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Abstract
Quantifying space use and segregation, as well as the extrinsic and intrinsic fac-
tors affecting them, is crucial to increase our knowledge of species-specific move-
ment ecology and to design effective management and conservation measures. This 
is particularly relevant in the case of species that are highly mobile and dependent 
on sparse and unpredictable trophic resources, such as vultures. Here, we used the 
GPS-tagged data of 127 adult Griffon Vultures Gyps fulvus captured at five different 
breeding regions in Spain to describe the movement patterns (home-range size and 
fidelity, and monthly cumulative distance). We also examined how individual sex, sea-
son, and breeding region determined the cumulative distance traveled and the size 
and overlap between consecutive monthly home-ranges. Overall, Griffon Vultures 
exhibited very large annual home-range sizes of 5027 ± 2123 km2, mean monthly cu-
mulative distances of 1776 ± 1497 km, and showed a monthly home-range fidelity of 
67.8 ± 25.5%. However, individuals from northern breeding regions showed smaller 
home-ranges and traveled shorter monthly distances than those from southern ones. 
In all cases, home-ranges were larger in spring and summer than in winter and autumn, 
which could be related to difference in flying conditions and food requirements as-
sociated with reproduction. Moreover, females showed larger home-ranges and less 
monthly fidelity than males, indicating that the latter tended to use the similar areas 
throughout the year. Overall, our results indicate that both extrinsic and intrinsic fac-
tors modulate the home-range of the Griffon Vulture and that spatial segregation de-
pends on sex and season at the individual level, without relevant differences between 
breeding regions in individual site fidelity. These results have important implications 
for conservation, such as identifying key threat factors necessary to improve manage-
ment actions and policy decisions.
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1  |  INTRODUC TION

Animal movements are a consequence of an organism's internal 
state (e.g., sex, age, breeding stage) and environmental factors (e.g., 
food availability or weather), and can affect individual fitness and 
ecological processes at local and global scales (Hansson et al., 2014). 
Individual movements are also influenced by inter and intraspecific 
relationships (e.g., competition), which may lead to spatial compart-
mentalization and the maintenance of population-specific move-
ment patterns over time (Nathan et al.,  2008). Deciphering how 
these factors modulate individual movements and how the latter are 
compartmentalized in space and time is essential to understanding 

population dynamics (Costa-Pereira et al.,  2022) and identify-
ing priority areas for conservation and management (Katzner & 
Arlettaz, 2020).

Home-range size and cumulative distance traveled are key ele-
ments in the study of animal movement ecology (Kie et al., 2010; 
Shaw, 2020; Thaker et al., 2019; Tucker et al., 2018), defining for-
aging patterns at the individual and population-level, and assess-
ing their stability over time (e.g., Shaffer et al., 2017). For example, 
investigating variation in home-range size and cumulative distance 
traveled may reveal that certain individuals behave as central-
place foragers during only a specific period of their life cycle (e.g., 
the breeding season; Carrete & Donázar, 2005; Delgado-González 
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Resumen
Cuantificar el uso y la segregación del espacio, así como los factores extrínsecos e 
intrínsecos que los afectan, es crucial para aumentar nuestro conocimiento de la 
ecología de movimientos de cada especie y diseñar medidas eficaces de gestión y 
conservación. Esto es especialmente relevante en el caso de especies con gran 
movilidad y dependientes de recursos tróficos escasos e impredecibles, como son los 
buitres. En este trabajo se utilizaron datos GPS de 127 buitres leonados Gyps fulvus 
adultos capturados en cinco regiones de cría diferentes en España para describir los 
patrones de movimiento (tamaño y fidelidad del área de campeo y distancia acumulada 
mensual). También examinamos cómo el sexo, la estación del año y la región de cría 
determinaban la distancia acumulada recorrida y el tamaño y solapamiento entre áreas 
de campeo mensuales consecutivas. En conjunto, los buitres leonados mostraron un 
área de campeo anual muy extensa de 5027 ± 2123 km2, una distancia acumulada 
mensual media de 1776 ± 1497 km y una fidelidad mensual al área de campeo del 
67.8 ± 25.5%. Sin embargo, los individuos de las regiones de cría más septentrionales 
mostraron áreas de campeo más pequeñas y recorrieron distancias mensuales más 
cortas que los de las más meridionales. En todos los casos, las áreas de campeo 
fueron mayores en primavera y verano que en otoño e invierno, lo que podría estar 
relacionado con las diferencias en las condiciones de vuelo y las necesidades tróficas 
asociadas a la reproducción. Además, las hembras mostraron mayores áreas de campeo 
y menor fidelidad mensual que los machos, lo que indica que estos últimos tienden a 
utilizar zonas similares durante todo el año. En conjunto, nuestros resultados indican 
que tanto los factores extrínsecos como los intrínsecos modulan el área de campeo 
del buitre leonado y que la segregación espacial depende del sexo y de la estación a 
nivel individual, sin que existan diferencias relevantes entre las regiones de cría en 
cuanto a la fidelidad individual al lugar. Estos resultados podrían tener importantes 
implicaciones para la conservación, como la identificación de los principales factores 
necesarios para mejorar las medidas de gestión y las decisiones políticas.
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et al., 2022). Similarly, the study of home-range overlap allows the 
analysis of attraction or repulsion relationships that may affect 
space use, for example, to avoid competition for resources (Bolnick 
et al., 2003; Cecere et al., 2018; Winner et al., 2018). This informa-
tion could be used to explicitly map intra and interspecific meeting 
sites and prioritize high-quality habitats for communal roost or feed-
ing hotspots (Cortés-Avizanda et al., 2014; Kane et al., 2015).

Vultures from the Gyps genus (which includes seven species) 
are among the largest flying birds, showing high sociality and cov-
ering large areas in search of ephemeral and unpredictable re-
sources such as carrion (e.g., 162,824 km2 annually on average in 
the case of Cape Vultures, Gyps coprotheres; Jobson et al., 2021). 
The Eurasian Griffon Vulture Gyps fulvus is a monomorphic social 
species that breeds colonially (Almaraz et al., 2022; Donázar, 1993; 
Harel et al., 2017; Zuberogoitia et al., 2018). The breeding period 
of the species expands from early December (when first copu-
lates occurs) to late August, when fledglings fly from the nest 
(Donázar, 1993; Zuberogoitia et al., 2018). Individuals forage over 
vast areas to satisfy their energetic requirements (e.g., ranging 
annually from 1560 to 4233 km2, Fluhr et al.,  2021; Monsarrat 
et al.,  2013; Nathan et al.,  2012; Xirouchakis et al.,  2021), fre-
quently congregating around both wild and domestic ungu-
late carcasses (Cortés-Avizanda et al.,  2010, 2012 but see also 
Delgado-González et al.,  2022). Although information exists on 
Griffon vulture movement ranges (Arkumarev et al., 2021; Arrondo 
et al., 2018; Arrondo, Sanz-Aguilar, et al., 2020; Fluhr et al., 2021; 
García-Ripollés et al., 2011; Harel et al., 2017; Spiegel et al., 2013, 
2015; Xirouchakis et al.,  2021; Xirouchakis & Mylonas,  2007; 
Zuberogoitia et al.,  2013), virtually nothing is known about the 
spatio-temporal variation in the movement patterns of adult indi-
viduals, or about the factors (e.g., sex, breeding region) governing 
the spatial ecology and home-range fidelity of this species from a 
mechanistic perspective.

In this paper, we gather movement data from 127 GPS-tagged 
adult Griffon Vultures captured in five breeding regions of penin-
sular Spain, the largest vulture population in Western Palearctic 
encompassing up to 37,000 breeding pairs (90% of all European 
populations) (Del Moral & Molina, 2018). Our main aim is to assess 
the effect of individual and environmental factors on movements 
and spatial use indicators. Specifically, our objectives are: (1) to es-
timate annual and monthly home-range sizes, monthly cumulative 
distances traveled, and monthly home-range site fidelity; and (2) to 
investigate the effect of season, sex and breeding regions on individ-
ual monthly home-range size, site fidelity, and cumulative distance. 
We hypothesize that adult Griffon Vultures, being a large monomor-
phic colonial species, will exhibit large home-ranges and will travel 
long distances to fulfill their requirements (mainly food), especially 
during the autumn and winter, when food availability is the lowest 
(Margalida et al., 2018; Spiegel et al., 2013). We also predict that the 
fidelity of monthly home-ranges should be similar between sexes 
due to the lack of dimorphism, but would differ between seasons, as 
foraging constraints are more likely during the breeding period (see 
Carrete & Donázar, 2005). Finally, we expect differences between 

breeding regions due to differences in resource availability (Morant 
et al., 2022).

2  |  METHODS

2.1  |  Capture and tagging of vultures

From 2014 to 2022, we captured 127 adult Griffon Vultures (43 
males and 84 females) in five breeding regions distributed across 
northern (Alto Ebro: 49 individuals, Pyrenees: 21 individuals), central 
(Segovia: 15 individuals), and southern Spain (Cádiz: 12 individuals 
and Cazorla: 30 individuals) (see Figure  1). Breeding regions were 
delimited according to the proximity between nesting sites and the 
biogeographic characteristics of each area where nests are located. 
Birds were trapped using remotely activated cannon nets and cage 
traps baited with livestock carcasses. Individuals were tagged with 
yellow or blue plastic alphanumeric and metal rings and equipped 
with solar-powered GPS/GSM transmitters (Ecotone https://ecoto​
ne-telem​etry.com/en, Ornitela https://www.ornit​ela.com/, and e-
Obs https://e-obs.de/). Devices were attached using a Teflon tape 
backpack harness. The total weight of the transmitters and rings did 
not exceed 64 g, which represented less than 3% of the body weight 
of the individuals (Bodey et al., 2018). The age of individuals was 
estimated from plumage molt and other external features such as 
the color of the culmen and the eyes (Donázar, 1993; Zuberogoitia 
et al., 2013), while sex was determined using molecular sexing tech-
niques from body feather samples (Fridolfsson & Ellegren, 1999).

Tracking devices were programmed to record fixes (i.e., GPS po-
sitions) at 5–10-min intervals from 1 h before sunrise to 1 h after 
sunset (see Table 1 for details of the tracking devices and sampling 
frequency). GPS data were incorporated into the Movebank online 
data repository (www.moveb​ank.org). Data were standardized by 
resampling the GPS fixes to 15 min for each individual to homoge-
nize our dataset. Vultures were tracked on average 1040 ± 809 days 
with a mean number of fixes per individual of 41,335 ± 40,493.

2.2  |  Estimation of home-range, cumulative 
distance traveled, and site fidelity

We estimated annual and monthly home-ranges using the 95% ker-
nel density estimator contours (KDE) and the cumulative distance 
traveled for each tagged individual using the “amt” package (Signer 
et al., 2019). We selected KDE function instead of AKDE since this 
had no qualitative improvement to our results and notably increased 
computational time compared to KDE function (see for instance Silva 
et al., 2022). Cumulative distance traveled per month was measured as 
the total length of each track (in km) (Edelhoff et al., 2016). Individuals 
with less than ten fixes per day were discarded (n = 4 cases).

We measured the individual home-range fidelity by calculating 
the percentage of overlap between consecutive monthly home-
range (Fieberg & Kochanny, 2005). We selected the 95% KDE as an 
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estimator of home-range to evaluate differences in foraging areas. 
The percentage of overlap was quantified using the Bhattacharyya 
coefficient, which ranges between 0 (complete segregation) 
and 1 (perfect overlapping; Fieberg & Kochanny,  2005; Winner 
et al., 2018).

2.3  |  Data analysis

We analyzed the effect of sex, season, and breeding regions on the 
monthly home-range sizes, cumulative monthly distances traveled 
(normal error distribution, identity link function), and percentage 

F I G U R E  1 Movements and nest 
locations of 127 GPS-tagged adult Griffon 
Vultures in northern (Alto Ebro and 
Pyrenees), central (Segovia), and southern 
(Cádiz and Cazorla) Spain. N represents 
the number of tagged vultures for each 
breeding region. Photo credit: Manuel de 
la Riva.

Home-range (km2) Cumulative distance traveled (km)

Annual 5027 ± 2123 (1981–9863) 15,090 ± 11,256 (219–39,298)

Monthly 4889 ± 1753 (1908–6822) 1776 ± 1497 (108–7172)

Note: All values area shown with mean (± SD) and their range (minimum and maximum values) in 
brackets.

TA B L E  1 Annual and monthly home-
range size (in km2; estimated at 95% KDE), 
and cumulative distance traveled (in km) 
of 127 adult Griffon vultures tagged with 
GPS in Spain.

 20457758, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9817 by Juan Pérez-G

arcía - R
eadcube (L

abtiva Inc.) , W
iley O

nline L
ibrary on [30/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 12MORANT et al.

of monthly overlap (beta error distribution, identity link function) 
using generalized linear mixed models (GLMMs; glmmTMB package, 
Brooks et al., 2017). Sex, season, and breeding region were included 
as fixed factors, while individual identity and year were included as 
random terms in the models to avoid pseudo replication.

We did not divide the period into breeding stages since we could 
not rule that all individuals were breeding each monitoring year 
and, therefore, followed the same breeding cycle periods. Instead, 
we here referred to the season as the division of the year based on 
changes in weather, ecology, and the number of daylight hours in a 
given region. In the case of the breeding region, we regard this vari-
able, not only as an indicator of differences in the periods suitable 
for soaring (mediated by photoperiod; see Scacco et al., 2019) but 
also as a potential proxy of differences in the food available in the 
field (e.g., some regions encompass much more carrion than others 
in absolute numbers; Morant et al., 2022) and population differences 

in the levels of exposure to known threats (i.e., risk of collision, elec-
trocution or poisoning; Arrondo, Sanz-Aguilar, et al., 2020).

Finally, we did not consider the interaction between the afore-
mentioned variables due to (1) the complexity of the understanding 
that is implicit to them (e.g., sex differences in movement associ-
ated with particular regional conditions) and (2) to avoid specula-
tions without any empirical foundations in the interpretation of the 
results.

Models were compared using the Akaike Information Criterion 
corrected for small sample sizes (AICc; Burnham & Anderson, 2002). 
The best model was the one with the lowest AICc value. All mod-
els with a difference of ΔAICc < 2 were considered alternatives 
(Burnham & Anderson,  2002). For the best model, homogeneity 
of variance and normality of residuals was inspected by using the 
“ggresid” package to check the goodness-of-fit of our best mod-
els (Goode & Rey, 2019). We estimated the variance explained by 

TA B L E  2 Models obtained to assess the effects of individual sex, season, and population on the movement and spatial segregation 
patterns of 127 GPS-tagged adult Griffon Vultures in Spain.

Model k AICc ΔAICc AICcw R2 fixed R2 random

Movement patterns

Home-range 
size (km2)

Season + sex + breeding region 6 59582.1 0.00 0.993 28.18 20.61

Breeding region + season 5 59612.7 30.56 0.007

Breeding region + sex 5 59849.0 266.88 0.000

Season + sex 5 59862.2 280.05 0.000

Season 4 59877.6 295.45 0.000

Breeding region 4 59877.7 295.58 0.000

Sex 4 60132.9 550.79 0.000

Null 3 60147.5 565.39 0.000

Cumulative 
distance 
(km)

Season + sex + breeding region 6 67835.8 0.00 0.988 33.29 19.25

Season + breeding region 5 67844.6 8.74 0.012

Season + sex 5 67941.3 105.48 0.000

Season 4 67952.4 116.59 0.000

Breeding region + sex 5 69656.5 1820.6 0.000

Breeding region 4 69665.9 1830. 0.000

Sex 4 69771.4 1935.6 0.000

Null 3 69784.4 1948.5 0.000

Spatial segregation

Monthly 
home-range 
fidelity (%)

Season + sex + breeding region 6 −1415.9 0.00 0.998 0.842 1.974

Season + breeding region 5 −1392.5 23.45 0.002

Season + sex 5 −1371.2 44.73 0.000

Season 4 −1353.0 62.90 0.000

Breeding region + sex 5 −1230.5 185.46 0.000

Breeding region 4 −1209.2 206.70 0.000

Sex 4 −1189.4 226.54 0.000

Null 3 −1171.3 244.57 0.000

Note: The null model was included in our set of models. For each best model, variability (as a percentage) explained by the fixed and random 
predictors (R2) are shown. The best models (ΔAICc < 2) are highlighted in bold.
Abbreviations: AICc: Akaike Information Criterion corrected for small sample sizes; k: number of parameters; w: Akaike weight; ΔAICc: difference 
between the AICc of model i and that of the best model (i.e., the model with the lowest AICc).
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the fixed and random factors by using the “performance” package 
(Lüdecke et al., 2021), while differences between their levels were 
assessed through Tukey's post hoc tests using the “emmeans” pack-
age (Lenth, 2022). All tests were two-tailed, statistical significance 
was set at α =0.05, and all results were shown as mean ± standard 
deviation. Results of the Tukey's post hoc tests included the mar-
ginal means and its standard error. Spatial and statistical analyses 
were done in R version 4.0.3 (R Core Team, 2021).

3  |  RESULTS

Griffon Vultures exploited very large annual home-range sizes (ca. 
5000 km2), showing average monthly cumulative distances trave-
led of 1776 km (Table  1), and a monthly home-range fidelity of 
67.77 ± 25.05%. Monthly home-ranges differed between sexes, sea-
sons, and breeding regions (Tables 2 and 3; Figure 2). Males showed 
a smaller monthly home-range size than females (Table 3). Birds also 

showed larger home-ranges during spring and summer compared to 
autumn and winter (Table S2; Figure 2). Individuals from southern 
breeding regions (Cazorla, Cádiz), and central Pyrenees showed, 
on average, larger home-ranges than those of central (Segovia) and 
northern breeding regions (Alto Ebro) (Table S2 and Figure 2).

Monthly cumulative distances traveled were similar for both fe-
males and males (Tables 2 and 3; Figure 3). However, birds traveled 
longer distances during spring and summer than during autumn and 
winter (Table S2). Individuals from Alto Ebro, Segovia, and Pyrenees 
traveled larger monthly distances than those of Cazorla and Cádiz 
(Table S2; Figure 3).

The monthly home-range fidelity was slightly higher for males 
than females, and during spring and summer, being the lowest in 
autumn and winter. Likewise, there were differences in fidelity be-
tween breeding regions. Individuals from Central Spain (Segovia) 
showed higher fidelity over time than those from the north (Alto 
Ebro, Pyrenees) and southern Spain (Cádiz, Cazorla) (Tables 2 and 3 
and Table S2; Figure 4).

TA B L E  3 Estimates for fixed terms of the best models of monthly home-range size, cumulative distance traveled per month and monthly 
home-range fidelity for 127 GPS-tagged adult Griffon Vultures in Spain.

Response variable Predictors Estimate ± SE z value p-value

Monthly home-range size Season (spring) 2250.6 ± 193 11.660 <.001

Season (summer) 2195.7 ± 195.6 11.225 <.001

Season (autumn) 204 ± 193.9 1.053 .292

Sex (male) −1294.5 ± 291 −4.449 <.001

Breeding region (Segovia) −899.8 ± 586.8 −1.533 .125

Breeding region (Cádiz) 1670.7 ± 507.2 3.294 .001

Breeding region (Cazorla) 5750 ± 319.8 17.980 <.001

Breeding region (Pyrenees) 1920.3 ± 397.9 4.827 <.001

Cumulative distance Season (spring) 1393.69 ± 47.05 29.622 <.001

Season (summer) 1925.70 ± 48.43 39.763 <.001

Season (autumn) 162.46 ± 49.79 3.263 .001

Sex (male) 41.15 ± 73.88 0.557 .577

Breeding region (Segovia) 169.34 ± 174.01 0.973 .331

Breeding region (Cádiz) 950.40 ± 139.34 6.821 <.001

Breeding region (Cazorla) 419.20 ± 84.79 4.944 <.001

Breeding region (Pyrenees) 649.23 ± 108.33 5.993 <.001

Monthly home-range 
fidelity

Season (spring) 0.439 ± 0.046 9.502 <.001

Season (summer) 0.629 ± 0.046 13.549 <.001

Season (autumn) 0.315 ± 0.047 6.653 <.001

Sex (male) 0.267 ± 0.058 4.543 <.001

Breeding region (Segovia) 0.691 ± 0.147 4.688 <.001

Breeding region (Cádiz) −0.099 ± 0.135 −0.729 .465

Breeding region (Cazorla) 0.253 ± 0.096 2.635 .008

Breeding region (Pyrenees) 0.255 ± 0.112 2.279 .022

Note: Season, Sex, and Breeding region variables were coded as a factor, being “Winter,” “Female,” and “Alto Ebro” the reference values for statistical 
comparisons. Significant values are highlighted in bold.
Abbreviation: SE, Standard error.
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4  |  DISCUSSION

Griffon Vulture movements varied between seasons, breeding 
regions and sexes. We found that movements were larger during 
spring and summer, which is similar to other soaring raptors such 
as Bearded Vulture or Bonelli's Eagle (see Margalida et al.,  2016; 
Pérez-García et al., 2013). This could be related to the food require-
ments associated with reproduction, which may force vultures to 
prospect larger areas, seeking for dispersed and unpredictable car-
casses to satisfy the food requirements of the offspring and them-
selves (Carrete & Donázar,  2005). However, seasonal differences 
could be also explained by longer days (and therefore more time to 
forage) and better atmospheric conditions particularly during sum-
mer, minimizing energy expenditure during long-range movements 
(see Martin-Díaz et al.,  2020). Similarly, differences in monthly 
home-range size and cumulative distance traveled between re-
gions could be explained by differences in both the importance of 
predictable and nonpredictable food availability and the ability to 
move due to better flight conditions due to the presence of thermal 
uplifts (Scacco et al., 2021). For instance, the southern populations 
may experience a higher thermal uplift availability (mainly due to 
warmer climatic conditions in summer), thus minimizing the energy 

expenditure while increasing the movement capacity of birds (e.g., 
see Scacco et al., 2019).

Differences in foraging performance between sexes are com-
mon in mammals and birds and are often due to differences in body 
size and parental duties (Lewis et al., 2002), In monomorphic spe-
cies such as the Griffon Vulture, these differences might be associ-
ated with energetic and nutritional requirements for reproduction 
(Bennison et al., 2022; Pinet et al., 2012). Our results showed that 
females have larger home-ranges and travel farther than males. 
These findings align with other studies in which the same dataset 
was analyzed and where females exhibited larger traveled distances 
than males during reproduction (see Delgado-González et al., 2022; 
Gangoso et al., 2021), including other vulture species (see Bamford 
et al., 2007; García-Jiménez et al., 2018; Kane et al., 2015; Krüger 
et al., 2014; Margalida et al., 2016).

Contrary to our expectations, we also found sex differences 
in the monthly home-ranges fidelity. Males showed greater fi-
delity than females, indicating that the latter use different areas 
throughout the year. This gender variation in seasonal fidelity 
may respond to differences in resource selectivity (Delgado-
González et al., 2022; Hertel et al., 2020). In fact, according to 
Fernández-Gómez et al. (2022) males may be more prone to feed 

F I G U R E  2 Mean monthly home-range size (in km2, based on 95% KDE ± SD) of 127 adult Griffon Vultures (43 females and 84 males) 
tagged in northern (Alto Ebro and Pyrenees), central (Segovia), and southern (Cádiz and Cazorla) Spain. The standard deviation is shown as 
error bars.
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on predictable resources such as supplementary feeding stations 
or vulture restaurants, while females may rely on more ephemeral 
and less clumped food resources. Thus, there may be parallel strat-
egies in the large-scale exploitation of space and, therefore, sex-
ual spatial segregation (see also Perrig et al., 2021). Alternatively, 
the fact that males show a greater fidelity of their monthly home-
ranges throughout the year and that it is higher during the spring–
summer period could be related to their greater territoriality. Males 
may be more involved in nest building and guarding (Xirouchakis 
& Mylonas, 2007), which might be a response to competence for 
nesting sites (see Zuberogoitia et al., 2018). Interestingly, females 
not only showed higher extension of home-ranges than males but 
also exhibited lower site fidelity. All this reinforces the argument 
that females might forage more in different locations through-
out the year, therefore, showing lesser home-range fidelity over 
time than males. These sex and seasonal differences in individual 
home-range fidelity were similar between breeding regions except 
in the case of Cádiz and Segovia, where females exhibited lower 
fidelity during spring/summer.

Differences (or lack of them) between breeding regions in indi-
vidual movement patterns indicate that local effects not explored in 
this work may be affecting them. This is evidenced by the low vari-
ance explained by the fixed factors of the best models and the high 

variance explained by random factors (e.g., home-range size fidelity 
models). The latter indicates that high interindividual differences in 
home-range area and fidelity exist. Moreover, there are variables, 
such as distance to trophic resources, colony size, or habitat type, 
that perhaps could improve the results from our models and better 
explain breeding region level differences in the evaluated parame-
ters (see Cecere et al., 2018; Delgado-González et al., 2022; Harel 
et al., 2017). Finally, it should be taken into account that the effect of 
differences in the sampling duration of individuals of some breeding 
regions also affects the observed home-range sizes which may have 
led to an underestimation of this and other parameters such as cu-
mulative distance or home-range fidelity.

5  |  CONCLUDING REMARKS

Our work adds evidence to the spatial requirements of large soar-
ing birds such as vultures, and the importance of individual and re-
gional differences in explaining their movement patterns. Contrary 
to our expectations, we found sex-dependent spatial segregation in 
this monomorphic species, maybe related to behavioral differences 
between males and females, particularly during the breeding period. 
Moreover, we observed that vultures showed larger home-ranges 

F I G U R E  3 Mean monthly cumulative distance traveled (in km) of 127 adult Griffon Vultures (43 females and 84 males) tagged in northern 
(Alto Ebro and Pyrenees), central (Segovia), and southern (Cádiz and Cazorla) Spain. The standard deviation is shown as error bars.
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and cumulative distance traveled during the breeding period, when 
site-fidelity is higher, with females traveling further. Finally, de-
spite high levels of variation in home-range sizes between breed-
ing regions, there were no clear differences in site fidelity between 
breeding regions over time, which may indicate stability in the home-
range. Our findings open new promising avenues for research on in-
terindividual differences in optimal foraging, and on the intrinsic and 
extrinsic factors operating at multiple levels (Williams & Safi, 2021). 
Beyond this, increasing our knowledge of how these patterns trans-
late into regional differences (or lack thereof) is crucial in predicting 
population dynamics through movement ecology (Shaw, 2020).

Importantly, our results add information that is crucial may 
be decisive for the effective management and conservation of 
highly mobile species which require protective measures to be im-
plemented at large spatial scales. For example, differences in the 
home-range sizes between females and males may indicate dif-
ferent levels of exposure to well-known threats to species (e.g., 
poisoning). This in fact could have direct effects on population dy-
namics in the long term, in particular, in those areas where overall 
individual survival is low (see Arrondo, Sanz-Aguilar, et al., 2020). 

Additionally, the observed patterns of interpopulation and sea-
sonal differences in movement ranges highlight the need to dis-
entangle the risk factors for affecting different populations. In 
particular, in those places where installation of wind energy facili-
ties is expected in the near future that may pose serious threat for 
the species (Pérez-García et al., 2022; Serrano et al., 2020). Finally, 
the large movement patterns of this species highlight the need to 
implement transboundary conservation plans (see Lambertucci 
et al., 2014) and closely evaluate the sensitivity to different risk 
factors operating at each region to design a coordinated response 
of all countries involved in species conservation.
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