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17 ABSTRACT

18 The development of spectral prediction models for soil attributes has been extensively 

19 studied in the last 10 years. However, one of the problems encountered during this period 

20 concerns the representativeness of the samples selected for model generation, which are 

21 often unable to capture the existing variability in agricultural areas, generating imprecise 

22 models.  Thus, it is necessary to establish strategies for selecting soil samples, as well as for 

23 making them more representative within the model. Considering this, the aim of the present 

24 study was to evaluate strategies for soil sample selection and the recalibration of large 
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25 models using samples from a smaller area, in a process called spiking, and its effect on soil 

26 attribute estimations. A total of 425 soil samples were used for the generation of the state 

27 models, as well as 200 soil samples from a target site for attribute recalibration and 

28 prediction. From these 200 samples, 10 (subset) were selected by different methods for 

29 state model recalibration (spiking), and 190 were used in the prediction. Another 5 and 10 

30 copies of the subsets were also used as extra-weight to recalibrate the models. Models 

31 spiked with samples located in the center of the spectral space associated with extra-weight 

32 (10 copies) showed better accuracy in sand prediction (RPD = 2.20; r2 = 0.80; RMSEP = 

33 71.6 g kg-1). For organic matter, the use of selected samples based on 5 clusters associated 

34 with extra-weight (10 copies) slightly improved the RMSEP and RPD in most cases, 

35 reaching a maximum value of 6.1 g dm-3 and 1.20, respectively. However, the subsets 

36 selected at the target site were not able to indicate the entire variability of the local samples 

37 concerning organic matter, damaging the expansion of the recalibrated state models.

38

39 Keywords: Spiking; Sand; Organic Matter; Spectroradiometry.

40

41 1. Introduction 

42 Detailed mapping of soil attributes involves the collection of a high number of 

43 samples. In addition to high economic cost, this leads to the generation of dangerous 

44 residues derived from chemical analyses. 

45 For this reason, the search for analysis tools that are easily applied, inexpensive, 

46 precise and with low negative ambient impacts (clean) is key in studying soil on a large 

47 scale, especially in countries such as Brazil, where the need for laboratory analysis 

48 increases each year, with hundreds or thousands of samples requiring analysis. In this 
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49 regard, Vis-NIR-SWIR spectroscopy combines all these desirable characteristics and can be 

50 applied to obtain soil attributes (Dunn et al., 2002; Shepherd and Walsh, 2002; Islam et al., 

51 2003; Brown et al., 2006).

52 Vis-NIR-SWIR spectra are complex signals that contain useful information for 

53 analytical pursposes. An empirical approach can be applied for the use of the significant 

54 amount of information contained in a spectrum, employing calibrations (or models) 

55 constructed using multivariate regression techniques (Naes et al., 2002; McBratney et al., 

56 2006).

57 The samples used to construct the models, termed calibration samples, must be 

58 representative of the population of samples to which this model will be applied. The 

59 establishment of spectral calibration libraries derived from a high number of representative 

60 samples that contain the necessary variability has been suggested (Shepherd and Walsh, 

61 2002; Brown et al., 2005, 2006; Viscarra Rossel et al., 2008). However, this premise is not 

62 easy to fulfill, especially in areas with high edaphic diversity, because, even though the 

63 acquired calibrations are based on a large number of samples, the number of samples does 

64 not always guarantee that the fitted model can be successfully applied in new areas 

65 (Viscarra Rossel et al., 2008; Wetterlind et al., 2010). 

66 In this case, the application of calibrated models in new areas, which have no 

67 representative samples in the spectral library, can contribute to incorrect soil attribute 

68 predictions (Brown et al., 2006; Brown, 2007; Sankey et al., 2008). Thus, regional models 

69 (generated with samples from a particular region) may not be useful for estimating soil 

70 properties from other regions presenting different properties and edaphic attributes. 

71 This problem is more evident in regions presenting greater edapho-diversity, since it 

72 is very complex to include all factors that interfere in soil variability in the spectral library. 
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73 Likewise, models developed at the local scale (generated with samples from a certain area) 

74 will not be valid for regional or even national scales.

75 Recent studies suggest that the best way to solve this problem is through calibration 

76 spiking with samples from the target study site (D’Acqui et al., 2010; Wetterlind and 

77 Stenberg, 2010; Guerrero et al., 2014; Guy et al., 2015). After spiking, the recalibrated 

78 model tends to display greater precision when applied to samples taken from the target 

79 study site (Wetterlind et al., 2010; Guerrero et al., 2010). Currently, the spiking process 

80 seems to be most adequate when applied to model expansion (Shepherd and Walsh, 2002; 

81 Viscarra Rossel et al., 2008; Minasny et al., 2009). 

82 The central question regarding spiking concerns the type and adequate number of 

83 samples to be selected for model recalibration, since has a direct influences on the 

84 prediction result. A high number of local samples for the spiking subset tends to raise 

85 model accuracy (Brown, 2007; Guerrero et al., 2010), but, on the other hand, reduces the 

86 advantages of using spectroscopy as a quick and low-cost analytical method (Guerrero et al., 

87 2014). 

88 The use of a small spiking subset displays the advantage of low-cost, but a 

89 disadvantage regarding the possibility of inaccuracies in recalibrated models. To 

90 circumvent these problems, Guerrero et al. (2014) suggest the addition of several copies 

91 (extra-weight) of the spiking subsets within the calibration matrix, in order to increase the 

92 relevance of the target site samples and improve model fit.

93 In this context, this study had as its first objective to select the most influential 

94 samples from a target site for spiking subsets. The second objective was to evaluate the 

95 prediction accuracy for sand and organic matter content in the target site after assigning 

96 extra-weight to the spiking subsets. 
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97

98 2. Materials and methods

99 2.1. Soil sampling in the state of Paraná 

100 A total of 425 soil samples were collected from different areas in the state of 

101 Paran’s - Brazil, a region delimited by the geographic coordinates 22º29'30′ ′  to 

102 26º42'59′′  south and 48º02'24′′  to 54º37′38′′  west. According to the World 

103 Reference Base (2014), the soil classes in the state comprise mainly Lixisols, Cambisols, 

104 Chernozems, Podzols, Gleysols, Ferralsols, Regosols, Nitisols and Histosols. These soil 

105 classes are developed on different lithologies such as migmatites, quartzites, basalt, 

106 sandstone, phyllites, siltstones, granites and micaxists, among others (EMBRAPA, 1984). 

107 The samples were collected from different landscape areas, toposequences and soil, forest 

108 and draining conditions.

109

110 2.2. Soil sampling in the target site

111 A total of 200 samples were collected from a target site located in northwestern 

112 Paraná - Brazil, delimited by the geographic coordinates 22o57´19´´ to 22o52´59´´ south 

113 and 52o3´47´´ to 51o59´0.7´´ west, comprising 2,500 ha. The soil classes found in the area, 

114 according to the World Reference Base (2014) are Ferralsols, Nitisols, Lixisols, Cambisols 

115 and Regosols. It is worth mentioning that, although this area is located within the state of 

116 Paraná, no samples were collected from this area to form the group of 425 samples 

117 described in Section 2.1

118

119 2.3. Soil sample laboratory and spectral analyses 
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120 After collection, the samples were submitted to laboratory analyses for 

121 determination of physical and chemical attributes, as well as spectral characterization. The 

122 samples were air-dried and sieved through a 2 mm mesh. A hydrometer was used for the 

123 determination of total sand content (Kiehl, 1979). Organic matter content was measured 

124 according to Walkley and Black (1934). These attributes were chosen because they must be 

125 identified in a laboratory, which uses chemical reagents with the potential to contaminate 

126 the environment, in addition to increasing the time and cost of the analysis.

127 The samples designated for spectral reading were dried at 45 °C for 24 h and sieved  

128 (mesh 2 mm) for size particle homogenization and reduction of humidity and sampling 

129 effects (Epiphânio et al., 1992). Subsequently, each sample was placed on a Petri dish (9 

130 cm diameter and 1.5 cm height) and submitted to spectral readings using a ASD FieldSpec 

131 3 JR spectroradiometer with a spectral range from 350 to 2.500 nm. The equipment was 

132 programmed to perform 50 readings for each sample, thereby generating an average 

133 spectral curve. 

134 For data acquisition, a Spectralon standard white plate calibrated for 100% 

135 reflectance was used, in accordance to the Labsphere Reflectance Calibration Laboratory 

136 (LRCL, 2009). An optical-fiber reader was placed on the support platform in a vertical 

137 position 8 cm distant from the samples. The reading area cmprised approximately 2 cm2. 

138 The light source was a 650 W light bulb with a noncollimated beam located 35 cm from the 

139 platform and at a 30° angle relative to the horizontal plan. 

140 The spectral readings were repeated three times, with successive displacement of 

141 the Petri dish 120° clockwise and successive scans, anlysing the entire sample. 

142 Subsequently, a simple arithmetic means of the three readings for each sample was 
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143 determined, based on the recommendations by Nanni and Demattê (2006) and Fiorio et al. 

144 (2010). 

145

146 2.4. Data processing and statistical analyses 

147 Each spectral curve was submitted to baseline and light scattering correction by the 

148 Multiplicative Scatter Correction (MSC) method, according to Buddenbaum and Steffens 

149 (2012). For noise reduction, a 1st order polynomial Savitzky-Golay Smoothing with seven 

150 smoothing points was used. The calibration models (empirical calibration functions) were 

151 constructed from regressions for the partial squared minimums (PLSR) using Unscrambler 

152 version 10.3 (CAMO, Incorporation, Oslo, Norway). 

153 The predictive ability of the models was evaluated through the calculation of the 

154 determination coefficient (r2), the root-mean-square error for prediction (RMSEP; Eq.1), 

155 the standard error (SEP; Eq.2) for prediction, the systematic error (BIAS; Eq.3) and the 

156 Ratio of performance to deviation (RPD; Eq.4). 

157 The RPD has been used as a useful indicator of precision for PLS prediction. For 

158 analytical performance quality, this value must be applied to at least 3 agricultural 

159 applications, (Williams and Sobering, 1993; Chang, 2001; Fearn, 2002; Cozzolino and 

160 Moron, 2006; Janik et al., 2007), whereas an RPD between 2 and 3 is considered “good”, 

161 1.5 to 2, average and < than 1.5, poor (D’ Acqui et al., 2010). Theses parameters are 

162 defined as:

163                                                RMSEP =                                                   (1)∑𝑛
𝑖 = 1(𝐷𝑖𝑓𝑖)2/𝑛

164 Difi = ŷi (estimated or predicted value by model VIS/NIR); ‘y’ edaphic property (sand, p.e.) 

165 of the sample ‘i’, and  is the number of samples;                              𝑛



8

166                                        SEP =                                             (2)∑𝑛
𝑖 = 1(𝐷𝑖𝑓𝑖 ‒  𝑏𝑖𝑎𝑠)2/𝑛 ‒ 1

167 - with the bias’ (or deviation) a measure of the systematic error; 

168                                             BIAS =                                                (3) 
∑𝑛

𝑖 = 1(ŷ𝑝𝑟𝑒𝑑 ‒  𝑦𝑟𝑒𝑓)

𝑛

169 - obtained by calculating the difference between reference and predicted values (means) by 

170 VIS/NIR;

171                                                              RPD =                                                         (4) 
𝑆𝐷𝑦

𝑆𝐸𝑃

172 - obtained by calculating the relationship between the standard deviation and SEP for the 

173 data set in the prediction phase.

174 In addition, the T2 Hotteling test at P<0.001 probability was also applied to the 

175 predicted values for the target area (local scale,  to aid in evaluating the performance of the 

176 spiked state models, spiked and  extra-weight state models, unspiked state models and local 

177 models). 

178

179 2.5. Calibration Models  

180 2.5.1. Unspiked State Models

181 The unspiked state models were constructed using 425 soil samples (dataset) 

182 collected from different areas in Paraná. 

183

184 2.5.2. Spiked State Models 

185 At this stage, 5% of the target site samples (subset) were selected as outlined below 

186 and added to the unspiked state models (Paraná models) for recalibration. Thus, the 

187 recalibrated models were extended to incorporate the variability of the target site. The 
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188 strategies to select the subset used for spiking state models were based on the spectral 

189 characteristics of the target site samples. 

190 A total of 10 samples were selected, located at the periphery of the spectral space 

191 and constituting the first two principal components carried out previously with the target-

192 site samples (subset 1), 10 located in the center of the spectral space and constituting the 

193 first two principal components (subset 2), 10 located along of the spectral space and 

194 constituting the first two principal components (subset 3) and, finally, 10 samples 

195 belonging to different clusters (k-means clustering method) based on Euclidean distance 

196 (subset 4).

197

198 2.5.3. Spiked and Extra-weighted State Models

199 The unspiked state models were spiked and extra-weighted with additional copies of 

200 the target site spiking subsets, to evaluate whether sample extra-weighting could be used to 

201 improve calibration models for sand and organic matter estimates from the target site, as 

202 described by Guerrero et al. (2014) and Guy et al. (2015). In each of the four above-

203 mentioned ways to selected samples, the number of times (copies) of the spiking subset 

204 were increased 5- and 10-fold, totaling 475 (425 + 50) and 525 (425 + 100) samples for 

205 recalibration. A general overview of the four methods is displayed in Figure 1.

206
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207
208
209 Figure 1. Scheme used to represent the experiment. (a) Initial calibration (IC) unspiked model constructed 

210 only with state samples; (b) Initial calibration spiked with a spiking subset (SS) selected from a target site 

211 (TS); (c) Initial calibration spiked with a spiking subset (SS) selected from the target site (TS) associated with 

212 extra-weight. (d) Initial calibration constructed only with local samples. Fonte: Adapted from Guerrero et al. 

213 (2014). 

214  

215 After recalibration of the unspiked state models, they were applied to the prediction 

216 of target site attributes. In this stage, samples not selected from the target site (95% of the 

217 remaining samples) were used as an unknown dataset.

218

219 2.5.4. Local models

220 Two local models from the target site were generated, one for sand and another for 

221 organic matter, with the intention of comparing the prediction results with the results 

222 obtained by spiked state models, spiked and extra-weighted state model and unspiked state 

223 models. In this phase, 10 soil samples (5%) were used for the calibration of the local 

224 models, and 190 (95%) for sand and organic matter prediction. The datasets used in the 

225 generation of the local models were the selected subsets in the target site with the best 

226 results in the cross-validation of the spiked state models.

227

228 3. Results 

229 3.1. Descriptive results (reference methods)
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230 The results obtained applying the reference methods are displayed in Table 1. Sand 

231 and organic matter attributes presented high variability for both datasets. 

232

233 Table 1. Descriptive statistics of the set of samples collected throughout the state of Paraná 

234 and from the target site.

Paraná state samples 1 Target site samples 2 Statistical
parameters O.M3 

(g dm-3)
Sand 

(g kg-1)
O.M

(g dm-3)
Sand 

(g kg-1)
Means 22.6 566.7 12.3 611.8

Minimum 3.4 70.0 3.4 180.0

Maximum 98.3 950.0 49.5 940.0

SD4 16.6 201.7 7.3 157.9

SE5 0.81 9.8 0.5 11.2

CV6 (%) 73.5 36.0 59.2 26.0

N7 425 425 200 200

235 1 Samples used in the generation of the state models; 2 Samples used in the generation of the local models; 3 

236 Organic Matter; 4 Standard Deviation; 5 Standard Error; 6 Coefficient of Variation; 7 Number of Samples.

237

238 High sand content variability (CV=36.0%) is explained by the presence of different 

239 materials present in Paraná soil, such as migmatites, quartzites, basalt, sandstone, phyllites, 

240 siltstones, granites, and micaxists, among others (EMBRAPA, 1984), which comprise 

241 varied mineralogical constitution. The high variability (CV=73.5%) in organic matter 

242 content is due to the disparity of the climatic conditions of the state (Caviglione et al., 

243 2000), as well as altitude (100 to 2000 meters), and soil use, contributing to the occurrence 

244 of significant differences in the accumulation of organic matter in the different sample 

245 regions. Of the 425 soil samples, 41.17% (175 samples) presented organic matter values 

246 above 20 g dm-3, and, thus, significantly influence soil spectral behavior, as reported by 

247 Baumgardner et al (1970).
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248 On the other hand, although the results obtained for the set of samples from the 

249 target site presented variability, was still lower than the set of samples collected from the 

250 state of Paraná. The variation coefficient was of 59.2% for organic matter and 26.0% for 

251 sand content. This lower variability is due, mainly, to the fact that the soils were derived 

252 predominantly from two lithologies, sandstone and basalt (EMBRAPA, 1984), and are 

253 currently covered by two types of vegetation, sugar cane and forest. Of the 200 samples, 

254 15.5% (31 samples) presented organic matter values above 20 g dm-3.                                                                                                                                                                                                                                                                                                                                     

255

256 3.2. Unspiked State Models 

257 3.2.1. Calibration and prediction

258 Calibration results for sand and organic matter content are presented in Table 2.

259

260  Table 2. Cross-validation results obtained during the calibration phase of the unspiked state 

261 models (n = 425).

Attribute r2(1) RMSECV2 SECV3 BIAS4 RPD5 N.F6

Sand (g kg-1) 0.95 136.2 136.3 -0.73 1.48 10

O.M (g dm-3) 0.86 10.5 10.5 0.01 3.37 13

262 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

263 Error; 5 Ratio of performance to deviation; 6 Number of Factors. n: Number of Soil Samples.

264

265 The model for sand presented a high determination coefficient, however, RMSECV 

266 and SECV were around 14%, with a value of 136.2 g kg-1 and 136.3 g kg-1, respectively. 

267 On other hand, organic matter presented a lowed determination coefficient, but better BIAS 

268 and RPD indicators. A near-zero BIAs indicates that the organic matter model is not biased, 

269 i.e. the difference between the observed mean measurement and the reference value is very 

270 small. If, during the calibration of the unspiked state models, organic matter generally 
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271 presented better quality indicators in the prediction phase employing a set of unknown 

272 samples (target area), it was evident that the unspiked state model developed for the sand 

273 fraction presented better results (Table 3). 

274

275 Table 3. Prediction results obtained from the target site using unspiked state models (n = 

276 200).

Attribute r2(1) RMSEP2 SEP3 BIAS4 RPD5 N.F6

Sand (g kg-1) 0.74 80.4 80.6 -0.62 2.00 10

O.M (g dm-3) 0.24 6.3 6.8 1.45 1.15 13

277 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

278 Error, 5 Residual Predictive Deviation; 6 Number of Factors. n: Number of Soil Samples. 

279

280 The determination coefficient for sand presented value of 0.74, indicating a 

281 reasonable adjustment of the state model to the target area dataset (local scale). An RPD of 

282 2.00 was determined, indicating good analytical performance of the model in predicting this 

283 attribute, which was not found for organic matter, at 1.15, considered poor for agricultural 

284 studies, according to Chang et al. (2001) and D’ Acqui et al. (2010). 

285 The sand RMSEP and SEP were lower when compared to those obtained in Table 2, 

286 decreasing 55.8 g kg-1 and  55.7 g kg-1, respectively. A similar result was observed for 

287 organic matter, albeit with significant BIAS (1.45), which can be observed by the organic 

288 matter scatter plot (Figure 4) (unspiked state model). Most of the points are scattered above 

289 the 1:1 line, especially considering the lower organic matter values (4 to 12 g dm-3). This 

290 indicates that the measurements for this value are higher than the reference values. 

291 The limited capacity of the unspiked state model in predicting organic matter values 

292 suggests that the model did not cover the range of variation found at the target site for this 

293 attribute (Viscarra Rossel et al., 2009; Guerrero eta al., 2014), even using a medium state 
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294 model, consisting of 425 soil samples. This inaccurate prediction may be related to the size 

295 of the target site, larger (2,500 ha) and more diversified in terms of soil and soil use in 

296 relation to other target sites described in the literature (Guerrero et al., 2014; Guy et al., 

297 2015), which are small and densely sampled.

298 Therefore, organic matter values tend to be more variable in our study area, in 

299 agreement with the maximum (49.5 g dm-3) and minimum (3.4 g dm-3) results obtained for 

300 the target site. It is clear that the difference between both levels (46.1 g dm-3) is high, 

301 reflecting in very different spectral responses and predictions by theunspiked state model.  

302

303 3.3. Spiked State Models / Spiked and extra-weighted state model  

304 3.3.1. Recalibration 

305 The spiked state models presented the same trend for statistical parameters already 

306 discussed for the unspiked state models. Table 4 displays the multivariate statistics obtained 

307 after the recalibration of the unspiked state models with the selected samples from the 

308 target site.

309

310 Table 4. Cross-validation results of the unspiked state model after recalibration with 

311 different spiking subsets (n = 435).

Attribute Subset r2(1) RMSECV2 SECV3 BIAS4 RPD5 N.F6

Sand (g kg-1) 1 0.95 136.7 136.8 -1.08 1.47 10

Sand (g kg-1) 2 0.95 134.5 134.9 -0.26 1.52 10

Sand (g kg-1) 3 0.95 135.0 135.0 -1.43 1.49 10

Sand (g kg-1) 4 0.94 135.5 135.6 -0.47 150 10

O.M (g dm-3) 1 0.85 10.7 10.7 -0.01 3.30 13

O.M (g dm-3) 2 0.85 10.6 10.6 -0.04 3.33 13

O.M (g dm-3) 3 0.85 10.7 10.7 -0.01 3.30 13

O.M (g dm-3) 4 0.86 10.3 10.4 0.04 3.40 13



15

312 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

313 Error, 5 Ratio of performance to deviation; 6 Number of Factors. n: Number of Soil Samples. 

314

315 The results obtained for the sand fraction using the spiked state model presented a 

316 maximum r2 of 0.95, while organic matter values were lower, at around 0.86. The BIAS 

317 values were insignificant for organic matter, indicating a random distribution of the 

318 regression line points. On the other hand, the sand BIAS was satisfactory only when using 

319 subsets 2 and 4 for recalibration of the unspiked state models.  The RPD ranged from 1.47 

320 to 1.52 for sand and from 3.30 to 3.40 for organic matter. Similar behavior was noted when 

321 state models were spiked and extra-weighted with additional copies of the target site 

322 subsets (Table 5).

323

324 Table 5. Cross-validation results of the state model after recalibration with different spiking 

325 subsets and extra-weight (n = 475 and 525).

Attribute Subset Copy r2(1) RMSECV2 SECV3 BIAS4 RPD5 N.F6 n7

Sand (g kg-1) 1 5 0.95 132.5 132.6 0.10 1.52 10 475

Sand (g kg-1) 2 5 0.95 128.8 128.9 -1.11 1.56 10 475

Sand (g kg-1) 3 5 0.95 131.4 131.5 -0.35 1.53 10 475

Sand (g kg-1) 4 5 0.95 132.4 132.6 -1.20 1.52 10 475

Sand (g kg-1) 1 10 0.96 129.9 130.1 -0.40 1.55 10 525

Sand (g kg-1) 2 10 0.96 122.0 122.1 -0.45 1.65 10 525

Sand (g kg-1) 3 10 0.96 124.1 124.2 -0.02 1.62 10 525

Sand (g kg-1) 4 10 0.96 128.2 128.3 -1.05 1.57 10 525

O.M (g dm-3) 1 5 0.87 10.0 10.1 -0.03 3.50 13 475

O.M (g dm-3) 2 5 0.85 10.3 10.3 0.01 3.43 13 475

O.M (g dm-3) 3 5 0.85 10.2 10.2 -0.03 3.46 13 475

O.M (g dm-3) 4 5 0.87 9.9 9.9 -0.01 3.57 13 475

O.M (g dm-3) 1 10 0.85 9.7 9.8 -0.01 3.61 13 525

O.M (g dm-3) 2 10 0.85 10.1 10.1 0.02 3.50 13 525

O.M (g dm-3) 3 10 0.86 9.7 9.8 0.03 3.60 13 525

O.M (g dm-3) 4 10 0.86 9.5 9.6 -0.01 3.61 13 525
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326 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

327 Error; 5 Ratio of performance to deviation; 6 Number of Factors. 7 n=475: Total number of samples for 

328 recalibration of unspiked state models with 5 copies of the selected samples from the target site;7 n = 525: 

329 Total number of samples for recalibration of unspiked state model with 10 copies of the selected samples 

330 from the target site.

331

332 With the extra-weight increment (5 and 10 times), the spiked state models for sand 

333 presented slightly better results than those obtained without any weighting (Table 4). A 

334 decrease in RMSECV was observed, reaching 122.0 g kg-1 when using 10 repeats for 

335 selected samples in the center of the spectral space (representing the mean spectrum of the 

336 target site).  On the other hand, increases in RPD were observed, reaching a maximum 

337 value of 1.65 for these samples.

338 However, it is worth noting that, although the RMSECV values were reduced after 

339 the use of extra weight, these results are considered high when compared to those obtained 

340 by Terra et al. (2015) and Pinheiro et al. (2017), obtaining 25.22 g.kg-1 and 114.74 g kg-1 

341 for sand, when studying Brazilian soils. On the other hand, when compared to the latter, 

342 BIAS values are considered low, at a maximum value of -1.20 (Table 5) against -17.37.

343 Organic matter showed a slight improvement in RMSECV, with values ranging 

344 from 9.5 to 10.3 g dm-3.  The RPD indicator was higher than the unspiked state model, 

345 ranging from 3.43 to 3.61. The best result was observed when extra-weight (10 copies) was 

346 used in subset 4 selected from 5 clusters (two samples per cluster). 

347

348 3.3.2. Prediction

349 The results of the model predictions are presented in Table 6.

350
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351 Table 6. Prediction results obtained by spiked state models using the remaining samples 

352 from the target site (n = 190).

Attribute Subset r2(1) RMSEP2 SEP3 BIAS4 RPD5 N.F6

Sand (g kg-1) 1 0.74 78.3 78.6 2.35 1.96 10

Sand (g kg-1) 2 0.74 82.1 82.3 1.16 1.95 10

Sand (g kg-1) 3 0.75 78.7 78.7 -5.14 2.00 10

Sand (g kg-1) 4 0.75 78.1 78.3 -1.11 2.01 10

O.M (g dm-3) 1 0.33 5.9 5.9 0.29 1.23 13

O.M (g dm-3) 2 0.33 5.6 5.6 -0.59 1.25 13

O.M (g dm-3) 3 0.28 6.1 6.2 0.50 1.18 13

O.M (g dm-3) 4 0.23 6.3 6.9 1.68 1.14 13

353 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

354 Error, 5 Ratio of performance to deviation; 6 Number of Factors. n: Number of Soil Samples.

355

356 The best estimate results were obtained for sand, and, all forms of sample selection 

357 led to more precise values for r2 and RPD statistical parameters, with a maximum 

358 determination coefficient of 0.75 and RPD ranging from 1.95 and 2.01. In accordance to 

359 D'Acqui et al. (2010) these RPD values demonstrate that the spiked models present average 

360 potential for estimating sand content. RMSEP and SEP values were also reduced after 

361 spiking, using subsets 1, 3 and 4. 

362 Regarding organic matter, slight improvements in prediction were observed with the 

363 use of most subsets for spiking, reaching 5.9 g dm-3, 0.33 and 1.25, for RMSEP, r2 and 

364 RPD, respectively. However, although this improved RPD to below 1.5, these values still 

365 demonstrate low prediction precision, making the use of these models for analytical use 

366 impractical. This is probably related to the size of the subsets used for spiking the models. 

367 Guy et al. (2015), while studying soil organic carbon, demonstrated that spiking models 

368 with 10 or fewer samples causes little improvement in model performance. Probably, the 

369 low number of samples used for spiking was not able to allow for recalibrated models to 
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370 cover the organic matter range of variation to be predicted in the target site, independent of 

371 the sample selection methods, in agreement with Viscarra Rossel et al. (2009).

372 One point concerning the use of spiking is that the performance parameters of the 

373 models did not follow the cross-validation trend with the use of different subsets. For 

374 example, subset 4 based on 5 clusters for spiking of the state model in the cross validation 

375 presented better results for organic matter, but, at the prediction phase using 190 target site 

376 samples, the best result was obtained with the use of subset 2 referring to samples located 

377 in the center of the spectral space. This is due to the lower spectral variability of these 

378 samples selected for recalibration, which present reflectance values at all wavelengths that 

379 approximate most of the samples that make up the population of the target area used for the 

380 model prediction test.

381  On the other hand, although the cluster analysis was statistically robust, the 

382 selection of samples based on 5 clusters was not efficient for recalibration of the state 

383 models and organic matter prediction using an independent set of samples, because, 

384 although two spectrally similar samples inside of the spectral space existed for each cluster, 

385 a higher Euclidean distance between clusters were observed, leading to the re-calibration of 

386 the models with very dissimilar samples, not representing the 190 samples of the target area 

387 used in the prediction of soil attributes. 

388 Attribute estimation using extra-weight in the spiked state model demonstrated that 

389 the sand results were better when compared to organic matter for all quality parameters 

390 except BIAS (Table 7). 

391

392 Table 7. Prediction results of the state model after recalibration with different spiking 

393 subsets and extra-weight (n =190). 
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Attribute Subset Copy r2(1) RMSEP2 SEP3 BIAS4 RPD5 N.F6 n7

Sand (g kg-1) 1 5 0.76 75.7 75.8 -4.30 2.03 10 190

Sand (g kg-1) 2 5 0.74 81.9 82.2 1.35 2.00 10 190

Sand (g kg-1) 3 5 0.76 77.0 75.9 -14.03 2.10 10 190

Sand (g kg-1) 4 5 0.77 74.3 74.4 -3.42 2.11 10 190

Sand (g kg-1) 1 10 0.76 74.4 74.3 -6.19 2.10 10 190

Sand (g kg-1) 2 10 0.80 71.6 71.6 -6.26 2.20 10 190

Sand (g kg-1) 3 10 0.75 78.3 75.0 -23.21 2.02 10 190

Sand (g kg-1) 4 10 0.79 71.6 71.6 -5.24 2.17 10 190

O.M (g dm-3) 1 5 0.33 6.2 6.2 -0.66 1.22 13 190

O.M (g dm-3) 2 5 0.24 5.9 6.6 1.66 1.20 13 190

O.M (g dm-3) 3 5 0.30 6.0 6.9 1.93 1.22 13 190

O.M (g dm-3) 4 5 0.30 6.1 6.2 -0.13 1.23 13 190

O.M (g dm-3) 1 10 0.24 6.3 6.3 0.89 1.20 13 190

O.M (g dm-3) 2 10 0.20 6.1 7.3 2.29 0.82 13 190

O.M (g dm-3) 3 10 0.25 6.2 7.1 1.94 1.20 13 190

O.M (g dm-3) 4 10 0.30 6.1 6.1 -0.14 1.20 13 190

394 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

395 Error, 5 Ratio of performance to deviation; 7 n: Number of soil samples from the target site used for prediction 

396 of sand and organic matter through the recalibrated state models.

397

398 Likewise, when compared to Tables 3 and 6, the use of extra-weighting resulted in 

399 prediction accuracy improvements for sand, with RPD ranging from 2.00 to 2.11 (5 copies) 

400 and from 2.00 to 2.20 (10 copies). Decreases in RMSEP and increases in determination 

401 coefficients were also noted, with the latter reaching a maximum value equal to 0.80, when 

402 recalibrating unspiked state model using subset 2, and 10 copies. However, the models 

403 recalibrated with subset 3 did not present satisfactory results, generating high bias values 

404 for sand, at -14.03 (5 copies) and -23.21 (10 copies). 

405 The improvement in RMSEP, SEP and RPD was dependent on the type of sample 

406 selected to form the subsets used for spiking (Capron et al., 2005; Guerrero et al., 2014) and 

407 the number of copies used for extra weight. Satisfactory results were not observed for 

408 organic matter, with little differences among spiked and extra-weighted state models and 
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409 spiked state models. This may be related to the low number of copies used in the spiked 

410 model, since for medium and large models, large extra-weight of spiking subsets may be 

411 necessary (Guerrero et al., 2010, 2014; Guy et al., 2015) to improve prediction performance 

412 of some soil attributes.

413

414 3.4. Local Model (target site)

415 3.4.1. Calibration and prediction

416 A total of 10 samples located in the center of the spectral space and 10 samples 

417 selected by 5 clusters were used to generate the local models for sand and organic matter, 

418 respectively. These samples belong to the target site and were chosen due to the 

419 improvement provided in the spiked state models in cross-validation stage. The results are 

420 presented in Table 8. 

421

422 Table 8. Cross-validation results obtained during the calibration phase of the local models 

423 (n = 10).

Attribute r2(1) RMSECV2 SECV3 BIAS4 RPD5 N.F6

Sand (g kg-1) 0.97 93.0 98.6 6.04 1.08 3

O.M (g dm-3) 0.37 12.8 14.7 3.23 0.62 2

424 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

425 Error, 5 Ratio of performance to deviation; n: Number of Soil Samples.

426

427 Notable differences were observed between the quality parameters from the local 

428 models for both sand and organic matter, when comparing the elements displayed in Table 

429 8 with those in Tables 2, 4 and 5. The local models showed low estimation potential in the 

430 cross-validation phase when compared to spiked and unspiked state models. BIAS values 

431 were high, whereas RPD values remained below ideal for use in agricultural studies.
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432 Similarly, the prediction results were lower than expected. The r2 and RPD for sand 

433 and organic matter were lower when comparing the information in Table 9 to that displayed 

434 in Tables 3, 6 and 7. 

435

436 Table 9. Prediction results obtained for the target site using local models (n = 190).

Attribute r2(1) RMSEP2 SEP3 BIAS4 RPD5 N.F6

Sand (g kg-1) 0.67 91.6 91.8 1.49 1.75 3

O.M (g dm-3) 0.10 6.8 6.9 0.02 0.96 2

437 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

438 Error, 5 Ratio of performance to deviation; n: Number of Soil Samples.

439

440 This result is in disagreement with those obtained by Wetterlind and Stenberg 

441 (2010), who, working with organic carbon, sand and other soil attributes, observed that 

442 local models presented better estimation results than spiked national models.

443 The low efficiency of the estimation for both attributes can be related to the small 

444 size of the local model, which was adjusted with only 10 samples (Guy et al., 2015). The 

445 selected samples were not able to represent the variability in the study area, reflecting in 

446 low accuracy. These results are in agreement with those reported by Guerrero et al. (2014), 

447 demonstrating the difficulty in obtaining site-specific calibration models using a small 

448 number of samples. 

449 However, although these results were obtained, it is evident that i sand attribute 

450 presented better results when compared to organic matter all phases of the study. Similar 

451 results were obtained by Demattê et al., (2000), Nanni and Demattê (2006), and Cezar et al., 

452 (2013) when studying Brazilian soils. This is related to the high sand content found in the 

453 soil samples, which presents high spectral response due to the predominance of quartz in 

454 this fraction (Hunt and Salisbury, 1971., Al-Abbas et al. 1972., White at al. 1997). 
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455 Of the 425 soil samples collected in the state of Paraná, 273 (64.23%) presented 

456 sand contents above 50%. In some cases, values close to 90% were detected. Of the 200 

457 soil samples collected in the target area, 154 (77.0%) presented sand contents above 50%. It 

458 is concluded, therefore, that, although the energy reflected by the samples is characterized 

459 as a function of the soil constituents, in this case the sand overlaps with the other elements, 

460 becoming the most significant parameter influencing the spectral response.

461

462 3.5. Additional evaluation of the model performance

463 The results obtained through the T2 Hotteling test demonstrated that the spiked and 

464 unspiked state models presented medium performance, being able to maintain most of 

465 values within the control limit (associated with p< 0.001) established for the test (Figure 2). 

466

467

468



23

469

470

471
472 Figure 2. Graphs obtained through the T2 Hotteling test in the prediction phase. The dashed line represents the 

473 critical limit. The spiked state model and spiked and extra-weighted state model (10 copies) for sand 

474 represents the recalibrated model with 10 samples (subset 2); The spiked state model and spiked and extra-

475 weighted state model (10 copies) for organic matter represents the recalibrated model with 10 samples (subset 

476 4). 

477

478 Only one T2 Hotteling value was above the critical limit for the two attributes, a 

479 sample belonging to the Regosol class. In this case, the models presented low potential to 

480 adequately estimate the value for this sample. However, the spiked and extra-weighted state 

481 model was very close in incorporating sample variability and obtaining a satisfactory result 

482 for sand, since it was close to the maximum limit.

483 The value above the critical limit is probably due to the high spectral response 

484 obtained for the sample, which presented a higher reflectance factor than the other samples 

485 comprising the target site set (Figure 3). 
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486

487 Figure 3. Spectral curves representative of the soil classes found at the target site.
488

489 The high spectral response was influenced mainly by sample sand content, with 

490 values close to 69.0%, in agreement with that described by Hunt and Salisbury (1971). On 

491 the other hand, the use of local models did not present values above the critical limit 

492 established by the T2 Hotteling test, indicating that all values estimated for the samples are 

493 under statistical control (without any outliers). However, during soil attribute prediction, no 

494 satisfactory results were obtained, demonstrating high data dispersion as presented by 

495 scatter-plots (Figure 4), especially for organic matter.  

496

497



25

498

499

500

501
502 Figure 4. Scatter-plots obtained during the prediction phase. The unspiked state model, spiked state model, 

503 spiked and extra-weighted state model and local model are presented. Line 1:1 (dashed); regression line (solid 

504 line).

505

506 4. Conclusions

507 The spiked state model, as well as the spiked and extra-weighted state models, 

508 presented better sand and organic matter predictions compared to the local model. 

509 Sample selection from the center of the spectral space, associate with extra-weight 

510 (mainly 10 copies), was shown to be more effective in sand prediction for the target site.
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511 Selected subsets at the target site were not able to represent the entire the variability 

512 of the local samples regarding organic matter, damaging the expansion of the recalibrated 

513 state models and estimations for this attribute.

514 The results obtained in this specific study demonstrate that it is unnecessary to 

515 generate local models to estimate sand in the state of Paraná, and that recalibrated state 

516 models (spike) can be applied. However, it should be emphasized that new local models 

517 must be generated (in Brazilian conditions) from a larger number of samples to evaluate if 

518 the prediction results will be similar to those obtained herein.

519
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Highlights

 The sand attribute showed more direct relationship with de spectral response.   

 Spiked and extra-weight state model presented better results for estimating sand.

 Selected subsets did not represent all the variability of the target site for OM.

 It is unnecessary to generate local models to estimate sand in the Parana State.
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17 ABSTRACT

18 The development of spectral prediction models for soil attributes has been extensively 

19 studied in the last 10 years. However, one of the problems encountered during this period 

20 concerns the representativeness of the samples selected for model generation, which are 

21 often unable to capture the existing variability in agricultural areas, generating imprecise 

22 models.  Thus, it is necessary to establish strategies for selecting soil samples, as well as for 

23 making them more representative within the model. Considering this, the aim of the present 

24 study was to evaluate strategies for soil sample selection and the recalibration of large 
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25 models using samples from a smaller area, in a process called spiking, and its effect on soil 

26 attribute estimations. A total of 425 soil samples were used for the generation of the state 

27 models, as well as 200 soil samples from a target site for attribute recalibration and 

28 prediction. From these 200 samples, 10 (subset) were selected by different methods for 

29 state model recalibration (spiking), and 190 were used in the prediction. Another 5 and 10 

30 copies of the subsets were also used as extra-weight to recalibrate the models. Models 

31 spiked with samples located in the center of the spectral space associated with extra-weight 

32 (10 copies) showed better accuracy in sand prediction (RPD = 2.20; r2 = 0.80; RMSEP = 

33 71.6 g kg-1). For organic matter, the use of selected samples based on 5 clusters associated 

34 with extra-weight (10 copies) slightly improved the RMSEP and RPD in most cases, 

35 reaching a maximum value of 6.1 g dm-3 and 1.20, respectively. However, the subsets 

36 selected at the target site were not able to indicate the entire variability of the local samples 

37 concerning organic matter, damaging the expansion of the recalibrated state models.

38

39 Keywords: Spiking; Sand; Organic Matter; Spectroradiometry.

40

41 1. Introduction 

42 Detailed mapping of soil attributes involves the collection of a high number of 

43 samples. In addition to high economic cost, this leads to the generation of dangerous 

44 residues derived from chemical analyses. 

45 For this reason, the search for analysis tools that are easily applied, inexpensive, 

46 precise and with low negative ambient impacts (clean) is key in studying soil on a large 

47 scale, especially in countries such as Brazil, where the need for laboratory analysis 

48 increases each year, with hundreds or thousands of samples requiring analysis. In this 
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49 regard, Vis-NIR-SWIR spectroscopy combines all these desirable characteristics and can be 

50 applied to obtain soil attributes (Dunn et al., 2002; Shepherd and Walsh, 2002; Islam et al., 

51 2003; Brown et al., 2006).

52 Vis-NIR-SWIR spectra are complex signals that contain useful information for 

53 analytical pursposes. An empirical approach can be applied for the use of the significant 

54 amount of information contained in a spectrum, employing calibrations (or models) 

55 constructed using multivariate regression techniques (Naes et al., 2002; McBratney et al., 

56 2006).

57 The samples used to construct the models, termed calibration samples, must be 

58 representative of the population of samples to which this model will be applied. The 

59 establishment of spectral calibration libraries derived from a high number of representative 

60 samples that contain the necessary variability has been suggested (Shepherd and Walsh, 

61 2002; Brown et al., 2005, 2006; Viscarra Rossel et al., 2008). However, this premise is not 

62 easy to fulfill, especially in areas with high edaphic diversity, because, even though the 

63 acquired calibrations are based on a large number of samples, the number of samples does 

64 not always guarantee that the fitted model can be successfully applied in new areas 

65 (Viscarra Rossel et al., 2008; Wetterlind et al., 2010). 

66 In this case, the application of calibrated models in new areas, which have no 

67 representative samples in the spectral library, can contribute to incorrect soil attribute 

68 predictions (Brown et al., 2006; Brown, 2007; Sankey et al., 2008). Thus, regional models 

69 (generated with samples from a particular region) may not be useful for estimating soil 

70 properties from other regions presenting different properties and edaphic attributes. 

71 This problem is more evident in regions presenting greater edapho-diversity, since it 

72 is very complex to include all factors that interfere in soil variability in the spectral library. 
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73 Likewise, models developed at the local scale (generated with samples from a certain area) 

74 will not be valid for regional or even national scales.

75 Recent studies suggest that the best way to solve this problem is through calibration 

76 spiking with samples from the target study site (D’Acqui et al., 2010; Wetterlind and 

77 Stenberg, 2010; Guerrero et al., 2014; Guy et al., 2015). After spiking, the recalibrated 

78 model tends to display greater precision when applied to samples taken from the target 

79 study site (Wetterlind et al., 2010; Guerrero et al., 2010). Currently, the spiking process 

80 seems to be most adequate when applied to model expansion (Shepherd and Walsh, 2002; 

81 Viscarra Rossel et al., 2008; Minasny et al., 2009). 

82 The central question regarding spiking concerns the type and adequate number of 

83 samples to be selected for model recalibration, since has a direct influences on the 

84 prediction result. A high number of local samples for the spiking subset tends to raise 

85 model accuracy (Brown, 2007; Guerrero et al., 2010), but, on the other hand, reduces the 

86 advantages of using spectroscopy as a quick and low-cost analytical method (Guerrero et al., 

87 2014). 

88 The use of a small spiking subset displays the advantage of low-cost, but a 

89 disadvantage regarding the possibility of inaccuracies in recalibrated models. To 

90 circumvent these problems, Guerrero et al. (2014) suggest the addition of several copies 

91 (extra-weight) of the spiking subsets within the calibration matrix, in order to increase the 

92 relevance of the target site samples and improve model fit.

93 In this context, this study had as its first objective to select the most influential 

94 samples from a target site for spiking subsets. The second objective was to evaluate the 

95 prediction accuracy for sand and organic matter content in the target site after assigning 

96 extra-weight to the spiking subsets. 



5

97

98 2. Materials and methods

99 2.1. Soil sampling in the state of Paraná 

100 A total of 425 soil samples were collected from different areas in the state of 

101 Paran’s - Brazil, a region delimited by the geographic coordinates 22º29'30′ ′  to 

102 26º42'59′′  south and 48º02'24′′  to 54º37′38′′  west. According to the World 

103 Reference Base (2014), the soil classes in the state comprise mainly Lixisols, Cambisols, 

104 Chernozems, Podzols, Gleysols, Ferralsols, Regosols, Nitisols and Histosols. These soil 

105 classes are developed on different lithologies such as migmatites, quartzites, basalt, 

106 sandstone, phyllites, siltstones, granites and micaxists, among others (EMBRAPA, 1984). 

107 The samples were collected from different landscape areas, toposequences and soil, forest 

108 and draining conditions.

109

110 2.2. Soil sampling in the target site

111 A total of 200 samples were collected from a target site located in northwestern 

112 Paraná - Brazil, delimited by the geographic coordinates 22o57´19´´ to 22o52´59´´ south 

113 and 52o3´47´´ to 51o59´0.7´´ west, comprising 2,500 ha. The soil classes found in the area, 

114 according to the World Reference Base (2014) are Ferralsols, Nitisols, Lixisols, Cambisols 

115 and Regosols. It is worth mentioning that, although this area is located within the state of 

116 Paraná, no samples were collected from this area to form the group of 425 samples 

117 described in Section 2.1

118

119 2.3. Soil sample laboratory and spectral analyses 
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120 After collection, the samples were submitted to laboratory analyses for 

121 determination of physical and chemical attributes, as well as spectral characterization. The 

122 samples were air-dried and sieved through a 2 mm mesh. A hydrometer was used for the 

123 determination of total sand content (Kiehl, 1979). Organic matter content was measured 

124 according to Walkley and Black (1934). These attributes were chosen because they must be 

125 identified in a laboratory, which uses chemical reagents with the potential to contaminate 

126 the environment, in addition to increasing the time and cost of the analysis.

127 The samples designated for spectral reading were dried at 45 °C for 24 h and sieved  

128 (mesh 2 mm) for size particle homogenization and reduction of humidity and sampling 

129 effects (Epiphânio et al., 1992). Subsequently, each sample was placed on a Petri dish (9 

130 cm diameter and 1.5 cm height) and submitted to spectral readings using a ASD FieldSpec 

131 3 JR spectroradiometer with a spectral range from 350 to 2.500 nm. The equipment was 

132 programmed to perform 50 readings for each sample, thereby generating an average 

133 spectral curve. 

134 For data acquisition, a Spectralon standard white plate calibrated for 100% 

135 reflectance was used, in accordance to the Labsphere Reflectance Calibration Laboratory 

136 (LRCL, 2009). An optical-fiber reader was placed on the support platform in a vertical 

137 position 8 cm distant from the samples. The reading area cmprised approximately 2 cm2. 

138 The light source was a 650 W light bulb with a noncollimated beam located 35 cm from the 

139 platform and at a 30° angle relative to the horizontal plan. 

140 The spectral readings were repeated three times, with successive displacement of 

141 the Petri dish 120° clockwise and successive scans, anlysing the entire sample. 

142 Subsequently, a simple arithmetic means of the three readings for each sample was 
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143 determined, based on the recommendations by Nanni and Demattê (2006) and Fiorio et al. 

144 (2010). 

145

146 2.4. Data processing and statistical analyses 

147 Each spectral curve was submitted to baseline and light scattering correction by the 

148 Multiplicative Scatter Correction (MSC) method, according to Buddenbaum and Steffens 

149 (2012). For noise reduction, a 1st order polynomial Savitzky-Golay Smoothing with seven 

150 smoothing points was used. The calibration models (empirical calibration functions) were 

151 constructed from regressions for the partial squared minimums (PLSR) using Unscrambler 

152 version 10.3 (CAMO, Incorporation, Oslo, Norway). 

153 The predictive ability of the models was evaluated through the calculation of the 

154 determination coefficient (r2), the root-mean-square error for prediction (RMSEP; Eq.1), 

155 the standard error (SEP; Eq.2) for prediction, the systematic error (BIAS; Eq.3) and the 

156 Ratio of performance to deviation (RPD; Eq.4). 

157 The RPD has been used as a useful indicator of precision for PLS prediction. For 

158 analytical performance quality, this value must be applied to at least 3 agricultural 

159 applications, (Williams and Sobering, 1993; Chang, 2001; Fearn, 2002; Cozzolino and 

160 Moron, 2006; Janik et al., 2007), whereas an RPD between 2 and 3 is considered “good”, 

161 1.5 to 2, average and < than 1.5, poor (D’ Acqui et al., 2010). Theses parameters are 

162 defined as:

163                                                RMSEP =                                                   (1)∑𝑛
𝑖 = 1(𝐷𝑖𝑓𝑖)2/𝑛

164 Difi = ŷi (estimated or predicted value by model VIS/NIR); ‘y’ edaphic property (sand, p.e.) 

165 of the sample ‘i’, and  is the number of samples;                              𝑛



8

166                                        SEP =                                             (2)∑𝑛
𝑖 = 1(𝐷𝑖𝑓𝑖 ‒  𝑏𝑖𝑎𝑠)2/𝑛 ‒ 1

167 - with the bias’ (or deviation) a measure of the systematic error; 

168                                             BIAS =                                                (3) 
∑𝑛

𝑖 = 1(ŷ𝑝𝑟𝑒𝑑 ‒  𝑦𝑟𝑒𝑓)

𝑛

169 - obtained by calculating the difference between reference and predicted values (means) by 

170 VIS/NIR;

171                                                              RPD =                                                         (4) 
𝑆𝐷𝑦

𝑆𝐸𝑃

172 - obtained by calculating the relationship between the standard deviation and SEP for the 

173 data set in the prediction phase.

174 In addition, the T2 Hotteling test at P<0.001 probability was also applied to the 

175 predicted values for the target area (local scale,  to aid in evaluating the performance of the 

176 spiked state models, spiked and  extra-weight state models, unspiked state models and local 

177 models). 

178

179 2.5. Calibration Models  

180 2.5.1. Unspiked State Models

181 The unspiked state models were constructed using 425 soil samples (dataset) 

182 collected from different areas in Paraná. 

183

184 2.5.2. Spiked State Models 

185 At this stage, 5% of the target site samples (subset) were selected as outlined below 

186 and added to the unspiked state models (Paraná models) for recalibration. Thus, the 

187 recalibrated models were extended to incorporate the variability of the target site. The 



9

188 strategies to select the subset used for spiking state models were based on the spectral 

189 characteristics of the target site samples. 

190 A total of 10 samples were selected, located at the periphery of the spectral space 

191 and constituting the first two principal components carried out previously with the target-

192 site samples (subset 1), 10 located in the center of the spectral space and constituting the 

193 first two principal components (subset 2), 10 located along of the spectral space and 

194 constituting the first two principal components (subset 3) and, finally, 10 samples 

195 belonging to different clusters (k-means clustering method) based on Euclidean distance 

196 (subset 4).

197

198 2.5.3. Spiked and Extra-weighted State Models

199 The unspiked state models were spiked and extra-weighted with additional copies of 

200 the target site spiking subsets, to evaluate whether sample extra-weighting could be used to 

201 improve calibration models for sand and organic matter estimates from the target site, as 

202 described by Guerrero et al. (2014) and Guy et al. (2015). In each of the four above-

203 mentioned ways to selected samples, the number of times (copies) of the spiking subset 

204 were increased 5- and 10-fold, totaling 475 (425 + 50) and 525 (425 + 100) samples for 

205 recalibration. A general overview of the four methods is displayed in Figure 1.

206
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207
208
209 Figure 1. Scheme used to represent the experiment. (a) Initial calibration (IC) unspiked model constructed 

210 only with state samples; (b) Initial calibration spiked with a spiking subset (SS) selected from a target site 

211 (TS); (c) Initial calibration spiked with a spiking subset (SS) selected from the target site (TS) associated with 

212 extra-weight. (d) Initial calibration constructed only with local samples. Fonte: Adapted from Guerrero et al. 

213 (2014). 

214  

215 After recalibration of the unspiked state models, they were applied to the prediction 

216 of target site attributes. In this stage, samples not selected from the target site (95% of the 

217 remaining samples) were used as an unknown dataset.

218

219 2.5.4. Local models

220 Two local models from the target site were generated, one for sand and another for 

221 organic matter, with the intention of comparing the prediction results with the results 

222 obtained by spiked state models, spiked and extra-weighted state model and unspiked state 

223 models. In this phase, 10 soil samples (5%) were used for the calibration of the local 

224 models, and 190 (95%) for sand and organic matter prediction. The datasets used in the 

225 generation of the local models were the selected subsets in the target site with the best 

226 results in the cross-validation of the spiked state models.

227

228 3. Results 

229 3.1. Descriptive results (reference methods)



11

230 The results obtained applying the reference methods are displayed in Table 1. Sand 

231 and organic matter attributes presented high variability for both datasets. 

232

233 Table 1. Descriptive statistics of the set of samples collected throughout the state of Paraná 

234 and from the target site.

Paraná state samples 1 Target site samples 2 Statistical
parameters O.M3 

(g dm-3)
Sand 

(g kg-1)
O.M

(g dm-3)
Sand 

(g kg-1)
Means 22.6 566.7 12.3 611.8

Minimum 3.4 70.0 3.4 180.0

Maximum 98.3 950.0 49.5 940.0

SD4 16.6 201.7 7.3 157.9

SE5 0.81 9.8 0.5 11.2

CV6 (%) 73.5 36.0 59.2 26.0

N7 425 425 200 200

235 1 Samples used in the generation of the state models; 2 Samples used in the generation of the local models; 3 

236 Organic Matter; 4 Standard Deviation; 5 Standard Error; 6 Coefficient of Variation; 7 Number of Samples.

237

238 High sand content variability (CV=36.0%) is explained by the presence of different 

239 materials present in Paraná soil, such as migmatites, quartzites, basalt, sandstone, phyllites, 

240 siltstones, granites, and micaxists, among others (EMBRAPA, 1984), which comprise 

241 varied mineralogical constitution. The high variability (CV=73.5%) in organic matter 

242 content is due to the disparity of the climatic conditions of the state (Caviglione et al., 

243 2000), as well as altitude (100 to 2000 meters), and soil use, contributing to the occurrence 

244 of significant differences in the accumulation of organic matter in the different sample 

245 regions. Of the 425 soil samples, 41.17% (175 samples) presented organic matter values 

246 above 20 g dm-3, and, thus, significantly influence soil spectral behavior, as reported by 

247 Baumgardner et al (1970).



12

248 On the other hand, although the results obtained for the set of samples from the 

249 target site presented variability, was still lower than the set of samples collected from the 

250 state of Paraná. The variation coefficient was of 59.2% for organic matter and 26.0% for 

251 sand content. This lower variability is due, mainly, to the fact that the soils were derived 

252 predominantly from two lithologies, sandstone and basalt (EMBRAPA, 1984), and are 

253 currently covered by two types of vegetation, sugar cane and forest. Of the 200 samples, 

254 15.5% (31 samples) presented organic matter values above 20 g dm-3.                                                                                                                                                                                                                                                                                                                                     

255

256 3.2. Unspiked State Models 

257 3.2.1. Calibration and prediction

258 Calibration results for sand and organic matter content are presented in Table 2.

259

260  Table 2. Cross-validation results obtained during the calibration phase of the unspiked state 

261 models (n = 425).

Attribute r2(1) RMSECV2 SECV3 BIAS4 RPD5 N.F6

Sand (g kg-1) 0.95 136.2 136.3 -0.73 1.48 10

O.M (g dm-3) 0.86 10.5 10.5 0.01 3.37 13

262 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

263 Error; 5 Ratio of performance to deviation; 6 Number of Factors. n: Number of Soil Samples.

264

265 The model for sand presented a high determination coefficient, however, RMSECV 

266 and SECV were around 14%, with a value of 136.2 g kg-1 and 136.3 g kg-1, respectively. 

267 On other hand, organic matter presented a lowed determination coefficient, but better BIAS 

268 and RPD indicators. A near-zero BIAs indicates that the organic matter model is not biased, 

269 i.e. the difference between the observed mean measurement and the reference value is very 

270 small. If, during the calibration of the unspiked state models, organic matter generally 
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271 presented better quality indicators in the prediction phase employing a set of unknown 

272 samples (target area), it was evident that the unspiked state model developed for the sand 

273 fraction presented better results (Table 3). 

274

275 Table 3. Prediction results obtained from the target site using unspiked state models (n = 

276 200).

Attribute r2(1) RMSEP2 SEP3 BIAS4 RPD5 N.F6

Sand (g kg-1) 0.74 80.4 80.6 -0.62 2.00 10

O.M (g dm-3) 0.24 6.3 6.8 1.45 1.15 13

277 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

278 Error, 5 Residual Predictive Deviation; 6 Number of Factors. n: Number of Soil Samples. 

279

280 The determination coefficient for sand presented value of 0.74, indicating a 

281 reasonable adjustment of the state model to the target area dataset (local scale). An RPD of 

282 2.00 was determined, indicating good analytical performance of the model in predicting this 

283 attribute, which was not found for organic matter, at 1.15, considered poor for agricultural 

284 studies, according to Chang et al. (2001) and D’ Acqui et al. (2010). 

285 The sand RMSEP and SEP were lower when compared to those obtained in Table 2, 

286 decreasing 55.8 g kg-1 and  55.7 g kg-1, respectively. A similar result was observed for 

287 organic matter, albeit with significant BIAS (1.45), which can be observed by the organic 

288 matter scatter plot (Figure 4) (unspiked state model). Most of the points are scattered above 

289 the 1:1 line, especially considering the lower organic matter values (4 to 12 g dm-3). This 

290 indicates that the measurements for this value are higher than the reference values. 

291 The limited capacity of the unspiked state model in predicting organic matter values 

292 suggests that the model did not cover the range of variation found at the target site for this 

293 attribute (Viscarra Rossel et al., 2009; Guerrero eta al., 2014), even using a medium state 
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294 model, consisting of 425 soil samples. This inaccurate prediction may be related to the size 

295 of the target site, larger (2,500 ha) and more diversified in terms of soil and soil use in 

296 relation to other target sites described in the literature (Guerrero et al., 2014; Guy et al., 

297 2015), which are small and densely sampled.

298 Therefore, organic matter values tend to be more variable in our study area, in 

299 agreement with the maximum (49.5 g dm-3) and minimum (3.4 g dm-3) results obtained for 

300 the target site. It is clear that the difference between both levels (46.1 g dm-3) is high, 

301 reflecting in very different spectral responses and predictions by theunspiked state model.  

302

303 3.3. Spiked State Models / Spiked and extra-weighted state model  

304 3.3.1. Recalibration 

305 The spiked state models presented the same trend for statistical parameters already 

306 discussed for the unspiked state models. Table 4 displays the multivariate statistics obtained 

307 after the recalibration of the unspiked state models with the selected samples from the 

308 target site.

309

310 Table 4. Cross-validation results of the unspiked state model after recalibration with 

311 different spiking subsets (n = 435).

Attribute Subset r2(1) RMSECV2 SECV3 BIAS4 RPD5 N.F6

Sand (g kg-1) 1 0.95 136.7 136.8 -1.08 1.47 10

Sand (g kg-1) 2 0.95 134.5 134.9 -0.26 1.52 10

Sand (g kg-1) 3 0.95 135.0 135.0 -1.43 1.49 10

Sand (g kg-1) 4 0.94 135.5 135.6 -0.47 150 10

O.M (g dm-3) 1 0.85 10.7 10.7 -0.01 3.30 13

O.M (g dm-3) 2 0.85 10.6 10.6 -0.04 3.33 13

O.M (g dm-3) 3 0.85 10.7 10.7 -0.01 3.30 13

O.M (g dm-3) 4 0.86 10.3 10.4 0.04 3.40 13
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312 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

313 Error, 5 Ratio of performance to deviation; 6 Number of Factors. n: Number of Soil Samples. 

314

315 The results obtained for the sand fraction using the spiked state model presented a 

316 maximum r2 of 0.95, while organic matter values were lower, at around 0.86. The BIAS 

317 values were insignificant for organic matter, indicating a random distribution of the 

318 regression line points. On the other hand, the sand BIAS was satisfactory only when using 

319 subsets 2 and 4 for recalibration of the unspiked state models.  The RPD ranged from 1.47 

320 to 1.52 for sand and from 3.30 to 3.40 for organic matter. Similar behavior was noted when 

321 state models were spiked and extra-weighted with additional copies of the target site 

322 subsets (Table 5).

323

324 Table 5. Cross-validation results of the state model after recalibration with different spiking 

325 subsets and extra-weight (n = 475 and 525).

Attribute Subset Copy r2(1) RMSECV2 SECV3 BIAS4 RPD5 N.F6 n7

Sand (g kg-1) 1 5 0.95 132.5 132.6 0.10 1.52 10 475

Sand (g kg-1) 2 5 0.95 128.8 128.9 -1.11 1.56 10 475

Sand (g kg-1) 3 5 0.95 131.4 131.5 -0.35 1.53 10 475

Sand (g kg-1) 4 5 0.95 132.4 132.6 -1.20 1.52 10 475

Sand (g kg-1) 1 10 0.96 129.9 130.1 -0.40 1.55 10 525

Sand (g kg-1) 2 10 0.96 122.0 122.1 -0.45 1.65 10 525

Sand (g kg-1) 3 10 0.96 124.1 124.2 -0.02 1.62 10 525

Sand (g kg-1) 4 10 0.96 128.2 128.3 -1.05 1.57 10 525

O.M (g dm-3) 1 5 0.87 10.0 10.1 -0.03 3.50 13 475

O.M (g dm-3) 2 5 0.85 10.3 10.3 0.01 3.43 13 475

O.M (g dm-3) 3 5 0.85 10.2 10.2 -0.03 3.46 13 475

O.M (g dm-3) 4 5 0.87 9.9 9.9 -0.01 3.57 13 475

O.M (g dm-3) 1 10 0.85 9.7 9.8 -0.01 3.61 13 525

O.M (g dm-3) 2 10 0.85 10.1 10.1 0.02 3.50 13 525

O.M (g dm-3) 3 10 0.86 9.7 9.8 0.03 3.60 13 525

O.M (g dm-3) 4 10 0.86 9.5 9.6 -0.01 3.61 13 525
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326 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

327 Error; 5 Ratio of performance to deviation; 6 Number of Factors. 7 n=475: Total number of samples for 

328 recalibration of unspiked state models with 5 copies of the selected samples from the target site;7 n = 525: 

329 Total number of samples for recalibration of unspiked state model with 10 copies of the selected samples 

330 from the target site.

331

332 With the extra-weight increment (5 and 10 times), the spiked state models for sand 

333 presented slightly better results than those obtained without any weighting (Table 4). A 

334 decrease in RMSECV was observed, reaching 122.0 g kg-1 when using 10 repeats for 

335 selected samples in the center of the spectral space (representing the mean spectrum of the 

336 target site).  On the other hand, increases in RPD were observed, reaching a maximum 

337 value of 1.65 for these samples.

338 However, it is worth noting that, although the RMSECV values were reduced after 

339 the use of extra weight, these results are considered high when compared to those obtained 

340 by Terra et al. (2015) and Pinheiro et al. (2017), obtaining 25.22 g.kg-1 and 114.74 g kg-1 

341 for sand, when studying Brazilian soils. On the other hand, when compared to the latter, 

342 BIAS values are considered low, at a maximum value of -1.20 (Table 5) against -17.37.

343 Organic matter showed a slight improvement in RMSECV, with values ranging 

344 from 9.5 to 10.3 g dm-3.  The RPD indicator was higher than the unspiked state model, 

345 ranging from 3.43 to 3.61. The best result was observed when extra-weight (10 copies) was 

346 used in subset 4 selected from 5 clusters (two samples per cluster). 

347

348 3.3.2. Prediction

349 The results of the model predictions are presented in Table 6.

350
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351 Table 6. Prediction results obtained by spiked state models using the remaining samples 

352 from the target site (n = 190).

Attribute Subset r2(1) RMSEP2 SEP3 BIAS4 RPD5 N.F6

Sand (g kg-1) 1 0.74 78.3 78.6 2.35 1.96 10

Sand (g kg-1) 2 0.74 82.1 82.3 1.16 1.95 10

Sand (g kg-1) 3 0.75 78.7 78.7 -5.14 2.00 10

Sand (g kg-1) 4 0.75 78.1 78.3 -1.11 2.01 10

O.M (g dm-3) 1 0.33 5.9 5.9 0.29 1.23 13

O.M (g dm-3) 2 0.33 5.6 5.6 -0.59 1.25 13

O.M (g dm-3) 3 0.28 6.1 6.2 0.50 1.18 13

O.M (g dm-3) 4 0.23 6.3 6.9 1.68 1.14 13

353 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

354 Error, 5 Ratio of performance to deviation; 6 Number of Factors. n: Number of Soil Samples.

355

356 The best estimate results were obtained for sand, and, all forms of sample selection 

357 led to more precise values for r2 and RPD statistical parameters, with a maximum 

358 determination coefficient of 0.75 and RPD ranging from 1.95 and 2.01. In accordance to 

359 D'Acqui et al. (2010) these RPD values demonstrate that the spiked models present average 

360 potential for estimating sand content. RMSEP and SEP values were also reduced after 

361 spiking, using subsets 1, 3 and 4. 

362 Regarding organic matter, slight improvements in prediction were observed with the 

363 use of most subsets for spiking, reaching 5.9 g dm-3, 0.33 and 1.25, for RMSEP, r2 and 

364 RPD, respectively. However, although this improved RPD to below 1.5, these values still 

365 demonstrate low prediction precision, making the use of these models for analytical use 

366 impractical. This is probably related to the size of the subsets used for spiking the models. 

367 Guy et al. (2015), while studying soil organic carbon, demonstrated that spiking models 

368 with 10 or fewer samples causes little improvement in model performance. Probably, the 

369 low number of samples used for spiking was not able to allow for recalibrated models to 
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370 cover the organic matter range of variation to be predicted in the target site, independent of 

371 the sample selection methods, in agreement with Viscarra Rossel et al. (2009).

372 One point concerning the use of spiking is that the performance parameters of the 

373 models did not follow the cross-validation trend with the use of different subsets. For 

374 example, subset 4 based on 5 clusters for spiking of the state model in the cross validation 

375 presented better results for organic matter, but, at the prediction phase using 190 target site 

376 samples, the best result was obtained with the use of subset 2 referring to samples located 

377 in the center of the spectral space. This is due to the lower spectral variability of these 

378 samples selected for recalibration, which present reflectance values at all wavelengths that 

379 approximate most of the samples that make up the population of the target area used for the 

380 model prediction test.

381  On the other hand, although the cluster analysis was statistically robust, the 

382 selection of samples based on 5 clusters was not efficient for recalibration of the state 

383 models and organic matter prediction using an independent set of samples, because, 

384 although two spectrally similar samples inside of the spectral space existed for each cluster, 

385 a higher Euclidean distance between clusters were observed, leading to the re-calibration of 

386 the models with very dissimilar samples, not representing the 190 samples of the target area 

387 used in the prediction of soil attributes. 

388 Attribute estimation using extra-weight in the spiked state model demonstrated that 

389 the sand results were better when compared to organic matter for all quality parameters 

390 except BIAS (Table 7). 

391

392 Table 7. Prediction results of the state model after recalibration with different spiking 

393 subsets and extra-weight (n =190). 
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Attribute Subset Copy r2(1) RMSEP2 SEP3 BIAS4 RPD5 N.F6 n7

Sand (g kg-1) 1 5 0.76 75.7 75.8 -4.30 2.03 10 190

Sand (g kg-1) 2 5 0.74 81.9 82.2 1.35 2.00 10 190

Sand (g kg-1) 3 5 0.76 77.0 75.9 -14.03 2.10 10 190

Sand (g kg-1) 4 5 0.77 74.3 74.4 -3.42 2.11 10 190

Sand (g kg-1) 1 10 0.76 74.4 74.3 -6.19 2.10 10 190

Sand (g kg-1) 2 10 0.80 71.6 71.6 -6.26 2.20 10 190

Sand (g kg-1) 3 10 0.75 78.3 75.0 -23.21 2.02 10 190

Sand (g kg-1) 4 10 0.79 71.6 71.6 -5.24 2.17 10 190

O.M (g dm-3) 1 5 0.33 6.2 6.2 -0.66 1.22 13 190

O.M (g dm-3) 2 5 0.24 5.9 6.6 1.66 1.20 13 190

O.M (g dm-3) 3 5 0.30 6.0 6.9 1.93 1.22 13 190

O.M (g dm-3) 4 5 0.30 6.1 6.2 -0.13 1.23 13 190

O.M (g dm-3) 1 10 0.24 6.3 6.3 0.89 1.20 13 190

O.M (g dm-3) 2 10 0.20 6.1 7.3 2.29 0.82 13 190

O.M (g dm-3) 3 10 0.25 6.2 7.1 1.94 1.20 13 190

O.M (g dm-3) 4 10 0.30 6.1 6.1 -0.14 1.20 13 190

394 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

395 Error, 5 Ratio of performance to deviation; 7 n: Number of soil samples from the target site used for prediction 

396 of sand and organic matter through the recalibrated state models.

397

398 Likewise, when compared to Tables 3 and 6, the use of extra-weighting resulted in 

399 prediction accuracy improvements for sand, with RPD ranging from 2.00 to 2.11 (5 copies) 

400 and from 2.00 to 2.20 (10 copies). Decreases in RMSEP and increases in determination 

401 coefficients were also noted, with the latter reaching a maximum value equal to 0.80, when 

402 recalibrating unspiked state model using subset 2, and 10 copies. However, the models 

403 recalibrated with subset 3 did not present satisfactory results, generating high bias values 

404 for sand, at -14.03 (5 copies) and -23.21 (10 copies). 

405 The improvement in RMSEP, SEP and RPD was dependent on the type of sample 

406 selected to form the subsets used for spiking (Capron et al., 2005; Guerrero et al., 2014) and 

407 the number of copies used for extra weight. Satisfactory results were not observed for 

408 organic matter, with little differences among spiked and extra-weighted state models and 
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409 spiked state models. This may be related to the low number of copies used in the spiked 

410 model, since for medium and large models, large extra-weight of spiking subsets may be 

411 necessary (Guerrero et al., 2010, 2014; Guy et al., 2015) to improve prediction performance 

412 of some soil attributes.

413

414 3.4. Local Model (target site)

415 3.4.1. Calibration and prediction

416 A total of 10 samples located in the center of the spectral space and 10 samples 

417 selected by 5 clusters were used to generate the local models for sand and organic matter, 

418 respectively. These samples belong to the target site and were chosen due to the 

419 improvement provided in the spiked state models in cross-validation stage. The results are 

420 presented in Table 8. 

421

422 Table 8. Cross-validation results obtained during the calibration phase of the local models 

423 (n = 10).

Attribute r2(1) RMSECV2 SECV3 BIAS4 RPD5 N.F6

Sand (g kg-1) 0.97 93.0 98.6 6.04 1.08 3

O.M (g dm-3) 0.37 12.8 14.7 3.23 0.62 2

424 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

425 Error, 5 Ratio of performance to deviation; n: Number of Soil Samples.

426

427 Notable differences were observed between the quality parameters from the local 

428 models for both sand and organic matter, when comparing the elements displayed in Table 

429 8 with those in Tables 2, 4 and 5. The local models showed low estimation potential in the 

430 cross-validation phase when compared to spiked and unspiked state models. BIAS values 

431 were high, whereas RPD values remained below ideal for use in agricultural studies.
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432 Similarly, the prediction results were lower than expected. The r2 and RPD for sand 

433 and organic matter were lower when comparing the information in Table 9 to that displayed 

434 in Tables 3, 6 and 7. 

435

436 Table 9. Prediction results obtained for the target site using local models (n = 190).

Attribute r2(1) RMSEP2 SEP3 BIAS4 RPD5 N.F6

Sand (g kg-1) 0.67 91.6 91.8 1.49 1.75 3

O.M (g dm-3) 0.10 6.8 6.9 0.02 0.96 2

437 O.M: Organic Matter; 1 Determination Coefficient; 2 Root-Mean-Square Error; 3 Standard Error; 4 Systematic 

438 Error, 5 Ratio of performance to deviation; n: Number of Soil Samples.

439

440 This result is in disagreement with those obtained by Wetterlind and Stenberg 

441 (2010), who, working with organic carbon, sand and other soil attributes, observed that 

442 local models presented better estimation results than spiked national models.

443 The low efficiency of the estimation for both attributes can be related to the small 

444 size of the local model, which was adjusted with only 10 samples (Guy et al., 2015). The 

445 selected samples were not able to represent the variability in the study area, reflecting in 

446 low accuracy. These results are in agreement with those reported by Guerrero et al. (2014), 

447 demonstrating the difficulty in obtaining site-specific calibration models using a small 

448 number of samples. 

449 However, although these results were obtained, it is evident that i sand attribute 

450 presented better results when compared to organic matter all phases of the study. Similar 

451 results were obtained by Demattê et al., (2000), Nanni and Demattê (2006), and Cezar et al., 

452 (2013) when studying Brazilian soils. This is related to the high sand content found in the 

453 soil samples, which presents high spectral response due to the predominance of quartz in 

454 this fraction (Hunt and Salisbury, 1971., Al-Abbas et al. 1972., White at al. 1997). 
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455 Of the 425 soil samples collected in the state of Paraná, 273 (64.23%) presented 

456 sand contents above 50%. In some cases, values close to 90% were detected. Of the 200 

457 soil samples collected in the target area, 154 (77.0%) presented sand contents above 50%. It 

458 is concluded, therefore, that, although the energy reflected by the samples is characterized 

459 as a function of the soil constituents, in this case the sand overlaps with the other elements, 

460 becoming the most significant parameter influencing the spectral response.

461

462 3.5. Additional evaluation of the model performance

463 The results obtained through the T2 Hotteling test demonstrated that the spiked and 

464 unspiked state models presented medium performance, being able to maintain most of 

465 values within the control limit (associated with p< 0.001) established for the test (Figure 2). 

466

467

468
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469

470

471
472 Figure 2. Graphs obtained through the T2 Hotteling test in the prediction phase. The dashed line represents the 

473 critical limit. The spiked state model and spiked and extra-weighted state model (10 copies) for sand 

474 represents the recalibrated model with 10 samples (subset 2); The spiked state model and spiked and extra-

475 weighted state model (10 copies) for organic matter represents the recalibrated model with 10 samples (subset 

476 4). 

477

478 Only one T2 Hotteling value was above the critical limit for the two attributes, a 

479 sample belonging to the Regosol class. In this case, the models presented low potential to 

480 adequately estimate the value for this sample. However, the spiked and extra-weighted state 

481 model was very close in incorporating sample variability and obtaining a satisfactory result 

482 for sand, since it was close to the maximum limit.

483 The value above the critical limit is probably due to the high spectral response 

484 obtained for the sample, which presented a higher reflectance factor than the other samples 

485 comprising the target site set (Figure 3). 
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486

487 Figure 3. Spectral curves representative of the soil classes found at the target site.
488

489 The high spectral response was influenced mainly by sample sand content, with 

490 values close to 69.0%, in agreement with that described by Hunt and Salisbury (1971). On 

491 the other hand, the use of local models did not present values above the critical limit 

492 established by the T2 Hotteling test, indicating that all values estimated for the samples are 

493 under statistical control (without any outliers). However, during soil attribute prediction, no 

494 satisfactory results were obtained, demonstrating high data dispersion as presented by 

495 scatter-plots (Figure 4), especially for organic matter.  

496

497
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498

499

500

501
502 Figure 4. Scatter-plots obtained during the prediction phase. The unspiked state model, spiked state model, 

503 spiked and extra-weighted state model and local model are presented. Line 1:1 (dashed); regression line (solid 

504 line).

505

506 4. Conclusions

507 The spiked state model, as well as the spiked and extra-weighted state models, 

508 presented better sand and organic matter predictions compared to the local model. 

509 Sample selection from the center of the spectral space, associate with extra-weight 

510 (mainly 10 copies), was shown to be more effective in sand prediction for the target site.
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511 Selected subsets at the target site were not able to represent the entire the variability 

512 of the local samples regarding organic matter, damaging the expansion of the recalibrated 

513 state models and estimations for this attribute.

514 The results obtained in this specific study demonstrate that it is unnecessary to 

515 generate local models to estimate sand in the state of Paraná, and that recalibrated state 

516 models (spike) can be applied. However, it should be emphasized that new local models 

517 must be generated (in Brazilian conditions) from a larger number of samples to evaluate if 

518 the prediction results will be similar to those obtained herein.

519
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