_a * d\omega \tag{10}$$

Después de sustituir los términos y reorganizar las ecuaciones, el sistema se resuelve mediante métodos numéricos. En consecuencia, el modelo desarrollado proporciona



predicciones para la evolución de la temperatura de las corrientes de aire primarias y secundarias, así como del agua, junto con la variación de la humedad de la corriente de aire secundaria y el flujo másico de agua a lo largo del canal secundario. Además, para accionar el sistema, es necesario utilizar un ventilador para superar la caída de presión total del intercambiador de calor. La caída de presión del flujo de aire se debe a las pérdidas por fricción, que se pueden estimar con la ecuación de Darcy-Weisbach. El consumo total de energía del ventilador se calcula de la siguiente manera:

$$W_f = \frac{\Delta P * Q}{\eta} \tag{11}$$

La eficacia de bulbo húmedo es la relación entre la diferencia entre la temperatura del aire de admisión y de salida y la diferencia entre la temperatura del aire de admisión y su temperatura de bulbo húmedo. Se puede expresar como:

$$\varepsilon_{wb} = \frac{T_{in} - T_{out}}{T_{in} - T_{wb}} \tag{12}$$

Del mismo modo, la eficacia del punto de rocío se define como la relación entre la diferencia entre la temperatura del aire de entrada y de salida y la diferencia entre la temperatura del aire de entrada y su temperatura del punto de rocío:

$$\varepsilon_{dp} = \frac{T_{in} - T_{out}}{T_{in} - T_{dp}} \tag{13}$$

La capacidad frigorífica representa la energía sensible liberada por el enfriador, la cual se puede expresar de la siguiente manera:

$$Q_{cool} = C_{pa} * m_d * (1 - r) * (T_{in} - T_{out})$$
(14)

El coeficiente de eficiencia energética (EER) es el cociente entre la potencia frigorífica que otorga el enfriador y la potencia eléctrica requerida.

$$EER = \frac{Q_{cool}}{W_f} \tag{15}$$



## 2.2 Procedimiento en EES

Para empezar, se llevó a cabo una búsqueda exhaustiva de artículos en la base de datos de ScienceDirect que explican las fórmulas que comprenden el ciclo de M. En esta búsqueda, se encontraron varios artículos interesantes que proporcionaban las ecuaciones y una breve explicación de cada una de ellas. Una vez recopilada la información sobre la modelización, se procedió a simplificar, añadiendo ecuaciones y variables gradualmente y planteando el intercambiador en varios nodos para resolverlo mediante métodos numéricos.

Para definir el modelo, se dividió el intercambiador en 10 nodos, que podían intercambiar propiedades entre sí. Primero, se programaron las ecuaciones del primario, el canal seco, ya que este es más sencillo debido a que comprende menos fórmulas que el canal húmedo. Al introducir las ecuaciones y calcular el sistema, los resultados mostraron coherencia, ya que, al no haber un segundo canal para el intercambio de energía, el flujo de aire salía del intercambiador con la misma temperatura con la que entró. Posteriormente, se incorporó el canal húmedo a la modelización, también con 10 nodos, permitiendo que cada nodo intercambiara energía tanto con el primario como con los nodos próximos del secundario.

Se modelaron el balance de energías, el balance de masas, el número de Lewis con un calor específico constante, la película de agua en la parte inferior y un coeficiente de convección constante para todo el intercambiador a una temperatura constante de 20 grados. En estos últimos resultados, el aire húmedo no llegaba a saturar dentro del canal y eso no cuadra con las modelizaciones de los artículos.

Tras calcular el sistema de ecuaciones con las fórmulas de los dos canales, utilizando un coeficiente de transferencia de masas y de convección constante, se dio un paso más aplicando las ecuaciones de Lewis para cada nodo, obteniendo los resultados mostrados en las *Figuras 15 y 16*.





Figura 15: Simplificación en nodos del Ciclo de Maisotsenko en EES.



Figura 16: Resultados de la modelización de EES representados en el diagrama psicrométrico.

El objetivo siguiente consistía en utilizar un coeficiente de convección variable, que dependiera de las propiedades y condiciones de cada nodo, para obtener resultados más realistas que los obtenidos anteriormente, llegando a obtener los de la *Figura 17*.





Figura 17: Resultados representados en un dibujo esquemático del enfriador.

A partir de este punto, se encontraron varios problemas para continuar con la modelización. Uno de los más destacables es que el aire húmedo no llega a saturarse dentro del canal, lo cual no coincide con los resultados de las modelizaciones de los artículos de ejemplo. Tras revisar las ecuaciones varias veces y verificar los órdenes de magnitud, se decidió avanzar un paso más allá con el coeficiente de convección, haciendo que este se actualizara en cada nodo para intentar obtener resultados más realistas. Sin embargo, esto resultó en el error mostrado en la *Figura 18*.



Figura 18: Error recurrente del software EES a la hora de añadir variables.

Este error es debido a que en la modelización que se pretendía realizar en EES, solo, hay 10 nodos, con lo que el área de contacto de cada es muy elevada y con una evaporación tan alta, la humedad relativa del aire húmedo supera el 100%. No teniendo ninguna lógica en términos físicos, debido a esto se acabó decidiendo usar el lenguaje de programación JULIA para realizar este cometido.



## 2.3 Procedimiento en Julia

Julia es un lenguaje de programación de alto nivel y rendimiento, diseñado para el análisis numérico y la computación científica que combina la facilidad de uso y la simplicidad de lenguajes como Python con la velocidad de lenguajes como C y Fortran.

Por este mismo motivo se elige Julia como lenguaje de programación para modelar el Ciclo Maisotsenko.

Para modelar el Ciclo M en Julia, se siguió un enfoque similar al utilizado previamente en EES, con el objetivo de obtener un sistema de ecuaciones que describiera con precisión el funcionamiento del ciclo.

En un primer intento, se trató de resolver el sistema de ecuaciones diferenciales mediante un solver ODE (Ecuaciones Diferenciales Ordinarias). Sin embargo, se encontraron ciertos problemas que dificultaron este enfoque:

-Condiciones de Contorno: La condición de contorno que establece que el aire de entrada del canal secundario presenta la misma temperatura y humedad que el aire de salida del canal primario no pudo ser incluida directamente en el solver ODE. Esto resultó en un sistema de ecuaciones irresoluble, ya que el número de ecuaciones superaba al número de variables disponibles. La condición de contorno requería un valor exacto de temperatura en lugar de ser representada por una ecuación.

-Dirección de Integración: Otro problema encontrado fue la dirección de integración en el solver ODE. Mientras que el ODE integraba en un sentido a lo largo del eje x para el canal primario y para el agua, integraba en sentido contrario para el canal secundario. Esto se debe a que el intercambiador de calor opera en contraflujo, con el flujo de aire en el canal secundario moviéndose en dirección opuesta al flujo en el canal primario. Debido a este contraflujo, no fue posible resolver el sistema mediante integración directa.

Al aplicar estos ajustes, el sistema de ecuaciones pudo ser resuelto. Aunque los resultados cualitativos fueron coherentes, aún se requerían ajustes adicionales para lograr una precisión cuantitativa.



Dado que los problemas identificados no pudieron ser resueltos con el método inicial, se decidió cambiar el enfoque de resolución. Se comenzó con las mismas condiciones de entrada y contorno conocidas, y se dividió el intercambiador en diferentes volúmenes de control denominados nodos. Estos nodos, en igual cantidad para el primario y el secundario, pueden intercambiar energía entre sí.

La *Figura 19* ilustra las características del ciclo, simplificado a 10 nodos en lugar de los 2500 utilizados en el modelo real.



#### Figura 19: Esquema del ciclo Maisotsenko dividido en 10 nodos.

Las condiciones de entrada son las siguientes: temperatura y humedad de entrada al primario conocidas, y la temperatura de entrada del agua fijada en 20°C. Las condiciones de contorno establecen que la temperatura y humedad de salida del primario son iguales a las de entrada del secundario, y se asume que el ciclo es adiabático, sin intercambio de calor con el exterior.

Una vez modelado el ciclo considerando las simplificaciones mencionadas en la sección 2.3 y aplicadas las condiciones de contorno, se asigna a cada nodo una temperatura inicial igual a la temperatura ambiente. Esto se realiza tanto en los nodos del primario como en los del secundario, asumiendo una temperatura del agua constante de 20°C, la cual es la temperatura del agua de red en verano en Alicante, como se muestra en la *Figura 20*.

A continuación, se resuelve el sistema de ecuaciones utilizando métodos numéricos. Se resuelve el sistema para el primer nodo, utilizando las condiciones de entrada de temperatura obtenidas de la modelización del edificio. Se calculan las variaciones entre el primario y el secundario de las variables nodo a nodo. Estas variaciones se comparan con las calculadas en la iteración anterior; en la primera iteración, al no haber referencia, simplemente se recalculan las variaciones. Posteriormente, se evalúa si la diferencia



entre los resultados de la iteración actual y la anterior es menor de 10<sup>-3</sup> en el caso de las variaciones de temperatura, o de 10<sup>-8</sup> en el caso de las variaciones de humedad.

Si se cumple esta condición, los resultados obtenidos se consideran finales. De lo contrario, se repite el proceso, asignando una temperatura nueva a cada nodo, teniendo en cuenta que cuando en un nodo el primario cede calor al secundario, la temperatura del siguiente nodo en el primario será menor, siguiendo el principio de la conservación de la energía. Las temperaturas y humedades se modifican en cada nodo y cada iteración tanto en el primario como en el secundario.

Este procedimiento se modeló inicialmente con una estructura if, pero debido a la alta carga computacional que implica repetir el proceso muchas veces, se ejecutó con un if para determinar el número necesario de iteraciones para obtener resultados precisos, estimando que 15000 iteraciones son suficientes. Por lo tanto, se simplificó el modelo sustituyendo el if por 15000 iteraciones. La *Figura 20* muestra un resumen de la programación del ciclo.



#### Figura 20: Esquema que representa el bucle iterativo para obtener el ciclo Maisotsenko.

Este modelo del Ciclo Maisotsenko parte de unas condiciones de entrada prefijadas de temperatura y humedad que no corresponden exactamente con la realidad. Con cada iteración, el modelo se aproxima a las condiciones reales de temperatura y humedad del ciclo en funcionamiento hasta ajustarse de manera precisa. El ciclo tendría una distribución de temperaturas similar a la mostrada en la *Figura 21*.





Figura 21: Esquema del ciclo M dividido en 10 nodos en funcionamiento.

## 2.4 Análisis Paramétrico

Se han considerado 5 niveles para las variables ambientales: de 20°C a 40°C en intervalos de 5°C para la temperatura ambiente y de 15% a 95% con incrementos del 20% y para las geométricas y operativas solo se han tenido en cuenta 3 niveles para cada una de las variables. La justificación es porque se entendía que la influencia del primer grupo de variables (condiciones ambientales) tenía un mayor impacto en los resultados. Como resultado del análisis de estas variables en los niveles descritos, se han simulado un total de 2025 casos con los valores de la *Tabla 1*.

| <u>j</u>         |                     |                       |                       |                            |       |  |
|------------------|---------------------|-----------------------|-----------------------|----------------------------|-------|--|
| Condi<br>Ambie   | ciones<br>entales   | Condicione            | s Operativas          | Condiciones<br>Geométricas |       |  |
| Temperatu<br>ra  | Humedad<br>relativa | Velocidad<br>del aire | Ratio de<br>desvío de | Longitud                   | Ancho |  |
| ambiente<br>(ºC) | (-)                 | (m/s)                 | flujo de aire<br>(-)  | (m)                        | (m)   |  |
| 20               | 0,15                | 1,2                   | 0,25                  | 0,5                        | 0,02  |  |
| 25               | 0,35                | 2                     | 0,33                  | 1,25                       | 0,06  |  |

En la siguiente tabla tenemos los valores dados a las seis variables.

2,8

#### Tabla 2: Valores asignados a las variables a analizar.

0,5

Para evaluar el impacto de las variables consideradas en el análisis, se han seleccionado como Key Performance Indicators (KPI's) el EER, la potencia frigorífica y la eficiencia de bulbo húmedo.



30

35

40

0,55

0,75

0.95

0, 1

2

# 3. RESULTADOS Y DISCUSIÓN

## 3.1 Introducción

En este capítulo se presenta la validación experimental y algunos ejemplos de los resultados obtenidos en la modelización, que sirven como ejemplo para analizar cómo afectan estas seis variables a la potencia frigorífica, al coeficiente de Eficiencia Energética (EER) y a la eficiencia del Bulbo Húmedo. Explicando qué ocurre si se aumentan o disminuyen estos parámetros con el fin de llegar a una conclusión clara sobre su comportamiento, detallando los motivos de dicho comportamiento.

## 3.2 Validación de los Resultados

La *Figura 22* muestra la validación del modelo del ciclo M desarrollado. En particular, la *Figura 22 (a)* contiene los datos experimentales reportados por *Riangvilaikul y Kumar* [2]. Los autores realizaron 18 experimentos, donde la temperatura del aire de entrada  $(T_{in})$  se varió en 5 niveles (desde 25 hasta 45 °C en intervalos de 5 °C) y la humedad absoluta del aire de entrada  $(\omega_{in})$  se modificó en 4 niveles (0,0069; 0,0112; 0,02 y 0,0264  $Kg_v/Kg_a$ ).

En términos de temperatura del aire de salida, los resultados proporcionados por el modelo muestran diferencias de menos del 1.5% en comparación con los publicados en el artículo de *Riangvilaikul y Kumar* [2] para los 18 casos comparados. Estos dos autores también desarrollaron un modelo analítico del sistema que fue validado experimentalmente. La *Figura 22(b) y (c)* muestra la distribución de la temperatura en los canales seco y húmedo en el diagrama psicrométrico, respectivamente, para dos condiciones diferentes de aire de entrada, predichas por el modelo de *Riangvilaikul y Kumar*. Se puede observar que hay un alto grado de concordancia entre los resultados proporcionados por el artículo y los dados por el modelo desarrollado.





(c)

Figura 22: Gráficas con la validación del modelo.



## 3.3 Análisis parámetro

Como se ha mencionado a lo largo de este trabajo, el objetivo es llevar a cabo una modelización realista de un enfriador evaporativo indirecto mediante Ciclo de Maisotsenko que permita realizar un estudio paramétrico de seis variables distintas, las cuales se han clasificado de la siguiente manera:

- 1. Condiciones ambientales: Incluyen la temperatura ambiente y la humedad relativa.
- 2. Condiciones geométricas: Comprenden el largo y el ancho de los conductos del enfriador.
- 3. Condiciones operativas: Se refieren a la velocidad del flujo de aire y el ratio de flujos entre el canal seco y el húmedo.

Es importante mencionar que, debido al volumen significativo de datos proporcionados por los 2025 casos, se han incluido algunos ejemplos en el análisis paramétrico para ilustrar las tendencias descritas. Los demás gráficos se pueden encontrar en el ANEXO 2.

## 3.3.1 Análisis de las Condiciones Ambientales

Empezando con la temperatura ambiente, se observa en los resultados graficados que, al incrementarla, se aumenta la potencia frigorífica, el coeficiente de eficiencia energética (EER) y, en términos generales, la eficiencia de bulbo húmedo. Se dice "en términos generales" porque en algunos casos esta eficiencia se mantiene constante o incluso disminuye.

En la *Figura 23* se muestra la variación de la potencia frigorífica, el EER y la eficiencia en función de la temperatura ambiente para diferentes niveles de humedad relativa.

La potencia frigorífica aumenta con la temperatura ambiente porque el aire que pasa por el canal húmedo puede absorber una mayor cantidad de vapor de agua. Para pasar el vapor de agua de estado líquido a gaseoso se necesita calor latente, el cual se recoge del aire húmedo, generando una mayor diferencia de temperaturas medias entre los dos canales del intercambiador. Debido a esto, también se observa un incremento del EER.



El coeficiente de eficiencia energética es el cociente entre potencia frigorífica y la potencia eléctrica requerida. Como esta última variable depende de las pérdidas por fricción y del rendimiento del ventilador, no se ve afectada por la temperatura ambiente, por lo tanto, el denominador se mantiene constante y el numerador (Q) aumenta con la temperatura de entrada. En cuanto a la eficiencia de bulbo húmedo, no se observa una tendencia definida para todos los resultados, pero generalmente, este coeficiente aumenta en mayor o menor medida con la temperatura ambiente.

Para entender mejor el comportamiento de la eficiencia de bulbo húmedo vamos a hacer el análisis con su ecuación:

$$\varepsilon_{wb} = \frac{T_{in} - T_{out}}{T_{in} - T_{wb}}$$

En el numerador observamos la diferencia de temperaturas entre la entrada y salida del canal seco, la cual aumenta con *Tin*. Sin embargo, en el denominador tenemos la temperatura de entrada y de bulbo húmedo de las condiciones ambientales, y esta última incrementa a la vez que la variable a analizar, variando más o menos dependiendo de la posición de estas condiciones en el diagrama psicrométrico. Es por ello, que hablamos en términos generales ya que su comportamiento varía en casos concretos.

Ahora se aborda la humedad relativa de las condiciones ambientales. Al incrementarse, la potencia frigorífica y el EER disminuyen, mientras que la eficiencia de bulbo húmedo aumenta.

Con la potencia frigorífica ocurre lo contrario que con la temperatura, ya que la diferencia de temperaturas entre la entrada y la salida es mayor cuando la humedad relativa (HR) es menor. Esta variable cuantifica la cantidad de humedad en el aire en relación con la cantidad máxima que puede contener. Por lo tanto, cuanto mayor sea esta variable, menos vapor de agua puede absorber el aire del conducto húmedo, resultando en una menor diferencia de temperaturas medias entre los dos canales. Esto también explica por qué el EER disminuye: el numerador de este coeficiente disminuye mientras que el denominador, la potencia eléctrica requerida, se mantiene constante debido a que no se ve afectado.



En cuanto a la eficiencia de bulbo húmedo, se observa lo contrario de lo que ocurre con la potencia frigorífica y el EER. Aunque la diferencia de temperaturas entre la entrada y salida del canal seco disminuya, la temperatura de bulbo húmedo del denominador depende de donde se encuentren las condiciones ambientales en el diagrama psicrométrico. Observando el diagrama psicrométrico, se ve que, a mayor humedad relativa, menos diferencia hay entre la temperatura ambiente y la de bulbo húmedo. Como antes, para explicar correctamente el comportamiento de este parámetro, hacemos referencia a la ecuación de la eficiencia de bulbo húmedo.

$$\varepsilon_{wb} = \frac{T_{in} - T_{out}}{T_{in} - T_{wb}}$$

Aunque al aumentar la humedad relativa del aire el numerador disminuiría debido a que la diferencia de temperaturas entre la entrada y la salida del canal seco sería menor, la temperatura del bulbo húmedo se acercaría a la del ambiente conforme se incrementa esta variable, haciendo que el denominador tienda a cero.





| Velocidad del aire | Ratio de desvío de<br>flujo de aire | Longitud | Ancho  |  |  |
|--------------------|-------------------------------------|----------|--------|--|--|
| 2.8 m/s            | 0,33                                | 0,5 m    | 0,06 m |  |  |

#### Tabla 3: Caso número 5 del capítulo 5.3.1 del ANEXO 2.





(d)

Figura 23: Resultados graficados de las condiciones ambientales.



## 3.3.2 Análisis de las Condiciones Geométricas

El siguiente análisis trata sobre las condiciones geométricas, que incluyen la longitud y el ancho del enfriador.

Por un lado, la potencia frigorífica se ve afectada positivamente por el aumento de la longitud del enfriador. Al incrementar esta variable, se amplía el área de intercambio entre los dos canales, lo que aumenta la diferencia de temperaturas entre la entrada y la salida del canal seco ( $\Delta T^{\circ}$ ). En consecuencia, se observa un incremento del flujo de calor sensible que va del canal seco al húmedo.

En cuanto al EER, se observa en la *Figura 24 (a)* que disminuye drásticamente a medida que aumenta la longitud. Esto se debe al incremento de las pérdidas de presión por la fricción del aire con las paredes de los conductos. Como resultado, los requerimientos eléctricos aumentan en mayor medida que la potencia frigorífica ganada con el incremento del área de contacto entre canales, lo que lleva a una tendencia decreciente del EER en función de la longitud.

La eficiencia del bulbo húmedo, por otro lado, aumenta con la longitud del enfriador. Este comportamiento es evidente debido al incremento del  $\Delta T^{\circ}$  en el enfriador, que resulta del aumento del área de transferencia entre los dos canales.

Al incrementar el ancho, se observa una mejora en todos los aspectos: potencia frigorífica, eficiencia de bulbo húmedo y el EER. Esto se debe a que, al igual que con la longitud, un mayor ancho incrementa el área de transferencia de calor sensible entre los canales. Sin embargo, a diferencia de la longitud, no afecta significativamente a la pérdida de carga. A pesar de esto, al aumentar la sección con una velocidad constante, el flujo másico a través de los conductos también aumenta, lo que incrementa las pérdidas por fricción. A pesar de este incremento, la ganancia en potencia frigorífica supera el aumento en los requerimientos eléctricos, resultando en un aumento del EER.

En la Figura 24 hay 3 gráficas que muestran el comportamiento general de los KPIs.



| Temperatura | Humedad relativa | Velocidad del aire | Ratio de desvío de flujo |
|-------------|------------------|--------------------|--------------------------|
| ambiente    |                  |                    | de aire                  |
| 30 °C       | 55%              | 2.8 m/s            | 0,33                     |

#### Tabla 4: Caso número 5 del capítulo 5.3.2 del ANEXO 2



Figura 24: Resultados graficados de las condiciones geométricas.



## 3.3.3 Análisis de las Condiciones Operativas

En las condiciones operativas, se consideran la velocidad del flujo de aire y el ratio de desvío de aire del canal seco al húmedo. Comenzando con la velocidad, se observa en las gráficas que, al aumentar la velocidad, la potencia frigorífica del enfriador se incrementa, mientras que el EER y la eficiencia de bulbo húmedo disminuyen. Esto se debe a que, con mayor velocidad, el tiempo disponible para el intercambio de energía entre los flujos de aire se reduce, lo que provoca una menor diferencia de temperaturas entre la entrada y la salida del canal seco. A primera vista, podría pensarse que esto llevaría a una reducción de la potencia frigorífica. Sin embargo, ocurre lo contrario, ya que el flujo másico aumenta a la vez que la velocidad.

En cuanto a las eficiencias, se observa que el coeficiente de Eficiencia Energética (EER) tiende a disminuir. Esto se debe a que, aunque la potencia frigorífica aumenta, los requerimientos eléctricos se incrementan en mayor medida debido a las pérdidas por fricción del aire con las superficies del canal.

Por otro lado, la eficiencia de bulbo húmedo disminuye debido a la menor diferencia de temperaturas entre la entrada y la salida del enfriador.

Con respecto al ratio de desvío de aire, se observa que en la eficiencia de bulbo húmedo tiene un efecto positivo, pero en el caso de la potencia frigorífica y el EER no se presenta una tendencia clara debido a efectos opuestos al variar este parámetro. Al aumentar el ratio, se obtiene una mayor caída de temperatura en el enfriador, pero el flujo másico de aire útil disminuye, y esto afecta también las pérdidas de presión del aire, ya que pasaría más aire por el canal húmedo. Por lo tanto, se obtienen tendencias dispares y, dependiendo del caso, es mejor escoger un ratio u otro.

En la Figura 25 hay 1 gráfica para cada KPI que verifica lo explicado anteriormente.



| Temperatura | Humedad relativa | Longitud | Ancho  |
|-------------|------------------|----------|--------|
| ambiente    |                  |          |        |
| 30 °C       | 35%              | 1,25 m   | 0,06 m |

Tabla 5: Caso número 5 del capítulo 5.3.3 del ANEXO 2



Figura 25: Ejemplo de resultados graficados de las condiciones operativas.



### 3.6 Conclusiones

Se ha constatado que las condiciones ambientales, geométricas y operativas influyen considerablemente en los KPI analizados, tales como la capacidad de refrigeración, el EER y la eficiencia de bulbo húmedo.

En primer lugar, las condiciones ambientales influyen considerablemente en el rendimiento del enfriador. Cuando la temperatura sube, se percibe un aumento notable en la capacidad de enfriamiento y en el EER. Por el contrario, la humedad relativa tiende a disminuir estos valores. Por ende, se puede deducir que los climas más propicios para utilizar este método de refrigeración son aquellos con baja humedad relativa y temperaturas moderadas a altas. Unos ejemplos de climas que cumplen con estas características son el desértico, semiárido, mediterráneo, continental y subtropical seco, que una de las características comunes de estos sería la lejanía al mar y por ende, no encontrarse en zonas costeras. Siendo estas zonas donde se cuestionaría seriamente el uso de este método de enfriamiento.

En segundo lugar, las condiciones geométricas también influyen significativamente en la eficiencia y la capacidad de refrigeración. Por ello, es crucial considerarlas al diseñar un enfriador por ciclo de Maisotsenko. Los resultados muestran que, al aumentar la longitud y el ancho de los canales, se mejora tanto la capacidad de refrigeración como la eficiencia de bulbo húmedo. Sin embargo, el EER no sigue el mismo patrón: mientras que una mayor longitud lo reduce, un mayor ancho lo incrementa. Por lo tanto, es más beneficioso aumentar el ancho que la longitud, aunque es necesario encontrar un equilibrio, ya que los KPIs no continúan aumentando con la misma pendiente, si no que cuando llegan a un cierto valor, el EER y la eficiencia de bulbo húmedo disminuye su pendiente.

Finalmente, al examinar las condiciones operativas, se concluye que, al igual que con la geometría, es necesario encontrar valores de compromiso para la velocidad del flujo de aire y la relación entre los flujos másicos en los canales. Aumentar la velocidad del aire incrementa la potencia de enfriamiento, pero reduce el EER y la eficiencia del bulbo húmedo. Es importante mencionar que, al aumentar esta variable, también se incrementa el flujo másico. Por lo tanto, aunque la capacidad de enfriamiento aumenta, la temperatura del aire de salida se eleva conforme aumenta la velocidad del aire. En



cuanto a la relación de flujos másicos, no se llega a una conclusión definitiva, ya que el comportamiento de los indicadores clave de rendimiento (KPIs) varía con este parámetro. La relación de flujos afecta directamente la diferencia de temperatura entre la entrada y la salida, la cantidad de aire útil para la refrigeración y las pérdidas por fricción. Por lo tanto, es necesario un estudio más detallado de este parámetro para determinar un valor de compromiso adecuado.





# 4. CONCLUSIONES

## 4.1 INTRODUCCIÓN

En este apartado se presentan las conclusiones principales obtenidas en este trabajo de fin de grado, así como las futuras líneas de investigación que pueden desarrollarse aprovechando la modelización realizada en este TFG.

## 4.2 CONCLUSIONES PRINCIPALES

En el presente trabajo de Fin de Grado ha abordado la realización de la modelización del Ciclo de Maisotsenko para luego hacer un análisis paramétrico, de esta manera saber cómo las condiciones ambientales, geométricas y operativas afectan a los KPIs, siendo estos la potencia frigorífica, el EER y la eficiencia de bulbo húmedo.

Inicialmente, se utilizó el software EES para la modelización debido a su simplicidad y facilidad de uso. Sin embargo, se decidió cambiar al lenguaje de programación Julia. Entre las razones se encontraba que EES presentaba numerosos problemas que impedían completar la modelización de manera eficiente ya que resultaba muy problemático encontrar los posibles errores y arreglarlos. Además, el costo computacional y el esfuerzo humano necesarios para ajustar el código en intervalos pequeños eran significativamente mayores en EES que en Julia. Con Julia, se pudo realizar una modelización de hasta 2500 nodos, superando con creces los 10 nodos que se aspiraba alcanzar con EES.

Pasando al análisis paramétrico, se ha constatado que las condiciones ambientales, geométricas y operativas influyen considerablemente en los KPIs analizados, tales como la capacidad de refrigeración, el EER y la eficiencia de bulbo húmedo.

En primer lugar, las condiciones ambientales influyen cuantiosamente en el rendimiento del enfriador. Cuando la temperatura sube, se percibe un aumento notable en la capacidad de enfriamiento y en el EER. Por el contrario, la humedad relativa tiende a disminuir estos valores. Por ende, se puede deducir que los climas más propicios para utilizar este método de refrigeración son aquellos con baja humedad relativa y temperaturas moderadas a altas. Unos ejemplos de climas que cumplen con estas



características son el desértico, semiárido, mediterráneo, continental y subtropical seco, que una de las características comunes de estos sería la lejanía al mar y por ende, no encontrarse en zonas costeras. Siendo estas zonas donde seguramente no sea rentable el uso del enfriador.

En segundo lugar, las condiciones geométricas también influyen significativamente en la eficiencia y la capacidad de refrigeración. Por ello, es crucial considerarlas al diseñar un enfriador por ciclo de Maisotsenko. Los resultados muestran que, al aumentar la longitud y el ancho de los canales, se mejora tanto la capacidad de refrigeración como la eficiencia de bulbo húmedo. Sin embargo, el EER no sigue el mismo patrón: mientras que una mayor longitud lo reduce, un mayor ancho lo incrementa. Por lo tanto, es más beneficioso aumentar el ancho que la longitud, aunque es necesario encontrar un equilibrio, ya que los KPIs no continúan aumentando con la misma pendiente, si no que cuando llegan a un cierto valor, el EER y la eficiencia de bulbo húmedo disminuye su pendiente.

Finalmente, al examinar las condiciones operativas, se concluye que, al igual que con la geometría, es necesario encontrar valores de compromiso para la velocidad del flujo de aire y la relación entre los flujos másicos en los canales. Aumentar la velocidad del aire incrementa la potencia de enfriamiento, pero reduce el EER y la eficiencia del bulbo húmedo. Es importante mencionar que, al aumentar esta variable, también se incrementa el flujo másico. Por lo tanto, aunque la capacidad de enfriamiento aumenta, la temperatura del aire de salida se eleva conforme aumenta la velocidad del aire. En cuanto a la relación de flujos másicos, no se llega a una conclusión definitiva, ya que el comportamiento de los indicadores clave de rendimiento (KPIs) varía con este parámetro.

La relación de flujos afecta directamente la diferencia de temperatura entre la entrada y la salida del canal seco, la cantidad de aire útil para la refrigeración y las pérdidas por fricción. Por lo tanto, es necesario un estudio más detallado de este parámetro para determinar un valor de compromiso adecuado.



## 4.3 Futuras Líneas de investigación

En este TFG se ha realizado una modelización y un análisis paramétrico de un enfriador evaporativo mediante ciclo de Maisotsenko, y se ha llegado a conclusiones importantes de cómo afectan las condiciones ambientales, geométricas y operativas a los KPIs nombrados anteriormente y también se ha conseguido demostrar de qué manera es mejor realizar la modelización en ordenador.

Este estudio del enfriador es genérico y no entra en ninguna aplicación más allá de climatizar una estancia directamente con él. Es por ello, que, aprovechando la modelización realizada, sería conveniente hacer una investigación sobre lo siguiente: Modelización Analítica De Sistema De Climatización Basado En la hibridación de Bomba de Calor y Ciclo de Maisotsenko para el Pre-Enfriamiento del Aire a la Entrada del Condensador. En la *Figura 26* se visualiza un esquema de cómo se conectaría el ciclo M a la bomba de calor. Con esta investigación se vería si es rentable conectar el enfriador al condensador de un aire acondicionado, ya que habría un preenfriamiento del aire que pasa por el condensador de la bomba de calor. De esta forma, la temperatura y presión a la que tendría que llegar el refrigerante para cambiar de estado gaseoso a líquido sería más baja, con lo que el compresor consumirá menos y, por ende, habrá un aumento del EER en el Aire Acondicionado.



#### Figura 26: Esquema de la bomba de calor con preenfriamiento mediante ciclo M.

Además de observar cuánto aumenta el EER del ciclo, sería interesante evaluar los resultados considerando el consumo de agua y los posibles impactos ambientales a lo



largo del año. Esto incluiría comparar la energía eléctrica ahorrada por el compresor con la necesaria para activar el ventilador del enfriador por Ciclo de Maisotsenko. De esta manera, podríamos determinar en qué días del año sería más eficiente su uso y evaluar su viabilidad como complemento en sistemas de aire acondicionado.

Si deseamos profundizar en la investigación, podríamos agregar paneles fotovoltaicos a la instalación para analizar cuánto mejora la eficiencia energética.





## 5. ANEXOS

### 5.1 ANEXO I: Código EES

"Datos" //Wall thickness 0.5 mm //Channel gap 5 mm //Channel length 1200 mm //Channel width 80 mm //Water supplied 60 g/h //L=1 "longitud conducto" //B=0.5 "ancho conducto" "alto conducto primario" //A1=0,5 //A2=0,5 "alto conducto secundario" A=L\*B "area de lámina de agua del conducto completo" A\_nodo=A/(N-1) "area de nodo" "numero de nodos" N=10 //e=0,003 "espesor" h=20 "Premisa de coeficiente local de transferencia de calor por convección (DISCUTIR)" DELTAh\_vap=enthalpy\_vaporization(Water;T=T\_w) "DELTAh\_vap=104,89entalpía de saturación del agua " "Constantes" P[1]=101325 "Presión a la entrada" P[1]=P[2] P[2]=P[3] P[3]=P[4] P[4]=P[5] P[5]=P[6] P[6]=P[7] P[7]=P[8] P[8]=P[9] "Constante de conducción Aluminio" //k\_al=209,3 //k\_w=0,58 "Constante de conducción Agua" "Condiciones de entrada del agua" //T w=25 "Conductividad materiales" "Constante de conducción Aluminio" //k\_al=0,2093 "Aluminio" //k\_w=0,56 "Constante de conducción Agua" "Ecuaciones auxiliares"  $Dh_p=(2*B*A1)/(B+A1)$ "diámetro hidráulico ducto rectangular (cuadrado en este caso) en el primario" "diámetro hidráulico ducto rectangular (cuadrado en este Dh\_s=(2\*B\*A2)/(B+A2) caso) en el secundario" "Área del conducto seco" S\_p=A1\*B "Área del conducto Húmedo" S\_s=A2\*B // Lt=longitud de la región de entrada térmica (m) //L\_t/Dh\_s=0,012\*Re\*Pr d=equivalent diameter of air passage (m) "Parametros operativos" "Factor de recirculación" //r=1/3 //m\_dot\_water=0,06 //T\_w=28 "Condiciones de entrada del agua" //NO CAMBIAR NADA DE AQUI PARA ARRIBA Nu = 7,235Cpa=1005 "Calor especifico p cte del aire" Cpv=1820 "Calor especifico p cte del vapor de agua"



- Víctor Palau Pineda -

"?" Cfv=2500900 "Condiciones de entrada del aire" //Ta[1]=25 "Temperatura Ambiente" "Humedad Relativa Primario" //phi\_p[1]=0,5 omega\_p=humrat(AirH2O;T=T\_p[1];R=phi\_p[1];P=P[1]) "humedad relativa entrada" "que es igual en todo el primario" omega\_p[1]=omega\_p omega\_p[2]=omega\_p omega\_p[3]=omega\_p omega\_p[4]=omega\_p omega\_p[5]=omega\_p omega\_p[6]=omega\_p omega\_p[7]=omega\_p omega\_p[8]=omega\_p omega\_p[9]=omega\_p omega\_p[10]=omega\_p phi\_p[2]=relhum(AirH2O;T=T\_p[2];w=omega\_p[2];P=P[2]) phi\_p[3]=relhum(AirH2O;T=T\_p[3];w=omega\_p[3];P=P[2]) phi\_p[4]=relhum(AirH2O;T=T\_p[4];w=omega\_p[4];P=P[2]) phi\_p[5]=relhum(AirH2O;T=T\_p[5];w=omega\_p[5];P=P[2]) phi\_p[6]=relhum(AirH2O;T=T\_p[6];w=omega\_p[6];P=P[2]) phi\_p[7]=relhum(AirH2O;T=T\_p[7];w=omega\_p[7];P=P[2]) phi\_p[8]=relhum(AirH2O;T=T\_p[8];w=omega\_p[8];P=P[2]) phi\_p[9]=relhum(AirH2O;T=T\_p[9];w=omega\_p[9];P=P[2]) phi\_p[10]=relhum(AirH2O;T=T\_p[10];w=omega\_p[10];P=P[2]) "Flujos másicos" rho\_air=density(Air;T=T\_p[1];P=P[1]) "velocidad del aire" //v\_air\_p=2,4 "Flujo másico en el primario" m\_dot\_p=rho\_air\*v\_air\_p\*A1\*B m\_dot\_s=r\*m\_dot\_p "Flujo másico en el secundario" "Factor de recirculación" //r=0,33 "velocidad en el secundario" v\_air\_s=m\_dot\_s/(rho\_air\*A2\*B) "coeficiente de transferencia de masa de vapor desde la lámina de agua al aire" "Nodo 1" Q\_dot\_ps\_1\_2=(DELTAT\_ps\_1\_2)/((1/(h\*A\_nodo))+(e/(k\_al\*A\_nodo))+(1/(h\*A\_nodo))) "calor que se lleva a desde b con resistencias" "creo que se debe tener en cuenta tanto convección en agua como en aire" DELTAT\_ps\_1\_2=1/2\*(T\_p[1]+T\_p[2]-(T\_s[1]+T\_s[2])) m\_dot\_vap[1]=h\_D\_s[1]\*A\_nodo\*(omega\_sat[1]-omega\_s[1]) "flujo másico de agua transferida" "ver signo" m\_dot\_vap[1]= m\_dot\_s\*(omega\_s[2]-omega\_s[1]) omega\_sat[12]=humrat(AirH2O;T=T\_w;R=1;P=P[1]) //Q\_dot\_ps\_1\_2=(T\_p[1]-Tw[1])/((1/(h\*A\_nodo))+(e/(k\_al\*A\_nodo))+(1/(Hcw[1]\*A\_nodo))) "calor que se lleva a desde w con resistencias" "objetivo obtener T\_w" "Circuito primario"  $Q_dot_ps_1_2=m_dot_p^*(h_p[1]-h_p[2])$ "ec convección nodo 1 primario" h\_p[1]=enthalpy(AirH2O;T=T\_p[1];w=omega\_p;P=P[1]) "Circuito secundario" Q\_dot\_ps\_1\_2=m\_dot\_s\*(h\_s[1]-h\_s[2])+m\_dot\_s\*DELTAh\_vap\*(omega\_s[1]-omega\_s[2]) //ec conveccion nodo 1 secundario incluyendo calor latente falta agregar calor sensible cedido al agua h\_s[1]=enthalpy(AirH2O;T=T\_s[1];w=omega\_s[1];P=P[1]) m\_dot\_s\*(omega\_s[1]-omega\_s[2])=h\_D\_s[1]\*A\_nodo\*(wsat[1]-omega\_s[1]) "flujo masico de vapor = B\* area de lámina de agua? \* variación de humedad " "no sé de dónde te has sacado esto" "humedad absoluta de aire saturado a t=tb1" wsat[1]=humrat(AirH2O;T=T\_s[1];R=1;P=P[1]) phi\_s[1]=relhum(AirH2O;T=T\_s[1];w=omega\_s[1];P=P[1])



"Relaccion de lewis" R le=1  $R_le^{(2/3)}=h/(h_D_s[1]*c_p_s[1])$ c\_p\_s[1]=cp(AirH2O;T=T\_s[1];w=omega\_p[1];P=P[1]) "calor especifico del aire humedo" "Nodo 2" Q\_dot\_ps\_2\_3=(DELTAT\_ps\_2\_3)/((1/(h\*A\_nodo))+(e/(k\_al\*A\_nodo))+(1/(h\*A\_nodo))) DELTAT\_ps\_2\_3=1/2\*(T\_p[2]+T\_p[3]-(T\_s[2]+T\_s[3])) "Circuito primario"  $Q_dot_ps_2_3=m_dot_p^*(h_p[2]-h_p[3])$ h\_p[2]=enthalpy(AirH2O;T=T\_p[2];w=omega\_p;P=P[1]) "Circuito secundario" Q dot ps 2 3=m dot s\*(h s[2]-h s[3])+m dot s\*DELTAh vap\*(omega s[2]-omega s[3]) h\_s[2]=enthalpy(AirH2O;T=T\_s[2];w=omega\_s[2];P=P[1]) m\_dot\_s\*(omega\_s[2]-omega\_s[3])=h\_D\_s[2]\*A\_nodo\*(wsat[2]-omega\_s[2]) wsat[2]=humrat(AirH2O;T=T\_s[2];R=1;P=P[1]) phi\_s[2]=relhum(AirH2O;T=T\_s[2];w=omega\_s[2];P=P[2]) "Relaccion de lewis"  $\{R\_le=1\}$ R\_le^(2/3)=h/(h\_D\_s[2]\*c\_p\_s[2]) c\_p\_s[2]=cp(AirH2O;T=T\_s[2];w=omega\_p[2];P=P[2]) "Nodo 3" Q\_dot\_ps\_3\_4=(DELTAT\_ps\_3\_4)/((1/(h\*A\_nodo))+(e/(k\_al\*A\_nodo))+(1/(h\*A\_nodo))) DELTAT\_ps\_3\_4=1/2\*(T\_p[3]+T\_p[4]-(T\_s[3]+T\_s[4])) "Circuito primario"  $Q_dot_ps_3_4=m_dot_p^*(h_p[3]-h_p[4])$ h\_p[3]=enthalpy(AirH2O;T=T\_p[3];w=omega\_p;P=P[1]) "Circuito secundario" Q\_dot\_ps\_3\_4=m\_dot\_s\*(h\_s[3]-h\_s[4])+m\_dot\_s\*DELTAh\_vap\*(omega\_s[3]-omega\_s[4]) h\_s[3]=enthalpy(AirH2O;T=T\_s[3];w=omega\_s[3];P=P[1]) m\_dot\_s\*(omega\_s[3]-omega\_s[4])=h\_D\_s[3]\*A\_nodo\*(wsat[3]-omega\_s[3]) wsat[3]=humrat(AirH2O;T=T\_s[3];R=1;P=P[1]) phi\_s[3]=relhum(AirH2O;T=T\_s[3];w=omega\_s[3];P=P[1]) "Relaccion de lewis" {R\_le=1}  $R_le^{(2/3)}=h/(h_D_s[3]*c_p_s[3])$ c\_p\_s[3]=cp(AirH2O;T=T\_s[3];w=omega\_p[3];P=P[3]) "Nodo 4" Q\_dot\_ps\_4\_5=(DELTAT\_ps\_4\_5)/((1/(h\*A\_nodo))+(e/(k\_al\*A\_nodo))+(1/(h\*A\_nodo))) DELTAT\_ps\_4\_5=1/2\*(T\_p[4]+T\_p[5]-(T\_s[4]+T\_s[5])) "Circuito primario"  $Q_dot_ps_4_5=m_dot_p^*(h_p[4]-h_p[5])$ h\_p[4]=enthalpy(AirH2O;T=T\_p[4];w=omega\_p;P=P[1]) "Circuito secundario" Q\_dot\_ps\_4\_5=m\_dot\_s\*(h\_s[4]-h\_s[5])+m\_dot\_s\*DELTAh\_vap\*(omega\_s[4]-omega\_s[5]) h\_s[4]=enthalpy(AirH2O;T=T\_s[4];w=omega\_s[4];P=P[1]) m\_dot\_s\*(omega\_s[4]-omega\_s[5])=h\_D\_s[4]\*A\_nodo\*(wsat[4]-omega\_s[4]) wsat[4]=humrat(AirH2O;T=T\_s[4];R=1;P=P[1]) phi\_s[4]=relhum(AirH2O;T=T\_s[4];w=omega\_s[4];P=P[1]) "Relaccion de lewis"  $\{R\_le=1\}$ R\_le^(2/3)=h/(h\_D\_s[4]\*c\_p\_s[4]) c\_p\_s[4]=cp(AirH2O;T=T\_s[4];w=omega\_p[4];P=P[4])

"Nodo 5" Q\_dot\_ps\_5\_6=(DELTAT\_ps\_5\_6)/((1/(h\*A\_nodo))+(e/(k\_al\*A\_nodo))+(1/(h\*A\_nodo)))



```
DELTAT_ps_5_6=1/2*(T_p[5]+T_p[6]-(T_s[5]+T_s[6]))
"Circuito primario"
Q_dot_ps_5_6=m_dot_p^*(h_p[5]-h_p[6])
h_p[5]=enthalpy(AirH2O;T=T_p[5];w=omega_p;P=P[1])
"Circuito secundario"
Q dot ps 5 6=m dot s*(h s[5]-h s[6])+m dot s*DELTAh vap*(omega s[5]-omega s[6])
h_s[5]=enthalpy(AirH2O;T=T_s[5];w=omega_s[5];P=P[1])
m_dot_s*(omega_s[5]-omega_s[6])=h_D_s[5]*A_nodo*(wsat[5]-omega_s[5])
wsat[5]=humrat(AirH2O;T=T_s[5];R=1;P=P[1])
phi_s[5]=relhum(AirH2O;T=T_s[5];w=omega_s[5];P=P[1])
"Relaccion de lewis"
{R_le=1}
R_le^(2/3)=h/(h_D_s[5]*c_p_s[5])
c_p_s[5]=cp(AirH2O;T=T_s[5];w=omega_p[5];P=P[5])
 "Nodo 6"
Q_dot_ps_6_7=(DELTAT_ps_6_7)/((1/(h*A_nodo))+(e/(k_al*A_nodo))+(1/(h*A_nodo)))
DELTAT_ps_6_7=1/2*(T_p[6]+T_p[7]-(T_s[6]+T_s[7]))
"Circuito primario"
Q_dot_ps_6_7=m_dot_p*(h_p[6]-h_p[7])
h_p[6]=enthalpy(AirH2O;T=T_p[6];w=omega_p;P=P[1])
"Circuito secundario"
Q dot ps 6 7=m dot s*(h s[6]-h s[7])+m dot s*DELTAh vap*(omega s[6]-omega s[7])
h_s[6]=enthalpy(AirH2O;T=T_s[6];w=omega_s[6];P=P[1])
m_dot_s*(omega_s[6]-omega_s[7])=h_D_s[6]*A_nodo*(wsat[6]-omega_s[6])
wsat[6]=humrat(AirH2O;T=T_s[6];R=1;P=P[1])
phi_s[6]=relhum(AirH2O;T=T_s[6];w=omega_s[6];P=P[1])
"Relaccion de lewis"
{R_le=1}
R_le^(2/3)=h/(h_D_s[6]*c_p_s[6])
c_p_s[6]=cp(AirH2O;T=T_s[6];w=omega_p[6];P=P[6])
"Nodo 7"
Q_dot_ps_7_8=(DELTAT_ps_7_8)/((1/(h*A_nodo))+(e/(k_al*A_nodo))+(1/(h*A_nodo)))
DELTAT_ps_7_8=1/2*(T_p[7]+T_p[8]-(T_s[7]+T_s[8]))
"Circuito primario"
Q_dot_ps_7_8=m_dot_p*(h_p[7]-h_p[8])
h_p[7]=enthalpy(AirH2O;T=T_p[7];w=omega_p;P=P[1])
"Circuito secundario"
Q_dot_ps_7_8=m_dot_s*(h_s[7]-h_s[8])+m_dot_s*DELTAh_vap*(omega_s[7]-omega_s[8])
h_s[7]=enthalpy(AirH2O;T=T_s[7];w=omega_s[7];P=P[1])
m_dot_s*(omega_s[7]-omega_s[8])=h_D_s[7]*A_nodo*(wsat[7]-omega_s[7])
wsat[7]=humrat(AirH2O;T=T_s[7];R=1;P=P[1])
phi_s[7]=relhum(AirH2O;T=T_s[7];w=omega_s[7];P=P[1])
"Relaccion de lewis"
\{R\_le=1\}
R_e^{(2/3)}=h/(h_D_s[7]*c_p_s[7])
c_p_s[7]=cp(AirH2O;T=T_s[7];w=omega_p[7];P=P[7])
"Nodo 8"
Q_dot_ps_8_9=(DELTAT_ps_8_9)/((1/(h*A_nodo))+(e/(k_al*A_nodo))+(1/(h*A_nodo)))
DELTAT_ps_8_9=1/2*(T_p[8]+T_p[9]-(T_s[8]+T_s[9]))
"Circuito primario"
Q_dot_ps_8_9=m_dot_p*(h_p[8]-h_p[9])
h_p[8]=enthalpy(AirH2O;T=T_p[8];w=omega_p;P=P[1])
"Circuito secundario"
Q_dot_ps_8_9=m_dot_s*(h_s[8]-h_s[9])+m_dot_s*DELTAh_vap*(omega_s[8]-omega_s[9])
h_s[8]=enthalpy(AirH2O;T=T_s[8];w=omega_s[8];P=P[1])
m_dot_s*(omega_s[8]-omega_s[9])=h_D_s[8]*A_nodo*(wsat[8]-omega_s[8])
```



```
wsat[8]=humrat(AirH2O;T=T_s[8];R=1;P=P[1])
phi_s[8]=relhum(AirH2O;T=T_s[8];w=omega_s[8];P=P[1])
"Relaccion de lewis"
\{R\_le=1\}
R_le^(2/3)=h/(h_D_s[8]*c_p_s[8])
c_p_s[8]=cp(AirH2O;T=T_s[8];w=omega_p[8];P=P[8])
"Nodo 9"
Q_dot_ps_9_10=(DELTAT_ps_9_10)/((1/(h*A_nodo))+(e/(k_al*A_nodo))+(1/(h*A_nodo)))
DELTAT_ps_9_10=1/2*(T_p[9]+T_p[10]-(T_s[9]+T_s[10]))
"Circuito primario"
Q_dot_ps_9_10=m_dot_p*(h_p[9]-h_p[10])
h_p[9]=enthalpy(AirH2O;T=T_p[9];w=omega_p;P=P[1])
"Circuito secundario"
Q_dot_ps_9_10=m_dot_s*(h_s[9]-h_s[10])+m_dot_s*DELTAh_vap*(omega_s[9]-omega_p)
h_s[9]=enthalpy(AirH2O;T=T_s[9];w=omega_s[9];P=P[1])
m_dot_s*(omega_s[9]-omega_p)=h_D_s[9]*A_nodo*(wsat[9]-omega_s[9])
wsat[9]=humrat(AirH2O;T=T_s[8];R=1;P=P[1])
phi_s[9]=relhum(AirH2O;T=T_s[9];w=omega_s[9];P=P[1])
"Relaccion de lewis"
\{R\_le=1\}
R_le^(2/3)=h/(h_D_s[9]*c_p_s[9])
c_p_s[9]=cp(AirH2O;T=T_s[9];w=omega_p[9];P=P[9])
"Nodo 10"
h_p[10]=enthalpy(AirH2O;T=T_p[10];w=omega_p;P=P[1])
T_p[10]=T_s[10]
h_s[10]=h_p[10]
omega_s[10]=omega_p
phi_s[10]=relhum(AirH2O;T=T_s[10];w=omega_s[10];P=P[1])
```







| CASO | Tin [°C] | HR <sub>in</sub> [-] | r [-] | v [m/s] | L [m] | ancho [m] | ε <sub>wb</sub> [-] | Q [W] | w [w] | EER [-]  |
|------|----------|----------------------|-------|---------|-------|-----------|---------------------|-------|-------|----------|
| 1    | 20       | 0,15                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,372               | 0,466 | 0,001 | 380,048  |
| 2    | 25       | 0,15                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,452               | 0,662 | 0,001 | 525,906  |
| 3    | 30       | 0,15                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,537               | 0,904 | 0,001 | 702,926  |
| 4    | 35       | 0,15                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,622               | 1,186 | 0,001 | 903,209  |
| 5    | 40       | 0,15                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,700               | 1,493 | 0,001 | 1117,105 |
| 6    | 20       | 0,35                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,399               | 0,363 | 0,001 | 295,284  |
| 7    | 25       | 0.25                 | 0.25  | 1.0     | 0.5   | 0.02      | 0.402               | 0.517 | 0.001 | 400 752  |
| /    | 20       | 0,35                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,492               | 0,517 | 0,001 | 409,755  |
| 8    | 30       | 0,35                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,593               | 0,706 | 0,001 | 546,951  |
| 9    | 35       | 0,35                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,692               | 0,920 | 0,001 | 697,589  |
| 10   | 40       | 0,35                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,781               | 1,145 | 0,001 | 850,423  |
| 11   | 20       | 0,55                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,426               | 0,256 | 0,001 | 207,769  |
| 12   | 25       | 0,55                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,533               | 0,365 | 0,001 | 288,878  |
| 13   | 30       | 0,55                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,648               | 0,498 | 0,001 | 384,108  |
| 14   | 35       | 0,55                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,757               | 0,642 | 0,001 | 483,981  |
| 15   | 40       | 0,55                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,846               | 0,784 | 0,001 | 5/7,974  |
| 16   | 20       | 0,75                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,455               | 0,145 | 0,001 | 102.050  |
| 1/   | 25       | 0,75                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,5/5               | 0,207 | 0,001 | 163,250  |
| 18   | 30       | 0,75                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,701               | 0,281 | 0,001 | 215,512  |
| 19   | 35       | 0,75                 | 0,25  | 1,2     | 0,5   | 0,02      | 0,811               | 0,357 | 0,001 | 200,930  |
| 20   | 20       | 0,75                 | 0,25  | 1.2     | 0,5   | 0,02      | 0,094               | 0,420 | 0,001 | 22 925   |
| 21   | 20       | 0,95                 | 0,25  | 1.2     | 0,5   | 0,02      | 0,404               | 0,029 | 0,001 | 23,023   |
| 22   | 30       | 0,95                 | 0,25  | 1.2     | 0,5   | 0,02      | 0,010               | 0,042 | 0,001 | /3 2/1   |
| 20   | 35       | 0.95                 | 0.25  | 1.2     | 0,5   | 0.02      | 0,740               | 0.071 | 0.001 | 52 434   |
| 25   | 40       | 0.95                 | 0.25  | 1.2     | 0.5   | 0.02      | 0.926               | 0.082 | 0.001 | 59 527   |
| 26   | 20       | 0.15                 | 0.33  | 1.2     | 0.5   | 0.02      | 0.555               | 0.622 | 0.001 | 480,153  |
| 27   | 25       | 0.15                 | 0.33  | 1.2     | 0.5   | 0.02      | 0.638               | 0.835 | 0.001 | 630,425  |
| 28   | 30       | 0,15                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,717               | 1,079 | 0,001 | 798,149  |
| 29   | 35       | 0,15                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,789               | 1,344 | 0,001 | 976,003  |
| 30   | 40       | 0,15                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,850               | 1,620 | 0,001 | 1157,017 |
| 31   | 20       | 0,35                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,593               | 0,482 | 0,001 | 370,956  |
| 32   | 25       | 0,35                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,688               | 0,646 | 0,001 | 485,176  |
| 33   | 30       | 0,35                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,778               | 0,828 | 0,001 | 608,472  |
| 34   | 35       | 0,35                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,856               | 1,017 | 0,001 | 732,395  |
| 35   | 40       | 0,35                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,919               | 1,203 | 0,001 | 849,248  |
| 36   | 20       | 0,55                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,630               | 0,338 | 0,001 | 259,205  |
| 37   | 25       | 0,55                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,737               | 0,451 | 0,001 | 336,938  |
| 38   | 30       | 0,55                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,832               | 0,571 | 0,001 | 417,001  |
| 39   | 35       | 0,55                 | 0,33  | 1,2     | 0,5   | 0,02      | 0,909               | 0,690 | 0,001 | 491,822  |

## 5.2 ANEXO II: Resultados



| 40 | 40 | 0,55                | 0,33 | 1,2 | 0,5 | 0,02 | 0,963 | 0,797 | 0,001 | 555,864 |
|----|----|---------------------|------|-----|-----|------|-------|-------|-------|---------|
| 41 | 20 | 0,75                | 0,33 | 1,2 | 0,5 | 0,02 | 0,669 | 0,190 | 0,001 | 145,131 |
| 42 | 25 | 0,75                | 0,33 | 1,2 | 0,5 | 0,02 | 0,781 | 0,252 | 0,001 | 186,995 |
| 43 | 30 | 0,75                | 0,33 | 1,2 | 0,5 | 0,02 | 0,878 | 0,314 | 0,001 | 227,560 |
| 44 | 35 | 0,75                | 0,33 | 1,2 | 0,5 | 0,02 | 0,946 | 0,372 | 0,001 | 262,310 |
| 45 | 40 | 0,75                | 0,33 | 1,2 | 0,5 | 0,02 | 0,987 | 0,420 | 0,001 | 289,201 |
| 46 | 20 | 0,95                | 0,33 | 1,2 | 0,5 | 0,02 | 0,706 | 0,038 | 0,001 | 29,165  |
| 47 | 25 | 0,95                | 0,33 | 1,2 | 0,5 | 0,02 | 0,823 | 0,050 | 0,001 | 37,141  |
| 48 | 30 | 0,95                | 0,33 | 1,2 | 0,5 | 0,02 | 0,909 | 0,062 | 0,001 | 44,325  |
| 49 | 35 | 0,95                | 0,33 | 1,2 | 0,5 | 0,02 | 0,970 | 0,072 | 0,001 | 49,938  |
| 50 | 40 | 0,95                | 0,33 | 1,2 | 0,5 | 0,02 | 0,998 | 0,079 | 0,001 | 53,912  |
| 51 | 20 | 0,15                | 0,5  | 1,2 | 0,5 | 0,02 | 0,855 | 0,715 | 0,001 | 498,101 |
| 52 | 25 | 0,15                | 0,5  | 1,2 | 0,5 | 0,02 | 0,916 | 0,894 | 0,001 | 610,615 |
| 53 | 30 | 0,15                | 0,5  | 1,2 | 0,5 | 0,02 | 0,966 | 1,085 | 0,001 | 727,016 |
| 54 | 35 | 0,15                | 0,5  | 1,2 | 0,5 | 0,02 | 1,007 | 1,280 | 0,002 | 843,323 |
| 55 | 40 | 0,15                | 0,5  | 1,2 | 0,5 | 0,02 | 1,038 | 1,475 | 0,002 | 956,072 |
| 56 | 20 | 0,35                | 0,5  | 1,2 | 0,5 | 0,02 | 0,895 | 0,543 | 0,001 | 375,561 |
| 57 | 25 | 0,35                | 0,5  | 1,2 | 0,5 | 0,02 | 0,958 | 0,671 | 0,001 | 453,853 |
| 58 | 30 | 0,35                | 0,5  | 1,2 | 0,5 | 0,02 | 1,008 | 0,800 | 0,002 | 529,819 |
| 59 | 35 | 0,35                | 0,5  | 1,2 | 0,5 | 0,02 | 1,043 | 0,925 | 0,002 | 599,555 |
| 60 | 40 | 0,35                | 0,5  | 1,2 | 0,5 | 0,02 | 1,064 | 1,040 | 0,002 | 660,434 |
| 61 | 20 | 0,55                | 0,5  | 1,2 | 0,5 | 0,02 | 0,930 | 0,372 | 0,001 | 255,384 |
| 62 | 25 | 0 <mark>,5</mark> 5 | 0,5  | 1,2 | 0,5 | 0,02 | 0,993 | 0,453 | 0,001 | 303,517 |
| 63 | 30 | 0,55                | 0,5  | 1,2 | 0,5 | 0,02 | 1,036 | 0,531 | 0,002 | 346,790 |
| 64 | 35 | 0,55                | 0,5  | 1,2 | 0,5 | 0,02 | 1,061 | 0,600 | 0,002 | 383,003 |
| 65 | 40 | 0,55                | 0,5  | 1,2 | 0,5 | 0,02 | 1,069 | 0,661 | 0,002 | 411,631 |
| 66 | 20 | 0,75                | 0,5  | 1,2 | 0,5 | 0,02 | 0,962 | 0,204 | 0,001 | 138,803 |
| 67 | 25 | 0,75                | 0,5  | 1,2 | 0,5 | 0,02 | 1,018 | 0,244 | 0,002 | 162,000 |
| 68 | 30 | 0,75                | 0,5  | 1,2 | 0,5 | 0,02 | 1,052 | 0,281 | 0,002 | 181,238 |
| 69 | 35 | 0,75                | 0,5  | 1,2 | 0,5 | 0,02 | 1,064 | 0,312 | 0,002 | 196,030 |
| 70 | 40 | 0,75                | 0,5  | 1,2 | 0,5 | 0,02 | 1,064 | 0,338 | 0,002 | 206,887 |
| 71 | 20 | 0,95                | 0,5  | 1,2 | 0,5 | 0,02 | 0,988 | 0,040 | 0,001 | 27,024  |
| 72 | 25 | 0,95                | 0,5  | 1,2 | 0,5 | 0,02 | 1,036 | 0,047 | 0,002 | 30,966  |
| 73 | 30 | 0,95                | 0,5  | 1,2 | 0,5 | 0,02 | 1,053 | 0,053 | 0,002 | 33,993  |
| 74 | 35 | 0,95                | 0,5  | 1,2 | 0,5 | 0,02 | 1,061 | 0,058 | 0,002 | 36,169  |
| 75 | 40 | 0,95                | 0,5  | 1,2 | 0,5 | 0,02 | 1,054 | 0,063 | 0,002 | 37,693  |
| 76 | 20 | 0,15                | 0,25 | 2   | 0,5 | 0,02 | 0,449 | 0,940 | 0,003 | 277,394 |
| 77 | 25 | 0,15                | 0,25 | 2   | 0,5 | 0,02 | 0,509 | 1,242 | 0,003 | 357,960 |
| 78 | 30 | 0,15                | 0,25 | 2   | 0,5 | 0,02 | 0,567 | 1,590 | 0,004 | 447,930 |
| 79 | 35 | 0,15                | 0,25 | 2   | 0,5 | 0,02 | 0,621 | 1,973 | 0,004 | 544,228 |
| 80 | 40 | 0,15                | 0,25 | 2   | 0,5 | 0,02 | 0,670 | 2,381 | 0,004 | 643,702 |
| 81 | 20 | 0,35                | 0,25 | 2   | 0,5 | 0,02 | 0,477 | 0,724 | 0,003 | 212,955 |
| 82 | 25 | 0,35                | 0,25 | 2   | 0,5 | 0,02 | 0,544 | 0,953 | 0,003 | 273,589 |


|     |    |                    |      | - |     |      |       |       |       |         |
|-----|----|--------------------|------|---|-----|------|-------|-------|-------|---------|
| 83  | 30 | 0,35               | 0,25 | 2 | 0,5 | 0,02 | 0,611 | 1,212 | 0,004 | 339,494 |
| 84  | 35 | 0,35               | 0,25 | 2 | 0,5 | 0,02 | 0,671 | 1,487 | 0,004 | 407,242 |
| 85  | 40 | 0,35               | 0,25 | 2 | 0,5 | 0,02 | 0,724 | 1,768 | 0,004 | 473,485 |
| 86  | 20 | 0,55               | 0,25 | 2 | 0,5 | 0,02 | 0,504 | 0,504 | 0,003 | 147,853 |
| 87  | 25 | 0,55               | 0,25 | 2 | 0,5 | 0,02 | 0,579 | 0,661 | 0,004 | 188,845 |
| 88  | 30 | 0,55               | 0,25 | 2 | 0,5 | 0,02 | 0,650 | 0,833 | 0,004 | 231,909 |
| 89  | 35 | 0,55               | 0,25 | 2 | 0,5 | 0,02 | 0,713 | 1,009 | 0,004 | 274,050 |
| 90  | 40 | 0,55               | 0,25 | 2 | 0,5 | 0,02 | 0,763 | 1,179 | 0,004 | 312,725 |
| 91  | 20 | 0,75               | 0,25 | 2 | 0,5 | 0,02 | 0,531 | 0,281 | 0,003 | 82,269  |
| 92  | 25 | 0,75               | 0,25 | 2 | 0,5 | 0,02 | 0,611 | 0,367 | 0,004 | 104,314 |
| 93  | 30 | 0,75               | 0,25 | 2 | 0,5 | 0,02 | 0,685 | 0,457 | 0,004 | 126,556 |
| 94  | 35 | 0,75               | 0,25 | 2 | 0,5 | 0,02 | 0,745 | 0,546 | 0,004 | 147,154 |
| 95  | 40 | 0,75               | 0,25 | 2 | 0,5 | 0,02 | 0,791 | 0,628 | 0,004 | 164,864 |
| 96  | 20 | 0,95               | 0,25 | 2 | 0,5 | 0,02 | 0,557 | 0,056 | 0,003 | 16,437  |
| 97  | 25 | 0,95               | 0,25 | 2 | 0,5 | 0,02 | 0,641 | 0,073 | 0,004 | 20,661  |
| 98  | 30 | 0,95               | 0,25 | 2 | 0,5 | 0,02 | 0,710 | 0,090 | 0,004 | 24,733  |
| 99  | 35 | 0,95               | 0,25 | 2 | 0,5 | 0,02 | 0,770 | 0,106 | 0,004 | 28,295  |
| 100 | 40 | 0,95               | 0,25 | 2 | 0,5 | 0,02 | 0,808 | 0,120 | 0,004 | 31,173  |
| 101 | 20 | 0,15               | 0,33 | 2 | 0,5 | 0,02 | 0,586 | 1,094 | 0,004 | 305,877 |
| 102 | 25 | 0,15               | 0,33 | 2 | 0,5 | 0,02 | 0,638 | 1,392 | 0,004 | 380,347 |
| 103 | 30 | 0,15               | 0,33 | 2 | 0,5 | 0,02 | 0,686 | 1,720 | 0,004 | 460,064 |
| 104 | 35 | 0,15               | 0,33 | 2 | 0,5 | 0,02 | 0,729 | 2,071 | 0,004 | 542,561 |
| 105 | 40 | 0,15               | 0,33 | 2 | 0,5 | 0,02 | 0,767 | 2,434 | 0,004 | 625,507 |
| 106 | 20 | 0 <mark>,35</mark> | 0,33 | 2 | 0,5 | 0,02 | 0,615 | 0,834 | 0,004 | 232,121 |
| 107 | 25 | 0,35               | 0,33 | 2 | 0,5 | 0,02 | 0,674 | 1,054 | 0,004 | 286,059 |
| 108 | 30 | 0,35               | 0,33 | 2 | 0,5 | 0,02 | 0,727 | 1,288 | 0,004 | 341,582 |
| 109 | 35 | 0,35               | 0,33 | 2 | 0,5 | 0,02 | 0,772 | 1,528 | 0,004 | 396,108 |
| 110 | 40 | 0,35               | 0,33 | 2 | 0,5 | 0,02 | 0,809 | 1,764 | 0,004 | 447,435 |
| 111 | 20 | 0,55               | 0,33 | 2 | 0,5 | 0,02 | 0,643 | 0,575 | 0,004 | 159,174 |
| 112 | 25 | 0,55               | 0,33 | 2 | 0,5 | 0,02 | 0,706 | 0,720 | 0,004 | 194,147 |
| 113 | 30 | 0,55               | 0,33 | 2 | 0,5 | 0,02 | 0,760 | 0,869 | 0,004 | 228,553 |
| 114 | 35 | 0,55               | 0,33 | 2 | 0,5 | 0,02 | 0,803 | 1,015 | 0,004 | 260,444 |
| 115 | 40 | 0,55               | 0,33 | 2 | 0,5 | 0,02 | 0,835 | 1,153 | 0,004 | 288,499 |
| 116 | 20 | 0,75               | 0,33 | 2 | 0,5 | 0,02 | 0,670 | 0,317 | 0,004 | 87,414  |
| 117 | 25 | 0,75               | 0,33 | 2 | 0,5 | 0,02 | 0,733 | 0,393 | 0,004 | 105,410 |
| 118 | 30 | 0,75               | 0,33 | 2 | 0,5 | 0,02 | 0,786 | 0,469 | 0,004 | 122,265 |
| 119 | 35 | 0,75               | 0,33 | 2 | 0,5 | 0,02 | 0,825 | 0,540 | 0,004 | 137,004 |
| 120 | 40 | 0,75               | 0,33 | 2 | 0,5 | 0,02 | 0,850 | 0,603 | 0,004 | 149,185 |
| 121 | 20 | 0.95               | 0.33 | 2 | 0.5 | 0.02 | 0,695 | 0,063 | 0,004 | 17.227  |
| 122 | 25 | 0.95               | 0.33 | 2 | 0.5 | 0.02 | 0,758 | 0,077 | 0,004 | 20.523  |
| 123 | 30 | 0.95               | 0.33 | 2 | 0.5 | 0.02 | 0,802 | 0.091 | 0.004 | 23.459  |
| 124 | 35 | 0.95               | 0.33 | 2 | 0.5 | 0.02 | 0,839 | 0.103 | 0.004 | 25 889  |
| 125 | 40 | 0.95               | 0.33 | 2 | 0.5 | 0.02 | 0.858 | 0 11/ | 0.004 | 27 791  |
| 120 | 40 | 0,00               | 0,00 | ~ | 0,0 | 0,02 | 0,000 | 0,114 | 0,004 | 27,701  |



| 126 | 20 | 0,15                | 0,5  | 2   | 0,5 | 0,02 | 0,775 | 1,080 | 0,004 | 271,288 |
|-----|----|---------------------|------|-----|-----|------|-------|-------|-------|---------|
| 127 | 25 | 0,15                | 0,5  | 2   | 0,5 | 0,02 | 0,809 | 1,318 | 0,004 | 323,873 |
| 128 | 30 | 0,15                | 0,5  | 2   | 0,5 | 0,02 | 0,839 | 1,570 | 0,004 | 377,897 |
| 129 | 35 | 0,15                | 0,5  | 2   | 0,5 | 0,02 | 0,864 | 1,830 | 0,004 | 431,947 |
| 130 | 40 | 0,15                | 0,5  | 2   | 0,5 | 0,02 | 0,883 | 2,093 | 0,004 | 484,760 |
| 131 | 20 | 0,35                | 0,5  | 2   | 0,5 | 0,02 | 0,799 | 0,808 | 0,004 | 201,288 |
| 132 | 25 | 0,35                | 0,5  | 2   | 0,5 | 0,02 | 0,834 | 0,974 | 0,004 | 236,877 |
| 133 | 30 | 0,35                | 0,5  | 2   | 0,5 | 0,02 | 0,864 | 1,143 | 0,004 | 271,538 |
| 134 | 35 | 0,35                | 0,5  | 2   | 0,5 | 0,02 | 0,886 | 1,309 | 0,004 | 304,028 |
| 135 | 40 | 0,35                | 0,5  | 2   | 0,5 | 0,02 | 0,902 | 1,468 | 0,004 | 333,456 |
| 136 | 20 | 0,55                | 0,5  | 2   | 0,5 | 0,02 | 0,819 | 0,546 | 0,004 | 134,961 |
| 137 | 25 | 0,55                | 0,5  | 2   | 0,5 | 0,02 | 0,855 | 0,650 | 0,004 | 156,534 |
| 138 | 30 | 0,55                | 0,5  | 2   | 0,5 | 0,02 | 0,881 | 0,752 | 0,004 | 176,432 |
| 139 | 35 | 0,55                | 0,5  | 2   | 0,5 | 0,02 | 0,899 | 0,848 | 0,004 | 193,969 |
| 140 | 40 | 0,55                | 0,5  | 2   | 0,5 | 0,02 | 0,909 | 0,936 | 0,004 | 208,842 |
| 141 | 20 | 0,75                | 0,5  | 2   | 0,5 | 0,02 | 0,838 | 0,296 | 0,004 | 72,502  |
| 142 | 25 | 0,75                | 0,5  | 2   | 0,5 | 0,02 | 0,869 | 0,348 | 0,004 | 82,914  |
| 143 | 30 | 0,75                | 0,5  | 2   | 0,5 | 0,02 | 0,892 | 0,397 | 0,004 | 92,033  |
| 144 | 35 | 0,75                | 0,5  | 2   | 0,5 | 0,02 | 0,904 | 0,441 | 0,004 | 99,647  |
| 145 | 40 | 0,75                | 0,5  | 2   | 0,5 | 0,02 | 0,909 | 0,481 | 0,005 | 105,768 |
| 146 | 20 | 0,95                | 0,5  | 2   | 0,5 | 0,02 | 0,852 | 0,058 | 0,004 | 13,989  |
| 147 | 25 | 0,95                | 0,5  | 2   | 0,5 | 0,02 | 0,880 | 0,067 | 0,004 | 15,788  |
| 148 | 30 | 0 <mark>,9</mark> 5 | 0,5  | 2   | 0,5 | 0,02 | 0,893 | 0,075 | 0,004 | 17,291  |
| 149 | 35 | 0,95                | 0,5  | 2   | 0,5 | 0,02 | 0,905 | 0,083 | 0,004 | 18,490  |
| 150 | 40 | 0,95                | 0,5  | 2   | 0,5 | 0,02 | 0,905 | 0,090 | 0,005 | 19,413  |
| 151 | 20 | 0,15                | 0,25 | 2,8 | 0,5 | 0,02 | 0,446 | 1,306 | 0,007 | 197,110 |
| 152 | 25 | 0,15                | 0,25 | 2,8 | 0,5 | 0,02 | 0,489 | 1,673 | 0,007 | 246,459 |
| 153 | 30 | 0,15                | 0,25 | 2,8 | 0,5 | 0,02 | 0,531 | 2,086 | 0,007 | 300,126 |
| 154 | 35 | 0,15                | 0,25 | 2,8 | 0,5 | 0,02 | 0,569 | 2,534 | 0,007 | 356,588 |
| 155 | 40 | 0,15                | 0,25 | 2,8 | 0,5 | 0,02 | 0,604 | 3,007 | 0,007 | 414,319 |
| 156 | 20 | 0,35                | 0,25 | 2,8 | 0,5 | 0,02 | 0,469 | 0,997 | 0,007 | 149,879 |
| 157 | 25 | 0,35                | 0,25 | 2,8 | 0,5 | 0,02 | 0,518 | 1,270 | 0,007 | 186,105 |
| 158 | 30 | 0,35                | 0,25 | 2,8 | 0,5 | 0,02 | 0,565 | 1,569 | 0,007 | 224,333 |
| 159 | 35 | 0,35                | 0,25 | 2,8 | 0,5 | 0,02 | 0,607 | 1,883 | 0,007 | 262,944 |
| 160 | 40 | 0,35                | 0,25 | 2,8 | 0,5 | 0,02 | 0,644 | 2,202 | 0,007 | 300,424 |
| 161 | 20 | 0,55                | 0,25 | 2,8 | 0,5 | 0,02 | 0,491 | 0,688 | 0,007 | 103,043 |
| 162 | 25 | 0,55                | 0,25 | 2,8 | 0,5 | 0,02 | 0,545 | 0,870 | 0,007 | 126,941 |
| 163 | 30 | 0,55                | 0,25 | 2,8 | 0,5 | 0,02 | 0,594 | 1,065 | 0,007 | 151,306 |
| 164 | 35 | 0,55                | 0,25 | 2,8 | 0,5 | 0,02 | 0,637 | 1,262 | 0,007 | 174,831 |
| 165 | 40 | 0,55                | 0,25 | 2,8 | 0,5 | 0,02 | 0,672 | 1,454 | 0,007 | 196,452 |
| 166 | 20 | 0,75                | 0,25 | 2,8 | 0,5 | 0,02 | 0,513 | 0,380 | 0,007 | 56,769  |
| 167 | 25 | 0,75                | 0,25 | 2,8 | 0,5 | 0,02 | 0,568 | 0,478 | 0,007 | 69,327  |
| 168 | 30 | 0,75                | 0,25 | 2,8 | 0,5 | 0,02 | 0,619 | 0,578 | 0,007 | 81,659  |



| 169 | 35 | 0,75               | 0,25 | 2,8 | 0,5 | 0,02 | 0,660 | 0,677 | 0,007 | 93,023  |
|-----|----|--------------------|------|-----|-----|------|-------|-------|-------|---------|
| 170 | 40 | 0,75               | 0,25 | 2,8 | 0,5 | 0,02 | 0,692 | 0,769 | 0,007 | 102,921 |
| 171 | 20 | 0,95               | 0,25 | 2,8 | 0,5 | 0,02 | 0,533 | 0,076 | 0,007 | 11,231  |
| 172 | 25 | 0,95               | 0,25 | 2,8 | 0,5 | 0,02 | 0,590 | 0,094 | 0,007 | 13,587  |
| 173 | 30 | 0,95               | 0,25 | 2,8 | 0,5 | 0,02 | 0,636 | 0,113 | 0,007 | 15,812  |
| 174 | 35 | 0,95               | 0,25 | 2,8 | 0,5 | 0,02 | 0,677 | 0,130 | 0,007 | 17,770  |
| 175 | 40 | 0,95               | 0,25 | 2,8 | 0,5 | 0,02 | 0,704 | 0,146 | 0,008 | 19,391  |
| 176 | 20 | 0,15               | 0,33 | 2,8 | 0,5 | 0,02 | 0,544 | 1,422 | 0,007 | 203,071 |
| 177 | 25 | 0,15               | 0,33 | 2,8 | 0,5 | 0,02 | 0,581 | 1,774 | 0,007 | 247,283 |
| 178 | 30 | 0,15               | 0,33 | 2,8 | 0,5 | 0,02 | 0,615 | 2,157 | 0,007 | 294,034 |
| 179 | 35 | 0,15               | 0,33 | 2,8 | 0,5 | 0,02 | 0,645 | 2,565 | 0,007 | 342,101 |
| 180 | 40 | 0,15               | 0,33 | 2,8 | 0,5 | 0,02 | 0,672 | 2,988 | 0,008 | 390,324 |
| 181 | 20 | 0,35               | 0,33 | 2,8 | 0,5 | 0,02 | 0,566 | 1,075 | 0,007 | 152,704 |
| 182 | 25 | 0,35               | 0,33 | 2,8 | 0,5 | 0,02 | 0,607 | 1,329 | 0,007 | 184,100 |
| 183 | 30 | 0,35               | 0,33 | 2,8 | 0,5 | 0,02 | 0,644 | 1,599 | 0,007 | 216,062 |
| 184 | 35 | 0,35               | 0,33 | 2,8 | 0,5 | 0,02 | 0,676 | 1,874 | 0,008 | 247,378 |
| 185 | 40 | 0,35               | 0,33 | 2,8 | 0,5 | 0,02 | 0,703 | 2,148 | 0,008 | 277,009 |
| 186 | 20 | 0,55               | 0,33 | 2,8 | 0,5 | 0,02 | 0,587 | 0,735 | 0,007 | 103,808 |
| 187 | 25 | 0,55               | 0,33 | 2,8 | 0,5 | 0,02 | 0,631 | 0,900 | 0,007 | 123,834 |
| 188 | 30 | 0,55               | 0,33 | 2,8 | 0,5 | 0,02 | 0,668 | 1,070 | 0,007 | 143,411 |
| 189 | 35 | 0,55               | 0,33 | 2,8 | 0,5 | 0,02 | 0,699 | 1,238 | 0,008 | 161,668 |
| 190 | 40 | 0,55               | 0,33 | 2,8 | 0,5 | 0,02 | 0,723 | 1,397 | 0,008 | 177,988 |
| 191 | 20 | 0,75               | 0,33 | 2,8 | 0,5 | 0,02 | 0,607 | 0,402 | 0,007 | 56,549  |
| 192 | 25 | 0 <mark>,75</mark> | 0,33 | 2,8 | 0,5 | 0,02 | 0,650 | 0,488 | 0,007 | 66,728  |
| 193 | 30 | 0,75               | 0,33 | 2,8 | 0,5 | 0,02 | 0,687 | 0,574 | 0,008 | 76,276  |
| 194 | 35 | 0,75               | 0,33 | 2,8 | 0,5 | 0,02 | 0,715 | 0,655 | 0,008 | 84,765  |
| 195 | 40 | 0,75               | 0,33 | 2,8 | 0,5 | 0,02 | 0,735 | 0,730 | 0,008 | 91,964  |
| 196 | 20 | 0,95               | 0,33 | 2,8 | 0,5 | 0,02 | 0,625 | 0,079 | 0,007 | 11,063  |
| 197 | 25 | 0,95               | 0,33 | 2,8 | 0,5 | 0,02 | 0,667 | 0,095 | 0,007 | 12,913  |
| 198 | 30 | 0,95               | 0,33 | 2,8 | 0,5 | 0,02 | 0,698 | 0,111 | 0,008 | 14,579  |
| 199 | 35 | 0,95               | 0,33 | 2,8 | 0,5 | 0,02 | 0,726 | 0,125 | 0,008 | 15,996  |
| 200 | 40 | 0,95               | 0,33 | 2,8 | 0,5 | 0,02 | 0,741 | 0,137 | 0,008 | 17,141  |
| 201 | 20 | 0,15               | 0,5  | 2,8 | 0,5 | 0,02 | 0,671 | 1,310 | 0,008 | 167,450 |
| 202 | 25 | 0,15               | 0,5  | 2,8 | 0,5 | 0,02 | 0,696 | 1,587 | 0,008 | 198,253 |
| 203 | 30 | 0,15               | 0,5  | 2,8 | 0,5 | 0,02 | 0,718 | 1,881 | 0,008 | 229,913 |
| 204 | 35 | 0,15               | 0,5  | 2,8 | 0,5 | 0,02 | 0,737 | 2,186 | 0,008 | 261,700 |
| 205 | 40 | 0,15               | 0,5  | 2,8 | 0,5 | 0,02 | 0,753 | 2,498 | 0,009 | 292,945 |
| 206 | 20 | 0,35               | 0,5  | 2,8 | 0,5 | 0,02 | 0,689 | 0,976 | 0,008 | 123,714 |
| 207 | 25 | 0,35               | 0,5  | 2,8 | 0,5 | 0,02 | 0,715 | 1,168 | 0,008 | 144,509 |
| 208 | 30 | 0,35               | 0,5  | 2,8 | 0,5 | 0,02 | 0,737 | 1,366 | 0,008 | 164,904 |
| 209 | 35 | 0,35               | 0,5  | 2,8 | 0,5 | 0,02 | 0,755 | 1,562 | 0,008 | 184,263 |
| 210 | 40 | 0,35               | 0,5  | 2,8 | 0,5 | 0,02 | 0,770 | 1,754 | 0,009 | 202,097 |
| 211 | 20 | 0,55               | 0,5  | 2,8 | 0,5 | 0,02 | 0,704 | 0,657 | 0,008 | 82,687  |



| 212 | 25 | 0,55                | 0,5  | 2,8 | 0,5  | 0,02 | 0,730 | 0,778 | 0,008 | 95,334  |
|-----|----|---------------------|------|-----|------|------|-------|-------|-------|---------|
| 213 | 30 | 0,55                | 0,5  | 2,8 | 0,5  | 0,02 | 0,751 | 0,898 | 0,008 | 107,185 |
| 214 | 35 | 0,55                | 0,5  | 2,8 | 0,5  | 0,02 | 0,767 | 1,013 | 0,009 | 117,865 |
| 215 | 40 | 0,55                | 0,5  | 2,8 | 0,5  | 0,02 | 0,777 | 1,121 | 0,009 | 127,160 |
| 216 | 20 | 0,75                | 0,5  | 2,8 | 0,5  | 0,02 | 0,717 | 0,355 | 0,008 | 44,327  |
| 217 | 25 | 0,75                | 0,5  | 2,8 | 0,5  | 0,02 | 0,742 | 0,416 | 0,008 | 50,482  |
| 218 | 30 | 0,75                | 0,5  | 2,8 | 0,5  | 0,02 | 0,761 | 0,474 | 0,008 | 56,008  |
| 219 | 35 | 0,75                | 0,5  | 2,8 | 0,5  | 0,02 | 0,773 | 0,529 | 0,009 | 60,762  |
| 220 | 40 | 0,75                | 0,5  | 2,8 | 0,5  | 0,02 | 0,780 | 0,578 | 0,009 | 64,699  |
| 221 | 20 | 0,95                | 0,5  | 2,8 | 0,5  | 0,02 | 0,729 | 0,069 | 0,008 | 8,543   |
| 222 | 25 | 0,95                | 0,5  | 2,8 | 0,5  | 0,02 | 0,751 | 0,080 | 0,008 | 9,619   |
| 223 | 30 | 0,95                | 0,5  | 2,8 | 0,5  | 0,02 | 0,763 | 0,090 | 0,009 | 10,548  |
| 224 | 35 | 0,95                | 0,5  | 2,8 | 0,5  | 0,02 | 0,775 | 0,099 | 0,009 | 11,315  |
| 225 | 40 | 0,95                | 0,5  | 2,8 | 0,5  | 0,02 | 0,779 | 0,108 | 0,009 | 11,922  |
| 226 | 20 | 0,15                | 0,25 | 1,2 | 1,25 | 0,02 | 0,379 | 0,475 | 0,003 | 154,207 |
| 227 | 25 | 0,15                | 0,25 | 1,2 | 1,25 | 0,02 | 0,480 | 0,704 | 0,003 | 222,536 |
| 228 | 30 | 0,15                | 0,25 | 1,2 | 1,25 | 0,02 | 0,600 | 1,009 | 0,003 | 312,215 |
| 229 | 35 | 0,15                | 0,25 | 1,2 | 1,25 | 0,02 | 0,719 | 1,372 | 0,003 | 416,857 |
| 230 | 40 | 0,15                | 0,25 | 1,2 | 1,25 | 0,02 | 0,827 | 1,764 | 0,003 | 528,502 |
| 231 | 20 | 0,35                | 0,25 | 1,2 | 1,25 | 0,02 | 0,407 | 0,370 | 0,003 | 120,154 |
| 232 | 25 | 0,35                | 0,25 | 1,2 | 1,25 | 0,02 | 0,527 | 0,553 | 0,003 | 174,772 |
| 233 | 30 | 0,35                | 0,25 | 1,2 | 1,25 | 0,02 | 0,670 | 0,798 | 0,003 | 246,362 |
| 234 | 35 | 0 <mark>,3</mark> 5 | 0,25 | 1,2 | 1,25 | 0,02 | 0,814 | 1,082 | 0,003 | 327,672 |
| 235 | 40 | 0,35                | 0,25 | 1,2 | 1,25 | 0,02 | 0,937 | 1,373 | 0,003 | 409,309 |
| 236 | 20 | 0,55                | 0,25 | 1,2 | 1,25 | 0,02 | 0,436 | 0,262 | 0,003 | 84,820  |
| 237 | 25 | 0,55                | 0,25 | 1,2 | 1,25 | 0,02 | 0,576 | 0,394 | 0,003 | 124,393 |
| 238 | 30 | 0,55                | 0,25 | 1,2 | 1,25 | 0,02 | 0,743 | 0,571 | 0,003 | 175,824 |
| 239 | 35 | 0,55                | 0,25 | 1,2 | 1,25 | 0,02 | 0,904 | 0,767 | 0,003 | 231,291 |
| 240 | 40 | 0,55                | 0,25 | 1,2 | 1,25 | 0,02 | 1,025 | 0,950 | 0,003 | 280,975 |
| 241 | 20 | 0,75                | 0,25 | 1,2 | 1,25 | 0,02 | 0,467 | 0,148 | 0,003 | 48,083  |
| 242 | 25 | 0,75                | 0,25 | 1,2 | 1,25 | 0,02 | 0,627 | 0,226 | 0,003 | 71,102  |
| 243 | 30 | 0,75                | 0,25 | 1,2 | 1,25 | 0,02 | 0,817 | 0,327 | 0,003 | 100,403 |
| 244 | 35 | 0,75                | 0,25 | 1,2 | 1,25 | 0,02 | 0,981 | 0,431 | 0,003 | 129,241 |
| 245 | 40 | 0,75                | 0,25 | 1,2 | 1,25 | 0,02 | 1,080 | 0,515 | 0,003 | 150,706 |
| 246 | 20 | 0,95                | 0,25 | 1,2 | 1,25 | 0,02 | 0,499 | 0,030 | 0,003 | 9,808   |
| 247 | 25 | 0,95                | 0,25 | 1,2 | 1,25 | 0,02 | 0,680 | 0,047 | 0,003 | 14,621  |
| 248 | 30 | 0,95                | 0,25 | 1,2 | 1,25 | 0,02 | 0,883 | 0,067 | 0,003 | 20,499  |
| 249 | 35 | 0,95                | 0,25 | 1,2 | 1,25 | 0,02 | 1,040 | 0,086 | 0,003 | 25,501  |
| 250 | 40 | 0,95                | 0,25 | 1,2 | 1,25 | 0,02 | 1,104 | 0,098 | 0,003 | 28,410  |
| 251 | 20 | 0,15                | 0,33 | 1,2 | 1,25 | 0,02 | 0,616 | 0,691 | 0,003 | 212,206 |
| 252 | 25 | 0,15                | 0,33 | 1,2 | 1,25 | 0,02 | 0,740 | 0,969 | 0,003 | 291,390 |
| 253 | 30 | 0,15                | 0,33 | 1,2 | 1,25 | 0,02 | 0,857 | 1,289 | 0,003 | 381,087 |
| 254 | 35 | 0,15                | 0,33 | 1,2 | 1,25 | 0,02 | 0,957 | 1,631 | 0,003 | 475,264 |



| 255 | 40 | 0,15 | 0,33 | 1,2 | 1,25 | 0,02 | 1,037 | 1,977 | 0,003 | 569,128 |
|-----|----|------|------|-----|------|------|-------|-------|-------|---------|
| 256 | 20 | 0,35 | 0,33 | 1,2 | 1,25 | 0,02 | 0,664 | 0,541 | 0,003 | 165,706 |
| 257 | 25 | 0,35 | 0,33 | 1,2 | 1,25 | 0,02 | 0,809 | 0,760 | 0,003 | 227,679 |
| 258 | 30 | 0,35 | 0,33 | 1,2 | 1,25 | 0,02 | 0,944 | 1,004 | 0,003 | 295,286 |
| 259 | 35 | 0,35 | 0,33 | 1,2 | 1,25 | 0,02 | 1,051 | 1,248 | 0,003 | 361,252 |
| 260 | 40 | 0,35 | 0,33 | 1,2 | 1,25 | 0,02 | 1,125 | 1,472 | 0,004 | 419,609 |
| 261 | 20 | 0,55 | 0,33 | 1,2 | 1,25 | 0,02 | 0,714 | 0,383 | 0,003 | 117,196 |
| 262 | 25 | 0,55 | 0,33 | 1,2 | 1,25 | 0,02 | 0,879 | 0,538 | 0,003 | 160,647 |
| 263 | 30 | 0,55 | 0,33 | 1,2 | 1,25 | 0,02 | 1,022 | 0,701 | 0,003 | 205,029 |
| 264 | 35 | 0,55 | 0,33 | 1,2 | 1,25 | 0,02 | 1,118 | 0,848 | 0,003 | 243,125 |
| 265 | 40 | 0,55 | 0,33 | 1,2 | 1,25 | 0,02 | 1,163 | 0,963 | 0,004 | 270,675 |
| 266 | 20 | 0,75 | 0,33 | 1,2 | 1,25 | 0,02 | 0,767 | 0,218 | 0,003 | 66,511  |
| 267 | 25 | 0,75 | 0,33 | 1,2 | 1,25 | 0,02 | 0,946 | 0,304 | 0,003 | 90,523  |
| 268 | 30 | 0,75 | 0,33 | 1,2 | 1,25 | 0,02 | 1,084 | 0,388 | 0,003 | 112,566 |
| 269 | 35 | 0,75 | 0,33 | 1,2 | 1,25 | 0,02 | 1,152 | 0,452 | 0,004 | 128,194 |
| 270 | 40 | 0,75 | 0,33 | 1,2 | 1,25 | 0,02 | 1,164 | 0,495 | 0,004 | 137,021 |
| 271 | 20 | 0,95 | 0,33 | 1,2 | 1,25 | 0,02 | 0,821 | 0,045 | 0,003 | 13,564  |
| 272 | 25 | 0,95 | 0,33 | 1,2 | 1,25 | 0,02 | 1,008 | 0,062 | 0,003 | 18,204  |
| 273 | 30 | 0,95 | 0,33 | 1,2 | 1,25 | 0,02 | 1,120 | 0,076 | 0,003 | 21,849  |
| 274 | 35 | 0,95 | 0,33 | 1,2 | 1,25 | 0,02 | 1,160 | 0,085 | 0,004 | 23,894  |
| 275 | 40 | 0,95 | 0,33 | 1,2 | 1,25 | 0,02 | 1,148 | 0,091 | 0,004 | 24,834  |
| 276 | 20 | 0,15 | 0,5  | 1,2 | 1,25 | 0,02 | 1,086 | 0,909 | 0,004 | 253,330 |
| 277 | 25 | 0,15 | 0,5  | 1,2 | 1,25 | 0,02 | 1,173 | 1,146 | 0,004 | 314,640 |
| 278 | 30 | 0,15 | 0,5  | 1,2 | 1,25 | 0,02 | 1,237 | 1,389 | 0,004 | 376,061 |
| 279 | 35 | 0,15 | 0,5  | 1,2 | 1,25 | 0,02 | 1,279 | 1,626 | 0,004 | 434,975 |
| 280 | 40 | 0,15 | 0,5  | 1,2 | 1,25 | 0,02 | 1,301 | 1,850 | 0,004 | 489,276 |
| 281 | 20 | 0,35 | 0,5  | 1,2 | 1,25 | 0,02 | 1,147 | 0,696 | 0,004 | 192,976 |
| 282 | 25 | 0,35 | 0,5  | 1,2 | 1,25 | 0,02 | 1,232 | 0,863 | 0,004 | 234,840 |
| 283 | 30 | 0,35 | 0,5  | 1,2 | 1,25 | 0,02 | 1,282 | 1,018 | 0,004 | 272,218 |
| 284 | 35 | 0,35 | 0,5  | 1,2 | 1,25 | 0,02 | 1,298 | 1,150 | 0,004 | 302,495 |
| 285 | 40 | 0,35 | 0,5  | 1,2 | 1,25 | 0,02 | 1,287 | 1,257 | 0,004 | 324,691 |
| 286 | 20 | 0,55 | 0,5  | 1,2 | 1,25 | 0,02 | 1,199 | 0,480 | 0,004 | 132,000 |
| 287 | 25 | 0,55 | 0,5  | 1,2 | 1,25 | 0,02 | 1,270 | 0,580 | 0,004 | 156,143 |
| 288 | 30 | 0,55 | 0,5  | 1,2 | 1,25 | 0,02 | 1,291 | 0,661 | 0,004 | 174,283 |
| 289 | 35 | 0,55 | 0,5  | 1,2 | 1,25 | 0,02 | 1,275 | 0,722 | 0,004 | 186,026 |
| 290 | 40 | 0,55 | 0,5  | 1,2 | 1,25 | 0,02 | 1,239 | 0,766 | 0,004 | 192,925 |
| 291 | 20 | 0,75 | 0,5  | 1,2 | 1,25 | 0,02 | 1,240 | 0,263 | 0,004 | 71,719  |
| 292 | 25 | 0,75 | 0,5  | 1,2 | 1,25 | 0,02 | 1,283 | 0,308 | 0,004 | 82,010  |
| 293 | 30 | 0,75 | 0,5  | 1,2 | 1,25 | 0,02 | 1,275 | 0,341 | 0,004 | 88,308  |
| 294 | 35 | 0,75 | 0,5  | 1,2 | 1,25 | 0,02 | 1,238 | 0,363 | 0,004 | 91,681  |
| 295 | 40 | 0,75 | 0,5  | 1,2 | 1,25 | 0,02 | 1,196 | 0,380 | 0,004 | 93,547  |
| 296 | 20 | 0,95 | 0,5  | 1,2 | 1,25 | 0,02 | 1,266 | 0,051 | 0,004 | 13,861  |
| 297 | 25 | 0,95 | 0,5  | 1,2 | 1,25 | 0,02 | 1,280 | 0,058 | 0,004 | 15,318  |



| 298 | 30 | 0,95                | 0,5  | 1,2 | 1,25 | 0,02 | 1,242 | 0,063 | 0,004 | 16,056  |
|-----|----|---------------------|------|-----|------|------|-------|-------|-------|---------|
| 299 | 35 | 0,95                | 0,5  | 1,2 | 1,25 | 0,02 | 1,204 | 0,066 | 0,004 | 16,423  |
| 300 | 40 | 0,95                | 0,5  | 1,2 | 1,25 | 0,02 | 1,163 | 0,069 | 0,004 | 16,646  |
| 301 | 20 | 0,15                | 0,25 | 2   | 1,25 | 0,02 | 0,516 | 1,080 | 0,009 | 126,915 |
| 302 | 25 | 0,15                | 0,25 | 2   | 1,25 | 0,02 | 0,613 | 1,496 | 0,009 | 171,862 |
| 303 | 30 | 0,15                | 0,25 | 2   | 1,25 | 0,02 | 0,710 | 1,991 | 0,009 | 224,105 |
| 304 | 35 | 0,15                | 0,25 | 2   | 1,25 | 0,02 | 0,799 | 2,540 | 0,009 | 280,815 |
| 305 | 40 | 0,15                | 0,25 | 2   | 1,25 | 0,02 | 0,877 | 3,116 | 0,009 | 339,201 |
| 306 | 20 | 0,35                | 0,25 | 2   | 1,25 | 0,02 | 0,553 | 0,839 | 0,009 | 98,398  |
| 307 | 25 | 0,35                | 0,25 | 2   | 1,25 | 0,02 | 0,664 | 1,163 | 0,009 | 133,228 |
| 308 | 30 | 0,35                | 0,25 | 2   | 1,25 | 0,02 | 0,777 | 1,541 | 0,009 | 172,708 |
| 309 | 35 | 0,35                | 0,25 | 2   | 1,25 | 0,02 | 0,877 | 1,944 | 0,009 | 213,544 |
| 310 | 40 | 0,35                | 0,25 | 2   | 1,25 | 0,02 | 0,958 | 2,340 | 0,009 | 252,509 |
| 311 | 20 | 0,55                | 0,25 | 2   | 1,25 | 0,02 | 0,589 | 0,590 | 0,009 | 69,050  |
| 312 | 25 | 0,55                | 0,25 | 2   | 1,25 | 0,02 | 0,716 | 0,818 | 0,009 | 93,323  |
| 313 | 30 | 0,55                | 0,25 | 2   | 1,25 | 0,02 | 0,839 | 1,075 | 0,009 | 119,801 |
| 314 | 35 | 0,55                | 0,25 | 2   | 1,25 | 0,02 | 0,942 | 1,332 | 0,009 | 145,283 |
| 315 | 40 | 0,55                | 0,25 | 2   | 1,25 | 0,02 | 1,013 | 1,566 | 0,009 | 167,089 |
| 316 | 20 | 0,75                | 0,25 | 2   | 1,25 | 0,02 | 0,628 | 0,333 | 0,009 | 38,864  |
| 317 | 25 | 0,75                | 0,25 | 2   | 1,25 | 0,02 | 0,766 | 0,460 | 0,009 | 52,313  |
| 318 | 30 | 0,75                | 0,25 | 2   | 1,25 | 0,02 | 0,895 | 0,598 | 0,009 | 66,201  |
| 319 | 35 | 0,75                | 0,25 | 2   | 1,25 | 0,02 | 0,989 | 0,725 | 0,009 | 78,336  |
| 320 | 40 | 0 <mark>,7</mark> 5 | 0,25 | 2   | 1,25 | 0,02 | 1,044 | 0,829 | 0,009 | 87,455  |
| 321 | 20 | 0,95                | 0,25 | 2   | 1,25 | 0,02 | 0,666 | 0,067 | 0,009 | 7,859   |
| 322 | 25 | 0,95                | 0,25 | 2   | 1,25 | 0,02 | 0,815 | 0,093 | 0,009 | 10,507  |
| 323 | 30 | 0,95                | 0,25 | 2   | 1,25 | 0,02 | 0,937 | 0,119 | 0,009 | 13,048  |
| 324 | 35 | 0,95                | 0,25 | 2   | 1,25 | 0,02 | 1,021 | 0,140 | 0,009 | 15,026  |
| 325 | 40 | 0,95                | 0,25 | 2   | 1,25 | 0,02 | 1,058 | 0,157 | 0,010 | 16,332  |
| 326 | 20 | 0,15                | 0,33 | 2   | 1,25 | 0,02 | 0,749 | 1,399 | 0,009 | 156,160 |
| 327 | 25 | 0,15                | 0,33 | 2   | 1,25 | 0,02 | 0,841 | 1,834 | 0,009 | 200,636 |
| 328 | 30 | 0,15                | 0,33 | 2   | 1,25 | 0,02 | 0,922 | 2,310 | 0,009 | 248,295 |
| 329 | 35 | 0,15                | 0,33 | 2   | 1,25 | 0,02 | 0,989 | 2,808 | 0,009 | 296,959 |
| 330 | 40 | 0,15                | 0,33 | 2   | 1,25 | 0,02 | 1,042 | 3,308 | 0,010 | 344,763 |
| 331 | 20 | 0,35                | 0,33 | 2   | 1,25 | 0,02 | 0,796 | 1,079 | 0,009 | 120,015 |
| 332 | 25 | 0,35                | 0,33 | 2   | 1,25 | 0,02 | 0,898 | 1,405 | 0,009 | 152,859 |
| 333 | 30 | 0,35                | 0,33 | 2   | 1,25 | 0,02 | 0,985 | 1,746 | 0,009 | 186,201 |
| 334 | 35 | 0,35                | 0,33 | 2   | 1,25 | 0,02 | 1,050 | 2,080 | 0,010 | 217,580 |
| 335 | 40 | 0,35                | 0,33 | 2   | 1,25 | 0,02 | 1,094 | 2,387 | 0,010 | 245,133 |
| 336 | 20 | 0,55                | 0,33 | 2   | 1,25 | 0,02 | 0,842 | 0,752 | 0,009 | 83,307  |
| 337 | 25 | 0,55                | 0,33 | 2   | 1,25 | 0,02 | 0,951 | 0,970 | 0,009 | 104,810 |
| 338 | 30 | 0,55                | 0,33 | 2   | 1,25 | 0,02 | 1,034 | 1,183 | 0,009 | 125,049 |
| 339 | 35 | 0,55                | 0,33 | 2   | 1,25 | 0,02 | 1,088 | 1,375 | 0,010 | 142,134 |
| 340 | 40 | 0,55                | 0,33 | 2   | 1,25 | 0,02 | 1,113 | 1,536 | 0,010 | 155,243 |



| 341 | 20 | 0,75               | 0,33 | 2   | 1,25 | 0,02 | 0,887 | 0,420 | 0,009 | 46,260  |
|-----|----|--------------------|------|-----|------|------|-------|-------|-------|---------|
| 342 | 25 | 0,75               | 0,33 | 2   | 1,25 | 0,02 | 0,995 | 0,534 | 0,009 | 57,273  |
| 343 | 30 | 0,75               | 0,33 | 2   | 1,25 | 0,02 | 1,069 | 0,638 | 0,010 | 66,697  |
| 344 | 35 | 0,75               | 0,33 | 2   | 1,25 | 0,02 | 1,105 | 0,723 | 0,010 | 73,737  |
| 345 | 40 | 0,75               | 0,33 | 2   | 1,25 | 0,02 | 1,113 | 0,790 | 0,010 | 78,514  |
| 346 | 20 | 0,95               | 0,33 | 2   | 1,25 | 0,02 | 0,928 | 0,084 | 0,009 | 9,203   |
| 347 | 25 | 0,95               | 0,33 | 2   | 1,25 | 0,02 | 1,031 | 0,105 | 0,009 | 11,175  |
| 348 | 30 | 0,95               | 0,33 | 2   | 1,25 | 0,02 | 1,084 | 0,123 | 0,010 | 12,689  |
| 349 | 35 | 0,95               | 0,33 | 2   | 1,25 | 0,02 | 1,108 | 0,136 | 0,010 | 13,697  |
| 350 | 40 | 0,95               | 0,33 | 2   | 1,25 | 0,02 | 1,104 | 0,146 | 0,010 | 14,324  |
| 351 | 20 | 0,15               | 0,5  | 2   | 1,25 | 0,02 | 1,126 | 1,570 | 0,010 | 158,976 |
| 352 | 25 | 0,15               | 0,5  | 2   | 1,25 | 0,02 | 1,176 | 1,914 | 0,010 | 190,447 |
| 353 | 30 | 0,15               | 0,5  | 2   | 1,25 | 0,02 | 1,211 | 2,264 | 0,010 | 221,685 |
| 354 | 35 | 0,15               | 0,5  | 2   | 1,25 | 0,02 | 1,232 | 2,610 | 0,010 | 251,622 |
| 355 | 40 | 0,15               | 0,5  | 2   | 1,25 | 0,02 | 1,242 | 2,942 | 0,011 | 279,396 |
| 356 | 20 | 0,35               | 0,5  | 2   | 1,25 | 0,02 | 1,161 | 1,175 | 0,010 | 117,888 |
| 357 | 25 | 0,35               | 0,5  | 2   | 1,25 | 0,02 | 1,204 | 1,406 | 0,010 | 138,147 |
| 358 | 30 | 0,35               | 0,5  | 2   | 1,25 | 0,02 | 1,227 | 1,623 | 0,010 | 156,344 |
| 359 | 35 | 0,35               | 0,5  | 2   | 1,25 | 0,02 | 1,231 | 1,818 | 0,011 | 171,693 |
| 360 | 40 | 0,35               | 0,5  | 2   | 1,25 | 0,02 | 1,221 | 1,988 | 0,011 | 183,945 |
| 361 | 20 | 0,55               | 0,5  | 2   | 1,25 | 0,02 | 1,187 | 0,792 | 0,010 | 78,635  |
| 362 | 25 | 0 <mark>,55</mark> | 0,5  | 2   | 1,25 | 0,02 | 1,219 | 0,927 | 0,010 | 89,944  |
| 363 | 30 | 0,55               | 0,5  | 2   | 1,25 | 0,02 | 1,224 | 1,045 | 0,011 | 99,008  |
| 364 | 35 | 0 <mark>,55</mark> | 0,5  | 2   | 1,25 | 0,02 | 1,212 | 1,143 | 0,011 | 105,757 |
| 365 | 40 | 0,55               | 0,5  | 2   | 1,25 | 0,02 | 1,189 | 1,224 | 0,011 | 110,567 |
| 366 | 20 | 0,75               | 0,5  | 2   | 1,25 | 0,02 | 1,205 | 0,426 | 0,010 | 41,847  |
| 367 | 25 | 0,75               | 0,5  | 2   | 1,25 | 0,02 | 1,219 | 0,488 | 0,010 | 46,735  |
| 368 | 30 | 0,75               | 0,5  | 2   | 1,25 | 0,02 | 1,211 | 0,539 | 0,011 | 50,252  |
| 369 | 35 | 0,75               | 0,5  | 2   | 1,25 | 0,02 | 1,187 | 0,580 | 0,011 | 52,642  |
| 370 | 40 | 0,75               | 0,5  | 2   | 1,25 | 0,02 | 1,159 | 0,614 | 0,011 | 54,261  |
| 371 | 20 | 0,95               | 0,5  | 2   | 1,25 | 0,02 | 1,213 | 0,082 | 0,010 | 7,972   |
| 372 | 25 | 0,95               | 0,5  | 2   | 1,25 | 0,02 | 1,214 | 0,092 | 0,011 | 8,714   |
| 373 | 30 | 0,95               | 0,5  | 2   | 1,25 | 0,02 | 1,187 | 0,100 | 0,011 | 9,204   |
| 374 | 35 | 0,95               | 0,5  | 2   | 1,25 | 0,02 | 1,164 | 0,107 | 0,011 | 9,521   |
| 375 | 40 | 0,95               | 0,5  | 2   | 1,25 | 0,02 | 1,134 | 0,112 | 0,012 | 9,736   |
| 376 | 20 | 0,15               | 0,25 | 2,8 | 1,25 | 0,02 | 0,568 | 1,663 | 0,017 | 100,171 |
| 377 | 25 | 0,15               | 0,25 | 2,8 | 1,25 | 0,02 | 0,648 | 2,216 | 0,017 | 130,511 |
| 378 | 30 | 0,15               | 0,25 | 2,8 | 1,25 | 0,02 | 0,725 | 2,849 | 0,017 | 164,340 |
| 379 | 35 | 0,15               | 0,25 | 2,8 | 1,25 | 0,02 | 0,795 | 3,536 | 0,018 | 200,210 |
| 380 | 40 | 0,15               | 0,25 | 2,8 | 1,25 | 0,02 | 0,855 | 4,254 | 0,018 | 236,728 |
| 381 | 20 | 0,35               | 0,25 | 2,8 | 1,25 | 0,02 | 0,604 | 1,282 | 0,017 | 77,039  |
| 382 | 25 | 0,35               | 0,25 | 2,8 | 1,25 | 0,02 | 0,695 | 1,704 | 0,017 | 99,905  |
| 383 | 30 | 0,35               | 0,25 | 2,8 | 1,25 | 0,02 | 0,782 | 2,172 | 0,017 | 124,569 |



| 384 | 35 | 0,35                | 0,25 | 2,8 | 1,25 | 0,02 | 0,857 | 2,660 | 0,018 | 149,397 |
|-----|----|---------------------|------|-----|------|------|-------|-------|-------|---------|
| 385 | 40 | 0,35                | 0,25 | 2,8 | 1,25 | 0,02 | 0,918 | 3,140 | 0,018 | 172,896 |
| 386 | 20 | 0,55                | 0,25 | 2,8 | 1,25 | 0,02 | 0,639 | 0,895 | 0,017 | 53,578  |
| 387 | 25 | 0,55                | 0,25 | 2,8 | 1,25 | 0,02 | 0,740 | 1,182 | 0,017 | 69,025  |
| 388 | 30 | 0,55                | 0,25 | 2,8 | 1,25 | 0,02 | 0,832 | 1,491 | 0,018 | 84,967  |
| 389 | 35 | 0,55                | 0,25 | 2,8 | 1,25 | 0,02 | 0,907 | 1,796 | 0,018 | 99,971  |
| 390 | 40 | 0,55                | 0,25 | 2,8 | 1,25 | 0,02 | 0,960 | 2,076 | 0,018 | 112,969 |
| 391 | 20 | 0,75                | 0,25 | 2,8 | 1,25 | 0,02 | 0,674 | 0,500 | 0,017 | 29,857  |
| 392 | 25 | 0,75                | 0,25 | 2,8 | 1,25 | 0,02 | 0,781 | 0,657 | 0,017 | 38,134  |
| 393 | 30 | 0,75                | 0,25 | 2,8 | 1,25 | 0,02 | 0,874 | 0,817 | 0,018 | 46,217  |
| 394 | 35 | 0,75                | 0,25 | 2,8 | 1,25 | 0,02 | 0,942 | 0,966 | 0,018 | 53,251  |
| 395 | 40 | 0,75                | 0,25 | 2,8 | 1,25 | 0,02 | 0,984 | 1,094 | 0,019 | 58,811  |
| 396 | 20 | 0,95                | 0,25 | 2,8 | 1,25 | 0,02 | 0,708 | 0,100 | 0,017 | 5,973   |
| 397 | 25 | 0,95                | 0,25 | 2,8 | 1,25 | 0,02 | 0,819 | 0,131 | 0,017 | 7,547   |
| 398 | 30 | 0,95                | 0,25 | 2,8 | 1,25 | 0,02 | 0,903 | 0,160 | 0,018 | 8,988   |
| 399 | 35 | 0,95                | 0,25 | 2,8 | 1,25 | 0,02 | 0,965 | 0,186 | 0,018 | 10,142  |
| 400 | 40 | 0,95                | 0,25 | 2,8 | 1,25 | 0,02 | 0,996 | 0,207 | 0,019 | 10,982  |
| 401 | 20 | 0,15                | 0,33 | 2,8 | 1,25 | 0,02 | 0,768 | 2,008 | 0,017 | 114,904 |
| 402 | 25 | 0,15                | 0,33 | 2,8 | 1,25 | 0,02 | 0,837 | 2,557 | 0,018 | 143,311 |
| 403 | 30 | 0,15                | 0,33 | 2,8 | 1,25 | 0,02 | 0,898 | 3,151 | 0,018 | 173,257 |
| 404 | 35 | 0,15                | 0,33 | 2,8 | 1,25 | 0,02 | 0,948 | 3,770 | 0,019 | 203,639 |
| 405 | 40 | 0,15                | 0,33 | 2,8 | 1,25 | 0,02 | 0,989 | 4,396 | 0,019 | 233,482 |
| 406 | 20 | 0 <mark>,</mark> 35 | 0,33 | 2,8 | 1,25 | 0,02 | 0,807 | 1,533 | 0,018 | 87,231  |
| 407 | 25 | 0,35                | 0,33 | 2,8 | 1,25 | 0,02 | 0,883 | 1,933 | 0,018 | 107,563 |
| 408 | 30 | 0,35                | 0,33 | 2,8 | 1,25 | 0,02 | 0,946 | 2,348 | 0,018 | 127,871 |
| 409 | 35 | 0,35                | 0,33 | 2,8 | 1,25 | 0,02 | 0,994 | 2,756 | 0,019 | 147,009 |
| 410 | 40 | 0,35                | 0,33 | 2,8 | 1,25 | 0,02 | 1,028 | 3,139 | 0,019 | 164,122 |
| 411 | 20 | 0,55                | 0,33 | 2,8 | 1,25 | 0,02 | 0,844 | 1,056 | 0,018 | 59,785  |
| 412 | 25 | 0,55                | 0,33 | 2,8 | 1,25 | 0,02 | 0,922 | 1,317 | 0,018 | 72,715  |
| 413 | 30 | 0,55                | 0,33 | 2,8 | 1,25 | 0,02 | 0,982 | 1,573 | 0,019 | 84,806  |
| 414 | 35 | 0,55                | 0,33 | 2,8 | 1,25 | 0,02 | 1,023 | 1,809 | 0,019 | 95,275  |
| 415 | 40 | 0,55                | 0,33 | 2,8 | 1,25 | 0,02 | 1,044 | 2,017 | 0,019 | 103,774 |
| 416 | 20 | 0,75                | 0,33 | 2,8 | 1,25 | 0,02 | 0,879 | 0,582 | 0,018 | 32,778  |
| 417 | 25 | 0,75                | 0,33 | 2,8 | 1,25 | 0,02 | 0,954 | 0,717 | 0,018 | 39,251  |
| 418 | 30 | 0,75                | 0,33 | 2,8 | 1,25 | 0,02 | 1,007 | 0,841 | 0,019 | 44,875  |
| 419 | 35 | 0,75                | 0,33 | 2,8 | 1,25 | 0,02 | 1,036 | 0,949 | 0,019 | 49,349  |
| 420 | 40 | 0,75                | 0,33 | 2,8 | 1,25 | 0,02 | 1,048 | 1,040 | 0,020 | 52,697  |
| 421 | 20 | 0,95                | 0,33 | 2,8 | 1,25 | 0,02 | 0,909 | 0,115 | 0,018 | 6,442   |
| 422 | 25 | 0,95                | 0,33 | 2,8 | 1,25 | 0,02 | 0,980 | 0,140 | 0,018 | 7,586   |
| 423 | 30 | 0,95                | 0,33 | 2,8 | 1,25 | 0,02 | 1,018 | 0,161 | 0,019 | 8,508   |
| 424 | 35 | 0,95                | 0,33 | 2,8 | 1,25 | 0,02 | 1,041 | 0,179 | 0,019 | 9,189   |
| 425 | 40 | 0,95                | 0,33 | 2,8 | 1,25 | 0,02 | 1,044 | 0,194 | 0,020 | 9,668   |
| 426 | 20 | 0,15                | 0,5  | 2,8 | 1,25 | 0,02 | 1,066 | 2,081 | 0,019 | 107,612 |



| 427 | 25 | 0.15               | 0.5  | 2.8 | 1.25 | 0.02 | 1.101 | 2,509 | 0.020 | 127,303 |
|-----|----|--------------------|------|-----|------|------|-------|-------|-------|---------|
| 428 | 30 | 0,15               | 0,5  | 2,8 | 1,25 | 0,02 | 1,126 | 2,948 | 0,020 | 146,934 |
| 429 | 35 | 0,15               | 0,5  | 2,8 | 1,25 | 0,02 | 1,142 | 3,388 | 0,020 | 165,933 |
| 430 | 40 | 0,15               | 0,5  | 2,8 | 1,25 | 0,02 | 1,150 | 3,817 | 0,021 | 183,830 |
| 431 | 20 | 0,35               | 0,5  | 2,8 | 1,25 | 0,02 | 1,090 | 1,544 | 0,020 | 79,023  |
| 432 | 25 | 0,35               | 0,5  | 2,8 | 1,25 | 0,02 | 1,119 | 1,830 | 0,020 | 91,616  |
| 433 | 30 | 0,35               | 0,5  | 2,8 | 1,25 | 0,02 | 1,137 | 2,106 | 0,020 | 103,190 |
| 434 | 35 | 0,35               | 0,5  | 2,8 | 1,25 | 0,02 | 1,142 | 2,363 | 0,021 | 113,343 |
| 435 | 40 | 0,35               | 0,5  | 2,8 | 1,25 | 0,02 | 1,139 | 2,596 | 0,021 | 121,902 |
| 436 | 20 | 0,55               | 0,5  | 2,8 | 1,25 | 0,02 | 1,107 | 1,033 | 0,020 | 52,346  |
| 437 | 25 | 0,55               | 0,5  | 2,8 | 1,25 | 0,02 | 1,130 | 1,203 | 0,020 | 59,473  |
| 438 | 30 | 0,55               | 0,5  | 2,8 | 1,25 | 0,02 | 1,136 | 1,358 | 0,021 | 65,506  |
| 439 | 35 | 0,55               | 0,5  | 2,8 | 1,25 | 0,02 | 1,132 | 1,495 | 0,021 | 70,355  |
| 440 | 40 | 0,55               | 0,5  | 2,8 | 1,25 | 0,02 | 1,120 | 1,614 | 0,022 | 74,120  |
| 441 | 20 | 0,75               | 0,5  | 2,8 | 1,25 | 0,02 | 1,119 | 0,553 | 0,020 | 27,750  |
| 442 | 25 | 0,75               | 0,5  | 2,8 | 1,25 | 0,02 | 1,131 | 0,634 | 0,020 | 30,939  |
| 443 | 30 | 0,75               | 0,5  | 2,8 | 1,25 | 0,02 | 1,130 | 0,704 | 0,021 | 33,446  |
| 444 | 35 | 0,75               | 0,5  | 2,8 | 1,25 | 0,02 | 1,117 | 0,764 | 0,022 | 35,334  |
| 445 | 40 | 0,75               | 0,5  | 2,8 | 1,25 | 0,02 | 1,100 | 0,816 | 0,022 | 36,729  |
| 446 | 20 | 0,95               | 0,5  | 2,8 | 1,25 | 0,02 | 1,125 | 0,106 | 0,020 | 5,281   |
| 447 | 25 | 0,95               | 0,5  | 2,8 | 1,25 | 0,02 | 1,129 | 0,120 | 0,021 | 5,791   |
| 448 | 30 | 0,95               | 0,5  | 2,8 | 1,25 | 0,02 | 1,114 | 0,132 | 0,021 | 6,168   |
| 449 | 35 | 0,95               | 0,5  | 2,8 | 1,25 | 0,02 | 1,102 | 0,141 | 0,022 | 6,440   |
| 450 | 40 | 0 <mark>,95</mark> | 0,5  | 2,8 | 1,25 | 0,02 | 1,082 | 0,150 | 0,023 | 6,637   |
| 451 | 20 | 0,15               | 0,25 | 1,2 | 2    | 0,02 | 0,375 | 0,471 | 0,005 | 95,340  |
| 452 | 25 | 0,15               | 0,25 | 1,2 | 2    | 0,02 | 0,482 | 0,706 | 0,005 | 139,314 |
| 453 | 30 | 0,15               | 0,25 | 1,2 | 2    | 0,02 | 0,615 | 1,036 | 0,005 | 199,781 |
| 454 | 35 | 0,15               | 0,25 | 1,2 | 2    | 0,02 | 0,749 | 1,428 | 0,005 | 270,886 |
| 455 | 40 | 0,15               | 0,25 | 1,2 | 2    | 0,02 | 0,866 | 1,847 | 0,005 | 345,905 |
| 456 | 20 | 0,35               | 0,25 | 1,2 | 2    | 0,02 | 0,403 | 0,367 | 0,005 | 74,294  |
| 457 | 25 | 0,35               | 0,25 | 1,2 | 2    | 0,02 | 0,529 | 0,556 | 0,005 | 109,611 |
| 458 | 30 | 0,35               | 0,25 | 1,2 | 2    | 0,02 | 0,691 | 0,823 | 0,005 | 158,430 |
| 459 | 35 | 0,35               | 0,25 | 1,2 | 2    | 0,02 | 0,853 | 1,134 | 0,005 | 214,352 |
| 460 | 40 | 0,35               | 0,25 | 1,2 | 2    | 0,02 | 0,987 | 1,446 | 0,005 | 269,560 |
| 461 | 20 | 0,55               | 0,25 | 1,2 | 2    | 0,02 | 0,432 | 0,259 | 0,005 | 52,449  |
| 462 | 25 | 0,55               | 0,25 | 1,2 | 2    | 0,02 | 0,580 | 0,397 | 0,005 | 78,193  |
| 463 | 30 | 0,55               | 0,25 | 1,2 | 2    | 0,02 | 0,771 | 0,592 | 0,005 | 113,782 |
| 464 | 35 | 0,55               | 0,25 | 1,2 | 2    | 0,02 | 0,953 | 0,809 | 0,005 | 152,378 |
| 465 | 40 | 0,55               | 0,25 | 1,2 | 2    | 0,02 | 1,081 | 1,002 | 0,005 | 185,574 |
| 466 | 20 | 0,75               | 0,25 | 1,2 | 2    | 0,02 | 0,462 | 0,147 | 0,005 | 29,731  |
| 467 | 25 | 0,75               | 0,25 | 1,2 | 2    | 0,02 | 0,633 | 0,228 | 0,005 | 44,830  |
| 468 | 30 | 0,75               | 0,25 | 1,2 | 2    | 0,02 | 0,853 | 0,342 | 0,005 | 65,484  |
| 469 | 35 | 0,75               | 0,25 | 1,2 | 2    | 0,02 | 1,040 | 0,457 | 0,005 | 85,586  |



| 470 | 40 | 0,75 | 0,25 | 1,2 | 2 | 0,02 | 1,133 | 0,540 | 0,005 | 98,960  |
|-----|----|------|------|-----|---|------|-------|-------|-------|---------|
| 471 | 20 | 0,95 | 0,25 | 1,2 | 2 | 0,02 | 0,493 | 0,030 | 0,005 | 6,064   |
| 472 | 25 | 0,95 | 0,25 | 1,2 | 2 | 0,02 | 0,690 | 0,047 | 0,005 | 9,258   |
| 473 | 30 | 0,95 | 0,25 | 1,2 | 2 | 0,02 | 0,930 | 0,071 | 0,005 | 13,489  |
| 474 | 35 | 0,95 | 0,25 | 1,2 | 2 | 0,02 | 1,101 | 0,091 | 0,005 | 16,870  |
| 475 | 40 | 0,95 | 0,25 | 1,2 | 2 | 0,02 | 1,143 | 0,102 | 0,006 | 18,400  |
| 476 | 20 | 0,15 | 0,33 | 1,2 | 2 | 0,02 | 0,627 | 0,703 | 0,005 | 134,634 |
| 477 | 25 | 0,15 | 0,33 | 1,2 | 2 | 0,02 | 0,769 | 1,007 | 0,005 | 188,743 |
| 478 | 30 | 0,15 | 0,33 | 1,2 | 2 | 0,02 | 0,901 | 1,355 | 0,005 | 249,964 |
| 479 | 35 | 0,15 | 0,33 | 1,2 | 2 | 0,02 | 1,010 | 1,720 | 0,005 | 313,412 |
| 480 | 40 | 0,15 | 0,33 | 1,2 | 2 | 0,02 | 1,093 | 2,083 | 0,006 | 375,828 |
| 481 | 20 | 0,35 | 0,33 | 1,2 | 2 | 0,02 | 0,678 | 0,552 | 0,005 | 105,486 |
| 482 | 25 | 0,35 | 0,33 | 1,2 | 2 | 0,02 | 0,845 | 0,793 | 0,005 | 148,370 |
| 483 | 30 | 0,35 | 0,33 | 1,2 | 2 | 0,02 | 0,998 | 1,061 | 0,005 | 194,982 |
| 484 | 35 | 0,35 | 0,33 | 1,2 | 2 | 0,02 | 1,113 | 1,322 | 0,006 | 239,427 |
| 485 | 40 | 0,35 | 0,33 | 1,2 | 2 | 0,02 | 1,185 | 1,551 | 0,006 | 277,370 |
| 486 | 20 | 0,55 | 0,33 | 1,2 | 2 | 0,02 | 0,732 | 0,392 | 0,005 | 74,917  |
| 487 | 25 | 0,55 | 0,33 | 1,2 | 2 | 0,02 | 0,924 | 0,565 | 0,005 | 105,427 |
| 488 | 30 | 0,55 | 0,33 | 1,2 | 2 | 0,02 | 1,085 | 0,745 | 0,005 | 136,149 |
| 489 | 35 | 0,55 | 0,33 | 1,2 | 2 | 0,02 | 1,182 | 0,897 | 0,006 | 160,992 |
| 490 | 40 | 0,55 | 0,33 | 1,2 | 2 | 0,02 | 1,212 | 1,003 | 0,006 | 176,976 |
| 491 | 20 | 0,75 | 0,33 | 1,2 | 2 | 0,02 | 0,790 | 0,224 | 0,005 | 42,742  |
| 492 | 25 | 0,75 | 0,33 | 1,2 | 2 | 0,02 | 1,001 | 0,322 | 0,005 | 59,856  |
| 493 | 30 | 0,75 | 0,33 | 1,2 | 2 | 0,02 | 1,153 | 0,413 | 0,006 | 74,850  |
| 494 | 35 | 0,75 | 0,33 | 1,2 | 2 | 0,02 | 1,206 | 0,474 | 0,006 | 84,008  |
| 495 | 40 | 0,75 | 0,33 | 1,2 | 2 | 0,02 | 1,194 | 0,508 | 0,006 | 88,033  |
| 496 | 20 | 0,95 | 0,33 | 1,2 | 2 | 0,02 | 0,850 | 0,046 | 0,005 | 8,775   |
| 497 | 25 | 0,95 | 0,33 | 1,2 | 2 | 0,02 | 1,073 | 0,066 | 0,005 | 12,114  |
| 498 | 30 | 0,95 | 0,33 | 1,2 | 2 | 0,02 | 1,184 | 0,080 | 0,006 | 14,441  |
| 499 | 35 | 0,95 | 0,33 | 1,2 | 2 | 0,02 | 1,197 | 0,088 | 0,006 | 15,418  |
| 500 | 40 | 0,95 | 0,33 | 1,2 | 2 | 0,02 | 1,165 | 0,093 | 0,006 | 15,747  |
| 501 | 20 | 0,15 | 0,5  | 1,2 | 2 | 0,02 | 1,162 | 0,972 | 0,006 | 169,157 |
| 502 | 25 | 0,15 | 0,5  | 1,2 | 2 | 0,02 | 1,258 | 1,229 | 0,006 | 210,998 |
| 503 | 30 | 0,15 | 0,5  | 1,2 | 2 | 0,02 | 1,323 | 1,485 | 0,006 | 252,194 |
| 504 | 35 | 0,15 | 0,5  | 1,2 | 2 | 0,02 | 1,361 | 1,731 | 0,006 | 290,996 |
| 505 | 40 | 0,15 | 0,5  | 1,2 | 2 | 0,02 | 1,376 | 1,957 | 0,006 | 325,990 |
| 506 | 20 | 0,35 | 0,5  | 1,2 | 2 | 0,02 | 1,233 | 0,748 | 0,006 | 129,586 |
| 507 | 25 | 0,35 | 0,5  | 1,2 | 2 | 0,02 | 1,323 | 0,927 | 0,006 | 157,874 |
| 508 | 30 | 0,35 | 0,5  | 1,2 | 2 | 0,02 | 1,365 | 1,084 | 0,006 | 181,921 |
| 509 | 35 | 0,35 | 0,5  | 1,2 | 2 | 0,02 | 1,364 | 1,209 | 0,006 | 199,935 |
| 510 | 40 | 0,35 | 0,5  | 1,2 | 2 | 0,02 | 1,332 | 1,301 | 0,006 | 211,630 |
| 511 | 20 | 0,55 | 0,5  | 1,2 | 2 | 0,02 | 1,292 | 0,517 | 0,006 | 88,932  |
| 512 | 25 | 0,55 | 0,5  | 1,2 | 2 | 0,02 | 1,357 | 0,620 | 0,006 | 104,510 |



| 513 | 30 | 0,55                | 0,5  | 1,2 | 2 | 0,02 | 1,355 | 0,694 | 0,006 | 114,782 |
|-----|----|---------------------|------|-----|---|------|-------|-------|-------|---------|
| 514 | 35 | 0,55                | 0,5  | 1,2 | 2 | 0,02 | 1,313 | 0,743 | 0,006 | 120,253 |
| 515 | 40 | 0,55                | 0,5  | 1,2 | 2 | 0,02 | 1,258 | 0,777 | 0,006 | 122,936 |
| 516 | 20 | 0,75                | 0,5  | 1,2 | 2 | 0,02 | 1,334 | 0,283 | 0,006 | 48,257  |
| 517 | 25 | 0,75                | 0,5  | 1,2 | 2 | 0,02 | 1,355 | 0,326 | 0,006 | 54,222  |
| 518 | 30 | 0,75                | 0,5  | 1,2 | 2 | 0,02 | 1,316 | 0,351 | 0,006 | 57,072  |
| 519 | 35 | 0,75                | 0,5  | 1,2 | 2 | 0,02 | 1,257 | 0,368 | 0,006 | 58,285  |
| 520 | 40 | 0,75                | 0,5  | 1,2 | 2 | 0,02 | 1,204 | 0,383 | 0,006 | 58,976  |
| 521 | 20 | 0,95                | 0,5  | 1,2 | 2 | 0,02 | 1,353 | 0,055 | 0,006 | 9,260   |
| 522 | 25 | 0,95                | 0,5  | 1,2 | 2 | 0,02 | 1,332 | 0,061 | 0,006 | 9,967   |
| 523 | 30 | 0,95                | 0,5  | 1,2 | 2 | 0,02 | 1,265 | 0,064 | 0,006 | 10,227  |
| 524 | 35 | 0,95                | 0,5  | 1,2 | 2 | 0,02 | 1,213 | 0,067 | 0,006 | 10,350  |
| 525 | 40 | 0,95                | 0,5  | 1,2 | 2 | 0,02 | 1,167 | 0,069 | 0,007 | 10,446  |
| 526 | 20 | 0,15                | 0,25 | 2   | 2 | 0,02 | 0,525 | 1,099 | 0,014 | 80,526  |
| 527 | 25 | 0,15                | 0,25 | 2   | 2 | 0,02 | 0,638 | 1,558 | 0,014 | 111,518 |
| 528 | 30 | 0,15                | 0,25 | 2   | 2 | 0,02 | 0,754 | 2,115 | 0,014 | 148,393 |
| 529 | 35 | 0,15                | 0,25 | 2   | 2 | 0,02 | 0,859 | 2,730 | 0,014 | 188,558 |
| 530 | 40 | 0,15                | 0,25 | 2   | 2 | 0,02 | 0,948 | 3,370 | 0,015 | 229,642 |
| 531 | 20 | 0,35                | 0,25 | 2   | 2 | 0,02 | 0,564 | 0,855 | 0,014 | 62,598  |
| 532 | 25 | 0,35                | 0,25 | 2   | 2 | 0,02 | 0,695 | 1,217 | 0,014 | 86,929  |
| 533 | 30 | 0,35                | 0,25 | 2   | 2 | 0,02 | 0,830 | 1,648 | 0,014 | 115,250 |
| 534 | 35 | 0,35                | 0,25 | 2   | 2 | 0,02 | 0,950 | 2,104 | 0,015 | 144,545 |
| 535 | 40 | 0 <mark>,3</mark> 5 | 0,25 | 2   | 2 | 0,02 | 1,041 | 2,543 | 0,015 | 171,966 |
| 536 | 20 | 0 <mark>,55</mark>  | 0,25 | 2   | 2 | 0,02 | 0,603 | 0,603 | 0,014 | 44,065  |
| 537 | 25 | 0,55                | 0,25 | 2   | 2 | 0,02 | 0,754 | 0,861 | 0,014 | 61,287  |
| 538 | 30 | 0,55                | 0,25 | 2   | 2 | 0,02 | 0,904 | 1,158 | 0,014 | 80,590  |
| 539 | 35 | 0,55                | 0,25 | 2   | 2 | 0,02 | 1,025 | 1,450 | 0,015 | 98,894  |
| 540 | 40 | 0,55                | 0,25 | 2   | 2 | 0,02 | 1,100 | 1,699 | 0,015 | 113,669 |
| 541 | 20 | 0,75                | 0,25 | 2   | 2 | 0,02 | 0,644 | 0,341 | 0,014 | 24,894  |
| 542 | 25 | 0,75                | 0,25 | 2   | 2 | 0,02 | 0,812 | 0,487 | 0,014 | 34,610  |
| 543 | 30 | 0,75                | 0,25 | 2   | 2 | 0,02 | 0,970 | 0,648 | 0,014 | 44,852  |
| 544 | 35 | 0,75                | 0,25 | 2   | 2 | 0,02 | 1,077 | 0,789 | 0,015 | 53,355  |
| 545 | 40 | 0,75                | 0,25 | 2   | 2 | 0,02 | 1,124 | 0,893 | 0,015 | 58,963  |
| 546 | 20 | 0,95                | 0,25 | 2   | 2 | 0,02 | 0,686 | 0,069 | 0,014 | 5,057   |
| 547 | 25 | 0,95                | 0,25 | 2   | 2 | 0,02 | 0,869 | 0,099 | 0,014 | 7,007   |
| 548 | 30 | 0,95                | 0,25 | 2   | 2 | 0,02 | 1,020 | 0,129 | 0,015 | 8,880   |
| 549 | 35 | 0,95                | 0,25 | 2   | 2 | 0,02 | 1,107 | 0,152 | 0,015 | 10,180  |
| 550 | 40 | 0,95                | 0,25 | 2   | 2 | 0,02 | 1,126 | 0,167 | 0,015 | 10,870  |
| 551 | 20 | 0,15                | 0,33 | 2   | 2 | 0,02 | 0,795 | 1,486 | 0,014 | 103,434 |
| 552 | 25 | 0,15                | 0,33 | 2   | 2 | 0,02 | 0,908 | 1,981 | 0,015 | 135,267 |
| 553 | 30 | 0,15                | 0,33 | 2   | 2 | 0,02 | 1,005 | 2,519 | 0,015 | 169,292 |
| 554 | 35 | 0,15                | 0,33 | 2   | 2 | 0,02 | 1,082 | 3,072 | 0,015 | 203,666 |
| 555 | 40 | 0,15                | 0,33 | 2   | 2 | 0,02 | 1,139 | 3,618 | 0,015 | 236,945 |



| 556 | 20 | 0,35                | 0,33 | 2 | 2 | 0,02 | 0,851 | 1,153 | 0,014 | 80,015  |
|-----|----|---------------------|------|---|---|------|-------|-------|-------|---------|
| 557 | 25 | 0,35                | 0,33 | 2 | 2 | 0,02 | 0,977 | 1,528 | 0,015 | 103,834 |
| 558 | 30 | 0,35                | 0,33 | 2 | 2 | 0,02 | 1,080 | 1,914 | 0,015 | 127,745 |
| 559 | 35 | 0,35                | 0,33 | 2 | 2 | 0,02 | 1,151 | 2,279 | 0,015 | 149,564 |
| 560 | 40 | 0,35                | 0,33 | 2 | 2 | 0,02 | 1,190 | 2,597 | 0,015 | 167,738 |
| 561 | 20 | 0,55                | 0,33 | 2 | 2 | 0,02 | 0,905 | 0,809 | 0,014 | 55,932  |
| 562 | 25 | 0,55                | 0,33 | 2 | 2 | 0,02 | 1,040 | 1,061 | 0,015 | 71,662  |
| 563 | 30 | 0,55                | 0,33 | 2 | 2 | 0,02 | 1,136 | 1,299 | 0,015 | 85,961  |
| 564 | 35 | 0,55                | 0,33 | 2 | 2 | 0,02 | 1,186 | 1,498 | 0,015 | 97,105  |
| 565 | 40 | 0,55                | 0,33 | 2 | 2 | 0,02 | 1,194 | 1,648 | 0,016 | 104,624 |
| 566 | 20 | 0,75                | 0,33 | 2 | 2 | 0,02 | 0,960 | 0,454 | 0,015 | 31,280  |
| 567 | 25 | 0,75                | 0,33 | 2 | 2 | 0,02 | 1,092 | 0,586 | 0,015 | 39,323  |
| 568 | 30 | 0,75                | 0,33 | 2 | 2 | 0,02 | 1,170 | 0,698 | 0,015 | 45,671  |
| 569 | 35 | 0,75                | 0,33 | 2 | 2 | 0,02 | 1,189 | 0,779 | 0,016 | 49,732  |
| 570 | 40 | 0,75                | 0,33 | 2 | 2 | 0,02 | 1,176 | 0,834 | 0,016 | 51,984  |
| 571 | 20 | 0,95                | 0,33 | 2 | 2 | 0,02 | 1,011 | 0,091 | 0,015 | 6,264   |
| 572 | 25 | 0,95                | 0,33 | 2 | 2 | 0,02 | 1,133 | 0,115 | 0,015 | 7,676   |
| 573 | 30 | 0,95                | 0,33 | 2 | 2 | 0,02 | 1,176 | 0,133 | 0,015 | 8,611   |
| 574 | 35 | 0,95                | 0,33 | 2 | 2 | 0,02 | 1,178 | 0,145 | 0,016 | 9,103   |
| 575 | 40 | 0,95                | 0,33 | 2 | 2 | 0,02 | 1,153 | 0,153 | 0,016 | 9,349   |
| 576 | 20 | 0,15                | 0,5  | 2 | 2 | 0,02 | 1,264 | 1,763 | 0,016 | 111,767 |
| 577 | 25 | 0,15                | 0,5  | 2 | 2 | 0,02 | 1,320 | 2,149 | 0,016 | 134,196 |
| 578 | 30 | 0 <mark>,1</mark> 5 | 0,5  | 2 | 2 | 0,02 | 1,353 | 2,532 | 0,016 | 155,971 |
| 579 | 35 | 0,15                | 0,5  | 2 | 2 | 0,02 | 1,368 | 2,898 | 0,016 | 176,267 |
| 580 | 40 | 0,15                | 0,5  | 2 | 2 | 0,02 | 1,366 | 3,238 | 0,017 | 194,435 |
| 581 | 20 | 0,35                | 0,5  | 2 | 2 | 0,02 | 1,306 | 1,321 | 0,016 | 83,019  |
| 582 | 25 | 0,35                | 0,5  | 2 | 2 | 0,02 | 1,346 | 1,572 | 0,016 | 96,972  |
| 583 | 30 | 0,35                | 0,5  | 2 | 2 | 0,02 | 1,356 | 1,794 | 0,017 | 108,720 |
| 584 | 35 | 0,35                | 0,5  | 2 | 2 | 0,02 | 1,340 | 1,980 | 0,017 | 117,760 |
| 585 | 40 | 0,35                | 0,5  | 2 | 2 | 0,02 | 1,307 | 2,128 | 0,017 | 124,171 |
| 586 | 20 | 0,55                | 0,5  | 2 | 2 | 0,02 | 1,331 | 0,888 | 0,016 | 55,230  |
| 587 | 25 | 0,55                | 0,5  | 2 | 2 | 0,02 | 1,349 | 1,027 | 0,016 | 62,461  |
| 588 | 30 | 0,55                | 0,5  | 2 | 2 | 0,02 | 1,330 | 1,135 | 0,017 | 67,537  |
| 589 | 35 | 0,55                | 0,5  | 2 | 2 | 0,02 | 1,291 | 1,217 | 0,017 | 70,745  |
| 590 | 40 | 0,55                | 0,5  | 2 | 2 | 0,02 | 1,244 | 1,281 | 0,018 | 72,712  |
| 591 | 20 | 0,75                | 0,5  | 2 | 2 | 0,02 | 1,342 | 0,474 | 0,016 | 29,181  |
| 592 | 25 | 0,75                | 0,5  | 2 | 2 | 0,02 | 1,331 | 0,533 | 0,017 | 31,964  |
| 593 | 30 | 0,75                | 0,5  | 2 | 2 | 0,02 | 1,293 | 0,575 | 0,017 | 33,608  |
| 594 | 35 | 0,75                | 0,5  | 2 | 2 | 0,02 | 1,243 | 0,607 | 0,018 | 34,538  |
| 595 | 40 | 0,75                | 0,5  | 2 | 2 | 0,02 | 1,197 | 0,634 | 0,018 | 35,120  |
| 596 | 20 | 0,95                | 0,5  | 2 | 2 | 0,02 | 1,339 | 0,090 | 0,016 | 5,500   |
| 597 | 25 | 0,95                | 0,5  | 2 | 2 | 0,02 | 1,306 | 0,099 | 0,017 | 5,865   |
| 598 | 30 | 0,95                | 0,5  | 2 | 2 | 0,02 | 1,249 | 0,105 | 0,017 | 6,057   |



| 599 | 35 | 0,95               | 0,5  | 2   | 2 | 0,02 | 1,205 | 0,110 | 0,018 | 6,167   |
|-----|----|--------------------|------|-----|---|------|-------|-------|-------|---------|
| 600 | 40 | 0,95               | 0,5  | 2   | 2 | 0,02 | 1,163 | 0,115 | 0,018 | 6,243   |
| 601 | 20 | 0,15               | 0,25 | 2,8 | 2 | 0,02 | 0,596 | 1,746 | 0,027 | 65,548  |
| 602 | 25 | 0,15               | 0,25 | 2,8 | 2 | 0,02 | 0,696 | 2,381 | 0,027 | 87,407  |
| 603 | 30 | 0,15               | 0,25 | 2,8 | 2 | 0,02 | 0,793 | 3,115 | 0,028 | 112,196 |
| 604 | 35 | 0,15               | 0,25 | 2,8 | 2 | 0,02 | 0,879 | 3,912 | 0,028 | 138,550 |
| 605 | 40 | 0,15               | 0,25 | 2,8 | 2 | 0,02 | 0,951 | 4,735 | 0,029 | 165,221 |
| 606 | 20 | 0,35               | 0,25 | 2,8 | 2 | 0,02 | 0,636 | 1,352 | 0,027 | 50,656  |
| 607 | 25 | 0,35               | 0,25 | 2,8 | 2 | 0,02 | 0,751 | 1,842 | 0,027 | 67,391  |
| 608 | 30 | 0,35               | 0,25 | 2,8 | 2 | 0,02 | 0,861 | 2,393 | 0,028 | 85,749  |
| 609 | 35 | 0,35               | 0,25 | 2,8 | 2 | 0,02 | 0,955 | 2,962 | 0,028 | 104,150 |
| 610 | 40 | 0,35               | 0,25 | 2,8 | 2 | 0,02 | 1,026 | 3,508 | 0,029 | 121,178 |
| 611 | 20 | 0,55               | 0,25 | 2,8 | 2 | 0,02 | 0,677 | 0,948 | 0,027 | 35,420  |
| 612 | 25 | 0,55               | 0,25 | 2,8 | 2 | 0,02 | 0,805 | 1,287 | 0,027 | 46,912  |
| 613 | 30 | 0,55               | 0,25 | 2,8 | 2 | 0,02 | 0,922 | 1,654 | 0,028 | 58,914  |
| 614 | 35 | 0,55               | 0,25 | 2,8 | 2 | 0,02 | 1,013 | 2,007 | 0,029 | 69,950  |
| 615 | 40 | 0,55               | 0,25 | 2,8 | 2 | 0,02 | 1,070 | 2,314 | 0,029 | 78,963  |
| 616 | 20 | 0,75               | 0,25 | 2,8 | 2 | 0,02 | 0,718 | 0,533 | 0,027 | 19,856  |
| 617 | 25 | 0,75               | 0,25 | 2,8 | 2 | 0,02 | 0,856 | 0,720 | 0,028 | 26,111  |
| 618 | 30 | 0,75               | 0,25 | 2,8 | 2 | 0,02 | 0,974 | 0,911 | 0,028 | 32,210  |
| 619 | 35 | 0,75               | 0,25 | 2,8 | 2 | 0,02 | 1,052 | 1,079 | 0,029 | 37,221  |
| 620 | 40 | 0 <mark>,75</mark> | 0,25 | 2,8 | 2 | 0,02 | 1,089 | 1,211 | 0,030 | 40,769  |
| 621 | 20 | 0,95               | 0,25 | 2,8 | 2 | 0,02 | 0,758 | 0,108 | 0,027 | 3,997   |
| 622 | 25 | 0 <mark>,95</mark> | 0,25 | 2,8 | 2 | 0,02 | 0,903 | 0,144 | 0,028 | 5,202   |
| 623 | 30 | 0,95               | 0,25 | 2,8 | 2 | 0,02 | 1,009 | 0,179 | 0,028 | 6,277   |
| 624 | 35 | 0,95               | 0,25 | 2,8 | 2 | 0,02 | 1,074 | 0,207 | 0,029 | 7,052   |
| 625 | 40 | 0,95               | 0,25 | 2,8 | 2 | 0,02 | 1,092 | 0,227 | 0,030 | 7,533   |
| 626 | 20 | 0,15               | 0,33 | 2,8 | 2 | 0,02 | 0,846 | 2,213 | 0,028 | 79,014  |
| 627 | 25 | 0,15               | 0,33 | 2,8 | 2 | 0,02 | 0,936 | 2,858 | 0,029 | 100,093 |
| 628 | 30 | 0,15               | 0,33 | 2,8 | 2 | 0,02 | 1,012 | 3,550 | 0,029 | 122,231 |
| 629 | 35 | 0,15               | 0,33 | 2,8 | 2 | 0,02 | 1,071 | 4,259 | 0,029 | 144,442 |
| 630 | 40 | 0,15               | 0,33 | 2,8 | 2 | 0,02 | 1,116 | 4,961 | 0,030 | 165,905 |
| 631 | 20 | 0,35               | 0,33 | 2,8 | 2 | 0,02 | 0,895 | 1,699 | 0,028 | 60,393  |
| 632 | 25 | 0,35               | 0,33 | 2,8 | 2 | 0,02 | 0,992 | 2,173 | 0,029 | 75,614  |
| 633 | 30 | 0,35               | 0,33 | 2,8 | 2 | 0,02 | 1,069 | 2,654 | 0,029 | 90,580  |
| 634 | 35 | 0,35               | 0,33 | 2,8 | 2 | 0,02 | 1,122 | 3,110 | 0,030 | 104,215 |
| 635 | 40 | 0,35               | 0,33 | 2,8 | 2 | 0,02 | 1,152 | 3,519 | 0,030 | 115,783 |
| 636 | 20 | 0,55               | 0,33 | 2,8 | 2 | 0,02 | 0,941 | 1,178 | 0,028 | 41,656  |
| 637 | 25 | 0,55               | 0,33 | 2,8 | 2 | 0,02 | 1,041 | 1,486 | 0,029 | 51,343  |
| 638 | 30 | 0,55               | 0,33 | 2,8 | 2 | 0,02 | 1,110 | 1,777 | 0,030 | 60,043  |
| 639 | 35 | 0,55               | 0,33 | 2,8 | 2 | 0,02 | 1,147 | 2,029 | 0,030 | 67,034  |
| 640 | 40 | 0,55               | 0,33 | 2,8 | 2 | 0,02 | 1,156 | 2,233 | 0,031 | 72,146  |
| 641 | 20 | 0,75               | 0,33 | 2,8 | 2 | 0,02 | 0,985 | 0,653 | 0,028 | 22,965  |



| 642 | 25 | 0,75                | 0,33 | 2,8 | 2   | 0,02 | 1,079 | 0,810 | 0,029 | 27,758   |
|-----|----|---------------------|------|-----|-----|------|-------|-------|-------|----------|
| 643 | 30 | 0,75                | 0,33 | 2,8 | 2   | 0,02 | 1,134 | 0,946 | 0,030 | 31,609   |
| 644 | 35 | 0,75                | 0,33 | 2,8 | 2   | 0,02 | 1,150 | 1,054 | 0,031 | 34,316   |
| 645 | 40 | 0,75                | 0,33 | 2,8 | 2   | 0,02 | 1,144 | 1,136 | 0,032 | 36,065   |
| 646 | 20 | 0,95                | 0,33 | 2,8 | 2   | 0,02 | 1,023 | 0,130 | 0,029 | 4,532    |
| 647 | 25 | 0,95                | 0,33 | 2,8 | 2   | 0,02 | 1,107 | 0,158 | 0,029 | 5,356    |
| 648 | 30 | 0,95                | 0,33 | 2,8 | 2   | 0,02 | 1,137 | 0,180 | 0,030 | 5,943    |
| 649 | 35 | 0,95                | 0,33 | 2,8 | 2   | 0,02 | 1,143 | 0,197 | 0,031 | 6,309    |
| 650 | 40 | 0,95                | 0,33 | 2,8 | 2   | 0,02 | 1,127 | 0,209 | 0,032 | 6,530    |
| 651 | 20 | 0,15                | 0,5  | 2,8 | 2   | 0,02 | 1,244 | 2,428 | 0,031 | 78,815   |
| 652 | 25 | 0,15                | 0,5  | 2,8 | 2   | 0,02 | 1,282 | 2,922 | 0,031 | 93,274   |
| 653 | 30 | 0,15                | 0,5  | 2,8 | 2   | 0,02 | 1,305 | 3,417 | 0,032 | 107,356  |
| 654 | 35 | 0,15                | 0,5  | 2,8 | 2   | 0,02 | 1,313 | 3,896 | 0,032 | 120,593  |
| 655 | 40 | 0,15                | 0,5  | 2,8 | 2   | 0,02 | 1,311 | 4,348 | 0,033 | 132,620  |
| 656 | 20 | 0,35                | 0,5  | 2,8 | 2   | 0,02 | 1,270 | 1,799 | 0,031 | 57,768   |
| 657 | 25 | 0,35                | 0,5  | 2,8 | 2   | 0,02 | 1,295 | 2,117 | 0,032 | 66,630   |
| 658 | 30 | 0,35                | 0,5  | 2,8 | 2   | 0,02 | 1,300 | 2,408 | 0,032 | 74,300   |
| 659 | 35 | 0,35                | 0,5  | 2,8 | 2   | 0,02 | 1,287 | 2,663 | 0,033 | 80,522   |
| 660 | 40 | 0,35                | 0,5  | 2,8 | 2   | 0,02 | 1,263 | 2,879 | 0,034 | 85,303   |
| 661 | 20 | 0,55                | 0,5  | 2,8 | 2   | 0,02 | 1,284 | 1,199 | 0,031 | 38,059   |
| 662 | 25 | 0,55                | 0,5  | 2,8 | 2   | 0,02 | 1,293 | 1,378 | 0,032 | 42,733   |
| 663 | 30 | 0,55                | 0,5  | 2,8 | 2   | 0,02 | 1,278 | 1,528 | 0,033 | 46,291   |
| 664 | 35 | 0 <mark>,5</mark> 5 | 0,5  | 2,8 | 2   | 0,02 | 1,250 | 1,651 | 0,034 | 48,820   |
| 665 | 40 | 0,55                | 0,5  | 2,8 | 2   | 0,02 | 1,215 | 1,752 | 0,035 | 50,569   |
| 666 | 20 | 0,75                | 0,5  | 2,8 | 2   | 0,02 | 1,288 | 0,637 | 0,032 | 20,007   |
| 667 | 25 | 0,75                | 0,5  | 2,8 | 2   | 0,02 | 1,279 | 0,717 | 0,033 | 21,912   |
| 668 | 30 | 0,75                | 0,5  | 2,8 | 2   | 0,02 | 1,252 | 0,780 | 0,034 | 23,208   |
| 669 | 35 | 0,75                | 0,5  | 2,8 | 2   | 0,02 | 1,214 | 0,830 | 0,035 | 24,058   |
| 670 | 40 | 0,75                | 0,5  | 2,8 | 2   | 0,02 | 1,177 | 0,873 | 0,035 | 24,631   |
| 671 | 20 | 0,95                | 0,5  | 2,8 | 2   | 0,02 | 1,284 | 0,121 | 0,032 | 3,768    |
| 672 | 25 | 0,95                | 0,5  | 2,8 | 2   | 0,02 | 1,261 | 0,134 | 0,033 | 4,042    |
| 673 | 30 | 0,95                | 0,5  | 2,8 | 2   | 0,02 | 1,217 | 0,144 | 0,034 | 4,215    |
| 674 | 35 | 0,95                | 0,5  | 2,8 | 2   | 0,02 | 1,184 | 0,152 | 0,035 | 4,325    |
| 675 | 40 | 0,95                | 0,5  | 2,8 | 2   | 0,02 | 1,148 | 0,159 | 0,036 | 4,401    |
| 676 | 20 | 0,15                | 0,25 | 1,2 | 0,5 | 0,06 | 0,601 | 2,263 | 0,003 | 696,286  |
| 677 | 25 | 0,15                | 0,25 | 1,2 | 0,5 | 0,06 | 0,676 | 2,970 | 0,003 | 893,571  |
| 678 | 30 | 0,15                | 0,25 | 1,2 | 0,5 | 0,06 | 0,746 | 3,768 | 0,003 | 1110,279 |
| 679 | 35 | 0,15                | 0,25 | 1,2 | 0,5 | 0,06 | 0,809 | 4,626 | 0,003 | 1337,800 |
| 680 | 40 | 0,15                | 0,25 | 1,2 | 0,5 | 0,06 | 0,862 | 5,519 | 0,004 | 1567,964 |
| 681 | 20 | 0,35                | 0,25 | 1,2 | 0,5 | 0,06 | 0,636 | 1,738 | 0,003 | 533,076  |
| 682 | 25 | 0,35                | 0,25 | 1,2 | 0,5 | 0,06 | 0,720 | 2,270 | 0,003 | 679,756  |
| 683 | 30 | 0,35                | 0,25 | 1,2 | 0,5 | 0,06 | 0,799 | 2,852 | 0,003 | 835,107  |
| 684 | 35 | 0,35                | 0,25 | 1,2 | 0,5 | 0,06 | 0,865 | 3,452 | 0,003 | 989,616  |



| 685 | 40 | 0,35                | 0,25 | 1,2 | 0,5 | 0,06 | 0,919 | 4,041 | 0,004 | 1134,892 |
|-----|----|---------------------|------|-----|-----|------|-------|-------|-------|----------|
| 686 | 20 | 0,55                | 0,25 | 1,2 | 0,5 | 0,06 | 0,671 | 1,207 | 0,003 | 368,953  |
| 687 | 25 | 0,55                | 0,25 | 1,2 | 0,5 | 0,06 | 0,762 | 1,567 | 0,003 | 466,628  |
| 688 | 30 | 0,55                | 0,25 | 1,2 | 0,5 | 0,06 | 0,844 | 1,945 | 0,003 | 565,386  |
| 689 | 35 | 0,55                | 0,25 | 1,2 | 0,5 | 0,06 | 0,909 | 2,315 | 0,004 | 657,292  |
| 690 | 40 | 0,55                | 0,25 | 1,2 | 0,5 | 0,06 | 0,955 | 2,656 | 0,004 | 736,748  |
| 691 | 20 | 0,75                | 0,25 | 1,2 | 0,5 | 0,06 | 0,704 | 0,672 | 0,003 | 204,565  |
| 692 | 25 | 0,75                | 0,25 | 1,2 | 0,5 | 0,06 | 0,800 | 0,865 | 0,003 | 256,135  |
| 693 | 30 | 0,75                | 0,25 | 1,2 | 0,5 | 0,06 | 0,881 | 1,059 | 0,003 | 305,468  |
| 694 | 35 | 0,75                | 0,25 | 1,2 | 0,5 | 0,06 | 0,939 | 1,238 | 0,004 | 348,112  |
| 695 | 40 | 0,75                | 0,25 | 1,2 | 0,5 | 0,06 | 0,975 | 1,394 | 0,004 | 382,033  |
| 696 | 20 | 0,95                | 0,25 | 1,2 | 0,5 | 0,06 | 0,736 | 0,134 | 0,003 | 40,707   |
| 697 | 25 | 0,95                | 0,25 | 1,2 | 0,5 | 0,06 | 0,834 | 0,171 | 0,003 | 50,375   |
| 698 | 30 | 0,95                | 0,25 | 1,2 | 0,5 | 0,06 | 0,906 | 0,206 | 0,003 | 59,066   |
| 699 | 35 | 0,95                | 0,25 | 1,2 | 0,5 | 0,06 | 0,959 | 0,237 | 0,004 | 66,036   |
| 700 | 40 | 0,95                | 0,25 | 1,2 | 0,5 | 0,06 | 0,985 | 0,263 | 0,004 | 71,187   |
| 701 | 20 | 0,15                | 0,33 | 1,2 | 0,5 | 0,06 | 0,792 | 2,663 | 0,003 | 778,195  |
| 702 | 25 | 0,15                | 0,33 | 1,2 | 0,5 | 0,06 | 0,854 | 3,354 | 0,003 | 959,754  |
| 703 | 30 | 0,15                | 0,33 | 1,2 | 0,5 | 0,06 | 0,908 | 4,095 | 0,004 | 1149,633 |
| 704 | 35 | 0,15                | 0,33 | 1,2 | 0,5 | 0,06 | 0,952 | 4,865 | 0,004 | 1341,297 |
| 705 | 40 | 0,15                | 0,33 | 1,2 | 0,5 | 0,06 | 0,987 | 5,642 | 0,004 | 1528,994 |
| 706 | 20 | 0,35                | 0,33 | 1,2 | 0,5 | 0,06 | 0,828 | 2,022 | 0,003 | 587,460  |
| 707 | 25 | 0 <mark>,3</mark> 5 | 0,33 | 1,2 | 0,5 | 0,06 | 0,895 | 2,520 | 0,004 | 715,501  |
| 708 | 30 | 0 <mark>,35</mark>  | 0,33 | 1,2 | 0,5 | 0,06 | 0,950 | 3,031 | 0,004 | 842,213  |
| 709 | 35 | 0,35                | 0,33 | 1,2 | 0,5 | 0,06 | 0,991 | 3,532 | 0,004 | 961,086  |
| 710 | 40 | 0,35                | 0,33 | 1,2 | 0,5 | 0,06 | 1,020 | 4,005 | 0,004 | 1067,390 |
| 711 | 20 | 0,55                | 0,33 | 1,2 | 0,5 | 0,06 | 0,862 | 1,386 | 0,003 | 400,362  |
| 712 | 25 | 0,55                | 0,33 | 1,2 | 0,5 | 0,06 | 0,930 | 1,706 | 0,004 | 480,676  |
| 713 | 30 | 0,55                | 0,33 | 1,2 | 0,5 | 0,06 | 0,981 | 2,019 | 0,004 | 555,194  |
| 714 | 35 | 0,55                | 0,33 | 1,2 | 0,5 | 0,06 | 1,015 | 2,309 | 0,004 | 619,736  |
| 715 | 40 | 0,55                | 0,33 | 1,2 | 0,5 | 0,06 | 1,033 | 2,565 | 0,004 | 672,554  |
| 716 | 20 | 0,75                | 0,33 | 1,2 | 0,5 | 0,06 | 0,893 | 0,761 | 0,003 | 218,313  |
| 717 | 25 | 0,75                | 0,33 | 1,2 | 0,5 | 0,06 | 0,957 | 0,924 | 0,004 | 258,052  |
| 718 | 30 | 0,75                | 0,33 | 1,2 | 0,5 | 0,06 | 1,002 | 1,075 | 0,004 | 292,466  |
| 719 | 35 | 0,75                | 0,33 | 1,2 | 0,5 | 0,06 | 1,025 | 1,208 | 0,004 | 320,075  |
| 720 | 40 | 0,75                | 0,33 | 1,2 | 0,5 | 0,06 | 1,035 | 1,321 | 0,004 | 341,075  |
| 721 | 20 | 0,95                | 0,33 | 1,2 | 0,5 | 0,06 | 0,919 | 0,150 | 0,004 | 42,686   |
| 722 | 25 | 0,95                | 0,33 | 1,2 | 0,5 | 0,06 | 0,978 | 0,179 | 0,004 | 49,650   |
| 723 | 30 | 0,95                | 0,33 | 1,2 | 0,5 | 0,06 | 1,009 | 0,205 | 0,004 | 55,283   |
| 724 | 35 | 0,95                | 0,33 | 1,2 | 0,5 | 0,06 | 1,029 | 0,227 | 0,004 | 59,513   |
| 725 | 40 | 0,95                | 0,33 | 1,2 | 0,5 | 0,06 | 1,031 | 0,246 | 0,004 | 62,562   |
| 726 | 20 | 0,15                | 0,5  | 1,2 | 0,5 | 0,06 | 1,070 | 2,685 | 0,004 | 708,662  |
| 727 | 25 | 0,15                | 0,5  | 1,2 | 0,5 | 0,06 | 1,098 | 3,219 | 0,004 | 833,419  |



| 728 | 30 | 0,15                | 0,5  | 1,2 | 0,5 | 0,06 | 1,119 | 3,767 | 0,004 | 957,507  |
|-----|----|---------------------|------|-----|-----|------|-------|-------|-------|----------|
| 729 | 35 | 0,15                | 0,5  | 1,2 | 0,5 | 0,06 | 1,131 | 4,315 | 0,004 | 1077,506 |
| 730 | 40 | 0,15                | 0,5  | 1,2 | 0,5 | 0,06 | 1,137 | 4,851 | 0,004 | 1190,614 |
| 731 | 20 | 0,35                | 0,5  | 1,2 | 0,5 | 0,06 | 1,089 | 1,983 | 0,004 | 517,763  |
| 732 | 25 | 0,35                | 0,5  | 1,2 | 0,5 | 0,06 | 1,112 | 2,337 | 0,004 | 596,743  |
| 733 | 30 | 0,35                | 0,5  | 1,2 | 0,5 | 0,06 | 1,125 | 2,679 | 0,004 | 669,346  |
| 734 | 35 | 0,35                | 0,5  | 1,2 | 0,5 | 0,06 | 1,128 | 3,000 | 0,004 | 733,298  |
| 735 | 40 | 0,35                | 0,5  | 1,2 | 0,5 | 0,06 | 1,124 | 3,293 | 0,004 | 787,623  |
| 736 | 20 | 0,55                | 0,5  | 1,2 | 0,5 | 0,06 | 1,102 | 1,322 | 0,004 | 341,559  |
| 737 | 25 | 0,55                | 0,5  | 1,2 | 0,5 | 0,06 | 1,119 | 1,532 | 0,004 | 386,034  |
| 738 | 30 | 0,55                | 0,5  | 1,2 | 0,5 | 0,06 | 1,122 | 1,725 | 0,004 | 423,903  |
| 739 | 35 | 0,55                | 0,5  | 1,2 | 0,5 | 0,06 | 1,117 | 1,896 | 0,004 | 454,693  |
| 740 | 40 | 0,55                | 0,5  | 1,2 | 0,5 | 0,06 | 1,104 | 2,047 | 0,004 | 478,957  |
| 741 | 20 | 0,75                | 0,5  | 1,2 | 0,5 | 0,06 | 1,110 | 0,706 | 0,004 | 180,497  |
| 742 | 25 | 0,75                | 0,5  | 1,2 | 0,5 | 0,06 | 1,118 | 0,806 | 0,004 | 200,397  |
| 743 | 30 | 0,75                | 0,5  | 1,2 | 0,5 | 0,06 | 1,115 | 0,893 | 0,004 | 216,249  |
| 744 | 35 | 0,75                | 0,5  | 1,2 | 0,5 | 0,06 | 1,102 | 0,969 | 0,004 | 228,393  |
| 745 | 40 | 0,75                | 0,5  | 1,2 | 0,5 | 0,06 | 1,086 | 1,035 | 0,004 | 237,533  |
| 746 | 20 | 0,95                | 0,5  | 1,2 | 0,5 | 0,06 | 1,114 | 0,135 | 0,004 | 34,273   |
| 747 | 25 | 0,95                | 0,5  | 1,2 | 0,5 | 0,06 | 1,115 | 0,152 | 0,004 | 37,467   |
| 748 | 30 | 0,95                | 0,5  | 1,2 | 0,5 | 0,06 | 1,099 | 0,167 | 0,004 | 39,879   |
| 749 | 35 | 0,95                | 0,5  | 1,2 | 0,5 | 0,06 | 1,088 | 0,179 | 0,004 | 41,655   |
| 750 | 40 | 0 <mark>,9</mark> 5 | 0,5  | 1,2 | 0,5 | 0,06 | 1,069 | 0,190 | 0,004 | 42,957   |
| 751 | 20 | 0,15                | 0,25 | 2   | 0,5 | 0,06 | 0,577 | 3,619 | 0,009 | 402,282  |
| 752 | 25 | 0,15                | 0,25 | 2   | 0,5 | 0,06 | 0,626 | 4,583 | 0,009 | 497,749  |
| 753 | 30 | 0,15                | 0,25 | 2   | 0,5 | 0,06 | 0,671 | 5,649 | 0,009 | 600,004  |
| 754 | 35 | 0,15                | 0,25 | 2   | 0,5 | 0,06 | 0,712 | 6,788 | 0,010 | 706,041  |
| 755 | 40 | 0,15                | 0,25 | 2   | 0,5 | 0,06 | 0,748 | 7,974 | 0,010 | 812,981  |
| 756 | 20 | 0,35                | 0,25 | 2   | 0,5 | 0,06 | 0,603 | 2,748 | 0,009 | 304,128  |
| 757 | 25 | 0,35                | 0,25 | 2   | 0,5 | 0,06 | 0,658 | 3,454 | 0,009 | 372,942  |
| 758 | 30 | 0,35                | 0,25 | 2   | 0,5 | 0,06 | 0,707 | 4,212 | 0,009 | 444,001  |
| 759 | 35 | 0,35                | 0,25 | 2   | 0,5 | 0,06 | 0,751 | 4,992 | 0,010 | 514,225  |
| 760 | 40 | 0,35                | 0,25 | 2   | 0,5 | 0,06 | 0,787 | 5,767 | 0,010 | 580,927  |
| 761 | 20 | 0,55                | 0,25 | 2   | 0,5 | 0,06 | 0,629 | 1,886 | 0,009 | 207,853  |
| 762 | 25 | 0,55                | 0,25 | 2   | 0,5 | 0,06 | 0,687 | 2,352 | 0,009 | 252,389  |
| 763 | 30 | 0,55                | 0,25 | 2   | 0,5 | 0,06 | 0,738 | 2,835 | 0,010 | 296,549  |
| 764 | 35 | 0,55                | 0,25 | 2   | 0,5 | 0,06 | 0,781 | 3,313 | 0,010 | 338,008  |
| 765 | 40 | 0,55                | 0,25 | 2   | 0,5 | 0,06 | 0,813 | 3,768 | 0,010 | 375,092  |
| 766 | 20 | 0,75                | 0,25 | 2   | 0,5 | 0,06 | 0,653 | 1,038 | 0,009 | 113,824  |
| 767 | 25 | 0,75                | 0,25 | 2   | 0,5 | 0,06 | 0,712 | 1,282 | 0,009 | 136,773  |
| 768 | 30 | 0,75                | 0,25 | 2   | 0,5 | 0,06 | 0,763 | 1,528 | 0,010 | 158,572  |
| 769 | 35 | 0,75                | 0,25 | 2   | 0,5 | 0,06 | 0,801 | 1,762 | 0,010 | 178,017  |
| 770 | 40 | 0,75                | 0,25 | 2   | 0,5 | 0,06 | 0,829 | 1,976 | 0,010 | 194,461  |



| 771 | 20 | 0,95               | 0,25 | 2 | 0,5 | 0,06 | 0,675 | 0,205 | 0,009 | 22,382  |
|-----|----|--------------------|------|---|-----|------|-------|-------|-------|---------|
| 772 | 25 | 0,95               | 0,25 | 2 | 0,5 | 0,06 | 0,734 | 0,251 | 0,009 | 26,604  |
| 773 | 30 | 0,95               | 0,25 | 2 | 0,5 | 0,06 | 0,778 | 0,296 | 0,010 | 30,444  |
| 774 | 35 | 0,95               | 0,25 | 2 | 0,5 | 0,06 | 0,816 | 0,337 | 0,010 | 33,707  |
| 775 | 40 | 0,95               | 0,25 | 2 | 0,5 | 0,06 | 0,838 | 0,373 | 0,010 | 36,330  |
| 776 | 20 | 0,15               | 0,33 | 2 | 0,5 | 0,06 | 0,703 | 3,941 | 0,009 | 415,127 |
| 777 | 25 | 0,15               | 0,33 | 2 | 0,5 | 0,06 | 0,742 | 4,857 | 0,010 | 500,220 |
| 778 | 30 | 0,15               | 0,33 | 2 | 0,5 | 0,06 | 0,777 | 5,840 | 0,010 | 588,722 |
| 779 | 35 | 0,15               | 0,33 | 2 | 0,5 | 0,06 | 0,806 | 6,868 | 0,010 | 678,277 |
| 780 | 40 | 0,15               | 0,33 | 2 | 0,5 | 0,06 | 0,831 | 7,918 | 0,010 | 766,737 |
| 781 | 20 | 0,35               | 0,33 | 2 | 0,5 | 0,06 | 0,728 | 2,960 | 0,010 | 309,792 |
| 782 | 25 | 0,35               | 0,33 | 2 | 0,5 | 0,06 | 0,769 | 3,610 | 0,010 | 368,671 |
| 783 | 30 | 0,35               | 0,33 | 2 | 0,5 | 0,06 | 0,805 | 4,282 | 0,010 | 427,138 |
| 784 | 35 | 0,35               | 0,33 | 2 | 0,5 | 0,06 | 0,834 | 4,955 | 0,010 | 483,006 |
| 785 | 40 | 0,35               | 0,33 | 2 | 0,5 | 0,06 | 0,857 | 5,609 | 0,010 | 534,576 |
| 786 | 20 | 0,55               | 0,33 | 2 | 0,5 | 0,06 | 0,750 | 2,010 | 0,010 | 208,976 |
| 787 | 25 | 0,55               | 0,33 | 2 | 0,5 | 0,06 | 0,792 | 2,424 | 0,010 | 245,540 |
| 788 | 30 | 0,55               | 0,33 | 2 | 0,5 | 0,06 | 0,827 | 2,838 | 0,010 | 280,153 |
| 789 | 35 | 0,55               | 0,33 | 2 | 0,5 | 0,06 | 0,853 | 3,235 | 0,010 | 311,427 |
| 790 | 40 | 0,55               | 0,33 | 2 | 0,5 | 0,06 | 0,871 | 3,605 | 0,011 | 338,574 |
| 791 | 20 | 0,75               | 0,33 | 2 | 0,5 | 0,06 | 0,770 | 1,094 | 0,010 | 112,966 |
| 792 | 25 | 0,75               | 0,33 | 2 | 0,5 | 0,06 | 0,811 | 1,305 | 0,010 | 131,061 |
| 793 | 30 | 0,75               | 0,33 | 2 | 0,5 | 0,06 | 0,843 | 1,508 | 0,010 | 147,405 |
| 794 | 35 | 0 <mark>,75</mark> | 0,33 | 2 | 0,5 | 0,06 | 0,864 | 1,696 | 0,011 | 161,434 |
| 795 | 40 | 0,75               | 0,33 | 2 | 0,5 | 0,06 | 0,877 | 1,867 | 0,011 | 172,985 |
| 796 | 20 | 0,95               | 0,33 | 2 | 0,5 | 0,06 | 0,787 | 0,214 | 0,010 | 21,934  |
| 797 | 25 | 0,95               | 0,33 | 2 | 0,5 | 0,06 | 0,826 | 0,252 | 0,010 | 25,138  |
| 798 | 30 | 0,95               | 0,33 | 2 | 0,5 | 0,06 | 0,849 | 0,288 | 0,010 | 27,907  |
| 799 | 35 | 0,95               | 0,33 | 2 | 0,5 | 0,06 | 0,870 | 0,321 | 0,011 | 30,178  |
| 800 | 40 | 0,95               | 0,33 | 2 | 0,5 | 0,06 | 0,878 | 0,349 | 0,011 | 31,965  |
| 801 | 20 | 0,15               | 0,5  | 2 | 0,5 | 0,06 | 0,873 | 3,654 | 0,011 | 345,662 |
| 802 | 25 | 0,15               | 0,5  | 2 | 0,5 | 0,06 | 0,894 | 4,366 | 0,011 | 404,239 |
| 803 | 30 | 0,15               | 0,5  | 2 | 0,5 | 0,06 | 0,910 | 5,109 | 0,011 | 463,294 |
| 804 | 35 | 0,15               | 0,5  | 2 | 0,5 | 0,06 | 0,923 | 5,866 | 0,011 | 521,474 |
| 805 | 40 | 0,15               | 0,5  | 2 | 0,5 | 0,06 | 0,932 | 6,626 | 0,011 | 577,609 |
| 806 | 20 | 0,35               | 0,5  | 2 | 0,5 | 0,06 | 0,887 | 2,694 | 0,011 | 252,222 |
| 807 | 25 | 0,35               | 0,5  | 2 | 0,5 | 0,06 | 0,906 | 3,174 | 0,011 | 290,128 |
| 808 | 30 | 0,35               | 0,5  | 2 | 0,5 | 0,06 | 0,920 | 3,653 | 0,011 | 326,212 |
| 809 | 35 | 0,35               | 0,5  | 2 | 0,5 | 0,06 | 0,930 | 4,120 | 0,011 | 359,472 |
| 810 | 40 | 0,35               | 0,5  | 2 | 0,5 | 0,06 | 0,935 | 4,565 | 0,012 | 389,266 |
| 811 | 20 | 0,55               | 0,5  | 2 | 0,5 | 0,06 | 0,898 | 1,797 | 0,011 | 166,588 |
| 812 | 25 | 0,55               | 0,5  | 2 | 0,5 | 0,06 | 0,915 | 2,089 | 0,011 | 188,722 |
| 813 | 30 | 0,55               | 0,5  | 2 | 0,5 | 0,06 | 0,925 | 2,371 | 0,011 | 208,709 |



| 814 | 35 | 0,55                | 0,5  | 2   | 0,5 | 0,06 | 0,931 | 2,634 | 0,012 | 226,114 |
|-----|----|---------------------|------|-----|-----|------|-------|-------|-------|---------|
| 815 | 40 | 0,55                | 0,5  | 2   | 0,5 | 0,06 | 0,931 | 2,877 | 0,012 | 240,820 |
| 816 | 20 | 0,75                | 0,5  | 2   | 0,5 | 0,06 | 0,907 | 0,961 | 0,011 | 88,317  |
| 817 | 25 | 0,75                | 0,5  | 2   | 0,5 | 0,06 | 0,920 | 1,105 | 0,011 | 98,689  |
| 818 | 30 | 0,75                | 0,5  | 2   | 0,5 | 0,06 | 0,928 | 1,238 | 0,012 | 107,631 |
| 819 | 35 | 0,75                | 0,5  | 2   | 0,5 | 0,06 | 0,928 | 1,360 | 0,012 | 115,062 |
| 820 | 40 | 0,75                | 0,5  | 2   | 0,5 | 0,06 | 0,925 | 1,470 | 0,012 | 121,057 |
| 821 | 20 | 0,95                | 0,5  | 2   | 0,5 | 0,06 | 0,913 | 0,185 | 0,011 | 16,848  |
| 822 | 25 | 0,95                | 0,5  | 2   | 0,5 | 0,06 | 0,923 | 0,210 | 0,011 | 18,600  |
| 823 | 30 | 0,95                | 0,5  | 2   | 0,5 | 0,06 | 0,922 | 0,233 | 0,012 | 20,052  |
| 824 | 35 | 0,95                | 0,5  | 2   | 0,5 | 0,06 | 0,924 | 0,254 | 0,012 | 21,213  |
| 825 | 40 | 0,95                | 0,5  | 2   | 0,5 | 0,06 | 0,918 | 0,272 | 0,012 | 22,114  |
| 826 | 20 | 0,15                | 0,25 | 2,8 | 0,5 | 0,06 | 0,524 | 4,601 | 0,018 | 261,093 |
| 827 | 25 | 0,15                | 0,25 | 2,8 | 0,5 | 0,06 | 0,560 | 5,739 | 0,018 | 317,885 |
| 828 | 30 | 0,15                | 0,25 | 2,8 | 0,5 | 0,06 | 0,593 | 6,987 | 0,018 | 378,151 |
| 829 | 35 | 0,15                | 0,25 | 2,8 | 0,5 | 0,06 | 0,623 | 8,319 | 0,019 | 440,367 |
| 830 | 40 | 0,15                | 0,25 | 2,8 | 0,5 | 0,06 | 0,650 | 9,709 | 0,019 | 503,065 |
| 831 | 20 | 0,35                | 0,25 | 2,8 | 0,5 | 0,06 | 0,545 | 3,473 | 0,018 | 196,166 |
| 832 | 25 | 0,35                | 0,25 | 2,8 | 0,5 | 0,06 | 0,584 | 4,297 | 0,018 | 236,575 |
| 833 | 30 | 0,35                | 0,25 | 2,8 | 0,5 | 0,06 | 0,621 | 5,176 | 0,019 | 277,982 |
| 834 | 35 | 0,35                | 0,25 | 2,8 | 0,5 | 0,06 | 0,653 | 6,082 | 0,019 | 318,880 |
| 835 | 40 | 0,35                | 0,25 | 2,8 | 0,5 | 0,06 | 0,681 | 6,989 | 0,020 | 357,939 |
| 836 | 20 | 0 <mark>,5</mark> 5 | 0,25 | 2,8 | 0,5 | 0,06 | 0,564 | 2,371 | 0,018 | 133,290 |
| 837 | 25 | 0,55                | 0,25 | 2,8 | 0,5 | 0,06 | 0,607 | 2,909 | 0,018 | 159,171 |
| 838 | 30 | 0,55                | 0,25 | 2,8 | 0,5 | 0,06 | 0,644 | 3,465 | 0,019 | 184,737 |
| 839 | 35 | 0,55                | 0,25 | 2,8 | 0,5 | 0,06 | 0,677 | 4,020 | 0,019 | 208,883 |
| 840 | 40 | 0,55                | 0,25 | 2,8 | 0,5 | 0,06 | 0,702 | 4,556 | 0,020 | 230,776 |
| 841 | 20 | 0,75                | 0,25 | 2,8 | 0,5 | 0,06 | 0,583 | 1,298 | 0,018 | 72,602  |
| 842 | 25 | 0,75                | 0,25 | 2,8 | 0,5 | 0,06 | 0,626 | 1,578 | 0,018 | 85,838  |
| 843 | 30 | 0,75                | 0,25 | 2,8 | 0,5 | 0,06 | 0,663 | 1,860 | 0,019 | 98,436  |
| 844 | 35 | 0,75                | 0,25 | 2,8 | 0,5 | 0,06 | 0,693 | 2,132 | 0,019 | 109,828 |
| 845 | 40 | 0,75                | 0,25 | 2,8 | 0,5 | 0,06 | 0,715 | 2,386 | 0,020 | 119,665 |
| 846 | 20 | 0,95                | 0,25 | 2,8 | 0,5 | 0,06 | 0,600 | 0,255 | 0,018 | 14,207  |
| 847 | 25 | 0,95                | 0,25 | 2,8 | 0,5 | 0,06 | 0,642 | 0,308 | 0,018 | 16,632  |
| 848 | 30 | 0,95                | 0,25 | 2,8 | 0,5 | 0,06 | 0,675 | 0,359 | 0,019 | 18,856  |
| 849 | 35 | 0,95                | 0,25 | 2,8 | 0,5 | 0,06 | 0,705 | 0,407 | 0,020 | 20,786  |
| 850 | 40 | 0,95                | 0,25 | 2,8 | 0,5 | 0,06 | 0,723 | 0,450 | 0,020 | 22,378  |
| 851 | 20 | 0,15                | 0,33 | 2,8 | 0,5 | 0,06 | 0,613 | 4,811 | 0,019 | 258,231 |
| 852 | 25 | 0,15                | 0,33 | 2,8 | 0,5 | 0,06 | 0,642 | 5,881 | 0,019 | 308,294 |
| 853 | 30 | 0,15                | 0,33 | 2,8 | 0,5 | 0,06 | 0,668 | 7,030 | 0,020 | 360,298 |
| 854 | 35 | 0,15                | 0,33 | 2,8 | 0,5 | 0,06 | 0,691 | 8,236 | 0,020 | 413,021 |
| 855 | 40 | 0,15                | 0,33 | 2,8 | 0,5 | 0,06 | 0,711 | 9,477 | 0,020 | 465,331 |
| 856 | 20 | 0,35                | 0,33 | 2,8 | 0,5 | 0,06 | 0,632 | 3,599 | 0,019 | 191,935 |



| 857 | 25 | 0,35 | 0,33 | 2,8 | 0,5 | 0,06 | 0,663 | 4,354 | 0,019 | 226,431 |
|-----|----|------|------|-----|-----|------|-------|-------|-------|---------|
| 858 | 30 | 0,35 | 0,33 | 2,8 | 0,5 | 0,06 | 0,690 | 5,140 | 0,020 | 260,807 |
| 859 | 35 | 0,35 | 0,33 | 2,8 | 0,5 | 0,06 | 0,714 | 5,933 | 0,020 | 293,948 |
| 860 | 40 | 0,35 | 0,33 | 2,8 | 0,5 | 0,06 | 0,733 | 6,715 | 0,021 | 324,944 |
| 861 | 20 | 0,55 | 0,33 | 2,8 | 0,5 | 0,06 | 0,649 | 2,435 | 0,019 | 129,053 |
| 862 | 25 | 0,55 | 0,33 | 2,8 | 0,5 | 0,06 | 0,681 | 2,916 | 0,019 | 150,472 |
| 863 | 30 | 0,55 | 0,33 | 2,8 | 0,5 | 0,06 | 0,708 | 3,401 | 0,020 | 170,956 |
| 864 | 35 | 0,55 | 0,33 | 2,8 | 0,5 | 0,06 | 0,730 | 3,874 | 0,020 | 189,781 |
| 865 | 40 | 0,55 | 0,33 | 2,8 | 0,5 | 0,06 | 0,746 | 4,323 | 0,021 | 206,468 |
| 866 | 20 | 0,75 | 0,33 | 2,8 | 0,5 | 0,06 | 0,664 | 1,321 | 0,019 | 69,589  |
| 867 | 25 | 0,75 | 0,33 | 2,8 | 0,5 | 0,06 | 0,695 | 1,567 | 0,020 | 80,226  |
| 868 | 30 | 0,75 | 0,33 | 2,8 | 0,5 | 0,06 | 0,721 | 1,807 | 0,020 | 90,004  |
| 869 | 35 | 0,75 | 0,33 | 2,8 | 0,5 | 0,06 | 0,740 | 2,034 | 0,021 | 98,602  |
| 870 | 40 | 0,75 | 0,33 | 2,8 | 0,5 | 0,06 | 0,753 | 2,243 | 0,021 | 105,865 |
| 871 | 20 | 0,95 | 0,33 | 2,8 | 0,5 | 0,06 | 0,678 | 0,258 | 0,019 | 13,487  |
| 872 | 25 | 0,95 | 0,33 | 2,8 | 0,5 | 0,06 | 0,708 | 0,303 | 0,020 | 15,383  |
| 873 | 30 | 0,95 | 0,33 | 2,8 | 0,5 | 0,06 | 0,727 | 0,345 | 0,020 | 17,063  |
| 874 | 35 | 0,95 | 0,33 | 2,8 | 0,5 | 0,06 | 0,746 | 0,385 | 0,021 | 18,481  |
| 875 | 40 | 0,95 | 0,33 | 2,8 | 0,5 | 0,06 | 0,755 | 0,420 | 0,021 | 19,627  |
| 876 | 20 | 0,15 | 0,5  | 2,8 | 0,5 | 0,06 | 0,729 | 4,268 | 0,021 | 205,039 |
| 877 | 25 | 0,15 | 0,5  | 2,8 | 0,5 | 0,06 | 0,746 | 5,100 | 0,021 | 239,540 |
| 878 | 30 | 0,15 | 0,5  | 2,8 | 0,5 | 0,06 | 0,761 | 5,976 | 0,022 | 274,566 |
| 879 | 35 | 0,15 | 0,5  | 2,8 | 0,5 | 0,06 | 0,773 | 6,878 | 0,022 | 309,378 |
| 880 | 40 | 0,15 | 0,5  | 2,8 | 0,5 | 0,06 | 0,783 | 7,794 | 0,023 | 343,317 |
| 881 | 20 | 0,35 | 0,5  | 2,8 | 0,5 | 0,06 | 0,741 | 3,149 | 0,021 | 149,899 |
| 882 | 25 | 0,35 | 0,5  | 2,8 | 0,5 | 0,06 | 0,758 | 3,716 | 0,022 | 172,562 |
| 883 | 30 | 0,35 | 0,5  | 2,8 | 0,5 | 0,06 | 0,772 | 4,291 | 0,022 | 194,469 |
| 884 | 35 | 0,35 | 0,5  | 2,8 | 0,5 | 0,06 | 0,783 | 4,860 | 0,023 | 215,037 |
| 885 | 40 | 0,35 | 0,5  | 2,8 | 0,5 | 0,06 | 0,791 | 5,411 | 0,023 | 233,840 |
| 886 | 20 | 0,55 | 0,5  | 2,8 | 0,5 | 0,06 | 0,751 | 2,103 | 0,021 | 99,259  |
| 887 | 25 | 0,55 | 0,5  | 2,8 | 0,5 | 0,06 | 0,768 | 2,453 | 0,022 | 112,736 |
| 888 | 30 | 0,55 | 0,5  | 2,8 | 0,5 | 0,06 | 0,780 | 2,797 | 0,022 | 125,192 |
| 889 | 35 | 0,55 | 0,5  | 2,8 | 0,5 | 0,06 | 0,789 | 3,125 | 0,023 | 136,319 |
| 890 | 40 | 0,55 | 0,5  | 2,8 | 0,5 | 0,06 | 0,794 | 3,433 | 0,024 | 145,959 |
| 891 | 20 | 0,75 | 0,5  | 2,8 | 0,5 | 0,06 | 0,760 | 1,128 | 0,021 | 52,780  |
| 892 | 25 | 0,75 | 0,5  | 2,8 | 0,5 | 0,06 | 0,774 | 1,301 | 0,022 | 59,223  |
| 893 | 30 | 0,75 | 0,5  | 2,8 | 0,5 | 0,06 | 0,785 | 1,467 | 0,023 | 64,942  |
| 894 | 35 | 0,75 | 0,5  | 2,8 | 0,5 | 0,06 | 0,790 | 1,621 | 0,023 | 69,836  |
| 895 | 40 | 0,75 | 0,5  | 2,8 | 0,5 | 0,06 | 0,792 | 1,762 | 0,024 | 73,882  |
| 896 | 20 | 0,95 | 0,5  | 2,8 | 0,5 | 0,06 | 0,767 | 0,218 | 0,022 | 10,101  |
| 897 | 25 | 0,95 | 0,5  | 2,8 | 0,5 | 0,06 | 0,779 | 0,249 | 0,022 | 11,212  |
| 898 | 30 | 0,95 | 0,5  | 2,8 | 0,5 | 0,06 | 0,783 | 0,278 | 0,023 | 12,163  |
| 899 | 35 | 0,95 | 0,5  | 2,8 | 0,5 | 0,06 | 0,790 | 0,304 | 0,023 | 12,947  |



| 900 | 40 | 0,95                | 0,5  | 2,8 | 0,5  | 0,06 | 0,789 | 0,328 | 0,024 | 13,567  |
|-----|----|---------------------|------|-----|------|------|-------|-------|-------|---------|
| 901 | 20 | 0,15                | 0,25 | 1,2 | 1,25 | 0,06 | 0,658 | 2,477 | 0,008 | 303,097 |
| 902 | 25 | 0,15                | 0,25 | 1,2 | 1,25 | 0,06 | 0,771 | 3,389 | 0,008 | 405,756 |
| 903 | 30 | 0,15                | 0,25 | 1,2 | 1,25 | 0,06 | 0,878 | 4,433 | 0,009 | 521,377 |
| 904 | 35 | 0,15                | 0,25 | 1,2 | 1,25 | 0,06 | 0,969 | 5,545 | 0,009 | 642,581 |
| 905 | 40 | 0,15                | 0,25 | 1,2 | 1,25 | 0,06 | 1,043 | 6,671 | 0,009 | 763,258 |
| 906 | 20 | 0,35                | 0,25 | 1,2 | 1,25 | 0,06 | 0,702 | 1,918 | 0,008 | 234,223 |
| 907 | 25 | 0,35                | 0,25 | 1,2 | 1,25 | 0,06 | 0,832 | 2,621 | 0,008 | 312,877 |
| 908 | 30 | 0,35                | 0,25 | 1,2 | 1,25 | 0,06 | 0,952 | 3,401 | 0,009 | 398,102 |
| 909 | 35 | 0,35                | 0,25 | 1,2 | 1,25 | 0,06 | 1,049 | 4,183 | 0,009 | 481,288 |
| 910 | 40 | 0,35                | 0,25 | 1,2 | 1,25 | 0,06 | 1,115 | 4,904 | 0,009 | 555,364 |
| 911 | 20 | 0,55                | 0,25 | 1,2 | 1,25 | 0,06 | 0,746 | 1,344 | 0,008 | 163,798 |
| 912 | 25 | 0,55                | 0,25 | 1,2 | 1,25 | 0,06 | 0,891 | 1,832 | 0,008 | 217,824 |
| 913 | 30 | 0,55                | 0,25 | 1,2 | 1,25 | 0,06 | 1,017 | 2,345 | 0,009 | 272,918 |
| 914 | 35 | 0,55                | 0,25 | 1,2 | 1,25 | 0,06 | 1,105 | 2,815 | 0,009 | 320,959 |
| 915 | 40 | 0,55                | 0,25 | 1,2 | 1,25 | 0,06 | 1,149 | 3,194 | 0,009 | 357,007 |
| 916 | 20 | 0,75                | 0,25 | 1,2 | 1,25 | 0,06 | 0,792 | 0,756 | 0,008 | 91,858  |
| 917 | 25 | 0,75                | 0,25 | 1,2 | 1,25 | 0,06 | 0,947 | 1,024 | 0,008 | 121,210 |
| 918 | 30 | 0,75                | 0,25 | 1,2 | 1,25 | 0,06 | 1,070 | 1,286 | 0,009 | 148,550 |
| 919 | 35 | 0,75                | 0,25 | 1,2 | 1,25 | 0,06 | 1,136 | 1,498 | 0,009 | 168,892 |
| 920 | 40 | 0,75                | 0,25 | 1,2 | 1,25 | 0,06 | 1,152 | 1,647 | 0,009 | 181,313 |
| 921 | 20 | 0,95                | 0,25 | 1,2 | 1,25 | 0,06 | 0,837 | 0,153 | 0,008 | 18,505  |
| 922 | 25 | 0 <mark>,9</mark> 5 | 0,25 | 1,2 | 1,25 | 0,06 | 0,998 | 0,205 | 0,008 | 24,124  |
| 923 | 30 | 0,95                | 0,25 | 1,2 | 1,25 | 0,06 | 1,101 | 0,251 | 0,009 | 28,736  |
| 924 | 35 | 0,95                | 0,25 | 1,2 | 1,25 | 0,06 | 1,145 | 0,283 | 0,009 | 31,567  |
| 925 | 40 | 0,95                | 0,25 | 1,2 | 1,25 | 0,06 | 1,141 | 0,305 | 0,009 | 33,003  |
| 926 | 20 | 0,15                | 0,33 | 1,2 | 1,25 | 0,06 | 0,945 | 3,179 | 0,009 | 370,407 |
| 927 | 25 | 0,15                | 0,33 | 1,2 | 1,25 | 0,06 | 1,044 | 4,099 | 0,009 | 469,262 |
| 928 | 30 | 0,15                | 0,33 | 1,2 | 1,25 | 0,06 | 1,123 | 5,066 | 0,009 | 571,335 |
| 929 | 35 | 0,15                | 0,33 | 1,2 | 1,25 | 0,06 | 1,181 | 6,035 | 0,009 | 671,773 |
| 930 | 40 | 0,15                | 0,33 | 1,2 | 1,25 | 0,06 | 1,220 | 6,971 | 0,009 | 766,768 |
| 931 | 20 | 0,35                | 0,33 | 1,2 | 1,25 | 0,06 | 1,000 | 2,441 | 0,009 | 283,196 |
| 932 | 25 | 0,35                | 0,33 | 1,2 | 1,25 | 0,06 | 1,105 | 3,110 | 0,009 | 353,836 |
| 933 | 30 | 0,35                | 0,33 | 1,2 | 1,25 | 0,06 | 1,180 | 3,766 | 0,009 | 420,929 |
| 934 | 35 | 0,35                | 0,33 | 1,2 | 1,25 | 0,06 | 1,223 | 4,359 | 0,009 | 479,134 |
| 935 | 40 | 0,35                | 0,33 | 1,2 | 1,25 | 0,06 | 1,238 | 4,860 | 0,009 | 525,315 |
| 936 | 20 | 0,55                | 0,33 | 1,2 | 1,25 | 0,06 | 1,051 | 1,691 | 0,009 | 195,266 |
| 937 | 25 | 0,55                | 0,33 | 1,2 | 1,25 | 0,06 | 1,154 | 2,119 | 0,009 | 239,262 |
| 938 | 30 | 0,55                | 0,33 | 1,2 | 1,25 | 0,06 | 1,213 | 2,498 | 0,009 | 276,162 |
| 939 | 35 | 0,55                | 0,33 | 1,2 | 1,25 | 0,06 | 1,230 | 2,798 | 0,009 | 302,957 |
| 940 | 40 | 0,55                | 0,33 | 1,2 | 1,25 | 0,06 | 1,217 | 3,023 | 0,009 | 320,163 |
| 941 | 20 | 0,75                | 0,33 | 1,2 | 1,25 | 0,06 | 1,099 | 0,936 | 0,009 | 107,486 |
| 942 | 25 | 0,75                | 0,33 | 1,2 | 1,25 | 0,06 | 1,188 | 1,147 | 0,009 | 128,427 |



| 943 | 30 | 0,75                | 0,33 | 1,2 | 1,25 | 0,06 | 1,223 | 1,313  | 0,009 | 143,363 |
|-----|----|---------------------|------|-----|------|------|-------|--------|-------|---------|
| 944 | 35 | 0,75                | 0,33 | 1,2 | 1,25 | 0,06 | 1,214 | 1,430  | 0,009 | 152,297 |
| 945 | 40 | 0,75                | 0,33 | 1,2 | 1,25 | 0,06 | 1,186 | 1,515  | 0,010 | 157,227 |
| 946 | 20 | 0,95                | 0,33 | 1,2 | 1,25 | 0,06 | 1,138 | 0,185  | 0,009 | 21,142  |
| 947 | 25 | 0,95                | 0,33 | 1,2 | 1,25 | 0,06 | 1,208 | 0,221  | 0,009 | 24,532  |
| 948 | 30 | 0,95                | 0,33 | 1,2 | 1,25 | 0,06 | 1,210 | 0,246  | 0,009 | 26,549  |
| 949 | 35 | 0,95                | 0,33 | 1,2 | 1,25 | 0,06 | 1,191 | 0,263  | 0,010 | 27,582  |
| 950 | 40 | 0,95                | 0,33 | 1,2 | 1,25 | 0,06 | 1,158 | 0,276  | 0,010 | 28,134  |
| 951 | 20 | 0,15                | 0,5  | 1,2 | 1,25 | 0,06 | 1,411 | 3,542  | 0,009 | 376,969 |
| 952 | 25 | 0,15                | 0,5  | 1,2 | 1,25 | 0,06 | 1,440 | 4,220  | 0,010 | 442,653 |
| 953 | 30 | 0,15                | 0,5  | 1,2 | 1,25 | 0,06 | 1,449 | 4,879  | 0,010 | 504,798 |
| 954 | 35 | 0,15                | 0,5  | 1,2 | 1,25 | 0,06 | 1,441 | 5,497  | 0,010 | 561,232 |
| 955 | 40 | 0,15                | 0,5  | 1,2 | 1,25 | 0,06 | 1,420 | 6,058  | 0,010 | 610,370 |
| 956 | 20 | 0,35                | 0,5  | 1,2 | 1,25 | 0,06 | 1,427 | 2,600  | 0,010 | 273,625 |
| 957 | 25 | 0,35                | 0,5  | 1,2 | 1,25 | 0,06 | 1,433 | 3,011  | 0,010 | 311,021 |
| 958 | 30 | 0,35                | 0,5  | 1,2 | 1,25 | 0,06 | 1,412 | 3,363  | 0,010 | 340,975 |
| 959 | 35 | 0,35                | 0,5  | 1,2 | 1,25 | 0,06 | 1,373 | 3,650  | 0,010 | 363,031 |
| 960 | 40 | 0,35                | 0,5  | 1,2 | 1,25 | 0,06 | 1,325 | 3,882  | 0,010 | 378,256 |
| 961 | 20 | 0,55                | 0,5  | 1,2 | 1,25 | 0,06 | 1,425 | 1,711  | 0,010 | 177,859 |
| 962 | 25 | 0,55                | 0,5  | 1,2 | 1,25 | 0,06 | 1,404 | 1,924  | 0,010 | 195,481 |
| 963 | 30 | 0,55                | 0,5  | 1,2 | 1,25 | 0,06 | 1,358 | 2,087  | 0,010 | 207,215 |
| 964 | 35 | 0,55                | 0,5  | 1,2 | 1,25 | 0,06 | 1,304 | 2,213  | 0,010 | 214,509 |
| 965 | 40 | 0 <mark>,5</mark> 5 | 0,5  | 1,2 | 1,25 | 0,06 | 1,250 | 2,317  | 0,011 | 219,143 |
| 966 | 20 | 0,75                | 0,5  | 1,2 | 1,25 | 0,06 | 1,410 | 0,897  | 0,010 | 92,029  |
| 967 | 25 | 0,75                | 0,5  | 1,2 | 1,25 | 0,06 | 1,364 | 0,983  | 0,010 | 98,275  |
| 968 | 30 | 0,75                | 0,5  | 1,2 | 1,25 | 0,06 | 1,307 | 1,047  | 0,010 | 101,883 |
| 969 | 35 | 0,75                | 0,5  | 1,2 | 1,25 | 0,06 | 1,249 | 1,098  | 0,011 | 104,022 |
| 970 | 40 | 0,75                | 0,5  | 1,2 | 1,25 | 0,06 | 1,200 | 1,143  | 0,011 | 105,486 |
| 971 | 20 | 0,95                | 0,5  | 1,2 | 1,25 | 0,06 | 1,385 | 0,168  | 0,010 | 17,057  |
| 972 | 25 | 0,95                | 0,5  | 1,2 | 1,25 | 0,06 | 1,326 | 0,181  | 0,010 | 17,834  |
| 973 | 30 | 0,95                | 0,5  | 1,2 | 1,25 | 0,06 | 1,257 | 0,191  | 0,010 | 18,256  |
| 974 | 35 | 0,95                | 0,5  | 1,2 | 1,25 | 0,06 | 1,208 | 0,199  | 0,011 | 18,522  |
| 975 | 40 | 0,95                | 0,5  | 1,2 | 1,25 | 0,06 | 1,164 | 0,207  | 0,011 | 18,727  |
| 976 | 20 | 0,15                | 0,25 | 2   | 1,25 | 0,06 | 0,703 | 4,410  | 0,023 | 195,479 |
| 977 | 25 | 0,15                | 0,25 | 2   | 1,25 | 0,06 | 0,790 | 5,790  | 0,023 | 251,184 |
| 978 | 30 | 0,15                | 0,25 | 2   | 1,25 | 0,06 | 0,870 | 7,326  | 0,023 | 311,839 |
| 979 | 35 | 0,15                | 0,25 | 2   | 1,25 | 0,06 | 0,939 | 8,951  | 0,024 | 374,642 |
| 980 | 40 | 0,15                | 0,25 | 2   | 1,25 | 0,06 | 0,995 | 10,607 | 0,024 | 437,101 |
| 981 | 20 | 0,35                | 0,25 | 2   | 1,25 | 0,06 | 0,743 | 3,384  | 0,023 | 149,487 |
| 982 | 25 | 0,35                | 0,25 | 2   | 1,25 | 0,06 | 0,841 | 4,416  | 0,023 | 190,688 |
| 983 | 30 | 0,35                | 0,25 | 2   | 1,25 | 0,06 | 0,928 | 5,525  | 0,024 | 233,590 |
| 984 | 35 | 0,35                | 0,25 | 2   | 1,25 | 0,06 | 0,998 | 6,634  | 0,024 | 275,085 |
| 985 | 40 | 0,35                | 0,25 | 2   | 1,25 | 0,06 | 1,049 | 7,682  | 0,025 | 312,634 |



| 986  | 20 | 0,55                | 0,25 | 2 | 1,25 | 0,06 | 0,782 | 2,348  | 0,023 | 103,344 |
|------|----|---------------------|------|---|------|------|-------|--------|-------|---------|
| 987  | 25 | 0,55                | 0,25 | 2 | 1,25 | 0,06 | 0,888 | 3,040  | 0,023 | 130,573 |
| 988  | 30 | 0,55                | 0,25 | 2 | 1,25 | 0,06 | 0,976 | 3,749  | 0,024 | 157,292 |
| 989  | 35 | 0,55                | 0,25 | 2 | 1,25 | 0,06 | 1,039 | 4,410  | 0,024 | 180,948 |
| 990  | 40 | 0,55                | 0,25 | 2 | 1,25 | 0,06 | 1,076 | 4,985  | 0,025 | 200,050 |
| 991  | 20 | 0,75                | 0,25 | 2 | 1,25 | 0,06 | 0,821 | 1,305  | 0,023 | 57,229  |
| 992  | 25 | 0,75                | 0,25 | 2 | 1,25 | 0,06 | 0,929 | 1,674  | 0,023 | 71,445  |
| 993  | 30 | 0,75                | 0,25 | 2 | 1,25 | 0,06 | 1,013 | 2,029  | 0,024 | 84,397  |
| 994  | 35 | 0,75                | 0,25 | 2 | 1,25 | 0,06 | 1,063 | 2,336  | 0,025 | 94,752  |
| 995  | 40 | 0,75                | 0,25 | 2 | 1,25 | 0,06 | 1,085 | 2,584  | 0,025 | 102,215 |
| 996  | 20 | 0,95                | 0,25 | 2 | 1,25 | 0,06 | 0,857 | 0,260  | 0,023 | 11,372  |
| 997  | 25 | 0,95                | 0,25 | 2 | 1,25 | 0,06 | 0,965 | 0,330  | 0,024 | 13,994  |
| 998  | 30 | 0,95                | 0,25 | 2 | 1,25 | 0,06 | 1,034 | 0,393  | 0,024 | 16,185  |
| 999  | 35 | 0,95                | 0,25 | 2 | 1,25 | 0,06 | 1,074 | 0,443  | 0,025 | 17,762  |
| 1000 | 40 | 0,95                | 0,25 | 2 | 1,25 | 0,06 | 1,083 | 0,482  | 0,026 | 18,796  |
| 1001 | 20 | 0,15                | 0,33 | 2 | 1,25 | 0,06 | 0,939 | 5,265  | 0,024 | 222,126 |
| 1002 | 25 | 0,15                | 0,33 | 2 | 1,25 | 0,06 | 1,009 | 6,603  | 0,024 | 273,299 |
| 1003 | 30 | 0,15                | 0,33 | 2 | 1,25 | 0,06 | 1,065 | 8,011  | 0,025 | 325,868 |
| 1004 | 35 | 0,15                | 0,33 | 2 | 1,25 | 0,06 | 1,108 | 9,438  | 0,025 | 377,827 |
| 1005 | 40 | 0,15                | 0,33 | 2 | 1,25 | 0,06 | 1,138 | 10,842 | 0,025 | 427,502 |
| 1006 | 20 | 0,35                | 0,33 | 2 | 1,25 | 0,06 | 0,980 | 3,988  | 0,024 | 167,232 |
| 1007 | 25 | 0,35                | 0,33 | 2 | 1,25 | 0,06 | 1,052 | 4,936  | 0,024 | 202,587 |
| 1008 | 30 | 0 <mark>,3</mark> 5 | 0,33 | 2 | 1,25 | 0,06 | 1,105 | 5,876  | 0,025 | 236,351 |
| 1009 | 35 | 0,35                | 0,33 | 2 | 1,25 | 0,06 | 1,138 | 6,758  | 0,025 | 266,592 |
| 1010 | 40 | 0,35                | 0,33 | 2 | 1,25 | 0,06 | 1,154 | 7,551  | 0,026 | 292,136 |
| 1011 | 20 | 0,55                | 0,33 | 2 | 1,25 | 0,06 | 1,017 | 2,726  | 0,024 | 113,558 |
| 1012 | 25 | 0,55                | 0,33 | 2 | 1,25 | 0,06 | 1,086 | 3,321  | 0,025 | 135,085 |
| 1013 | 30 | 0,55                | 0,33 | 2 | 1,25 | 0,06 | 1,128 | 3,872  | 0,025 | 153,885 |
| 1014 | 35 | 0,55                | 0,33 | 2 | 1,25 | 0,06 | 1,147 | 4,350  | 0,026 | 168,949 |
| 1015 | 40 | 0,55                | 0,33 | 2 | 1,25 | 0,06 | 1,147 | 4,749  | 0,026 | 180,228 |
| 1016 | 20 | 0,75                | 0,33 | 2 | 1,25 | 0,06 | 1,049 | 1,490  | 0,024 | 61,632  |
| 1017 | 25 | 0,75                | 0,33 | 2 | 1,25 | 0,06 | 1,108 | 1,784  | 0,025 | 71,864  |
| 1018 | 30 | 0,75                | 0,33 | 2 | 1,25 | 0,06 | 1,139 | 2,037  | 0,025 | 79,968  |
| 1019 | 35 | 0,75                | 0,33 | 2 | 1,25 | 0,06 | 1,143 | 2,244  | 0,026 | 85,814  |
| 1020 | 40 | 0,75                | 0,33 | 2 | 1,25 | 0,06 | 1,132 | 2,410  | 0,027 | 89,821  |
| 1021 | 20 | 0,95                | 0,33 | 2 | 1,25 | 0,06 | 1,075 | 0,292  | 0,024 | 11,981  |
| 1022 | 25 | 0,95                | 0,33 | 2 | 1,25 | 0,06 | 1,123 | 0,343  | 0,025 | 13,687  |
| 1023 | 30 | 0,95                | 0,33 | 2 | 1,25 | 0,06 | 1,134 | 0,385  | 0,026 | 14,914  |
| 1024 | 35 | 0,95                | 0,33 | 2 | 1,25 | 0,06 | 1,132 | 0,417  | 0,027 | 15,728  |
| 1025 | 40 | 0,95                | 0,33 | 2 | 1,25 | 0,06 | 1,116 | 0,444  | 0,027 | 16,260  |
| 1026 | 20 | 0,15                | 0,5  | 2 | 1,25 | 0,06 | 1,294 | 5,413  | 0,026 | 207,363 |
| 1027 | 25 | 0,15                | 0,5  | 2 | 1,25 | 0,06 | 1,313 | 6,413  | 0,027 | 241,429 |
| 1028 | 30 | 0,15                | 0,5  | 2 | 1,25 | 0,06 | 1,320 | 7,409  | 0,027 | 274,314 |



| 1029 | 35 | 0,15               | 0,5  | 2   | 1,25 | 0,06 | 1,317 | 8,372  | 0,027 | 305,057 |
|------|----|--------------------|------|-----|------|------|-------|--------|-------|---------|
| 1030 | 40 | 0,15               | 0,5  | 2   | 1,25 | 0,06 | 1,306 | 9,284  | 0,028 | 332,938 |
| 1031 | 20 | 0,35               | 0,5  | 2   | 1,25 | 0,06 | 1,302 | 3,951  | 0,026 | 149,451 |
| 1032 | 25 | 0,35               | 0,5  | 2   | 1,25 | 0,06 | 1,307 | 4,576  | 0,027 | 169,504 |
| 1033 | 30 | 0,35               | 0,5  | 2   | 1,25 | 0,06 | 1,298 | 5,150  | 0,028 | 186,813 |
| 1034 | 35 | 0,35               | 0,5  | 2   | 1,25 | 0,06 | 1,277 | 5,658  | 0,028 | 201,003 |
| 1035 | 40 | 0,35               | 0,5  | 2   | 1,25 | 0,06 | 1,249 | 6,101  | 0,029 | 212,174 |
| 1036 | 20 | 0,55               | 0,5  | 2   | 1,25 | 0,06 | 1,299 | 2,600  | 0,027 | 97,115  |
| 1037 | 25 | 0,55               | 0,5  | 2   | 1,25 | 0,06 | 1,291 | 2,948  | 0,027 | 107,464 |
| 1038 | 30 | 0,55               | 0,5  | 2   | 1,25 | 0,06 | 1,267 | 3,246  | 0,028 | 115,491 |
| 1039 | 35 | 0,55               | 0,5  | 2   | 1,25 | 0,06 | 1,236 | 3,498  | 0,029 | 121,429 |
| 1040 | 40 | 0,55               | 0,5  | 2   | 1,25 | 0,06 | 1,202 | 3,713  | 0,030 | 125,748 |
| 1041 | 20 | 0,75               | 0,5  | 2   | 1,25 | 0,06 | 1,292 | 1,370  | 0,027 | 50,532  |
| 1042 | 25 | 0,75               | 0,5  | 2   | 1,25 | 0,06 | 1,269 | 1,525  | 0,028 | 54,750  |
| 1043 | 30 | 0,75               | 0,5  | 2   | 1,25 | 0,06 | 1,238 | 1,652  | 0,029 | 57,756  |
| 1044 | 35 | 0,75               | 0,5  | 2   | 1,25 | 0,06 | 1,200 | 1,759  | 0,029 | 59,853  |
| 1045 | 40 | 0,75               | 0,5  | 2   | 1,25 | 0,06 | 1,166 | 1,852  | 0,030 | 61,345  |
| 1046 | 20 | 0,95               | 0,5  | 2   | 1,25 | 0,06 | 1,280 | 0,259  | 0,027 | 9,453   |
| 1047 | 25 | 0,95               | 0,5  | 2   | 1,25 | 0,06 | 1,248 | 0,284  | 0,028 | 10,071  |
| 1048 | 30 | 0,95               | 0,5  | 2   | 1,25 | 0,06 | 1,204 | 0,305  | 0,029 | 10,487  |
| 1049 | 35 | 0,95               | 0,5  | 2   | 1,25 | 0,06 | 1,172 | 0,322  | 0,030 | 10,772  |
| 1050 | 40 | 0,95               | 0,5  | 2   | 1,25 | 0,06 | 1,138 | 0,338  | 0,031 | 10,977  |
| 1051 | 20 | 0,15               | 0,25 | 2,8 | 1,25 | 0,06 | 0,695 | 6,105  | 0,044 | 138,487 |
| 1052 | 25 | 0 <mark>,15</mark> | 0,25 | 2,8 | 1,25 | 0,06 | 0,765 | 7,846  | 0,045 | 174,115 |
| 1053 | 30 | 0,15               | 0,25 | 2,8 | 1,25 | 0,06 | 0,829 | 9,765  | 0,046 | 212,386 |
| 1054 | 35 | 0,15               | 0,25 | 2,8 | 1,25 | 0,06 | 0,884 | 11,796 | 0,047 | 251,859 |
| 1055 | 40 | 0,15               | 0,25 | 2,8 | 1,25 | 0,06 | 0,930 | 13,878 | 0,048 | 291,211 |
| 1056 | 20 | 0,35               | 0,25 | 2,8 | 1,25 | 0,06 | 0,730 | 4,654  | 0,044 | 105,136 |
| 1057 | 25 | 0,35               | 0,25 | 2,8 | 1,25 | 0,06 | 0,807 | 5,936  | 0,045 | 130,981 |
| 1058 | 30 | 0,35               | 0,25 | 2,8 | 1,25 | 0,06 | 0,876 | 7,300  | 0,046 | 157,554 |
| 1059 | 35 | 0,35               | 0,25 | 2,8 | 1,25 | 0,06 | 0,932 | 8,675  | 0,047 | 183,329 |
| 1060 | 40 | 0,35               | 0,25 | 2,8 | 1,25 | 0,06 | 0,975 | 9,999  | 0,048 | 207,054 |
| 1061 | 20 | 0,55               | 0,25 | 2,8 | 1,25 | 0,06 | 0,763 | 3,207  | 0,044 | 72,139  |
| 1062 | 25 | 0,55               | 0,25 | 2,8 | 1,25 | 0,06 | 0,846 | 4,055  | 0,046 | 88,914  |
| 1063 | 30 | 0,55               | 0,25 | 2,8 | 1,25 | 0,06 | 0,914 | 4,918  | 0,047 | 105,273 |
| 1064 | 35 | 0,55               | 0,25 | 2,8 | 1,25 | 0,06 | 0,967 | 5,743  | 0,048 | 120,051 |
| 1065 | 40 | 0,55               | 0,25 | 2,8 | 1,25 | 0,06 | 1,000 | 6,489  | 0,049 | 132,538 |
| 1066 | 20 | 0,75               | 0,25 | 2,8 | 1,25 | 0,06 | 0,796 | 1,771  | 0,045 | 39,647  |
| 1067 | 25 | 0,75               | 0,25 | 2,8 | 1,25 | 0,06 | 0,878 | 2,216  | 0,046 | 48,274  |
| 1068 | 30 | 0,75               | 0,25 | 2,8 | 1,25 | 0,06 | 0,945 | 2,649  | 0,047 | 56,198  |
| 1069 | 35 | 0,75               | 0,25 | 2,8 | 1,25 | 0,06 | 0,988 | 3,040  | 0,048 | 62,840  |
| 1070 | 40 | 0,75               | 0,25 | 2,8 | 1,25 | 0,06 | 1,012 | 3,376  | 0,050 | 68,020  |
| 1071 | 20 | 0,95               | 0,25 | 2,8 | 1,25 | 0,06 | 0,825 | 0,351  | 0,045 | 7,820   |



| 1072 | 25 | 0,95                | 0,25 | 2,8 | 1,25 | 0,06 | 0,907 | 0,434  | 0,046 | 9,396   |
|------|----|---------------------|------|-----|------|------|-------|--------|-------|---------|
| 1073 | 30 | 0,95                | 0,25 | 2,8 | 1,25 | 0,06 | 0,961 | 0,511  | 0,048 | 10,753  |
| 1074 | 35 | 0,95                | 0,25 | 2,8 | 1,25 | 0,06 | 1,000 | 0,578  | 0,049 | 11,811  |
| 1075 | 40 | 0,95                | 0,25 | 2,8 | 1,25 | 0,06 | 1,015 | 0,633  | 0,050 | 12,582  |
| 1076 | 20 | 0,15                | 0,33 | 2,8 | 1,25 | 0,06 | 0,889 | 6,978  | 0,046 | 150,433 |
| 1077 | 25 | 0,15                | 0,33 | 2,8 | 1,25 | 0,06 | 0,943 | 8,642  | 0,047 | 182,540 |
| 1078 | 30 | 0,15                | 0,33 | 2,8 | 1,25 | 0,06 | 0,988 | 10,399 | 0,048 | 215,551 |
| 1079 | 35 | 0,15                | 0,33 | 2,8 | 1,25 | 0,06 | 1,023 | 12,199 | 0,049 | 248,392 |
| 1080 | 40 | 0,15                | 0,33 | 2,8 | 1,25 | 0,06 | 1,049 | 13,995 | 0,050 | 280,139 |
| 1081 | 20 | 0,35                | 0,33 | 2,8 | 1,25 | 0,06 | 0,922 | 5,250  | 0,047 | 112,405 |
| 1082 | 25 | 0,35                | 0,33 | 2,8 | 1,25 | 0,06 | 0,977 | 6,418  | 0,048 | 134,356 |
| 1083 | 30 | 0,35                | 0,33 | 2,8 | 1,25 | 0,06 | 1,020 | 7,593  | 0,049 | 155,555 |
| 1084 | 35 | 0,35                | 0,33 | 2,8 | 1,25 | 0,06 | 1,049 | 8,725  | 0,050 | 175,020 |
| 1085 | 40 | 0,35                | 0,33 | 2,8 | 1,25 | 0,06 | 1,067 | 9,779  | 0,051 | 192,109 |
| 1086 | 20 | 0,55                | 0,33 | 2,8 | 1,25 | 0,06 | 0,950 | 3,567  | 0,047 | 75,829  |
| 1087 | 25 | 0,55                | 0,33 | 2,8 | 1,25 | 0,06 | 1,004 | 4,300  | 0,048 | 89,177  |
| 1088 | 30 | 0,55                | 0,33 | 2,8 | 1,25 | 0,06 | 1,040 | 5,000  | 0,049 | 101,203 |
| 1089 | 35 | 0,55                | 0,33 | 2,8 | 1,25 | 0,06 | 1,062 | 5,636  | 0,051 | 111,378 |
| 1090 | 40 | 0,55                | 0,33 | 2,8 | 1,25 | 0,06 | 1,069 | 6,197  | 0,052 | 119,568 |
| 1091 | 20 | 0,75                | 0,33 | 2,8 | 1,25 | 0,06 | 0,975 | 1,940  | 0,047 | 40,940  |
| 1092 | 25 | 0,75                | 0,33 | 2,8 | 1,25 | 0,06 | 1,023 | 2,305  | 0,049 | 47,351  |
| 1093 | 30 | 0,75                | 0,33 | 2,8 | 1,25 | 0,06 | 1,053 | 2,636  | 0,050 | 52,735  |
| 1094 | 35 | 0 <mark>,7</mark> 5 | 0,33 | 2,8 | 1,25 | 0,06 | 1,064 | 2,924  | 0,051 | 56,966  |
| 1095 | 40 | 0,75                | 0,33 | 2,8 | 1,25 | 0,06 | 1,064 | 3,169  | 0,053 | 60,151  |
| 1096 | 20 | 0,95                | 0,33 | 2,8 | 1,25 | 0,06 | 0,996 | 0,379  | 0,048 | 7,930   |
| 1097 | 25 | 0,95                | 0,33 | 2,8 | 1,25 | 0,06 | 1,037 | 0,443  | 0,049 | 9,023   |
| 1098 | 30 | 0,95                | 0,33 | 2,8 | 1,25 | 0,06 | 1,052 | 0,500  | 0,051 | 9,882   |
| 1099 | 35 | 0,95                | 0,33 | 2,8 | 1,25 | 0,06 | 1,061 | 0,547  | 0,052 | 10,518  |
| 1100 | 40 | 0,95                | 0,33 | 2,8 | 1,25 | 0,06 | 1,055 | 0,587  | 0,053 | 10,976  |
| 1101 | 20 | 0,15                | 0,5  | 2,8 | 1,25 | 0,06 | 1,168 | 6,840  | 0,051 | 133,317 |
| 1102 | 25 | 0,15                | 0,5  | 2,8 | 1,25 | 0,06 | 1,185 | 8,102  | 0,052 | 154,927 |
| 1103 | 30 | 0,15                | 0,5  | 2,8 | 1,25 | 0,06 | 1,194 | 9,380  | 0,053 | 176,121 |
| 1104 | 35 | 0,15                | 0,5  | 2,8 | 1,25 | 0,06 | 1,196 | 10,644 | 0,054 | 196,346 |
| 1105 | 40 | 0,15                | 0,5  | 2,8 | 1,25 | 0,06 | 1,193 | 11,870 | 0,055 | 215,170 |
| 1106 | 20 | 0,35                | 0,5  | 2,8 | 1,25 | 0,06 | 1,176 | 4,996  | 0,052 | 96,160  |
| 1107 | 25 | 0,35                | 0,5  | 2,8 | 1,25 | 0,06 | 1,184 | 5,806  | 0,053 | 109,294 |
| 1108 | 30 | 0,35                | 0,5  | 2,8 | 1,25 | 0,06 | 1,184 | 6,577  | 0,054 | 121,120 |
| 1109 | 35 | 0,35                | 0,5  | 2,8 | 1,25 | 0,06 | 1,175 | 7,290  | 0,056 | 131,350 |
| 1110 | 40 | 0,35                | 0,5  | 2,8 | 1,25 | 0,06 | 1,161 | 7,938  | 0,057 | 139,916 |
| 1111 | 20 | 0,55                | 0,5  | 2,8 | 1,25 | 0,06 | 1,177 | 3,297  | 0,053 | 62,708  |
| 1112 | 25 | 0,55                | 0,5  | 2,8 | 1,25 | 0,06 | 1,178 | 3,766  | 0,054 | 69,843  |
| 1113 | 30 | 0,55                | 0,5  | 2,8 | 1,25 | 0,06 | 1,168 | 4,190  | 0,055 | 75,788  |
| 1114 | 35 | 0,55                | 0,5  | 2,8 | 1,25 | 0,06 | 1,152 | 4,565  | 0,057 | 80,548  |



| 1115 | 40 | 0,55                | 0,5  | 2,8 | 1,25 | 0,06 | 1,132 | 4,896 | 0,058 | 84,269  |
|------|----|---------------------|------|-----|------|------|-------|-------|-------|---------|
| 1116 | 20 | 0,75                | 0,5  | 2,8 | 1,25 | 0,06 | 1,176 | 1,745 | 0,053 | 32,809  |
| 1117 | 25 | 0,75                | 0,5  | 2,8 | 1,25 | 0,06 | 1,168 | 1,963 | 0,055 | 35,909  |
| 1118 | 30 | 0,75                | 0,5  | 2,8 | 1,25 | 0,06 | 1,152 | 2,154 | 0,056 | 38,334  |
| 1119 | 35 | 0,75                | 0,5  | 2,8 | 1,25 | 0,06 | 1,130 | 2,319 | 0,058 | 40,176  |
| 1120 | 40 | 0,75                | 0,5  | 2,8 | 1,25 | 0,06 | 1,108 | 2,463 | 0,059 | 41,563  |
| 1121 | 20 | 0,95                | 0,5  | 2,8 | 1,25 | 0,06 | 1,172 | 0,332 | 0,054 | 6,178   |
| 1122 | 25 | 0,95                | 0,5  | 2,8 | 1,25 | 0,06 | 1,157 | 0,369 | 0,055 | 6,664   |
| 1123 | 30 | 0,95                | 0,5  | 2,8 | 1,25 | 0,06 | 1,130 | 0,401 | 0,057 | 7,027   |
| 1124 | 35 | 0,95                | 0,5  | 2,8 | 1,25 | 0,06 | 1,111 | 0,428 | 0,059 | 7,294   |
| 1125 | 40 | 0,95                | 0,5  | 2,8 | 1,25 | 0,06 | 1,087 | 0,452 | 0,060 | 7,492   |
| 1126 | 20 | 0,15                | 0,25 | 1,2 | 2    | 0,06 | 0,667 | 2,510 | 0,013 | 191,437 |
| 1127 | 25 | 0,15                | 0,25 | 1,2 | 2    | 0,06 | 0,796 | 3,500 | 0,013 | 261,197 |
| 1128 | 30 | 0,15                | 0,25 | 1,2 | 2    | 0,06 | 0,918 | 4,637 | 0,014 | 340,240 |
| 1129 | 35 | 0,15                | 0,25 | 1,2 | 2    | 0,06 | 1,019 | 5,832 | 0,014 | 422,358 |
| 1130 | 40 | 0,15                | 0,25 | 1,2 | 2    | 0,06 | 1,097 | 7,021 | 0,014 | 503,167 |
| 1131 | 20 | 0,35                | 0,25 | 1,2 | 2    | 0,06 | 0,713 | 1,947 | 0,013 | 148,329 |
| 1132 | 25 | 0,35                | 0,25 | 1,2 | 2    | 0,06 | 0,863 | 2,720 | 0,013 | 202,471 |
| 1133 | 30 | 0,35                | 0,25 | 1,2 | 2    | 0,06 | 1,002 | 3,577 | 0,014 | 261,450 |
| 1134 | 35 | 0,35                | 0,25 | 1,2 | 2    | 0,06 | 1,107 | 4,418 | 0,014 | 318,019 |
| 1135 | 40 | 0,35                | 0,25 | 1,2 | 2    | 0,06 | 1,175 | 5,164 | 0,014 | 366,811 |
| 1136 | 20 | 0 <mark>,55</mark>  | 0,25 | 1,2 | 2    | 0,06 | 0,760 | 1,368 | 0,013 | 104,067 |
| 1137 | 25 | 0 <mark>,</mark> 55 | 0,25 | 1,2 | 2    | 0,06 | 0,930 | 1,911 | 0,013 | 141,829 |
| 1138 | 30 | 0 <mark>,55</mark>  | 0,25 | 1,2 | 2    | 0,06 | 1,076 | 2,479 | 0,014 | 180,282 |
| 1139 | 35 | 0,55                | 0,25 | 1,2 | 2    | 0,06 | 1,168 | 2,973 | 0,014 | 212,249 |
| 1140 | 40 | 0,55                | 0,25 | 1,2 | 2    | 0,06 | 1,200 | 3,337 | 0,014 | 233,952 |
| 1141 | 20 | 0,75                | 0,25 | 1,2 | 2    | 0,06 | 0,809 | 0,772 | 0,013 | 58,596  |
| 1142 | 25 | 0,75                | 0,25 | 1,2 | 2    | 0,06 | 0,994 | 1,075 | 0,014 | 79,463  |
| 1143 | 30 | 0,75                | 0,25 | 1,2 | 2    | 0,06 | 1,134 | 1,363 | 0,014 | 98,424  |
| 1144 | 35 | 0,75                | 0,25 | 1,2 | 2    | 0,06 | 1,192 | 1,571 | 0,014 | 110,925 |
| 1145 | 40 | 0,75                | 0,25 | 1,2 | 2    | 0,06 | 1,187 | 1,697 | 0,015 | 117,057 |
| 1146 | 20 | 0,95                | 0,25 | 1,2 | 2    | 0,06 | 0,859 | 0,157 | 0,013 | 11,864  |
| 1147 | 25 | 0,95                | 0,25 | 1,2 | 2    | 0,06 | 1,054 | 0,216 | 0,014 | 15,919  |
| 1148 | 30 | 0,95                | 0,25 | 1,2 | 2    | 0,06 | 1,164 | 0,265 | 0,014 | 18,993  |
| 1149 | 35 | 0,95                | 0,25 | 1,2 | 2    | 0,06 | 1,188 | 0,294 | 0,014 | 20,474  |
| 1150 | 40 | 0,95                | 0,25 | 1,2 | 2    | 0,06 | 1,162 | 0,310 | 0,015 | 21,025  |
| 1151 | 20 | 0,15                | 0,33 | 1,2 | 2    | 0,06 | 0,990 | 3,332 | 0,014 | 241,957 |
| 1152 | 25 | 0,15                | 0,33 | 1,2 | 2    | 0,06 | 1,104 | 4,337 | 0,014 | 309,913 |
| 1153 | 30 | 0,15                | 0,33 | 1,2 | 2    | 0,06 | 1,191 | 5,376 | 0,014 | 379,250 |
| 1154 | 35 | 0,15                | 0,33 | 1,2 | 2    | 0,06 | 1,252 | 6,397 | 0,014 | 446,520 |
| 1155 | 40 | 0,15                | 0,33 | 1,2 | 2    | 0,06 | 1,288 | 7,364 | 0,014 | 509,186 |
| 1156 | 20 | 0,35                | 0,33 | 1,2 | 2    | 0,06 | 1,053 | 2,571 | 0,014 | 186,096 |
| 1157 | 25 | 0,35                | 0,33 | 1,2 | 2    | 0,06 | 1,174 | 3,306 | 0,014 | 235,017 |



| 1158 | 30 | 0,35                | 0,33 | 1,2 | 2 | 0,06 | 1,255 | 4,003 | 0,014 | 280,236 |
|------|----|---------------------|------|-----|---|------|-------|-------|-------|---------|
| 1159 | 35 | 0,35                | 0,33 | 1,2 | 2 | 0,06 | 1,292 | 4,604 | 0,014 | 317,705 |
| 1160 | 40 | 0,35                | 0,33 | 1,2 | 2 | 0,06 | 1,293 | 5,078 | 0,015 | 345,284 |
| 1161 | 20 | 0,55                | 0,33 | 1,2 | 2 | 0,06 | 1,113 | 1,791 | 0,014 | 129,106 |
| 1162 | 25 | 0,55                | 0,33 | 1,2 | 2 | 0,06 | 1,230 | 2,258 | 0,014 | 159,450 |
| 1163 | 30 | 0,55                | 0,33 | 1,2 | 2 | 0,06 | 1,284 | 2,644 | 0,014 | 183,146 |
| 1164 | 35 | 0,55                | 0,33 | 1,2 | 2 | 0,06 | 1,283 | 2,918 | 0,015 | 198,252 |
| 1165 | 40 | 0,55                | 0,33 | 1,2 | 2 | 0,06 | 1,249 | 3,102 | 0,015 | 206,312 |
| 1166 | 20 | 0,75                | 0,33 | 1,2 | 2 | 0,06 | 1,169 | 0,996 | 0,014 | 71,455  |
| 1167 | 25 | 0,75                | 0,33 | 1,2 | 2 | 0,06 | 1,264 | 1,221 | 0,014 | 85,467  |
| 1168 | 30 | 0,75                | 0,33 | 1,2 | 2 | 0,06 | 1,281 | 1,375 | 0,015 | 93,997  |
| 1169 | 35 | 0,75                | 0,33 | 1,2 | 2 | 0,06 | 1,247 | 1,469 | 0,015 | 98,005  |
| 1170 | 40 | 0,75                | 0,33 | 1,2 | 2 | 0,06 | 1,202 | 1,535 | 0,015 | 99,835  |
| 1171 | 20 | 0,95                | 0,33 | 1,2 | 2 | 0,06 | 1,214 | 0,198 | 0,014 | 14,101  |
| 1172 | 25 | 0,95                | 0,33 | 1,2 | 2 | 0,06 | 1,277 | 0,234 | 0,014 | 16,209  |
| 1173 | 30 | 0,95                | 0,33 | 1,2 | 2 | 0,06 | 1,251 | 0,255 | 0,015 | 17,160  |
| 1174 | 35 | 0,95                | 0,33 | 1,2 | 2 | 0,06 | 1,210 | 0,268 | 0,015 | 17,527  |
| 1175 | 40 | 0,95                | 0,33 | 1,2 | 2 | 0,06 | 1,167 | 0,278 | 0,016 | 17,725  |
| 1176 | 20 | 0,15                | 0,5  | 1,2 | 2 | 0,06 | 1,529 | 3,838 | 0,015 | 255,870 |
| 1177 | 25 | 0,15                | 0,5  | 1,2 | 2 | 0,06 | 1,554 | 4,555 | 0,015 | 299,974 |
| 1178 | 30 | 0,15                | 0,5  | 1,2 | 2 | 0,06 | 1,554 | 5,231 | 0,015 | 340,670 |
| 1179 | 35 | 0,15                | 0,5  | 1,2 | 2 | 0,06 | 1,532 | 5,843 | 0,016 | 376,445 |
| 1180 | 40 | 0 <mark>,1</mark> 5 | 0,5  | 1,2 | 2 | 0,06 | 1,495 | 6,377 | 0,016 | 406,211 |
| 1181 | 20 | 0,35                | 0,5  | 1,2 | 2 | 0,06 | 1,542 | 2,809 | 0,015 | 185,300 |
| 1182 | 25 | 0,35                | 0,5  | 1,2 | 2 | 0,06 | 1,531 | 3,217 | 0,015 | 208,739 |
| 1183 | 30 | 0,35                | 0,5  | 1,2 | 2 | 0,06 | 1,486 | 3,539 | 0,016 | 225,803 |
| 1184 | 35 | 0,35                | 0,5  | 1,2 | 2 | 0,06 | 1,422 | 3,781 | 0,016 | 236,813 |
| 1185 | 40 | 0,35                | 0,5  | 1,2 | 2 | 0,06 | 1,353 | 3,966 | 0,016 | 243,420 |
| 1186 | 20 | 0,55                | 0,5  | 1,2 | 2 | 0,06 | 1,526 | 1,832 | 0,015 | 119,350 |
| 1187 | 25 | 0,55                | 0,5  | 1,2 | 2 | 0,06 | 1,475 | 2,021 | 0,016 | 128,859 |
| 1188 | 30 | 0,55                | 0,5  | 1,2 | 2 | 0,06 | 1,400 | 2,151 | 0,016 | 134,087 |
| 1189 | 35 | 0,55                | 0,5  | 1,2 | 2 | 0,06 | 1,325 | 2,250 | 0,016 | 136,871 |
| 1190 | 40 | 0,55                | 0,5  | 1,2 | 2 | 0,06 | 1,260 | 2,337 | 0,017 | 138,660 |
| 1191 | 20 | 0,75                | 0,5  | 1,2 | 2 | 0,06 | 1,490 | 0,947 | 0,016 | 60,875  |
| 1192 | 25 | 0,75                | 0,5  | 1,2 | 2 | 0,06 | 1,409 | 1,016 | 0,016 | 63,595  |
| 1193 | 30 | 0,75                | 0,5  | 1,2 | 2 | 0,06 | 1,329 | 1,064 | 0,016 | 64,882  |
| 1194 | 35 | 0,75                | 0,5  | 1,2 | 2 | 0,06 | 1,259 | 1,107 | 0,017 | 65,665  |
| 1195 | 40 | 0,75                | 0,5  | 1,2 | 2 | 0,06 | 1,205 | 1,148 | 0,017 | 66,312  |
| 1196 | 20 | 0,95                | 0,5  | 1,2 | 2 | 0,06 | 1,443 | 0,175 | 0,016 | 11,110  |
| 1197 | 25 | 0,95                | 0,5  | 1,2 | 2 | 0,06 | 1,353 | 0,185 | 0,016 | 11,383  |
| 1198 | 30 | 0,95                | 0,5  | 1,2 | 2 | 0,06 | 1,269 | 0,193 | 0,017 | 11,524  |
| 1199 | 35 | 0,95                | 0,5  | 1,2 | 2 | 0,06 | 1,214 | 0,200 | 0,017 | 11,634  |
| 1200 | 40 | 0,95                | 0,5  | 1,2 | 2 | 0,06 | 1,167 | 0,208 | 0,018 | 11,738  |



| 1001 | 20 | 0.15 | 0.25 | 2 | 2 | 0.06 | 0 722 | 4 600  | 0.026 | 107 002 |
|------|----|------|------|---|---|------|-------|--------|-------|---------|
| 1201 | 20 | 0,15 | 0,25 | 2 | 2 | 0,00 | 0,733 | 4,000  | 0,030 | 127,003 |
| 1202 | 20 | 0,15 | 0,25 | 2 | 2 | 0,06 | 0,840 | 7 004  | 0,037 | 200,796 |
| 1203 | 30 | 0,15 | 0,25 | 2 | 2 | 0,06 | 1,938 | 0.715  | 0,030 | 209,780 |
| 1204 | 40 | 0,15 | 0,25 | 2 | 2 | 0,00 | 1,019 | 9,715  | 0,030 | 209 252 |
| 1205 | 20 | 0.25 | 0.25 | 2 | 2 | 0,00 | 0.779 | 2 544  | 0,039 | 290,352 |
| 1200 | 20 | 0,35 | 0,25 | 2 | 2 | 0,00 | 0,778 | 4 704  | 0,030 | 127 255 |
| 1207 | 20 | 0.35 | 0.25 | 2 | 2 | 0,00 | 1,006 | 5 000  | 0,037 | 159 270 |
| 1200 | 25 | 0.35 | 0,25 | 2 | 2 | 0,00 | 1,000 | 7 220  | 0,030 | 197 760 |
| 1209 | 30 | 0,35 | 0,25 | 2 | 2 | 0,00 | 1,007 | 7,229  | 0,039 | 187,760 |
| 1210 | 20 | 0,35 | 0,25 | 2 | 2 | 0,06 | 1,140 | 0,000  | 0,039 | 213,460 |
| 1211 | 20 | 0,55 | 0,25 | 2 | 2 | 0,06 | 0,823 | 2,470  | 0,036 | 07,803  |
| 1212 | 25 | 0,55 | 0,25 | 2 | 2 | 0,06 | 0,956 | 3,272  | 0,037 | 87,748  |
| 1213 | 30 | 0,55 | 0,25 | 2 | 2 | 0,06 | 1,063 | 4,083  | 0,038 | 107,125 |
| 1214 | 35 | 0,55 | 0,25 | 2 | 2 | 0,06 | 1,132 | 4,803  | 0,039 | 123,455 |
| 1215 | 40 | 0,55 | 0,25 | 2 | 2 | 0,06 | 1,161 | 5,379  | 0,040 | 135,460 |
| 1216 | 20 | 0,75 | 0,25 | 2 | 2 | 0,06 | 0,868 | 1,381  | 0,037 | 37,804  |
| 1217 | 25 | 0,75 | 0,25 | 2 | 2 | 0,06 | 1,005 | 1,811  | 0,037 | 48,318  |
| 1218 | 30 | 0,75 | 0,25 | 2 | 2 | 0,06 | 1,105 | 2,213  | 0,038 | 57,573  |
| 1219 | 35 | 0,75 | 0,25 | 2 | 2 | 0,06 | 1,151 | 2,529  | 0,039 | 64,227  |
| 1220 | 40 | 0,75 | 0,25 | 2 | 2 | 0,06 | 1,157 | 2,756  | 0,040 | 68,281  |
| 1221 | 20 | 0,95 | 0,25 | 2 | 2 | 0,06 | 0,912 | 0,277  | 0,037 | 7,561   |
| 1222 | 25 | 0,95 | 0,25 | 2 | 2 | 0,06 | 1,049 | 0,359  | 0,038 | 9,509   |
| 1223 | 30 | 0,95 | 0,25 | 2 | 2 | 0,06 | 1,125 | 0,427  | 0,039 | 11,011  |
| 1224 | 35 | 0,95 | 0,25 | 2 | 2 | 0,06 | 1,153 | 0,475  | 0,040 | 11,915  |
| 1225 | 40 | 0,95 | 0,25 | 2 | 2 | 0,06 | 1,142 | 0,508  | 0,041 | 12,388  |
| 1226 | 20 | 0,15 | 0,33 | 2 | 2 | 0,06 | 1,020 | 5,716  | 0,038 | 150,472 |
| 1227 | 25 | 0,15 | 0,33 | 2 | 2 | 0,06 | 1,106 | 7,240  | 0,039 | 187,317 |
| 1228 | 30 | 0,15 | 0,33 | 2 | 2 | 0,06 | 1,173 | 8,819  | 0,039 | 224,792 |
| 1229 | 35 | 0,15 | 0,33 | 2 | 2 | 0,06 | 1,219 | 10,387 | 0,040 | 261,246 |
| 1230 | 40 | 0,15 | 0,33 | 2 | 2 | 0,06 | 1,248 | 11,891 | 0,040 | 295,376 |
| 1231 | 20 | 0,35 | 0,33 | 2 | 2 | 0,06 | 1,070 | 4,353  | 0,038 | 114,002 |
| 1232 | 25 | 0,35 | 0,33 | 2 | 2 | 0,06 | 1,158 | 5,433  | 0,039 | 139,533 |
| 1233 | 30 | 0,35 | 0,33 | 2 | 2 | 0,06 | 1,217 | 6,470  | 0,040 | 163,206 |
| 1234 | 35 | 0,35 | 0,33 | 2 | 2 | 0,06 | 1,245 | 7,395  | 0,040 | 183,355 |
| 1235 | 40 | 0,35 | 0,33 | 2 | 2 | 0,06 | 1,249 | 8,173  | 0,041 | 199,130 |
| 1236 | 20 | 0,55 | 0,33 | 2 | 2 | 0,06 | 1,115 | 2,989  | 0,038 | 77,827  |
| 1237 | 25 | 0,55 | 0,33 | 2 | 2 | 0,06 | 1,196 | 3,660  | 0,039 | 93,180  |
| 1238 | 30 | 0,55 | 0,33 | 2 | 2 | 0,06 | 1,236 | 4,241  | 0,040 | 105,682 |
| 1239 | 35 | 0,55 | 0,33 | 2 | 2 | 0,06 | 1,240 | 4,701  | 0,041 | 114,622 |
| 1240 | 40 | 0,55 | 0,33 | 2 | 2 | 0,06 | 1,220 | 5,049  | 0,042 | 120,396 |
| 1241 | 20 | 0,75 | 0,33 | 2 | 2 | 0,06 | 1,154 | 1,639  | 0,039 | 42,390  |
| 1242 | 25 | 0,75 | 0,33 | 2 | 2 | 0,06 | 1,218 | 1,961  | 0,040 | 49,435  |
| 1243 | 30 | 0,75 | 0,33 | 2 | 2 | 0,06 | 1,235 | 2,210  | 0,041 | 54,332  |



| 1244 | 35 | 0.75 | 0.33 | 2   | 2 | 0.06 | 1.217 | 2.390  | 0.042 | 57.279  |
|------|----|------|------|-----|---|------|-------|--------|-------|---------|
| 1245 | 40 | 0,75 | 0,33 | 2   | 2 | 0,06 | 1,186 | 2,525  | 0,043 | 58,969  |
| 1246 | 20 | 0,95 | 0,33 | 2   | 2 | 0,06 | 1,184 | 0,321  | 0,039 | 8,249   |
| 1247 | 25 | 0,95 | 0,33 | 2   | 2 | 0,06 | 1,228 | 0,375  | 0,040 | 9,352   |
| 1248 | 30 | 0,95 | 0,33 | 2   | 2 | 0,06 | 1,216 | 0,413  | 0,041 | 10,002  |
| 1249 | 35 | 0,95 | 0,33 | 2   | 2 | 0,06 | 1,192 | 0,439  | 0,042 | 10,348  |
| 1250 | 40 | 0,95 | 0,33 | 2   | 2 | 0,06 | 1,157 | 0,460  | 0,044 | 10,545  |
| 1251 | 20 | 0,15 | 0,5  | 2   | 2 | 0,06 | 1,468 | 6,143  | 0,042 | 147,760 |
| 1252 | 25 | 0,15 | 0,5  | 2   | 2 | 0,06 | 1,483 | 7,243  | 0,042 | 171,621 |
| 1253 | 30 | 0,15 | 0,5  | 2   | 2 | 0,06 | 1,479 | 8,302  | 0,043 | 193,970 |
| 1254 | 35 | 0,15 | 0,5  | 2   | 2 | 0,06 | 1,461 | 9,290  | 0,043 | 214,076 |
| 1255 | 40 | 0,15 | 0,5  | 2   | 2 | 0,06 | 1,433 | 10,185 | 0,044 | 231,440 |
| 1256 | 20 | 0,35 | 0,5  | 2   | 2 | 0,06 | 1,468 | 4,457  | 0,042 | 105,841 |
| 1257 | 25 | 0,35 | 0,5  | 2   | 2 | 0,06 | 1,457 | 5,102  | 0,043 | 118,863 |
| 1258 | 30 | 0,35 | 0,5  | 2   | 2 | 0,06 | 1,424 | 5,653  | 0,044 | 129,170 |
| 1259 | 35 | 0,35 | 0,5  | 2   | 2 | 0,06 | 1,377 | 6,105  | 0,045 | 136,739 |
| 1260 | 40 | 0,35 | 0,5  | 2   | 2 | 0,06 | 1,326 | 6,474  | 0,046 | 142,020 |
| 1261 | 20 | 0,55 | 0,5  | 2   | 2 | 0,06 | 1,451 | 2,904  | 0,043 | 68,023  |
| 1262 | 25 | 0,55 | 0,5  | 2   | 2 | 0,06 | 1,416 | 3,232  | 0,044 | 73,970  |
| 1263 | 30 | 0,55 | 0,5  | 2   | 2 | 0,06 | 1,361 | 3,487  | 0,045 | 77,942  |
| 1264 | 35 | 0,55 | 0,5  | 2   | 2 | 0,06 | 1,304 | 3,689  | 0,046 | 80,472  |
| 1265 | 40 | 0,55 | 0,5  | 2   | 2 | 0,06 | 1,249 | 3,860  | 0,047 | 82,138  |
| 1266 | 20 | 0,75 | 0,5  | 2   | 2 | 0,06 | 1,425 | 1,511  | 0,043 | 34,901  |
| 1267 | 25 | 0,75 | 0,5  | 2   | 2 | 0,06 | 1,369 | 1,644  | 0,044 | 36,983  |
| 1268 | 30 | 0,75 | 0,5  | 2   | 2 | 0,06 | 1,307 | 1,745  | 0,046 | 38,221  |
| 1269 | 35 | 0,75 | 0,5  | 2   | 2 | 0,06 | 1,248 | 1,829  | 0,047 | 38,990  |
| 1270 | 40 | 0,75 | 0,5  | 2   | 2 | 0,06 | 1,199 | 1,905  | 0,048 | 39,534  |
| 1271 | 20 | 0,95 | 0,5  | 2   | 2 | 0,06 | 1,393 | 0,282  | 0,044 | 6,433   |
| 1272 | 25 | 0,95 | 0,5  | 2   | 2 | 0,06 | 1,327 | 0,302  | 0,045 | 6,694   |
| 1273 | 30 | 0,95 | 0,5  | 2   | 2 | 0,06 | 1,256 | 0,318  | 0,046 | 6,843   |
| 1274 | 35 | 0,95 | 0,5  | 2   | 2 | 0,06 | 1,208 | 0,332  | 0,048 | 6,942   |
| 1275 | 40 | 0,95 | 0,5  | 2   | 2 | 0,06 | 1,164 | 0,345  | 0,049 | 7,019   |
| 1276 | 20 | 0,15 | 0,25 | 2,8 | 2 | 0,06 | 0,745 | 6,547  | 0,071 | 92,575  |
| 1277 | 25 | 0,15 | 0,25 | 2,8 | 2 | 0,06 | 0,836 | 8,573  | 0,072 | 118,701 |
| 1278 | 30 | 0,15 | 0,25 | 2,8 | 2 | 0,06 | 0,917 | 10,811 | 0,074 | 146,968 |
| 1279 | 35 | 0,15 | 0,25 | 2,8 | 2 | 0,06 | 0,986 | 13,160 | 0,075 | 176,021 |
| 1280 | 40 | 0,15 | 0,25 | 2,8 | 2 | 0,06 | 1,040 | 15,531 | 0,076 | 204,689 |
| 1281 | 20 | 0,35 | 0,25 | 2,8 | 2 | 0,06 | 0,787 | 5,017  | 0,071 | 70,696  |
| 1282 | 25 | 0,35 | 0,25 | 2,8 | 2 | 0,06 | 0,887 | 6,527  | 0,073 | 89,927  |
| 1283 | 30 | 0,35 | 0,25 | 2,8 | 2 | 0,06 | 0,975 | 8,129  | 0,074 | 109,742 |
| 1284 | 35 | 0,35 | 0,25 | 2,8 | 2 | 0,06 | 1,043 | 9,711  | 0,075 | 128,642 |
| 1285 | 40 | 0,35 | 0,25 | 2,8 | 2 | 0,06 | 1,090 | 11,181 | 0,077 | 145,447 |
| 1286 | 20 | 0,55 | 0,25 | 2,8 | 2 | 0,06 | 0,827 | 3,476  | 0,071 | 48,806  |



| 4007 | 05 | 0.55               | 0.05 | 0.0 | 0 | 0.00 | 0.005 | 4 40 4 | 0.070 | 01 440  |
|------|----|--------------------|------|-----|---|------|-------|--------|-------|---------|
| 1287 | 25 | 0,55               | 0,25 | 2,8 | 2 | 0,06 | 0,935 | 4,484  | 0,073 | 61,440  |
| 1288 | 30 | 0,55               | 0,25 | 2,8 | 2 | 0,06 | 1,022 | 5,497  | 0,075 | 73,630  |
| 1289 | 35 | 0,55               | 0,25 | 2,8 | 2 | 0,06 | 1,081 | 6,424  | 0,076 | 84,164  |
| 1290 | 40 | 0,55               | 0,25 | 2,8 | 2 | 0,06 | 1,111 | 7,209  | 0,078 | 92,409  |
| 1291 | 20 | 0,75               | 0,25 | 2,8 | 2 | 0,06 | 0,867 | 1,930  | 0,072 | 26,988  |
| 1292 | 25 | 0,75               | 0,25 | 2,8 | 2 | 0,06 | 0,976 | 2,462  | 0,073 | 33,534  |
| 1293 | 30 | 0,75               | 0,25 | 2,8 | 2 | 0,06 | 1,057 | 2,964  | 0,075 | 39,343  |
| 1294 | 35 | 0,75               | 0,25 | 2,8 | 2 | 0,06 | 1,100 | 3,385  | 0,077 | 43,818  |
| 1295 | 40 | 0,75               | 0,25 | 2,8 | 2 | 0,06 | 1,114 | 3,716  | 0,079 | 46,904  |
| 1296 | 20 | 0,95               | 0,25 | 2,8 | 2 | 0,06 | 0,904 | 0,385  | 0,072 | 5,355   |
| 1297 | 25 | 0,95               | 0,25 | 2,8 | 2 | 0,06 | 1,012 | 0,484  | 0,074 | 6,550   |
| 1298 | 30 | 0,95               | 0,25 | 2,8 | 2 | 0,06 | 1,074 | 0,571  | 0,076 | 7,511   |
| 1299 | 35 | 0,95               | 0,25 | 2,8 | 2 | 0,06 | 1,107 | 0,639  | 0,078 | 8,168   |
| 1300 | 40 | 0,95               | 0,25 | 2,8 | 2 | 0,06 | 1,107 | 0,690  | 0,080 | 8,578   |
| 1301 | 20 | 0,15               | 0,33 | 2,8 | 2 | 0,06 | 0,996 | 7,819  | 0,074 | 105,315 |
| 1302 | 25 | 0,15               | 0,33 | 2,8 | 2 | 0,06 | 1,066 | 9,771  | 0,076 | 129,197 |
| 1303 | 30 | 0,15               | 0,33 | 2,8 | 2 | 0,06 | 1,121 | 11,805 | 0,077 | 153,523 |
| 1304 | 35 | 0,15               | 0,33 | 2,8 | 2 | 0,06 | 1,161 | 13,847 | 0,078 | 177,345 |
| 1305 | 40 | 0,15               | 0,33 | 2,8 | 2 | 0,06 | 1,187 | 15,835 | 0,079 | 199,888 |
| 1306 | 20 | 0,35               | 0,33 | 2,8 | 2 | 0,06 | 1,038 | 5,910  | 0,075 | 79,110  |
| 1307 | 25 | 0,35               | 0,33 | 2,8 | 2 | 0,06 | 1,108 | 7,278  | 0,076 | 95,415  |
| 1308 | 30 | 0,35               | 0,33 | 2,8 | 2 | 0,06 | 1,157 | 8,613  | 0,078 | 110,727 |
| 1309 | 35 | 0,35               | 0,33 | 2,8 | 2 | 0,06 | 1,184 | 9,844  | 0,079 | 124,159 |
| 1310 | 40 | 0 <mark>,35</mark> | 0,33 | 2,8 | 2 | 0,06 | 1,193 | 10,928 | 0,081 | 135,224 |
| 1311 | 20 | 0,55               | 0,33 | 2,8 | 2 | 0,06 | 1,074 | 4,030  | 0,075 | 53,578  |
| 1312 | 25 | 0,55               | 0,33 | 2,8 | 2 | 0,06 | 1,139 | 4,878  | 0,077 | 63,345  |
| 1313 | 30 | 0,55               | 0,33 | 2,8 | 2 | 0,06 | 1,174 | 5,643  | 0,079 | 71,636  |
| 1314 | 35 | 0,55               | 0,33 | 2,8 | 2 | 0,06 | 1,185 | 6,291  | 0,081 | 78,051  |
| 1315 | 40 | 0,55               | 0,33 | 2,8 | 2 | 0,06 | 1,176 | 6,819  | 0,082 | 82,676  |
| 1316 | 20 | 0,75               | 0,33 | 2,8 | 2 | 0,06 | 1,104 | 2,196  | 0,076 | 28,989  |
| 1317 | 25 | 0,75               | 0,33 | 2,8 | 2 | 0,06 | 1,157 | 2,608  | 0,078 | 33,533  |
| 1318 | 30 | 0,75               | 0,33 | 2,8 | 2 | 0,06 | 1,179 | 2,952  | 0,080 | 36,986  |
| 1319 | 35 | 0,75               | 0,33 | 2,8 | 2 | 0,06 | 1,173 | 3,225  | 0,082 | 39,365  |
| 1320 | 40 | 0,75               | 0,33 | 2,8 | 2 | 0,06 | 1,155 | 3,441  | 0,084 | 40,930  |
| 1321 | 20 | 0,95               | 0,33 | 2,8 | 2 | 0,06 | 1,128 | 0,429  | 0,076 | 5,616   |
| 1322 | 25 | 0,95               | 0,33 | 2,8 | 2 | 0,06 | 1,168 | 0,499  | 0,079 | 6,354   |
| 1323 | 30 | 0,95               | 0,33 | 2,8 | 2 | 0,06 | 1,167 | 0,555  | 0,081 | 6,857   |
| 1324 | 35 | 0,95               | 0,33 | 2,8 | 2 | 0,06 | 1,157 | 0,597  | 0,083 | 7,175   |
| 1325 | 40 | 0,95               | 0,33 | 2,8 | 2 | 0,06 | 1,133 | 0,631  | 0,086 | 7,376   |
| 1326 | 20 | 0,15               | 0,5  | 2,8 | 2 | 0,06 | 1,374 | 8,047  | 0,082 | 98,606  |
| 1327 | 25 | 0,15               | 0,5  | 2,8 | 2 | 0,06 | 1,387 | 9,481  | 0,083 | 114,249 |
| 1328 | 30 | 0,15               | 0,5  | 2,8 | 2 | 0,06 | 1,386 | 10,891 | 0,084 | 129,159 |
| 1329 | 35 | 0,15               | 0,5  | 2,8 | 2 | 0,06 | 1,375 | 12,239 | 0,086 | 142,899 |



| 1330 | 40 | 0,15 | 0,5  | 2,8 | 2   | 0,06 | 1,356 | 13,497 | 0,087 | 155,154  |
|------|----|------|------|-----|-----|------|-------|--------|-------|----------|
| 1331 | 20 | 0,35 | 0,5  | 2,8 | 2   | 0,06 | 1,373 | 5,837  | 0,083 | 70,578   |
| 1332 | 25 | 0,35 | 0,5  | 2,8 | 2   | 0,06 | 1,368 | 6,709  | 0,084 | 79,463   |
| 1333 | 30 | 0,35 | 0,5  | 2,8 | 2   | 0,06 | 1,348 | 7,491  | 0,086 | 86,923   |
| 1334 | 35 | 0,35 | 0,5  | 2,8 | 2   | 0,06 | 1,317 | 8,171  | 0,088 | 92,852   |
| 1335 | 40 | 0,35 | 0,5  | 2,8 | 2   | 0,06 | 1,280 | 8,754  | 0,090 | 97,377   |
| 1336 | 20 | 0,55 | 0,5  | 2,8 | 2   | 0,06 | 1,362 | 3,816  | 0,084 | 45,530   |
| 1337 | 25 | 0,55 | 0,5  | 2,8 | 2   | 0,06 | 1,341 | 4,287  | 0,086 | 49,926   |
| 1338 | 30 | 0,55 | 0,5  | 2,8 | 2   | 0,06 | 1,305 | 4,681  | 0,088 | 53,202   |
| 1339 | 35 | 0,55 | 0,5  | 2,8 | 2   | 0,06 | 1,264 | 5,008  | 0,090 | 55,537   |
| 1340 | 40 | 0,55 | 0,5  | 2,8 | 2   | 0,06 | 1,222 | 5,286  | 0,092 | 57,193   |
| 1341 | 20 | 0,75 | 0,5  | 2,8 | 2   | 0,06 | 1,346 | 1,998  | 0,085 | 23,524   |
| 1342 | 25 | 0,75 | 0,5  | 2,8 | 2   | 0,06 | 1,310 | 2,202  | 0,087 | 25,239   |
| 1343 | 30 | 0,75 | 0,5  | 2,8 | 2   | 0,06 | 1,267 | 2,367  | 0,090 | 26,408   |
| 1344 | 35 | 0,75 | 0,5  | 2,8 | 2   | 0,06 | 1,221 | 2,505  | 0,092 | 27,200   |
| 1345 | 40 | 0,75 | 0,5  | 2,8 | 2   | 0,06 | 1,181 | 2,626  | 0,095 | 27,761   |
| 1346 | 20 | 0,95 | 0,5  | 2,8 | 2   | 0,06 | 1,326 | 0,376  | 0,086 | 4,372    |
| 1347 | 25 | 0,95 | 0,5  | 2,8 | 2   | 0,06 | 1,281 | 0,409  | 0,089 | 4,614    |
| 1348 | 30 | 0,95 | 0,5  | 2,8 | 2   | 0,06 | 1,226 | 0,435  | 0,091 | 4,770    |
| 1349 | 35 | 0,95 | 0,5  | 2,8 | 2   | 0,06 | 1,188 | 0,457  | 0,094 | 4,875    |
| 1350 | 40 | 0,95 | 0,5  | 2,8 | 2   | 0,06 | 1,150 | 0,478  | 0,096 | 4,953    |
| 1351 | 20 | 0,15 | 0,25 | 1,2 | 0,5 | 0,1  | 0,659 | 4,137  | 0,005 | 783,466  |
| 1352 | 25 | 0,15 | 0,25 | 1,2 | 0,5 | 0,1  | 0,729 | 5,340  | 0,005 | 989,127  |
| 1353 | 30 | 0,15 | 0,25 | 1,2 | 0,5 | 0,1  | 0,793 | 6,675  | 0,006 | 1211,315 |
| 1354 | 35 | 0,15 | 0,25 | 1,2 | 0,5 | 0,1  | 0,849 | 8,095  | 0,006 | 1441,716 |
| 1355 | 40 | 0,15 | 0,25 | 1,2 | 0,5 | 0,1  | 0,896 | 9,559  | 0,006 | 1672,610 |
| 1356 | 20 | 0,35 | 0,25 | 1,2 | 0,5 | 0,1  | 0,694 | 3,160  | 0,005 | 596,084  |
| 1357 | 25 | 0,35 | 0,25 | 1,2 | 0,5 | 0,1  | 0,771 | 4,051  | 0,005 | 746,261  |
| 1358 | 30 | 0,35 | 0,25 | 1,2 | 0,5 | 0,1  | 0,841 | 5,007  | 0,006 | 901,970  |
| 1359 | 35 | 0,35 | 0,25 | 1,2 | 0,5 | 0,1  | 0,899 | 5,978  | 0,006 | 1054,316 |
| 1360 | 40 | 0,35 | 0,25 | 1,2 | 0,5 | 0,1  | 0,945 | 6,922  | 0,006 | 1195,825 |
| 1361 | 20 | 0,55 | 0,25 | 1,2 | 0,5 | 0,1  | 0,727 | 2,182  | 0,005 | 409,908  |
| 1362 | 25 | 0,55 | 0,25 | 1,2 | 0,5 | 0,1  | 0,810 | 2,774  | 0,005 | 508,066  |
| 1363 | 30 | 0,55 | 0,25 | 1,2 | 0,5 | 0,1  | 0,881 | 3,385  | 0,006 | 604,884  |
| 1364 | 35 | 0,55 | 0,25 | 1,2 | 0,5 | 0,1  | 0,936 | 3,973  | 0,006 | 693,402  |
| 1365 | 40 | 0,55 | 0,25 | 1,2 | 0,5 | 0,1  | 0,973 | 4,511  | 0,006 | 769,129  |
| 1366 | 20 | 0,75 | 0,25 | 1,2 | 0,5 | 0,1  | 0,759 | 1,207  | 0,005 | 225,782  |
| 136/ | 25 | 0,75 | 0,25 | 1,2 | 0,5 | 0,1  | 0,844 | 1,520  | 0,005 | 276,647  |
| 1368 | 30 | 0,75 | 0,25 | 1,2 | 0,5 | 0,1  | 0,913 | 1,828  | 0,006 | 324,036  |
| 1369 | 35 | 0,75 | 0,25 | 1,2 | 0,5 | 0,1  | 0,960 | 2,110  | 0,006 | 304,356  |
| 1370 | 40 | 0,75 | 0,25 | 1,2 | 0,5 | 0,1  | 0,988 | 2,355  | 0,006 | 396,265  |
| 13/1 | 20 | 0,95 | 0,25 | 1,2 | 0,5 | 0,1  | 0,789 | 0,240  | 0,005 | 44,633   |
| 13/2 | 25 | 0,95 | 0,25 | 1,2 | 0,5 | 0,1  | 0,8/3 | 0,299  | 0,006 | 53,996   |



| 1373 | 30 | 0,95 | 0,25 | 1,2 | 0,5 | 0,1 | 0,932 | 0,354 | 0,006 | 62,200   |
|------|----|------|------|-----|-----|-----|-------|-------|-------|----------|
| 1374 | 35 | 0,95 | 0,25 | 1,2 | 0,5 | 0,1 | 0,975 | 0,402 | 0,006 | 68,706   |
| 1375 | 40 | 0,95 | 0,25 | 1,2 | 0,5 | 0,1 | 0,994 | 0,442 | 0,006 | 73,525   |
| 1376 | 20 | 0,15 | 0,33 | 1,2 | 0,5 | 0,1 | 0,847 | 4,747 | 0,006 | 853,959  |
| 1377 | 25 | 0,15 | 0,33 | 1,2 | 0,5 | 0,1 | 0,902 | 5,903 | 0,006 | 1040,126 |
| 1378 | 30 | 0,15 | 0,33 | 1,2 | 0,5 | 0,1 | 0,948 | 7,131 | 0,006 | 1232,650 |
| 1379 | 35 | 0,15 | 0,33 | 1,2 | 0,5 | 0,1 | 0,986 | 8,396 | 0,006 | 1425,277 |
| 1380 | 40 | 0,15 | 0,33 | 1,2 | 0,5 | 0,1 | 1,015 | 9,666 | 0,006 | 1612,571 |
| 1381 | 20 | 0,35 | 0,33 | 1,2 | 0,5 | 0,1 | 0,880 | 3,580 | 0,006 | 639,895  |
| 1382 | 25 | 0,35 | 0,33 | 1,2 | 0,5 | 0,1 | 0,937 | 4,399 | 0,006 | 768,456  |
| 1383 | 30 | 0,35 | 0,33 | 1,2 | 0,5 | 0,1 | 0,983 | 5,229 | 0,006 | 893,797  |
| 1384 | 35 | 0,35 | 0,33 | 1,2 | 0,5 | 0,1 | 1,016 | 6,036 | 0,006 | 1010,055 |
| 1385 | 40 | 0,35 | 0,33 | 1,2 | 0,5 | 0,1 | 1,038 | 6,793 | 0,006 | 1113,198 |
| 1386 | 20 | 0,55 | 0,33 | 1,2 | 0,5 | 0,1 | 0,910 | 2,439 | 0,006 | 432,919  |
| 1387 | 25 | 0,55 | 0,33 | 1,2 | 0,5 | 0,1 | 0,966 | 2,957 | 0,006 | 511,948  |
| 1388 | 30 | 0,55 | 0,33 | 1,2 | 0,5 | 0,1 | 1,007 | 3,457 | 0,006 | 584,100  |
| 1389 | 35 | 0,55 | 0,33 | 1,2 | 0,5 | 0,1 | 1,033 | 3,916 | 0,006 | 645,978  |
| 1390 | 40 | 0,55 | 0,33 | 1,2 | 0,5 | 0,1 | 1,044 | 4,324 | 0,006 | 696,431  |
| 1391 | 20 | 0,75 | 0,33 | 1,2 | 0,5 | 0,1 | 0,936 | 1,330 | 0,006 | 234,412  |
| 1392 | 25 | 0,75 | 0,33 | 1,2 | 0,5 | 0,1 | 0,988 | 1,590 | 0,006 | 272,805  |
| 1393 | 30 | 0,75 | 0,33 | 1,2 | 0,5 | 0,1 | 1,022 | 1,829 | 0,006 | 305,576  |
| 1394 | 35 | 0,75 | 0,33 | 1,2 | 0,5 | 0,1 | 1,038 | 2,039 | 0,006 | 331,731  |
| 1395 | 40 | 0,75 | 0,33 | 1,2 | 0,5 | 0,1 | 1,042 | 2,219 | 0,006 | 351,678  |
| 1396 | 20 | 0,95 | 0,33 | 1,2 | 0,5 | 0,1 | 0,958 | 0,260 | 0,006 | 45,532   |
| 1397 | 25 | 0,95 | 0,33 | 1,2 | 0,5 | 0,1 | 1,004 | 0,307 | 0,006 | 52,157   |
| 1398 | 30 | 0,95 | 0,33 | 1,2 | 0,5 | 0,1 | 1,025 | 0,348 | 0,006 | 57,459   |
| 1399 | 35 | 0,95 | 0,33 | 1,2 | 0,5 | 0,1 | 1,038 | 0,383 | 0,006 | 61,445   |
| 1400 | 40 | 0,95 | 0,33 | 1,2 | 0,5 | 0,1 | 1,036 | 0,412 | 0,006 | 64,343   |
| 1401 | 20 | 0,15 | 0,5  | 1,2 | 0,5 | 0,1 | 1,116 | 4,667 | 0,006 | 758,381  |
| 1402 | 25 | 0,15 | 0,5  | 1,2 | 0,5 | 0,1 | 1,136 | 5,551 | 0,006 | 884,712  |
| 1403 | 30 | 0,15 | 0,5  | 1,2 | 0,5 | 0,1 | 1,150 | 6,452 | 0,006 | 1009,437 |
| 1404 | 35 | 0,15 | 0,5  | 1,2 | 0,5 | 0,1 | 1,156 | 7,348 | 0,007 | 1129,301 |
| 1405 | 40 | 0,15 | 0,5  | 1,2 | 0,5 | 0,1 | 1,157 | 8,223 | 0,007 | 1241,683 |
| 1406 | 20 | 0,35 | 0,5  | 1,2 | 0,5 | 0,1 | 1,127 | 3,422 | 0,006 | 549,621  |
| 1407 | 25 | 0,35 | 0,5  | 1,2 | 0,5 | 0,1 | 1,142 | 3,998 | 0,006 | 627,803  |
| 1408 | 30 | 0,35 | 0,5  | 1,2 | 0,5 | 0,1 | 1,147 | 4,551 | 0,007 | 699,025  |
| 1409 | 35 | 0,35 | 0,5  | 1,2 | 0,5 | 0,1 | 1,143 | 5,067 | 0,007 | 761,377  |
| 1410 | 40 | 0,35 | 0,5  | 1,2 | 0,5 | 0,1 | 1,134 | 5,538 | 0,007 | 814,183  |
| 1411 | 20 | 0,55 | 0,5  | 1,2 | 0,5 | 0,1 | 1,133 | 2,268 | 0,006 | 360,027  |
| 1412 | 25 | 0,55 | 0,5  | 1,2 | 0,5 | 0,1 | 1,141 | 2,605 | 0,006 | 403,269  |
| 1413 | 30 | 0,55 | 0,5  | 1,2 | 0,5 | 0,1 | 1,137 | 2,913 | 0,007 | 439,833  |
| 1414 | 35 | 0,55 | 0,5  | 1,2 | 0,5 | 0,1 | 1,127 | 3,188 | 0,007 | 469,506  |
| 1415 | 40 | 0,55 | 0,5  | 1,2 | 0,5 | 0,1 | 1,110 | 3,431 | 0,007 | 492,950  |



| 1416 | 20 | 0,75                | 0,5  | 1,2 | 0,5 | 0,1 | 1,136 | 1,205  | 0,006 | 189,137 |
|------|----|---------------------|------|-----|-----|-----|-------|--------|-------|---------|
| 1417 | 25 | 0,75                | 0,5  | 1,2 | 0,5 | 0,1 | 1,135 | 1,363  | 0,007 | 208,240 |
| 1418 | 30 | 0,75                | 0,5  | 1,2 | 0,5 | 0,1 | 1,126 | 1,503  | 0,007 | 223,417 |
| 1419 | 35 | 0,75                | 0,5  | 1,2 | 0,5 | 0,1 | 1,109 | 1,624  | 0,007 | 235,084 |
| 1420 | 40 | 0,75                | 0,5  | 1,2 | 0,5 | 0,1 | 1,090 | 1,731  | 0,007 | 243,931 |
| 1421 | 20 | 0,95                | 0,5  | 1,2 | 0,5 | 0,1 | 1,136 | 0,230  | 0,006 | 35,742  |
| 1422 | 25 | 0,95                | 0,5  | 1,2 | 0,5 | 0,1 | 1,128 | 0,257  | 0,007 | 38,784  |
| 1423 | 30 | 0,95                | 0,5  | 1,2 | 0,5 | 0,1 | 1,107 | 0,280  | 0,007 | 41,086  |
| 1424 | 35 | 0,95                | 0,5  | 1,2 | 0,5 | 0,1 | 1,092 | 0,300  | 0,007 | 42,795  |
| 1425 | 40 | 0,95                | 0,5  | 1,2 | 0,5 | 0,1 | 1,072 | 0,318  | 0,007 | 44,061  |
| 1426 | 20 | 0,15                | 0,25 | 2   | 0,5 | 0,1 | 0,605 | 6,323  | 0,015 | 432,156 |
| 1427 | 25 | 0,15                | 0,25 | 2   | 0,5 | 0,1 | 0,651 | 7,943  | 0,015 | 530,345 |
| 1428 | 30 | 0,15                | 0,25 | 2   | 0,5 | 0,1 | 0,693 | 9,719  | 0,015 | 634,750 |
| 1429 | 35 | 0,15                | 0,25 | 2   | 0,5 | 0,1 | 0,730 | 11,609 | 0,016 | 742,414 |
| 1430 | 40 | 0,15                | 0,25 | 2   | 0,5 | 0,1 | 0,763 | 13,569 | 0,016 | 850,529 |
| 1431 | 20 | 0,35                | 0,25 | 2   | 0,5 | 0,1 | 0,630 | 4,784  | 0,015 | 325,378 |
| 1432 | 25 | 0,35                | 0,25 | 2   | 0,5 | 0,1 | 0,681 | 5,960  | 0,015 | 395,416 |
| 1433 | 30 | 0,35                | 0,25 | 2   | 0,5 | 0,1 | 0,727 | 7,210  | 0,015 | 467,102 |
| 1434 | 35 | 0,35                | 0,25 | 2   | 0,5 | 0,1 | 0,766 | 8,490  | 0,016 | 537,475 |
| 1435 | 40 | 0,35                | 0,25 | 2   | 0,5 | 0,1 | 0,799 | 9,759  | 0,016 | 604,006 |
| 1436 | 20 | 0,55                | 0,25 | 2   | 0,5 | 0,1 | 0,654 | 3,272  | 0,015 | 221,497 |
| 1437 | 25 | 0,55                | 0,25 | 2   | 0,5 | 0,1 | 0,708 | 4,041  | 0,015 | 266,386 |
| 1438 | 30 | 0 <mark>,5</mark> 5 | 0,25 | 2   | 0,5 | 0,1 | 0,754 | 4,832  | 0,016 | 310,477 |
| 1439 | 35 | 0,55                | 0,25 | 2   | 0,5 | 0,1 | 0,793 | 5,611  | 0,016 | 351,612 |
| 1440 | 40 | 0,55                | 0,25 | 2   | 0,5 | 0,1 | 0,822 | 6,351  | 0,016 | 388,278 |
| 1441 | 20 | 0,75                | 0,25 | 2   | 0,5 | 0,1 | 0,677 | 1,794  | 0,015 | 120,838 |
| 1442 | 25 | 0,75                | 0,25 | 2   | 0,5 | 0,1 | 0,731 | 2,195  | 0,015 | 143,765 |
| 1443 | 30 | 0,75                | 0,25 | 2   | 0,5 | 0,1 | 0,777 | 2,594  | 0,016 | 165,348 |
| 1444 | 35 | 0,75                | 0,25 | 2   | 0,5 | 0,1 | 0,812 | 2,973  | 0,016 | 184,505 |
| 1445 | 40 | 0,75                | 0,25 | 2   | 0,5 | 0,1 | 0,836 | 3,320  | 0,017 | 200,683 |
| 1446 | 20 | 0,95                | 0,25 | 2   | 0,5 | 0,1 | 0,697 | 0,353  | 0,015 | 23,676  |
| 1447 | 25 | 0,95                | 0,25 | 2   | 0,5 | 0,1 | 0,751 | 0,428  | 0,015 | 27,862  |
| 1448 | 30 | 0,95                | 0,25 | 2   | 0,5 | 0,1 | 0,790 | 0,500  | 0,016 | 31,639  |
| 1449 | 35 | 0,95                | 0,25 | 2   | 0,5 | 0,1 | 0,824 | 0,567  | 0,016 | 34,839  |
| 1450 | 40 | 0,95                | 0,25 | 2   | 0,5 | 0,1 | 0,844 | 0,626  | 0,017 | 37,413  |
| 1451 | 20 | 0,15                | 0,33 | 2   | 0,5 | 0,1 | 0,728 | 6,801  | 0,015 | 440,373 |
| 1452 | 25 | 0,15                | 0,33 | 2   | 0,5 | 0,1 | 0,764 | 8,331  | 0,016 | 527,434 |
| 1453 | 30 | 0,15                | 0,33 | 2   | 0,5 | 0,1 | 0,795 | 9,964  | 0,016 | 617,511 |
| 1454 | 35 | 0,15                | 0,33 | 2   | 0,5 | 0,1 | 0,822 | 11,666 | 0,016 | 708,285 |
| 1455 | 40 | 0,15                | 0,33 | 2   | 0,5 | 0,1 | 0,844 | 13,400 | 0,017 | 797,658 |
| 1456 | 20 | 0,35                | 0,33 | 2   | 0,5 | 0,1 | 0,751 | 5,090  | 0,016 | 327,305 |
| 1457 | 25 | 0,35                | 0,33 | 2   | 0,5 | 0,1 | 0,788 | 6,165  | 0,016 | 386,923 |
| 1458 | 30 | 0,35                | 0,33 | 2   | 0,5 | 0,1 | 0,820 | 7,272  | 0,016 | 445,752 |



| 1450 | 25 | 0.25 | 0.22 | 2   | 0.5 | 0.1 | 0.946 | 0 276   | 0.017 | 501 705 |
|------|----|------|------|-----|-----|-----|-------|---------|-------|---------|
| 1400 | 40 | 0.25 | 0,00 | 2   | 0,5 | 0,1 | 0,040 | 0,370   | 0,017 | 552 102 |
| 1400 | 20 | 0,55 | 0,33 | 2   | 0,5 | 0,1 | 0,800 | 2 4 4 4 | 0,017 | 210.064 |
| 1401 | 20 | 0,55 | 0,33 | 2   | 0,5 | 0,1 | 0,771 | 4 1 25  | 0,010 | 219,904 |
| 1402 | 20 | 0,55 | 0,33 | 2   | 0,5 | 0,1 | 0,009 | 4,125   | 0,016 | 200,004 |
| 1403 | 25 | 0,55 | 0,33 | 2   | 0,5 | 0,1 | 0,009 | 5 4 40  | 0,010 | 291,171 |
| 1404 | 30 | 0,55 | 0,33 | 2   | 0,5 | 0,1 | 0,002 | 5,449   | 0,017 | 322,243 |
| 1405 | 40 | 0,55 | 0,33 | 2   | 0,5 | 0,1 | 0,877 | 1,000   | 0,017 | 349,170 |
| 1400 | 20 | 0,75 | 0,33 | 2   | 0,5 | 0,1 | 0,789 | 1,868   | 0,016 | 118,501 |
| 1467 | 25 | 0,75 | 0,33 | 2   | 0,5 | 0,1 | 0,825 | 2,213   | 0,016 | 136,523 |
| 1468 | 30 | 0,75 | 0,33 | 2   | 0,5 | 0,1 | 0,853 | 2,544   | 0,017 | 152,/15 |
| 1469 | 35 | 0,75 | 0,33 | 2   | 0,5 | 0,1 | 0,8/1 | 2,851   | 0,01/ | 166,585 |
| 1470 | 40 | 0,75 | 0,33 | 2   | 0,5 | 0,1 | 0,882 | 3,128   | 0,018 | 178,007 |
| 1471 | 20 | 0,95 | 0,33 | 2   | 0,5 | 0,1 | 0,805 | 0,364   | 0,016 | 22,938  |
| 1472 | 25 | 0,95 | 0,33 | 2   | 0,5 | 0,1 | 0,838 | 0,427   | 0,016 | 26,110  |
| 1473 | 30 | 0,95 | 0,33 | 2   | 0,5 | 0,1 | 0,858 | 0,485   | 0,017 | 28,841  |
| 1474 | 35 | 0,95 | 0,33 | 2   | 0,5 | 0,1 | 0,876 | 0,538   | 0,017 | 31,081  |
| 1475 | 40 | 0,95 | 0,33 | 2   | 0,5 | 0,1 | 0,882 | 0,584   | 0,018 | 32,846  |
| 1476 | 20 | 0,15 | 0,5  | 2   | 0,5 | 0,1 | 0,894 | 6,231   | 0,017 | 362,335 |
| 1477 | 25 | 0,15 | 0,5  | 2   | 0,5 | 0,1 | 0,911 | 7,416   | 0,018 | 422,052 |
| 1478 | 30 | 0,15 | 0,5  | 2   | 0,5 | 0,1 | 0,925 | 8,647   | 0,018 | 482,044 |
| 1479 | 35 | 0,15 | 0,5  | 2   | 0,5 | 0,1 | 0,935 | 9,901   | 0,018 | 540,975 |
| 1480 | 40 | 0,15 | 0,5  | 2   | 0,5 | 0,1 | 0,942 | 11,157  | 0,019 | 597,700 |
| 1481 | 20 | 0,35 | 0,5  | 2   | 0,5 | 0,1 | 0,905 | 4,579   | 0,017 | 263,407 |
| 1482 | 25 | 0,35 | 0,5  | 2   | 0,5 | 0,1 | 0,920 | 5,371   | 0,018 | 301,683 |
| 1483 | 30 | 0,35 | 0,5  | 2   | 0,5 | 0,1 | 0,931 | 6,161   | 0,018 | 337,971 |
| 1484 | 35 | 0,35 | 0,5  | 2   | 0,5 | 0,1 | 0,938 | 6,928   | 0,019 | 371,324 |
| 1485 | 40 | 0,35 | 0,5  | 2   | 0,5 | 0,1 | 0,941 | 7,658   | 0,019 | 401,150 |
| 1486 | 20 | 0,55 | 0,5  | 2   | 0,5 | 0,1 | 0,913 | 3,045   | 0,018 | 173,424 |
| 1487 | 25 | 0,55 | 0,5  | 2   | 0,5 | 0,1 | 0,927 | 3,526   | 0,018 | 195,610 |
| 1488 | 30 | 0,55 | 0,5  | 2   | 0,5 | 0,1 | 0,934 | 3,987   | 0,018 | 215,575 |
| 1489 | 35 | 0,55 | 0,5  | 2   | 0,5 | 0,1 | 0,937 | 4,419   | 0,019 | 232,933 |
| 1490 | 40 | 0,55 | 0,5  | 2   | 0,5 | 0,1 | 0,936 | 4,818   | 0,019 | 247,595 |
| 1491 | 20 | 0,75 | 0,5  | 2   | 0,5 | 0,1 | 0,920 | 1,626   | 0,018 | 91,696  |
| 1492 | 25 | 0,75 | 0,5  | 2   | 0,5 | 0,1 | 0,929 | 1,860   | 0,018 | 102,037 |
| 1493 | 30 | 0,75 | 0,5  | 2   | 0,5 | 0,1 | 0,934 | 2,079   | 0,019 | 110,932 |
| 1494 | 35 | 0,75 | 0,5  | 2   | 0,5 | 0,1 | 0,933 | 2,278   | 0,019 | 118,323 |
| 1495 | 40 | 0,75 | 0,5  | 2   | 0,5 | 0,1 | 0,929 | 2,458   | 0,020 | 124,292 |
| 1496 | 20 | 0,95 | 0,5  | 2   | 0,5 | 0,1 | 0,925 | 0,312   | 0,018 | 17,453  |
| 1497 | 25 | 0,95 | 0,5  | 2   | 0,5 | 0,1 | 0,931 | 0,354   | 0,018 | 19,194  |
| 1498 | 30 | 0,95 | 0,5  | 2   | 0,5 | 0,1 | 0,927 | 0,391   | 0,019 | 20,635  |
| 1499 | 35 | 0,95 | 0,5  | 2   | 0,5 | 0,1 | 0,927 | 0,425   | 0,020 | 21,789  |
| 1500 | 40 | 0,95 | 0,5  | 2   | 0,5 | 0,1 | 0,920 | 0,455   | 0,020 | 22,686  |
| 1501 | 20 | 0,15 | 0,25 | 2,8 | 0,5 | 0,1 | 0,540 | 7,907   | 0,029 | 275,710 |



| 1502 | 25 | 0,15 | 0,25 | 2,8 | 0,5 | 0,1 | 0,574 | 9,812  | 0,029 | 333,965 |
|------|----|------|------|-----|-----|-----|-------|--------|-------|---------|
| 1503 | 30 | 0,15 | 0,25 | 2,8 | 0,5 | 0,1 | 0,606 | 11,892 | 0,030 | 395,510 |
| 1504 | 35 | 0,15 | 0,25 | 2,8 | 0,5 | 0,1 | 0,634 | 14,106 | 0,031 | 458,827 |
| 1505 | 40 | 0,15 | 0,25 | 2,8 | 0,5 | 0,1 | 0,660 | 16,411 | 0,031 | 522,465 |
| 1506 | 20 | 0,35 | 0,25 | 2,8 | 0,5 | 0,1 | 0,560 | 5,954  | 0,029 | 206,569 |
| 1507 | 25 | 0,35 | 0,25 | 2,8 | 0,5 | 0,1 | 0,598 | 7,325  | 0,030 | 247,733 |
| 1508 | 30 | 0,35 | 0,25 | 2,8 | 0,5 | 0,1 | 0,632 | 8,780  | 0,030 | 289,695 |
| 1509 | 35 | 0,35 | 0,25 | 2,8 | 0,5 | 0,1 | 0,662 | 10,276 | 0,031 | 330,977 |
| 1510 | 40 | 0,35 | 0,25 | 2,8 | 0,5 | 0,1 | 0,689 | 11,771 | 0,032 | 370,295 |
| 1511 | 20 | 0,55 | 0,25 | 2,8 | 0,5 | 0,1 | 0,579 | 4,055  | 0,029 | 139,989 |
| 1512 | 25 | 0,55 | 0,25 | 2,8 | 0,5 | 0,1 | 0,619 | 4,945  | 0,030 | 166,192 |
| 1513 | 30 | 0,55 | 0,25 | 2,8 | 0,5 | 0,1 | 0,654 | 5,863  | 0,031 | 191,937 |
| 1514 | 35 | 0,55 | 0,25 | 2,8 | 0,5 | 0,1 | 0,684 | 6,775  | 0,031 | 216,165 |
| 1515 | 40 | 0,55 | 0,25 | 2,8 | 0,5 | 0,1 | 0,708 | 7,654  | 0,032 | 238,087 |
| 1516 | 20 | 0,75 | 0,25 | 2,8 | 0,5 | 0,1 | 0,597 | 2,214  | 0,029 | 76,064  |
| 1517 | 25 | 0,75 | 0,25 | 2,8 | 0,5 | 0,1 | 0,637 | 2,676  | 0,030 | 89,393  |
| 1518 | 30 | 0,75 | 0,25 | 2,8 | 0,5 | 0,1 | 0,672 | 3,140  | 0,031 | 102,016 |
| 1519 | 35 | 0,75 | 0,25 | 2,8 | 0,5 | 0,1 | 0,699 | 3,586  | 0,032 | 113,399 |
| 1520 | 40 | 0,75 | 0,25 | 2,8 | 0,5 | 0,1 | 0,720 | 4,002  | 0,032 | 123,218 |
| 1521 | 20 | 0,95 | 0,25 | 2,8 | 0,5 | 0,1 | 0,613 | 0,434  | 0,029 | 14,851  |
| 1522 | 25 | 0,95 | 0,25 | 2,8 | 0,5 | 0,1 | 0,652 | 0,520  | 0,030 | 17,281  |
| 1523 | 30 | 0,95 | 0,25 | 2,8 | 0,5 | 0,1 | 0,682 | 0,605  | 0,031 | 19,502  |
| 1524 | 35 | 0,95 | 0,25 | 2,8 | 0,5 | 0,1 | 0,710 | 0,683  | 0,032 | 21,425  |
| 1525 | 40 | 0,95 | 0,25 | 2,8 | 0,5 | 0,1 | 0,727 | 0,755  | 0,033 | 23,011  |
| 1526 | 20 | 0,15 | 0,33 | 2,8 | 0,5 | 0,1 | 0,627 | 8,206  | 0,030 | 270,593 |
| 1527 | 25 | 0,15 | 0,33 | 2,8 | 0,5 | 0,1 | 0,654 | 9,992  | 0,031 | 321,824 |
| 1528 | 30 | 0,15 | 0,33 | 2,8 | 0,5 | 0,1 | 0,678 | 11,904 | 0,032 | 374,867 |
| 1529 | 35 | 0,15 | 0,33 | 2,8 | 0,5 | 0,1 | 0,700 | 13,907 | 0,032 | 428,501 |
| 1530 | 40 | 0,15 | 0,33 | 2,8 | 0,5 | 0,1 | 0,718 | 15,965 | 0,033 | 481,605 |
| 1531 | 20 | 0,35 | 0,33 | 2,8 | 0,5 | 0,1 | 0,645 | 6,124  | 0,031 | 200,604 |
| 1532 | 25 | 0,35 | 0,33 | 2,8 | 0,5 | 0,1 | 0,674 | 7,378  | 0,031 | 235,678 |
| 1533 | 30 | 0,35 | 0,33 | 2,8 | 0,5 | 0,1 | 0,699 | 8,678  | 0,032 | 270,496 |
| 1534 | 35 | 0,35 | 0,33 | 2,8 | 0,5 | 0,1 | 0,721 | 9,989  | 0,033 | 303,966 |
| 1535 | 40 | 0,35 | 0,33 | 2,8 | 0,5 | 0,1 | 0,739 | 11,279 | 0,034 | 335,206 |
| 1536 | 20 | 0,55 | 0,33 | 2,8 | 0,5 | 0,1 | 0,661 | 4,135  | 0,031 | 134,566 |
| 1537 | 25 | 0,55 | 0,33 | 2,8 | 0,5 | 0,1 | 0,691 | 4,930  | 0,032 | 156,225 |
| 1538 | 30 | 0,55 | 0,33 | 2,8 | 0,5 | 0,1 | 0,715 | 5,730  | 0,032 | 105,361 |
| 1539 | 35 | 0,55 | 0,33 | 2,8 | 0,5 | 0,1 | 0,736 | 0,508  | 0,033 | 195,780 |
| 1540 | 40 | 0,55 | 0,33 | 2,8 | 0,5 | 0,1 | 0,750 | 7,247  | 0,034 | 212,529 |
| 1541 | 20 | 0,75 | 0,33 | 2,8 | 0,5 | 0,1 | 0,0/6 | 2,239  | 0,031 | 72,408  |
| 1542 | 20 | 0,75 | 0,33 | 2,8 | 0,5 | 0,1 | 0,704 | 2,043  | 0,032 | 03,117  |
| 1543 | 30 | 0,75 | 0,33 | 2,8 | 0,5 | 0,1 | 0,745 | 3,038  | 0,033 | 92,929  |
| 1044 | პნ | 0,75 | 0,33 | 2,8 | 0,5 | υ,1 | 0,745 | 3,411  | 0,034 | 101,543 |



| 1545 | 40 | 0,75               | 0,33 | 2,8 | 0,5  | 0,1 | 0,756 | 3,755  | 0,035 | 108,816 |
|------|----|--------------------|------|-----|------|-----|-------|--------|-------|---------|
| 1546 | 20 | 0,95               | 0,33 | 2,8 | 0,5  | 0,1 | 0,688 | 0,436  | 0,031 | 14,008  |
| 1547 | 25 | 0,95               | 0,33 | 2,8 | 0,5  | 0,1 | 0,715 | 0,510  | 0,032 | 15,910  |
| 1548 | 30 | 0,95               | 0,33 | 2,8 | 0,5  | 0,1 | 0,732 | 0,580  | 0,033 | 17,590  |
| 1549 | 35 | 0,95               | 0,33 | 2,8 | 0,5  | 0,1 | 0,750 | 0,645  | 0,034 | 19,008  |
| 1550 | 40 | 0,95               | 0,33 | 2,8 | 0,5  | 0,1 | 0,758 | 0,703  | 0,035 | 20,154  |
| 1551 | 20 | 0,15               | 0,5  | 2,8 | 0,5  | 0,1 | 0,740 | 7,227  | 0,034 | 213,321 |
| 1552 | 25 | 0,15               | 0,5  | 2,8 | 0,5  | 0,1 | 0,756 | 8,615  | 0,035 | 248,572 |
| 1553 | 30 | 0,15               | 0,5  | 2,8 | 0,5  | 0,1 | 0,769 | 10,071 | 0,035 | 284,277 |
| 1554 | 35 | 0,15               | 0,5  | 2,8 | 0,5  | 0,1 | 0,780 | 11,570 | 0,036 | 319,695 |
| 1555 | 40 | 0,15               | 0,5  | 2,8 | 0,5  | 0,1 | 0,789 | 13,087 | 0,037 | 354,171 |
| 1556 | 20 | 0,35               | 0,5  | 2,8 | 0,5  | 0,1 | 0,751 | 5,322  | 0,034 | 155,606 |
| 1557 | 25 | 0,35               | 0,5  | 2,8 | 0,5  | 0,1 | 0,766 | 6,263  | 0,035 | 178,631 |
| 1558 | 30 | 0,35               | 0,5  | 2,8 | 0,5  | 0,1 | 0,779 | 7,215  | 0,036 | 200,828 |
| 1559 | 35 | 0,35               | 0,5  | 2,8 | 0,5  | 0,1 | 0,789 | 8,155  | 0,037 | 221,628 |
| 1560 | 40 | 0,35               | 0,5  | 2,8 | 0,5  | 0,1 | 0,795 | 9,066  | 0,038 | 240,616 |
| 1561 | 20 | 0,55               | 0,5  | 2,8 | 0,5  | 0,1 | 0,760 | 3,549  | 0,035 | 102,840 |
| 1562 | 25 | 0,55               | 0,5  | 2,8 | 0,5  | 0,1 | 0,775 | 4,128  | 0,035 | 116,472 |
| 1563 | 30 | 0,55               | 0,5  | 2,8 | 0,5  | 0,1 | 0,785 | 4,694  | 0,036 | 129,040 |
| 1564 | 35 | 0,55               | 0,5  | 2,8 | 0,5  | 0,1 | 0,793 | 5,236  | 0,037 | 140,251 |
| 1565 | 40 | 0,55               | 0,5  | 2,8 | 0,5  | 0,1 | 0,797 | 5,744  | 0,038 | 149,956 |
| 1566 | 20 | 0,75               | 0,5  | 2,8 | 0,5  | 0,1 | 0,768 | 1,900  | 0,035 | 54,595  |
| 1567 | 25 | 0,75               | 0,5  | 2,8 | 0,5  | 0,1 | 0,780 | 2,186  | 0,036 | 61,089  |
| 1568 | 30 | 0 <mark>,75</mark> | 0,5  | 2,8 | 0,5  | 0,1 | 0,790 | 2,459  | 0,037 | 66,844  |
| 1569 | 35 | 0,75               | 0,5  | 2,8 | 0,5  | 0,1 | 0,794 | 2,714  | 0,038 | 71,764  |
| 1570 | 40 | 0,75               | 0,5  | 2,8 | 0,5  | 0,1 | 0,795 | 2,946  | 0,039 | 75,831  |
| 1571 | 20 | 0,95               | 0,5  | 2,8 | 0,5  | 0,1 | 0,774 | 0,366  | 0,035 | 10,434  |
| 1572 | 25 | 0,95               | 0,5  | 2,8 | 0,5  | 0,1 | 0,784 | 0,417  | 0,036 | 11,551  |
| 1573 | 30 | 0,95               | 0,5  | 2,8 | 0,5  | 0,1 | 0,787 | 0,465  | 0,037 | 12,506  |
| 1574 | 35 | 0,95               | 0,5  | 2,8 | 0,5  | 0,1 | 0,792 | 0,508  | 0,038 | 13,293  |
| 1575 | 40 | 0,95               | 0,5  | 2,8 | 0,5  | 0,1 | 0,791 | 0,547  | 0,039 | 13,916  |
| 1576 | 20 | 0,15               | 0,25 | 1,2 | 1,25 | 0,1 | 0,735 | 4,611  | 0,013 | 347,309 |
| 1577 | 25 | 0,15               | 0,25 | 1,2 | 1,25 | 0,1 | 0,844 | 6,181  | 0,014 | 455,994 |
| 1578 | 30 | 0,15               | 0,25 | 1,2 | 1,25 | 0,1 | 0,943 | 7,935  | 0,014 | 575,314 |
| 1579 | 35 | 0,15               | 0,25 | 1,2 | 1,25 | 0,1 | 1,025 | 9,771  | 0,014 | 698,225 |
| 1580 | 40 | 0,15               | 0,25 | 1,2 | 1,25 | 0,1 | 1,088 | 11,607 | 0,014 | 819,029 |
| 1581 | 20 | 0,35               | 0,25 | 1,2 | 1,25 | 0,1 | 0,780 | 3,554  | 0,013 | 267,016 |
| 1582 | 25 | 0,35               | 0,25 | 1,2 | 1,25 | 0,1 | 0,903 | 4,746  | 0,014 | 348,762 |
| 1583 | 30 | 0,35               | 0,25 | 1,2 | 1,25 | 0,1 | 1,012 | 6,024  | 0,014 | 434,293 |
| 1584 | 35 | 0,35               | 0,25 | 1,2 | 1,25 | 0,1 | 1,094 | 7,273  | 0,014 | 515,484 |
| 1585 | 40 | 0,35               | 0,25 | 1,2 | 1,25 | 0,1 | 1,147 | 8,402  | 0,014 | 586,072 |
| 1586 | 20 | 0,55               | 0,25 | 1,2 | 1,25 | 0,1 | 0,826 | 2,478  | 0,013 | 185,701 |
| 1587 | 25 | 0,55               | 0,25 | 1,2 | 1,25 | 0,1 | 0,960 | 3,289  | 0,014 | 240,628 |



| 1588 | 30 | 0.55                | 0.25 | 1.2 | 1.25 | 0.1 | 1.069 | 4.107  | 0.014 | 294.080 |
|------|----|---------------------|------|-----|------|-----|-------|--------|-------|---------|
| 1589 | 35 | 0.55                | 0.25 | 1.2 | 1.25 | 0.1 | 1.138 | 4.831  | 0.014 | 338.909 |
| 1590 | 40 | 0,55                | 0,25 | 1,2 | 1,25 | 0,1 | 1,166 | 5,405  | 0,015 | 371,556 |
| 1591 | 20 | 0.75                | 0.25 | 1.2 | 1.25 | 0.1 | 0.871 | 1.386  | 0.013 | 103,513 |
| 1592 | 25 | 0.75                | 0.25 | 1.2 | 1.25 | 0.1 | 1.011 | 1.822  | 0.014 | 132,575 |
| 1593 | 30 | 0,75                | 0,25 | 1,2 | 1,25 | 0,1 | 1,112 | 2,226  | 0,014 | 158,066 |
| 1594 | 35 | 0,75                | 0,25 | 1,2 | 1,25 | 0,1 | 1,157 | 2,542  | 0,014 | 176,193 |
| 1595 | 40 | 0,75                | 0,25 | 1,2 | 1,25 | 0,1 | 1,161 | 2,766  | 0,015 | 187,041 |
| 1596 | 20 | 0,95                | 0,25 | 1,2 | 1,25 | 0,1 | 0,916 | 0,278  | 0,013 | 20,714  |
| 1597 | 25 | 0,95                | 0,25 | 1,2 | 1,25 | 0,1 | 1,056 | 0,361  | 0,014 | 26,103  |
| 1598 | 30 | 0,95                | 0,25 | 1,2 | 1,25 | 0,1 | 1,131 | 0,430  | 0,014 | 30,221  |
| 1599 | 35 | 0,95                | 0,25 | 1,2 | 1,25 | 0,1 | 1,158 | 0,477  | 0,015 | 32,651  |
| 1600 | 40 | 0,95                | 0,25 | 1,2 | 1,25 | 0,1 | 1,145 | 0,509  | 0,015 | 33,893  |
| 1601 | 20 | 0,15                | 0,33 | 1,2 | 1,25 | 0,1 | 1,025 | 5,749  | 0,014 | 412,814 |
| 1602 | 25 | 0,15                | 0,33 | 1,2 | 1,25 | 0,1 | 1,113 | 7,287  | 0,014 | 514,381 |
| 1603 | 30 | 0,15                | 0,33 | 1,2 | 1,25 | 0,1 | 1,181 | 8,878  | 0,014 | 617,580 |
| 1604 | 35 | 0,15                | 0,33 | 1,2 | 1,25 | 0,1 | 1,227 | 10,455 | 0,015 | 717,828 |
| 1605 | 40 | 0,15                | 0,33 | 1,2 | 1,25 | 0,1 | 1,256 | 11,965 | 0,015 | 811,525 |
| 1606 | 20 | 0,35                | 0,33 | 1,2 | 1,25 | 0,1 | 1,077 | 4,380  | 0,014 | 312,931 |
| 1607 | 25 | 0,35                | 0,33 | 1,2 | 1,25 | 0,1 | 1,166 | 5,470  | 0,014 | 383,331 |
| 1608 | 30 | 0,35                | 0,33 | 1,2 | 1,25 | 0,1 | 1,225 | 6,513  | 0,015 | 448,429 |
| 1609 | 35 | 0,35                | 0,33 | 1,2 | 1,25 | 0,1 | 1,253 | 7,440  | 0,015 | 503,573 |
| 1610 | 40 | 0 <mark>,3</mark> 5 | 0,33 | 1,2 | 1,25 | 0,1 | 1,255 | 8,214  | 0,015 | 546,431 |
| 1611 | 20 | 0,55                | 0,33 | 1,2 | 1,25 | 0,1 | 1,122 | 3,009  | 0,014 | 213,736 |
| 1612 | 25 | 0,55                | 0,33 | 1,2 | 1,25 | 0,1 | 1,205 | 3,685  | 0,014 | 256,023 |
| 1613 | 30 | 0,55                | 0,33 | 1,2 | 1,25 | 0,1 | 1,243 | 4,267  | 0,015 | 290,219 |
| 1614 | 35 | 0,55                | 0,33 | 1,2 | 1,25 | 0,1 | 1,246 | 4,723  | 0,015 | 314,390 |
| 1615 | 40 | 0,55                | 0,33 | 1,2 | 1,25 | 0,1 | 1,224 | 5,066  | 0,015 | 329,763 |
| 1616 | 20 | 0,75                | 0,33 | 1,2 | 1,25 | 0,1 | 1,162 | 1,650  | 0,014 | 116,455 |
| 1617 | 25 | 0,75                | 0,33 | 1,2 | 1,25 | 0,1 | 1,226 | 1,974  | 0,015 | 135,787 |
| 1618 | 30 | 0,75                | 0,33 | 1,2 | 1,25 | 0,1 | 1,242 | 2,222  | 0,015 | 149,043 |
| 1619 | 35 | 0,75                | 0,33 | 1,2 | 1,25 | 0,1 | 1,221 | 2,398  | 0,015 | 156,868 |
| 1620 | 40 | 0,75                | 0,33 | 1,2 | 1,25 | 0,1 | 1,189 | 2,530  | 0,016 | 161,281 |
| 1621 | 20 | 0,95                | 0,33 | 1,2 | 1,25 | 0,1 | 1,192 | 0,324  | 0,014 | 22,665  |
| 1622 | 25 | 0,95                | 0,33 | 1,2 | 1,25 | 0,1 | 1,235 | 0,377  | 0,015 | 25,669  |
| 1623 | 30 | 0,95                | 0,33 | 1,2 | 1,25 | 0,1 | 1,221 | 0,414  | 0,015 | 27,404  |
| 1624 | 35 | 0,95                | 0,33 | 1,2 | 1,25 | 0,1 | 1,194 | 0,440  | 0,016 | 28,306  |
| 1625 | 40 | 0,95                | 0,33 | 1,2 | 1,25 | 0,1 | 1,159 | 0,461  | 0,016 | 28,815  |
| 1626 | 20 | 0,15                | 0,5  | 1,2 | 1,25 | 0,1 | 1,482 | 6,198  | 0,015 | 406,929 |
| 1627 | 25 | 0,15                | 0,5  | 1,2 | 1,25 | 0,1 | 1,495 | 7,304  | 0,015 | 472,537 |
| 1628 | 30 | 0,15                | 0,5  | 1,2 | 1,25 | 0,1 | 1,491 | 8,367  | 0,016 | 533,822 |
| 1629 | 35 | 0,15                | 0,5  | 1,2 | 1,25 | 0,1 | 1,472 | 9,355  | 0,016 | 588,768 |
| 1630 | 40 | 0,15                | 0,5  | 1,2 | 1,25 | 0,1 | 1,441 | 10,246 | 0,016 | 636,000 |


|      |    | 0.05               |      |     | 4.05 |     |       |        |       |         |
|------|----|--------------------|------|-----|------|-----|-------|--------|-------|---------|
| 1631 | 20 | 0,35               | 0,5  | 1,2 | 1,25 | 0,1 | 1,481 | 4,494  | 0,015 | 291,338 |
| 1632 | 25 | 0,35               | 0,5  | 1,2 | 1,25 | 0,1 | 1,468 | 5,140  | 0,016 | 326,879 |
| 1633 | 30 | 0,35               | 0,5  | 1,2 | 1,25 | 0,1 | 1,433 | 5,686  | 0,016 | 354,766 |
| 1634 | 35 | 0,35               | 0,5  | 1,2 | 1,25 | 0,1 | 1,383 | 6,132  | 0,016 | 375,017 |
| 1635 | 40 | 0,35               | 0,5  | 1,2 | 1,25 | 0,1 | 1,330 | 6,494  | 0,017 | 388,983 |
| 1636 | 20 | 0,55               | 0,5  | 1,2 | 1,25 | 0,1 | 1,462 | 2,925  | 0,016 | 187,046 |
| 1637 | 25 | 0,55               | 0,5  | 1,2 | 1,25 | 0,1 | 1,424 | 3,250  | 0,016 | 203,066 |
| 1638 | 30 | 0,55               | 0,5  | 1,2 | 1,25 | 0,1 | 1,367 | 3,501  | 0,016 | 213,603 |
| 1639 | 35 | 0,55               | 0,5  | 1,2 | 1,25 | 0,1 | 1,307 | 3,699  | 0,017 | 220,220 |
| 1640 | 40 | 0,55               | 0,5  | 1,2 | 1,25 | 0,1 | 1,251 | 3,866  | 0,017 | 224,557 |
| 1641 | 20 | 0,75               | 0,5  | 1,2 | 1,25 | 0,1 | 1,434 | 1,520  | 0,016 | 95,839  |
| 1642 | 25 | 0,75               | 0,5  | 1,2 | 1,25 | 0,1 | 1,374 | 1,651  | 0,016 | 101,356 |
| 1643 | 30 | 0,75               | 0,5  | 1,2 | 1,25 | 0,1 | 1,311 | 1,750  | 0,017 | 104,580 |
| 1644 | 35 | 0,75               | 0,5  | 1,2 | 1,25 | 0,1 | 1,250 | 1,832  | 0,017 | 106,569 |
| 1645 | 40 | 0,75               | 0,5  | 1,2 | 1,25 | 0,1 | 1,200 | 1,906  | 0,018 | 107,990 |
| 1646 | 20 | 0,95               | 0,5  | 1,2 | 1,25 | 0,1 | 1,400 | 0,284  | 0,016 | 17,641  |
| 1647 | 25 | 0,95               | 0,5  | 1,2 | 1,25 | 0,1 | 1,331 | 0,303  | 0,017 | 18,321  |
| 1648 | 30 | 0,95               | 0,5  | 1,2 | 1,25 | 0,1 | 1,258 | 0,319  | 0,017 | 18,706  |
| 1649 | 35 | 0,95               | 0,5  | 1,2 | 1,25 | 0,1 | 1,209 | 0,332  | 0,018 | 18,962  |
| 1650 | 40 | 0,95               | 0,5  | 1,2 | 1,25 | 0,1 | 1,164 | 0,345  | 0,018 | 19,166  |
| 1651 | 20 | 0,15               | 0,25 | 2   | 1,25 | 0,1 | 0,746 | 7,802  | 0,037 | 212,685 |
| 1652 | 25 | 0,15               | 0,25 | 2   | 1,25 | 0,1 | 0,830 | 10,129 | 0,037 | 270,349 |
| 1653 | 30 | 0,15               | 0,25 | 2   | 1,25 | 0,1 | 0,905 | 12,690 | 0,038 | 332,414 |
| 1654 | 35 | 0 <mark>,15</mark> | 0,25 | 2   | 1,25 | 0,1 | 0,968 | 15,380 | 0,039 | 396,131 |
| 1655 | 40 | 0,15               | 0,25 | 2   | 1,25 | 0,1 | 1,019 | 18,104 | 0,039 | 459,083 |
| 1656 | 20 | 0,35               | 0,25 | 2   | 1,25 | 0,1 | 0,786 | 5,963  | 0,037 | 161,950 |
| 1657 | 25 | 0,35               | 0,25 | 2   | 1,25 | 0,1 | 0,878 | 7,686  | 0,038 | 204,051 |
| 1658 | 30 | 0,35               | 0,25 | 2   | 1,25 | 0,1 | 0,958 | 9,508  | 0,038 | 247,217 |
| 1659 | 35 | 0,35               | 0,25 | 2   | 1,25 | 0,1 | 1,021 | 11,313 | 0,039 | 288,459 |
| 1660 | 40 | 0,35               | 0,25 | 2   | 1,25 | 0,1 | 1,065 | 13,007 | 0,040 | 325,430 |
| 1661 | 20 | 0,55               | 0,25 | 2   | 1,25 | 0,1 | 0,824 | 4,121  | 0,037 | 111,465 |
| 1662 | 25 | 0,55               | 0,25 | 2   | 1,25 | 0,1 | 0,922 | 5,263  | 0,038 | 138,909 |
| 1663 | 30 | 0,55               | 0,25 | 2   | 1,25 | 0,1 | 1,001 | 6,412  | 0,039 | 165,333 |
| 1664 | 35 | 0,55               | 0,25 | 2   | 1,25 | 0,1 | 1,056 | 7,473  | 0,040 | 188,403 |
| 1665 | 40 | 0,55               | 0,25 | 2   | 1,25 | 0,1 | 1,086 | 8,391  | 0,041 | 206,876 |
| 1666 | 20 | 0,75               | 0,25 | 2   | 1,25 | 0,1 | 0,861 | 2,281  | 0,037 | 61,445  |
| 1667 | 25 | 0,75               | 0,25 | 2   | 1,25 | 0,1 | 0,960 | 2,882  | 0,038 | 75,569  |
| 1668 | 30 | 0,75               | 0,25 | 2   | 1,25 | 0,1 | 1,034 | 3,450  | 0,039 | 88,168  |
| 1669 | 35 | 0,75               | 0,25 | 2   | 1,25 | 0,1 | 1,075 | 3,938  | 0,040 | 98,113  |
| 1670 | 40 | 0,75               | 0,25 | 2   | 1,25 | 0,1 | 1,091 | 4,334  | 0,041 | 105,256 |
| 1671 | 20 | 0,95               | 0,25 | 2   | 1,25 | 0,1 | 0,895 | 0,453  | 0,037 | 12,153  |
| 1672 | 25 | 0.95               | 0,25 | 2   | 1,25 | 0,1 | 0,992 | 0,565  | 0,038 | 14,721  |
| 1673 | 30 | 0,95               | 0,25 | 2   | 1,25 | 0,1 | 1,050 | 0,665  | 0,040 | 16,821  |



| 1674 | 35 | 0,95                | 0,25 | 2 | 1,25 | 0,1 | 1,083 | 0,744  | 0,041 | 18,319  |
|------|----|---------------------|------|---|------|-----|-------|--------|-------|---------|
| 1675 | 40 | 0,95                | 0,25 | 2 | 1,25 | 0,1 | 1,087 | 0,806  | 0,042 | 19,306  |
| 1676 | 20 | 0,15                | 0,33 | 2 | 1,25 | 0,1 | 0,981 | 9,164  | 0,039 | 237,859 |
| 1677 | 25 | 0,15                | 0,33 | 2 | 1,25 | 0,1 | 1,045 | 11,394 | 0,039 | 290,174 |
| 1678 | 30 | 0,15                | 0,33 | 2 | 1,25 | 0,1 | 1,095 | 13,723 | 0,040 | 343,497 |
| 1679 | 35 | 0,15                | 0,33 | 2 | 1,25 | 0,1 | 1,132 | 16,071 | 0,041 | 395,869 |
| 1680 | 40 | 0,15                | 0,33 | 2 | 1,25 | 0,1 | 1,157 | 18,372 | 0,041 | 445,669 |
| 1681 | 20 | 0,35                | 0,33 | 2 | 1,25 | 0,1 | 1,019 | 6,907  | 0,039 | 178,093 |
| 1682 | 25 | 0,35                | 0,33 | 2 | 1,25 | 0,1 | 1,082 | 8,464  | 0,040 | 213,641 |
| 1683 | 30 | 0,35                | 0,33 | 2 | 1,25 | 0,1 | 1,128 | 9,995  | 0,040 | 247,206 |
| 1684 | 35 | 0,35                | 0,33 | 2 | 1,25 | 0,1 | 1,154 | 11,422 | 0,041 | 277,002 |
| 1685 | 40 | 0,35                | 0,33 | 2 | 1,25 | 0,1 | 1,164 | 12,701 | 0,042 | 302,012 |
| 1686 | 20 | 0,55                | 0,33 | 2 | 1,25 | 0,1 | 1,051 | 4,697  | 0,039 | 120,270 |
| 1687 | 25 | 0,55                | 0,33 | 2 | 1,25 | 0,1 | 1,111 | 5,663  | 0,040 | 141,557 |
| 1688 | 30 | 0,55                | 0,33 | 2 | 1,25 | 0,1 | 1,145 | 6,548  | 0,041 | 159,914 |
| 1689 | 35 | 0,55                | 0,33 | 2 | 1,25 | 0,1 | 1,157 | 7,313  | 0,042 | 174,512 |
| 1690 | 40 | 0,55                | 0,33 | 2 | 1,25 | 0,1 | 1,153 | 7,954  | 0,043 | 185,425 |
| 1691 | 20 | 0,75                | 0,33 | 2 | 1,25 | 0,1 | 1,079 | 2,555  | 0,039 | 64,928  |
| 1692 | 25 | 0,75                | 0,33 | 2 | 1,25 | 0,1 | 1,128 | 3,026  | 0,040 | 74,891  |
| 1693 | 30 | 0,75                | 0,33 | 2 | 1,25 | 0,1 | 1,150 | 3,430  | 0,041 | 82,695  |
| 1694 | 35 | 0,75                | 0,33 | 2 | 1,25 | 0,1 | 1,149 | 3,760  | 0,043 | 88,310  |
| 1695 | 40 | 0,75                | 0,33 | 2 | 1,25 | 0,1 | 1,136 | 4,028  | 0,044 | 92,182  |
| 1696 | 20 | 0 <mark>,9</mark> 5 | 0,33 | 2 | 1,25 | 0,1 | 1,101 | 0,498  | 0,040 | 12,559  |
| 1697 | 25 | 0,95                | 0,33 | 2 | 1,25 | 0,1 | 1,139 | 0,580  | 0,041 | 14,198  |
| 1698 | 30 | 0,95                | 0,33 | 2 | 1,25 | 0,1 | 1,142 | 0,646  | 0,042 | 15,369  |
| 1699 | 35 | 0,95                | 0,33 | 2 | 1,25 | 0,1 | 1,136 | 0,698  | 0,043 | 16,150  |
| 1700 | 40 | 0,95                | 0,33 | 2 | 1,25 | 0,1 | 1,118 | 0,740  | 0,044 | 16,666  |
| 1701 | 20 | 0,15                | 0,5  | 2 | 1,25 | 0,1 | 1,329 | 9,264  | 0,042 | 218,350 |
| 1702 | 25 | 0,15                | 0,5  | 2 | 1,25 | 0,1 | 1,341 | 10,915 | 0,043 | 252,805 |
| 1703 | 30 | 0,15                | 0,5  | 2 | 1,25 | 0,1 | 1,342 | 12,551 | 0,044 | 285,880 |
| 1704 | 35 | 0,15                | 0,5  | 2 | 1,25 | 0,1 | 1,334 | 14,129 | 0,045 | 316,646 |
| 1705 | 40 | 0,15                | 0,5  | 2 | 1,25 | 0,1 | 1,318 | 15,618 | 0,045 | 344,425 |
| 1706 | 20 | 0,35                | 0,5  | 2 | 1,25 | 0,1 | 1,329 | 6,722  | 0,043 | 156,328 |
| 1707 | 25 | 0,35                | 0,5  | 2 | 1,25 | 0,1 | 1,326 | 7,739  | 0,044 | 176,207 |
| 1708 | 30 | 0,35                | 0,5  | 2 | 1,25 | 0,1 | 1,310 | 8,668  | 0,045 | 193,246 |
| 1709 | 35 | 0,35                | 0,5  | 2 | 1,25 | 0,1 | 1,285 | 9,491  | 0,046 | 207,156 |
| 1710 | 40 | 0,35                | 0,5  | 2 | 1,25 | 0,1 | 1,254 | 10,209 | 0,047 | 218,097 |
| 1711 | 20 | 0,55                | 0,5  | 2 | 1,25 | 0,1 | 1,320 | 4,402  | 0,044 | 101,019 |
| 1712 | 25 | 0,55                | 0,5  | 2 | 1,25 | 0,1 | 1,304 | 4,962  | 0,045 | 111,121 |
| 1713 | 30 | 0,55                | 0,5  | 2 | 1,25 | 0,1 | 1,275 | 5,442  | 0,046 | 118,926 |
| 1714 | 35 | 0,55                | 0,5  | 2 | 1,25 | 0,1 | 1,240 | 5,849  | 0,047 | 124,708 |
| 1715 | 40 | 0,55                | 0,5  | 2 | 1,25 | 0,1 | 1,204 | 6,199  | 0,048 | 128,938 |
| 1716 | 20 | 0,75                | 0,5  | 2 | 1,25 | 0,1 | 1,307 | 2,310  | 0,044 | 52,332  |



| 1717 | 25 | 0,75               | 0,5  | 2   | 1,25 | 0,1 | 1,278 | 2,558  | 0,045 | 56,410  |
|------|----|--------------------|------|-----|------|-----|-------|--------|-------|---------|
| 1718 | 30 | 0,75               | 0,5  | 2   | 1,25 | 0,1 | 1,242 | 2,764  | 0,047 | 59,320  |
| 1719 | 35 | 0,75               | 0,5  | 2   | 1,25 | 0,1 | 1,203 | 2,937  | 0,048 | 61,366  |
| 1720 | 40 | 0,75               | 0,5  | 2   | 1,25 | 0,1 | 1,167 | 3,089  | 0,049 | 62,838  |
| 1721 | 20 | 0,95               | 0,5  | 2   | 1,25 | 0,1 | 1,291 | 0,436  | 0,045 | 9,757   |
| 1722 | 25 | 0,95               | 0,5  | 2   | 1,25 | 0,1 | 1,254 | 0,476  | 0,046 | 10,352  |
| 1723 | 30 | 0,95               | 0,5  | 2   | 1,25 | 0,1 | 1,207 | 0,509  | 0,047 | 10,756  |
| 1724 | 35 | 0,95               | 0,5  | 2   | 1,25 | 0,1 | 1,173 | 0,538  | 0,049 | 11,035  |
| 1725 | 40 | 0,95               | 0,5  | 2   | 1,25 | 0,1 | 1,138 | 0,563  | 0,050 | 11,239  |
| 1726 | 20 | 0,15               | 0,25 | 2,8 | 1,25 | 0,1 | 0,723 | 10,580 | 0,072 | 147,511 |
| 1727 | 25 | 0,15               | 0,25 | 2,8 | 1,25 | 0,1 | 0,790 | 13,499 | 0,073 | 184,156 |
| 1728 | 30 | 0,15               | 0,25 | 2,8 | 1,25 | 0,1 | 0,850 | 16,695 | 0,075 | 223,253 |
| 1729 | 35 | 0,15               | 0,25 | 2,8 | 1,25 | 0,1 | 0,902 | 20,063 | 0,076 | 263,371 |
| 1730 | 40 | 0,15               | 0,25 | 2,8 | 1,25 | 0,1 | 0,945 | 23,503 | 0,078 | 303,208 |
| 1731 | 20 | 0,35               | 0,25 | 2,8 | 1,25 | 0,1 | 0,757 | 8,041  | 0,072 | 111,616 |
| 1732 | 25 | 0,35               | 0,25 | 2,8 | 1,25 | 0,1 | 0,830 | 10,174 | 0,074 | 137,957 |
| 1733 | 30 | 0,35               | 0,25 | 2,8 | 1,25 | 0,1 | 0,894 | 12,425 | 0,075 | 164,804 |
| 1734 | 35 | 0,35               | 0,25 | 2,8 | 1,25 | 0,1 | 0,946 | 14,681 | 0,077 | 190,670 |
| 1735 | 40 | 0,35               | 0,25 | 2,8 | 1,25 | 0,1 | 0,986 | 16,847 | 0,079 | 214,363 |
| 1736 | 20 | 0,55               | 0,25 | 2,8 | 1,25 | 0,1 | 0,789 | 5,525  | 0,072 | 76,334  |
| 1737 | 25 | 0,55               | 0,25 | 2,8 | 1,25 | 0,1 | 0,867 | 6,924  | 0,074 | 93,276  |
| 1738 | 30 | 0,55               | 0,25 | 2,8 | 1,25 | 0,1 | 0,930 | 8,338  | 0,076 | 109,636 |
| 1739 | 35 | 0,55               | 0,25 | 2,8 | 1,25 | 0,1 | 0,978 | 9,681  | 0,078 | 124,314 |
| 1740 | 40 | 0 <mark>,55</mark> | 0,25 | 2,8 | 1,25 | 0,1 | 1,007 | 10,895 | 0,080 | 136,671 |
| 1741 | 20 | 0,75               | 0,25 | 2,8 | 1,25 | 0,1 | 0,820 | 3,042  | 0,073 | 41,816  |
| 1742 | 25 | 0,75               | 0,25 | 2,8 | 1,25 | 0,1 | 0,897 | 3,771  | 0,075 | 50,455  |
| 1743 | 30 | 0,75               | 0,25 | 2,8 | 1,25 | 0,1 | 0,958 | 4,475  | 0,077 | 58,309  |
| 1744 | 35 | 0,75               | 0,25 | 2,8 | 1,25 | 0,1 | 0,996 | 5,109  | 0,079 | 64,856  |
| 1745 | 40 | 0,75               | 0,25 | 2,8 | 1,25 | 0,1 | 1,017 | 5,655  | 0,081 | 69,958  |
| 1746 | 20 | 0,95               | 0,25 | 2,8 | 1,25 | 0,1 | 0,848 | 0,601  | 0,073 | 8,222   |
| 1747 | 25 | 0,95               | 0,25 | 2,8 | 1,25 | 0,1 | 0,923 | 0,737  | 0,075 | 9,787   |
| 1748 | 30 | 0,95               | 0,25 | 2,8 | 1,25 | 0,1 | 0,972 | 0,861  | 0,077 | 11,122  |
| 1749 | 35 | 0,95               | 0,25 | 2,8 | 1,25 | 0,1 | 1,007 | 0,969  | 0,080 | 12,160  |
| 1750 | 40 | 0,95               | 0,25 | 2,8 | 1,25 | 0,1 | 1,019 | 1,058  | 0,082 | 12,919  |
| 1751 | 20 | 0,15               | 0,33 | 2,8 | 1,25 | 0,1 | 0,915 | 11,963 | 0,075 | 158,548 |
| 1752 | 25 | 0,15               | 0,33 | 2,8 | 1,25 | 0,1 | 0,965 | 14,736 | 0,077 | 191,359 |
| 1753 | 30 | 0,15               | 0,33 | 2,8 | 1,25 | 0,1 | 1,006 | 17,652 | 0,078 | 224,935 |
| 1754 | 35 | 0,15               | 0,33 | 2,8 | 1,25 | 0,1 | 1,038 | 20,629 | 0,080 | 258,212 |
| 1755 | 40 | 0,15               | 0,33 | 2,8 | 1,25 | 0,1 | 1,061 | 23,592 | 0,081 | 290,282 |
| 1756 | 20 | 0,35               | 0,33 | 2,8 | 1,25 | 0,1 | 0,945 | 8,970  | 0,076 | 118,027 |
| 1757 | 25 | 0,35               | 0,33 | 2,8 | 1,25 | 0,1 | 0,995 | 10,901 | 0,078 | 140,229 |
| 1758 | 30 | 0,35               | 0,33 | 2,8 | 1,25 | 0,1 | 1,034 | 12,833 | 0,079 | 161,537 |
| 1759 | 35 | 0,35               | 0,33 | 2,8 | 1,25 | 0,1 | 1,060 | 14,687 | 0,081 | 181,013 |



| 1760 | 40 | 0,35                | 0,33 | 2,8 | 1,25 | 0,1 | 1,075 | 16,411 | 0,083 | 198,060 |
|------|----|---------------------|------|-----|------|-----|-------|--------|-------|---------|
| 1761 | 20 | 0,55                | 0,33 | 2,8 | 1,25 | 0,1 | 0,971 | 6,075  | 0,077 | 79,340  |
| 1762 | 25 | 0,55                | 0,33 | 2,8 | 1,25 | 0,1 | 1,020 | 7,278  | 0,078 | 92,713  |
| 1763 | 30 | 0,55                | 0,33 | 2,8 | 1,25 | 0,1 | 1,051 | 8,420  | 0,080 | 104,688 |
| 1764 | 35 | 0,55                | 0,33 | 2,8 | 1,25 | 0,1 | 1,069 | 9,457  | 0,082 | 114,783 |
| 1765 | 40 | 0,55                | 0,33 | 2,8 | 1,25 | 0,1 | 1,074 | 10,372 | 0,084 | 122,903 |
| 1766 | 20 | 0,75                | 0,33 | 2,8 | 1,25 | 0,1 | 0,994 | 3,294  | 0,077 | 42,696  |
| 1767 | 25 | 0,75                | 0,33 | 2,8 | 1,25 | 0,1 | 1,036 | 3,889  | 0,079 | 49,067  |
| 1768 | 30 | 0,75                | 0,33 | 2,8 | 1,25 | 0,1 | 1,061 | 4,428  | 0,081 | 54,391  |
| 1769 | 35 | 0,75                | 0,33 | 2,8 | 1,25 | 0,1 | 1,069 | 4,896  | 0,084 | 58,570  |
| 1770 | 40 | 0,75                | 0,33 | 2,8 | 1,25 | 0,1 | 1,067 | 5,297  | 0,086 | 61,724  |
| 1771 | 20 | 0,95                | 0,33 | 2,8 | 1,25 | 0,1 | 1,012 | 0,641  | 0,078 | 8,245   |
| 1772 | 25 | 0,95                | 0,33 | 2,8 | 1,25 | 0,1 | 1,047 | 0,746  | 0,080 | 9,325   |
| 1773 | 30 | 0,95                | 0,33 | 2,8 | 1,25 | 0,1 | 1,058 | 0,838  | 0,082 | 10,171  |
| 1774 | 35 | 0,95                | 0,33 | 2,8 | 1,25 | 0,1 | 1,064 | 0,915  | 0,085 | 10,798  |
| 1775 | 40 | 0,95                | 0,33 | 2,8 | 1,25 | 0,1 | 1,057 | 0,980  | 0,087 | 11,252  |
| 1776 | 20 | 0,15                | 0,5  | 2,8 | 1,25 | 0,1 | 1,189 | 11,604 | 0,083 | 139,020 |
| 1777 | 25 | 0,15                | 0,5  | 2,8 | 1,25 | 0,1 | 1,202 | 13,697 | 0,085 | 160,994 |
| 1778 | 30 | 0,15                | 0,5  | 2,8 | 1,25 | 0,1 | 1,208 | 15,811 | 0,087 | 182,474 |
| 1779 | 35 | 0,15                | 0,5  | 2,8 | 1,25 | 0,1 | 1,207 | 17,898 | 0,088 | 202,917 |
| 1780 | 40 | 0,15                | 0,5  | 2,8 | 1,25 | 0,1 | 1,201 | 19,918 | 0,090 | 221,900 |
| 1781 | 20 | 0,35                | 0,5  | 2,8 | 1,25 | 0,1 | 1,192 | 8,445  | 0,085 | 99,883  |
| 1782 | 25 | 0 <mark>,3</mark> 5 | 0,5  | 2,8 | 1,25 | 0,1 | 1,197 | 9,779  | 0,086 | 113,094 |
| 1783 | 30 | 0,35                | 0,5  | 2,8 | 1,25 | 0,1 | 1,193 | 11,044 | 0,088 | 124,945 |
| 1784 | 35 | 0,35                | 0,5  | 2,8 | 1,25 | 0,1 | 1,181 | 12,214 | 0,090 | 135,175 |
| 1785 | 40 | 0,35                | 0,5  | 2,8 | 1,25 | 0,1 | 1,165 | 13,277 | 0,092 | 143,734 |
| 1786 | 20 | 0,55                | 0,5  | 2,8 | 1,25 | 0,1 | 1,191 | 5,558  | 0,086 | 64,924  |
| 1787 | 25 | 0,55                | 0,5  | 2,8 | 1,25 | 0,1 | 1,187 | 6,325  | 0,088 | 72,045  |
| 1788 | 30 | 0,55                | 0,5  | 2,8 | 1,25 | 0,1 | 1,174 | 7,018  | 0,090 | 77,964  |
| 1789 | 35 | 0,55                | 0,5  | 2,8 | 1,25 | 0,1 | 1,156 | 7,632  | 0,092 | 82,703  |
| 1790 | 40 | 0,55                | 0,5  | 2,8 | 1,25 | 0,1 | 1,134 | 8,176  | 0,095 | 86,415  |
| 1791 | 20 | 0,75                | 0,5  | 2,8 | 1,25 | 0,1 | 1,187 | 2,935  | 0,087 | 33,881  |
| 1792 | 25 | 0,75                | 0,5  | 2,8 | 1,25 | 0,1 | 1,174 | 3,291  | 0,089 | 36,959  |
| 1793 | 30 | 0,75                | 0,5  | 2,8 | 1,25 | 0,1 | 1,156 | 3,602  | 0,091 | 39,366  |
| 1794 | 35 | 0,75                | 0,5  | 2,8 | 1,25 | 0,1 | 1,133 | 3,872  | 0,094 | 41,199  |
| 1795 | 40 | 0,75                | 0,5  | 2,8 | 1,25 | 0,1 | 1,109 | 4,111  | 0,097 | 42,584  |
| 1796 | 20 | 0,95                | 0,5  | 2,8 | 1,25 | 0,1 | 1,180 | 0,558  | 0,088 | 6,367   |
| 1797 | 25 | 0,95                | 0,5  | 2,8 | 1,25 | 0,1 | 1,162 | 0,618  | 0,090 | 6,848   |
| 1798 | 30 | 0,95                | 0,5  | 2,8 | 1,25 | 0,1 | 1,132 | 0,669  | 0,093 | 7,208   |
| 1799 | 35 | 0,95                | 0,5  | 2,8 | 1,25 | 0,1 | 1,113 | 0,714  | 0,096 | 7,474   |
| 1800 | 40 | 0,95                | 0,5  | 2,8 | 1,25 | 0,1 | 1,088 | 0,753  | 0,098 | 7,672   |
| 1801 | 20 | 0,15                | 0,25 | 1,2 | 2    | 0,1 | 0,750 | 4,706  | 0,021 | 220,842 |
| 1802 | 25 | 0,15                | 0,25 | 1,2 | 2    | 0,1 | 0,876 | 6,420  | 0,022 | 295,124 |



| 1803 | 30 | 0.15               | 0.25 | 1.2 | 2 | 0.1 | 0.989 | 8.327  | 0.022 | 376,749 |
|------|----|--------------------|------|-----|---|-----|-------|--------|-------|---------|
| 1804 | 35 | 0.15               | 0.25 | 1.2 | 2 | 0.1 | 1.080 | 10.294 | 0.022 | 459,992 |
| 1805 | 40 | 0,15               | 0,25 | 1,2 | 2 | 0,1 | 1,147 | 12,227 | 0,023 | 540,836 |
| 1806 | 20 | 0,35               | 0,25 | 1,2 | 2 | 0,1 | 0,799 | 3,637  | 0,021 | 170,379 |
| 1807 | 25 | 0,35               | 0,25 | 1,2 | 2 | 0,1 | 0,943 | 4,953  | 0,022 | 227,013 |
| 1808 | 30 | 0,35               | 0,25 | 1,2 | 2 | 0,1 | 1,067 | 6,354  | 0,022 | 286,148 |
| 1809 | 35 | 0,35               | 0,25 | 1,2 | 2 | 0,1 | 1,156 | 7,686  | 0,023 | 341,062 |
| 1810 | 40 | 0,35               | 0,25 | 1,2 | 2 | 0,1 | 1,207 | 8,841  | 0,023 | 387,022 |
| 1811 | 20 | 0,55               | 0,25 | 1,2 | 2 | 0,1 | 0,848 | 2,545  | 0,021 | 118,990 |
| 1812 | 25 | 0,55               | 0,25 | 1,2 | 2 | 0,1 | 1,008 | 3,451  | 0,022 | 157,617 |
| 1813 | 30 | 0,55               | 0,25 | 1,2 | 2 | 0,1 | 1,132 | 4,349  | 0,022 | 194,660 |
| 1814 | 35 | 0,55               | 0,25 | 1,2 | 2 | 0,1 | 1,200 | 5,095  | 0,023 | 223,883 |
| 1815 | 40 | 0,55               | 0,25 | 1,2 | 2 | 0,1 | 1,215 | 5,629  | 0,023 | 242,811 |
| 1816 | 20 | 0,75               | 0,25 | 1,2 | 2 | 0,1 | 0,899 | 1,429  | 0,021 | 66,663  |
| 1817 | 25 | 0,75               | 0,25 | 1,2 | 2 | 0,1 | 1,067 | 1,922  | 0,022 | 87,384  |
| 1818 | 30 | 0,75               | 0,25 | 1,2 | 2 | 0,1 | 1,177 | 2,357  | 0,023 | 104,683 |
| 1819 | 35 | 0,75               | 0,25 | 1,2 | 2 | 0,1 | 1,209 | 2,657  | 0,023 | 115,307 |
| 1820 | 40 | 0,75               | 0,25 | 1,2 | 2 | 0,1 | 1,192 | 2,841  | 0,024 | 120,347 |
| 1821 | 20 | 0,95               | 0,25 | 1,2 | 2 | 0,1 | 0,949 | 0,289  | 0,021 | 13,420  |
| 1822 | 25 | 0,95               | 0,25 | 1,2 | 2 | 0,1 | 1,119 | 0,382  | 0,022 | 17,287  |
| 1823 | 30 | 0,95               | 0,25 | 1,2 | 2 | 0,1 | 1,192 | 0,453  | 0,023 | 19,906  |
| 1824 | 35 | 0,95               | 0,25 | 1,2 | 2 | 0,1 | 1,196 | 0,493  | 0,023 | 21,085  |
| 1825 | 40 | 0,95               | 0,25 | 1,2 | 2 | 0,1 | 1,164 | 0,518  | 0,024 | 21,540  |
| 1826 | 20 | 0 <mark>,15</mark> | 0,33 | 1,2 | 2 | 0,1 | 1,080 | 6,057  | 0,022 | 271,174 |
| 1827 | 25 | 0,15               | 0,33 | 1,2 | 2 | 0,1 | 1,182 | 7,734  | 0,023 | 340,978 |
| 1828 | 30 | 0,15               | 0,33 | 1,2 | 2 | 0,1 | 1,255 | 9,438  | 0,023 | 410,989 |
| 1829 | 35 | 0,15               | 0,33 | 1,2 | 2 | 0,1 | 1,302 | 11,093 | 0,023 | 477,979 |
| 1830 | 40 | 0,15               | 0,33 | 1,2 | 2 | 0,1 | 1,327 | 12,643 | 0,023 | 539,518 |
| 1831 | 20 | 0,35               | 0,33 | 1,2 | 2 | 0,1 | 1,140 | 4,638  | 0,022 | 206,783 |
| 1832 | 25 | 0,35               | 0,33 | 1,2 | 2 | 0,1 | 1,242 | 5,827  | 0,023 | 255,328 |
| 1833 | 30 | 0,35               | 0,33 | 1,2 | 2 | 0,1 | 1,302 | 6,924  | 0,023 | 298,757 |
| 1834 | 35 | 0,35               | 0,33 | 1,2 | 2 | 0,1 | 1,321 | 7,846  | 0,024 | 333,587 |
| 1835 | 40 | 0,35               | 0,33 | 1,2 | 2 | 0,1 | 1,308 | 8,560  | 0,024 | 358,391 |
| 1836 | 20 | 0,55               | 0,33 | 1,2 | 2 | 0,1 | 1,194 | 3,201  | 0,023 | 142,008 |
| 1837 | 25 | 0,55               | 0,33 | 1,2 | 2 | 0,1 | 1,284 | 3,928  | 0,023 | 170,748 |
| 1838 | 30 | 0,55               | 0,33 | 1,2 | 2 | 0,1 | 1,312 | 4,505  | 0,023 | 192,048 |
| 1839 | 35 | 0,55               | 0,33 | 1,2 | 2 | 0,1 | 1,294 | 4,908  | 0,024 | 205,041 |
| 1840 | 40 | 0,55               | 0,33 | 1,2 | 2 | 0,1 | 1,252 | 5,184  | 0,024 | 211,894 |
| 1841 | 20 | 0,75               | 0,33 | 1,2 | 2 | 0,1 | 1,240 | 1,761  | 0,023 | 77,664  |
| 1842 | 25 | 0,75               | 0,33 | 1,2 | 2 | 0,1 | 1,301 | 2,095  | 0,023 | 90,167  |
| 1843 | 30 | 0,75               | 0,33 | 1,2 | 2 | 0,1 | 1,295 | 2,316  | 0,024 | 97,311  |
| 1844 | 35 | 0,75               | 0,33 | 1,2 | 2 | 0,1 | 1,251 | 2,456  | 0,024 | 100,616 |
| 1845 | 40 | 0,75               | 0,33 | 1,2 | 2 | 0,1 | 1,203 | 2,561  | 0,025 | 102,236 |



| 1846 | 20 | 0,95 | 0,33 | 1,2 | 2 | 0,1 | 1,272 | 0,345  | 0,023 | 15,122  |
|------|----|------|------|-----|---|-----|-------|--------|-------|---------|
| 1847 | 25 | 0,95 | 0,33 | 1,2 | 2 | 0,1 | 1,299 | 0,397  | 0,024 | 16,880  |
| 1848 | 30 | 0,95 | 0,33 | 1,2 | 2 | 0,1 | 1,257 | 0,426  | 0,024 | 17,637  |
| 1849 | 35 | 0,95 | 0,33 | 1,2 | 2 | 0,1 | 1,211 | 0,446  | 0,025 | 17,949  |
| 1850 | 40 | 0,95 | 0,33 | 1,2 | 2 | 0,1 | 1,167 | 0,464  | 0,026 | 18,139  |
| 1851 | 20 | 0,15 | 0,5  | 1,2 | 2 | 0,1 | 1,609 | 6,732  | 0,024 | 277,116 |
| 1852 | 25 | 0,15 | 0,5  | 1,2 | 2 | 0,1 | 1,616 | 7,891  | 0,025 | 320,871 |
| 1853 | 30 | 0,15 | 0,5  | 1,2 | 2 | 0,1 | 1,598 | 8,970  | 0,025 | 360,585 |
| 1854 | 35 | 0,15 | 0,5  | 1,2 | 2 | 0,1 | 1,563 | 9,935  | 0,025 | 394,857 |
| 1855 | 40 | 0,15 | 0,5  | 1,2 | 2 | 0,1 | 1,514 | 10,767 | 0,025 | 422,797 |
| 1856 | 20 | 0,35 | 0,5  | 1,2 | 2 | 0,1 | 1,599 | 4,853  | 0,025 | 197,325 |
| 1857 | 25 | 0,35 | 0,5  | 1,2 | 2 | 0,1 | 1,564 | 5,477  | 0,025 | 218,972 |
| 1858 | 30 | 0,35 | 0,5  | 1,2 | 2 | 0,1 | 1,503 | 5,964  | 0,025 | 234,222 |
| 1859 | 35 | 0,35 | 0,5  | 1,2 | 2 | 0,1 | 1,428 | 6,330  | 0,026 | 243,864 |
| 1860 | 40 | 0,35 | 0,5  | 1,2 | 2 | 0,1 | 1,355 | 6,619  | 0,027 | 249,722 |
| 1861 | 20 | 0,55 | 0,5  | 1,2 | 2 | 0,1 | 1,560 | 3,121  | 0,025 | 125,118 |
| 1862 | 25 | 0,55 | 0,5  | 1,2 | 2 | 0,1 | 1,489 | 3,399  | 0,026 | 133,299 |
| 1863 | 30 | 0,55 | 0,5  | 1,2 | 2 | 0,1 | 1,404 | 3,596  | 0,026 | 137,747 |
| 1864 | 35 | 0,55 | 0,5  | 1,2 | 2 | 0,1 | 1,326 | 3,752  | 0,027 | 140,227 |
| 1865 | 40 | 0,55 | 0,5  | 1,2 | 2 | 0,1 | 1,261 | 3,895  | 0,027 | 141,943 |
| 1866 | 20 | 0,75 | 0,5  | 1,2 | 2 | 0,1 | 1,507 | 1,597  | 0,025 | 63,077  |
| 1867 | 25 | 0,75 | 0,5  | 1,2 | 2 | 0,1 | 1,414 | 1,699  | 0,026 | 65,327  |
| 1868 | 30 | 0,75 | 0,5  | 1,2 | 2 | 0,1 | 1,330 | 1,775  | 0,027 | 66,456  |
| 1869 | 35 | 0,75 | 0,5  | 1,2 | 2 | 0,1 | 1,259 | 1,845  | 0,027 | 67,209  |
| 1870 | 40 | 0,75 | 0,5  | 1,2 | 2 | 0,1 | 1,205 | 1,914  | 0,028 | 67,859  |
| 1871 | 20 | 0,95 | 0,5  | 1,2 | 2 | 0,1 | 1,451 | 0,294  | 0,026 | 11,432  |
| 1872 | 25 | 0,95 | 0,5  | 1,2 | 2 | 0,1 | 1,355 | 0,309  | 0,026 | 11,661  |
| 1873 | 30 | 0,95 | 0,5  | 1,2 | 2 | 0,1 | 1,269 | 0,321  | 0,027 | 11,794  |
| 1874 | 35 | 0,95 | 0,5  | 1,2 | 2 | 0,1 | 1,214 | 0,334  | 0,028 | 11,905  |
| 1875 | 40 | 0,95 | 0,5  | 1,2 | 2 | 0,1 | 1,167 | 0,346  | 0,029 | 12,011  |
| 1876 | 20 | 0,15 | 0,25 | 2   | 2 | 0,1 | 0,782 | 8,181  | 0,059 | 138,929 |
| 1877 | 25 | 0,15 | 0,25 | 2   | 2 | 0,1 | 0,886 | 10,815 | 0,060 | 179,964 |
| 1878 | 30 | 0,15 | 0,25 | 2   | 2 | 0,1 | 0,978 | 13,714 | 0,061 | 224,356 |
| 1879 | 35 | 0,15 | 0,25 | 2   | 2 | 0,1 | 1,052 | 16,725 | 0,062 | 269,656 |
| 1880 | 40 | 0,15 | 0,25 | 2   | 2 | 0,1 | 1,110 | 19,720 | 0,063 | 313,881 |
| 1881 | 20 | 0,35 | 0,25 | 2   | 2 | 0,1 | 0,828 | 6,280  | 0,059 | 106,354 |
| 1882 | 25 | 0,35 | 0,25 | 2   | 2 | 0,1 | 0,943 | 8,255  | 0,060 | 136,772 |
| 1883 | 30 | 0,35 | 0,25 | 2   | 2 | 0,1 | 1,041 | 10,332 | 0,062 | 167,961 |
| 1884 | 35 | 0,35 | 0,25 | 2   | 2 | 0,1 | 1,114 | 12,339 | 0,063 | 197,143 |
| 1885 | 40 | 0,35 | 0,25 | 2   | 2 | 0,1 | 1,158 | 14,141 | 0,064 | 222,250 |
| 1886 | 20 | 0,55 | 0,25 | 2   | 2 | 0,1 | 0,872 | 4,362  | 0,059 | 73,628  |
| 1887 | 25 | 0,55 | 0,25 | 2   | 2 | 0,1 | 0,996 | 5,685  | 0,061 | 93,728  |
| 1888 | 30 | 0,55 | 0,25 | 2   | 2 | 0,1 | 1,092 | 6,992  | 0,062 | 112,789 |



| 1889 | 35 | 0,55               | 0,25 | 2 | 2 | 0,1 | 1,150 | 8,133  | 0,063 | 128,510 |
|------|----|--------------------|------|---|---|-----|-------|--------|-------|---------|
| 1890 | 40 | 0,55               | 0,25 | 2 | 2 | 0,1 | 1,170 | 9,039  | 0,065 | 139,890 |
| 1891 | 20 | 0,75               | 0,25 | 2 | 2 | 0,1 | 0,916 | 2,428  | 0,059 | 40,840  |
| 1892 | 25 | 0,75               | 0,25 | 2 | 2 | 0,1 | 1,042 | 3,129  | 0,061 | 51,274  |
| 1893 | 30 | 0,75               | 0,25 | 2 | 2 | 0,1 | 1,127 | 3,763  | 0,063 | 60,158  |
| 1894 | 35 | 0,75               | 0,25 | 2 | 2 | 0,1 | 1,162 | 4,257  | 0,064 | 66,400  |
| 1895 | 40 | 0,75               | 0,25 | 2 | 2 | 0,1 | 1,161 | 4,611  | 0,066 | 70,175  |
| 1896 | 20 | 0,95               | 0,25 | 2 | 2 | 0,1 | 0,958 | 0,485  | 0,060 | 8,129   |
| 1897 | 25 | 0,95               | 0,25 | 2 | 2 | 0,1 | 1,081 | 0,616  | 0,061 | 10,023  |
| 1898 | 30 | 0,95               | 0,25 | 2 | 2 | 0,1 | 1,141 | 0,722  | 0,063 | 11,430  |
| 1899 | 35 | 0,95               | 0,25 | 2 | 2 | 0,1 | 1,159 | 0,797  | 0,065 | 12,261  |
| 1900 | 40 | 0,95               | 0,25 | 2 | 2 | 0,1 | 1,144 | 0,848  | 0,067 | 12,701  |
| 1901 | 20 | 0,15               | 0,33 | 2 | 2 | 0,1 | 1,069 | 9,992  | 0,062 | 161,876 |
| 1902 | 25 | 0,15               | 0,33 | 2 | 2 | 0,1 | 1,149 | 12,529 | 0,063 | 199,551 |
| 1903 | 30 | 0,15               | 0,33 | 2 | 2 | 0,1 | 1,208 | 15,135 | 0,064 | 237,514 |
| 1904 | 35 | 0,15               | 0,33 | 2 | 2 | 0,1 | 1,247 | 17,705 | 0,065 | 274,157 |
| 1905 | 40 | 0,15               | 0,33 | 2 | 2 | 0,1 | 1,269 | 20,156 | 0,065 | 308,217 |
| 1906 | 20 | 0,35               | 0,33 | 2 | 2 | 0,1 | 1,116 | 7,568  | 0,062 | 121,911 |
| 1907 | 25 | 0,35               | 0,33 | 2 | 2 | 0,1 | 1,194 | 9,335  | 0,063 | 147,489 |
| 1908 | 30 | 0,35               | 0,33 | 2 | 2 | 0,1 | 1,242 | 11,010 | 0,064 | 170,839 |
| 1909 | 35 | 0,35               | 0,33 | 2 | 2 | 0,1 | 1,262 | 12,490 | 0,066 | 190,445 |
| 1910 | 40 | 0,35               | 0,33 | 2 | 2 | 0,1 | 1,259 | 13,728 | 0,067 | 205,626 |
| 1911 | 20 | 0,55               | 0,33 | 2 | 2 | 0,1 | 1,156 | 5,167  | 0,062 | 82,699  |
| 1912 | 25 | 0 <mark>,55</mark> | 0,33 | 2 | 2 | 0,1 | 1,225 | 6,244  | 0,064 | 97,729  |
| 1913 | 30 | 0,55               | 0,33 | 2 | 2 | 0,1 | 1,252 | 7,164  | 0,065 | 109,725 |
| 1914 | 35 | 0,55               | 0,33 | 2 | 2 | 0,1 | 1,248 | 7,888  | 0,067 | 118,188 |
| 1915 | 40 | 0,55               | 0,33 | 2 | 2 | 0,1 | 1,223 | 8,441  | 0,068 | 123,641 |
| 1916 | 20 | 0,75               | 0,33 | 2 | 2 | 0,1 | 1,190 | 2,817  | 0,063 | 44,749  |
| 1917 | 25 | 0,75               | 0,33 | 2 | 2 | 0,1 | 1,239 | 3,324  | 0,065 | 51,481  |
| 1918 | 30 | 0,75               | 0,33 | 2 | 2 | 0,1 | 1,245 | 3,713  | 0,066 | 56,070  |
| 1919 | 35 | 0,75               | 0,33 | 2 | 2 | 0,1 | 1,221 | 3,997  | 0,068 | 58,821  |
| 1920 | 40 | 0,75               | 0,33 | 2 | 2 | 0,1 | 1,188 | 4,213  | 0,070 | 60,424  |
| 1921 | 20 | 0,95               | 0,33 | 2 | 2 | 0,1 | 1,213 | 0,549  | 0,063 | 8,652   |
| 1922 | 25 | 0,95               | 0,33 | 2 | 2 | 0,1 | 1,242 | 0,632  | 0,065 | 9,682   |
| 1923 | 30 | 0,95               | 0,33 | 2 | 2 | 0,1 | 1,221 | 0,691  | 0,067 | 10,283  |
| 1924 | 35 | 0,95               | 0,33 | 2 | 2 | 0,1 | 1,194 | 0,733  | 0,069 | 10,606  |
| 1925 | 40 | 0,95               | 0,33 | 2 | 2 | 0,1 | 1,158 | 0,767  | 0,071 | 10,796  |
| 1926 | 20 | 0,15               | 0,5  | 2 | 2 | 0,1 | 1,511 | 10,533 | 0,068 | 155,993 |
| 1927 | 25 | 0,15               | 0,5  | 2 | 2 | 0,1 | 1,516 | 12,338 | 0,069 | 179,996 |
| 1928 | 30 | 0,15               | 0,5  | 2 | 2 | 0,1 | 1,504 | 14,067 | 0,070 | 202,304 |
| 1929 | 35 | 0,15               | 0,5  | 2 | 2 | 0,1 | 1,479 | 15,671 | 0,071 | 222,222 |
| 1930 | 40 | 0,15               | 0,5  | 2 | 2 | 0,1 | 1,445 | 17,118 | 0,072 | 239,295 |
| 1931 | 20 | 0,35               | 0,5  | 2 | 2 | 0,1 | 1,499 | 7,583  | 0,068 | 110,767 |



| 1932 | 25 | 0,35 | 0,5  | 2   | 2 | 0,1 | 1,477 | 8,619  | 0,070 | 123,468 |
|------|----|------|------|-----|---|-----|-------|--------|-------|---------|
| 1933 | 30 | 0,35 | 0,5  | 2   | 2 | 0,1 | 1,436 | 9,497  | 0,071 | 133,410 |
| 1934 | 35 | 0,35 | 0,5  | 2   | 2 | 0,1 | 1,383 | 10,219 | 0,073 | 140,664 |
| 1935 | 40 | 0,35 | 0,5  | 2   | 2 | 0,1 | 1,328 | 10,814 | 0,074 | 145,733 |
| 1936 | 20 | 0,55 | 0,5  | 2   | 2 | 0,1 | 1,472 | 4,908  | 0,069 | 70,663  |
| 1937 | 25 | 0,55 | 0,5  | 2   | 2 | 0,1 | 1,426 | 5,427  | 0,071 | 76,320  |
| 1938 | 30 | 0,55 | 0,5  | 2   | 2 | 0,1 | 1,366 | 5,833  | 0,073 | 80,082  |
| 1939 | 35 | 0,55 | 0,5  | 2   | 2 | 0,1 | 1,306 | 6,158  | 0,075 | 82,497  |
| 1940 | 40 | 0,55 | 0,5  | 2   | 2 | 0,1 | 1,250 | 6,438  | 0,077 | 84,118  |
| 1941 | 20 | 0,75 | 0,5  | 2   | 2 | 0,1 | 1,438 | 2,541  | 0,070 | 36,054  |
| 1942 | 25 | 0,75 | 0,5  | 2   | 2 | 0,1 | 1,374 | 2,751  | 0,072 | 38,007  |
| 1943 | 30 | 0,75 | 0,5  | 2   | 2 | 0,1 | 1,309 | 2,914  | 0,074 | 39,180  |
| 1944 | 35 | 0,75 | 0,5  | 2   | 2 | 0,1 | 1,249 | 3,050  | 0,076 | 39,924  |
| 1945 | 40 | 0,75 | 0,5  | 2   | 2 | 0,1 | 1,200 | 3,175  | 0,078 | 40,464  |
| 1946 | 20 | 0,95 | 0,5  | 2   | 2 | 0,1 | 1,401 | 0,473  | 0,071 | 6,621   |
| 1947 | 25 | 0,95 | 0,5  | 2   | 2 | 0,1 | 1,330 | 0,505  | 0,074 | 6,865   |
| 1948 | 30 | 0,95 | 0,5  | 2   | 2 | 0,1 | 1,257 | 0,531  | 0,076 | 7,008   |
| 1949 | 35 | 0,95 | 0,5  | 2   | 2 | 0,1 | 1,208 | 0,554  | 0,078 | 7,105   |
| 1950 | 40 | 0,95 | 0,5  | 2   | 2 | 0,1 | 1,164 | 0,575  | 0,080 | 7,183   |
| 1951 | 20 | 0,15 | 0,25 | 2,8 | 2 | 0,1 | 0,778 | 11,396 | 0,115 | 99,056  |
| 1952 | 25 | 0,15 | 0,25 | 2,8 | 2 | 0,1 | 0,866 | 14,799 | 0,117 | 126,003 |
| 1953 | 30 | 0,15 | 0,25 | 2,8 | 2 | 0,1 | 0,943 | 18,528 | 0,120 | 154,909 |
| 1954 | 35 | 0,15 | 0,25 | 2,8 | 2 | 0,1 | 1,008 | 22,419 | 0,122 | 184,432 |
| 1955 | 40 | 0,15 | 0,25 | 2,8 | 2 | 0,1 | 1,058 | 26,330 | 0,123 | 213,418 |
| 1956 | 20 | 0,35 | 0,25 | 2,8 | 2 | 0,1 | 0,819 | 8,706  | 0,115 | 75,400  |
| 1957 | 25 | 0,35 | 0,25 | 2,8 | 2 | 0,1 | 0,915 | 11,221 | 0,118 | 95,039  |
| 1958 | 30 | 0,35 | 0,25 | 2,8 | 2 | 0,1 | 0,998 | 13,862 | 0,120 | 115,039 |
| 1959 | 35 | 0,35 | 0,25 | 2,8 | 2 | 0,1 | 1,060 | 16,448 | 0,123 | 133,937 |
| 1960 | 40 | 0,35 | 0,25 | 2,8 | 2 | 0,1 | 1,102 | 18,838 | 0,125 | 150,617 |
| 1961 | 20 | 0,55 | 0,25 | 2,8 | 2 | 0,1 | 0,859 | 6,014  | 0,116 | 51,879  |
| 1962 | 25 | 0,55 | 0,25 | 2,8 | 2 | 0,1 | 0,961 | 7,678  | 0,119 | 64,645  |
| 1963 | 30 | 0,55 | 0,25 | 2,8 | 2 | 0,1 | 1,041 | 9,330  | 0,122 | 76,782  |
| 1964 | 35 | 0,55 | 0,25 | 2,8 | 2 | 0,1 | 1,093 | 10,828 | 0,124 | 87,157  |
| 1965 | 40 | 0,55 | 0,25 | 2,8 | 2 | 0,1 | 1,118 | 12,093 | 0,127 | 95,224  |
| 1966 | 20 | 0,75 | 0,25 | 2,8 | 2 | 0,1 | 0,897 | 3,329  | 0,116 | 28,589  |
| 1967 | 25 | 0,75 | 0,25 | 2,8 | 2 | 0,1 | 0,999 | 4,200  | 0,120 | 35,129  |
| 1968 | 30 | 0,75 | 0,25 | 2,8 | 2 | 0,1 | 1,072 | 5,009  | 0,123 | 40,837  |
| 1969 | 35 | 0,75 | 0,25 | 2,8 | 2 | 0,1 | 1,108 | 5,684  | 0,126 | 45,189  |
| 1970 | 40 | 0,75 | 0,25 | 2,8 | 2 | 0,1 | 1,118 | 6,216  | 0,129 | 48,185  |
| 1971 | 20 | 0,95 | 0,25 | 2,8 | 2 | 0,1 | 0,933 | 0,661  | 0,117 | 5,653   |
| 1972 | 25 | 0,95 | 0,25 | 2,8 | 2 | 0,1 | 1,031 | 0,823  | 0,120 | 6,832   |
| 1973 | 30 | 0,95 | 0,25 | 2,8 | 2 | 0,1 | 1,085 | 0,962  | 0,124 | 7,766   |
| 1974 | 35 | 0,95 | 0,25 | 2,8 | 2 | 0,1 | 1,112 | 1,070  | 0,127 | 8,400   |



| 1975 | 40 | 0,95               | 0,25 | 2,8 | 2 | 0,1 | 1,110 | 1,152  | 0,131 | 8,797   |
|------|----|--------------------|------|-----|---|-----|-------|--------|-------|---------|
| 1976 | 20 | 0,15               | 0,33 | 2,8 | 2 | 0,1 | 1,028 | 13,450 | 0,121 | 111,397 |
| 1977 | 25 | 0,15               | 0,33 | 2,8 | 2 | 0,1 | 1,093 | 16,699 | 0,123 | 135,798 |
| 1978 | 30 | 0,15               | 0,33 | 2,8 | 2 | 0,1 | 1,144 | 20,067 | 0,125 | 160,507 |
| 1979 | 35 | 0,15               | 0,33 | 2,8 | 2 | 0,1 | 1,179 | 23,435 | 0,127 | 184,588 |
| 1980 | 40 | 0,15               | 0,33 | 2,8 | 2 | 0,1 | 1,201 | 26,703 | 0,129 | 207,281 |
| 1981 | 20 | 0,35               | 0,33 | 2,8 | 2 | 0,1 | 1,067 | 10,127 | 0,122 | 83,323  |
| 1982 | 25 | 0,35               | 0,33 | 2,8 | 2 | 0,1 | 1,131 | 12,380 | 0,124 | 99,763  |
| 1983 | 30 | 0,35               | 0,33 | 2,8 | 2 | 0,1 | 1,174 | 14,563 | 0,127 | 115,068 |
| 1984 | 35 | 0,35               | 0,33 | 2,8 | 2 | 0,1 | 1,195 | 16,565 | 0,129 | 128,399 |
| 1985 | 40 | 0,35               | 0,33 | 2,8 | 2 | 0,1 | 1,200 | 18,325 | 0,132 | 139,327 |
| 1986 | 20 | 0,55               | 0,33 | 2,8 | 2 | 0,1 | 1,100 | 6,878  | 0,122 | 56,191  |
| 1987 | 25 | 0,55               | 0,33 | 2,8 | 2 | 0,1 | 1,157 | 8,260  | 0,125 | 65,908  |
| 1988 | 30 | 0,55               | 0,33 | 2,8 | 2 | 0,1 | 1,186 | 9,499  | 0,128 | 74,076  |
| 1989 | 35 | 0,55               | 0,33 | 2,8 | 2 | 0,1 | 1,192 | 10,544 | 0,131 | 80,359  |
| 1990 | 40 | 0,55               | 0,33 | 2,8 | 2 | 0,1 | 1,180 | 11,400 | 0,134 | 84,886  |
| 1991 | 20 | 0,75               | 0,33 | 2,8 | 2 | 0,1 | 1,127 | 3,735  | 0,123 | 30,278  |
| 1992 | 25 | 0,75               | 0,33 | 2,8 | 2 | 0,1 | 1,172 | 4,400  | 0,127 | 34,743  |
| 1993 | 30 | 0,75               | 0,33 | 2,8 | 2 | 0,1 | 1,187 | 4,953  | 0,130 | 38,106  |
| 1994 | 35 | 0,75               | 0,33 | 2,8 | 2 | 0,1 | 1,177 | 5,392  | 0,133 | 40,421  |
| 1995 | 40 | 0,75               | 0,33 | 2,8 | 2 | 0,1 | 1,157 | 5,744  | 0,137 | 41,953  |
| 1996 | 20 | 0,95               | 0,33 | 2,8 | 2 | 0,1 | 1,147 | 0,727  | 0,124 | 5,843   |
| 1997 | 25 | 0,95               | 0,33 | 2,8 | 2 | 0,1 | 1,178 | 0,840  | 0,128 | 6,560   |
| 1998 | 30 | 0 <mark>,95</mark> | 0,33 | 2,8 | 2 | 0,1 | 1,172 | 0,928  | 0,132 | 7,047   |
| 1999 | 35 | 0,95               | 0,33 | 2,8 | 2 | 0,1 | 1,159 | 0,997  | 0,135 | 7,356   |
| 2000 | 40 | 0,95               | 0,33 | 2,8 | 2 | 0,1 | 1,134 | 1,052  | 0,139 | 7,554   |
| 2001 | 20 | 0,15               | 0,5  | 2,8 | 2 | 0,1 | 1,400 | 13,670 | 0,133 | 103,020 |
| 2002 | 25 | 0,15               | 0,5  | 2,8 | 2 | 0,1 | 1,407 | 16,041 | 0,135 | 118,865 |
| 2003 | 30 | 0,15               | 0,5  | 2,8 | 2 | 0,1 | 1,402 | 18,363 | 0,137 | 133,903 |
| 2004 | 35 | 0,15               | 0,5  | 2,8 | 2 | 0,1 | 1,387 | 20,577 | 0,139 | 147,705 |
| 2005 | 40 | 0,15               | 0,5  | 2,8 | 2 | 0,1 | 1,365 | 22,638 | 0,142 | 159,971 |
| 2006 | 20 | 0,35               | 0,5  | 2,8 | 2 | 0,1 | 1,393 | 9,869  | 0,135 | 73,349  |
| 2007 | 25 | 0,35               | 0,5  | 2,8 | 2 | 0,1 | 1,382 | 11,293 | 0,137 | 82,201  |
| 2008 | 30 | 0,35               | 0,5  | 2,8 | 2 | 0,1 | 1,357 | 12,567 | 0,140 | 89,594  |
| 2009 | 35 | 0,35               | 0,5  | 2,8 | 2 | 0,1 | 1,322 | 13,673 | 0,143 | 95,451  |
| 2010 | 40 | 0,35               | 0,5  | 2,8 | 2 | 0,1 | 1,283 | 14,624 | 0,146 | 99,921  |
| 2011 | 20 | 0,55               | 0,5  | 2,8 | 2 | 0,1 | 1,377 | 6,428  | 0,136 | 47,111  |
| 2012 | 25 | 0,55               | 0,5  | 2,8 | 2 | 0,1 | 1,350 | 7,191  | 0,140 | 51,437  |
| 2013 | 30 | 0,55               | 0,5  | 2,8 | 2 | 0,1 | 1,310 | 7,829  | 0,143 | 54,653  |
| 2014 | 35 | 0,55               | 0,5  | 2,8 | 2 | 0,1 | 1,267 | 8,362  | 0,147 | 56,951  |
| 2015 | 40 | 0,55               | 0,5  | 2,8 | 2 | 0,1 | 1,223 | 8,819  | 0,151 | 58,590  |
| 2016 | 20 | 0,75               | 0,5  | 2,8 | 2 | 0,1 | 1,357 | 3,355  | 0,138 | 24,260  |
| 2017 | 25 | 0,75               | 0,5  | 2,8 | 2 | 0,1 | 1,315 | 3,686  | 0,142 | 25,935  |



| 2018 | 30 | 0,75 | 0,5 | 2,8 | 2 | 0,1 | 1,269 | 3,954 | 0,146 | 27,080 |
|------|----|------|-----|-----|---|-----|-------|-------|-------|--------|
| 2019 | 35 | 0,75 | 0,5 | 2,8 | 2 | 0,1 | 1,222 | 4,179 | 0,150 | 27,862 |
| 2020 | 40 | 0,75 | 0,5 | 2,8 | 2 | 0,1 | 1,181 | 4,378 | 0,154 | 28,421 |
| 2021 | 20 | 0,95 | 0,5 | 2,8 | 2 | 0,1 | 1,333 | 0,630 | 0,140 | 4,498  |
| 2022 | 25 | 0,95 | 0,5 | 2,8 | 2 | 0,1 | 1,284 | 0,683 | 0,144 | 4,733  |
| 2023 | 30 | 0,95 | 0,5 | 2,8 | 2 | 0,1 | 1,228 | 0,726 | 0,148 | 4,887  |
| 2024 | 35 | 0,95 | 0,5 | 2,8 | 2 | 0,1 | 1,188 | 0,762 | 0,153 | 4,992  |
| 2025 | 40 | 0,95 | 0,5 | 2,8 | 2 | 0,1 | 1,150 | 0,796 | 0,157 | 5,069  |
|      |    |      |     | -   |   | -   |       |       |       |        |





## 5.3 ANEXO III: Resultados Graficados

En esta sección nos encontramos un total de 81 gráficas, que se reparten en 27 para cada tipo de condiciones.

### 5.3.1 Gráficos condiciones ambientales



| Caso | Velocidad<br>(m/s) | Longitud (m) | Ancho(m) | Ratio (-) |
|------|--------------------|--------------|----------|-----------|
| 1    | 1,2                | 1,25         | 0,06     | 0,33      |





| Caso | Vel <mark>ocidad</mark><br>(m/s) | Longitud (m) | Ancho(m) | Ratio (-) |
|------|----------------------------------|--------------|----------|-----------|
| 2    | 1.2                              | 2            | 0.1      | 0.33      |





| Caso | Velocidad (m/s) | Longitud (m) | Ancho (m) | Ratio () |
|------|-----------------|--------------|-----------|----------|
| 3    | 2,8             | 1,25         | 0,06      | 0,5      |









| Caso | Vel <mark>ocidad</mark><br>(m/s) | Longitud (m) | Ancho(m) | Ratio (-) |
|------|----------------------------------|--------------|----------|-----------|
| 5    | 2,8                              | 0,5          | 0,06     | 0,33      |





| Caso | Velocidad<br>(m/s) | Longitud (m) | Ancho(m) | Ratio (-) |
|------|--------------------|--------------|----------|-----------|
| 6    | 2,8                | 0,5          | 0,06     | 0,33      |





| Caso | Vel <mark>ocidad</mark><br>(m/s) | Longitud (m) | Ancho(m) | Ratio (-) |
|------|----------------------------------|--------------|----------|-----------|
| 7    | 2,8                              | 1,25         | 0,06     | 0,25      |





| Caso | Velocidad<br>(m/s) | Longitud (m) | Ancho(m) | Ratio (-) |
|------|--------------------|--------------|----------|-----------|
| 8    | 2,8                | 0,5          | 0,06     | 0,33      |





| Caso | Vel <mark>ocidad</mark><br>(m/s) | Longitud (m) | Ancho(m) | Ratio (-) |
|------|----------------------------------|--------------|----------|-----------|
| 9    | 2,8                              | 0,5          | 0,06     | 0,5       |





### 5.3.2 Gráficos Condiciones Geométricas

| Caso | Temperatura<br>ambiente (ºC) | Humedad<br>Relativa (-) | Ratio (-) | Velocidad (m/s) |
|------|------------------------------|-------------------------|-----------|-----------------|
| 1    | 35                           | 0,15                    | 0,5       | 0,2             |

















| Caso | Temperatura<br>ambiente (ºC) | Humedad<br>Relativa (-) | Ratio (-) | Velocidad<br>(m/s) |
|------|------------------------------|-------------------------|-----------|--------------------|
| 5    | 30                           | 0,55                    | 0,33      | 2,8                |





| Caso | Temperatura<br>ambiente (ºC) | Humedad<br>Relativa (-) | Ratio (-) | Velocidad<br>(m/s) |
|------|------------------------------|-------------------------|-----------|--------------------|
| 6    | 20                           | 0,15                    | 0,33      | 2                  |





| Caso | Temperatura<br>ambiente (°C) | Humedad<br>Relativa (-) | Ratio (-) | Velocidad<br>(m/s) |
|------|------------------------------|-------------------------|-----------|--------------------|
| 7    | 20                           | 0,15                    | 0,33      | 1,2                |





0,75

0,33



8

40

2







### 5.3.3 Gráficos Condiciones Operativas

| Caso | Temperatura<br>ambiente (ºC) | Humedad<br>Relativa (-) | Longitud (m) | Ancho (m) |
|------|------------------------------|-------------------------|--------------|-----------|
| 1    | 35                           | 0.35                    | 0.5          | 0.02      |







## "Modelización analítica de enfriador evaporativo indirecto vasado en el ciclo termodinámico de Maisotsenko" $\frac{r=0.25}{r=-r=0.35}$ 25 $\frac{r=0.25}{r=-r=0.35}$



| Caso | Temperatura<br>ambiente (°C) | Humedad<br>Relativa (-) | Longitud (m) | Ancho (m) |
|------|------------------------------|-------------------------|--------------|-----------|
| 3    | 40                           | 0.15                    | 1,25         | 0,1       |





0,75

35

1,25



4

0,06



| Caso | Temperatura<br>ambiente (°C) | Humedad<br>Relativa (-) | Longitud (m) | Ancho (m) |
|------|------------------------------|-------------------------|--------------|-----------|
| 5    | 30                           | 0,35                    | 1,25         | 0,06      |





| Caso | Temperatura<br>ambiente (ºC) | Humedad<br>Relativa (-) | Longitud (m) | Ancho (m) |
|------|------------------------------|-------------------------|--------------|-----------|
| 6    | 20                           | 0,55                    | 2            | 0,06      |









| Caso | Temperatura<br>ambiente (ºC) | Humedad<br>Relativa (-) | Longitud (m) | Ancho (m) |
|------|------------------------------|-------------------------|--------------|-----------|
| 8    | 35                           | 0.55                    | 2            | 0,06      |


## "Modelización analítica de enfriador evaporativo indirecto vasado en el ciclo termodinámico de Maisotsenko"





## 6. BIBLIOGRAFÍA

Todas las referencias bibliográficas

1. **M. Abdelhak**, «Soil improvement in arid and semiarid regions for sustainable development,» de Natural Resources Conservation and Advances for Sustainability, 2022, pp. 73-90, Chapter 4.

2. J. Spinoni, P. Barbosa, M. Cherlet, G. Forzieri, N. McCormick, G. Naumann, J.V. Vogt, A. Dosio, «How will the progressive global increase of arid areas affect population and land-use in the 21st century?» de Global and Planetary Change, 2021, pp. 103597, Volumen 205.

3. **Duan Z. Zhan, Zhao, Dong**. Experimental study of a counter-flow regenerative evaporative cooler. In: Building and Environment 104, 2016, 47-58: ISSN 0360-1323.

4. **Riangvilaikul B. and Kumar S**. An experimental study of a novel dew point evaporative cooling system. In: Energy and Buildings 42.5, 2010, 637-644: 0378-7788.

5. **Bruno F**. On-site experimental testing of a novel dew point evaporative cooler. In: Energy and buildings 43.12, 2011, 3475-3483: 0378-7788.

6. **Jradi M and Riffat S**. Experimental and numerical investigation of a dew-point cooling system for thermal comfort in buildings. In: Applied Energy 132, 2014, 524-535: 0306-2619.

7. **Pandelidis D, Anisimov S, Worek MW**. Performance study of the Maisotsenko Cycle heat exchangers in different air-conditioning applications. In: International Journal of Heat and Mass Transfer 81, 2015, 207-221:0017-9310.

8. **Boukhanouf R, Alharbi A, Hatem G et al**. Computer modelling and experimental investigation of building integrated sub-wet bulb temperature evaporative cooling system. In: Applied Thermal Engineering 115, 2007, 201-211: 1359-4311.

9. **Caliskan H, Dincer I, Hepbasli A**. Exergetic and sustainability performance comparison of novel and conventional air cooling systems for building applications. In: Energy and Buildings 43.6, 2011, 1461-1472: 0378-7788.



10. **Oh SJ et al**. Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling; In: Energy 168, 2019, 85-107: 0360-5442.

11. **Kabeel A, Abdelgaied M, Sathyamurthy R, Arunkumar T**. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit. In: Alexandria Engineering Journal 56.4, 2017, 395-403: 1110-0168.

12. **Zhao X, Yang S, Duan Z, Riffat SB**. Feasibility study of a novel dew point air conditioning system for China building application. In: Building and Environment 44.9, 2009, 1990-1999: 0360-1323.

13. **Jaber S, Ajib S**. Evaporative cooling as an efficient system in Mediterranean region. In: Applied Thermal Engineering 31.14, 2011, 2590-2596: 1359-4311.

14. **Pandelidis D, Anisimov S, Drag P, Sidorczyk M, Pacak A**. Analysis of application of the M-Cycle heat and mass exchanger to the typical air conditioning systems in Poland. In: Energy and Buildings 158, 2018, 873-883: 0378-7788.

15. **Riangvilaikul B. and Kumar S**. Numerical study of a novel dew point evaporative cooling system. In: Energy and Buildings 42.11, 2010, 2241-2250: 0378-7788.

16. **Zhan C, Duan Z, Zhao X, Smith S, Jin H, Riffat S**. Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings. In: Energy 36.12, 2011, 6790-6805: 0360-5442.

17. Numerical analysis of selected evaporative exchangers with the Maisotsenko cycle: **Sergey Anisimov , Demis Pandelidis, Jan Danielewicz.** 

18. Experimental study of a counter flow regenerative evaporative cooler with finned channels **Joohyun Lee**<sup>1</sup>, **Dae-Young Lee** 

19. Comparison study of the counter-flow regenerative evaporative heat exchangers with numerical methods: **Demis Pandelidis** <sup>a</sup>, **Sergey Anisimov**, **William M.** 

