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a b s t r a c t 

Adaptive management of traffic congestion in the Internet is a complex problem that can 

gain useful insights from a dynamical approach. In this paper we propose and analyze 

a one-dimensional, discrete-time nonlinear model for Internet congestion control at the 

routers. Specifically, the states correspond to the average queue sizes of the incoming 

data packets and the dynamical core consists of a monotone or unimodal mapping with a 

unique fixed point. This model generalizes a previous one in that additional control param- 

eters are introduced via the data packet drop probability with the objective of enhancing 

stability. To make the analysis more challenging, the original model was shown to exhibit 

the usual features of low-dimensional chaos with respect to several system and control pa- 

rameters, e.g., positive Lyapunov exponents and Feigenbaum-like bifurcation diagrams. We 

concentrate first on the theoretical aspects that may promote the unique stationary state 

of the system to a global attractor, which in our case amounts to global stability. In a sec- 

ond step, those theoretical results are translated into stability domains for robust setting of 

the new control parameters in practical applications. Numerical simulations confirm that 

the new parameters make it possible to extend the stability domains, in comparison with 

previous results. Therefore, the present work may lead to an adaptive congestion control 

algorithm with a more stable performance than other algorithms currently in use. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

With the increasing number of users and application services, the traffic congestion control on the Internet has become a

timely topic both for communication engineers and applied mathematicians. Indeed, poor management of traffic congestion

may result in loss of information and be detrimental to the performance of applications [1] . To prevent this from occurring,

several congestion control algorithms are executed at the sources (called transmission control protocols, TCPs) and at the

routers. How to stabilize the router queue length around a desired target regardless of the traffic loads is an open problem

of congestion control and the main concern of this paper. Most of the current algorithms implement early detection of the

congestion, along with feedback signaling and reconfiguration of the control parameters, to avoid the build up of instabil-

ities such as abrupt fluctuations of the buffer occupancy, not to mention a service disruption. These aptly called Adaptive
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Queue Management (AQM) mechanisms are predominantly based on stochastic models, and include Random Early Detection

[2] , Random Early Marking [3] , and Adaptive Virtual Queue [4] . Time averaging also allows formulating congestion control

mechanisms in the language of deterministic dynamical systems, whether discrete-time or continuous-time, thus offering

an interesting and promising alternative to conventional approaches. This paper deals precisely with such dynamical models

in discrete time. 

Random early detection (RED) was one of the first proposed AQM mechanisms. In a nutshell, RED drops incoming data

packets with a probability that depends on an average between the past average queue size and the current queue size (see

Section 2 for more details). In [5] Ranjan et al. reformulated RED as a one-dimensional discrete-time dynamical system, with

the average queue sizes being the states. This model splits the state interval into three segments; the dynamics is affine in

the left segment, ∪ -convex with a unique fixed point in the middle one, and linear in the right one, where the middle

segment is a sink (trapping region) of the global dynamics when it is invariant. Moreover, Ranjan et al. found that their

model undergoes direct and reverse bifurcations with respect to several control parameters of the model. Not surprisingly,

these bifurcation scenarios exhibit period-doubling transitions to chaos and positive Lyapunov exponents, as it is well known

from unimodal (one-humped) mappings, e.g., the quadratic family x �→ λx (1 − x ) , 0 < λ≤ 4, mapping the interval [0,1] into

itself [6,7] . This being the case, a stable congestion control calls for sidestepping those ranges of the control parameters

where the dynamics is chaotic or just periodic. 

In [8] and [9] the authors proposed a generalization of the above RED nonlinear model with improved stability. Our

dynamical model features a probability distribution for the data packet dropping with two additional parameters α and β
(the beta distribution), which boosts the controllability of the RED dynamics. Indeed, we showed in [8] that, for adequately

chosen α and β , the stability ranges of some key parameters extend beyond their bifurcation values in the original formula-

tion [5] , which corresponds to α = β = 1 . In [9] we surveyed numerically the stability regions in parametric space to locate

robust settings of α and β . Yet, the major issue of the paper at hand are the theoretical underpinnings of the proposed gen-

eralized RED model in order to understand the numerical results and anticipate the response of the system under different

parameter configurations. This is also a necessary step on the way to a full-fledged implementation of the ensuing AQM

mechanism that takes into account the real-time variation of some system parameters (notably, the number of users). For

other approaches to RED stabilization, see [10–13] . 

Bearing the above objectives in mind, this paper focuses on the basic properties of the generalized RED dynamics and

their application to find robust ranges of the control parameters α and β that guarantee a stable dynamics (meaning that

the unique fixed point is a global attractor). The relation between theory and application is bidirectional: the choice and

generality of the theoretical results correlates with the application sought. Thus, we do not delve into the chaotic properties

of the RED dynamics. Technical details are also beyond the scope of this paper. 

The remaining sections are organized as follows. After a brief description in Section 2 of the dynamical model for

RED proposed by Rajan et al. [5] , a generalization along the lines explained above is presented in Section 3 , analyzed in

Sections 4 (basic dynamical properties) and 5 (local stability), and illustrated in Section 6 with a few examples. Section 7 is

central to this paper. There we study the global stability of the generalized RED dynamical model presented in Section 3 ,

tailored to monotonic ( Section 7.1 ) and unimodal ( Section 7.2 ) dynamics in the trapping region. In so doing we look for

theoretical results that can be implemented in an actual control algorithm. Application of the results of Section 7 to the

tuning of the new control parameters α and β , as well as other practical issues, is the subject of Section 8 . Results requiring

numerical simulations have been grouped in Section 9 . They comprise a benchmarking of our generalized model against the

conventional one that favors our model ( Section 9.1 ), and a survey of stability robustness in the ( α, β)-parametric space

( Section 9.2 ), followed by a short discussion ( Section 9.3 ). The final section contains the conclusion and outlook. 

2. A RED dynamical model 

Fig. 1 depicts the communication network we consider throughout: N users are connected to a Router 1 which shares an

internet link with Router 2. The capacity of this channel is C . Further parameters of the system are the packet size M , the

round-trip time (propagation delay) d of the packets, and the buffer size B of Router 1. 
Fig. 1. Network topology (source [8] ). 
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In the RED model, the probability p of dropping an incoming packet at the router depends on the average queue size

q ave as follows: 

p(q ave ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if q ave < q min , 

1 if q ave > q max , 

q ave − q min 

q max − q min 

p max otherwise. 

(1)

Thus, q min and q max are the lower and upper threshold values of q ave for accepting and dropping an incoming packet,

respectively, and p max is the selected drop probability when q ave = q max , i.e., the maximum packet drop probability. The

average queue size is updated at the time of the packet arrival according to the averaging 

q ave 
new 

= (1 − w ) q ave 
old + wq cur (2)

between the previous average queue size q ave 
old 

and the current queue size q cur , where 0 < w < 1 is the averaging weight . The

higher w , the faster the RED mechanism reacts to the actual buffer occupancy. In practice w is taken rather small, typically

� 0.2 [14] . 

Based on RED, Ranjan et al. [5] derived the following “discrete-time feedback model for TCP-RED” (with a slight change

in notation): 

q ave 
n +1 = 

⎧ ⎨ 

⎩ 

(1 − w ) q ave 
n if q ave 

n ≥ θr , 

(1 − w ) q ave 
n + wB if q ave 

n ≤ θl , 

(1 − w ) q ave 
n + w 

(
NK √ 

p n 
− Cd 

M 

)
otherwise, 

(3)

where 0 ≤ q ave 
n ≤ B is the average queue size at time n = 0 , 1 , . . . , K is a constant between 1 and 

√ 

8 / 3 (usually 
√ 

3 / 2) ) [15] ,

p n = 

q ave 
n − q min 

q max − q min 

p max , (4)

and the left and right thresholds q min < θ l < θ r ≤ q max are given, respectively, by 

θl = 

q max − q min 

p max 

(
NMK 

BM + Cd 

)2 

+ q min (5)

and 

θr = 

{ 

q max − q min 

p max 

(
NMK 

BM 

)2 

+ q min if p max ≥
(

NMK 

Cd 

)2 

, 

q max otherwise. 

(6)

In order that θ l < θ r also when θr = q max , it is necessary that (
NMK 

BM + Cd 

)2 

< p max , (7)

hence (
NMK 

Cd 

)2 

< 

(
1 + 

BM 

Cd 

)2 

p max . (8)

According to (2) , θ l is the largest average queue size such that q ave 
n ≤ θl implies q cur 

n +1 
= B . Likewise, θ r is the smallest average

queue size such that q ave 
n ≥ θr implies q cur 

n +1 
= 0 . 

Ranjan et al. showed also in [5] that the dynamical system defined in (3) can be chaotic depending on the parameter

settings. Therefore, a stability analysis of this system is needed in order to identify regions in parameter space where the

dynamic is stable. This will be done in the next sections with a more general model. For a continuous-time nonlinear model

for RED, see [16] . 

3. A generalized RED dynamical model 

For notational convenience we shorten henceforth q ave to q , and introduce the dimensionless constants 

A 1 = 

NK √ 

p max 
, A 2 = 

Cd 

M 

. (9)

Condition (7) translates then into (
A 1 

A 2 + B 

)2 

= 

1 

p max 

(
NMK 

BM + Cd 

)2 

< 1 , (10)
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and condition (8) into (
A 1 

A 2 

)2 

= 

1 

p max 

(
NMK 

Cd 

)2 

< 

(
1 + 

BM 

Cd 

)2 

= 

(
1 + 

B 

A 2 

)2 

. (11) 

Proposition 1. The constants A 1 and A 2 of the RED model are subject to the constraint 

A 1 < A 2 + B. (12) 

Inequality (12) is assumed to hold throughout this paper. 

In [8] we generalized the RED dynamical model (3) by replacing the probability law (4) by 

p n = I α,β (z(q n )) · p max , (13) 

where I α, β ( x ), 0 ≤ x ≤ 1, is the beta distribution function (or normalized incomplete beta function), 

I α,β (x ) = 

B (x ;α,β) 

B (1 ;α,β) 
, B (x ;α,β) = 

∫ x 

0 

t α−1 (1 − t ) β−1 dt , (14)

with α, β > 0, and 

z(q ) = 

q − q min 

q max − q min 

, q min ≤ q ≤ q max . (15) 

Sometimes we shorten z ( q ) to z . Since I 1 , 1 (z) = z, we recover the conventional RED model [5] for α = β = 1 . The purpose

of this generalization is to improve the stability properties by introducing the additional control parameters α and β . The

beta distribution is related to the chi-square distribution [17] . By definition, I α, β ( x ) is strictly increasing, hence invertible. Its

inverse, I −1 
α,β

(x ) , is also strictly increasing. 

Thus, we consider hereafter a dynamical system, 

q n +1 = f (q n ) , (16) 

where the mapping f : [0 , B ] → [0 , B ] is defined as 

f (q ) = 

⎧ ⎨ 

⎩ 

(1 − w ) q + wB if 0 ≤ q ≤ θl , 

(1 − w ) q + w 

(
A 1 √ 

I α,β (z(q )) 
− A 2 

)
if θl < q < θr , 

(1 − w ) q if θr ≤ q ≤ B, 

(17) 

and the thresholds are given by 

θl = (q max − q min ) I 
−1 
α,β ( p 1 ) + q min , p 1 = 

(
A 1 

A 2 + B 

)2 

, (18) 

where p 1 < 1 by (12) , and 

θr = 

{
(q max − q min ) I 

−1 
α,β

(p 2 ) + q min if p 2 = 

(
A 1 
A 2 

)2 ≤ 1 , 

q max otherwise, 
(19) 

with {
θr < q max if 0 < A 1 < A 2 , 

θr = q max if A 2 ≤ A 1 < A 2 + B, 
(20) 

and θ l < θ r due to (12) . Correspondingly, 

0 < 

θl − q min 

q max − q min 

= z(θl ) ≤ z(q ) ≤ z(θr ) = 

θr − q min 

q max − q min 

≤ 1 , θl ≤ q ≤ θr . (21) 

The thresholds θ l and θ r are set so that f is continuous on [0, B ], except when A 1 > A 2 , in which case f is lower semicon-

tinuous at θ r . Indeed, if A 1 > A 2 , then 

f (θr −) = f (q max −) = lim 

q → q max −
f (q ) = (1 − w ) q max + w (A 1 − A 2 ) = f (q max ) + w (A 1 − A 2 ) 

> f (q max ) = f (θr ) , (22) 

where we used I α,β (z(q max )) = I α,β (1) = 1 on the first line of (22) . To handle continuity ( A 1 ≤ A 2 ) and discontinuity ( A 1 > A 2 )

at θ r together, we use the notation (A 1 − A 2 ) 
+ = max { A 1 − A 2 , 0 } (the positive part of A 1 − A 2 ) and write 

f (θr −) = f (θr ) + w (A 1 − A 2 ) 
+ = 

{ 

(1 − w ) θr if A 1 < A 2 , 

(1 − w ) q max if A 1 = A 2 , 

(1 − w ) q max + w (A 1 − A 2 ) if A 1 > A 2 . 

(23) 
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For further reference, 

f (θl ) = (1 − w ) θl + wB > θl (24)

f (θr ) = (1 − w ) θr < θr (25)

and, in case A 1 > A 2 , 

f (q max −) < q max ⇔ A 1 − A 2 < q max . (26)

Proposition 2. It holds 

f (θl ) ≷ f (θr −) ⇔ w ≷ 

θr − θl 

θr − θl + B − (A 1 − A 2 ) + 
. (27)

Altogether, the (generalized) RED model has 6 system parameters ( N, K, C, d, M, B ) and 6 user parameters ( p max , q min ,

q max , w, α, β). The latter are also called control parameters because they can be tuned at will to stabilize the dynamic

if necessary. It is worth noting that p max and the system parameters except B always appear grouped in the constants

A 1 = NK/ 
√ 

p max and A 2 = Cd/M. For mathematical simplicity, B could be set equal to 1 by taking normalized queue sizes q / B

and also dividing A 1 and A 2 by B , but we will not. Although the mapping f depends explicitly on all those parameters, no

subscripts have been appended to it for notational economy. 

Fig. 2 shows f for the system parameters 

N = 1850 , C = 321 , 0 0 0 kBps , d = 0 . 012 s , K = 1 . 225 , M = 1 kB , B = 20 0 0 packets , (28)

fixed control parameters 

q min = 500 , q max = 1500 , w = 0 . 15 , (29)

and several choices for the remaining control parameters α, β and p max . The data (28) correspond to the Miguel Hernández

University network; further information is given in Section 9.3 . 

4. Basic properties 

In this section we study the properties of the first and second derivatives of f that will be needed below. Derivation of

(17) yields 

f ′ (q ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − w if 0 ≤ q ≤ θl , 

1 − w 

(
1 + 

νA 1 

2 

I α,β (z(q )) −3 / 2 I ′ 
α,β

(z(q )) 

)
if θl < q < θr , 

1 − w if θr ≤ q ≤ B, 

(30)

where one-sided derivatives ( f ′ + and/or f ′ −) are meant at endpoints and thresholds, and (see (15) ) 

ν = z ′ (q ) = 

1 

q max − q min 

, (31)

I ′ α,β (x ) = 

x α−1 (1 − x ) β−1 

B ( 1 ;α, β) 
. (32)

Hence, 

f ′ (q ) < 1 − w for all q ∈ (θl , θr ) . (33)

since I α, β ( z ) > 0 and I ′ 
α,β

(z) ≥ 0 for z ( θ l ) ≤ z ≤ z ( θ r ). By continuity at θ l , 

f ′ + (θl ) = f ′ (θl +) = 1 − w 

(
1 + 

νA 1 

2 

I α,β (z(θl )) 
−3 / 2 I ′ α,β (z(θl )) 

)
(34)

< 1 − w = f ′ −(θl ) 

while 

f ′ (θr −) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − w 

(
1 + 

νA 1 

2 

I α,β (z(θr )) −3 / 2 I ′ 
α,β

(z(θr )) 

)
< 1 − w = f ′ + (θr ) if A 1 < A 2 , 

f ′ ( q max −) = 1 − w = f ′ + ( q max ) if A 1 ≥ A 2 , β ≥ 1 , 

f ′ ( q max −) = −∞ if A 1 ≥ A 2 , β < 1 , 

(35)

since, by (32) , I ′ 
α,β

(z(q max )) = I ′ 
α,β

(1) = 0 if β ≥ 1 and I ′ 
α,β

(z(q max )) = I ′ 
α,β

(1) = ∞ if β < 1. 
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Fig. 2. Graphs of the mapping f for the parameter settings (28), (29) , and α, β and p max as given on the top of each panel: monotonic increasing (top left), 

unimodal continuous (top right), unimodal discontinuous (bottom left), and bimodal (bottom right). A 1 = 2265 . 8 , A 2 = 3852 . 0 , except for the discontinuous 

graph, in which case A 1 = 4531 . 6 ( p max = 0 . 25 ). The point q ∗ (the fixed point of f , Section 5 ) is shown for further reference. 

 

 

From (33) , along with f (θl ) = (1 − w ) θl + wB and f (θr −) = (1 − w ) θr + w (A 1 − A 2 ) 
+ ( Eq. (23) ), we obtain: 

Proposition 3. The mapping f on ( θ l , θ r ) is bounded as follows: 

(1 − w ) q + w (A 1 − A 2 ) 
+ < f (q ) < (1 − w ) q + wB. (36)

By (12) , A 1 − A 2 < B . We call q �→ (1 − w ) q + w (A 1 − A 2 ) 
+ and q �→ (1 − w ) q + wB the lower and upper envelopes of f on

( θ l , θ r ), respectively. 

Derivation of (30) yields 

f ′′ (q ) = 

wν2 A 1 

2 

I α,β (z) −3 / 2 
(

3 

2 

I α,β (z) −1 I ′ α,β (z) 2 − I ′′ α,β (z) 
)

(37) 

for θ l < q < θ r , and f ′′ (q ) = 0 otherwise. Since 

I ′′ α,β (z) = I ′ α,β (z) h α,β (z) , with h α,β (z) := 

α − 1 

z 
− β − 1 

1 − z 
, (38) 
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Eq. (37) can be written in a more convenient way as 

f ′′ 
∣∣
(θl ,θr ) 

(q ) = 

wν2 A 1 

4 

I α,β (z) −3 / 2 I ′ α,β (z) 
[
3 J α,β (z) − 2 h α,β (z) 

]
, (39)

where f | (θl ,θr ) 
: (θl , θr ) → (θl , θr ) denotes as usual the restriction of f to the interval ( θ l , θ r ), 

f | (θl ,θr ) 
(q ) = (1 − w ) q + w 

(
A 1 I α,β (z(q )) −1 / 2 − A 2 

)
, (40)

and 

J α,β (z) := 

I ′ 
α,β

(z) 

I α,β (z) 
> 0 (41)

for all z ( θ l ) < z < z ( θ r ) (see (21) ). 

Proposition 4. Suppose that 3 J α,β (z(q )) − 2 h α,β (z(q )) > 0 for θ l < q < θ r . It holds: 

(a) f | (θl ,θr ) 
is ∪ -convex. 

(b) If f ′ (θl +) · f ′ (θr −) > 0 , then f | (θl ,θr ) 
has no critical point. Otherwise, if f ′ (θl +) · f ′ (θr −) < 0 , then f | (θl ,θr ) 

has one

critical point. 

Proof. The assumption implies f ′′ 
∣∣
(θl ,θr ) 

(q ) > 0 by (39) . In such a case, f ′ 
∣∣
(θl ,θr ) 

is increasing, so that f | (θl ,θr ) 
is a ∪ -convex

mapping with one critical point if f ′ 
∣∣
(θl ,θr ) 

takes both signs, or no critical point otherwise. �

Proposition 5. f ′′ 
∣∣
(θl ,θr ) 

cannot vanish identically on an open set. 

Proof. The case α = β = 1 is trivial. Otherwise, 

J α,β (z) = 

I ′ 
α,β

(z) 

I α,β (z) 
= 

d 

dz 
ln I α,β (z) , h α,β (z) = 

I ′′ 
α,β

(z) 

I ′ 
α,β

(z) 
= 

d 

dz 
ln I ′ α,β (z) , 

so 3 I α,β (z) −1 I ′ 
α,β

(z) = 2 h α,β (z) on an open set O ⊂ (νθl − q min , νθr − q min ) implies I α,β (z) 3 / 2 = const ·I ′ 
α,β

(z) on O . By analyt-

icity, this identity extends from O to (0,1). But I α, β ( z ) 3/2 is strictly increasing on (0,1) and is well-defined at z = 0 , 1 , whereas,

depending on α and β , I ′ 
α,β

(z) has a critical point in (0,1), or diverges at z = 0 , or diverges at z = 1 —a contradiction. �

The first and second derivatives of f ( q ), q � = θ l , θ r , are related as follows. By (30) , 

I α,β (z(q )) −3 / 2 I ′ α,β (z(q )) = 

2 

wνA 1 

(
1 − w − f ′ (q ) 

)
(42)

for every q ∈ ( θ l , θ r ). Plug this into (39) to obtain 

f ′′ (q ) = 

ν

2 

(
1 − w − f ′ (q ) 

)[
3 J α,β (z(q )) − 2 h α,β (z(q )) 

]
, (43)

both for q ∈ ( θ l , θ r ) and q ∈ [0 , θl ) ∪ (θr , B ] since f ′ (q ) = 1 − w in the latter case. In particular, if q c is a critical point ( f ′ (q c ) =
0 implies q c ∈ ( θ l , θ r )), then 

f ′′ (q c ) = 

(1 − w ) ν

2 

[
3 J α,β ( z( q c )) − 2 h α,β (z(q c )) 

]
, (44)

where J α,β (z(q c )) = 

2(1 −w ) 
wνA 1 

I α,β (z(q c )) 
1 / 2 by (42) . 

5. Local stability 

We begin by studying the fixed points of f . 

Theorem 6. The mapping f has a unique fixed point q ∗ ∈ ( θ l , θ r ) if and only if A 1 < A 2 + q max ; otherwise, it has none. Further-

more, q ∗ does not depend on w. 

Proof. By definition, the graph of f lies strictly above the bisector on [0, θ l ], while it lies strictly below the bisector on [ θ r ,

B ]. Suppose, furthermore, that A 1 ≤ A 2 so that f is continuous on [ θ l , θ r ] with f ( θ l ) > θ l (see (24) ) and f ( θ r ) < θ r (see (25) ). By

continuity, there is a point q ∗ ∈ ( θ l , θ r ) at which the graph of f ( q ) crosses the bisector, i.e., f (q ∗) = q ∗. This point is unique

because 

f (q ) = q ⇔ 

A 1 √ 

I α,β (z(q )) 
= q + A 2 (45)

( θ l < q < θ r ), where q �→ A 1 / 
√ 

I α,β (z(q )) is a strictly decreasing function and q �→ q + A 2 is a strictly increasing function. 
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To deal with the case A 1 > A 2 , apply (26) , i.e., f (θr −) = f (q max −) < q max if and only if A 1 < A 2 + q max . Define then g = f

on [ θ l , q max ) and g(q max ) = f (q max −) , so that g is continuous on [ θ l , q max ] with g ( θ l ) > θ l and g ( q max ) < q max . As before,

we conclude that g has a unique fixed point q ∗ ∈ ( θ l , q max ). The same must hold for f because f = g on [ θ l , q max ) and

f (q max ) = (1 − w ) q max < q max . 

If A 1 = A 2 + q max , then f (q max −) = q max , i.e., q max is the fixed point of g , the continuous extension of f | [ θl ,q max ) 
to [ θ l ,

q max ]. More generally, if A 1 ≥ A 2 + q max , then f (q max −) ≥ q max . As a result, f has no fixed point (neither on ( θ l , θ r ) nor, of

course, on [0, B ]). �

In other words, the RED dynamics (16) –(17) has a unique stationary or equilibrium state q ∗, as long as A 1 < A 2 + q max .

The dependence of q ∗ on the system parameters and p max occurs through the constants A 1 and A 2 , Eq. (9) . See Fig. 2 for q ∗

with different settings of α, β and A 1 . To compute q ∗ one has to solve numerically the Eq. (45) . Note from (45) that 

A 1 = (q ∗ + A 2 ) 
√ 

I α,β (z ∗) , (46) 

where z ∗ = z(q ∗) = ν(q ∗ − q min ) . 

Remark 1. According to Theorem 6 , f has no fixed points if A 1 ≥ A 2 + q max , so this possibility will be no longer considered.

A sufficient condition for the fixed point q ∗ to be attractive is | f ′ ( q ∗)| < 1. Otherwise, if | f ′ ( q ∗)| > 1, q ∗ is a repeller. If∣∣ f ′ (q ∗) 
∣∣ = 1 , then q ∗ can be attracting, repelling, semi-stable, or even none of these. 

In our case, f ′ (q ∗) < 1 − w by Eq. (33) , so for the local stability of the RED dynamics at q ∗ it suffices actually that

f ′ (q ∗) > −1 , i.e., 

w 

(
1 + 

νA 1 

2 

I α,β (z ∗) −3 / 2 I ′ α,β (z ∗) 

)
< 2 . (47) 

Intuitively speaking, a bifurcation occurs when a small change in a parameter causes a qualitative change in the dynamic.

Since we are only interested in the stability of q ∗, we will call bifurcation point a parameter value at which q ∗ looses stability.

If this happens for increasing (resp. decreasing) values of the parameter, we speak of a direct (resp. reverse) bifurcation.

Therefore, bifurcation points verify the condition f ′ (q ∗) = −1 , that is, 

w 

(
1 + 

νA 1 

2 

I α,β (z ∗) −3 / 2 I ′ α,β (z ∗) 

)
= 2 . (48) 

In particular, from (48) we obtain that 

w bif = 

2 

1 + 

νA 1 
2 

I α,β (z ∗) −3 / 2 I ′ 
α,β

(z ∗) 
(49) 

is the bifurcation point of the averaging weight. Plugging (46) into (49) we obtain the alternative expression 

w bif = 

2 

1 + 

ν
2 
(q ∗ + A 2 ) I α,β (z ∗) −1 / 2 I ′ 

α,β
(z ∗) 

. (50) 

In either case, for each α, β there is a continuum of different choices of parameters, lying on the level surfaces NK/ 
√ 

p max =
A 1 and Cd/M = A 2 in the corresponding 3-dimensional parametric spaces, that give the same bifurcation point w bif . 

Similarly, 

A 1 , bif = 

4 − 2 w 

νwI α,β (z ∗) −3 / 2 I ′ 
α,β

(z ∗) 
(51) 

and (see (46) ) 

A 2 , bif = 

4 − 2 w 

νwI α,β (z ∗) −1 I ′ 
α,β

(z ∗) 
− q ∗, (52) 

where, according to Theorem 6 and (46) , q ∗ (and z ∗) depend, in turn, on A 1,bif or A 2,bif , respectively. Both formulas can be

used to calculate numerically A 1,bif (resp. A 2,bif ), provided the discrepancy 
∣∣A 1 − A 1 , bif 

∣∣ (resp. 
∣∣A 2 − A 2 , bif 

∣∣) approaches 0 as

the computation loop A 1 → q ∗ → A 1,bif (resp. A 2 → q ∗ → A 2,bif ) is repeated. For each α, β , the bifurcation points of N, K ,

and p max (resp. C, d, M ) lie on the level surface NK/ 
√ 

p max = A 1 , bif (resp. Cd/M = A 2 , bif ). 

6. Examples 

We consider here a few settings of α and β leading to models amenable to analytic calculations. 

Example 1. For β = 1 , 

I α, 1 (x ) = x α, I ′ α, 1 (x ) = αx α−1 , I −1 
α, 1 (y ) = y 1 /α, 
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thus, 

f | (θl ,θr ) 
(q ) = (1 − w ) q + w 

(
A 1 

z α/ 2 
− A 2 

)
, 

f ′ 
∣∣
(θl ,θr ) 

(q ) = 1 − w 

(
1 + 

ανA 1 

2 z α/ 2+1 

)
. 

Since q �→ q α/ 2+1 is an increasing function for α > 0, it follows that f ′ 
∣∣
(θl ,θr ) 

is also an increasing function, hence f | (θl ,θr ) 
is

∪ -convex. Indeed, 

f ′′ 
∣∣
(θl ,θr ) 

(q ) = 

α(α + 2) ν2 wA 1 

4 z α/ 2+2 
> 0 (53)

for all α > 0. Therefore, f | (θl ,θr ) 
has one critical point q c if f ′ 

∣∣
(θl ,θr ) 

takes both signs and none otherwise. Moreover, 

f ′ 
∣∣
(θl ,θr ) 

(q c ) = 0 ⇔ z c := z(q c ) = 

(
ανwA 1 

2(1 − w ) 

) 2 
α+2 

, (54)

provided 

ν(θl − q min ) < z c < ν(θr − q min ) , (55)

in which case f | (θl ,θr ) 
has a global minimum at 

q c = 

z c 

ν
+ q min = (q max − q min ) z c + q min . 

Otherwise, f | (θl ,θr ) 
has no critical point. By (45) , the fixed point is given by q ∗ = z ∗/ν + q min , where z ∗is the solution of the

equation 

z α/ 2+1 + ν(A 2 + q min ) z 
α/ 2 − νA 1 = 0 , (56)

and, by (49) , a bifurcation of the dynamics occurs at the point 

w bif = 

4 z ∗α/ 2+1 

2 z ∗α/ 2+1 + ανA 1 

(57)

when all other parameters in (57) are kept constant. Note that if A 1 = A 2 + q max , then A 2 + q min = A 1 − 1 
ν , so z ∗ = 1 is a

solution of (56) , i.e., f (q max −) = q max in such a case (see the proof of Theorem 6 ). 

Example 2. To obtain the original RED model [5] , set α = 1 in Example 1 . Thus, Eq. (54) reads 

z c = 

(
νwA 1 

2(1 − w ) 

) 2 
3 

and Eq. (56) for z ∗ becomes 

z 3 / 2 + ν(A 2 + q min ) z 
1 / 2 − νA 1 = 0 , 

a cubic equation for z 1/2 . The only real root of this equation is given by 

z ∗1 / 2 = −2 

√ 

ν(A 2 + q min ) 

3 

sinh 

( 

1 

3 

sinh 

−1 

( 

− 3 A 1 

2(A 2 + q min ) 

√ 

3 

ν(A 2 + q min ) 

) ) 

. 

Once z ∗1/2 has been computed, we can compute w bif via (57) , 

w bif = 

4 z ∗1 / 2+1 

2 z ∗1 / 2+1 + νA 1 

. 

Example 3. Finally, consider the model with α = 2 , β = 1 . Eq. (54) reads then 

z c = 

(
νwA 1 

1 − w 

) 1 
2 

, 

Eq. (56) becomes 

z 2 + ν(A 2 + q min ) z − νA 1 = 0 

which positive solution is 

z ∗ = 

ν

2 

(√ 

( A 2 + q min ) 
2 + 4 A 1 /ν − (A 2 + q min ) 

)
, 
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and Eq. (57) turns to 

w bif = 

2 z ∗2 

z ∗2 + νA 1 

. 

7. Global stability 

Let B(S, f ) denote the basin of attraction of a set S ⊂ [0 , B ] , that is, B(S, f ) consists of all points of [0, B ] that asymptoti-

cally end up in S . 

Theorem 7. If ( θ l , θ r ) is invariant, then B((θl , θr ) , f ) = [0 , B ] . 

Proof. (i) Suppose first that A 1 ≤ A 2 so that f is continuous at θ r . 

(i-1) If q 0 ∈ [0 , θl ] , then 

q n +1 = f (q n ) = (1 − w ) q n + wB = q n + w (B − q n ) > q n 

as long as q n ∈ [0 , θl ] . Therefore, since there is no fixed point of f in [0, θ l ], the orbit of q 0 leaves [0, θ l ] through the right

side. Suppose that q n 0 , n 0 ≥ 1, is the first point of the orbit of q 0 such that q n 0 > θl . Then q n 0 −1 ≤ θl and the increasing

monotonicity of f on [0, θ l ] implies q n 0 = f (q n 0 −1 ) ≤ f (θl ) ≤ θr , the latter inequality following from the continuity of f at θ l 

and the invariance of ( θ l , θ r ). So, q n 0 ∈ (θl , θr ) unless q n 0 −1 = θl and q n 0 = f (θl ) = θr . 

(i-2) A similar argument applies when q 0 ∈ [ θr , B ] , with the difference that the initial segment of the orbit of q 0 is strictly

decreasing, 

q n +1 = f (q n ) = (1 − w ) q n < q n , 

as long as q n ∈ [ θr , B ] , and q n 0 −1 ≥ θr ( q n 0 being the first point of the orbit of q 0 such that q n 0 < θr ) implies q n 0 = f (q n 0 −1 ) ≥
f (θr ) ≥ θl , the latter inequality following from the continuity of f at θ r and the invariance of ( θ l , θ r ). In this case q n 0 ∈
(θl , θr ) unless q n 0 −1 = θr and q n 0 = f (θr ) = θl . 

(ii) Suppose now that A 1 > A 2 so that f is discontinuous at θr = q max . 

(ii-1) If q 0 ∈ [0 , θl ] nothing changes in the above argument in case (i-1) since f is continuous at θ l . 

(ii-2) If q 0 ∈ [ θr , B ] and q n 0 , n 0 ≥ 1, is the first point of the orbit of q 0 such that q n 0 ≤ θr , then q n 0 −1 ≥ θr and the increas-

ing monotonicity of f on [ θ r , B ] implies q n 0 = f (q n 0 −1 ) ≥ f (θr ) . This time we cannot argue, as in case (i-2), that f ( θ r ) ≥ θ l to

conclude q n 0 ≥ θl because f is not continuous at θ r . However, if q n 0 < θl then we are in case (ii-1). Hence, there is n 1 > n 0 
such that q n 1 ∈ (θl , θr ) unless q n 1 −1 = θl and q n 1 = f (θl ) = θr . �

We conclude from Theorem 7 that the interesting dynamics takes place in the interval [ θ l , θ r ] or, in more technical

terms, [ θ l , θ r ] contains the non-wandering set for f . It follows from the proof of Theorem 7 that the only way to prevent

the orbit of q 0 ∈ [0 , θl ] ∪ [ θr , B ] from getting trapped within ( θ l , θ r ) is that it is a preimage of an hypothetical periodic cycle

f (θl ) = θr and f (θr ) = θl . We show next that θl + θr � = B excludes the latter possibility. 

Proposition 8. If f (θl ) = θr and f (θr ) = θl (i.e., { θ l , θ r } is a periodic orbit of period 2), then θl + θr = B . If, furthermore, [ θ l , θ r ]

is invariant, then f ([ θl , θr ]) = [ θl , θr ] . 

Proof. f (θl ) = (1 − w ) θl + wB = θr implies w = (θr − θl ) / (B − θl ) , while f (θr ) = (1 − w ) θr = θl implies w = (θr − θl ) /θr , so

B − θl = θr when both conditions hold simultaneously. The second statement is obvious. �

If B(q ∗, f ) = [0 , B ] we say that q ∗ is a global attractor of f , what amounts to q ∗ being globally stable. Equivalently, we say

also that f is globally stable. The following theorem, which combines the results of Theorems 6 and 7 , and Proposition 8 ,

tells us how to further proceed regarding this issue. 

Theorem 9. Let q ∗ ∈ ( θ l , θ r ) be the unique fixed point of f (hence, A 1 < A 2 + q max ). If 

(i) ( θ l , θ r ) is invariant (so that f | (θl ,θr ) 
defines a dynamical system on ( θ l , θ r ) ), 

(ii) θl + θr � = B (so that { θ l , θ r } is not a periodic orbit), and 

(iii) B(q ∗, f | (θl ,θr ) 
) = (θl , θr ) (i.e., q ∗ is a global attractor of f | (θl ,θr ) 

) 

then q ∗ is a global attractor of f. 

Therefore, when it comes to study the global stability of the RED dynamics it suffices to focus on f | (θl ,θr ) 
, as long as

A 1 < A 2 + q max , and conditions (i) and (ii) in Theorem 9 are fulfilled. 

The results in Section 4 and numerical calculations show that f | (θl ,θr ) 
can have none or several local extrema, depending

on the parameter configuration; see Fig. 2 . Since our objective is to design an adaptive and simple congestion control, we

consider in the next two subsections the following special cases: f | (θl ,θr ) 
is monotonic ( Section 7.1 ), and f | (θl ,θr ) 

is unimodal,

i.e., there exists q c ∈ ( θ l , θ r ) such that f has opposite monotonicity on ( θ l , q c ] and [ q c , θ r ) ( Section 7.2 ); q c is called a turning

point and f ′ (q c ) = 0 . By Proposition 5 , f | (θl ,θr ) 
is always strictly monotonic on each monotonicity segment (though not

always explicitly stated). 
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7.1. Monotonic case 

In this case, f | (θl ,θr ) 
is (strictly) increasing if and only if f (θl ) = f (θl +) < f (θr −) , or (strictly) decreasing if and only if

f (θl ) = f (θl +) > f (θr −) , where f (θr −) is given in (23) . By Proposition 2 , 

f | (θl ,θr ) 
is increasing ⇔ w < 

θr − θl 

θr − θl + B − (A 1 − A 2 ) + 
=: w mon (58)

where θr = q max if A 1 ≥ A 2 , and 

f | (θl ,θr ) 
is decreasing ⇔ w > w mon . (59)

Proposition 10. 

(a) Suppose that f | (θl ,θr ) 
is increasing. Then ( θ l , θ r ) is invariant if and only if (A 1 − A 2 ) 

+ < q max . 

(b) Suppose that f | (θl ,θr ) 
is decreasing. Then ( θ l , θ r ) is invariant if and only if 

w ≤ min 

{
θr − θl 

B − θl 

, 
θr − θl 

θr − (A 1 − A 2 ) + 

}
=: w inv , (60)

where θr = q max if (A 1 − A 2 ) 
+ > 0 (Eq. (20) ). 

Proof. Since f | (θl ,θr ) 
is strictly monotonic, we need to consider only the boundary points θ l and θ r . Remember that f ( θ l ) > θ l

by (24) and f ( θ r ) < θ r in the continuous case ( A 1 ≤ A 2 ) by (25) , but, in the discontinuous case ( A 1 > A 2 ), f (q max −) < q max if

and only if (A 1 − A 2 ) 
+ < q max by (26) . 

(a) Suppose that f | (θl ,θr ) 
is increasing. If A 1 ≤ A 2 , then 

(θl , θr ) is invariant ⇔ 

{
(i) f (θl ) < θr , 

(ii) f ( θr ) > θl . 

Conditions (i)-(ii) hold because θ l < f ( θ l ) < f ( θ r ) < θ r , where the second inequality follows from the strictly increasing mono-

tonicity of f | (θl ,θr ) 
. Thus, ( θ l , θ r ) is automatically invariant; note that the condition (A 1 − A 2 ) 

+ < q max in the formulation of

Proposition 10 (a) boils down in this particular case to q max > 0, which indeed imposes no restriction whatsoever. 

Otherwise, if A 1 > A 2 (hence θr = q max ) , then 

(θl , q max ) is invariant ⇔ 

{ 

(i) f (θl ) < q max , 

(ii) f ( q max −) < q max , 

(iii) f ( q max −) > θl . 

Conditions (i)-(iii) hold because θ l < f ( θ l ) < f (q max −) < q max , where the second inequality follows again from the strictly

increasing monotonicity of f | (θl ,q max ) 
, and the third one holds if and only if (A 1 − A 2 ) 

+ < q max by (26) . 

(b) Suppose now that f | (θl ,θr ) 
is decreasing. If A 1 ≤ A 2 , then 

(θl , θr ) is invariant ⇔ 

{
(i) f (θl ) < θr ⇔ w ≤ (θr − θl ) / (B − θl ) , 
(ii) f ( θr ) > θl ⇔ w ≤ (θr − θl ) /θr . 

Otherwise, if A 1 > A 2 , then 

(θl , θr ) is invariant ⇔ 

{ 

(i) f (θl ) < q max ⇔ w ≤ (q max − θl ) / (B − θl ) , 
(ii) f ( q max −) < q max , 

(iii) f ( q max −) > θl . ⇔ w ≤ (q max − θl ) / (q max − (A 1 − A 2 ) 
+ ) . 

Condition (ii) holds because f (q max −) < f (θl ) by the strictly decreasing monotonicity of f | (θl ,q max ) 
. Thus, if w ≤ q max −θl 

B −θl 
, then

f (q max −) < q max by (i). Moreover, f (q max −) < q max if and only if (A 1 − A 2 ) 
+ < q max by (26) , so that the bound 

q max −θl 
q max −(A 1 −A 2 ) 

+ 
in (iii) is positive. The latter statement follows also from w > w mon > 0 for a decreasing f | (θl ,q max ) 

, Eq. (59) . �

Remark 2. It follows from Proposition 10 (a) and Theorem 6 that an increasing f | (θl ,θr ) 
with A 1 = A 2 + q max has an invari-

ant interval (θl , θr ) = (θl , q max ) but no fixed point; indeed, in this case q ∗ = q max / ∈ (θl , q max ) . Furthermore, comparison of

(59) and (60) shows that if (A 1 − A 2 ) 
+ < θr (which actually means (A 1 − A 2 ) 

+ < q max by (20) ), then 

w mon < 

θr − θl 

B − θl 

and w mon < 

θr − θl 

θr − (A 1 − A 2 ) + 
, 

hence 

0 < w mon < w inv < 1 . (61)

This confirms that an invariant interval ( θ l , θ r ) can accommodate both increasing and decreasing mappings with a fixed

point. 
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The study of the global attraction of increasing mappings is rather simple, as we will see in the next theorem. Decreasing

mappings are more difficult to handle because of the possible existence of periodic orbits of period 2 (2-cycles for short).

Out of the different hypotheses that can prevent the existence of 2-cycles in ( θ l , θ r ), we are going to resort to the perhaps

simplest ones regarding the scope of this paper. 

Theorem 11. 

(a) If f | (θl ,θr ) 
is increasing and A 1 < A 2 + q max , then B(q ∗, f | (θl ,θr ) 

) = (θl , θr ) . 

(b) If f | (θl ,θr ) 
is decreasing with f ′ 

∣∣
(θl ,θr ) 

(q ) > −1 and w ≤ w inv , then B(q ∗, f | (θl ,θr ) 
) = (θl , θr ) . 

Proof. (a) Suppose that f is increasing on ( θ l , θ r ). Since A 1 < A 2 + q max , the interval ( θ l , θ r ) is invariant by Proposition 10 (i).

For any q n = f n (q 0 ) , n ≥ 0, it holds 

θl < q n < q ∗ ⇒ q n < f (q n ) < q ∗ (62) 

because f ( θ l ) > θ l , f | (θl ,θr ) 
is strictly increasing, and there is no fixed point other than q ∗ (thus, the graph of f | (θl ,θr ) 

lies

above the bisector for q < q ∗), and 

q ∗ < q n < θr ⇒ q ∗ < f (q n ) < q n (63) 

because f ( θ r ) < θ r , f | (θl ,θr ) 
is strictly increasing, and there is no fixed point other than q ∗ (thus, the graph of f | (θl ,θr ) 

lies

below the bisector for q > q ∗). Therefore, the orbits of all initial conditions q 0 ∈ ( θ l , θ r ) converge to q ∗. 

(b) Suppose now that f is decreasing on ( θ l , θ r ). Since w ≤ w inv , the interval ( θ l , θ r ) is invariant by Proposition 10 (b).

In this case, the second iterate f 2 = f ◦ f is increasing on ( θ l , θ r ). Moreover, the condition f ′ 
∣∣
(θl ,θr ) 

(q ) > −1 warrants that

f 2 has no fixed points in ( θ l , θ r ) other than q ∗ (otherwise, the derivative of f 2 (q ) − q would vanish at some intermediate

point between q ∗ and an endpoint). Apply now to f 2 the same argument as in the proof of (a). As a result, this time the

convergence of the orbit points f n ( q 0 ) to q ∗ is alternating, approaching the even iterates q ∗ from the same side where q 0 
lies, and the odd iterates from the opposite side (since f 2 n +1 (q 0 ) = f ( f 2 n (q 0 )) and f is decreasing). �

Remark 3. Note that no hypothesis was made in (a) regarding the magnitude of f ′ 
∣∣
(θl ,θr ) 

because the graph of f | (θl ,θr ) 

crosses transversally the bisector at q ∗, so f ′ ( q ∗) < 1 and q ∗ is locally attracting. The restriction f ′ 
∣∣
(θl ,θr ) 

(q ) > −1 in (b) can

be replaced by the absence of 2-cycles. According to Theorem 7 , the existence of 2-cycles has to be also excluded at the

endpoints { θ l , θ r }, should q ∗ be a global attractor. This can be done, as in Theorem 9 , with the proviso θl + θr � = B . By

Sharkovsky’s theorem [18] applied to the continuous case ( A 1 ≤ A 2 ), if there are no periodic orbits of period 2, then there

are no periodic orbits of any period. 

Properties (62) and (63) are sometimes called negative feedback conditions and, as shown in the proof of Theorem 11 ,

they are determinant in many proofs of local and global stability of fixed points in one-dimensional dynamics. Another

useful tool is the Schwarzian derivative 

S f (q ) = 

f ′′′ (q ) 

f ′ (q ) 
− 3 

2 

(
f ′′ (q ) 

f ′ (q ) 

)2 

, (64) 

particularly when f is a polynomial and all the roots of f ′ are real and simple. In view of (30) and (37) , we anticipate that Sf

will be of little help for our purposes. We will come back to this point in short. 

7.2. Unimodal case 

A mapping with k turning points is called unimodal if k = 1 , multimodal if k ≥ 2 or, generically, k -modal. In this case,

the mapping is expected to be chaotic, meaning that the attractor is a union of intervals or, in a weaker sense, that there

is an infinite number of periodic orbits [19] . For the kinds of attractors that can appear with unimodal maps, see e.g. [6,7] .

The growth rate of periodic orbits with the period is quantified by the topological entropy [20–22] , while their stability is

related to the sign of the Schwarzian derivative [23] . Global stability of multimodal mappings with a single, locally attractive

fixed point can be only achieved if the map has no 2-cycles. 

We consider in this section a RED dynamics in which f | (θl ,θr ) 
has only one local extremum (hence, a global extremum)

at q c ∈ ( θ l , θ r ). Multimodal mappings are not interesting for our purposes. 

Proposition 12. 

(a) Suppose that f ( q c ) is a minimum. Then ( θ l , θ r ) is invariant if and only if 

w ≤ θr − θl 

B − θl 

, f (q c ) > θl , and A 1 ≤ A 2 + q max . (65) 

(b) Suppose that f ( q c ) is a maximum. Then ( θ l , θ r ) is invariant if and only if 

f (q c ) < θr , and w ≤ θr − θl 
. (66) 
θr 
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Proof. (a) Conditions (65) amount to, respectively, f ( θ l ) ≤ θ r , min θl <q<θr 
f (q ) > θl , and f (θr −) ≤ θr . This way, the global min-

imum f ( q c ) lies above θ l and the sup θl <q<θr 
f (q ) , which is achieved at the boundary { θ l , θ r }, does not exceeds θ r . 

(b) Likewise, conditions (66) amount to, respectively, max θl <q<θr 
f (q ) < θr and f (θr −) ≥ f (θr ) ≥ θl . This time there is no

condition at the left boundary (where f is always continuous) because f ( θ l ) > θ l (see (24) ). �

From Singer’s Theorem [23] one can deduce the following result [24, Proposition 1] , whose formulation is adapted to our

needs. Remember the definition (64) of the Schwarzian derivative Sf ( q ). 

Theorem 13. Suppose that A 1 ≤ A 2 , [ θ l , θ r ] is invariant, and f | [ θl ,θr ] 
is unimodal with S f | [ θl ,θr ] 

(q ) < 0 for all q � = q c . If | f 
′ ( q ∗)| ≤ 1,

then B(q ∗, f | [ θl ,θr ] 
) = [ θl , θr ] . 

The assumption A 1 ≤ A 2 is needed so as f | [ θl ,θr ] 
is of class C 3 (actually f | [ θl ,θr ] 

is then smooth). Necessary and sufficient

conditions (65) or (66) in Proposition 12 for the invariance of ( θ l , θ r ) apply also to [ θ l , θ r ] with the changes f ( q c ) ≥ θ l

in (65) and f ( q c ) ≤ θ r in (66) . Theorem 13 holds for monotonic mappings too, though Theorem 11 (a) has much weaker

assumptions. Note that q ∗ may be a neutral fixed point in Theorem 13 . Unfortunately, the implementation of the condition

S f | [ θl ,θr ] 
(q ) < 0 in the RED dynamic is quite involved and restrictive in parametric space. This is the reason why we look

out for alternative conditions. 

Theorem 14. Suppose that (i) w ≤ θr −θl 
B −θl 

, (ii) f | (θl ,θr ) 
has a local minimum at q c ≤ q ∗ (so f ′ ( q ∗) ≥ 0 ), and (iii) A 1 ≤ A 2 + q max .

Then ( θ l , θ r ) is invariant and B(q ∗, f | (θl ,θr ) 
) = (θl , θr ) . 

Proof. By condition (i), f has a fixed point. From assumption (ii) it follows that f | (θl ,θr ) 
has at q c a minimum with value

f ( q c ) ≥ q c > θ l (otherwise, the graph of f | (θl ,θr ) 
would cross the bisector left of q c ). Apply now Proposition 12 (a) to conclude

the invariance of ( θ l , θ r ). 

As for the basin of attraction of q ∗ in ( θ l , θ r ), consider two cases. 

(a) q c = q ∗. Then f is increasing on [ q ∗, θ r ), hence it satisfies the negative feedback property (63) for every orbit ( q n ) n ≥ 0

of f starting at q 0 > q ∗. We conclude, as in the proof of Theorem 11 (a), that lim n →∞ 

q n = q ∗ for every q 0 ∈ ( q ∗, θ r ). On ( θ l , q 
∗]

the mapping f is decreasing, so q 0 < q ∗ implies q 1 = f (q 0 ) > q ∗. Thus, ( q n ) n ≥ 1 converges to q ∗ from the right side as well. 

(b) q c < q ∗. Then f is increasing on [ q c , θ r ) and decreasing on ( θ l , q c ]. If q 0 ∈ [ q c , θr ) we are in the same situation as in

the proof of Theorem 11 (a) and, by the same token, ( q n ) n ≥ 0 converges to q ∗ from the same side where q 0 lies. If, on the

contrary, q 0 ∈ ( θ l , q c ), then q 0 < q c implies q 1 = f ( q 0 ) > f ( q c ) > q c , so ( q n ) n ≥ 1 converges to q ∗ from same side where q 1 lies

(unless q 1 = q ∗). �

Invariance of ( θ l , θ r ) is harder to assure when q c > q ∗. 

Theorem 15. 

(a) Suppose that (i) (A 1 − A 2 ) 
+ < q ∗, (ii) f | (θl ,θr ) 

has a minimum at q c > q ∗ (so f ′ ( q ∗) < 0 ), and (iii) 

w ≤ min 

{
θr − θl 

B − θl 

, 
q ∗ − θl 

q ∗ − (A 1 − A 2 ) + 

}
. (67)

If f ′ (q ) > −1 for θ l < q < q c , then ( θ l , θ r ) is invariant and B(q ∗, f | (θl ,θr ) 
) = (θl , θr ) . 

(b) Part (a) holds also if (i) is replaced by q ∗ ≤ (A 1 − A 2 ) 
+ < q max and (iii) is replaced by the weaker restriction 

w ≤ θr − θl 

B − θl 

. (68)

Proof. (a) As in the proof of Theorem 14 , we show first that f ( q c ) > θ l . The idea is simple: since 

f | (θl ,θr ) 
(q ) ≥ (1 − w ) q + w (A 1 − A 2 ) 

+ , (69)

by (36) and q ∗ does not depend on the control parameter w by Theorem 6 , adjust w so that (1 − w ) q ∗ + w (A 1 − A 2 ) 
+ ≥ θl ,

i.e., w ≤ q ∗−θl 
q ∗−(A 1 −A 2 ) 

+ . It follows that f ( q c ) ≥ θ l because q c > q ∗. Apply again Proposition 12 (a) to conclude the invariance of ( θ l ,

θ r ) since w ≤ θr −θl 
B −θl 

by (67) , and A 1 < A 2 + q ∗ < A 2 + q max by (i). 

Furthermore, f is decreasing on ( θ l , q c ] and increasing on [ q c , θ r ]. Therefore, the second iterate f 2 
∣∣
(θl ,θr ) 

is increasing. As

in the proof of Theorem 11 (ii), f 2 
∣∣
(θl ,θr ) 

has a single fixed point (at q ∗) on ( θ l , q c ) (by the condition f ′ 
∣∣
(θl ,q c ) 

(q ) > −1 ), and

no fixed point on ( q c , θ l ) (because the increasing monotonicity of f there implies f 2 ( q ) < q for q c ≤ q ≤ θ r ). Our claim follows

similarly as in the proof of Theorem 11 (b). 

(b) Unlike (a), if q ∗ ≤ (A 1 − A 2 ) 
+ < q max , then (1 − w ) q ∗ + w (A 1 − A 2 ) 

+ ≥ q ∗ > θl for all 0 < w < 1, so that no restriction

on w is needed to derive f ( q c ) ≥ θ l . The restrictions w ≤ θr −θl 
B −θl 

and A 1 < A 2 + q max are still needed for the invariance of ( θ l ,

θ r ). The rest of the proof is the same as in (a). �

Remark 4. Similar results can be obtained when f | (θl ,θr ) 
has a local maximum. However, the assumptions in this case are
more restrictive due to (33) . Therefore, we discard this option hereafter. 
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8. Implementation of the model 

In the foregoing sections we have derived our main goal, B(q ∗, f ) = [0 , B ] , under a number of different assumptions. For

the implementation of these results, it is advisable to select those assumptions that are computationally expedite. We recap

first the properties needed for the global stability of q ∗: 

(P1) Invariance of ( θ l , θ r ). 

(P2) f | (θl ,θr ) 
has at most one turning point. 

(P3) { θ l , θ r } is not a periodic orbit. 

Theorems 11, 14 and 15 prove then (along with Theorem 9 ) the global stability of q ∗ under different provisos; see also

Theorem 13 for another approach. Moreover, we pointed out in Remark 4 the convenience of f | (θl ,θr ) 
being ∪ -convex. This

is also the best choice in applications because then the hypotheses of Theorems 11 (b) and 15 can be somewhat simplified,

as we discuss next. The first result is a straightforward upshot of the strictly increasing monotonicity of f ′ 
∣∣
(θl ,θr ) 

. 

Theorem 16. If f | (θl ,θr ) 
is ∪ -convex, then the hypothesis f ′ 

∣∣
(θl ,θr ) 

(q ) > −1 in Theorem 11 (b) may be replaced by 

f ′ + (θl ) = 1 − w 

(
1 + 

νA 1 

2 

I α,β (z(θl )) 
−3 / 2 I ′ α,β (z(θl )) 

)
≥ −1 . (70) 

As for Theorem 15 , set for the time being 

f ′ (q ∗) = 1 − mw, m = 1 + 

νA 1 

2 

I α,β (z(q ∗)) −3 / 2 I ′ α,β (z(q ∗)) > 1 , (71)

where m does not depend on w (see (30) ). 

Theorem 17. If f | (θl ,θr ) 
is ∪ -convex, along with (A 1 − A 2 ) 

+ < q ∗ and q c > q ∗ (so f ′ ( q ∗) < 0 ), then the hypotheses f ′ 
∣∣
(θl ,q c ) 

(q ) >

−1 and (67) in Theorem 15 (a) may be replaced by (70) and 

w ≤ min 

{
θr − θl 

B − θl 

, 
q ∗ − θl + 

1 
m 

( θl − (A 1 − A 2 ) 
+ ) + 

q ∗ − (A 1 − A 2 ) + 

}
, (72) 

respectively. 

Proof. The purpose of the restriction w ≤ q ∗−θl 
q ∗−(A 1 −A 2 ) 

+ in Eq. (67) is to assure that f ( q c ) > θ l . Convexity can be exploited to

weaken this bound (see the second term in (72) ). The proof is geometrical on the Cartesian plane { (q, y ) ∈ R 

2 } . 
Since f | (θl ,θr ) 

is ∪ -convex, the curve y = f (q ) , q ∗ ≤ q < θ r , lies on the upper-right side of the tangent to y = f (q ) at the

point q = q ∗, whose equation is y = −sq + (s + 1) q ∗ with 0 < s = s (w ) := 

∣∣ f ′ (q ∗) 
∣∣ < 1 . This tangent cuts the baseline y = θl 

of the square [ θl , θr ] × [ θl , θr ] at the point q cut , tan (w ) = 

q ∗(s +1) −θl 
s = q ∗ + 

q ∗−θl 
s > q ∗. By (71) , 

q cut , tan (w ) = 

q ∗mw − θl 

mw − 1 

since s = − f ′ (q ∗) = mw − 1 > 0 . 

On the other hand, the lower envelope y = (1 − w ) q + w (A 1 − A 2 ) 
+ ( Proposition 2 ) cuts the baseline y = θl at 

q cut , env (w ) = 

θl − w (A 1 − A 2 ) 
+ 

1 − w 

. 

If q cut, env ( w ) ≤ q cut, tan ( w ), we are done because then f ( q c ) > θ l , so ( θ l , θ r ) is invariant by (65) . Furthermore, we require

q cut, env ( w ) ≥ q ∗ to improve (67) . The second bound in (72) amounts precisely to both conditions. �

Remark 5. If m → ∞ in (72) , then we recover (67) , as it should. 

Proposition 4 gives the sufficient condition 

3 J α,β (z(q )) − 2 h α,β (z(q )) > 0 , (73) 

for f | (θl ,θr ) 
to be ∪ -convex, where J α,β (z(q )) = I α,β (z(q )) −1 I ′ 

α,β
(z(q )) > 0 for z ( θ l ) < z < z ( θ r ) (see (73) ), and 

h α,β (z) = 

α − 1 

z 
− β − 1 

1 − z 
= 

α − 1 − (α + β − 2) z 

z (1 − z) 
(74) 

(see (38) ). We are going to translate condition (73) into convexity regions for f | (θl ,θr ) 
in the ( α, β)-plane. 

Proposition 18. f | (θl ,θr ) 
is ∪ -convex in the following cases, where z(q ) = ν(q − q min ) ∈ (0 , 1) : 

(a) β < 1, α < 1, 0 < z(q ) ≤ α−1 
α+ β−2 

. 
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(b) β ≥ 1, α ≤ 1, 0 < z ( q ) < 1 . 

(c) β > 1, α > 1, α−1 
α+ β−2 

≤ z(q ) < 1 . 

Proof. Solve the inequality h α, β ( z ) ≤ 0 with 0 < z < 1, and apply (73) to conclude f ′′ 
∣∣
(θl ,θr ) 

(q ) > 0 . �

Comparison with Example 1 (which shows that f | (θl ,θr ) 
is ∪ -convex for β = 1 and α > 0) suggests that the sufficient

conditions in Proposition 18 are, beside incomplete, rather conservative. The following lemma provides a more useful result.

Proposition 19. f | (θl ,θr ) 
is ∪ -convex in the following cases, where z(q ) = ν(q − q min ) ∈ (0 , 1) : 

(a) α ≤β and 0 < z(q ) < 

α
α+ β . 

(b) α > β and 0 < z(q ) < 

α+2 
α+ β+4 

. 

Proof. According to Inequality (27) in [25] , we obtain that, for z < 

α
α+ β , 

I α,β (z) < 

z α(1 − z) β

B (1 ;α, β)(α − (α + β) z) 
= I ′ α,β (z ) 

z (1 − z) 

α − (α + β) z 
, 

which implies 

2 h α,β (z(q )) − 3 I α,β (z) −1 I ′ α,β (z) < 2 h α,β (z(q )) − 3 

α − (α + β) z 

z (1 − z ) 
. 

Use (74) to conclude that the condition (73) is satisfied when 

(α + β + 4) z − α − 2 

z(1 − z) 
< 0 

where z < 

α
α+ β . �

Corollary 1. f | (θl ,θr ) 
is ∪ -convex whenever 

z(θr ) = 

θr − q min 

q max − q min 

≤
{ 

α
α+ β if α ≤ β, 

α+2 
α+ β+4 

if α > β. 

Example 4. To check numerically Proposition 19 and Corollary 1 , consider the RED model with α = 1 , β � 1 (this case is

not covered by Proposition 18 ) and approximate 

I 1 ,β (x ) = 1 − (1 − x ) β = −β ln (1 − x ) + O (β2 ) 

on [0 , 1 − ε ] , ε � 1, by 

I 1 ,β (x ) = −β ln (1 − x ) = β ln 

1 

1 − x 
, 

hence 

I ′ 1 ,β (x ) = 

β

1 − x 
, I −1 

1 ,β
(y ) = 1 − e −y/β . 

In this case f | (θl ,θr ) 
is ∪ -convex, i.e., 

3 J α,β (z) − 2 h α,β (z) = − β

(1 − z) 2 

(
3 

ln (1 − z) 
+ 2 

)
> 0 , 

if and only if 

z < 1 − e −3 / 2 � 0 . 7769 

for all β � 1. According to Proposition 19 (b), f | (θl ,θr ) 
is ∪ -convex if 

z < 

3 

β + 5 

� 0 . 6 . 

This is an acceptable result regarding the application sought. 

9. Numerical simulations 

Our numerical simulations comprise a simple benchmarking against the original RED model ( Section 9.1 ) and a scan of

the ( α, β)-plane to quantify the robustness of both the stationary drop probability and the bifurcation point of the averaging

weight ( Section 9.2 ). The simulation scenario is discussed in Section 9.3 . Owing to the many parameters of the RED model,

we have to content ourselves with illustrating the results with a few representative picks. The computer codes were written

with Python. 



16 J. M. Amigó, G. Duran and A. Giménez et al. / Commun Nonlinear Sci Numer Simulat 82 (2020) 105075 

Fig. 3. Bifurcation diagram of the average queue length with respect to the parameter A 1 for the values of α and β shown on the top of the panels. 

System parameters are given in (75) . Other control parameters: q min = 500 , q max = 1500 and w = 0 . 15 . The constant A 2 is 3852 and A 1 ranges in the 

interval [0,2500]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.1. Benchmarking RED vs generalized RED 

To compare the generalized RED model with the original one [5] we have chosen the bifurcation points of A 1 =
NK/ 

√ 

p max , A 2 = Cd/M and w . As explained in Section 5 , the bifurcation points of other parameters can be then obtained

from A 1,bif or A 2,bif by fixing the rest of them. In particular, the number of users N (included in A 1 ) and the round trip time

d (included in A 2 ) are relevant system parameters with regard to congestion control because they change actually in real

time. Remember that q ∗ does not depend on w and it exists as long as A 1 < A 2 + q max ( Theorem 6 ). 

Figs. 3–5 show bifurcation diagrams with respect to A 1 , A 2 and w obtained with α = 0 . 5 , β = 0 . 2 (left panels) and α =
β = 1 (right panels). The settings of the other control parameters are given in the captions of the figures. The parametric

grid used for the bifurcation diagrams has 20 0 0 points; the orbits were 550 iterates long, the first 500 (the transient)

having been discarded. In all panels, the initial 2-cycle after the bifurcation point (in the positive/negative direction for the

direct/reverse bifurcations) ends when the cycle collides with the right threshold θ r . From then on, the dynamical core ( θ l ,

θ r ) is no longer invariant, as shown by the fact that the orbits visit also points beyond θ r , seemingly filling up a longer and

longer interval that eventually hits the left threshold θ l . 

In Fig. 3 , the system parameters not affecting A 1 are fixed as follows: 

C = 321 , 0 0 0 kBps , d = 0 . 012 s , M = 1 kB , B = 20 0 0 packets . (75)

Comparison of both panels shows that A 1,bif is smaller in the generalized model ( � 1450 vs � 1950). From a practical point

of view, it is more useful if the bifurcation point A 1,bif is as small as possible, so that N bif = 

√ 

p max A 1 , bif /K is also as small as

possible. This is a desired situation since a smaller number of connections (users) tends to disrupt the dynamic [5] . When

the dynamical core ( θ l , θ r ) is so small that the asymptotic orbits do not visit it any more, we see a stable 7-cycle emerge at

the left end of both panels. This orbit is obviously independent of A 1 . 

In Fig. 4 , the system parameters not included in A 2 are fixed as follows: 

N = 1850 , K = 1 . 2247 , B = 20 0 0 packets. (76)

Comparison of both panels shows that A 2,bif is greater in the generalized model ( � 5750 vs � 4350). Contrarily to the previ-

ous case, this time it is advisable that the bifurcation point is as large as possible since large time delays d = A 2 M/C favors

the instability of the system [5] . In the right half of the right panel we see a 3-cycle that is independent of A 2 . This orbit

circles around ( θ l , θ r ) without visiting it. 

For Fig. 5 , all system parameters are fixed as in (28) . Comparison of both panels shows that w bif is greater in the gen-

eralized model ( � 0.4 vs � 0.2). In this case, the greater the bifurcation point the more stable the system will be. As w

approaches 1, the orbits jump between an ever fuller buffer and an ever emptier buffer, since incoming packets are alterna-

tively accepted or dropped with an ever higher probability (see (1) and (2) ). 

The results shown in Figs. 3–5 are also representative of other bifurcation diagrams calculated by the authors. In any

case, we may conclude that an adequate setting of the control parameters α and β can extend the stability interval of the

RED dynamics beyond the bifurcation points A 1,bif , A 2,bif and w bif in the original RED model. 

9.2. Robustness domains in the (α, β) -plane 

Finding particular values of α and β that improve the stability of the RED dynamics in the light of, for instance, bifur-

cation diagrams (as we did in Section 9.1 ) is not sufficient to design an AQM mechanism. Those values of α and β must
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Fig. 4. Bifurcation diagram of the average queue length with respect to the parameter A 2 for the values of α and β shown on the top of the panels. System 

parameters are given in (76) . Other control parameters: q min = 500 , q max = 1500 , w = 0 . 15 and p max = 1 . The constant A 1 is 2265.8 and A 2 ranges in the 

interval [40 0 0,70 0 0]. 

Fig. 5. Bifurcation diagram of the average queue length with respect to the parameter w for the values of α and β shown on the top of the panels. System 

parameters are given in (28) . Other control parameters: q min = 500 , q max = 1500 and p max = 1 . The parameter w ranges in the interval [0,1]. The constant 

A 1 is 2265.8 and A 2 is 3852. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be also robust, meaning that small changes do not appreciably degrade the stability of the system. This caveat is not only

necessary to cope with the physical and numerical noise of the intended algorithmic implementation, but also to make the

control feasible under changing system parameters. 

To quantify the robustness of RED model we have scanned the interval [0 . 002 , 1 . 5] × [0 . 002 , 1 . 5] of the ( α, β)-plane

with precision �α = �β = 3 . 745 × 10 −3 (corresponding to a grid of 400 × 400 points), and for each point ( α, β) we have

calculated (i) the stationary drop probability ( p ∗ = I α,β (z(q ∗)) · p max , Eq. (13) ) and (ii) the bifurcation point of the averaging

weight w bif ( Eqs. (49) and (50) ). 

The left panel of Fig. 6 shows a color map of p ∗ where same-color-regions correspond to stationary drop probabilities

within bins of size 0.015 (see the color scale along the right side). The right panel of Fig. 6 displays the same information

for w bif with bins of size 0.15; points with w bif ≥ 1 correspond to systems without bifurcations with respect to w . In both

cases, the system parameters are tuned as in (28) . Note that Fig. 5 corresponds to the points (α, β) = (0 . 5 , 0 . 2) (left panel)

and (α, β) = (1 , 1) (right panel) of the right panel of Fig. 6 . Therefore, both configurations are robust. 

The above and similar figures make it clear that not all choices for α and β are equally good when real stability enters

the scene. First of all, points ( α, β) close to the boundaries of the robustness (same-color) domains should be avoided. Also,

the larger the robustness domain, the better from the viewpoint of stability. In the end, the choice of α, β and other control

parameters will be a trade-off between the extent of the corresponding robustness domain and the operational parametric

ranges. Thus, although the greatest robustness domain for w bif ( Fig. 6 , right panel)) corresponds to 0.15 ≤ w bif ≤ 0.30, the

possibly best choice for α, β belongs to the core of the domain pertaining to the bin 0.25 ≤ w bif ≤ 0.50, because it leaves an

acceptable range 0 < w < 0.25 for a stable operation of the congestion control algorithm. 
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Fig. 6. (α, β) -parametric sweeps reveal the robustness domains for both the drop probability at the fixed point (left) and the bifurcation point for the 

averaging weight (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.3. Discussion 

In Sections 9.1 and 9.2 we used a simulation scenario ( Fig. 1 ) parametrized with data obtained from the Miguel Hernán-

dez University network, where an outbound bottleneck link is shared by many connections to different Spanish websites. In

this scenario, we interpreted the shared link as an outbound Internet link with capacity C and assumed a set of N connec-

tions having uniformly an average round-trip propagation delay d (without any queueing delay). Rather than interpreting

this assumption as a requirement that the connections must have the same propagation delay, we consider d as the effec-

tive delay that represents the overall propagation delay of the connections or, alternatively, this could describe a case where

the outbound bottleneck link has a propagation delay that dominates the round-trip delays of the connections as studied

in [5] . Then, the literature acknowledges that identification and classification of network traffic is an important prerequisite

of network management [26] . In this scenario, the packet length was analyzed through a statistical distribution of packet

length M among applications using web traffic over TCP protocol. 

Concerning the numerical results, the robustness maps introduced in Section 9.2 encapsulate the perhaps most important

information needed to set up an actual AQM algorithm based on the analysis and results of this paper. Indeed, they not only

tell us, for example, what the bifurcation points of different parameters are as a function of α and β but, equally important,

how robust those parameters are with respect to changes in α, β possibly due to internal noise and external sources. A

related decision to make is which the relevant parameters are, i.e., what parameters to monitor and what control parameters

to act on; certainly, N and w belong to them. The ideally best choices lie in the core of the largest robustness domains, but

other practical issues such as the variation ranges left for relevant control parameters might advise otherwise. This situation

was illustrated in Section 9.2 with w bif . 

10. Conclusion and outlook 

The main role of an AQM is to control the queue size at a router buffer under stable conditions to avoid data flow

congestion. In the quest for ever better AQM algorithms, we have presented in Section 3 and studied in Sections 4 –9 a

discrete-time dynamical formulation of RED. Our model generalizes a model proposed by Ranjan et al. [5] in that we re-

place the probability distribution (4) by the beta distribution I α, β (13) ; for α = β = 1 we recover the original model. The

expectation in so doing is a better performance of the ensuing AQM mechanism in terms of global stability and parametric

robustness thanks to the additional control parameters α and β . We went also beyond the analysis in [5] in some for-

mal, though important, respects including: restriction on system parameters for the existence of the dynamical core ( θ l , θ r )

( A 1 < A 2 + B, Proposition 1 ); parameter restriction for the existence of a fixed point ( A 1 < A 2 + q max , Theorem 6 ); considera-

tion of a discontinuous dynamic ( A 1 > A 2 ) throughout the paper; and parameter restrictions for ( θ l , θ r ) to be invariant both

in the monotonic case ( Proposition 10 ) and unimodal case ( Theorems 14 and 15 ). 

The main theoretical results obtained in this paper, which are summarized at the beginning of Section 8 , concern the

global stability of the generalized RED dynamics (17) . For this reason, the most important results referred to the stability

properties of the unique fixed point q ∗ ( Section 5 ) and the settings of the control parameters α, β and w that guarantee

its global attractiveness ( Section 7 ). Based on these results, we have derived also a number of practical guidelines regarding

stability domains in the ( α, β)-plane ( Section 8 ) and, most importantly, robust settings for those parameters ( Section 9.2 ).

The generality and formulation of the theoretical results was commensurate with their applicability to an AQM algorithm.

In this sense we can speak of a feedback from the practical to the theoretical sections. Benchmarking against the original
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dynamical model in Section 9.1 confirms that the control leverage introduced by the parameters α and β improves the

stability of the RED dynamics. Further practical aspects were discussed in Section 9.3 . 

To conclude, the general purpose of this paper was to pave the way for the implementation of the RED model (17) as an

AQM algorithm. To this end, we have addressed in the preceding sections the basic theoretical and practical aspects of the

RED dynamics related to global stability. The implementation of these results under real conditions is the subject of current

research. 
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