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A B S T R A C T   

In this paper, we present an algorithm designed to automatically merge predictions from a collection of indi-
vidual prediction methods coded in R. The algorithm employs varying weights and decision rules to ascertain the 
optimal amalgamation of these methods, with the aim of forecasting historical time series data while minimizing 
human intervention. The algorithm serves as an automated component within the artificial intelligence toolkit. 

The proposed algorithm (al), denoted as “alPCA” is founded on principal component analysis (PCA), hence the 
acronym. Commencing with 52 configurations of 11 distinct methods available in R, we calculate several loss 
functions: specifically, scaled Mean Absolute Percentage Error (sMAPE) and Mean Absolute Scaled Error (MASE) 
for both fitting (Training Phase) and prediction (Validation Phase), along with Root Mean Squared Error (RMSE) 
and Overall Weighted Average (OWA) solely for prediction (Validation Phase). We then employ PCA to reduce 
the error matrix derived from this data to one or two dimensions. Subsequently, the methods are ranked based on 
their proximity to the highest score. A probability distribution is fitted to this proximity metric, and utilizing the 
percentiles of these values, the optimal methods for combination are selected. We propose three categories of 
weights derived from the PCA scores, encompassing the fitting sMAPE (Training Phase) and the prediction 
sMAPE (Validation Phase), to facilitate the amalgamation process. 

This approach is applied to seven distinct univariate time series across diverse domains, including automobile 
sales, electricity production, and CO2 levels. Additionally, a set of 100 random monthly series from the M4 
competition is included in the analysis. To assess the predictive precision of our algorithm, we compare its 
performance against three widely utilized combined prediction algorithms available in R. We evaluate the 
outcomes in Test Phase (unseen data) using four distinct loss functions and conduct a sensitivity analysis to gauge 
the algorithm’s robustness and efficacy across various specifications.   

1. Introduction 

Forecasting plays a crucial role as an artificial intelligence (AI) tool 
in various domains and industries. By leveraging AI techniques, fore-
casting models can analyze historical data, identify patterns and trends, 
and generate predictions for future events or outcomes. AI-powered 
forecasting can be integrated with decision support systems, providing 
valuable insights for strategic planning, resource allocation, inventory 
management, risk assessment, and other business processes. This inte-
gration enhances the effectiveness of decision-making by incorporating 
data-driven predictions. 

In contemporary times, an array of statistical forecasting methods is 
at our disposal. These encompass straightforward approaches like Naïve, 
simple moving average, and exponential smoothing, as well as more 

intricate techniques such as ARIMA (integrated autoregressive moving 
average), TBATS (Trigonometric seasonality, Box-Cox transform, ARMA 
errors, Trend, and Seasonal components), and STLM (seasonal and trend 
decomposition using Loess). Recent years have witnessed a heightened 
focus on the assimilation of Artificial Intelligence techniques (Haykin, 
2009), exemplified by models such as NNAR (neural network autore-
gression) and GRNN (generalized regression neural networks). 

Given the wide spectrum of individual methods available, some re-
searchers have delved into combining them to yield enhanced forecasts. 
Forecast combination, also referred to as forecast pooling, entails 
amalgamating two or more individual forecasts from a panel to generate 
a singular pooled forecast. While Bates & Granger (1969) are often 
credited as pioneers of this technique, earlier work by Barnard (1963) 
suggested employing a simple arithmetic mean of two forecasts due to its 
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lower mean square error. The rationale behind this fusion of forecasts 
stems from the distinct approaches and characteristics each forecasting 
method employs, enabling the amalgamation to leverage this diversity 
(Armstrong, 2001a,b). As Breiman (2001) points out, averaging models 
can lead to variance reduction and are pivotal components in aggrega-
tion processes alongside expert selection (Brown et al., 2005). 

Experimental results demonstrate that combinations based on a wide 
diversity of prediction methods achieve forecasts with less error 
(Thomson et al., 2019; Lichtendahl & Winkler, 2020). For instance, the 
combination of ARIMA with other methods, as used by Wang et al. 
(2020) to predict CO2 emissions by 2030 in China, India, and the United 
States. Fig. 1 illustrates a simple combination of methods or experts, 
where “h” signifies the number of periods constituting the prediction 
horizon. 

The quality of the individual forecasts being combined and the 
estimation of combination weights assigned to each forecast are crucial 
factors (Timmermann, 2006; Cang & Yu, 2014). Combination schemes 
have evolved from simple methods without estimation to sophisticated 
approaches involving time-varying weights, nonlinear combinations, 
correlations among components, o cross-learning. These schemes 
encompass combining point forecasts and probabilistic forecasts (Li 
et al., 2020; Montero-Manso et al., 2020). 

The development of robust offline or online aggregation algorithms 
has yielded promising prediction results even in complex environments. 
Ensemble methods, expert aggregation, and forecast combination have 
proven highly effective in time series forecasting across various real- 
world domains, including industrial production, sales and demand, oil 
prices, energy, pollution levels, health or car sales (Stock & Watson, 
2006; Gurnani et al., 2017; Manescu & Van Robays, 2014; Gaillard et al., 
2016; Auder et al., 2016; Perone, 2022; Fortsch et al., 2021). 

In the R language (R Core Team, 2020), there are three packages that 
combine a wide set of forecasting methods (experts) and, according to 
the reviewed literature, significantly improve the predictions provided 
by these experts. These packages are Opera (Online Prediction by 
ExpeRt Aggregation), developed by Gaillard and Goude (2016), Fore-
castComb (Weiss et al., 2018), and ForecastHybrid (Shaub & Ellis, 
2020). 

The ForecastComb package (version 1.3.1) allows the use of up to 
fifteen forecasting methods, including simple methods, regression-based 
methods, and eigenvector-based methods. It also includes helpful tools 
to handle issues in the combination process, such as missing values or 
multicollinearity. Regression-based combinations are employed to 
optimize forecasting when certain component forecasts (experts) 
outperform the rest, while eigenvector-based combinations are used 
when all forecasts are at the same level (Hsiao & Wan, 2014). Several 
information criteria, including AIC (Akaike’s information criterion), BIC 
(Bayesian information criterion or Schwarz information criterion), cor-
rected AIC (Hurvich & Tsai, 1989), and Hannan Quinn information 
criterion (Hannan & Quinn, 1979), are available in the complete subset 

regression method. The package provides users with phases for data 
preparation, model estimation, and result interpretation through sum-
maries and tracing functions. The component methods and models to be 
combined in ForecastComb include ARIMA, ETS (Exponential Triple 
Smoothing), NNETAR (Feed-forward neural networks with a single 
hidden layer and lagged inputs) and Dynamic Optimized Theta Model 
(Fiorucci, 2016). 

The ForecastHybrid package (version 5.0.19) utilizes forecasts 
generated from experts such as ARIMA, ETS, theta method, NNETAR, 
STLM, TBATS, and SNAIVE (naive seasonal). These forecasts can be 
combined with equal weights, weights based on sample errors (Bates & 
Granger,1969), or validated crossweights. The package also supports 
cross-validation of time series data with user-supplied models and 
forecast functions to assess the accuracy of the model used. Hajirahimi & 
Khashei (2019) analyzed over 150 hybrid structures and models and 
compared their performance to that of non-hybrid models in the do-
mains of time series modeling and forecasting. Many of these models 
included ARIMA and neural networks as components. Suhartono et al. 
(2017) developed a hybrid model that predicts time series containing 
trend, seasonal, and calendar variation patterns. This model combines 
ARIMA with Artificial Neural Networks and was designed for prediction 
in economics and business domains. Xiao et al. (2012) developed a 
hybrid model that combines ARIMA with Elman Artificial Neural 
Network (ANN) for container throughput forecasting at Tianjin Port. 
Ahn et al. (2022) constructed a Hybrid Model for forecasting indoor CO2 
concentration by integrating a Mass balance equation model and a 
Bayesian Neural Network (BNN). Vavliakis et al. (2021) proposed a 
hybrid model suitable for modeling linear and non-linear sales trends in 
e-commerce by combining an ARIMA model with an LSTM (Long Short- 
Term Memory) neural network. 

Opera (Online Prediction by ExpeRt Aggregation) provides several 
algorithms for robust prediction of time series using advice from experts, 
either online or provided by the user in offline mode. Opera offers three 
functions: mixture, for constructing the target algorithm; predict, for 
making predictions using the algorithm; and oracle, for evaluating the 
performance of experts and comparing it with the performance of the 
combination algorithm. In recent years, ensemble methods and expert 
aggregation, as demonstrated in Opera, have proven to be highly 
effective in the context of online time series forecasting. They have been 
applied to diverse real-world sectors, including pollution forecasting 
(Baudin, 2016), finance (Amat et al., 2018), and energy (Nowotarski & 
Weron, 2018). To obtain the results presented in this study, we used 
both offline and online options in Opera and incorporated the same 
experts as ForecastHybrid in offline mode, ensuring comparability of the 
results. 

The remainder of this paper is organized as follows. The subsequent 
section outlines the study’s objectives. In the Material and Methods 
section, we describe the time series used for validation, list the indi-
vidual prediction methods employed, and elaborate on our proposed 

Fig. 1. Combining forecasting from integrated methods (or experts).  
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algorithm designed to achieve effective prediction combinations. In 
Section 4, we present the outcomes of applying our algorithm to unseen 
data from the mentioned series, comparing these with the results ob-
tained from ForecastComb, ForecastHybrid, and Opera packages. The 
paper concludes with final remarks. 

2. Objectives 

The main objective of this study is to design and develop a Decision 
Support System (DSS) based on an algorithm that automatically com-
bines individual forecasting methods available in R. The aim is to create 
a method that improves upon the results obtained from using these in-
dividual methods alone, as well as the results achieved by reference 
combined methods documented in the literature. The study focuses 
specifically on time series forecasting in economically impactful 
activities. 

To accomplish this objective, the study has the following specific 
goals:  

1. Reduce sensitivity to the choice of error measure when comparing 
results on the validation set.  

2. Develop a program that automatically ranks methods and determines 
their weights to generate the final combination of forecasts.  

3. Provide the user with various stopping rules to determine when to 
terminate the combination of forecasts.  

4. Conduct a sensitivity analysis to assess the robustness of the method 
and its sensitivity to different specifications.  

5. Compare the proposed method with other forecast combination 
methods using different relevant time series datasets found in the 
literature.  

6. Create an automatic tool within the realm of artificial intelligence to 
optimize the prediction of historical time series data, regardless of 
the application area, with minimal human intervention. 

By achieving these goals, the study aims to provide an effective and 
automated solution for improving time series forecasting accuracy in 
various domains. 

3. Material and methods 

3.1. Data: Key features 

In this section, the data used in the study is described along with its 
key features. The aim is to introduce diversity in the type of time series 
data to be predicted in order to test the performance of the proposed 
algorithm under different patterns. The following datasets were 
considered:  

1. Monthly total sales of new cars in the USA, as well as individual sales 
figures for four companies in the sector (Ford, General Motors, 
Honda, and Toyota). This dataset provides five alternative datasets 
to test the prediction methods. The data spans from January 1, 2005, 
to December 31, 2021, resulting in a panel data with 17 years and 
204 observations for each of the five items. The data was obtained 
from the Federal Reserve of St. Louis and is available at https://www 
.goodcarbadcar.net/. The selection of these time series was based on 
the significance of car production in the economy and employment 
across various industries. 

2. Monthly mean CO2 mole fraction (co2-mm-mlo) data, which repre-
sents CO2 emissions. The series is determined from daily averages 
and is corrected to the middle of the month when missing days are 
concentrated early or late in the month. The data spans from January 
1, 2000, to December 31, 2019, resulting in a panel data with 20 
years and 240 observations. The data was sourced from the US 
Government’s Earth System Research Laboratory, Global Monitoring 
Division, and can be retrieved from the Trends in Atmospheric 

Carbon Dioxide website (https://datahub.io/core/co2-ppm#data). 
The choice of this series is justified by the influence of CO2 emissions 
on the environment and its impact on production and economic 
growth (Shpak et al., 2022).  

3. Electricity sales to ultimate customers in the transportation sector, 
including availability from the public supply system. This dataset 
represents the generation and availability of electricity. The time 
series covers the period from January 1, 2005, to December 31, 
2021, resulting in a panel data with 17 years and 204 observations. 
The data was obtained from the U.S. government and can be 
retrieved from the U.S. Energy Information Administration (https: 
//www.eia.gov/totalenergy/data/monthly/). Given the economic 
importance of electricity generation, this dataset was included to 
evaluate the performance of the algorithm in this domain.  

4. We selected a random sample of 100 monthly series from the 48,000 
series collected in the M4 contest available in the R package 
M4comp2018 (Montero-Manso et al., 2018). This package contains 
100,000 time series with different seasonal pattern (yearly, quar-
terly, monthly, …), the values of the series to perform the adjust-
ments and the unseen values to assess the accuracy of the 
predictions. With this sample we expect to corroborate the improved 
forecast accuracy obtained with our algorithm. 

The inclusion of these diverse datasets allows for testing the algo-
rithm’s performance under different scenarios and patterns. The chosen 
datasets have significant economic implications, such as their impact on 
production, employment, and the environment. By considering these 
datasets, the study addresses the importance of demand forecasting in 
industries and supply chain management, inventory control, and envi-
ronmental considerations. 

3.2. Methods 

In the development of the alPCA algorithm proposed in this paper, 
the goal is to provide an automatic alternative to both individual fore-
casting methods and combination methods offered by packages like 
ForecastComb, Opera, and ForecastHybrid. These packages consist of 
individual forecasting methods referred to as “experts,” which are 
equipped with functions to efficiently group the expert forecasts using 
combination methods such as weighted averages or regression models. 
The experts work individually on historical data sets (y1, y2,⋯,yn− h,⋯,

yn) and provide successive predictions for each time point within a 
forecasting interval (tn+1, …., tn+h). The algorithm, referred to as the 
forecaster, combines these predictions with historical data to determine 
the best forecast (ŷn+1, ŷn+2,⋯., ŷn+h) for the interval. 

To compare and evaluate the performance of the three packages, the 
study applied them under similar conditions, using the same series and 
forecasting methods as experts. Here are the main characteristics or 
usage recommendations of each method considered in the algorithm: 

• Naïve-sNaïve: These are simple methods that do not consider sea-
sonality and consider seasonality, respectively.  

• ETS: This method is suitable for studying series with trend (damped 
or not) and seasonality. It assigns greater weight to more recent data 
and includes a parameter to dampen the trend to a flat line in the 
future.  

• ARIMA: Recommended for non-stationary series, this method uses 
auto-correlations and moving averages of residual errors to forecast 
future values.  

• THETA: It works on seasonally adjusted data and decomposes them 
into two lines. The first line estimates the long-term trend component 
by removing the curvature, while the second line approximates the 
short-term behavior by doubling the local curvatures. 

C. García-Aroca et al.                                                                                                                                                                                                                         

https://www.goodcarbadcar.net/
https://www.goodcarbadcar.net/
https://datahub.io/core/co2-ppm%23data
https://www.eia.gov/totalenergy/data/monthly/
https://www.eia.gov/totalenergy/data/monthly/


Expert Systems With Applications 237 (2024) 121636

4

• STL: This method is used to decompose seasonal time series with 
trends. It incorporates the Loess method to estimate non-linear re-
lationships and handle occasional outliers.  

• CROSTON: Included to handle time series representing intermittent 
demand, this method uses simple exponential smoothing to estimate 
the average demand size and the average interval between demands.  

• PROPHET: Suitable for series with strong seasonal effects, missing 
data, changes in trend, and outliers. It uses an additive model to 
adjust non-linear trends for annual, weekly, and daily seasonality, 
including vacation effects.  

• NNAR: This model approximates nonlinear functions. For non- 
seasonal series, the fitted model NNAR(p, k) is used, where k is the 
number of nodes. For seasonal data, the fitted model is NNAR(p, P, 
k). 

• TBATS: This method applies a trigonometric transformation of sea-
sonality and includes ARMA functionality and automatic Box-Cox 
transformation for error treatment. It can handle unequal variances 
and relational nonlinearity.  

• GRNN: Suitable for time series with smaller-than-usual data sets, 
GRNN is a neural network-based technique that uses nonparametric 
regression and Gaussian functions for accurate estimation. 

• MLP: The Multilayer Perceptrons (MLPs) are fully connected feed-
forward neural networks commonly used for time series analysis. 
They are trained using error backpropagation. The alPCA algorithm 
incorporates the thief function, which applies the temporal hierar-
chical approach of Athanasopoulos et al (2017) for forecasting using 
MLPs. 

The different predictors obtained by assigning parameters or argu-
ments to each method are referred to as “configurations.” These con-
figurations quantify the possibilities in the configuration’s column of the 
Table 1. The integration of a method into alPCA requires its imple-
mentation in R. 

The process described involves a set of experts providing individual 
predictions based on historical data, which are then combined by the 
algorithm (forecaster) to improve the predictions. This process follows a 
protocol for sequential decisions by the forecaster, aiming to predict an 
unknown sequence of outcomes (Cesa-Bianchi & Lugosi, 2006). The 
forecaster’s predictions are compared to the predictions of reference 
experts using a non-negative loss function. 

The reason why these methods have been integrated is because this 
set of methods is able to deal with a wide range of series with different 
typologies, like series with high seasonality, with trend (short or long 
component, linear or non-linear), non-stationary, intermittent, with 
missing data, with effects of vacations, changes in trend and outliers and 
time series with a smaller than usual data set. 

The selection of the integrated methods in the alPCA algorithm was 
driven by their ability to handle various types of time series with 
different characteristics. The chosen set of methods can effectively deal 
with series exhibiting diverse typologies, such as:  

• High Seasonality: Some time series exhibit strong seasonal patterns, 
and the integrated methods can effectively capture and model this 
seasonality, allowing for accurate forecasting.  

• Trend Components: Time series with trend components, whether 
short or long, linear or non-linear, can be handled by the integrated 
methods. These methods are capable of capturing and incorporating 
trend information into the forecasting process.  

• Non-Stationary Series: Non-stationary series require specific 
modeling techniques to account for the changing properties over 
time. The integrated methods, such as ARIMA, are suitable for 
modeling and forecasting non-stationary series.  

• Intermittent Demand: Time series representing intermittent demand, 
where periods of zero or low demand alternate with periods of high 
demand, are addressed by the integrated methods. The CROSTON 

method, for example, is designed to handle such intermittent de-
mand patterns.  

• Missing Data: Time series with missing data points pose challenges 
for forecasting. The integrated methods have mechanisms to handle 
missing data and provide accurate forecasts even in the presence of 
data gaps. 

Table 1 
Methods and configurations integrated in alPCA.  

Method Parameters/ 
criteria 

Functions R Configurations 

Naïve - sNaïve naive 
snaive 

naive(), snaive() 2 

ETS 
Exponential 
smoothing state 
space model 

Mean Square 
Error: mse 
Average MSE 
over first nmse 
forecast 
horizons: amse 
Standard 
deviation of 
residuals: sigma 
Mean of 
absolute 
residuals: mae 
Log-likelihood: 
lik 
Combined with 
damped =
NULL/TRUE 

ets() 10 

ARIMA automatic 
Hyndman- 
Khandakar 
algorithm 

AIC 
BIC 

auto.arima() 2 

thetaModels Nelder-Mead 
L-BFGS-B-SA 

otm.arxiv(), dotm 
(), dstm(), otm(), 
stm(), stheta() 

14 

STL 
Seasonal 
Decomposition of 
Time Series by 
Loess 

ets 
arima 
thetaf 

stlf() 3 

Croston 
Croston’s method 
for intermittent 
demand forecasting 

croston 
sba 
sbj 
funciones de 
pérdida 
combinadas: 
Mean Absolute 
Rate: mar 
Mean Squared 
Rate: msr 
Mean Absolute 
Error: mae 
Mean Squared 
Error: mse 

crost() 12 

Prophet additive 
multiplicative 

prophet() 2 

NNAR 
Neural Network 
ARchitecture  

nnetar() 1 

TBATS 
Trigonometric 
seasonality Box- 
Cox transformation 
ARMA errors Trend 
Seasonal 
components 

aic tbats() 1 

GRNN 
General Regression 
Neural Network 

additive 
multiplicative 

grnn_forecasting() 2 

MLP 
Multilayer 
perceptron 

thief 
median 
mean 

mlp.thief()mlp 
()  

3  
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• Effects of Vacations: Time series influenced by vacation or holiday 
effects require models that can account for these specific patterns. 
The PROPHET method, for instance, incorporates annual, weekly, 
and daily seasonality, considering the effects of vacations.  

• Changes in Trend and Outliers: Time series that experience changes 
in trend or contain outlier observations can be effectively modeled 
by the integrated methods. Techniques like STL (Seasonal and Trend 
decomposition using Loess) can identify and handle such anomalies.  

• Smaller Than Usual Data Set: Time series with limited data points 
pose challenges for modeling and forecasting. The integrated 
methods, such as GRNN (Generalized Regression Neural Network), 
can handle smaller data sets and provide accurate predictions. 

By integrating these diverse methods into the alPCA algorithm, a 
wide range of time series typologies can be effectively addressed, 
allowing for accurate and robust forecasting across different scenarios. 

3.3. Predictive algorithm based on principal component analysis (alPCA) 

The alPCA algorithm, which serves as the forecaster in this study, 
follows a similar structure to the one described earlier. It consists of 
eleven individual experts, each configured with different options 
available in R, resulting in a total of 52 different forecasts for each time 
series (refer to Table 1). The algorithm also adheres to the protocol 
introduced by Cesa-Bianchi & Lugosi (2006), similar to the benchmark 
packages. However, alPCA incorporates several innovative elements 
compared to these packages and individual methods. 

The following are the step-by-step processes performed by the alPCA 
algorithm to achieve its objectives:  

1. These phases are applied to each individual time series considered in 
the study (Fig. 2). Since the time series are monthly, the prediction 
horizon (h) is set to one year, equivalent to 12 months.  
• Training Phase (T1): In this phase, the algorithm is trained and 

fitted using the available historical data. The training period in-
cludes the data from y1,y2,⋯,yn− h, , where n is the total number of 
observations in the time series.  

• Validation Phase (T2): After training, the algorithm proceeds to the 
validation phase. In this phase, the algorithm generates pre-
dictions for the period from yn− h+1,⋯,yn, which corresponds to the 
next h months after the training period. The prediction errors are 
calculated by comparing the predicted values with the actual 
values from the validation period.  

• Test Phase (T3): In the test phase, the algorithm’s performance is 
evaluated based on the predictions made for the future h months, 
starting from yn+1,yn+2,⋯,yn+h. These predictions are compared to 
the results obtained from the other prediction combination pack-
ages mentioned in the study. Data from this phase would be the 
unseen data 

alPCA automatically applies each of the 11 individual methods and 
its corresponding configurations (52 in all) that integrate the algorithm 
on the series fitting each configuration in the T1. Predictions are 
generated for the T2 period.  

2. We obtained the values of the fitting error sMAPE and MASE in T1, 
whereas sMAPE, MASE, RMSE and OWA are used in T2. These error 
measures are defined below, indicating their name, nature, mathe-
matical expression and the time interval over which they are 
measured. The four functions can be found in the R Metrics package.  
○ Symmetric Mean Absolute Percentage Error (sMAPE) 

sMAPET1 =
200

n − h
∑n− h

t=1

|yt − ŷt|

|yt + ŷt|
[1]  

sMAPET2 =
200
h

∑n

t=n− h+1

|yt − ŷt|

|yt + ŷt|
[2]    

○ Mean Absolute Scaled Error (MASE) 

MASET1 =

∑n− h
t=1 |yt − ŷt|

n− h
n− 2h

∑n− h
t=h+1|yt − yt− h|

[3]  

MASET2 =

∑n
t=n− h+1|yt − ŷt|

h
h− 1

∑n
t=n− h+2|yt − yt− 1|

[4]    

○ Root Mean Square Error (RMSE) 

RMSET2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑h

t=1(yt − ŷt)
2

h

√

[5]   

Fig. 2. Structure of the first 7 monthly time series for algorithm validation.  
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○ Overall Weighted Average (OWA), is a comparison metric that 
calculates the average of sMAPE and MASE in relation to the Naïve 
2 model, as shown in the following expression: 

OWAT2 =
1
2

(
MASET2

MASEsnaive.T2

+
sMAPET2

sMAPEsnaive.T2

)

[6]   

The error measures considered in this paper have been used in 
several predictives studies of similar areas to those covered in this article 
and using forecast combinations. Bakay & Ağbulut (2021) and Guer-
moui et al. (2020) applied RMSE in their respective researches. Sym-
metric mean absolute percentage error (sMAPE) loss function was used 
in the research of Castelo Branco & Werner, (2018) and Ensafi et al. 
(2022). RMSE and sMAPE both were used by Xiao et al. (2012) and Qu 
et al. (2022). sMAPE and MASE were used for Zhuang et al. (2022) in a 
combined forecasting method for intermittent demand using the auto-
motive aftermarket data. sMAPE, mean absolute scaled error (MASE), 
and overall weighted average (OWA) were used to evaluate the per-
formance of the forecasting methods by Montero-Manso et al. (2020), 
Cawood and Van Zyl (2022) and Hyndman et al. (2022), among others.  

3. The algorithm performs a Principal Component Analysis to reduce 
the size of the error matrix, with six columns containing the six error 
measures above. We are left with one PC when it explains>80% of 
the variability, and with two PCs when the first one does not reach 
that percentage. This result, univariate CP1 or bivariate CP1 and CP2, 
provides an error score for each of the proposed methods, that is 
calculated as a linear combination of the original error variables, 
with weights pi

1,⋯, pi
6 (i = 1 for CP1 and i = 2 for CP2). 

xCP1 = p1
1sMAPET1 + p1

2MASET1 + p1
3RMSET2 + p1

4sMAPET2

+p1
5MASET2 + p1

6OWAT2

[7]  

xCP2 = p2
1sMAPET1 + p2

2MASET1 + p2
3RMSET2 + p2

4sMAPET2

+p2
5MASET2 + p2

6OWAT2

[8] 

Since the fitting is performed with the training subseries (T1), the 
largest in dimension, the fitting errors sMAPET1 , MASET1 will have lower 
variability, and the prediction errors on the test subseries (T2), sMAPET2 , 
MASET2 ,RMSET2 and OWAT2 are expected to have higher variability 
since this sample has not been used in the fitting. This behaviour will 
have an impact on the error weights on the principal components, so 
there are expected:  

a. similar signs for pi
1, pi

2, and similar signs for pi
3, …, pi

6, in any of the 
components; we therefore use the nomenclature.  

b. si
1 = sign(pi

1, pi
2) = sign(pi

1 + pi
2), si

2 = sign(pi
3, …, pi

6) = sign(pi
3+ …+

pi
6,) [9].  

c. in component 1: higher magnitudes (in absolute value) for weights 
p1

3, …, p1
6 than for weights p1

1, p1
2 (because they contain more 

variability).  
d. in component 2: magnitudes greater (in absolute value) for the 

weights p2
1, p2

2, than for the weights p2
3, …, p2

6, due to the orthogonal 
behaviour of the components.  

e. the interpretation of the scores is extracted from the signs si
1 and si

2 
and their magnitudes, as explained below.  
4. Next, alPCA orders the fitting methods used, calculating for each 

of them the score CP1, and also CP2 when two components are 
required. The ordering of the methods will be given according to 
the Manhattan distance of a given method to the best one being 
this the one associated with the smallest error committed. 

The best method, as well as the distance of each of the remaining 
methods to it, is identified through the sign of the weights of the error 

measures at T1 and T2:  

a. when we consider only one component, CP1, the best method will be 
given by the sign of the weights for the errors in T2, i.e. by s1

2:   
i. s1

2 positive: identifies as the best method the one with the lowest 
score, that is, the one that provides the min(xCP1 ), and the dis-
tance to the best will be given by |xCP1 - min(xCP1 )|.  

ii. s1
2 negative: identifies as the best method the one with the highest 

score, that is, the one that gives the max(xCP1 ), and the distance 
to the best will be given by |max(xCP1 ) - xCP1 |.  
b. when we consider two components, CP1 and CP2, the best 

method in each of the components or dimensions will be 
defined according to the signs of the weights s1

2 for CP1 and s2
1 

for CP2. The Manhattan distance to the best method will then 
be determined according to:  

i. |xCP1 -min(xCP1 )| + |xCP2 -min(xCP2 )| ifs1
2 > 0 ys2

1 > 0.  

ii. |xCP1 -min(xCP1 )| + |max(xCP2 )- xCP2 | ifs1
2 > 0 ys2

1 < 0.  

iii. |max(xCP1 )- xCP1 | + |xCP2 -min(xCP2 )| ifs1
2 < 0 ys2

1 > 0.  
iv. |max(xCP1 )- xCP1 | + |max(xCP2 )- xCP2 | ifs1

2 < 0 ys2
1 < 0.  

5. A parametric cutoff point is assessed to determine how many 
methods should be combined. The goal is to include the 
methods that are closest to the best method based on their 
distance. This cutoff point is determined using a sequential 
inclusion rule, where the shortest distance to the best method 
is considered for each inclusion. 

To determine the cutoff point, a parametric distribution is fitted to 
the distances between the methods and the best method. The Expo-
nential, Gamma, and Inverse Gamma distributions are considered as 
alternatives, and the best distribution is selected using the Bayesian 
Information Criterion (BIC) criterion. The fitting process is performed 
using the univariateML package in R. 

Once the distribution is fitted, theoretical percentiles are calculated 
to establish the cutoff points for method selection. The percentiles 
chosen are I={5, 10, 15, 20, 25, 50, 75, 80, 85, 90, 95, 100}. For 
example, the 5th percentile (I5) will include only those methods whose 
distance to the best method is less than I5, while the 100th percentile 
will include all methods in the combined estimator. 

By using these cutoff points, the alPCA algorithm can determine the 
appropriate number of methods to include in the combination based on 
their proximity to the best method, providing a formal and less data- 
dependent approach compared to empirical percentiles. 

6. The choice of how to combine the selected methods involves deter-
mining the weights to assign to each method. Three alternative 
weights, denoted as w1, w2, and w3, are proposed. These weights are 
described in Table 2:  
a. For w1, the absolute error scores × are used for each of the m 

methods in the CP1 component. Each method is weighted based 
on the proportion of its error score compared to the sum of all 
errors. This means that methods with lower absolute error scores 
will receive higher weights.  

b. For w2, the sMAPE fitted error for T1 is used. T1 represents the 
closest horizon to the data to be predicted at T2. The weight 
assigned to each method is higher when the fitted error at T1 is 

Table 2 
Weights used for combining the methods in the alPCA forecast.  

w1 =

⃒
⃒xj

⃒
⃒

∑m
j=1

⃒
⃒xj

⃒
⃒

w2 =

1
sMAPET1 j

∑m
j=1

1
sMAPET1 j  

w3 =

1
sMAPET2 j

∑m
j=1

1
sMAPET2 j   
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lower. The weights are constructed by standardizing the inverses 
of the sMAPE errors at T1.  

c. Similar to w2, w3 has the same structure and measurements, but it 
uses the sMAPE forecast error for T2. T2 represents the closest 
horizon to the data to be predicted at T3. The weights are con-
structed based on the standardized inverses of the sMAPE forecast 
errors at T2.  

7. Applies each of the individual methods on the series, fitting each 
configuration in the T1 + T2.  

8. For each percentile (cut-off point) and each proposed weight (wi), 
forecasts of T3 are obtained for the combination of methods selected. 

Next, the algorithm described is written, in order to make it clearer to 
the reader. 

Diagram 1: alPCA algorithm process.  
Algorithm alPCA: forecasts combination algorithm based on Principal Component 
Analysis 

1: procedure alPCA algorithm (S, Ys, Ns, h, j, i) 
2: Let Ys be a time series in S with length Ns. Divide Ys into two subsets: 

Ts,1 = y1, y2, …, yn-h, Ts,2 = yn-h+1, …, yNs with h = 12 
3: Let Mj be one of the J considered forecasting configurations. 
4: for all s∊S do 
5: for all j∊J do 
6: Obtains the fitting values in T1 and predictions at T2 
7: Calculate sMAPE and MASE in T1, and sMAPE, MASE, RMSE and OWA in T2 
8: end for 
9: Builds EJ,6 and removes duplicate rows 
10: Obtains a PCA score 
11: Order the rows of EJ,6 according to their Manhattan distance to the best 

method. 
12: Obtains I quantiles for fitted distribution to the distance to the best method. 
13: Let KI ⊂ J be the final subset of selected configurations 
14: for all i∊ I do 
15: for all z∊Ki do 
16: Determine the weights (wv

s,z) to combine the z configurations for v = 1, 2, 
3 

17: Apply the Mz configuration to fit Ys and generate the h-step-ahead 
forecast ŷz

s,t , for t = Ns + 1, …, Ns + h 
18: end for 
19: end for 
20: Compute the combined forecasts: ŷv

s,i,t =
∑

z∈Ki
wv

s,z ŷz
s,t for v = 1, 2, 3 

21: end for 
22: end procedure  

4. Experimental results 

To compare the performance of the alPCA algorithm with the 
reference forecasting packages (ForecastComb, Opera, and Fore-
castHybrid), the ex-post errors on T3 are considered (unseen data). By 
comparing the sMAPE, RMSE, and MAE values, we can draw conclusions 
about the relative performance of the different methods and determine 
which approach yields more accurate forecasts. The results obtained 
from applying the alPCA algorithm and the reference forecasting 

packages to the seven series can be analyzed based on these error 
metrics. 

4.1. Weights analysis 

We compare the performance of the combined forecasts when using 
weights w1, w2 and w3. In Table 3 we show, for each series, the 
percentile that gives the best model for each weight, and also the cor-
responding errors sMAPE, RMSE and MAE on T3. 

In Table 3 we can observe that the lowest errors are generally ob-
tained for the predictions constructed with the weights w2 or w3. For the 
case of the CO2 series, the lowest error coincides for w1 and w3 in the 
three error measures, and in the ELECTRICITY series the smallest value 
is obtained for the three errors in w2. 

In Table 3, we observe that the best error values for the CO2 series 
are obtained for percentile I50 in any of the three weights. In the rest of 
the series, the best values are obtained in two cases for percentile I5 (w2) 
and in two cases for I100 (w2 and w3). We could not conclude on a 
specific recommendation about which percentile to use. 

Whatever the series, it seems clear that weights w2 and w3 provide 
the best solutions in terms of minimum error, whatever the error mea-
sure considered, but especially when using the sMAPE measure, prob-
ably because both of them are based on sMAPE. It is important to note 
that the w2 weights are based on the sMAPE associated with the fit of 
each model at T1 + T2, while the w3 weights are based on the sMAPE 
associated with the prediction at T2. The w1 weights are based on the CP 
scores. 

4.2. Comparison with the other packages 

In order to compare the results obtained with alPCA to the other 
methods, we have assessed all possible configurations for all prediction 
packages considered, included alPCA for proposed percentiles. Table 4 
shows the best and worst models obtained within each package, in terms 
of the ex-post error, and for each of the error measures considered. This 
table provides information on (a) which is the best algorithm configu-
ration for each of the error measures, (b) the robustness of the best to 
different error measures, and (c) also about the range of variation of the 
alternatives within each package, and so the opportunities for a naive 
user, to find the best prediction model from the different possible 
configurations. 

In the BEST CONFIGURATION columns, the best model in terms of 
providing minimum error is emphasised. The alPCA algorithm gives the 
best performance in all series but in FORD, where the difference is just 
0.68 in sMAPE, 6.17 in RMSE and 7.37 in MAE, with the best combi-
nation coming from the ForecastComb_EIG4 configuration. Weight w2 is 
mostly the one that provides the best model in all considered series (but 
in CO2 and TOYOTA). 

The range of variation of the error between the WORST 

Table 3 
Ex-post errors for the best alPCA model obtained from the different weights w1, w2 and w3. Column I contains percentiles used for the best combination. Bold type 
identifies the lowest error for each series.   

alPCA_w1 alPCA_w2 alPCA_w3 

Series I sMAPE RMSE MAE I sMAPE RMSE MAE I sMAPE RMSE MAE 

CO2 I50 1.19 15.3 4.6 I50 1.20 15.2 4.6 I50 1.19 15.2 4.6 
TOYOTA I5 16.95 31079.4 27128.5 I5 16.94 31078.7 27126.5 I5 16.94 31077.7 27123.6 
HONDA I75 19.24 26186.6 23750.3 I75 16.43 24853.6 20702.7 I75 19.19 24627.1 20851.4 
GM I100 21.23 47606.7 40066.7 I100 20.66 43254.9 38756.3 I5 21.65 54144.9 41187.9 
FORD I5 18.15 36343.3 29190.1 I5 17.56 37011.8 28318.8 I5 17.99 35897.0 28841.0 
Total AUTO I25 12.23 2077720.0 1882412.0 I25 7.28 1359490.1 1129581.4 I25 10.22 1757963.6 1569414.6 
ELECTRICITY I80 3.49 22.0 18.4 I80 2.37 15.5 12.5 I90 3.72 22.7 19.8  
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CONFIGURATION and the BEST one, is considerably smaller for alPCA 
than for the alternative methods/configurations basically in all series 
but in HONDA and GM. This fact, in conjunction with the first conclu-
sion in the paragraph above, implies that, even in the cases when a naive 

solution is looked for, the chances of finding a reasonable fit with the 
alPCA algorithm are greater than by using alternative methods/ 
configurations. 

Finally, in the WORST CONFIGURATION columns, the values 

Table 4 
The best and worst model in terms of the ex-post error, obtained from alPCA and all the other packages for combined forecast.  

Series BEST CONFIGURATION WORST CONFIGURATION 

alPCA Forecast packages alPCA Forecast packages  

weight/ I sMAPE configuration sMAPE weight/I sMAPE configuration sMAPE 

CO2 w1 I50 1.19 Opera_zFTRLon 1.20 w2 I5 1.29 ForecastComb_BG 4.23 
TOYOTA w3 I5 16.94 Opera_zMLprodoff 20.01 w2 I25 20.02 ForecastComb_EIG4 24.82 
HONDA w2 I75 16.43 Opera_zEWAon 19.12 w2 I5 23.59 ForecastComb_LAD 24.47 
GM w2 I100 20.66 Opera_zEWAon 24.16 w2 I75 27.24 Opera_zEWAoff 27.29 
FORD w2 I5 17.56 ForecastComb_EIG4 16.88 w3 I90 18.72 ForecastComb_LAD 26.91 
Total AUTO w2 I25 7.28 ForecastComb_EIG2 12.53 w3 I90 12.98 ForecastComb_OLS 32.69 
ELECTRICITY w2 I80 2.37 Hybrid_Equal-MASE 3.09 w2 I5 5.48 ForecastComb_EIG4 19.15  

weight/I RMSE configuration RMSE weight/I RMSE configuration RMSE 
CO2 w1 I5 14.9 Opera_zFTRLon 15.3 w2 I5 15.2 ForecastComb_BG 17.9 
TOYOTA w3 I5 31077.7 Opera_zMLprodoff 38725.0 w2 I20 38639.5 ForecastComb_EIG4 48156.0 
HONDA w2 I80 24853.6 Opera_zEWAon 28338.7 w2 I5 32547.5 ForecastComb_LAD 33344.0 
GM w2 I100 43254.9 Opera_zEWAon 56780.2 w2 I75 69776.4 Opera_zEWAoff 68393.5 
FORD w2 I5 37011.8 ForecastComb_EIG4 34878.0 w3 I90 38050.8 ForecastComb_LAD 53031.4 
Total AUTO w2 I25 1359490.1 ForecastComb_EIG2 2247470.1 w3 I90 2316162.0 ForecastComb_OLS 6686460.9 
ELECTRICITY w2 I80 15.5 Hybrid_Equal-MASE 20.4 w2 I5 34.0 ForecastComb_EIG4 112.2  

weight/I MAE configuration MAE weight/I MAE configuration MAE 
CO2 w1 I50 4.6 Opera_zFTRLon 4.6 w2 I5 5.0 ForecastComb_BG 16.7 
TOYOTA w2 I5 27126.5 Opera_zMLprodoff 33048.8 w2 I20 32917.1 ForecastComb_EIG4 40358.4 
HONDA w2 I75 20702.7 Opera_zEWAon 23973.9 w2 I5 29158.2 ForecastComb_LAD 30035.6 
GM w2 I100 40066.7 Opera_zEWAon 46844.5 w2 I75 55074.8 Opera_zEWAoff 54733.8 
FORD w2 I5 28318.8 ForecastComb_EIG4 27185.9 w3 I90 30364.2 ForecastComb_LAD 46300.3 
Total AUTO w2 I25 1,129,581 ForecastComb_EIG2 1918607.8 w3 I90 2005441.1 ForecastComb_OLS 5846654.7 
ELECTRICITY w2 I80 12.5 Hybrid_Equal-MASE 16.6 w2 I5 29.1 ForecastComb_EIG4 111.3  

Table 5a 
1: Top ten best methods for the CO2, Electricity and totalAUTOS series with the lowest ex-post sMAPE.  

Ranking Series Series Series 

sMape CO2 Method Electricity Method totalAUTOS Method 

1 1.19 alPCA_w1.I50 2.37 alPCA_w2.I80 10.22 alPCA_w3.I25 

2 1.20 alPCA_w2.I50 2.38 alPCA_w2.I85 11.23 alPCA_w2.I50 

3 1.20 alPCA_w2.I75 2.65 alPCA_w2.I90 11.77 alPCA_w3.I50 

4 1.20 alPCA_w2.I80 2.68 alPCA_w2.I100 12.11 alPCA_w3.I15 

5 1.20 alPCA_w2.I85 2.68 alPCA_w2.I95 12.11 alPCA_w3.I20 

6 1.20 alPCA_w2.I90 3.09 Hybrid_equal-MASE 12.28 alPCA_w3.I5 

7 1.20 alPCA_w2.I95 3.15 Hybrid_equal-MAE 12.28 alPCA_w3.I10 

8 1.20 alPCA_w2.I100 3.15 Hybrid_isample-RMSE 12.39 alPCA_w2.I5 

9 1.20 OP_zFTRLon 3.17 Hybrid_isample-MASE 12.39 alPCA_w2.I10 

10 1.21 OP_zFTRLoff 3.17 Hybrid_isample-MAE 12.47 alPCA_w2.I15  

Table 5b 
2: Top ten best methods for the cars series, with the lowest ex-post sMAPE.  

Ranking Series Series Series Series 

sMape Toyota Method Honda Method GM Method Ford Method 

1 16.94 alPCA_w3.I10 16.43 alPCA_w2.I75 20.66 alPCA_w2.I100 16.88 FC_EIG4 
2 16.94 alPCA_w2.I5 16.59 alPCA_w2.I80 21.32 alPCA_w2.I95 17.56 alPCA_w2.I5 

3 17.18 alPCA_w2.I90 16.59 alPCA_w2.I85 21.65 alPCA_w2.I5 17.56 alPCA_w2.I10 

4 17.18 alPCA_w2.I95 16.59 alPCA_w2.I90 21.65 alPCA_w2.I10 17.56 alPCA_w2.I15 

5 17.18 alPCA_w2.I100 16.59 alPCA_w2.I95 21.65 alPCA_w3.I5 17.61 FC_EIG2 
6 18.94 alPCA_w2.I85 16.68 alPCA_w2.I100 21.65 alPCA_w3.I10 17.63 alPCA_w3.I100 

7 19.13 alPCA_w3.I90 18.86 alPCA_w3.I100 23.93 alPCA_w3.I15 17.66 alPCA_w2.I20 

8 19.13 alPCA_w3.I95 18.94 alPCA_w3.I80 23.93 alPCA_w3.I20 17.67 alPCA_w2.I75 

9 19.13 alPCA_w3.I100 18.94 alPCA_w3.I85 23.93 alPCA_w3.I25 17.74 alPCA_w2.I80 

10 19.49 alPCA_w3.I85 18.94 alPCA_w3.I90 24.16 OP_zEWAon 17.79 alPCA_w2.I85  
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emphasised identify those alPCA configurations where the worst alPCA 
configuration is even better than the best model provided by the pack-
age’s alternative to alPCA. It is not common, but the fact that this sit-
uation occurs in some series (like CO2 and TOYOTA), increases the 
reliability of the alPCA algorithm. 

4.3. Robustness 

Table 5a and 5b show the performance of the top ten forecasters in 
terms of the ex-post sMAPE, for each one of the seven series: Table 5a for 
CO2 and ELECTRICITY series, and Table 5b for the others. Given the 
stability of the results with different error measures, we have decided 
just to present this ranking in terms of the sMAPE error and not the 
others. 

We can appreciate that the alPCA algorithm remains mostly among 
the top 10 models for all series. Only 10 (emphasised in the Tables) of 
the 70 top-ten displayed results in the seven series come from methods 
other than alPCA. In fact, the top-ten for Toyota, Honda and totalAUTO 
series do all come from the alPCA algorithm. This fact reaffirms the 
robustness of the alPCA algorithm in providing the best prediction re-
sults, especially when using weights w2 and w3. 

In reference to the influence of the percentile in its combination with 
the weight to obtain the best prediction, we observe that the lowest 
values of sMAPE and MASE coincide, at the percentile level, with the 
median, thus in Table 4 we see that in the CO2 series the best values of 
the error are given by the combination w1.I50. For the Electricity series, 
these lower values are obtained for the three error measures, with 
intervention of the I80 percentile with the w2 weight. In our experience, 
the w3 weight obtains the best results with the I5 percentile. 

We also observe that the greatest distance between error measures is 
always in the totalAUTOS series for the combination w2.I25 in alPCA 
versus ForecastComb_EIG2, so if we measure with sMAPE we obtain a 
distance of 5.3 between the results, if we do it with RMSE the distance is 
888.0 and with MASE we obtain 789026.8. 

We can see that the best error for the ELECTRICITY dataset (2.37) is 
obtained by alPCA with w2 weight, comparing this result with the other 
three packages, we note that the worst value (19.15) is provided by 
ForecastComb, with a distance of 16.79 points between them. 

alPCA with w3 weight obtains its lowest error (16.94) for TOYOTA, 
comparing this result with the other three packages, the highest error 
(26.59) is provided by ForecastComb, with a distance of 8.64 points 
between it and the value obtained by alPCA. On HONDA the combina-
tion constructed by alPCA with w2 weight obtains the lowest error 
(16.43) compared to that obtained by the other three packages, we note 
that the highest prediction error (24.47) corresponds to ForecastComb. 
Distance between them is 8.04. 

alPCA with w2 weight produces the best error (20.66) working with 
GM series. Comparing this result with the other three packages, we see 
that the worst value (27.24) is provided by ForecastComb, with a dis-
tance of 6.58 between it and the value obtained by alPCA. 

For totalAUTOS series, the best error (7.28) is obtained applying the 
w2 weight for alPCA. Comparing this result with the other three pack-
ages, we see that the worst value (32.69) is provided by ForecastComb, 

with a distance of 25.41 points between them. 

4.4. Combined methods 

In Table 6 the number of models included in the best alPCA config-
uration (in terms of minimum sMAPE) are displayed. We can see that 
there is not a modal value for the number of models that provide the best 
alPCA combination, nor does it appreciate a specific trend related to the 
weights w2 or w3. 

Table 7 shows the name of the models in the best alPCA configura-
tion for all the studied series. The methods that, in these cases, have a 
higher participation in the best combinations are: Croston, Theta Model, 
Exponential smoothing state space model (ETS) and the General Inter-
face for Single Layer Neural Network (MLP) for multilayer perceptron. 

4.5. Sample monthly series of the M4 competition 

In Fig. 3 we can see that in almost half of the 100 series the best ex- 
post error is obtained with the w1 weights, based on PC scores. We could 
propose, in view of these results, the use of 3 percentiles: 5, 50 and 95, so 
that if the user wants a solution with few methods, he should choose I5, 
and if he wants one with many methods I95, being I50 the intermediate 
solution. 

Our proposal obtains better results, in terms of ex-post sMAPE error, 
in 57 of the 100 series, with the Hybrid package being the worst 
performer overall. It is true that, on average, it would need 3 min to 
obtain the results of a series when the ForecastComb package would 
only need 9.37 s. It is important to note that the ForecastComb package 
was only able to run smoothly with 6 of the 19 possible configurations. 
This explains the low computation time. The other two packages, Hybrid 
and Opera, were able to run with all their configurations, 9 and 14, 
respectively. When analyzing the 95% confidence interval for the mean 
ex-post sMAPE with these 100 series, we observe that our proposal 
achieves better results overall, although it is true that it overlaps with 
the results obtained with the Opera package (Table 8). 

5. Conclusions 

The alPCA algorithm proposed in this study offers a new and efficient 
approach to forecast combination, aiming to improve forecast accuracy. 
By combining the forecasts of 11 methods with their various configu-
rations, all of them available in R, the algorithm utilizes principal 

Table 6 
Number of models that make up the best predictor combination of alPCA.  

Serie Number of models weights percentile sMAPE 

CO2 14 w3 50 1.19 
Toyota 3 w3 10 16.94 
Honda 23 w2 75 16.43 
Gmotors 41 w2 100 20.66 
Ford 6 w2 5 17.56 
TotalAUTOS 10 w2 25 7.28 
Electricity 27 w2 80 2.37  

Table 7 
Models in the combination that provides the best prediction in all studied series.  

Series Configurations 

CO2 Naïve, sNaïve, auto.arima(aic)  
Theta: otm.arxiv, dotm(L-BFGS-B), dstm(Nelder-Mead),otm(L-BFGS- 
B), stm(L-BFGS-B), stfl(ets,arima)Croston(mae), NNETAR, GRNN 
(additive,multiplicative)   

Electricity ETS(lik,amse,mae,sigma), auto.arima(aic,bic)  
Theta: otm.arxiv, dotm(Nelder-Mead, SANN, L-BFGS-B), otm(SANN, 
Nelder-Mead), stm(SANN), stheta, stlf(ets,arima). Croston 
(sba_mae_mse,sbj_mar_mae_mse)Prophet 
(additive,multiplicative)NNETAR, TBATS, MLP: mlp.thief, mlp 
(median)  

Toyota Croston: sba(mar,msr), sbj(msr) 
Honda Naive, sNaive  

ETS (lik, amse, sigma, mae, lik, mse)Theta: otm.arxiv, dstm(SANN), 
stm(SANN), stlf(ets,arima,thetaf) 
,Croston: mae,mse, sba(mse), sbj 
(mar,mse)NNETAR, TBATS, MLP 
(median, mean) 

Gmotors Combine all except: ETS(lik, mae), Theta: otm(L-BFGS-B) 
Ford Croston: sba(mae, mse), sbj(mae, mse), MLP: mlp.thief, mlp(median) 
totalAUTOS Croston: sba(mar, msr, mae,mse), sbj(mar, msr, mae,mse)  

MLP(median, mean)  
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components to summarize the information contained in multiple error 
measures, enabling the establishment of a ranking criterion for weighing 
the contribution of each model in the overall estimation. 

To determine the number of models to include in the final combi-
nation, the study proposed a parametric fitting and percentile approach, 
which exhibited low variability in the results and was less sensitive to 
the choice of percentile. 

With our proposal the user can choose the type of weighting to use 
based on the PC score, the adjustment sMAPE or the prediction sMAPE. 
The choice of the percentile allows you to decide on the number of 
configurations of the 11 methods to include in the combination. 

Although the analysis of the first 7 series led us to choose the w2 or 
w3 weights, the results of the M4 sample would lead us to choose w1 
with three possible percentiles, depending on the number of configu-
rations the user wants in the final solution. However, the results ob-
tained with the other weights and/or percentiles would not be too far 
off. 

We understand that it can be confusing for a user to decide on one of 
the configurations to analyze a series (9 with Hybrid, 14 with Opera and 
16 with ForecastComb). In the examples we have observed that not 
selecting an appropriate configuration can lead to major ex-post errors. 
However, with our proposal the ex-post errors have a lower variability 
so that the ex-post errors will not be too far from the best. 

A time of 3 min, on average, to obtain the predictions of a series can 
be understood to be high, compared to the other packages, however the 
design of the algorithm would allow to easily apply parallel program-
ming techniques that would reduce it considerably. 

Overall, the alPCA algorithm provides a promising alternative to 
existing forecast combination methods, offering a robust and user- 
friendly approach with minimal dependence on user choices. The al-
gorithm consistently selects top-performing models for the given series, 
considering different weight and percentile configurations. Although 
further testing on additional series is desirable, the authors intend to 
develop the alPCA algorithm into an R-package in the coming months, 
making it readily available for use. 

The results affirm the value of combined forecasting methods in 

reducing prediction errors compared to individual models. The ongoing 
research in this area aims to refine and enhance the algorithms used for 
combining existing models, with the ultimate goal of providing users 
with an automated DSS procedure for obtaining the best forecasts. 

Hyndman and Koehler (2006), Wintenberger (2017). 
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