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Abstract
This work presents a framework to create a visual model of the environment which can be used to estimate the position of a

mobile robot by means of artificial intelligence techniques. The proposed framework retrieves the structure of the envi-

ronment from a dataset composed of omnidirectional images captured along it. These images are described by means of

global-appearance approaches. The information is arranged in two layers, with different levels of granularity. The first

layer is obtained by means of classifiers and the second layer is composed of a set of data fitting neural networks.

Subsequently, the model is used to estimate the position of the robot, in a hierarchical fashion, by comparing the image

captured from the unknown position with the information in the model. Throughout this work, five classifiers are evaluated

(Naı̈ve Bayes, SVM, random forest, linear discriminant classifier and a classifier based on a shallow neural network) along

with three different global-appearance descriptors (HOG, gist, and a descriptor calculated from an intermediate layer of a

pre-trained CNN). The experiments have been tackled with some publicly available datasets of omnidirectional images

captured indoors with the presence of dynamic changes. Several parameters are used to assess the efficiency of the

proposal: the ability of the algorithm to estimate coarsely the position (hit ratio), the average error (cm) and the necessary

computing time. The results prove the efficiency of the framework to model the environment and localize the robot from

the knowledge extracted from a set of omnidirectional images with the proposed artificial intelligence techniques.
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1 Introduction

Over the past few years, omnidirectional imaging has

become a widespread technology to solve localization tasks

in mobile robotics, thanks mainly to the great quantity of

information that omnidirectional systems can capture with

only one snapshot [44]. Regarding how to extract relevant

information from this type of images, the present work

focuses on the use of global-appearance descriptors, which

have been commonly used for these purposes.

Concerning the structure of the model, arranging the

topological information hierarchically constitutes an effi-

cient approach to carry out, subsequently, the localization

process. This method consists in organizing the informa-

tion in several layers, with different levels of granularity.

The high-level layers permit a rough but fast localization

and the low-level layers provide more accurate information

which is used to refine the estimation. Some authors have

proposed creating hierarchical maps, such as Valgren et al.
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[53], who tackle an on-line topological mapping through

the use of incremental spectral clustering or Shi et al. [50],

who propose the use of a differential clustering method to

improve the compression of telemetry data. In previous

works ([37] and [8]), a clustering approach to compact the

model was proposed with the objective of creating a two-

layer hierarchical structure. The experiments showed that

the proposal is a feasible alternative to build robust com-

pact models.

In recent years, due to the emergence of more efficient

hardware devices, artificial intelligence (AI) techniques

have contributed to solve a variety of problems in computer

vision and mobile robotics, as in [11], where an automatic

method based on thermal image processing and CNN is

proposed for victim identification in post-disaster envi-

ronments using a quadruped robot. In many applications,

data augmentation constitutes a common solution when

training the AI tools, as it can avoid overfitting while

increases the training instances.

In the light of the above information, the aim of the

present work is twofold: first, to retrieve the structure of the

environment from a dataset composed of omnidirectional

images captured along it, and second, to use this model to

estimate the position of the robot. For this purpose, several

machine learning techniques and global-appearance

description approaches are used and their performance is

studied. The efficiency of these tools will be evaluated

through their ability to estimate robustly the position of the

robot using the information stored in the model, which

presents a trajectory structure.

To tackle the proposed evaluation, the unique source of

information used to carry out modeling and localization is a

dataset of images obtained by an omnidirectional vision

sensor [47] installed on the mobile robot. A variety of

publicly available datasets is used in the experiments,

obtained from several indoor environments under real-op-

eration conditions. The approach consists in the use of a

variety of classifiers, data fitting neural networks and

clustering algorithms, used in combination with global-

appearance visual descriptors, to solve the localization

problem, and their effectiveness is measured with several

metrics: the ability to estimate coarsely the position (hit

ratio), the average error (cm) of the final measurement and

the computing time.

The novelty of the present work is a machine-learning-

based hierarchical approach that is used to solve efficiently

the localization task. In broad lines, the idea of the present

work is (1) to train and use a classifier to estimate in which

room or area the robot currently is (rough localization step)

and (2) refining this localization in the retrieved room (fine

localization step) by using data fitting neural networks.

Both steps use holistic descriptors as input information.

Our main contributions in this work can be summarized as

follows.

• We train some classifiers with holistic descriptors of

omnidirectional images to retrieve the room or area

where an input image was obtained.

• We evaluate the use of a clustering method to improve

the rough localization step.

• We address the fine localization step by means of a set

of data fitting neural networks which are trained to

estimate the coordinates of the robot in the ground

plane, and compare the results with previous

approaches.

• We study the use of the proposed machine learning

approaches to solve the hierarchical localization and

measure the accuracy of the methods in position

estimation.

The remainder of the paper is structured as follows. Sec-

tion 2 introduces a review of the related literature. Sec-

tion 3 outlines the machine learning tools used throughout

this work. After that, Sect. 4 gives details for the machine

learning techniques and the global-appearance descriptors

proposed to build the hierarchical models and Sect. 5

presents all the experiments that were carried out to test the

validity of the proposed methods to solve the localization.

Finally, the conclusions are presented in Sect. 6.

2 Related works

This section describes the related literature in the field of

visual description methods (Sect. 2.1) and machine learn-

ing techniques in mobile robotics (Sect. 2.2).

2.1 Visual description methods

Omnidirectional cameras have been commonly proposed in

mobile robotics during the past few years to capture

information from the environment. For example, Liu et al.

[27] use omnidirectional images to estimate the position

and orientation in outdoor environments and Román et al.

[48] use them to create an incremental model of an indoor

environment. Reich et al. [43] propose an omnidirectional

visual odometry framework to carry out localization and

modeling with flying robots. Li et al. [26] propose a

method to avoid obstacles for autonomous wheeled robots

using HyperOmni Vision and through the proposed

method, they won the FIRA avoidance challenge champi-

onship 2019.

Regarding how to extract relevant information from

omnidirectional images, holistic descriptors have been

commonly used for these purposes. For instance, Amorós

et al. [1] use this kind of descriptors to develop a loop
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closure detection and correction algorithm in a visual

odometry framework. Korrapati and Mezouar [24] use

global-appearance descriptors to tackle topological mod-

eling using omnidirectional images and also to detect loop

closures. Also, Amorós et al. [2] use this kind of descrip-

tors for estimation of position and orientation. Comparing

to local-features descriptors (such as SIFT [28], SURF [5]

or ORB [49]), global-appearance approaches usually lead

to more direct localization algorithms based on a pairwise

comparison between descriptors, since each image is rep-

resented by a unique descriptor. However, they lack metric

information so they have been traditionally used to build

topological models of the environment [37].

The present work carries out the modeling task by using

global-appearance description. Three methods are evalu-

ated in this paper: the Histogram of Oriented Gradients

(HOG), the gist of the scenes and a global descriptor

obtained from a Convolutional Neural Network (CNN).

The selection of these three methods is based on the results

obtained in previous works [8].

These methods depart from panoramic images, hence,

before calculating the proposed descriptors, a conversion

from omnidirectional to panoramic images must be tack-

led. Once the panoramic image (im 2 RNx�Ny ) is available,

the proposed methods are used to calculate the corre-

sponding global-appearance descriptor vector (d~2 Rl�1).

Regarding HOG, it was introduced by Dalal and Triggs

[13] for pedestrians detection. The version used in the

present work consists of dividing the image into k1 hori-

zontal cells and calculating a histogram from the gradient

orientation per cell with b bins per histogram [25]. These

histograms, arranged in an unique column vector, compose

the final descriptor d~ 2 Rb�k1�1.

As for the gist descriptor, Oliva et al. [36] firstly pro-

posed this method, which has been used for scenes

recognition. The version used in the present work consists

of the following steps. Firstly, m2 images are created from

the original panoramic image with different resolution.

Then, a set of Gabor filters are applied over the m2 images

with m1 different orientations, uniformly distributed to

cover the whole circumference. Finally, the pixels of each

image are grouped into k2 horizontal blocks and finally, the

average value of each block is calculated and these values

are arranged to create a vector, which is the resultant

descriptor d~ 2 Rm1�m2�k2�1. A more detailed description of

the configuration of the HOG and gist methods can be

found in [45].

Regarding the use of Convolutional Neural Networks

(CNNs), in this work, the information contained in inter-

mediate layers is used to obtain global-appearance

descriptors. This idea has previously been proposed by

some authors such as Mancini et al. [30], who explain the

fundamentals of this method and use it to carry out place

categorization with the Naı̈ve Bayes classifier. Moreover,

this method has already been used in previous works ([37]

and [8]), to create hierarchical visual models. The CNN

architecture used in the present work is places [58], trained

with around 2,5 million images to categorize 205 possible

kinds of scenes. The descriptors extracted from this net-

work correspond to the ones calculated in the layer ‘fc7’.

These descriptors contain 4096 (d~ 2 R4096�1) components.

It is worth highlighting the fact that this CNN is used only

with the purpose of obtaining a holistic descriptor per

scene, thanks to the ability that the ‘places’ training confers

it to extract relevant information from the input scene.

Therefore, no training or definition of its architecture is

carried out in the present work.

The use of global-appearance descriptors in environ-

ment modeling has increased during the past few years. For

instance, Roman et al. [48] propose a mapping method

from holistic description and solve the localization using

omnidirectional vision. They also present in [38] a com-

parative analysis of some global-appearance descriptors for

mapping. Rituerto et al. [46] propose the use of the gist

[35] descriptor to build topological models based on

omnidirectional images. More recently, Faessler et al. [16]

present a vision-based quadrotor system to model a dense

three-dimensional area. Korrapati and Mezouar [24] pro-

pose the use of omnidirectional images through global-

appearance descriptors to build topological maps and also a

loop closure detection method.

Moreover, in the past few years, hierarchical models

have been proposed to tackle the localization task. A recent

example of this framework was developed by da Silva et al.

[12], who propose a localization approach for mobile

robots through the use of topological maps and global-

appearance descriptors from omnidirectional visual infor-

mation. Moreover, previous works [8, 9] have also proved

the effectiveness and the robustness of clustering methods

along with holistic descriptors to create hierarchical models

and to subsequently solve the localization problem under

challenging situations, such as changes of illumination.

Those works rely on arranging the visual information

(obtained by global-appearance description methods) in

several layers. Afterwards, the localization task is solved

by means of an image retrieval problem in two steps: a fast

localization in an area of the environment (rough local-

ization) and a local localization step which provides more

accuracy within that area (fine localization).

2.2 Machine learning techniques

In recent years, machine learning techniques have con-

tributed to solving a variety of problems in robotics [6]. For
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example, Meattini et al. [33] propose a human-robot

interface system. This system is based on electromyogra-

phy sensors. By means of merging pattern recognition and

factorization techniques, the robot learns the optimal hand

configuration for grasping. Gonzalez et al. [18] use

machine learning to detect different levels of slippage for

robotic missions in Mars; and Dymczyk et al. [15] propose

a boosted classifier to classify landmark observations in a

localization framework. The purpose of the present work is

to retrieve the structure of the environment from a dataset

composed of omnidirectional images captured along it, and

use this model to solve the localization problem. Several

machine learning techniques and global-appearance

description approaches are used and their performance is

studied. The efficiency of these tools will be evaluated

through their ability to estimate robustly the position of the

robot using the information stored in the model, which

presents a trajectory structure. As for the use of machine

learning tools together with visual information, numerous

works can be found in the related literature. For example,

Wang et al. [55] use a method based on Support Vector

Machine (SVM) with the aim of classifying images of

traffic signals extracted from captured videos; Murthy and

Jadon [34] use feed-forward neural networks to detect hand

gestures; and Fan et al. [17] use a feed-forward neural

network with back-propagation to predict the texture

characteristics from food surface images. Furthermore, the

use of these techniques is widely extended in the mobile

robotics field. For instance, Triebel et al. [52] propose the

Informative Vector Machine (IVM) classifier for semantic

mapping in autonomous mobile robotics; and Duguleana

and Mogan [14] propose a path planning algorithm based

on the use of Q-learning and artificial neural networks for

mobile robots obstacle avoidance. More recently, Wozniak

and Kwolek [56] use a salient CNN-based regional repre-

sentation to calculate local features that are then fed to

classifiers with the aim of estimating blur intensity. CNNs

can also be re-trained with the aim of solving a specific task

and, at the same time, extracting descriptors from the re-

trained model [7].

In some applications that require to group visual data

information, clustering techniques have proved to be a

good solution [8, 37]. In [8], several clustering algorithms

were tested and proved to be useful to compact the model

with the aim of creating a two-layer hierarchical structure.

Basically, the descriptors, calculated from the images

captured at the modeling step, compose the visual dataset

(D ¼ fd~1; d~2; :::; d~N datag). Then, a clustering process is

carried out, and the descriptors are grouped according to

their mutual similitude (in clusters C ¼ fC1;C2; :::;Cnc
g,

where nc is the number of clusters). Consequently, through

this method, a high level model can be obtained, composed

of the representatives of each cluster. Additionally, the

descriptors in each cluster can be considered a set of low-

level models. This hierarchical structure permits estimating

the position of the robot in an efficient way [9].

Concerning classifiers, they consist in predicting the

class of given data instances. Classes are also known as

labels or targets and they represent categories. The use of

these machine learning techniques is suitable for cases

when the data size is large. For instance, Rahimi and Recht

[41] have proposed the use of local features and machine

learning tools to face regression and classification tasks.

Those tasks are based on large scale data and they have

output results that are competitive with state-of-the-art

algorithms regarding accuracy, training time, and evalua-

tion time. Ballesta et al. [3] use a CNN to address a room

classification task and Marinho et al. [31] define some

strategic points in the environment and navigation is

addressed by means of classification with rejection option.

Rebouças et al. [42] use different classifiers based in

machine learning to carry out a mobile localization task

from sonar data.

Regarding the training process for machine learning

tools, having large datasets plays an important role. How-

ever, the training dataset is occasionally smaller than

required and, hence, the model can not be properly trained.

In order to solve this problem, the data augmentation

technique has been widely proposed as a method to

improve performance. To cite one example, Guo and

Gould [19] used data augmentation to improve a CNN

training to solve an object detection task. Data augmenta-

tion basically consists in creating new pieces of ‘data’ by

applying different effects over the original images. Some

authors have already used data augmentation to solve their

deep learning tasks. Shorten and Khoshgoftaar [51] intro-

duce a survey concerning methods for data augmentation.

While traditional data augmentation techniques apply

systematically a variety of effects to the training images, in

the present work, we define specifically these effects in

such a way that they represent the challenging situations

that can occur when the mobile robot moves through an

environment under real operation conditions.

Therefore, this paper proposes the use of techniques

based on machine learning to carry out the hierarchical

localization, since they are expected to provide advantages

both in the rough and in the fine localization steps. The

improvements reached through the use of these tools with

respect to previous works are shown throughout the paper,

and they can be outlined as follows:

• Improved robustness against severe changes in lighting

conditions.

• Efficient solution when the sizes of the data and the

model are large.
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• Higher hit ratio in localization in the high-level model.

• More accurate estimation of the position of the robot,

since there will not be limitations due to the resolution

of the model (distance between consecutive images

within the dataset). Hence, more accuracy in the fine

localization step.

3 Machine learning tools

Machine learning methods try to automate the construction

of analytic models from data analysis. These methods

belong to the AI (Artificial Intelligence) branch and they

are based on the idea that the systems can learn to identify

patterns departing from the data. Common machine

learning techniques include decision trees, support vector

machines and ensemble methods. The machine learning

tools used throughout this work are (a) clustering,

(b) classification, and (c) data fitting neural networks. Their

fundamentals are outlined in the next paragraphs.

A clustering algorithm groups data vectors according to

some given criteria. The most usual criterion is the distance

or the similitude between the vectors. Considering previous

works [8, 37], spectral clustering [29] is the method

selected to tackle the clustering step throughout the present

work, as it presented the most accurate results among a

variety of approaches. This algorithm will be used to per-

form a non-supervised labeling of the dataset with the

objective that the clusters contain images captured from

near positions in the environment. Figure 1 shows an

example of the clustering carried out in an indoor

environment.

Regarding the classification technique to predict the

class of given data instances, the network uses a set of

training samples to learn a modeling function from the

input variables (xtrain) to discrete output variables (ytrain).

Thanks to it, the model is expected to achieve a well tuned

configuration and it is ready to receive new data (xtest) and

estimate their categories (yestimated). The present work

considers five types of classifications, since they have

shown a robust performance in mobile robotics tasks:

• Naı̈ve Bayes (NB) classification It is based on Bayes’

theorem with independence assumptions between the

features. This classification was introduced by Maron

[32] as a method for text categorization to solve the

problem of judging documents (such as spam or

legitimate, sports or politics, etc.) with word frequen-

cies as features. For instance, Posada et al. [39] propose

a naı̈ve Bayes classifier to predict the occupancy in a

local environment of the robot by fusing the evidence

provided by different segmentations and models and

hence to carry out visual navigation.

• Shallow neural network pattern recognition classifica-

tion The shallow neural network is a framework to

solve different tasks through processing different data

inputs [54]. Such systems ‘‘learn’’ to perform tasks by

considering examples (training data), generally without

Fig. 1 Example of a non-

supervised labeling through

clustering. (a) The red dots

show the positions where the

images were captured.

(b) Result of the clustering

process. Each image is grouped

according to its similitude with

the rest of them. Only visual

information will be used to

carry out this clustering process
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being programmed with any task-specific rules. The

network automatically generates identifying character-

istics from the learning material that it processes. For

example, Barshan et al. [4] used this type of classifier in

mobile robotics to differentiate with higher accuracy

targets obtained by SONAR.

• Support vector machine (SVM) classification Intro-

duced by Cortes and Vapnik [10], SVM can be used

either for classification or regression purposes. The

algorithm considers each data item as a point in an

n-dimensional space (where n is the number of features)

with the value of each feature being the value of a

particular coordinate. Then, a classification is tackled

by finding the hyper-plane or hyper-planes that best

differentiate the categories. As an example of use,

Iagnemma and Ward [22] propose a signal-recognition

based approach for detecting autonomous mobile robot

immobilization on outdoor terrain by using SVM

classifiers, which define class boundaries in a feature

space composed of statistics related to inertial and

wheel speed measurements.

• Random forest classification Random decision forest is

an ensemble learning method which consists in con-

structing a multitude of decision trees at training time

and it was initially introduced by Ho [20]. Random

Forest can be used either for classification or regression

purposes like SVM. Basically, it consists of a large

number of individual decision trees that operate as an

ensemble. To address classification tasks, each individ-

ual tree in the random forest carries out a class

prediction and the class with most votes becomes in

the prediction of the model. An example of use in

robotics can be found in [57], where a Random Forest

model is trained to predict the best grasp for novel

objects.

• Linear discriminant analysis (LDA) classifier LDA is a

generalization of Fisher’s linear discriminant method

that is widely used in statistics and other fields to find a

linear combination of features that characterize or

separate classes. The resulting combination can be used

as a linear classifier, or even for dimensionality

reduction before further classification. LDA assumes

that independent variables follow a multivariate normal

distribution and the model has the same covariance

matrix for each class. Under this modeling assumption,

the classifier infers the mean and covariance parameters

of each class. An example of using LDA for classifi-

cation is given by Kang et al. [23], who carry out mode

classification strategies for exoskeletons. Their

approach uses the LDA classifier for hip exoskeleton

applications using wearable sensors.

Finally, data fitting neural networks or function approxi-

mation networks are used to fit practical functions. The

neural network is not trained to predict the correct category

of the input data but to estimate a value among a specific

range (x ¼ ½xmin; xmax�, where xmin; xmax 2 R). The training

of the network is carried out through a supervised learning,

i.e., the learning process assumes the availability of a

labelled set of training data made up of Ntrain input–output

examples. This work proposes the use of this type of neural

networks to estimate the position (x, y) of the robot within

a specific area or room.

Figure 2 shows the diagrams of the three machine

learning tools used throughout this work to solve the

modeling task. In Fig. 2, im is the panoramic image; (x, y)

are the coordinates where a specific image was captured

(obtained from the ground truth). d~ is the global-appear-

ance descriptor calculated for a specific image and k is the

number of categories. Ci is the i-th category and Ntrain is

the total number of images used for training. Moreover,

regrading the data to test the proposed methods, imtest,

ðxtest; ytestÞ and d~test are respectively the image, coordi-

nates and descriptor calculated for a test image. The like-

lihood that the input d~test belongs to the category ci is

given by pðciÞ. Additionally, (xi,yi) are the coordinates of

the position within the environment which correspond to

the i-th image; and (xestimated, yestimated) are the coor-

dinates which have been estimated for a test image. These

tools carry out the training step departing from the data

provided by the dataset. This dataset consists of Ntrain
global-appearance descriptors which were calculated from

Ntrain images captured along the environment. In cluster-

ing (Fig. 2a), the set of descriptors is introduced and the

algorithm groups the information in k categories by con-

sidering the similitude between descriptors. Regarding

classification (Fig. 2b), a training phase is previously per-

formed. A set of training data items (visual descriptors and

their correct categories) are introduced and the configura-

tion parameters are tuned according to those values. After

that, the classification can be performed when a new input

descriptor is presented. As for the data fitting network

(Fig. 2c), it is similar to classification, but in this case, the

target data are not categories but they are real values within

a range.

Furthermore, regarding the use of data augmentation, it

consists in applying a variety of effects over the original

training images. Through this technique, the machine

learning tools are supplied by Neffects times the total

number of training images

(Ntrain augmented ¼ Ntrain � Neffects), where Neffects is the

number of effects applied over the original images dataset.
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4 modeling and localization through visual
descriptors

4.1 Environment modeling and hierarchical
localization

In the present work, the movement of the robot is contained

in the floor plane and it captures images using a cata-

dioptric vision system mounted on it. Every image is

described using a global-appearance method in such a way

that the initial dataset is composed of a set of Ntrain
descriptors, D ¼ fd~1; d~2; :::; d~N traing where each descriptor

is di
~ 2 Rl�1 and corresponds to the image imi.

In the present work, the model is structured into two

layers. First, the low-level layer is composed of a set of

descriptors, each one corresponding to an image in the

original training dataset. Second, the set of descriptors D ¼
fd~1; d~2; :::; d~N traing is divided into nc groups by using a

labeling method, where each group of descriptors is

expected to contain information from zones which are

visually distinctive. Once the labeling process has been

tackled, each zone of the high level model is represented by

a representative descriptor. Therefore, a set of representa-

tives is obtained R ¼ fr~1; r~2; :::; r~nc
g, where r~i is the rep-

resentative obtained for the i-th group ci, and this set is the

high-level model.

Once the model is built, the localization process can be

solved hierarchically, as shown in Fig. 3 [8]. Basically, it

consists of the following steps.

1. The robot captures a test image (imtest). From an

unknown position

2. It calculates the global-appearance descriptor of this

image (d~test).

3. In the rough localization step, the distances between

d~test and the representative descriptors (high level

model) are calculated and stored in a vector of

distances l~t; and a zone is selected as the most likely

one (ci).

Fig. 2 Diagrams of (a) the clustering tool, (b) the classification tool

and (c) the data fitting neural network tool used throughout this work

to solve the modeling task. The clustering tool groups the visual

description data in k clusters regarding their similitude. Every

descriptor is then associated to a specific cluster (C1;C2; :::; or Ck).

The classification tool learns to classify global-appearance descriptors

departing from the training data (descriptor dataset) and their labeling

information. The data fitting neural network works similarly to the

classifiers, but in this case, coordinates are introduced to the network

instead of labels to train the network
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4. The descriptor (d~test) is compared again but in this

case with the descriptors of the low-level model which

are contained in the selected zone ci.

5. The most similar descriptor is selected (d~ci;k) and the

position of imtest is estimated as the position of the

robot from which the image whose descriptor is d~ci;k

was captured.

4.2 Classifiers for localization in the high-level
model

This paper proposes an alternative hierarchical localization

method based on the use of classifiers to estimate the

position in the high level layer (the rough localization). It

will be solved by introducing the descriptor into a classifier

that will output the corresponding group or zone. The use

of this tool is expected to provide some advantages, com-

pared to the method presented in Fig. 3. The localization

algorithm is not only expected to be more robust against

changes of illumination, but also to provide an improved

success selecting the correct area within the high-level

model despite visual aliasing. The use of the classifier is

included in the step (3) of the hierarchical localization

process described in Sect. 4.1. In this step, the descriptor

d~test is fed into a classifier, which predicts the most likely

area. Basically, the steps to label the information are the

following.

1. The global-appearance descriptors of the training

images are calculated.

2. These descriptors are introduced into the spectral

clustering algorithm and a number of clusters nc is

manually selected.

3. This algorithm outputs a vector of labels which

specifies the cluster to which each descriptor belongs

(more information regarding the spectral clustering

process can be found in [8]).

4. Once the vector of labels is available, the classifier is

trained (Fig. 2b).

Therefore, the high-level modeling process is the follow-

ing. (1) Global-appearance descriptors are obtained from

the training images. (2) Then, this visual information is

firstly used to obtain automatically the labels, using spec-

tral clustering (nc is the number of clusters). (3) Finally, the

global-appearance descriptors together with the labels are

used to train the classifier.

In this case, once the model is ready, the localization

process consists of the following steps:

1. The robot captures an image from an unknown position

imtest.

2. The global-appearance descriptor of this image is

calculated d~test.

3. The rough localization is solved by means of the

classifier, which predicts the most likely area ci from

d~test.

Fig. 3 Hierarchical localization

diagram. The high-level model

contains representative

descriptors for each zone

(r~1; :::; r~nc
). The process starts

when a new image is captured

(imtest) and its holistic

descriptor is calculated (d~test)
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4. After the prediction, the fine localization is solved by

comparing the descriptor with the descriptors of the

low-level model included in the selected area. The

most similar descriptor d~ci;J is retained.

5. Finally, the position of the robot is estimated as the

position which corresponds to the most similar

descriptor from the selected area (see Fig. 4).

Nevertheless, as it was explained in Sect. 3, the classi-

fier must be trained before using it to predict the cluster. A

complete study of the performance of the different classi-

fiers is included in Sect. 5.1.

4.3 Solving the fine localization problem using
function approximation through a data
fitting neural network

The coarse and fine localization steps outlined in Sect. 4.1

use only visual information. Previous works have shown

the main limitations of it [9], which are, mainly, the visual

aliasing and the resolution in localization due to the dis-

tance between consecutive acquisition points in the training

dataset. To overcome these limitations, the proposed neural

network is trained to approximate the coordinates (x, y) of

the test image. The network is trained with a set of visual

descriptors from a training dataset, along with the

Fig. 4 Hierarchical localization

diagram. A classifier has been

previously trained. To start the

localization process, a new

image imtest is captured and its

holistic descriptor d~test is
obtained
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coordinates (x, y) in the floor plane from which each

training image was captured.

Therefore, a data fitting Neural Network can be used to

solve the fine localization as a function approximation

problem. Before the localization task, the model con-

struction is carried out. This process consists of training a

network for each area by using the descriptors included in

that area and the (x, y) coordinates from which each image

was captured. After training the nc networks, the complete

localization process is addressed through the following

steps:

1. The robot captures a test image from an unknown

position imtest.

2. The global-appearance descriptor of this image is

calculated d~test.

3. This descriptor is fed into a classifier, which predicts

the most likely zone ci.

4. After the prediction, the descriptor d~test is fed into the

previously trained neural network corresponding to the

zone retrieved in the previous step.

5. The outputs of this network are the predicted coordi-

nates of the test image, which are an estimation of the

position of the robot (see Fig. 5).

The diagram related to this process can be seen in Fig. 5.

Concerning the data augmentation, the present work pro-

poses an approach that has been designed specifically to

obtain a robust Data fitting NN for localization. Hence, we

consider a variety of visual effects to each training image

with the aim of obtaining new samples that reflect the

visual changes that usually appear when the robot operates

in real conditions. Therefore, through this data augmenta-

tion, the CNN is expected to be more robust against the

challenging conditions that can occur in the scenario where

the robot moves. Considering it, the effects that we con-

sider to perform the data augmentation are:

• Rotation A random rotation between 10 and 350

degrees is applied over each omnidirectional image.

This effect emulates the different orientations that the

robot may have at a specific point in the ground plane

when acquiring a new image.

• Occlusion This effect simulates the cases when some

parts of the picture are hidden either by some event

(such as piece of furniture or a person in front of an

object) or by some parts of the sensor setup. This effect

is applied by introducing geometrical objects over

random parts of the image.

• Blur effect Some degrees of blur are applied to each

training image to emulate the case in which the image is

captured while the robot is moving.

• Gaussian noise It emulates the possible noise that the

visual sensor can introduce in the image. White

Gaussian noise is added to the image.

• Brightness The low intensity values are re-adjusted

(increased) in order to create a new image brighter than

the original one.

• Darkness The high intensity values are re-adjusted

(decreased) in order to create a new image darker than

the original one. The brightness and darkness effects try

to imitate the changes that the lighting conditions of the

environment may experience during the day. No

darkness and brightness are applied at the same time

on the same image.

The data augmentation and training processes are offline

steps which must be completed before starting the local-

ization task. Once the data fitting neural networks are

available, the fine localization can be solved: the descriptor

of the test image (d~test) is introduced into the neural net-

works of the area/room retrieved in the rough localization

step, and the coordinates (x and y respectively) are

estimated.

5 Experiments

The database used to perform the experiments is the COLD

(COsy Localization Database) [40]. This open access

dataset is composed of several types of data (monocular

images and videos, laser-based ground truth, etc.) captured

in indoor environments. Among the different data pro-

vided, the omnidirectional images are selected to carry out

the experiments and the ground truth provided by the

database, which is used throughout the experiments, was

obtained by means of a laser sensor. Furthermore, the

database contains images that were collected under three

different lighting conditions (cloudy days, sunny days and

at nights) and they also contain dynamic changes and blur

effects. Among the different datasets, the Freiburg dataset

captured during a cloudy day is used as training data,

because this environment is the largest one provided by

COLD and the presence of wide windows makes the

localization task more challenging. Moreover, the cloudy

conditions introduce the minimum effect produced by

illumination. Subsequently, cloudy, sunny and night ima-

ges will be used to test the robustness of the methods. It

will allow us to analyse the domain shift problem (changes

of lighting conditions).

The Freiburg dataset is composed of 9 different rooms: a

printer area, a kitchen, four offices, a bathroom, a stair area

and a long corridor which connects the rooms. This dataset

includes several challenging phenomena which make the

experiments suitable to analyze the performance of the
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algorithm under real-operation conditions, apart from those

described in the previous paragraph. There are dynamic

changes in the environment such as in the position of

furniture and objects or people walking, there is blur effect

over some images due to the movement of the camera and

also, a high degree of visual aliasing can be perceived in

the images. The original cloudy dataset is downsampled to

keep visual information every 30 cm on average. It allows

us to obtain results which are comparable to those ones

obtained in previous works ([8] and [9]). Hence, after

downsampling, a training dataset composed of 519 images

is considered as starting point. From this initial dataset, a

data augmentation is performed to obtain an augmented

dataset with 49824 images, which are used to train the data

fitting

Furthermore, departing separately from the cloudy,

sunny and night datasets, three test datasets are created

with 2596, 2231 and 2876 images respectively. These

images were selected randomly across the whole model.

The cloudy test dataset (same domain) contains images

which are not included in the training dataset. The sunny

and night test datasets allow us to analyse the problem of

domain shift. Figure 6 shows some examples of omnidi-

rectional images under the three different illumination

conditions. The experiments have been carried out in a

computer with a CPU Intel Core i7-7700� at 3,6 GHz and

through Matlab� programming.

In this section, the results of the experiments are pre-

sented. First, Sect. 5.1 shows the performance of the

classifiers to solve the rough localization step. Second, in

Sect. 5.2, the fine localization is addressed by means of

data fitting neural networks and the results are analysed.

Finally, the complete hierarchical localization process is

tested in Sect. 5.3.

5.1 Experiment 1: rough localization

This subsection focuses on the rough localization. The first

experiment studies the performance of the five classifiers to

carry out the selection of the corresponding area within the

environment. These classifiers are (a) Naı̈ve Bayes, (b) a

classifier based on a shallow neural network (c) SVM

Fig. 5 Hierarchical localization diagram. A classifier and a set of cN data fitting neural networks have been previously trained to solve,

respectively, the coarse and fine localization steps

Neural Computing and Applications (2023) 35:16487–16508 16497

123



(d) Random Forest and (e) LDA classifier. These classifiers

are all trained with the global-appearance descriptors of the

training images, along with the labels, which indicate the

corresponding category for every descriptor. In the first

part of the experiment, a manual labeling of the data is

carried out, in which the labels correspond to the number of

room in which each image was captured, so these labels are

integers in the range [1, 9] as the Freiburg dataset contains

9 rooms.

The three kinds of global-appearance descriptors used to

train each classifier are gist, HOG and a descriptor obtained

from the layer ‘fc7’ of the CNN places (this descriptor is

named CNN-fc7 throughout the paper). Therefore, to sum

up, every classifier is first trained with the set of training

descriptors (extracted from the cloudy dataset) and the

labels, and after that, the classifier is ready to receive new

descriptors (those of the test images) and output the correct

label. Moreover, in order to evaluate the ability of these

tools to cope with changes of the illumination conditions,

the experiment is also carried out by using as test images

those contained in the night and sunny Freiburg datasets.

To evaluate the relative performance of each method,

the hit ratio of every configuration (classifier ? description

method) is collected, i.e. the percentage of success of the

classifier, using as input the test data (new data which has

not been used to train the classifier). In order to carry out a

comparison between methods, this experiment also shows

the hit ratios obtained when using the nearest neighbour

method to solve the rough localization, instead of a clas-

sifier, since this was the method proposed in previous

works ([8]). In this case, the high-level model is composed

of one representative descriptor per room (calculated as the

average descriptor of the training images contained in this

room). The rough localization calculates the distance

between each test descriptor and the representatives, and

retrieves the room whose representative is the nearest

neighbour.

Table 1 shows the results obtained, showing separately

the hit ratio of the test data for the three illumination

conditions and also, the necessary time to complete the

rough localization process. According to this table, the

shallow neural network and the SVM classifier work suc-

cessfully with the cloudy test images, since both provide

hit ratios around 98% when gist or CNN-fc7 are used to

describe the visual information. The best results are

obtained with LDA and SVM. On the one hand, LDA

presents the best results in cloudy conditions (98.96%). On

the other hand, SVM outputs the best hit ratios in night and

sunny conditions (94.09 and 85.03% respectively). Both

classifiers present outstanding results in general terms

when used along with the CNN-fc7 descriptor. The con-

fusion matrix obtained with the cloudy test images is

shown in Fig. 7. In this matrix, correct predictions are

higher than 96% in all the areas of the environment. The

worst case is produced in the 2-person office 2. In this case,

Fig. 6 Sample omnidirectional

images from the Freiburg

environment under (a) cloudy,
(b) night and (c) sunny
illumination conditions

Table 1 Results of experiment 1. Accuracy of the classifiers. Hit ratio

and average computing time of the rough localization process under

three illumination conditions (domain shift). The best result for each

illumination condition is highlighted in bold

Classifier Descriptor Time (s) Hit ratio test (%)

Cloudy Night Sunny

Naı̈ve Bayes gist 0.17 86.74 75.66 70.10

Naı̈ve Bayes CNN-fc7 0.51 86.13 77.78 62.39

Naı̈ve Bayes HOG 0.05 4.24 4.10 9.86

Neural net gist 0.05 98.57 83.55 82.61

Neural net CNN-fc7 0.02 97.42 93.25 76.20

Neural net HOG 0.02 4.97 4.35 6.77

SVM gist 0.09 98.61 84.63 85.03

SVM CNN-fc7 0.15 98.50 94.09 82.03

SVM HOG 0.05 7.24 5.29 5.92

Random forest gist 0.33 79.15 76.43 45.06

Random forest CNN-fc7 1.37 90.67 79.68 63.99

Random forest HOG 0.13 5.20 6.21 5.17

LDA gist 0.28 90.79 65.61 46.53

LDA CNN-fc7 2.54 98.96 93.75 84.15

LDA HOG 0.05 5.97 6.32 7.20

Nearest Neigh gist 0.06 80.89 70.58 70.10

Nearest Neigh CNN-fc7 0.01 78.23 76.95 53.65

Nearest Neigh HOG 0.02 14.07 11.27 19.77
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there are 5 false positives, 4 with the corridor and 1 with

the 1-person office, which are not considered critical, since

these false positives are produced with adjacent rooms.

Nevertheless, these mistakes should be taken into consid-

eration with the aim of avoiding incorrect fine localization

subsequently. Additionally, the Naı̈ve Bayes and Random

Forests classifiers return the worst solutions and the HOG

description proves not to be valid in combination with

these machine learning tools.

Regarding different illumination conditions (sunny and

night), the hit ratio decreases for most of the areas. This

effect was expected and was observed in previous works

([9]). Notwithstanding that, the results do not differ sub-

stantially from the ones obtained with the cloudy test

images. Thus, the conclusion achieved is that the classifiers

present robustness to carry out the rough localization task

even when substantial changes of lighting conditions occur.

The benchmark method, based on the Nearest Neighbour

search, presents, in general, a lower calculation time.

However, its hit ratio, even with the best configuration

(using gist) is substantially lower than the hit ratios pro-

vided by the shallow neural network and SVM. Therefore,

these classifiers prove to be a robust and computationally

efficient option to address the rough localization. Consid-

ering the results shown in Table 1, for future experiments,

only the combinations shallow neural network, LDA or

SVM along with gist or CNN-fc7 will be considered.

Once proved the utility and robustness of the classifiers

to carry out the rough localization task, the second part of

this experiment evaluates the labeling of the training data.

So far, the labeling provided by the dataset has been used.

Therefore, these experiments have assumed a manual

labeling of the dataset. This way, the training of the clas-

sifier has consisted basically in introducing the visual

description of the images and its related label. Neverthe-

less, using AI to automatically label the images can be a

more practical solution. Hence, we can consider a tool

which groups the images regarding its visual similitude

(automatic labeling) instead of using the labeling provided

by the dataset (manual labeling). To tackle the automatic

labeling, spectral clustering has been selected, because it

provided good solutions in previous works [8] compared to

other clustering frameworks.

For this experiment, the descriptor gist is used to obtain

the visual information, nc ¼ 2; :::; 13 clusters are consid-

ered and either the classifiers SVM, LDA or shallow neural

network are used. Moreover, the nearest neighbour method

is also used as a reference method to compare the perfor-

mance of the classifiers with the results obtained in pre-

vious works. The results of this experiment are shown in

Fig. 8. This figure shows the average error under cloudy

(blue), night (orange) and sunny (green) illumination

conditions. Classifiers (SVM, LDA and shallow neural

network) work better than the nearest neighbour method

independently of the illumination conditions. The use of

classifiers with cloudy test images provides hit ratios which

Fig. 7 Confusion matrix of the

classifier SVM along with the

gist descriptor to estimate the

area of the test images in the

cloudy test dataset
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are always around 100%. Among the four methods studied

to evaluate the use of automatic labeling LDA and SVM

present competitive results in the cases of domain shift

(night and sunny conditions). The hit ratio is improved by

using automatic labeling in comparison to the results

obtained by manual labeling (see Table 1). The hit ratios

reached with neural network classifier and manual labeling

(98.57, 83.55 and 82.61% for cloudy, night and sunny test

datasets respectively) are lower than those obtained with

the automatic labeling considering 9 clusters (99.65, 89.29

and 86.96% for cloudy, night and sunny test datasets

respectively). Also, the same comparison using the SVM

classifier outputs better results by using automatic labeling,

for example, the hit ratio improves from 98.61, 84.63 and

85.03% to 100, 89.19 and 85.21% respectively with the

three illumination conditions. Only when the number of

clusters is higher than 10 under sunny illumination, neural

network classifier produces hit results lower than 80%.

Therefore, the conclusion reached through this experiment

is that the combination of spectral clustering and a classi-

fier improves considerably the rough localization step with

respect to the nearest neighbour search and performs more

robustly against changes of illumination.

5.2 Experiment 2: fine localization

Section 5.1 has shown the utility of some classifiers to

solve the rough localization step considering either manual

or automatic data labeling. The present section goes one

step ahead and tries to solve the fine localization. Con-

sidered jointly, both steps will form a complete hierarchical

localization and have proved to be an efficient method to

solve this task [9]. Hence, after selecting the area, the fine

localization consists in estimating the position within the

selected area. In these experiments, changes of the lighting

conditions are again considered and the labels to train the

classifiers correspond either to the room number (manual

labeling) or those obtained through spectral clustering

(automatic labeling), as in Sect. 5.1. In the present section,

we assume that the proper room or area is always correctly

selected in the previous rough localization step. Therefore,

we focus on the performance of the methods proposed for

fine localization. Later, in Sect. 5.3, the joint performance

of both processes will be analyzed.

As described in section 4, the fine localization is solved

either with a data fitting neural network (one network per

area has been created and trained) by means of a nearest

neighbour search with the images included in the selected

area. To evaluate the performance of each method, the

average localization error has been obtained for each

configuration (localization method ? description method),

i.e. the average error, using test images which have not

been used to train the data fitting neural networks and

images captured with different illumination conditions.

Also, the average computing time is collected. Table 2

shows the results obtained. According to this table, the

computing time for the data fitting neural network option is

lower, with time values of 57.34 and 23.55 ms whereas, in

the case of the nearest neighbour method, the average time

is 86.64 and 30.30 ms (when using gist or the CNN-fc7

descriptor, respectively). Regarding the localization error,

the table shows that the fine localization method based on

image retrieval outputs slightly better results than the

alternative using data fitting neural networks with the

exception of the results with sunny test images. Never-

theless, a more detailed analysis of the results provided by

these methods leads to deeper conclusions. Table 3 shows

the data collected for the fine localization by using nearest

Fig. 8 Experiment 1. Results of

rough localization using

automatic labeling. Hit ratio for

the test images versus number

of clusters. The localization step

is carried out by means of

(a) the SVM classifier, (b) a
shallow neural network

classifier, (c) the LDA classifier

and (d) the nearest neighbour

method (benchmark method)
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neighbour and data fitting neural networks, but showing in

detail the information per area. The table shows that the

average error with the neural network is quite low in most

of the areas: 1, 3, 5, 6, 7 and 8 present an error between

2.16 and 4.96 cm, but areas 2, 4 and 9 present worse

results. The same problems are presented when the nearest

neighbour method is used. These results are due to the fact

that the areas 2 (corridor) and 4 (kitchen) are the largest

rooms, thus, their training can be more challenging.

Despite these issues, this analysis permits realizing that the

use of data fitting neural networks can be an interesting tool

to estimate the position of the robot within a non-large and

well delimited environment or when abrupt changes of the

lighting conditions are expected. Additionally, the esti-

mation with data fitting neural network does not present the

limitation of resolution given by the distance between

consecutive images in the training set.

Furthermore, a comparison between manual and auto-

matic labeling is carried out. Figure 9 shows the average

error and computing time of the fine localization through

(a) nearest neighbour and (b) data fitting neural network

respectively. Both methods depart from automatic labeling

through spectral clustering and they also use the gist

descriptor. The graphs show that the nearest neighbour

method performs better than the data fitting neural network.

Regarding the computing time, both options provide sim-

ilar values and they decrease as the number of clusters

does, as expected. Finally, to compare the labeling options,

the spectral clustering is configured with a number of

clusters nc ¼ 9, since the labeling provided by the ground

truth (manual labeling) defines 9 categories regarding the 9

rooms which compose the dataset. Through this compar-

ison, automatic labeling proves to behave better than the

manual option. For instance, comparing the fine localiza-

tion through manual labeling and nearest neighbour

method (see Table 2; with gist descriptor) with the auto-

matic labeling (nc ¼ 9 clusters) and nearest neighbour

method (see Fig. 9a), the average error results obtained for

the second option (6.6; 32.5 and 62.5 cm respectively for

the three illumination conditions) improves substantially

the results obtained for the manual labeling option (182;

183 and 218 cm respectively). In addition, Fig. 10 shows

the average silhouettes vs. the number of clusters. The

silhouette provides information about how compact the

clusters are. For this case, we have used the silhouette of

descriptors, which measures the compactness of the clus-

ters from a visual point of view, since the mapping process

is purely visual. The silhouette takes values in the range

��1; 1½ and evaluates the degree of similarity between the

instances within the same cluster and at the same time the

dissimilarity with the instances which belong to others

clusters. Low values of silhouette denote that the clusters

are not visually consistent and high values indicate that

they are visually compact and consistent. Therefore, this

Table 2 Experiment 2.

Accuracy of the methods

studied to solve the fine

localization. Average

localization error and average

computing time considering test

images captured under three

illumination conditions (domain

shift)

Method Descriptor Avg. time (ms) Avg. Error (m)

Cloudy Night Sunny

Nearest Neigh gist 89.64 1.82 1.83 2.18

Nearest Neigh CNN-fc7 30.30 1.82 1.82 2.31

Neural net gist 57.34 1.86 1.91 1.98

Neural net CNN-fc7 23.55 1.90 1.95 1.98

Table 3 Results for fine

localization using nearest

neighbour and data fitting neural

network with gist

descriptor. The average errors

are collected separately for each

area

Area Average error (nearest neighbour) (cm) Average error (neural network) (cm)

1 5.22 4.96

2 417.17 430.08

3 4.19 2.16

4 167.54 168.40

5 4.11 3.61

6 5.23 3.72

7 5.11 3.15

8 4.09 3.18

9 6.20 4.67
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parameter allows us to quantify the goodness of the clus-

tering process, hence, it is used to decide the number of

clusters to take into consideration. For instance, it can be

seen in Fig. 10 that for eight clusters, the silhouette value is

low and hence, the produced clusters are not visually

consistent. Therefore, this environment should not be

clustered into 8 clusters to create the automatic labelling.

5.3 Experiment 3: complete hierarchical
localization

Previous experiments have shown the utility of some

classifiers to solve the rough localization step (Sect. 5.1)

and two methods to carry out the fine localization step

(Sect. 5.2). The present subsection joins both steps and

tries to solve the complete hierarchical localization.

Therefore, after selecting the area through classifiers, the

position within the selected area is estimated. In these

experiments, changes of the illumination conditions are

also considered and the labels to train the classifiers cor-

respond to those obtained through spectral clustering (au-

tomatic labeling). Two alternatives are considered to carry

out the fine localization step: either (a) through an image

retrieval approach, by calculating the nearest neighbour or

(b) through the use of a data fitting neural network.

To evaluate the performance of each method, the aver-

age localization error has been collected using cloudy test

images and also images captured during different illumi-

nation conditions (sunny and night). Moreover, the average

computing time is collected. The proposed hierarchical

localization process has been evaluated by using the SVM

classifier in the rough step and the gist descriptors, because

the previous experiments have proved that this configura-

tion works efficiently.

Figure 11 shows the results obtained in this experiment.

Blue, orange and green lines show the average localization

error for the three illumination conditions and the red line

represents the average computing time measured for the

cloudy test dataset. These figures show that the computing

time increases as the number of cluster does, since the

rough step (use of classifiers) requires more computing

time than the fine step. Moreover, the nearest neighbour

option is slightly faster. The average time values are

between 115 and 748 ms whereas, in the case of the neural

network, the average time goes from 177 to 956 ms.

Nevertheless, these results would be good enough to tackle

an online localization task. Regarding the localization

error, the figures show that the hierarchical localization

method based on image retrieval for fine localization out-

puts better results than the alternative using data fitting

neural network. However, the results obtained through data

fitting neural network provide accurate values which are

also good enough to carry out the localization task. For

instance, in the case of cloudy test data, the localization

error takes values around 13 cm, which is quite low con-

sidering that the distance between the training images is

around 30 cm. The results for nc ¼ 8 clusters provide high

error values. This is due to the fact that the clustering

algorithm was not capable of finding a compact represen-

tation of the environment, as shown in the previous

Fig. 9 Experiment 2. Results for fine localization using automatic

labeling. Average error (cm) (blue, orange and green lines) and

average computing time (ms) (red line) versus number of clusters.

The localization is carried out by means of (a) the nearest neighbour

method and (b) data fitting neural networks

Fig. 10 Results of silhouette versus number of clusters
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subsection. Regarding the changes of illumination, for both

localization methods, the error increases, as expected.

Nevertheless, the increment is smoother with the data fit-

ting neural network option.

Finally, two comparisons are carried out. First, a com-

parison between hierarchical localization methods is

addressed. On the one hand, the methods proposed in this

work (using classifiers in the rough step and image retrieval

in the fine step) and, on the other hand, the method pro-

posed in previous works ([8] and [9]) by using a repre-

sentative per area obtained through spectral clustering in

the rough step and image retrieval in the fine step. Fig-

ure 12 shows the localization results (average localization

error and computing time) versus the number of areas

(clusters). The results show that the classifier introduces a

more efficient alternative regarding the localization error at

the expense of a higher computing time. Furthermore,

Fig. 12b shows the results obtained when the test dataset is

composed of images captured at night. Both methods are

affected by this illumination conditions. Nevertheless, the

method based on classifiers presents an improved robust-

ness against this effect.

To conclude, a final comparative evaluation with a

recognized visual localization approach is addressed. On

the one hand, the method proposed in this work (using

classifiers in the rough step and image retrieval in the fine

step) and, on the other hand, a localization method based

on visual place recognition which proved an excellent

performance in a work by Horst and Möller [21]. This

method consists basically in tackling an image retrieval,

comparing the test image with a set of training images, by

using an edge filter and distance known as e-NSAD

(Normalized Sum of Absolute Differences on edge-filtered

images). The results obtained for each method are shown in

Table 4. The Visual Compass presents a similar

Fig. 11 Experiment 3. Results for complete hierarchical localization

using automatic labeling. Average error (cm) (blue, orange and green

lines) and average computing time (ms) (red line) versus number of

clusters. The localization step is carried out by means of (a) a nearest
neighbour search and (b) data fitting neural networks

Fig. 12 Comparison of hierarchical localization methods under

(a) cloudy and (b) night illumination conditions. Solving the rough

localization by calculating the nearest neighbour (N. Neigh.) to the

representatives obtained by spectral clustering and through the SVM

classifier. Average localization error and average computing time

Neural Computing and Applications (2023) 35:16487–16508 16503

123



localization error comparing to the proposed approach,

when no changes of illumination or sunny illumination

conditions are considered (by using the cloudy or sunny

test datasets). Nevertheless, the localization error with the

night dataset is better with the proposed approach. Fur-

thermore, concerning the average computing time, the

proposed method presents results significantly faster than

the provided by visual compass. Therefore, visual compass

is a suitable solution when no dark illumination conditions

are considered, and computing time does not play an

important role. The proposed method presents more

robustness against changes of illumination and it is also a

feasible solution when the localization process should be

solved in real time.

5.4 Experiment 4: evaluation in a different
environment

This subsection studies the proposed methods to carry out

the hierarchical localization in a different building. The

aim of this subsection is to evaluate the suitability of the

framework in an indoor environment which is different

from the environment used in the previous experiments

(Freiburg dataset). The experiments in this subsection are

developed by using the dataset obtained in the Saarbücken

building, which is also available in the COLD database

[40]. The Saarbrucken dataset is composed of 5 rooms:

corridor, kitchen, 1-person office, printer area and toilet.

Like the Freiburg dataset, it includes challenging effects, as

described in Sect. 5. Moreover, experiments are only pre-

sented under cloudy illumination conditions, since the

suitability of the methods with changes of the lighting

conditions has been already demonstrated in the previous

subsections.

First, the performance of classifiers to carry out the

selection of the corresponding area within the environment

is evaluated. Table 5 shows the hit ratio of the test data and

the time to complete the rough localization process.

According to this table, the classifiers shallow neural net-

work, SVM and LDA present hit ratios over 90% when the

CNN-fc7 descriptor is used, in line with the results

obtained previously in the Freiburg environment. On the

contrary, the Naı̈ve Bayes and the Random Forest classi-

fiers present the worst hit ratios.

After proving the robustness of the classifiers to carry

out the rough localization task, an automatic labeling is

tackled by means of spectral clustering. The results are

shown in Fig. 13. Again, SVM, LDA and shallow neural

network present better results than using nearest neighbour.

The best results are obtained with LDA.

Concerning the fine localization step, Table 6 shows the

results obtained with data fitting neural networks or with a

nearest neighbour search (average localization error and

average computing time). Regarding the localization error,

the table shows that the best result in fine localization is

obtained with the nearest neighbour search along with the

CNN-fc7 descriptor.

Table 4 Comparison with a

benchmarking visual

localization approach. Results

of the proposed method

(hierarchical localization using

machine learning) and results of

the Visual Compass [21]. The

localization methods are

evaluated under three

illumination conditions (domain

shift)

Method proposed Visual Compass [21]

Cloudy Night Sunny Cloudy Night Sunny

Avg. loc. error (cm) 5.09 52.74 77.32 6.82 101.21 74.02

Avg. comp. time (s) 0.71 1150.33

Table 5 Results of experiment 1 in the Saarbrücken environ-

ment. Accuracy of the classifiers. Hit ratio and average computing

time of the rough localization process under cloudy conditions

Classifier Descriptor Time (s) Hit ratio test (%)

Naı̈ve Bayes gist 0.35 76.00

Naı̈ve Bayes CNN-fc7 1.98 82.96

Naı̈ve Bayes HOG 0.17 27.33

Neural net gist 3.60 79.63

Neural net CNN-fc7 0.59 91.67

Neural net HOG 0.34 21.45

SVM gist 0.48 77.18

SVM CNN-fc7 0.16 90.30

SVM HOG 0.09 21.45

Random forest gist 0:8 � 10�3 85.21

Random forest CNN-fc7 17:1� 10�3 85.80

Random forest HOG 0:1� 10�3 21.45

LDA gist 0:2� 10�3 85.99

LDA CNN-fc7 4:3� 10�3 95.59

LDA HOG 0:01� 10�3 20.76

Nearest Neigh gist 0.06 80.89

Nearest Neigh CNN-fc7 0.01 78.23

Nearest Neigh HOG 0.02 14.07
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Furthermore, Fig. 14 shows the average error and

computing time of the fine localization step by means of

nearest neighbour search and data fitting neural networks

departing from automatic labeling (performed by spectral

clustering). This figure presents the average error (cm) and

average computing time (ms) with blue and orange lines

respectively for the nearest neighbour method. The results

of the data fitting neural networks are depicted with a green

line (average error, cm) and a red line (average computing

time, ms). These results are obtained by considering that

the rough step selects always the correct room as in

Sect. 5.2, with the objective of focusing on the perfor-

mance of the fine localization. When the number of clusters

is low, the nearest neighbour method provides a consider-

ably lower error than the data fitting neural network.

Nevertheless, if the number of clusters is higher than 7, the

differences between methods are reduced. As for the

computing time, in general terms, the nearest neighbour

search is faster than the method based in data fitting neural

networks.

To conclude this section, the complete hierarchical

localization process is performed in the Saarbrücken

environment and the results are presented in Fig. 15. The

rough localization step is solved by means of the SVM

classifier and the fine localization step is solved either by

means of the nearest neighbour search or with data fitting

neural networks. An automatic labeling (by spectral clus-

tering) is also performed. This figure presents the average

error (cm) and average computing time (ms) with blue and

orange lines respectively for the nearest neighbour method,

and with green and red lines for the data fitting neural

networks. The figure shows that, in general, the hierarchi-

cal localization based on nearest neighbour search for fine

localization outputs better results than using data fitting

neural networks, in line with the results obtained in the

Freiburg environment. Concerning the computing time, it

increases as the number of clusters does for both methods.

Among them, the nearest neighbour method is slightly

faster for nc\10 and slower for nc [ 10.

Finally, we compare the performance of the methods

proposed in this work for hierarchical localization (using

classifiers in the rough step and image retrieval in the fine

Fig. 13 Results of the rough localization using automatic labeling in

the Saarbrücken environment. Hit ratio for the test images versus

number of clusters. The localization step is carried out by means of

the SVM classifier (blue line), a shallow neural network classifier

(green), the LDA classifier (red) and the nearest neighbour method

(orange)

Table 6 Experiment 2 in the Saarbrücken environment. Accuracy of

the methods studied to solve the fine localization. Average localiza-

tion error and average computing time considering test images cap-

tured under cloudy illumination conditions

Method Descriptor Avg. time (ms) Avg. Error (m)

Nearest Neigh gist 47.41 1.40

Nearest Neigh CNN-fc7 24.02 0.61

Neural net gist 62.51 1.12

Neural net CNN-fc7 40.29 1.23

Fig. 14 Experiment 2 in the Saarbrücken environment. Results of the

fine localization using automatic labeling (considering that the rough

step always selects the correct room). Fine localization step carried

out either by means of nearest neighbour search or by means of data

fitting neural networks

Fig. 15 Experiment 3 in the Saarbrücken environment. Results of the

complete hierarchical localization using automatic labeling. Rough

localization step with the SVM classifier. Fine localization step

carried out either by means of nearest neighbour search or using data

fitting neural networks
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step) and the method proposed in previous works ([8] and

[9]) by using a representative per area obtained through

spectral clustering in the rough step and image retrieval in

the fine step. Figure 16 shows the average localization

error and the average computing time versus the number of

clusters. The results confirm that the use of a classifier in

the rough step (SVM in this experiment) provides a lower

localization error at the expense of a higher computing

time, as previously observed in the Freiburg environment.

6 Conclusion

Throughout the present work, we have evaluated the use of

machine learning tools to carry out hierarchical localization

with mobile robots using the knowledge extracted from a

dataset composed of omnidirectional scenes. The experi-

ments were carried out with an indoor dataset that presents

dynamic changes and blur effects. The dataset also pro-

vides images captured under different illumination condi-

tions (during cloudy days, during sunny days and at night).

The work shows that most of the machine learning tech-

niques proposed provide good localization results departing

from a compact model. In this paper, several studies have

been tackled. First, the classifiers have been validated as an

efficient tool to perform the rough localization. SVM, LDA

and shallow neural network classifiers together with global-

appearance descriptors (gist and CNN-fc7) provide high hit

ratios to retrieve the corresponding room or area. Second, a

data fitting neural network was proposed for the fine

localization step. Although it does not improve the results

obtained by the image retrieval option, it actually works

relatively well and robustly for most of the rooms or areas.

The key to obtain better results would consist in either

optimizing the training step in the most challenging areas

or finding a global-appearance descriptor which suits better

the training of the network. Moreover, these techniques

(classifiers and data fitting neural network) present

robustness against changes of illumination. Third, through

the use of automatic labeling (spectral clustering), the

localization results are improved in comparison to the ones

with manual labels (provided by the ground truth). Fur-

thermore, a comparison between hierarchical localization

methods is tackled. Whereas the hierarchical localization

based on classifiers provides more accurate localization

results, the hierarchical localization based on representa-

tives obtained from spectral clustering works faster.

Additionally, the proposed methods improve the perfor-

mance of a localization approach based on a Visual

Compass under substantial changes of the lighting condi-

tions, and thanks to the hierarchical approach, the proposal

works faster than this benchmarking method. Finally, to

provide a more complete analysis, an additional experi-

ment is carried out to prove the validity of the framework

in a different environment. Future works will focus on

optimizing the results regarding the data fitting neural

network to estimate the position within an area. Also, a

study of deep learning tools to develop a complete SLAM

framework with the use of omnidirectional images will be

developed.
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8. Cebollada S, Payá L, Mayol W, Reinoso O (2019) Evaluation of

clustering methods in compression of topological models and

visual place recognition using global appearance descriptors.

Appl Sci 9(3):377. https://doi.org/10.3390/app9030377
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