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Chapter 2

Resumen

Esta tesis esta enmarcada dentro de la Teoria de Juegos, disciplina Matematica de gran
relevancia en Economia por su alto grado de aplicabilidad en situaciones reales, como por
ejemplo las derivadas del reparto de costes y/o beneficios o la distribucién de recursos
escasos, entre muchas otras. Una de las grandes referencias que da origen a esta rama
de las Matematicas es el libro ”Theory of Games and Economic Behavior” de Oskar
Morgenstern y John Von Neumann (Morgenstern and Von Neumann (1953)) al cual con-
tribuy6 de manera seminal con el desarrollo de los juegos miiltiples el Premio Nobel John

Nash.

El objetivo de esta tesis no es analizar cémo los individuos o agentes del juego toman
sus decisiones sino proporcionar soluciones a los problemas planteados empleando pro-
cedimientos mateméaticos que nos permiten disenar diferentes mecanismos o reglas que
satisfacen uno o un conjunto de propiedades, también llamadas axiomas, que caracterizan

cada una de las reglas planteadas.

En este capitulo presentamos un resumen de todos los articulos que conforman esta tesis:

On how to allocate the fixed cost of transport systems (Estan et al. (2021a)),
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Manipulability in the cost allocation of transport systems (Estan et al. (2020))
y On the difficulty of budget allocation in claims problems with indivisible
items and prices (Estan et al. (2021b)), los dos primeros se centran en el estudio del

reparto de costes y el tercero en la distribucién de recursos escasos.

2.1 Problemas de reparto de costes

El primer bloque de esta tesis estd formado por los articulos On how to allocate the
fixed cost of transport systems (Estan et al. (2021a)) y Manipulability in the
cost allocation of transport systems (Estan et al. (2020)). En ambos realizamos
el estudio axiomédtico de un problema especifico de reparto de costes, concretamente y
como novedad nos centramos en el reparto del coste fijo derivado de una linea recta de
tren formada por diferentes estaciones que pertenecen a un tinico municipio y ademsés,
si tenemos dos estaciones colindantes que pertenecen al mismo municipio entonces entre

ellas no puede existir ninguna otra estacion que pertenezca a un municipio distinto.

Como bien es conocido, cualquier construccion, como lo es en este caso la construccion de
una linea de tren, tiene asociados unos costes como pueden ser los costes de construccion
o una vez construida la red los costes de mantenimiento de dicha linea, entre otros. Estos
costes pueden ser divididos en dos tipos: costes fijos y costes variables. Como su nombre
indica los costes variables son aquellos que cambian en funcién de diversos elementos
implicitos en la red, como por ejemplo podrian ser aquellos que derivan del uso de la red
de transporte o del tamano de la misma. Por otro lado, el coste fijo seria aquel que es
invariable, pues no depende de los elementos de la red sino de la existencia de la misma,
es decir, seria el coste que siempre existe y no cambia, como por ejemplo el coste de las

cocheras donde se guardan los trenes.

En FEstan et al. (2021a) y Estan et al. (2020) nos centramos en el reparto del coste
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fijo derivado de la linea de tren entre los diferentes municipios que la conforman desde
el punto de vista axiomatico. Los elementos de los que disponemos en nuestro modelo
matemdtico son: el nimero de municipios M = {1,...,m} (m > 3), el nimero de
estaciones S = {s1,...,$,}, el flujo de pasajeros entre estaciones representado en una
matriz OD y el montante del coste fijo a repartir C' € R,. Por tanto nuestro problema

de reparto viene dado por la tupla a = (M, S, OD, C).

Nuestro objetivo es disenar mecanismos de reparto que sean lo mas justos y sensatos
posible en referencia a las diferentes propiedades planteadas dentro del marco del problema
objeto de estudio. En concreto, hemos propuesto reglas de reparto basadas en el criterio
de proporcionalidad, no obstante, como veremos méas adelante no todas satisfacen los

mismos axiomas y se requieren diferentes combinaciones de ellos para su caracterizacion.

La primera regla considerada es la regla uniforme, la cual sélo tiene en cuenta el coste
fijo a repartir y el niimero total de municipios que participan en el juego, es decir, reparte

el coste fijo de la linea de forma proporcional al niimero de municipios.

Regla uniforme. Para cada a € A y cada i € M,

Las dos siguientes reglas (regla proporcional basada en el uso de las estaciones y
regla proporcional basada en el uso de los tramos) consideran el uso de la red para
realizar la distribucion del coste entre los agentes. En el caso de la regla proporcional
basada en el uso de las estaciones el reparto se realiza proporcional al niimero de
pasajeros que usan cada estacion de un municipio y en el caso de la regla proporcional
basada en el uso de los tramos asignamos el coste proporcionalmente al nimero de
pasajeros que utiliza cada tramo de la red, para ello dividimos cada pasajero en tantas
partes como tramos utiliza en su trayecto y cada una de esas partes es repartida entre las

dos estaciones que delimitan cada tramo.
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Regla proporcional basada en el uso de las estaciones. Para cada a € A y cada

i€ M,
SPi(a) = %-QJOD).

Regla proporcional basada en el uso de los tramos. Para cadaa € Ay cadat € M,

$5E€S; 89,5hES,8g7#5n (h—g)
felg.h] or fe[h,g

C “oh
TR =Giop) 2, 2 (2= [V ]) in =gl
]

donde [z] = min{k € Z : k > z}.

La ultima regla considerada (regla proporcional al niimero de estaciones) tiene pre-
sente el coste fijo y el nimero total de estaciones existentes en la red, asi pues, distribuye
el coste entre los jugadores proporcionalmente al niimero de estaciones que cada municipio

posee.

Regla proporcional al niimero de estaciones. Para cada a € A y cada i € M,

C
RSP (a) = = 15|
En la literatura podemos encontrar un nimero extenso de requisitos que hacen que una
regla sea mas o menos deseable por los agentes. En los dos estudios que analizamos en esta
seccién: Estan et al. (2021a) y Estan et al. (2020), proporcionamos diversas propiedades

diferenciadas en cuatro bloques.

En el primer bloque incluimos todos aquellos requisitos basados en el principio de justicia.
En primer lugar, el axioma municipio nulo establece que un municipio es nulo en el pago
si ninguna de sus estaciones es utililzada, si ademas de lo anterior requerimos que ningin
tren circule por dichas estaciones obtenemos la segunda propiedad llamada municipio
nulo débil. Obviamente municipio nulo implica municipio nulo débil pero no al

contrario.



2.1. PROBLEMAS DE REPARTO DE COSTES 15

Municipio nulo. Para cada a € A y cada ¢ € M, si wy, = wyy = 0 para todo s, € S; y

todo s, € S, entonces R;(a) = 0.

Municipio nulo débil. Para cada a € A y cada ¢ € M, si se cumple cualesquiera de las

dos condiciones siguientes:
® Wy, = wpy = 0, para todo j < i, para todo s, € S}, y todo s, € S}
® Wy, = why = 0, para todo j > 4, para todo s, € 5, y todo s € 5;
entonces R;(a) = 0.

El segundo bloque esta formado por aquellas propiedades que satisfacen el criterio de
equidad. En el caso de simetria establecemos que dos municipios que tienen el mismo
trafico (flujo total de pasajeros) deberian contribuir igual, ademés si todo el tréfico se
concentra solo en dos estaciones adyacentes que pertenecen a municipios diferentes la
aportacion al coste de dichos municipios sera la misma tal y como establece la propiedad
de simetria adyacente. Del mismo modo, simetria en estaciones establece que dos
municipios que tienen el mismo nimero de estaciones se consideran simétricos y por ende

su participacion en el pago sera la misma.

Simetria. Para cada a € A y cada {7,j} C M, si Q;(0D) = Q;;(0D), y Qix(OD) =
Qx(OD), y Qi(OD) = Q4;(OD)), para todo k € M ~ {7, j}. Entonces R;(a) = R;(a).

Simetria adyacente. Para cada a € A y cada {i,j} C M, si wy, + wpy = Q(OD), tal
que |[g—h| =1,y g € S;,h € S;, entonces R;(a) = R;(a).

Simetria en estaciones. Para cada a € A y cada {i,7} C M,si |S;| = |S;|. Entonces

Ri (CL) = Rj (CL) .

El tercer bloque de axiomas esta formado por caracteristicas que requieren cierto tipo

de consistencia. La propiedad consistencia bilateral en ratio establece que la ratio
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entre los pagos de dos municipios siempre es la misma, es decir, en el supuesto en el que
todos los municipios salvo dos dejen de pertenecer a dicha linea entonces si reformulamos
el problema teniendo en cuenta que ahora el conjunto de municipios solo estd formado
por dos, entonces la ratio entre los pagos de cada uno de estos dos municipios en el
problema original es equivalente a la ratio entre los pagos de ambos en el problema
reformulado. Ahora bien, jque ocurriria si se tuviese en cuenta si un pasajero decide
realizar su trayecto en tramos, en vez de realizarlo directamente? Si una regla satisface el
requisito de descomposicion del trayecto, entonces el coste no se veria afectado si un
trayecto largo se divide en pequenos tramos. Y si decidimos realizar el reparto de costes
mensualmente, jel computo anual de las mensualidades seria el mismo que si realizamos
el reparto por anualidades? la respuesta a esta pregunta es si para todas aquellas reglas

que satisfagan aditividad y/o aditividad ponderada, pues no dependeran del flujo.

Consistencia bilateral en ratio. Para cada a = (M,S, OD,C) € A y cada par de

municipios {7, 7} € M tenemos que

_ Rilaggy)
Rj(agizy)’
donde ag; ;1 = ({i,j}, S US;, 0Dy 53, C).
Descomposicién del trayecto. Para cada (M,S,0D,C),(M,S, 0D, C) € A. Si

S4,5n € 5, son estaciones tales que h — g > 1, y dado

L Wolg41) = Walor1) T g Wiganer) = Wlotor2) T itg) - @l = Wo-op T g
y W;h =0;
2. w/ef = Wef, s1 <€f) 7é (gh)7
(0]
L. w;:(h—l) = Wh(h—1)+\;Jf‘(;|3wl(/h—1)(h—2) = W(h—l)(h—2)+\zjﬁ2|» e 7w/(g+1)g = W(9+1)g+|2}ﬁ2\?

N _ N
and wy, = 0;
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2. Wiy =wey, si(ef) # (hyg),
entonces, R(M, S, OD,C) = R(M,S,0D',C) y R(M,S,0D,C) = R(M, S, OD",C).

Aditividad. Para cada (M, S, 0OD,C) € Ay cada i € M,

T
R;(M,S,0D,C) =Y Ri(M,S,0D,C,),

t=1
donde OD = ZL OD;y C = Zthl C;.
Aditividad ponderada. Para cada (M,S,0D,C) € Ay cadaie M,

Q(0D)
C

R, (M, S, 0D, C)

> Q(th)Ri (M, S, OD;, C),
t=1 ¢

donde OD =" 0D,y C =31, C,.

Para finalizar proponemos un cuarto bloque compuesto de dos propiedades que garan-
tizan que una regla es inmune frente a la manipulacion de los agentes, es decir, si los
municipios deciden unirse y actuar como uno solo, no manipulabilidad por unioén, o
por el contrario, su dual, si deciden separase y actuar como varios municipios, no ma-
nipulabilidad por separacion. Estos requisitos han sido utilizados en varios trabajos

como por ejemplo de Frutos (1999), Ju et al. (2007) y Moulin (2008).

No manipulabilidad por unién: Para cada par M, M’ tal que M’ C M, cada
(M,S,0D,C) € A, y cada (M',S";OD,C) € A. Si exite i € M’ tal que S! =
Si U Ujernar Sj» v para cada j € M’ \ {i}, S; = S;, entonces R;(M',5",0D,C) >
Ri(M,S,0D,C) + 3 canm 1 (M, S,0D,C).

No manipulabilidad por separacién: Para cada par M, M’ tal que M’ C M,
cada (M,S,0D,C) € A, y cada (M',S",0OD,C) € A. Si existe i € M’ tal que
Si = SiUUjeanar Si» ¥ para cada j € M'\ {i}, Sj = S;, entonces R;(M', 5", 0D, C) <
R;(M, S,OD,C)—I—Z]EM\M, R;(M,S,0D,C).
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A continuacién listamos los resultados obtenidos tras el estudio de la caracterizacién de las
reglas planteadas en los trabajos de reparto de costes Estan et al. (2021a)y Estan et al.
(2020) cuyas demostraciones podemos ver de manera detallada en los propios articulos,

los cuales se encuentran anexados en el Apéndice.

El primer teorema establece que si requerimos las propiedades de simetria y aditividad,

entonces el coste ha de repartirse uniformemente entre los municipios.

Teorema 1. Una regla satisface simetria y adivitividad si y solo si es la regla uniforme.

Sin embargo, si requerimos que una regla satisfaga las propiedades de simetria, con-
sistencia bilateral en ratio y aditividad ponderada, entonces la tnica regla que
satisface este conjunto de axiomas es aquella que reparte el coste equitativamente
entre los municipios sin considerar otros factores del problema como, por ejemplo, el

uso o el numero de estaciones como asi se expone en el siguiente teorema.

Teorema 2. Una regla satisface simetria, consistencia bilateral en ratio y aditividad

ponderada si y solo si es la regla uniforme.

El tercer resultado obtenido establece que la unica regla que satisface el conjunto de
axiomas de municipalidad nula, simetria y simetria ponderada es la regla que

divide el coste proporcionalmente al flujo de pasajeros por municipios.

Teorema 3. Una regla satisface municipio nulo, simetria y simetria ponderada si y solo

st es la regla proporcional basada en el uso de las estaciones.

El siguiente teorema establece que la regla proporcional basada en el uso de los
tramos se caracteriza por los axiomas siguientes: simetria adyacente, municipio nulo

débil, descomosicion del trayecto y aditividad ponderada.
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Teorema 4. La unica regla que satisface simetria adyacente, municipio nulo débil, de-
scomposicion del trayecto y aditividad ponderada es la regla proporcional basada en el uso

de los tramos.

El dltimo resultado de este bloque, establece que el conjunto de propiedades formado
por simetria en estaciones, no manipulabilidad por uniéon y no manipulabilidad
por separacién conducen a una distribucion del coste que es proporcional al nimero de

estaciones que tiene cada ciudad.

Teorema 5. Una regla satisface simetria en estaciones, no manipulabilidad por union
y no manipulabilidad por separacion si y solo si es la regla proporcional al numero de

estaciones.

2.2 Problemas de distribucion de recursos escasos

El segundo bloque de esta tesis se enmarca dentro de los problemas de asignacion de
recursos escasos. En nuestro trabajo On the difficulty of budget allocation in claims
problems with indivisible items and prices (Estaf et al. (2021b)) presentamos una
nueva situacion: el estudio de la clase de problemas de reparto de recursos escasos donde
consideramos que el monto a dividir es perfectamente divisible y se realizan demandas
de unidades indivisibles de varios articulos. Cada articulo tiene un precio y la cantidad

disponible es insuficiente para poder cubrir todas las demandas a los precios indicados.

En el modelo matematico que presentamos en este trabajo, el problema a resolver repre-
senta una situacién en la que una cantidad perfectamente divisible, £ € R, (llamada
presupuesto) debe distribuirse entre los agentes en N de acuerdo con sus demandas.

Esas demandas vienen dadas en una matriz de demandas ¢ € Z, que tiene tantas filas
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como agentes y tantas columnas como elementos:

Ci1 Ci2 ... Cip
Co1 C22 ... Co9p

Cc = s
Cn1 Cp2 ... Cpp

donde ¢;; € Z, indica la cantidad del articulo g reclamado por el agente 4.

En cualquier problema de bancarrota, el presupuesto o bien a repartir no es suficiente

para cubrir completamente todas las demandas, es decir, Y| 22:1 Cigpg > E.

Por tanto, en nuestro trabajo FEstan et al. (2021b), el problema que presentamos viene
dado por la tupla a = (N, H,p,c, E), donde N = {1,...,n} es el conjunto de agentes,
H = {1,...,h} es el conjunto de elementos posibles cuyos precios vienen dados por
p=(p1,...,pn) € R’}r, c es la matriz de demandas y E es el presupuesto. Dado que los
elementos N, H y p son fijos en todo el documento, cuando no surja confusién alguna,
simplemente escribiremos el problema de distribucién de recursos escasos como el prob-
lema reducido a = (¢, F'). La novedad que presentamos en este trabajo es la respuesta a
la pregunta ;por qué deberiamos gastar todo el presupuesto que tenemos? Obsérvese que
en los modelos clasicos sobre problemas de bancarrota se impone este hecho, es decir, hay

que agotar todo el presupuesto de que se dispone.

Sea A el conjunto de todos los problemas:

n

h
A= {a:(c,E) €L xRyy il p :ZZCWPQZE}‘

i=1 g=1
Una asignacion o reparto para a € A es una distribucion del presupuesto entre los
agentes que especifica cuantos articulos de cada precio se otorgan a cada agente. Por lo

tanto, es una matriz x € Z’ﬁh que satisface las siguientes dos condiciones:
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(a) Cada agente recibe una cantidad no negativa de cada tipo de articulo, que no es mayor

que su demanda:

0<wxyy<cy, paratodoic N ytodogeH.

(b) El coste total no excede el presupuesto disponible:

n h

i=1 g=1

Para solucionar este problema proponemos varias reglas. En particular, una regla es
una correspondencia, R : A —= Z’erh, que selecciona, para cada problema a € A, un

subconjunto no vacio de asignaciones R(a) C X (a).

La primera regla que introducimos es 1til desde un punto de vista tedrico y establece que

la cantidad que recibe cada agente es cero.

Regla nula, RY. Para cada a € A y cada z € X (a),
€ RY(a) & 2,,=0Vie NyVgeH.

La siguiente regla que proponemos es el caso contrario a la anterior, ya que selecciona

todo el conjunto de asignaciones X (a).

Regla laxa, R®. Para cada a € A,

A continuaciéon enumeramos dos reglas que se basan en la prioridad. En la primera
de estas asignaciones, regla de prioridad en la llegada agente-articulo, los agentes
con mayor prioridad se satisfacen antes que los de menor prioridad. Ademas, para cada

agente, los articulos mas relevantes se dan primero en su totalidad. Es decir, sea =y un
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orden en el conjunto de agentes N, donde ¢ >y j significa que i tiene prioridad sobre
j y sea =g un orden en el conjunto de elementos H, donde f =g g¢ significa que f
tiene prioridad sobre g. Esta regla es tal que los agentes demandan segun el orden >y
comenzando cada uno con los elementos con la prioridad mas alta en >py. Este proceso
continua hasta que, eventualmente, el presupuesto se agota. La segunda de estas reglas se
llama regla de prioridad en la llegada del agente y consiste en: dado un orden >y
en el conjunto de agentes, los agentes son satisfechos de acuerdo a dicho orden. El primer
agente selecciona el conjunto de articulos que maximiza el valor de su eleccién sujeto al
presupuesto limitado dado por E. Sea E' el presupuesto restante. Ahora, el segundo
agente selecciona el conjunto de articulos para maximizar el valor de su eleccion sujeto al
presupuesto restringido dado por E'. Continuamos el proceso hasta que el presupuesto,

eventualmente, se agota.

Regla de prioridad en la llegada agente-articulo, R4’"4. Para cada a € A y cada

z € X(a),
€ RMPAa) & 1y > 0= 2 =ciyVf =n gy xj;=cjpVj=niVf € H.

Regla de prioridad en la llegada del agente, R4"4. Para cada a € A y cada
z € X(a),

T € RAPA(CL) = [l‘jg > 0:>£Eig :CigVi N j]

En este punto presentamos dos reglas que son un proceso de dos pasos: la regla de

igualdad por articulo y la regla de igualdad por agente.

En la regla de igualdad por articulo, primero, el presupuesto se divide en partes
iguales entre los articulos (% para cada uno). Y en segundo lugar, para cada articulo,
se asignan cantidades lo mas iguales posible a todos los demandantes, sujeto a que nadie

reciba mas que su reclamacion. Obsérvese que el segundo paso de este procedimiento
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estd estrechamente relacionado con algunas otras extensiones en entornos con indivisibili-
dades de las llamadas reglas de premios iguales restringidas (CEA) (Herrero and Martinez

(2008a) y Chen (2015)).

La segunda regla, regla de igualdad por agente se obtiene aplicando el proceso de dos
pasos de la regla de premios iguales restringida por articulo pero a los agentes. Para cada
agente, seleccionamos un conjunto de articulos cuyo precio es menor o igual a % y tal que
al agregar un nuevo articulo el precio es mayor que % Posteriormente, el presupuesto

restante se asigna a cualquier conjunto de agentes que gaste tanto como sea posible.

Regla de igualdad por articulo, R¥!. Para cada a € A y cada z € X (a),

(

|zig — xj4] <1 paratodo i,j € N

BT n
v € RM(a) & {p, (30 2y) < £

\pg (1+ Z?:l xig) > %

Regla de igualdad por agente, RF4. Para cada a € A y cada x € X (a),

(
2,y € 2"

Zgzlpgzig < %,Vi eN

r=z+y€ R & Zgzlpgz;g > min{zgzlpgcig, EY VY > zVieN
n h

Dict 29:1 Pe¥ig < E — ||z pll

n h n h
\Zizl Zg:l PgYig = D i Zg:l Pg¥ig: VY € X(d'),

donde 2’ > z significa que hay al menos una celda ig tal que z{, > z, y los demds son

mayores o iguales y «' = (N, H,p,c — z, E — ||z - p||).

A continuacién presentamos tres requisitos minimos que debe satisfacer una regla, los

cuales son bastante estandar en la literatura sobre problemas de reparto de recursos
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escasos donde las restricciones que se imponen en este trabajo (Estan et al. (2021b))
suelen ser compatibles. La primera propiedad, no despilfarro, estipula que en una
situacion de racionamiento debemos desperdiciar lo menos posible. La segunda propiedad,
débil trato igualitario de iguales, es un criterio minimo de equidad y establece que
los agentes con iguales derechos deben recibir el mismo trato y finalmente, la ultima
propiedad, no manipulabilidad por fusién o division, hace que la regla sea inmune a
ciertas manipulaciones por parte de los agentes. En resumen, la eficiencia, la equidad
y la no manipulabilidad seran los requisitos basicos que imponemos como punto de

partida.

No despilfarro. Para cada a € A, si x € R(a), entonces no hay otro reparto =’ € X (a)

tal que E — [[a’ - p|| < B — [l - ]|

Débil trato igualitario de iguales. Para cada a € A y cada {i,j} C N, si ¢;, =

¢jgVg € H, entonces para todo x € R(a) tenemos
e paratodo g € H, |z, —xjy| <1,y

e para cada g € H, existe 7' € R(a), tal que z}, = x,, 2/

ig = Tig y €l resto de celdas

2’ son iguales que x.

No manipulabilidad por fusién o divisién. Para cada (N, ¢, E), (N', ¢, E) € A con

N' C N, si existe i € N’ tal que satisface las dos condiciones siguientes
L. ¢y = cig+ D jen\n Cjg Para todo g € H
2. ¢, = cjy para todo j € N'\{i} y para todo g € H,

entonces

(a) Va' € R(N',c, E) existe v € R(N, ¢, E) tal que zj, = wig + >,z nv Tjg Vg € H.
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(b) Vz € R(N,c, E) existe 2’ € R(N', ¢, E) tal que xj; = iy + > oy Tjg Vg € H.
En este trabajo exploramos la compatibilidad de las tres propiedades presentadas.

Dado un problema a € A, consideremos el siguiente problema de programacion lineal

entera (PLE):

n h
min £ — Z Zpgxig

nxh
€LY, =1 g—1

n h
s.a.: Zngxig < F

i=1 g=1

0<uzy<cy, Vie NVge H
/

o equivalentemente,
)

n h
max E E DgTig

weZP " i g4
n h

2.1

sa: 30N pyriy < F (2.1)
i=1 g=1

0 < @iy < ¢y, VieN,VgeH)
Denotemos por PLE(a) el conjunto de todas las soluciones éptimas para el problema
de programacién lineal entera definido por (2.1) que pertenece a la clase de problemas
de mochila acotados. Observamos que una regla R satisface no despilfarro si es una
seleccién de soluciones 6ptimas del problema que presentamos anteriormente, es decir,
R(a) C PLE(a) para todo a € A. Observe que las restricciones 0 < x;, < ¢y, Vi €
N,Vg € H restringen los posibles valores de las variables de decision y, por lo tanto, el

problema de la mochila esta acotado.
Los resultados obtenidos tras el estudio son los siguientes:

Teorema 1. Hay reglas que satisfacen no despilfarro, débil trato igualitario de iguales
y no manipulabilidad por fusion o division, si y solo si, hay reglas que satisfacen esas

propiedades para la subclase de problemas con |H| = 1.
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Teorema 2. No existe una regla que satisfaga no despilfarro, débil trato igualitario de

1quales y no manipulabilidad por fusion o division.

Proposicion 1. Hay reglas que satisfacen no despilfarro y débil trato igualitario de

1guales.

Proposicién 2. Hay reglas que satisfacen no despilfarro y no manipulabilidad por fusion
o division.
Proposicion 3. Hay reglas que satisfacen débil trato iqualitario de iguales y no manipu-

labilidad por fusion o division a la vez.

Por otro lado, pensamos que podria ser interesante estudiar la compatibilidad entre la
condicién de no despilfarro y otras propiedades estandar requeridas para resolver prob-
lemas de reparto (distribucién) de recursos escasos. En particular, nos centramos en aque-
llos requisitos que protegen a los pequenos agentes, para ello hemos seleccionado cinco
propiedades que consideramos relevantes para este estudio: exencion, compensacion
total condicional, aseguramiento, aseguramiento débil y la iltima propiedad auto-

dualidad.

Exencién. Para cada a € A y cadai € N, si

h
n- (Zpgcig> S E>
g=1

entonces, para cualquier x € R(a), z;; = ¢;y Vg € H.
Compensacién total condicional. Para cada a € A y cada i € N, si
h h
Z Zpgcjg + (n— N7 |) Zpgcig P
jen; 9=1 g=1

entonces, para cualquier x € R(a), z,y, = ¢y, Vg € H, donde N, =

. h h
{J €N Y _1PgCig <D yn pgcig}’



2.2. PROBLEMAS DE DISTRIBUCION DE RECURSOS ESCASOS 27

Observamos que la exencion implica la compensacién total condicional y ambas
propiedades coinciden cuando |N| = 2.

Aseguramiento. Para cada a € A, cada z € R(a), y cadai € N

h h

1 . .
Elpgxig > ﬁmln{ Elpgcl-g,E}, Vi e N.
9= 9=

Aseguramiento débil. Para cada a € A, cada = € R(a), y cadai € N

h h h h
I . .
E DgTig 2= yren)?(};) { E PgYig E PgYig < g mln{ § PyCig, E} } , VieN.
g=1 g=1 g=1 g=1

Auto-dualidad. Para cada a € A tenemos que R(a) = ¢ — R(a?).

Los resultados obtenidos cuando exploramos la combinacién de no despilfarro y los

requisitos mencionados anteriormente son los siguientes:

Teorema 3. No existe una regla que satisfaga no despilfarro y compensacion total condi-

cional.

El siguiente resultado muestra que cuando se requiere no despilfarro junto con seguri-

dad débil también surge una imposibilidad.

Teorema 4. No existe una regla que satisfaga simultdnemente no despilfarro y sequridad

débil.
Proposicion 4. Si una regla satisface la propiedad de auto-dualidad, agota el presupuesto.

El reciproco de la Proposicion 4 no es cierto en general. Por ejemplo, si consideramos la
clase de problemas con H = {1} y p; = 1 y E un ndmero entero positivo, entonces la
regla discreta de premios iguales restringidos (véase, por ejemplo, Herrero and Martinez
(2008a)) siempre agota el presupuesto pero no satisface auto-dualidad. Una conse-

cuencia inmediata de la Proposicién 4 es que no pueden existir reglas que satisfagan
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la propiedad de auto-dualidad, ya que ninguna regla, en general, puede agotar siem-
pre el presupuesto. Nétese que, a diferencia de los otros resultados de esta seccién, la
falta de reglas auto-duales es absoluta, y el principio de no despilfarro no juega ningin
papel en eso, sin embargo la propiedad de no despilfarro no es compatible con la efi-
ciencia, propiedad clasica utilizada en los problemas de racionalizacion. Por esta razon
presentamos una alternativa a no despilfarro: Pareto eficiencia. En contraste con no
despilfarro, esta propiedad se centra en las asignaciones de los agentes més que en el gasto
del presupuesto. Una asignacion satisface Pareto eficiencia si no hay otra asignacion

en la que algin otro individuo esté mejor y ningin individuo esté en peor situacion.

Pareto eficiencia. Dado a € A, si x € R(a) entonces no hay otra asignaciéon =’ € X (a)

tal que > PyTiy > D e Poig, Vi € N, con al menos una desigualdad estricta.

Dado a € A, denotamos por P(a) C X(a) el conjunto de soluciones que cumplen Pareto
eficiencia.

Es obvio que no despilfarro implica Pareto eficiencia, pero lo contrario no es cierto.
Aunque estas dos propiedades no son equivalentes en general, no es dificil probar que
coinciden cuando |H| = 1. Como consecuencia, podemos reemplazar no despilfarro
por Pareto eficiencia en el Teorema 1, lo que implica que el trato débil igualitario
de iguales y la no manipulabilidad por fusién o division son incompatibles con la

propiedad Pareto eficiencia. El siguiente resultado es andlogo al Teorema 2.

Teorema 5. No existe una regla que satisfaga la Pareto eficiencia, el trato débil igualitario

de iguales y no manipulabilidad por fusion o division.

Dado que la Pareto eficiencia es mas débil que el no despilfarro, obtenemos las con-

trapartes de las Proposiciones 1 y 2.

Proposicion 5. Hay reglas que satisfacen la Pareto eficiencia y la igualdad de trato débil

de los iguales.
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Proposicion 6. Hay reglas que satisfacen la Pareto eficiencia y la no manipulabilidad

por fusion o division.

Con respecto a la auto-dualidad, es evidente que no sera compatible con la Pareto
eficiencia, ya que esta ultima no garantiza que el presupuesto se agote por completo.
Los Teoremas 3 y 4 establecen que la compensacion total condicional y la seguridad
débil son incompatibles con la de no despilfarro. Sin embargo, los dos resultados
siguientes muestran que, si el iltimo requisito se debilita a la Pareto eficiencia, entonces

surge la compatibilidad.

Teorema 6. Hay reglas que satisfacen la Pareto eficiencia y la compensacion total condi-

cional.

Teorema 7. Hay reglas que satisfacen la Pareto eficiencia y el asequramiento débil si-

multdneamente.

Por lo tanto, la Pareto eficiencia es una propiedad menos exigente y puede ser com-
patible con otras propiedades razonables. Ademas, podemos definir reglas que satisfagan
varias de las propiedades presentadas en esta seccién. Por ejemplo, la regla RS definida

a continuacion

R%(a) = 2° + R®(d’),Va € A,

donde @’ = (N, H,p,c —2°, E — ||z" - p||), satisface Pareto eficiencia, compensacién

total condicional y aseguramiento débil.
O como por ejemplo la regla RS definida a continuacion.

Para cada, a € A,
RYF5(a) = R N E(a)
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Esta regla satisface la Pareto eficiencia, el trato igualitario débil de iguales, la

compensacion total condicional y el aseguramiento débil.

El siguiente resultado establece que cualquier regla que satisfaga la Pareto eficiencia, el
trato igual débil de iguales, la compensacién total condicional y aseguramiento

débil debe ser una subseleccién de REES.

Teorema 8. Si una regla R satisface la Pareto eficiencia, la igualdad de trato débil de
iguales, la compensacion total condicional y el aseqguramiento débil, entonces R(a) C

RYES(a), Va € A.
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Chapter 3

Summary

This thesis is framed within Game Theory, a Mathematical discipline of great relevance
in Economics due to its high degree of applicability in real situations, such as for ex-
ample, those derived from the allocation of costs and/or benefits or the distribution of
scarce resources, among others. One of the great references that gives rise to this branch
of Mathematics is the book "Theory of Games and Economic Behavior” by Oskar Mor-
genstern and John Von Neumann (Morgenstern and Von Neumann (1953)) to which the

Nobel Laureate John Nash contributed with the development of multiple games.

The objective of this thesis is not to analyze how the individuals or agents of the game
make their decisions, otherwise to provide solutions to the problems proposed using math-
ematical procedures that allow us to design different mechanisms or rules that satisfy one

or a set of properties, also called axioms, that characterize each one of the proposed rules.

In this chapter we present a summary of all the papers that make up this thesis: On how
to allocate the fixed cost of transport systems (Estaf et al. (2021a)), Manipula-
bility in the cost allocation of transport systems (Estan et al. (2020)) and On the
difficulty of budget allocation in claims problems with indivisible items and

prices (Estaf et al. (2021b)), the first two are focused on the study of cost sharing and
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the third on the distribution of scarce resources.

3.1 Cost sharing problems

The first block of this thesis is made up of the papers On how to allocate the fixed
cost of transport systems (Estan et al. (2021a)) and Manipulability in the cost
allocation of transport systems (Estan et al. (2020)). In both, we carry out the
axiomatic study of a specific problem of cost distribution, specifically and as a novelty,
we focus on the distribution of the fixed cost derived from a straight tram line formed
by different stations belonging to a single municipality and also, if we have two adjacent
stations that belong to the same municipality, then between them there cannot be any

other station that belongs to a different municipality.

As it is well known, any construction, such as the construction of a tram line in this case,
has associated costs such as construction costs or, once built, the maintenance costs of the
line, among others. These costs can be divided into two types: fixed costs and variable
costs. As its name indicates, variable costs are those that change as a function of various
elements implicit in the network, such as, for example, they could be those that derive
from the use of the transport network or its size. On the other hand, the fixed cost is
invariable, that is, the cost that does not depend on the elements of the network but on

its existence, such as the cost of the garages where the trams are stored.

In Estan et al. (2021a) and Estan et al. (2020) we are focused on the distribution of the
fixed cost derived from the tram line between the different municipalities that comprise

it from the axiomatic point of view.

The elements of our mathematical model are: the number of municipalities M =

{1,...,m} (m > 3), the number of stations S = {s1,...,s,}, the passengers flow be-
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tween stations represented in a matrix OD and the amount of the fixed cost to be shared

C € R,. Therefore our distribution problem is given by a = (M, S, OD, C).

Our objective is to design mechanisms to distribute the cost as fair and feasible as possible
in reference to the different properties raised within the framework of the problem under
study. Specifically, we have proposed distribution rules based on the proportionality
criterion, however, as we will see later, not all of them satisfy the same axioms and

different combinations of them are required for their characterization.

The first rule considered is the uniform rule, which only takes into account the fixed cost
to be distributed and the total number of municipalities that participate in the game, that

is, it distributes the fixed cost of the line proportional to the number of municipalities.

Uniform rule. For each a € A and each i € M,

The following two rules (station-based proportional rule and track-based propor-
tional rule) consider the use of the network to allocate the cost among the agents, in
the case of proportional rule based on the use of stations the distribution is pro-
portional to the number of passengers that use each station in a municipality and in the
case of the proportional rule based on the use of the sections we assign the cost
proportionally to the number of passengers that use each section of the network, to do
this, we divide each passenger into as many parts as sections used in their journey and

each of these parts is distributed between the two stations that define each section.

Station-based proportional rule. For each a € A and each i € M,

SPi(a) = %.Qi(om.
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Track-based proportional rule. For each a € A and each i € M,

s5E€S; 89,5h€S,8¢7#5n (h—g)2
f€lg,h] orfelh,g

c a
(Ao AP PP DI Ft A N
]

where [z] =min{k € Z: k> z}

The last rule considered (station proportional rule) takes into account the fixed cost
and the total number of the stations in the network, thus it distributes the cost between

the players proportionally to the number of the stations that each municipality has.

Station proportional rule. For each a € A and each 1 € M,

C
R"(a) = — 1Sl

In the literature we can find an extensive number of requirements that decide if a rule
is more or less desirable by the agents. In the two papers that we study in this section:
Estan et al. (2021a) and Estan et al. (2020), we provide several properties that have been
distributed in four blocks.

In the first block we include all those requirements based on the principle of justice. In
the first place, the axiom null municipality establishes that a municipality is null in
the payment if none of its stations is used, if in addition to the above we require that no
tram circulates through these stations, we obtain the second property named weak null
municipality. Obviously null municipality implies weak null municipality but not

in the other way.

Null municipality. For each a € A and each i € M, if wgy, = wyy = 0 for all s, € S; and
all s, € 9, then R;(a) = 0.

Weak null municipality. For each a € A and each i € M, if one of the following two

conditions holds
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® Wy, =wpg =0, for all j <, for all s, € S;, and all s5, € S;

® wy, =wpy =0, for all j >, for all s, € S;, and all s5, € S;

then R;(a) = 0.

The second block of axioms include those properties that satisfy an equity criterion. In
the case of symmetry we say that two municipalities that have the same traffic (total
passenger flow) should contribute the same, also if all the traffic is concentrated only in
two adjacent stations that belong to different municipalities, the contribution to the cost
of those municipalities will be the same as it is established by adjacent symmetry. In
the same way, symmetry in stations says that two municipalities that have the same
number of stations are considered symmetrical and therefore their participation in the

payment will be the same.

Symmetry. For each a € A and each {7, 7} C M, if Q;;(0OD) = Q,;(OD), and Q;,(0OD) =
Qx(0OD), and Q,;(OD) = Q4;(OD)), for all k € M ~ {i,j}. Then R;(a) = R;(a).

Adjacent symmetry. For each a € A and each {7, j} C M, if wy, +wpy = Q(OD), such
that |gh| = 1, and g € S;, h € 5, then R;(a) = Rj(a).

Symmetry in stations. For each a € A and each {i,j} C M, if |S;| = |5;|. Then
Ri(a) = R;(a).

The third block of axioms contains the properties that require a certain type of consis-
tency. The bilateral ratio consistency property establishes that the ratio between the
payments of two municipalities is always the same. That is, in the assumption in which
all the municipalities except two cease to belong to the line, if we reformulate the problem
taking into account that now the set of municipalities is formed only by two, then the

ratio between the payments of each of these two municipalities in the original problem is
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equivalent to the ratio between the payments of both in the reformulated problem. Now,
what would happen if we have into account whether a passenger decides to do his journey
by sections, instead of doing it directly? If a rule satisfies the axiom trip decomposition,
then the cost would not be affected if a long journey is divided into small ones. And if
we decide to do the cost sharing monthly, would the annual calculation be the same as if
we carry out the allocation by annuities? The answer to this question is yes for all those
rules that satisfy additivity or weighted additivity, since they will not depend on the

flow.

Bilateral ratio consistency. For each a = (M, S, OD,C) € A and each pair of munici-

palities {i,j} C M we have that

Rl(a)
Rj(a)

_ Rilagiyy)
Rj(ag)’
Where Cl{i,j} = ({Z,j}, Sz U Sj, OD{LJ'}, C)
Trip decomposition. For each (M, S, OD,C),(M,S,0D',C) € A. If s,,s, € S, are

stations such that h — ¢ > 1, and either

L W) = Wolo+) F G Wigan)e42) = W@t TR Clamn = Wih-nat
and wy,, = 0;

2. w/ef = Wef, if (ef) 7& (gh)a

or

L wlfi(h—l) = Wh(h—1)+\ﬁiﬂ?w/{h—l)(h—m = W(h—l)(h—2)+\;)f2|7 e ’w/(g+1)g = w(9+1)9+|/(;)ii]\;

and wy, = 0;
2. Wl = wep, it (ef) # (ko).

then, R(M, S, OD,C) = R(M, S, OD',C) and R(M, S, OD,C) = R(M, S, OD", C)
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Additivity. For each (M, S, OD,C) € A and each i € M,

T
R;(M,S,0D,C) =Y Ri(M,S,0D,C,),

t=1

where OD =] OD, and C =], C,.

Weighted additivity. For each (M, S, OD,C) € A and each i € M,

T
R;(M,S,0D,C) =)

t=1

Q(0D)
C

Q(0D,)

t

R; (M, S, OD,,Cy),

where OD = Zthl OD, and C' = ZtT:l C;.

Finally, we propose a fourth block composed of two properties that guarantee that a rule is
immune from manipulation by agents, that is, if the municipalities decide to join together
and act as one, non-manipulability via merging, or conversely, its dual, if they decide
to separate and act as several municipalities, non-manipulability via splitting. These
requirements have been used in several works such as de Frutos (1999), Ju et al. (2007)

and Moulin (2008).

Non-manipulability via merging: For each pair M, M’ such that M’ C M, each
(M,S,0D,C) € A, and each (M',S’,OD,C) € A. If there is ¢ € M’ such that
Si = SiUlUjeanar S, and for each j € M'\ {i}, S; = S;, then R;(M', 5", 0D,C) >
Riy(M,S,0D,C) + 3 jcapar Bi(M,S,0D,C).

Non-manipulability via splitting: For each pair M, M’ such that M’ C M, each
(M,S,0D,C) € A, and each (M’',S’,OD,C) € A. If there is ¢ € M’ such that
Si = SiUUjeanar Sj» and for each j € M"\ {i}, S; = 5;, then R;(M',5",0D,C) <
R;(M,S,0D,(C) —I—Z]EM\M, R;(M,S,0D,C).

Next we list the results obtained after the study of the characterization of the rules pro-

posed in the cost sharing papers FEstan et al. (2021a) and Estan et al. (2020) whose
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demonstrations we can see more detailed in the articles, which are attached in the Ap-

pendix section.

The first theorem states that if we require the properties of symmetry and additivity,

then the cost must be shared evenly among the municipalities.

Theorem 1. A rule satisfies symmetry and additivity if and only if it is the uniform rule.

However, if we require a rule that satisfies the properties of symmetry, bilateral ratio
consistency and weighted additivity, then the unique rule that satisfies this set of
axioms is that distributes the cost equally among the municipalities without considering
other factors of the problem, such as the use or the number of stations, as shown in the

following result.

Theorem 2. A rule satisfies symmetry, bilateral ratio consistency and weighted additivity

if and only if it is the uniform rule.

The second result, states that the unique rule that satisfies the set of axioms of null
municipality, symmetry and weighted symmetry is the rule that divides the cost in

proportion to the flow of passengers by municipalities.

Theorem 3. A rule satisfies null municipality, symmetry and weighted additivity if and

only if it is the station-based proportional rule.

The next theorem states that the track-based proportional rule is characterized by
the axioms: adjacent symmetry, weak null municipality, trip decomposition and

weighted additivity.

Theorem 4. The unique rule that satisfies adjacent symmetry, weak null municipality,

trip decomposition and weighted additivity is the track-based proportional rule.
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The last result of this block, states that the set of properties formed by symmetry in
stations, non-manipulability via merging and non-manipulability via splitting

lead to a cost distribution that is proportional to the number of stations each city has.

Theorem 5. A rule satisfies symmetry in station, non-manipulability via merging and

non-manipulability via splitting if and only if it is the proportional station rule.

3.2 Scarce resource distribution problems

The second part of this thesis is framed within the problems of allocation of scarce re-
sources. In our paper On the difficulty of budget allocation in claims problems
with indivisible items and prices (Estan et al. (2021b)) we present a new situation:
the study of the class of claims problems where we consider that the amount to be divided
is perfectly divisible and claims are made for indivisible units of various items. Each item
has a price and the available quantity is not enough to cover all the demands at the

indicated prices.

In the mathematical model that we present in this study the problem represents a situation
in which a perfectly divisible quantity, £ € Ry, (called estate) must be distributed
among agents in N according to their demands. Those demands are described by a

matrix of claims ¢ € Z, that has as many rows as agents, and as many columns as items

i1 Ci2 ... Cip

Co1 Co22 ... Co2p

Cnl Cn2 ... Cnpp
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where ¢;; € Z, indicates the amount of item g claimed by agent ¢. In any claims problem,

the estate falls short to fully cover all the demands, that is, >, Zzzl Cighg > E.

Therefore, a problem is given by a tuple a = (N, H,p,c, FE), where N = {1,...,n} is
the set of agents, H = {1,...,h} is the set of possible items, whose prices are given by
p=(p1,---,pn) € R’}r, c is the matrix of claims, and E is the estate. Since the elements
N, H, and p are fixed throughout the paper, when no confusion arises we simply write
the claims problem as a = (¢, E)). The novelty that we present in this study is the answer
to the question: Why we should spend all the budget (estate) we have? In the classical

models on claims problems this fact is imposed, that is, we must spend all the estate.

Let A be the set of all problems:

A= {a—(c E) EZnXh xRy :|le-pl _ZZCZQPQ>E}

i=1 g=1
An allocation for a € A is a distribution of the estate among the agents that specifies
how many items of each price are awarded to each agent. Thus, it is a matrix z € ZiXh

that satisfies the following two conditions:

(a) Each agent receives a non-negative amount of each type of item, which is not larger
than her claim:

0<wxiyy<cy foralliec N andallgec H.

(b) The overall cost does not exceed the available estate:

|2 pll = szzgpg < B

i=1 g=1

To solve these problems we propose several rules. In our setting a rule, it is a corre-
spondence, R : A —= ZiXh , that selects, for each problem a € A, a non-empty subset of
allocations R(a) C X (a).
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The first rule that we introduce is useful from a theoretical point of view, it states that

no agent receives anything.

Null rule, RY. For each a € A and each z € X(a),
r € RY(a) & 7, =0Vi€ N and Vg € H.

The next rule that we propose is the opposite case to the previous one, since it selects

the whole set of allocations X (a).

Greedy rule, R®. For each a € A,

Next, we list two rules that are based on the priority. In the first of these allocations,
agent-item priority arrival rule, agents with higher priority are satisfied before those
with lower priority. Besides, for each agent the more relevant items are fully served first.
That is, let =5 be an ordering on the set of claimants N, where ¢ =5 j means ¢ has
priority over 7 and let =g be an ordering on the set of items H, where f >y ¢ means f
has priority over g, consider now a rule as the following procedure: the agents arrive one
at a time in the ordering >y, and try to fully satisfy them, starting with the items with
the highest priority in >g. This process continues until, eventually, the estate runs out.
The second rule is called agent priority arrival rule and consist in: given an ordering
>y on the set of claimants, agents arrive one at a time in the ordering. The first agent in
the ordering selects the set of items so that she maximizes the value of her choice subject
to the budget constrained given by E. Let E! be the remaining estate. Now, the second
agent in the ordering selects the set of items so that she maximizes the value of her choice
subject to the budget constrained given by E'. We continue the process until the estate,

eventually, runs out.
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Agent-item priority arrival rule, R4P4. For each a € A and each z € X (a),
€ RMPA(a) < (1, > 0= 25 = cifVf =y gand zj; = ¢;;Vj =n i Vf € H].
Agent priority arrival rule, R4, For each a € A and each z € X(a),
z € RY4a) & [1j, > 0= 25y = iy Vi =n J].

Now we present two rules that are a two-step process. In equal-by-item rule, first, the
estate is equally divided among the items (% for each one). And second, for each item,
amounts as equal as possible are assigned to all claimants subject to no-one receiving
more than her claim, this step is closely related to some other extensions in settings
with indivisibilities of the so called constrained equal awards rule (Herrero and Martinez
(2008a) and Chen (2015)).The second rule, equal-by-agent rule is obtained by applying
the two step process of the equal by item rule but to agents. For each agent we select
a set of items whose price is smaller or equal than % and such that adding a new item
the price is larger than % Later the remaining budget is assigned to any set of agents

spending as much as possible.
Equal-by-item rule, RE!. For each a € A and each z € X (a),
(

|zig — 4] < 1foralli,jeN

€ R (a) & Py (X0 i) < £
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Equal-by-agent rule, RP4. For each a € A and each z € X (a),

(
z,y € ZY"

Zgzﬂ%zig < %,W eN

r=z+y€ R) & Zgzlpgzgg > min{zszlpgcig, EY V2 > z,Vie N
n h

Dict 29:1 Pe¥ig < E — ||z pll

n h n h
\Zizl Zg:l Pylig = D i Zg:l PyYig: VY € X(a'),

where 2’ > z means that there is at least one cell ig such that z{, > 2, and the others

are greater or equal; and ¢’ = (N, H,p,c — z, E — ||z - p||).

Now we present three minimal requirements that a rule should satisfy, which are quite
standard in the literature on claims problems. The restrictions they impose are so slight
that they are usually compatible. The first property, non-wastefulness, stipulates
that in a rationing situation we should waste as little as possible. The second prop-
erty, weak equal treatment of equals, is a minimal criterion on fairness, and states
that agents with equal claims should be equally treated. Finally, the last property, non-
manipulability by merging or splitting, makes the rule immune to certain manip-
ulations by the agents. To summarize, efficiency, fairness, and non-manipulability

will be the core requirements we impose as starting point.

Non-wastefulness. For each a € A, if x € R(a), then there is no other allocation
' € X(a) such that E — ||2" - p|| < E — ||z - p||.

Weak equal treatment of equals. For each @ € A and each {7, j} C N, if ¢;y = ¢;,Vg €
H, then for all x € R(a) it holds that

o forall g € H, |z;y — ;4] <1, and

e for each g € H, there is ' € R(a), such that zj, = z;4, 2/

ig = Tig and the rest of

cells of 2/ are the same as in z.
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Non-manipulability by merging or splitting. For each (N, ¢, E), (N',d, E) € A with
N' C N, if there is i € N’ such that the following two conditions hold

L ¢y = cig+ D jenn Cjg for all g € H
2. i, = cjq for all j € N'\{i} and for all g € H,
then

(a) Vz' € R(N', ¢, E) there exists © € R(N,c, E) such that i, = iy + 3 ;v\ v Tig
Vg € H.

(b) Vo € R(N,c, E) there exists 2’ € R(N',c, E) such that zj, = @iy + >y Zjg
Vg € H.

In this paper we explore the compatibility of the aforementioned basic properties.
Given a problem a € A. Consider the following integer linear programming problem (ILP,
for short):

n h
min F — Z Zpgxig

nxh
TELY i—1 g=1

n h
s.t.: Zngxig < F

i=1 g=1

0 <z <cy, Vic NNVge H
/

or equivalently,

n h
max E E DPgZig

nxh
TELLT D1 g=1

n h
s.t.: Zngxig <E (3-1)

i=1 g=1

OSJIz‘gSCig, VZEN,VQGH
J
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Let us denote by ILP(a) the set of all optimal solutions for the program in (3.1) that
belongs to the class of bounded knapsack problems. We observe that a rule R satisfies
non-wastefulness if it is a selection of solutions of the optimization problem that we present
above, i.e., R(a) C ILP(a) for all a € A. Notice that the constrains 0 < z;;, < ¢y, Vi €
N,Vg € H restrict the possible values of the optimization variables, and therefore the

knapsack problem is bounded.
The results that we have obtained are the following:

Theorem 1. There are rules that satisfy non-wastefulness, weak equal treatment of equals
and non-manipulability by merging or splitting if and only if there are rules that satisfy

those properties for the subclass of problems with |H| = 1.

Theorem 2. There is no rule that satisfies non-wastefulness, weak equal treatment of

equals and non-manipulability by merging or splitting.

Proposition 1. There are rules that satisfy non-wastefulness and weak equal treatment

of equals together.

Proposition 2. There are rules that satisfy non-wastefulness and non-manipulability by

merging or splitting together.

Proposition 3. There are rules that satisfy weak equal treatment of equals and non-

manipulability by merging or splitting together.

We thought that should be interesting study the compatibility between the non-
wastefulness condition and other standard properties required when solving claims prob-
lems. In particular, we focus on requirements that protect small claimants, to do that
we choose five conditions that we consider that are relevant for this study: exemption,

conditional full compensation, securement , weak securement, self-duality.
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Exemption. For each a € A and each 7 € N, if

h
n- <Zpgcig> < E7
g=1

then, for any x € R(a), x;; = ¢;y Vg € H.

Conditional full compensation. For each a € A and each i € N, if

h h
Z Zngjg + (n —[N;|) Zpgcig <FE,

jeN; 9=1 g=1

then, for any = € R(a), 4, = ¢, Vg € H, where N, =

. h h
{J eN: Eg:l PgCig < Zg:l pgcig}-

Notice that exemption implies conditional full compensation, and both properties coincide

when |N| = 2.

Securement. For each a € A, each x € R(a), and each i € N

h h
1 . .
leg:rig > Emln{zlpgcl-g,E} , Vie N.
9= 9=

Weak securement. For each a € A, each x € R(a), and each i € N

h h h h
1 . .
> " pyig > ygl)?(}é){ > " Pyvig | Y Paliig < Emm{ > pgcig,E} } , VieN.
9=1 g=1 g=1 9=1

Self-duality. For each a € A it holds that R(a) = ¢ — R(a?).

The results obtained when we explore the combination of non-wastefulness and the re-

quirements mentioned above are the following:

Theorem 3. There is no rule that satisfies non-wastefulness and conditional full com-

pensation together.
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The next result shows that, however, when non-wastefulness is required in conjunction

with weak securement, an impossibility emerges.

Theorem 4. There is no rule that satisfies non-wastefulness and weak securement to-

gether.

Proposition 4. If a rule satisfies the self-duality property then it exhausts the estate.

The converse of Proposition 4 is not true in general. For example, if we consider the class
of problems with H = {1} and p; = 1 and E a positive integer number, then the discrete
constrained equal awards rule (see, for example, Herrero and Martinez (2008a)) always
exhaust the estate but does not satisfies self-duality.

An immediate consequence of Proposition 4 is that there can be no rules that satisfy the
property of self-duality, since no rule can always exhaust the estate, in general. Notice
that, unlike the other results in this section, the lack of self-dual rules is absolute, and

the principle of non-wastefulness plays no role in that.

As we can observe the condition of non-wastefulness is not compatible with the classical
properties used in claims problems, because is the counterpart of the efficiency. For this

reason we present an alternative to non-wastefulness: Pareto efficiency.

In contrast with non-wastefulness, this property focuses on the agents’ allocations
rather than on the expenditure of the budget. An allocation is Pareto efficient if there
is no other allocation in which some other individual is better off and no individual is

worse off.

Pareto efficiency. For a € A, if x € R(a) then there is no other allocation 2’ € X(a)

such that Yy peti, > > PyTig, Vi € N, with at least one strict inequality.

Given a € A, we denote by P(a) C X(a) the set of all allocations which are Pareto

efficient.
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Notice that it is glaringly obvious that non-wastefulness implies Pareto efficiency, but
the converse is not true. Even though these two properties are not equivalent in general, it
is not difficult to prove that they coincide when |H| = 1. As a consequence, we can replace
non-wastefulness by Pareto efficiency in Theorem 1, which implies that weak equal
treatment of equals and non-manipulability by merging or splitting together are

incompatible with Pareto efficiency. This result is the analogous to Theorem 2.

Theorem 5. There is no rule that satisfies Pareto efficiency, weak equal treatment of

equals and non-manipulability by merging or splitting.

Since Pareto efficiency is milder than non-wastefulness, we obtain the counterparts

of Propositions 1 and 2.

Proposition 5. There are rules that satisfy Pareto efficiency and weak equal treatment

of equals together.

Proposition 6. There are rules that satisfy Pareto efficiency and non-manipulability by

merging or splitting together.

With regard to self-duality, it is evident that it will not be compatible with Pareto
efficiency since the latter does not guarantee that the estate is fully exhausted. Theo-
rems 3 and 4 state that conditional full compensation and weak securement are
incompatible with non-wastefulness. However, the next two results show that, if the

latter requirement is weakened to Pareto efficiency, then the possibility emerges.

Theorem 6. There are rules that satisfies Pareto efficiency and conditional full compen-

sation together.

Theorem 7. There are rules that satisfies Pareto efficiency and weak securement together.
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Therefore, Pareto efficiency is a sufficiently less demanding property to be compatible
with other reasonable properties. Furthermore, we can define rules that satisfy several of

the properties introduced in this paper. For example, the following rule
R%(a) = 2° + R®(d"),Va € A,

where a' = (N, H,p,c — 2°, E — ||2° - p||), satisfies Pareto efficiency, conditional full

compensation and weak securement.

Consider the rule REF9 defined as follows. For each, a € A,
RY5(a) = R N E(a)

This rule satisfies Pareto efficiency, weak equal treatment of equals, conditional
full compensation, and weak securement. The converse is not true, there are rules
different from R“® that also fulfill these four properties. However, any rule that satisfies
Pareto efficiency, weak equal treatment of equals, conditional full compensation, and weak

securement must be a subselection of REES.

Theorem 8. If a rule R satisfies Pareto efficiency, weak equal treatment of equals, con-

ditional full compensation, and weak securement, then R(a) C R°F5(a), Va € A.
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Chapter 4

Introduction

In real-life different situations occur in which there is a resource or a cost that has to be
shared among different agents. How to carry out this distribution depends on different
factors derived from the problem we are addressing. This type of problem can be solved
from the axiomatic or methodological point of view in Game Theory, discipline of Mathe-
matics that studies, models and solves conflict situations (games) among different agents
(players) whose decisions in the game may have repercussions on other agents. Depend-
ing on whether the agents involved in the game are able to reach binding agreements or
not we have a cooperative or non-cooperative game. A reference to start in the study of
cooperative games can be the second version of the book Introduction to the theory of co-
operative games by Peleg and Shuldhéter (Peleg and Sudhélter (2007)) and, of course, an
important manuscript to get into a non-cooperative games is the book Non-Cooperative

games by John Nash (Nash (1951)).

Although it was born earlier, Game Theory became more relevant in 1944 with the book
Theory of Games and Economic Behavior by John von Neumann and Oskar Morgenstern
(see Morgenstern and Von Neumann (1953)). This branch of Mathematics has been

and continues to be applied in a multitude of real situations such as those raised in the
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papers studied in this thesis (see Estan et al. (2021a), Estan et al. (2020) and Estan et al.

(2021b)), which are framed within cost sharing and claims problems.

One of the most relevant transformation in the world is the globalization. This allows
us, among other things, to be more connected, that is, we are able to, for example create
traffic networks between countries, cities in the same country, municipalities in the same
community or province. That allow us to travel long distances in increasingly shorter
periods of time, which leads to an increase in the profitability or productivity of certain
jobs that require the use of this type of network. A clear example of these networks is the
high-speed train created in Spain and known as AVE, which connects Spanish capitals
in a short time and whose future projection is the connection with other countries such
as France. This type of infrastructure entails different associated costs, such as the costs
related to the construction of the network or, on the other hand, those derived from
the maintenance of the infrastructure once it is in operation. Maintenance costs can
be divided into two types: variable costs (those depend, for example, on the use of the
network) and fixed costs (those costs that are constant, that is, they do not depend on
the use, such as the costs derived from the garages where the trams are stored). How to
distribute these costs among the different countries, cities or municipalities or the agents
involved in the network, is a clear example of what is known as cost sharing in Game

Theory.

In Estan et al. (2021a) and Estan et al. (2020), we reduce this problem and focus on
studying the distribution of the fixed cost of maintaining a linear network between mu-
nicipalities. In this way we provide solutions that perhaps could be extrapolated to larger

networks. We would like to remark that we study the fixed cost, and that is a novelty.

In the literature we can find numerous articles that study the distribution of the variable
costs derived from a network, among them see Sanchez-Soriano et al. (2002), Ni and Wang

(2007), or Kuipers et al. (2013), for instance.
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Another relevant issue nowadays is the distribution of a resource. On certain occasions a
good (perfectly divisible or not) has to be distributed among different agents, the problem
arises when the available quantity of the good is not enough to satisfy the demands of the
agents. These types of problems are framed within as bankruptcy problems.Bankruptcy
problems are studied from the point of view of Game Theory in O’Neil (1982), among

others.

In the Old Testament (I Kings 3: 16-28) we can read a well-known episode ” The Judgment
of Solomon”, which deals with the dispute between two women for a very valuable and
indivisible good (a son). These women were not able to reach an agreement, so they
went to King Solomon who had to take a decision to solve the dilemma presented: to
whom do I give this child? Could he be distributed?. King Solomon was known for his
great wisdom, good sense and justice. Although many of us already know the end of this
dispute, the first solution to the problem (demand made by two agents for a single and
indivisible good) offered by King Solomon was a proportional distribution of the good
without taking into account, obviously, whether the good could be partitioned or not,

considering only for this solution the demands that the agents (women) raised.

Depending on the nature of the problem, game theory provides us with one or more
solutions (allocation rules) from the methodological point of view. There are many differ-
ent distribution rules, some of them are well known, for instance, proportional rationing.
Herrero and Villar, in their article “The three musketeers: four classical solutions to
bankruptcy” (Herrero and Villar (2001)), problems do a comparison of the so called basic
rules in bankruptcy problems in the continuous case, where the good to be distributed
is perfectly divisible. Such rules are: the constrained equal-awards rule, the constrained

equal-losses rule, the proportional rule and the Talmud rule.

We can find many well known mathematical stories in the literature, such as the problem

of Rabbi Abraham Ibn Ezra, which consists of the distribution of the inheritance by
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Jacob (father). The problem is that each of his children demands an amount of the
different inheritance and the sum of all the demands made exceed the total amount of
the inheritance. There are many versions of this problem studied by different authors in
which different distribution rules such as those mentioned above are applied and therefore

with totally different solutions.

A situation of distribution of scarce resources could be the one experienced recently: the
pandemic caused by COVID19, whose arrival shocked the whole world, because, as we
have been able to observe, governments worldwide have had to reach different distribution
agreements, which has not been easy. One of the hardest situations perhaps experienced
was the need to expand medical resources such as hospital beds, respirators, medical
personnel and even space. In order to solve this problem, many communities decided to
make an extraordinary budget in order to create temporary hospitals and provide them
with the necessary resources (beds, medical personnel, medical supplies, etc ...). In this
case, the budget is a finite and perfectly divisible monetary amount, the question would
be, with this budget, how many items of each requested resource can we acquire? It
must be borne in mind that each resource has a different price associated with it and
specifically all these resources cannot be partitioned. Furthermore, is it necessary to
exhaust the entire extraordinary budget? Or is there a way we can meet the demands
while spending the smallest budget possible? In our article Estan et al. (2021b) we explore
these questions and provide solutions from the axiomatic point of view of Game Theory

and a well known Integer Linear Problem, the so called bounded knapsack problem.
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Chapter 5

Objectives

The main objective of this thesis is the study of problems focused on the sharing costs
and the distribution of scarce resources. To do that we have structured this thesis in
two parts, the first of them is focused on the distribution of costs that we study in the
papers: On how to allocate the fixed cost of transport systems (Estan et al.
(2021a)) and Manipulabiltiy in the cost allocation of transport systems (Estail
et al. (2020)). In the second part we analize a specific problem of distribution of scarce
resources on the paper On the difficulty of budget allocation in claims problems
with indivisible items and prices (Estan et al. (2021b)). In both parts we have
common objectives such as: model the problem to study and provide different solutions,
as fair and feasible as possible. To this end, we propose several allocation rules and a list
of axioms and we explore which property or set of axioms are satisfied by each rule, that
is, we characterize the proposed rules. Obviously, the rules and the axioms, and therefore
the characterizations, are based on the needs of each situation derived from the problem
under study. Therefore in each manuscript the rules and the suggested properties are
different. An example of this is the need to use integer linear programming tools in On

the difficulty of budget allocation in claims problems with indivisible items
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and prices (Estan et al. (2021b)) to be able to model the problem under study in this
paper. Another example is the differences between the proposed rules because in each

problem we have different elements and therefore the rules are not the same.
To summarize, the objectives of this thesis are the following:
e In the first part, the objectives are structured as follows:

— Model the problem of allocation of fixed costs in a transport network.

— Propose the allocation rules for fixed cost allocation problems in a transport

system with different levels of information.
— Characterize the allocation rules for fixed cost allocation problems in a trans-
port system with different levels of information.
e In the second part, the objectives are structured as follows:
— Model the scarce resource allocation problem when there are several indivisible
objects that have different prices.

— Study the existence of rules for the allocation of scarce resources when there
are several indivisible objects that have different prices that satisfy certain

properties of equity, justice and fairness.

— Propose rules for the allocation of scarce resources when there are several

indivisible objects that have different prices.
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Chapter 6

Methodology

The methodology used in the development of this doctoral thesis is the usual one in the
field of Mathematics and Economic Theory. First, the problems on which the investigation
was to be initiated were established. Next, we proceeded to the study of the state of the
art, studying the main manuscripts in the literature related to the theme of the problems
that we want to study. In our case the problems of cost sharing and distribution of scarce
resources. Once the state of the art has been well studied, we search problems that had
not yet been resolved in the literature and that were of interest from a mathematical
and a socio-economic point of view. The next step was to formulate mathematically the
problems, define the solutions to those problems and characterize those solutions from
the axiomatic approach. Once the results were obtained, the next step was to publish the

results of the research and disseminate them through specialized and general congresses.
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Chapter 7

Discussion

In this chapter we present the discussion presented in the papers that make up this thesis:
On how to allocate the fixed cost of transport systems (Estan et al. (2021a)),
Manipulability in the cost allocation of transport systems (Estan et al. (2020))
and On the difficulty of budget allocation in claims problems with indivisible

items and prices (Estan et al. (2021D)).

7.1 Cost sharing problems discussion

We should mention that the first part of this thesis is based in ours two papers On
how to allocate the fixed cost of transport systems (Estan et al. (2021a)) and
Manipulability in the cost allocation of transport systems (Estan et al. (2020)),
related to the problem of allocating the cost of building or maintaining a facility among all
the agents involved in providing a service, is a classic example in cost sharing literature.
We refer to the well known airport problem in which the Shapley value (Shapley (1953))
is obtained with very low computational effort (see Littlechild and Owen (1973)). In this

case the costs of using an airport landing track have to be shared among the planes that
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will operate in the airport, taking into account their different sizes. The infrastructure of
this problem is a line, as in our case, that is shared from the beginning by all the planes.
Because different sizes of planes need different lengths of tracks, the value function of
the associated cost game varies depending on the coalition of players. In contrast, in our
model the cost is always the same and the value function is constant. We draw attention
to the paper by Thomson et al. (2007) for a wide survey on airport problems. The idea
of Littlechild and Owen (1973) was generalized through the so called painting stories by
Maschler et al. (2010) and Bergantinos and Martinez (2014).

We should note two works associated with highway profit sharing by Kuipers et al. (2013)
and Sudholter and Zarzuelo (2017), where each agent uses consecutive sections of a high-
way. The difference from the case of airport problems is that the sections used by an

agent need not start from the beginning of the line.

There is literature on cost sharing for the problem of cleaning a polluted river. The
river is considered as a segment divided into subsegments each of which belongs to a
region/municipality. There is a central agency that determines the cost of cleaning each
segment. The seminal paper on this problem was Ni and Wang (2007). They propose
two methods (local responsibility sharing and upstream equal sharing), which give rise to
allocations that turn out to be the Shapley values of two TU-games. Van den Brink and
van der Laan (2008) show that this problem is essentially an airport problem. Gémez-Rua
(2013) provides axiomatic characterizations of a family of rules using properties based on
water taxes. One of these rules coincides with the weighted Shapley value. Alcalde-
Unzu et al. (2015) characterizes the upstream responsibility rule that assigns to the region
located in a segment the value of its responsibility taking as the transfer rate the mid-point
between its lower and upper limits. The remaining cost is divided among the upstream
regions. The problem of cleaning polluted river essentially focuses on a line along which

the agents are located, as in our proposal. However, the river only flows downstream,
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while tram lines carry passenger in both directions. Besides, the overall cost of cleaning

the river may be related with the pollution each region generates.

An interesting application of cost allocation related to public transport is provided by
Sénchez-Soriano et al. (2002) that consider how to share the cost of transport for uni-
versity students. There are other examples of transportation distributions. Algaba et al.
(2019) study the problem of sharing revenues among transport companies in a multimodal
transport system, that cooperate offering tickets which allow to use all transport means.
In this model, multiple arcs between two nodes arise to represent the different companies
that provide the service between each pair of stations. As in our model, the intensity in
use is given by a matrix of flows. They introduce the colored egalitarian solution that
turns out to be the Shapley value of a convex TU-game and it is in the core. Another
compelling situation is studied in Slikker and Van Den Nouweland (2000) and Norde et al.
(2002) to allocate the fixed and variable costs of a railway network among the trams that
use this infrastructure. The property that guarantees that the rule is immune to a special

type of manipulation has been widely used in other models (see, for example, de Frutos

(1999), Ju et al. (2007), and Moulin (2008)).

The study of revenue and cost sharing in networks has also provided satisfactory results in
other specific situation such as the analysis terrestrial flight telephone system (see van den
Nouweland et al. (1996)) or the power networks (see Bergantinos and Martinez (2014)). A
distinguishing feature of our model is that we always consider the same cost. This means
that, contrary to all the aforementioned works, in our model if we consider the related

TU-game, the characteristic function is constant and it does not depend on coalitions.

The results that we have obtained in the study of allocation problems in our papers On
how to allocate the fixed cost of transport systems (Estan et al. (2021a)) and
Manipulability in the cost allocation of transport systems (Estan et al. (2020))
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are different.

When we focus on the study of the allocation or sharing the costs, the solutions obtained
are rules based on the concept of proportionality. We show that the unique rule that
fulfills null municipality, symmetry in municipalities and weighted additivity is the rule
that divides the cost proportional to the number of users in each municipality (station-
based proportional rule). However, if we require symmetry in municipalities, bilateral
ratio consistency and weighted additivity, then the cost is equally split among all the mu-
nicipalities (uniform rule), regardless the number of stations and their users. If we require
adjacent symmetry, weak null municipality, trip decomposition and weighted additivity,
the solution is the track-based proportional.rule. Moreover, if we require symmetry in
stations and non-manipulability via merging and splitting the solution obtained is the

station proportional rule.

7.2 Scarce resource distribution problems discussion

Several authors have studied allocations problems with indivisibilities. In some cases both
the budget and the demands are integers (Chen (2015), Herrero and Martinez (2011),
Herrero and Martinez (2008b), or Herrero and Martinez (2008a)), while in other papers
the estate is indivisible but the claims are continuous (Dall’Aglio et al. (2016) or Dall’Aglio
et al. (2019)).

In this context several papers have proposed different type of solutions: Moulin (2008),
Herrero and Martinez (2008b), Chen (2015) use priority methods, while Giménez-Gémez
and Vilella (2017) adopt a P-rights recursive process, described in Giménez-Gémez and
Marco-Gil (2014), to ensure weak order preservation. Discrete claim models have been
widely used to deal with scarce resources in technological problems such as mobile ra-

dio networks (Lucas-Estan et al. (2012) and Gozalvez et al. (2012)) or social problems
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such as apportionment problems (Sénchez-Soriano et al. (2016)). On the other hand, in
claims problems with multi-dimensional and perfectly divisible claims Calleja et al. (2005)
introduce the run to the bank rule, while Bergantinios et al. (2011) present several charac-
terizations of the constrained equal awards rule, and Moreno-Ternero (2009) studies the

proportional rule.

With respect to those works, the novelty we present in our paper On the difficulty of
budget allocation in claims problems with indivisible items and prices (Estan
et al. (2021b)) is twofold. One, the claims are on multiple items. And two, and more
significant, the existence of prices, which allow us to consider and combine a continuous
estate with indivisible claims. Interestingly, the finding of non-wasteful rules is closely re-
lated with a well known programming problem, the so called bounded knapsack problem.
Since the seminal paper by Dantzig (1957), several extensions have been widely studied
due to their practical applications (Kellerer et al. (2004)), including choice theory (Feuer-
man and Weiss (1973)). As examples of interest which relate to our situation, Darmann
and Klamler (2014) study how to share the estate in a continuous setting by means of
optimal solutions, and Arribillaga and Bergantinos (2019) analyze two rules related to

the Shapley value of an optimistic game.

The results that we have obtained in the case of the allocation of scarce resources are a
compatibility-incompatibility results.

In the paper On the difficulty of budget allocation in claims problems with indi-
visible items and prices (Estan et al. (2021b)) we show that there are rules that satisfy
non-wastefulness, weak equal treatment of equals and non-manipulability by merging or
splitting if and only if there are rules that satisfy those properties for the subclass of
problems with |H| = 1. This result states that, if we are able to obtain rules that satisfy
the three conditions in a reduced domain of problems (with just one item), then they

can be extended to the general domain. And conversely, if the three properties are not
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compatible when |H| = 1, then they are not compatible in general.

The next result that we obtain exploits this relation to conclude that, in this setting,
it is not possible to find a rule that fulfills non-wastefulness, weak equal treatment of
equals and non-manipulability by merging or splitting. This theorem provides a surprising
result, since it states an incompatibility among some principles that are compatible in the
classical claims problem (see Thomson (2001)). Notice that none of the properties in
the previous result is very demanding by itself. Indeed, the next propositions show that
any pairwise combination of non-wastefulness, weak equal treatment of equals and non-
manipulability by merging or splitting is feasible. Besides, the set of rules that satisfy
each pairwise combination of properties is so wide that it does not seem to have a clear

structure.

Another result that we have obtained is that there is no rule that satisfies non-wastefulness
and conditional full compensation together and, as a consequence, neither exemption and
non-wastefulness are compatible. This theorem illustrates that, for the problem of adju-
dicating conflicting indivisible claims with different prices, efficiency (non-wastefulness)
and some protective conditions (exemption or conditional full compensation) cannot be
conciliated. It is worth noting that this impossibility is a particularity of the model with
several items and prices. Both when claims and estate are divisible, and when they are

expressed in indivisible units these two properties are compatible (Herrero and Martinez

(2008b)).

When non-wastefulness is required in conjunction with weak securement, an impossibility

emerges.

We explore an alternative formulation of the efficiency principle: Pareto efficiency. In
contrast with non-wastefulness, this property focuses on the agents’ allocations rather

than on the expenditure of the budget. An allocation is Pareto efficient if there is no
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other allocation in which some other individual is better off and no individual is worse

off.

Notice that it is glaringly obvious that non-wastefulness implies Pareto efficiency, but the
converse is not true. Even though these two properties are not equivalent in general, it is
not difficult to prove that they coincide when |H| = 1. As a consequence, we can replace
non-wastefulness by Pareto efficiency in the theorem which implies that weak equal treat-
ment of equals and non-manipulability by merging or splitting together are incompatible

with Pareto efficiency. This result is the analogous to the result of incompatibility.

Since Pareto efficiency is milder than non-wastefulness, we obtain the counterparts of

Propositions 1 and 2.

With regard to self-duality, it is evident that it will not be compatible with Pareto effi-
ciency, since the latter does not guarantee that the estate is fully exhausted. Theorems
3 and 4 state that conditional full compensation and weak securement are incompatible
with non-wastefulness. However, we show that, if the latter requirement is weakened
to Pareto efficiency, then the possibility emerges. Therefore, there are rules that sat-
isfy Pareto efficiency and conditional full compensation together and if a rule R satisfies
Pareto efficiency, weak equal treatment of equals, conditional full compensation, and weak

securement, then R(a) C R°%9(a), Va € A.
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Chapter 8

Conclusiones

En este capitulo presentamos las conclusiones obtenidas en los trabajos que conforman esta
tesis : On how to allocate the fixed cost of transport systems (Estan et al. (2021a)),
Manipulability in the cost allocation of transport systems (Estan et al. (2020))
and On the difficulty of budget allocation in claims problems with indivisible

items and prices (Estan et al. (2021Db)).

8.1 Problemas de distribucion de costes: conclu-
siones

En el trabajo On how to allocate the fixed cost of transport systems (Estan et al.
(2021a)) presentamos un modelo que estudia el problema de dividir un coste fijo de una
linea de tranvia entre los municipios que componen dicha linea. La regla de asignacion
depende del conjunto de municipios, las estaciones que cada municipio posee, el coste
fijo de distribucion y la matriz de flujo. Hemos demostrado que, si requerimos que esta
regla satisfaga las nociones bésicas de equidad y estabilidad, terminamos con unicidad en

las soluciones. M4s precisamente, hemos encontrado que municipio nulo (un municipio
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sin usuarios estd exento de pago), simetria en los municipios (los municipios simétricos
contribuyen por igual) y aditividad ponderada (la asignacién es inmune a la division del
problema) conducen a la regla proporcional basada en el uso de las estaciones, que divide
el coste proporcionalmente al nimero de pasajeros que utilizan las estaciones de cada
municipio. De manera similar, también hemos caracterizado la regla proporcional basada
en la trayectoria en términos de simetria adyacente (simetria con respecto a las estaciones
adyacentes), municipio nulo débil, descomposicién del viaje (la regla no se altera al dividir
un viaje largo en viajes pequenos) y aditividad ponderada. Finalmente, hemos probado
que, si requerimos que la regla cumpla con simetria en municipios, consistencia bilateral en
ratio (estabilidad frente a cambios en el conjunto de municipios) y aditividad ponderada,
entonces debemos distribuir el coste uniformemente entre las ciudades. Como en muchos
otros trabajos existentes en la literatura de costes compartidos (Sdnchez-Soriano et al.
(2002), Ni and Wang (2007), o Kuipers et al. (2013), por ejemplo), podriamos definir
el juego de costes de la siguiente manera. FEl conjunto de jugadores es el conjunto de

municipios M y la funcién de valor para cada coalicion S C M viene dada por

0 itS=9g
c(S) =

C iS40

La funcién c es constante debido a la naturaleza de la problema que estudiamos, no im-
porta el nimero de identidad de los municipios involucrados en la coalicion, el montante
que deben pagar siempre es C, ya que, por ejemplo, el salario del director general debe
pagarse independientemente del uso o la estructura de la red. Una vez que aplicamos los
conceptos basicos de solucién en la literatura sobre juegos TU a nuestro caso, terminamos
en asignaciones no completamente satisfactorias. El valor de Shapley y el nucléolo coinci-
den con la distribucién uniforme el nicleo es el conjunto completo de asignaciones factibles

(z=(%,...,£)), the core is the whole set of feasible allocations ({z : Y}-1" | z; = C}).

m?
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Como muestra Shapley (Shapley (1953)) la solucién unica del juego de costes que satisface

simetria en municipios, jugador nulo y aditividad es el valor de Shapley, que, en nuestro
caso, coincide con la regla uniforme. Curiosamente, el teorema demuestra que, si estos
mismos principios se trasladan a nuestro modelo, en su lugar caracterizamos la regla pro-
porcional basada en el uso de las estaciones. La regla uniforme (o de manera equivalente,
el valor de Shapley del juego de costes) también se caracterizamediante propiedades alter-
nativas. En el articulo Manipulability in the cost allocation of transport systems
(Estai et al. (2020)), hemos demostrado que simetria en estaciones y no manipulabilidad
(por fusién y divisién) caracterizan la regla proporcional al nimero de estaciones. Este
resultado sigue la linea de algunos otros en la literatura para diferentes modelos (ver, por
ejemplo,de Frutos (1999), Moreno-Ternero (2006) y Ju et al. (2007)), en los que la ausen-
cia de manipulabilidad estd intimamente relacionada con mecanismos proporcionales. Sin
embargo, en nuestro modelo, la proporcionalidad no estd univocamente determinada, ya
que puede referirse a las estaciones, a los flujos o incluso a una combinacién de ambos.
El teorema obtenido establece que las propiedades que consideramos solo son compatibles

con una de ellas.

8.2 Problemas de distribucion de recursos escasos:

conclusiones

Para finalizar, en el articulo On the difficulty of budget allocation in claims prob-
lems with indivisible items and prices (Estafi et al. (2021b)) hemos estudiado una
clase particular de problemas de demandas. En nuestro modelo, un grupo de agentes
demanda varias unidades de diferentes articulos, cada uno de los cuales tiene un precio.
El patrimonio disponible no es suficiente para satisfacer la demanda total. Una regla es

una multifuncién que selecciona un conjunto de asignaciones que indican la cantidad de
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unidades de cada articulo que se asigna a cada agente.

A diferencia de otros modelos que implican problemas de demandas, no se puede garan-
tizar la eficiencia. El requisito mas cercano es el de no despilfarro, que establece que la
regla debe desperdiciar la menor cantidad de patrimonio posible, y esta estrechamente
relacionado con el llamado problema de la mochila acotada, cuyas soluciones, en general,
son dificiles de obtener. Sin embargo, con esta condicién més suave de eficiencia, encon-
tramos que no existe una regla que satisfaga el no despilfarro junto con otros criterios que
protegen a los pequenos agentes o aseguran que los demandantes reciban una asignacion

minima.

En vista de todos los resultados de imposibilidad obtenidos en este estudio, podemos ob-
servar que no es facil conciliar la eficiencia (a través del no despilfarro) con la equidad.
En este sentido, quizés, la propiedad de no despilfarro es demasiado restrictiva, porque
se centra mas en el uso del patrimonio que en la equidad de la asignacién. Por lo tanto,
se podria reconsiderar la necesidad absoluta de la propiedad de no despilfarro y simple-
mente garantizar que se distribuya la cantidad maxima del estado, respetando ciertas
propiedades de equidad en la distribucién. Esta seria la segunda mejor alternativa, lo que
estd mas alla del proposito de este trabajo, una vez que hemos demostrado que el enfoque

directo conlleva muchas dificultades.
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Chapter 9

Conclusions

In this chapter we present the conclusions of the papers that make up this thesis : On
how to allocate the fixed cost of transport systems (Estan et al. (2021a)), Manip-
ulability in the cost allocation of transport systems (Estan et al. (2020)) and On
the difficulty of budget allocation in claims problems with indivisible items

and prices (Estan et al. (2021b)).

9.1 Cost sharing problems conclusions

In the paper On how to allocate the fixed cost of transport systems (Estan
et al. (2021a)), we present a model to study the problem of dividing a fixed cost of a
tram line among the municipalities along that line. The allotment rule depends on the
set of municipalities, the stations in each municipality, the cost to distribute and the
flow matrix. We have shown that, if we require that this rule satisfies basic notions of
fairness and stability we end up with uniqueness in the solutions. More precisely, we have
found out that null municipality (a municipality without users is exempted of payment),

symmetry in municipalities (symmetric municipalities contributes equally), and weighted



80 Conclusions

additivity (the allocation is immune to splitting of the problem) lead to the station-based
proportional rule, which divides the cost proportional to the number of passengers that use
the stations in each city. Similarly, we have also characterized track-based proportional
rule in terms of adjacent symmetry (symmetry with respect to adjacent stations), weak
null municipality, trip decomposition (the rule is not altered by splitting a long trip into
small ones) and weighted additivity. Finally, we have proved that, if we require the rule to
fulfill with symmetry in municipalities , bilateral ratio consistency (stability with respect
to changes in the set of municipalities) and weighted additivity, then we must allocate

the cost uniformly among the cities.

As it is the case of many other works in the literature of cost sharing (Sdnchez-Soriano
et al. (2002), Ni and Wang (2007), or Kuipers et al. (2013), for instance), we could have
naturally define a cost game as follows. The set of player is the set of municipalities M
and the value function for each coalition S C M is given by

0 ifS=9g

c(5) =

C itS#g
The function ¢ is constant due to the nature of the problem we study, not matter the
number of identity of the municipalities involved in the coalition, the cost they must afford
is always C', since, for example, the salary of the CEO has to be paid regardless the use or
structure of the network. Once we apply the basic solution concepts in the literature on
TU-games to our case we end up in non completely satisfactory allocations. The Shapley
value and the nucleolus are the uniform split (x = (C e C)), the core is the whole set

of feasible allocations ({z : Y_", z; = C}).

As Shapley (1953) shows, the unique solution of the previous cost game that satisfies
symmetry in municipalities, null player and additivity is the Shapley value, which, in

our case, coincides with the uniform rule. Interestingly, Theorem proves that, if these
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same principles are translated into our model then we characterize the station-based
proportional rule instead. The uniform rule (or equivalently, the Shapley values of the

cost game) is also characterized by using alternative properties.

In the paper Manipulability in the cost allocation of transport systems (Estan
et al. (2020)), we have shown that symmetry in stations and non-manipulability (via
merging and splitting) characterize the station proportional rule. This result follows the
line of some others in the literature for different models (see, for example, de Frutos (1999),
Moreno-Ternero (2006) and Ju et al. (2007)), in which the absence of manipulability is
closely related with proportional mechanisms. However, in our setting, proportionality
is not unambiguously determined, since it can refer to the stations, flows, or even a
combination of both. The theorem obtained states that the properties we consider are

only compatible with one of those.

9.2 Scarce resource distribution problems conclu-

sions

To end, in the paper On the difficulty of budget allocation in claims problems
with indivisible items and prices (Estan et al. (2021b)) we have studied a particular
class of claims problems. In our model a group of agents demand several units of different
items, each of which has a price. The available estate is not sufficient to satisfy the
aggregate claim. A rule is a multi-valued function that selects a set of allocations, which

indicate the amount of units of each item that is assigned to each claimant.

In contrast with other models involving claims problems, efficiency cannot be guaranteed.
The closest requirement is non-wastefulness, which states that the rule should waste as

little estate as possible, and is closely related to the so called bounded knapsack problem,
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whose solutions, in general, are difficult to obtain. Even though, with this milder condition
of efficiency, we find that there is no rule that satisfies non-wastefulness together with other

criteria that protect small agents or ensure claimants receive a minimum allocation.

In view of all the impossibility results obtained in this study, we can observe that it
is not easy to reconcile efficiency (via non-wastefulness) with fairness. In this sense,
perhaps, the non-wastefulness property is too restrictive, because it is focused more on
the use of the estate than the fairness of the allocation. Therefore, one could reconsider
the absolute necessity of the non-wastefulness property and simply guarantee that the
maximum amount of the state is distributed, while respecting certain properties of fairness
in the distribution. This would be the second-best alternative, which is beyond the
purpose of this paper, once we have proved that the straightforward approach entails

many difficulties.



83

Bibliography

J. Alcalde-Unzu, M. Gémez-Rua, and E. Molis. Sharing the costs of cleaning a river: the
upstream responsibility rule. Games and Economic Behavior, 90:134-150, 2015.

E. Algaba, V. Fragnelli, N. Llorca, and J. Sanchez-Soriano. Horizontal cooperation in a
multimodal public transport system: The profit allocation problem. Furopean Journal

of Operational Research, 275(2):659-665, 2019.

P. Arribillaga and G. Bergantinos. Cooperative and axiomatic approaches to the knapsack

allocation problem. 2019.

G. Bergantinos and R. Martinez. Cost allocation in asymmetric trees. European Journal

of Operational Research, 237(3):975-987, 2014.

G. Bergantinos, L. Lorenzo, and S. Lorenzo-Freire. New characterizations of the con-
strained equal awards rule in multi-issue allocation situations. Mathematical Methods

of Operations Research, 74(3):311-325, 2011.

P. Calleja, P. Borm, and R. Hendrickx. Multi-issue allocation situations. Furopean Journal

of Operational Research, 164(3):730-747, 2005.

S. Chen. Systematic favorability in claims problems with indivisibilities. Social Choice

and Welfare, 44(2):283-300, 2015.



84 BIBLIOGRAPHY

M. Dall’Aglio, V. Fragnelli, and S. Moretti. Orders of criticality in voting games. Opera-

tions Research and Decisions, 26, 2016.

M. Dall’Aglio, V. Fragnelli, and S. Moretti. Indices of criticality in simple games. Inter-
national Game Theory Review, 21(01):1940003, 2019.

G. Dantzig. 26. Discrete-Variable Extremum Problems. Princeton University Press, 1957.

A. Darmann and C. Klamler. Knapsack cost sharing. Review of Economic Design, 18(3):

219-241, 2014.

M. A. de Frutos. Coalitional manipulations in a bankruptcy problem. Review of Economic

Design, 4(3):255-272, 1999.

T. Estan, N. Llorca, R. Martinez, J. Sanchez-Soriano, et al. Manipulability in the cost
allocation of transport systems. Technical report, Department of Economic Theory and

Economic History of the University of Granada., 2020.

T. Estan, N. Llorca, R. Martinez, and J. Sdnchez-Soriano. On how to allocate the fixed

cost of transport systems. Annals of Operations Research, pages 1-25, 2021a.

T. Estan, N. Llorca, R. Martinez, and J. Sanchez-Soriano. On the difficulty of budget
allocation in claims problems with indivisible items and prices. Group Decision and

Negotiation, 30(5):1133-1159, 2021b.

M. Feuerman and H. Weiss. A mathematical programming model for test construction

and scoring. Management Science, 19(8):961-966, 1973.

J.-M. Giménez-Gémez and M. C. Marco-Gil. A new approach for bounding awards in

bankruptcy problems. Social Choice and Welfare, 43(2):447-469, 2014.



BIBLIOGRAPHY 85

J.-M. Giménez-Gémez and C. Vilella. Recursive methods for discrete claims problems.

Economics Bulletin, 37(3):1653-1665, 2017.

M. Gémez-Ruia. Sharing a polluted river through environmental taxes. SERIEs, 4(2):
137-153, 2013.

J. Gozélvez, M. C. Lucas-Estan, and J. Sanchez-Soriano. Joint radio resource management

for heterogeneous wireless systems. Wireless Networks, 18(4):443-455, 2012.

C. Herrero and R. Martinez. Balanced allocation methods for claims problems with

indivisibilities. Social Choice and Welfare, 30(4):603-617, 2008a.

C. Herrero and R. Martinez. Up methods in the allocation of indivisibilities when prefer-

ences are single-peaked. Top, 16(2):272-283, 2008b.

C. Herrero and R. Martinez. Allocation problems with indivisibilities when preferences

are single-peaked. SERIEs, 2(4):453-467, 2011.

C. Herrero and A. Villar. The three musketeers: four classical solutions to bankruptcy

problems. Mathematical Social Sciences, 42(3):307-328, 2001.

B.-G. Ju, E. Miyagawa, and T. Sakai. Non-manipulable division rules in claim problems

and generalizations. Journal of Economic Theory, 132(1):1-26, 2007.

H. Kellerer, U. Pferschy, and D. Pisinger. Multidimensional knapsack problems. In
Knapsack problems, pages 235-283. Springer, 2004.

J. Kuipers, M. A. Mosquera, and J. M. Zarzuelo. Sharing costs in highways: A game
theoretic approach. European Journal of Operational Research, 228(1):158-168, 2013.

S. C. Littlechild and G. Owen. A simple expression for the shapley value in a special case.

Management Science, 20(3):370-372, 1973.



86 BIBLIOGRAPHY

M. C. Lucas-Estan, J. Gozélvez, and J. Sanchez-Soriano. Bankruptcy-based radio resource
management for multimedia mobile networks. Transactions on emerging telecommuni-

cations technologies, 23(2):186-201, 2012.

M. Maschler, J. Potters, and H. Reijnierse. The nucleolus of a standard tree game revisited:

a study of its monotonicity and computational properties. International Journal of

Game Theory, 39(1-2):89-104, 2010.

J. D. Moreno-Ternero. Proportionality and non-manipulability in bankruptcy problems.

International Game Theory Review, 8(01):127-139, 2006.
J. D. Moreno-Ternero. Mélaga economic theory research center working papers. 2009.

O. Morgenstern and J. Von Neumann. Theory of games and economic behavior. Princeton

university press, 1953.

H. Moulin. Proportional scheduling, split-proofness, and merge-proofness. Games and

Economic Behavior, 63(2):567-587, 2008.
J. Nash. Non-cooperative games. Annals of mathematics, pages 286—295, 1951.

D. Ni and Y. Wang. Sharing a polluted river. Games and Economic Behavior, 60(1):
176-186, 2007.

H. Norde, V. Fragnelli, I. Garcia-Jurado, F. Patrone, and S. Tijs. Balancedness of in-
frastructure cost games. FEuropean Journal of Operational Research, 136(3):635-654,
2002.

B. Peleg and P. Sudholter. Introduction to the theory of cooperative games, volume 34.
Springer Science & Business Media, 2007.



BIBLIOGRAPHY 87

J. Sanchez-Soriano, N. Llorca, A. Meca, E. Molina, and M. Pulido. An integrated trans-
port system for alacant’s students. univercity. Annals of Operations Research, 109(1):

41-60, 2002.

J. Sanchez-Soriano, N. Llorca, and E. Algaba. An approach from bankruptcy rules applied
to the apportionment problem in proportional electoral systems. Operations Research

and Decisions, 26(2):127-145, 2016.
L. S. Shapley. 17. A value for n-person games. Princeton University Press, 1953.

M. Slikker and A. Van Den Nouweland. Network formation models with costs for estab-

lishing links. Review of Economic Design, 5(3):333-362, 2000.

P. Sudholter and J. M. Zarzuelo. Characterizations of highway toll pricing methods.
European Journal of Operational Research, 260(1):161-170, 2017.

W. Thomson. On the axiomatic method and its recent applications to game theory and

resource allocation. Social Choice and Welfare, 18(2):327-386, 2001.

W. Thomson et al. Cost allocation and airport problems. Rochester Center for Economic

Research, Working Paper, (538), 2007.

R. Van den Brink and G. van der Laan. Comment on “sharing a polluted river”. Technical

report, Mimeo, 2008.

A. van den Nouweland, P. Borm, W. van Golstein Brouwers, R. Groot Bruinderink, and
S. Tijs. A game theoretic approach to problems in telecommunication. Management

Science, 42(2):294-303, 1996.






Appendix A

On how to allocate the fixed cost of

transport systems.

39



On how to allocate the fixed cost of transport systems
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Abstract

In this study, we consider different cities located along a tram line. Each city may have one
or several stations and information is available about the flow of passengers between any
pair of stations. A fixed cost (salaries of the executive staff, repair facilities, or fixed taxes)
must be divided among the cities. This cost is independent of the number of passengers and
the length of the line. We propose a mathematical model to identify suitable mechanisms
for sharing the fixed cost. In the proposed model, we study, and characterize axiomatically,
three rules, which include the uniform split, the proportional allocation and an intermediate
situation. The analyzed axioms represent the basic requirements for fairness and elemental
properties of stability.

Keywords Axiom - Cost game - Cost sharing - Fairness - Transport networks

1 Introduction

Determining how to divide the costs of constructing and maintaining different types of infras-
tructure has become increasingly important because it requires the cooperation of several
institutions, states, regions, or countries. Transport networks are special cases, for example:
railroads that are planned at European level and cross more than one country, highways that
involve several regions, or metro and tram lines that span across different cities. The main-
taining cost, as in general any other global cost, can be split into two parts: the variable cost
(which depends on the intensity in use such as flows of passengers, length of the line, . ..)
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and the fixed cost (the salaries of the executive staff, the maintenance of the railway yard,
the payment of some fixed local taxes, and other expenses that do not depend on the usage).
The problem of how to distribute the cost among the participating agents (countries, regions,
cities, ...) has been studied in many works (see Henriet and Moulin 1996; Kuipers et al.
2013; Littlechild and Owen 1973 and Ni and Wang (2007), among others). These papers
mainly focused on costs depending on certain elements of the problem, the intensity in use,
or the length of the route. However, in this work we analyze the allocation of the fixed cost
which is invariant.

It is also worth noting that here we consider the perspective of a central planner. Imagine
that the European Union builds a high-speed line from Lisbon to Amsterdam across several
nations with stations in the main cities. The EU constructs the infrastructure but the further
maintenance is left to the individual countries. Once the line is made, countries cannot decide
to exclude themselves from the maintenance cost. In this type of situations, participation is
compulsory and we cannot address the problem from a cooperative perspective, exclusively.
A superior authority chooses a scheme to determine the contribution of each agent on the
basis of some fairness and stability criteria. To sum up, our goal is to develop several schemes
a central planner may use in order to determine the contribution of each agent to the fixed
cost of maintaining an infrastructure.

Let us assume that a tram line passes through different cities and each city may have one
or several stations. Information is available about the number of passengers between any pair
of stations, and thus how many people use each station (which can be treated as an indicator
of its importance). Finally, a cost must be divided among the cities involved on the line. In
summary, the problem has four elements comprising the set of cities located along the line,
the sets of stations that belong to each city, a flow matrix that indicates the number of users
between any pair of stations, and a cost that needs to be split (which is not a function of the
previous elements, unlike the problems considered in other studies).

The present study addresses the axiomatic analysis of cost allocation rules in networks,
where a rule is simply a mechanism for distributing the cost among the cities. Economic
networks and the axiomatic methodology were surveyed by Sharkey (1995) and Thomson
(2001), respectively. In the axiomatic method, the rules are justified in terms of the axioms
or properties that they satisfy. In general, suitable combinations of properties are imposed as
the desirable or minimal requirements that the rule must satisfy. The goal is then to identify
the solutions or unique solution that satisfy these axioms. Thus, in this study, we introduce
a collection of properties that are suitable for the framework considered.

The first group of properties imposes the basic requirements in terms of equity in the
allocation of the cost. In particular, null municipality and weak null municipality state the
conditions under which a city should be exempted from contributing. Symmetry and adjacent
symmetry require that cities which can be consider as equals should pay equal amounts. The
second group of properties are related to the stability of the rule with respect to changes in
the problem. Thus, additivity and weighted additivity require that the final distribution of
the cost is not altered if we split the problem into several subproblems (e.g., distributing the
cost yearly is equivalent to spreading it monthly and then aggregate them). Bilateral ratio
consistency requires that the relative ratio of the contributions by two cities does not change
if a third leaves the consortium. Finally, trip decomposition requires that the distribution of
the cost is not altered when passengers split the same long trip into smaller ones.

We show that if symmetry and additivity (or, alternatively, symmetry, bilateral ratio con-
sistency, and weighted additivity) are required, then we must distribute the cost uniformly
among the cites, regardless of the number of stations and the flows of passengers. We also
show that a unique rule exists that is compatible with null municipality, symmetry, and
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weighted additivity. This rule is the station-based proportional rule, which divides the cost
proportionally according to the number of users in each city. Finally, we prove that the
track-based proportional rule is the only method that satisfies adjacent symmetry, weak null
municipality, trip decomposition, and weighted additivity.

1.1 Related literature

The problem of allocating the cost of building or maintaining a facility among all agents who
are involved in providing a service is a classic problem addressed in cost sharing research.
In the well-known airport problem, the Shapley value (Shapley 1953) is obtained with low
computational effort (see Littlechild and Owen 1973). In this problem, the costs of using an
airstrip must be shared among the planes that operate in the airport while considering their
different sizes. The infrastructure of this problem is a line, as found in our problem, that is
shared from the start by all of the planes. The different sizes of planes need different lengths
of tracks, so the value function for the associated cost game varies according to the coalition
of players. In our model, by contrast, the cost is always the same and the value function is
constant. A broad survey of airport problems was provided by Thomson (2007). The idea
proposed by Littlechild and Owen (1973) was generalized as the so-called “painting stories”
by Maschler et al. (2010) and Bergantifios et al. (2014).

The costs associated with highway profit sharing were considered by Kuipers et al. (2013)
and Sudholter and Zarzuelo (2017), where each agent used consecutive sections of a highway.
This problem differs from airport problems because the sections used by an agent do not
need to start from the beginning of the line. These works apply a cooperative approach.
We, alternatively, consider a centralized point of view. Besides, as we explain in Sect. 3, the
natural cost function in our setting is constant (the same for all the possible coalitions), while
in these papers the cost each coalition has to face depends on the sections used by the agents
involved.

Several studies have addressed cost sharing for the problem of cleaning a polluted river. In
this problem, the river is treated as a segment divided into subsegments where each belongs
to aregion/municipality. A central agency determines the cost of cleaning each segment. The
seminal study of this problem was conducted by Ni and Wang (2007) who proposed two
methods (local responsibility sharing and upstream equal sharing) for determining the allo-
cations, which are the Shapley values of two transferable utility (TU) games. van den Brink
and van der Laan (2008) showed that this problem is essentially an airport problem. Gémez-
Rda (2011) provided axiomatic characterizations for a family of rules by using properties
based on water taxes, where one of these rules matched with the weighted Shapley value.
Alcalde-Unzu et al. (2015) characterized an upstream responsibility rule for assigning a
region located in a segment with a value in terms of its responsibility by taking as the transfer
rate the mid-point between its lower and upper limits. The remaining cost was divided among
the upstream regions. The problem of cleaning a polluted river essentially considers the line
along which the agents are located, as found in our problem. However, the river only flows
downstream, whereas tram lines carry passengers in both directions. In these models, the
overall cost to distribute is mainly the sum of the individual costs of each region. If a group
of regions cooperate, they just face the cost to clean their corresponding segments, which, in
general, is smaller that the global cost. In contrast, in our framework, such a possibility does
not exist, and the fixed cost to pay is always the same, regardless the coalition structure.

An interesting application of cost allocation in public transport was provided by Sanchez-
Soriano et al. (2002) who considered how to share the cost of transport for university students.
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Other studies also investigated the distribution of transportation. Thus, Algaba et al. (2019)
studied the problem of sharing revenues among transport companies in a multimodal transport
system that cooperates by offering tickets for using all transport modes. In this model, multiple
arcs between two nodes represent the different companies that provide services between each
pair of stations. Similar to our model, the intensity of use is represented by a matrix of flows.
They introduced the colored egalitarian solution, which is the Shapley value of a convex
TU-game and it is located in the core. Another interesting situation was studied by Slikker
and Nouweland (2000) and Norde et al. (2002) who investigated the allocation of the fixed
and variable costs of a railway network among the trains using this infrastructure.

Research into revenue and cost sharing in networks has also provided satisfactory results
in other situations such as analyses of a terrestrial flight telephone system (see van den
Nouweland et al. 1996) and power networks (see Bergantifios and Martinez 2014).

Our proposal has two key features whose combination, up to our knowledge, has not been
previously analyzed. One, most of the papers mentioned above consider the allocation of the
variable part of the cost, the one that is directly related with the use of the infrastructure and,
therefore, include rules and properties related to those variable aspects. More specifically, the
amount to be allocated depends on other elements of the problem, and thus, it can vary upon
the rest of the variables in the model. By contrast, we focus on the distribution of the fixed
part of the cost invariant with respect all other elements of the problem, whose nature may
demand for different solutions. And two, we consider the centralized approach, by which the
scheme to apply is decided by a external authority not involved in the problem. This is an
alternative to the cooperative point of view followed in many of the aforementioned works.
Besides, unlike other aforementioned papers, if a group of municipalities decides to form a
coalition, the cost the would have to face is the same as the cost of the grand coalition, since
the salaries of the executive staff, the maintenance of the railway yard, etc have to be paid
anyway. This fact shrinks the potential use of allocation mechanisms based on coalitional
considerations.

The remainder of this paper is organized as follows. In Sect. 2, we present the model and
the elements of the problem. In Sect. 3, we define the uniform rule for our setting. In Sect. 4,
we introduce the basic set of properties we consider in this study. Section 5 is devoted to
the characterization of the uniform rule. In Sect. 6, we define and characterize two rules that
are more intense in the use of the available information. We conclude by giving some final
remarks in Sect. 7. Appendix A contains the proofs of the tightness of the characterizations.

2 Mathematical model

Let M = {1,...,m} (m > 3) be the set of municipalities. Let S = {s1,...,s,} be an
ordered set of stations, which are located on a line. For a given station s, we assume that
sp—1 and sp41 are located to the left and right of sy, respectively. Each station belongs to
one (and only one) municipality. We denote by S; the set of stations in municipality i. We
assume that all S; are connected with respect to the line, i.e., if two stations belong to i, then
any intermediate station also belongs to i. More formally, if sy, sp4; € S; then s, € §; for
all g € [h, h +1].
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The flows of passengers are described by a flow matrix (denoted by OD), which specifies
the number of people that use the line between each pair of stations.

0 wp ... o,

wyp 0 ... wyy e

OD == . B . . E R+ 1)
wpl w2 ... 0

where w,, is a measure of the number of passengers whose trip starts in station s, and end
in station s;. We assume that at least one entry of OD is different from zero. Finally, the
network has a fixed cost, C € R, which must be distributed among the municipalities in
M.

The allocation problem, or simply the problem, is defined by the 4-tuple a =
(M, S, OD, C). The class of all these allocation problems is denoted by A.

Example 1 Consider the case of a trolley line that passes across three municipalities M =
{1, 2, 3} with four stations S = {s1, $2, 53, 54} that are distributed as follows:

S1 SH S3

The fixed cost is C = 12 and the flow matrix is

OD =

S = O
SO B~
SO =N
SO OO

where w1, = 4 means that four people are traveling from s to 52, and w1 = 1 indicates that
only one person is traveling from s; to sj.

For a given flow matrix OD and a given pair of municipalities {i, j} € M, the number of
passengers whose trip starts in one of the stations in municipality i and ends in one of the
stations in municipality j is denoted by 2;;(OD), i.e.:

Qij(OD) = " " wg.
Sg€S; SRES;

Note that when i = j, €2;;(OD) gives the number of people who travel within municipality
i. Similarly, we define QIJF (OD) and £2; (OD) as the number of passengers that start and end
in any of the stations of municipality i, respectively:

QT OD) =" > wm =Y Q;(OD)

sg€S; speS jeM
and
Q7 (OD)= Y > wpy =Y Qji(OD).
Sg€S; spES jeM

Thus, the use of the stations in i is given by:

Q;:(0D) = Q7 (0D) + Q; (OD).
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Finally, 2 (OD) denotes the total number of passengers involved in the flow matrix:

1 m
Q(0D) = |0DI|i = 3 ;szxoz)).

Example 2 For Example 1, we find that Q2 (OD) = 15,

211(0OD) ,1(0D) 231(0D) 0 60
Q212(0D) Qn(0OD) 23(0D) | =16 3 0
Q13(0D) 23(0D) 233(0D) 00O
and
i Q" (0D) Q7 (0D) Q;(0D)
1 6 6 12
2 9 9 18
3 0 0 0

An allocation for a € A is a distribution of the fixed cost among the municipalities, i.e., a
vectorx € Rﬁf suchthat) ;_,, x; = C.Let X (a) be the set of all allocation vectors fora € A.
A rule is a procedure for selecting allocation vectors, i.e., a function, R : A — |, ., X (a),
that selects a unique allocation vector R(a) € X (a) for each problem a € A.

3 The uniform rule

As we have already mentioned in the introduction, we consider the perspective of a central
authority that has to divide the cost among the municipalities, where these are obliged to
participate. However, the cooperative approach may also be of interest and, perhaps, a good
starting point. So, let us assume for amoment that groups or municipalities have the possibility
to coordinate their actions in some way. More specifically, let us suppose that cities may
voluntarily form coalitions 7 € M whose joint cost can be represented by means of a value
or cost function ¢(7"). We have to divide the cost of the grand coalition c¢(M) taking into
account the cost structure of the different collaborations given by the cost function. How
should we do that? Can we distribute the cost C in a way such that all municipalities would
be willing to participate in case they have the chance? The literature on cooperative game
theory provides enough instruments to answer this type of question. To start this analysis we
define a cost game.

As shown in many previous studies of cost sharing in very different contexts (e.g., Sdnchez-
Soriano et al. 2002; Ni and Wang 2007; Aparicio and Sdnchez-Soriano 2008; Kuipers et al.
2013; Platz and Hamers 2015; Li et al. 2019), we can naturally define a cost game as follows.
The set of players is the set of municipalities M and the value function for each coalition
T C M is given by the following:

0 ifT=0

‘D=1 120
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The function c is constant due to the nature of the problem considered, so regardless of
the number or identity of the municipalities involved in the coalition, the cost they incur is
always C, e.g., the salary of the CEO must be paid irrespective of the use or the structure of
the network.

For a given cost game ¢, a solution is a vector x € R suchthat ), ,, x; = c(M) = C,
where x; represents the allocation to player i. Several authors have proposed different solution
concepts based on different notions of fairness. Among those, the Shapley value (Shapley
1953) emerges as the most prominent one. Its expression is the following

_ IT)!(m — |T| — D!

(c(TU{i}) —c(T)),Vie M,
m!

TcM\{i}

where |T'| is the cardinal of T'.

Alternative solutions concepts are the nucleolus (Schmeidler 1969), the modified nucleolus
(Sudholter 1997), or the Dutta-Ray solution (Dutta and Ray 1989), among others.

If we apply the aforementioned solutions to our cost game, we obtain that they result in
the equal split of the cost (x = (% R %)), obviating the rest of the available information.!

The core c is the set of all allocations that distributes c(M) = C with the property that no
coalition would be better off if it would separate and pay its cost:

Cle):={x eR™ Y xi=c(M)and Y x; <c(T)forall T € 2M} :
ieM ieT

In our model, the core coincides with the whole set of feasible allocations

({x Y Lixi=C }), and therefore it is not very informative.

Even though the uniform rule does not exploit all the information the central planner has,
it is obviously a focal point. The reason is twofold. One, although in our setting a central
authority decides the rule to apply, we have illustrated above that the equal allotment emerges
as the natural solution even from a cooperative perspective. And two, it is reasonable to think
that, when the cost is fixed, all municipalities must contribute equally.

Uniform rule For eacha € A andeachi € M,

U;(a) = E
m

4 Properties

Our first property imposes a minimal criterion of equity, where it requires that symmetric
municipalities must contribute equally. We say that two municipalities are symmetric if
the same number of passengers travel within them and between them and any other third
municipality.

Symmetry Foreacha € A andeach {i, j} C M ,if Q;;(OD) = Q;;(OD), and Q;;(0OD) =
Q2 (OD), and 24; (OD) = Q;(OD)), forall k € M \ {i, j}. Then R;(a) = Rj(a).

Consider that, instead of allocating the fixed cost C for a whole year according to the
traffic in that period, we may solve the problem month by month. Thus, for each month, we
distribute % by considering the passengers flows only in that month and we then aggregate
for the 12 months. Additivity requires that the final allocation must be the same regardless
of whether we solve the problem yearly or monthly (and then we aggregate).

! In fact, any symmetric solution for the cost game leads to the uniform allocation.
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Additivity For each (M, S, OD, C) € A and eachi € M,

T
R (M,S,0D.C)=> Ri (M.S.0D,.C).

=1

where OD = Y1 0D, and C = Y., C,.
In some context additivity may be very demanding as it is the case in our context as the
following proposition shows.

Proposition 1 If a rule satisfies additivity then it does not depend on the flow matrix.

Proof Let OD, OD' € R"*" be two different flow matrices. Let us define OD € R"*" such
that

@g, = min {a)gh, w’gh} .
Then OD = OD + (OD — OD) and OD' = OD + (OD' — OD). By applying additivity,

R(M,S,0D,C) = R(M, S,0D,C)+ R(M,S,0OD — OD, 0)
= R(M, S,0D,C)
= R(M,S,0D,C)+ R(M,S,0D — OD', 0)
= R(M, S,0D', C)

and thus, the allocation is the same for any flow matrix. m|

The previous result illustrates the strength of additivity in our setting. If it is required, then
the information on the flows must be ignored. As a weaker version we consider weighted
additivity. It is in the line of additivity, but the allocation of each period (month, year, .. .) is
weighted by the inverse of the cost per passenger in that period.

Weighted additivity For each (M, S, OD, C) € A and eachi € M,

——R; (M, S§,0D,C) = TR,- M, S,O0Dy, Cy),
t

Q(0D) ", Q(oD,)
e 2
=1

where OD = Y_ OD, and C = YI_, C,.

Weighted additivity can be seen as a compromise, since it still imposes the rule to be
additive in some way and, at the same time, it allows us to exploit the flows of passengers.?

The next property requires some sort of independence for the rule with respect to changes
in the set of municipalities. More precisely, given a rule, we consider a problem and apply
the rule to the problem. Imagine now that all of the municipalities but two are excluded
from the consortium, and thus these two municipalities must meet all the costs themselves.
In its general formulation, the principle of consistency requires that in the reduced problem
the contributions of these two municipalities are the same as in the original problem. This
definition cannot be directly applied to our setting. Since the cost is fixed, the allocations in
the reduced problem must add up to C, and therefore they cannot be the same any more.

In the line of the consistency principle, we introduce a new property that states that the
solution proposed for the reduced problem must be consistent with the proposal for the

2 Alternative versions of pure additivity have also been explored in other settings such as airport games (Dubey
1982) or claims problems (Harless 2016).
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original one. Hence, bilateral ratio consistency requires that when the new situation is re-
evaluated and the cost is divided between these two municipalities, the ratio between their
allocations for the new problem is the same as the ratio between their allocations for the
original problem.

The reduced problem is defined in a natural manner, where the set of municipalities still
comprises the same two in the original situation (say N = {i, j}), the set of stations is formed
by all the stations that belong to either i or j (and only those), the fixed cost C is the same
as in the original problem, and the reduced flow matrix ODy; ;) is obtained by removing in
OD all the columns and rows that correspond to stations not in V.

Bilateral ratio consistency Foreacha = (M, S, OD, C) € A and each pair of municipal-
ities {i, j} € M we have that

Ri(a)  Ri(aj,jy)
Rj(@)  Rjagj)’

where ay; j; = ({i. j}. Si U S, ODy jy, C).

5 Characterizations of the uniform rule

The next theorem states that if we simply require symmetry and additivity, then the cost is
split equally among all the municipalities regardless of the number of stations and their users.
The independence of the properties is relegated to Appendix A.

Theorem 1 A rule satisfies symmetry and additivity if and only if it is the uniform rule.

Proof First, we check that the uniform rule satisfies the two properties of the statement.

(a) Symmetry. Let {i, j} € M such that Q;; (OD) = Q;;(0OD), and Q;;(OD) = ;. (OD)
and 4; (OD) = Q4;(OD) forallk € M ~.{i, j}. Then, it holds that ; (OD) = Q;(OD).
By definition of the uniform rule, we immediately find that U; (a) = Uj(a).

(b) Additivity. Now, foreach i € M,

T T
¢ C
D Ui(M.S.0D,,C)=) —=—=U;(MS,0DC).
P m m

t=1

Let us consider the converse. Let R be a rule that is symmetric and additive. We show that
R=U.

Notice that, in application of Proposition 1, we already know that the rule does not depend
on the flow matrix. Now, let us consider that R # U, then there exists a problem a =
(M, S, 0D, C) € A such that there are at least two municipalities i, j with R;(a) # Rj(a).
Now we consider the problem a’ = (M, S, OD’, C) € A such that municipalities i and j are
symmetric. On the one hand, since R does not depend on the flow matrix because it satisfies
additivity, we have that R(a) = R(a’) which implies that R;(a") # R;(a’), but on the other
hand, since R satisfies symmetry, R;(a") = R;(a’). Therefore, we obtain a contradiction and
R must be equal to U. O

The previous theorem characterizes the uniform rule by means of just two properties. If
we substitute additivity by its weaker version other rules may emerge. However, Theorem 2
shows that, if we replace additivity by the combination of weighted additivity and bilateral
ratio consistency, we go back to the uniform rule.
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Theorem 2 A rule satisfies symmetry, bilateral ratio consistency, and weighted additivity if
and only if it is the uniform rule.

Proof First, we check that the uniform rule satisfies bilateral ratio consistency and weighted
additivity.?

(a) Bilateral ratio consistency. Let us consider the problems where a = (M, S, OD, C) and
ai.jy = ({i, j}, SiUS;, 0Dy jy, C), and if we apply the uniform rule, we obtain the

following.
Uia) _ i - % _ Uitai, ;)
Ui < £ Ujlapj)
(b) Weighted additivity. Now, for eachi € M,
" QD)) - Q(0D) Cz
> o Ui(M.8.0D.C)) = Z C

=1
1
S Z Q(OD;)
m =1

C Q(OD)
m C
Q(0OD)

= .U; (M, S, 0D, C).
C

Let us consider the converse. Let R be a rule that is symmetric, bilateral ratio consistent, and
weighted additive. We show that R = U. Let a8" = (M, S, OD8", C) € A be a problem
such that all of the entries in the flow matrix are null, except for the entry gh that is equal to
one (wer = O forall (e, ) # (g, h), and wg;, = 1). In this case, there are two municipalities
(not necessarily different) i, j € M to which these stations belong, i.e., s, € S; and s, € S;.
The flow matrix for problem a#" has the following form

h

0 0 0

: 0 :

oDs" =g | 0 1 0
: 0 :

0 0 0

We note that for any other pair of municipalities {k, [} # {i, j}, the reduced flow matrix
OD‘E’Z? 1) is null (all of the entries are equal to zero). Therefore, k and [ are symmetric in the
reduced problem ({k, 1}, 8, US, ODf,i I} C ), and thus due to the symmetry, it must be true
that

Re (k. 1), ScU S, oD ) = R, (1,13, S s, 0% c) = &
k ({ ) }’ k I {k’[}’ ) - l({ ) }’ k [ {k’l}a ) — 5

3 The fulfillment of symmetry is already proved in Theorem 1.
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By applying the bilateral ratio consistency, we also know that

Ry (agh) Ry, ({k, 1}, S, U S, ODL{g]?’l}a C)

R; (ath) g, <{k7 I}, Sk U St ODf/gl}’ C)

=1 & R; (agh> =Ry (agh> .

This fact combined with the requirement that Y ;" Ry (a%") = C8" imply that Ry (a®") =
€ forall k € M.

Leta = (M, S, OD, C) € A be a problem without any restriction. We can additively split
problem « into other 2 (OD) problems a4” such that

C
Q(OD)’

oD = Z OD%" and 8" =
gh

We already know that for each of those problems, ash = M, S, oDs", C gh), the weighted
additivity implies that for each i € M:

Q(0OD) Q(oD8")
C Ri(a) = Z WRi(agh),
gh
or equivalently,
C Q(ODS")
Ri(a) = R; (a®").
@ = S0D) %; car Ri@™)

We already know that R; (") = %’h for any i € M, so we have the following.

h
Ri(a) = ¢ Z o )Ri(agh)

Q(OD) Ceh

gh

. C 3 Q(ODsh) csh

- Q(OD) ceh om
gh

_C

o m

= U,‘ (a)

6 Rules that use additional information

The nature of a fixed cost makes it invariant with respect to the potential use of the line. If
a central authority desires to obviate the variable elements of the problem, it can be done,
simply by applying solutions similar to the aforementioned uniform rule. If, alternatively,
the government is interested in a method that considers all the available information, the
solutions must be more elaborated. In this section we follow this alternative approach and
present two new rules. The first one uses the stations, while the second uses the segments
between stations as structural elements that define the network.
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The next rule allocates the cost in proportion to the number of passengers who use the
stations (to board or to get off) in a municipality.
Station-based proportional rule For each a € A and eachi € M,

C
SPi(a) = 290D) 2;(OD)

The second rule allocates the fixed cost in proportion to the use of segments of the line. To
do that, it assumes that each passenger is divided into as many parts as the number of tracks
used in her trip, and then each part of the passenger corresponding to a track is distributed
equally between the two stations delimiting that track.

Track-based proportional rule For each a € A and eachi € M,

C Wgh
TPi(a) = : & :
felg.h]or felh,g]
where [z] = min{k € Z : k > z}.
Although the mathematical expression of the track-based proportional rule is a bit tricky,
its application is very intuitive and easy to understand. In the next example we illustrate the
functioning of the rules defined above.

Example 3 We consider the problem described in Example 1.

(a) Station-based proportional rule:

12 12 12 24 36
SPa)=-—=-12, =18, —-0)=(—, —.0]).
30 30 30 55

(b) Track-based proportional rule: We use this example to illustrate the function of the for-
mula in the definition of this rule. We start by counting the number of passengers between
each pair of stations. As illustrated in Fig. 1, five passengers are traveling between s and
52, seven between s and s3, and so on. Second, we compute the use of each track. In the
case of the track between s; and s7, it is natural to assign to this track, the five travelers
between s; and s, half of the travelers between s; and s3 (because it is a half of their
whole trip), and a third of the travelers between s and s4 (because this track represents
only a third of their whole journey). The dashed line in the figure shows the use of each
of the three tracks in this example.

Now, we must allocate the utilization of the tracks to the stations. The simplest approach
is to assume that the use is split equally between the two stations at the extreme ends of
the track (Fig. 2).

Finally, the cost is divided in proportion to the use of the tram line by each municipality,
which is the sum of the uses of its stations. Hence,

(12 17 12 43 12 ) (51 129 )
TPa)=—= —,=-—,=.0)=(=,—=,0
I5 4 15 4 15 15" 15

It is quite obvious, in application of Theorem 2, that neither the station-based proportional
rule nor the track-based proportional rule satisfy symmetry, bilateral ratio consistency, and
weighted additivity together. Next, we explore the properties the two new rules may fulfills
and we show that they characterize them.

Null municipality, states that a municipality does not have to contribute to the fixed cost
if none of its stations is used by passengers. Thus, if nobody departs from or arrives at any
of the stations located in a municipality, then this municipality is exempted from payment.
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In our context, municipalities cannot decide whether to participate or not, the line is already
built and the maintenance cost has to be paid, and its distribution is decided by a superior
authority. However, this central planner, may want to take into account the lack of use of the
stations.

Null municipality For each a € A and each i € M, if Q2;(OD) = 0 then R;(a) = 0.

In Example 1, Municipality 3 is null because nobody uses its single station.

The next property is a weakening of the previous one. Now, we consider that a municipality
is null if no traveler uses its stations and no train passes through its stations and tracks. We
note that only municipalities at the extreme ends of the line may potentially satisfy this
requirement.

Weak null municipality For each a € A and each i € M, if one of the following two
conditions holds

o wyp = wpg =0, forall j
o wgp = wpg =0, for all j

then R;(a) = 0.

Clearly, null municipality implies weak null municipality but the converse is not true.

Adjacent symmetry states that if all traffic is on the line between two adjacent stations
that belong to two different municipalities, then both municipalities must contribute equally.
We note that this requirement is very weak because it only imposes a minimal condition of
fairness in a very specific situation.

Adjacent symmetry For each a € A and each {i, j} C M, if wg), + wpe = 2(OD), such
that [|g —h| =1,and g € S;, h € S}, then R;(a) = Rj(a).

The following requirement states that the distribution of the cost is not altered by splitting
a long trip into small trips. Thus, the allocation must be the same regardless of whether an
individual goes from station s, to station sy, directly or indirectly (from s, to an intermediate
station and from there to s5,). This property is in the line of other requirements that prevent
manipulations in the routing. For example, Henriet and Moulin (1996) introduced a similar
concept called no transit, and it has been more recently applied in other papers such as Moulin
(2009) or Juarez and Wu (2019) under the name routing-proofness.

i,forall s, € §;,and all 55, € §;;

<
> i, forall s, € Sj,and all s, € §;;
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Example 4 For Example 1, the flow matrix is as follows

OD =

S W — O
(@RS B e
S O =N
o O O O

According to OD, there are two travelers from s; to s3. Now, the two passengers split, one
that goes from s to 57 and the other goes from s; to s3. In this case, the flow matrix becomes
as follows

0 441 2-2 0 0500
o0 1410 (1020
OD=1s 5 o ol=ls200

O 0 0 0 0000

If the rule satisfies trip decomposition, then the distribution of the fixed cost is the same for
both OD and OD'.

Trip decomposition For each (M, S, OD,C), (M, S,0D’,C) € A. If Sg,sp € S, are
stations such that 2 — g > 1, and
either

L @eiry = Wgg+) + %;wl(g—}—l)(g—}&) = Wg+h(g+2) T |Z)+hg|""’wéh—1)h =
Oh—1)h + %; and w,, = 0;

2. w,p = wer, if (ef) # (gh),
or

Whg — ©h
L @ty = Oho-1) + gt Qo-ne-2 = @h-Dt-2) F g e Ogrg

a)(g+1)g + %, and (,l)Zg = 0,
2. wyp = wey, if (ef) # (hg),

then, R(M, S,0D,C) = R(M, S,0D’, C) and R(M, S,0D,C) = R(M, S,0D", C).

Now, we present the characterizations of the rules introduced in this section. Our first result
states that the unique rule that fulfills null municipality, symmetry, and weighted additivity
is the rule that divides the cost in proportion to the number of users in each municipality. The
independence of the properties is relegated to Appendix A.

Theorem 3 A rule satisfies null municipality, symmetry, and weighted additivity if and only
if it is the station-based proportional rule.

Proof First, we show that the station-based proportional rule satisfies the three properties in

this statement.

(a) Null municipality. If ; (OD) = 0 then SP;(a) = 0.

(b) Symmetry. Let {i, j} € M such that Q;;(OD) = Q;;(0OD), and 2;;(0OD) = Q;(OD)
and 2; (OD) = Q;(OD) forallk € M ~.{i, j}. Then, it holds that ; (OD) = ;(0OD).
By definition of the station-based proportional rule, we immediately find that SP; (a) =
SPj(a).

(c) Weighted additivity. First, it is easy to prove that ;; (OD) = Zsz1 2;;(OD;). Thus, we
can find that 2; (OD) = Zthl Q;(OD;). Now, for each i € M, we have the following.

d " Qob) ¢

Q(ODy)
SP; (M, S, OD;, Cy) = - Q; (0D
Z Ct 1 ( t t) tgl: Cz ZQ(OD[) 1( t)

=1
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_QOD) € 1
-~ C QD) 2 ;Q’(OD’)
_eOD) ¢ 1o 0
C QD) 2
Q(OD)

= -SP; (M, S, 0D, C).

Let us prove the converse, i.e., let R be a rule that satisfies null municipality, symmetry, and
weighted additivity. We show that R = SP. Let a8" = (M, S, OD$", C) € A be a problem
such that all of the entries of the flow matrix are null, except for the entry gh that is equal to
one (w.r = Oforall (e, ) # (g, h), and w,, = 1). In this case, there are two municipalities
(not necessarily different) i, j € M to which these stations belong, i.e., s, € S; and s, € ;.
The flow matrix for the problem a%” has the following form

h

0 ...0 ...0
o0 T

oDt =glo ... 1 ... 0
: 0 :

0 0 0

First, we note that, for any other municipality k € S \ {i, j}, wnf = wye = 0 for all
Sh,Sg € Sg and all sy € S\ Sk. By applying null municipality, we find that Ri(athy = 0.
In addition, municipalities i and j are symmetric in the problem a4”, and thus by symmetry,
it must be true that R; (a8") = R; (a8h) = %

Leta = (M, S, OD, C) € A be a problem without any restriction. We can additively split
the problem a into other Q2 (OD) problems a®" such that

C
Q(OD)’

OD = Z oD$" and C8" =
{g.h}CS

We already know that for each of those problems, ash = (M, S, 0Ds", C8h). Weighted
additivity implies that, for eachi € M,

Q(OD)R.(a) S Q(0Ds")

(8"
C Cgh Rl(a )7

{g.h}CS

or equivalently,

C Q(OD8M)
Z ek S

= R (a8h).
Q(0D) | can i@

Ri(a)

g.h}cs

We note the following

0 ifsp, 51, € S;
P R
5 otherwise
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Therefore,
C Q(OD$h) N
Ri(a) = Y Ri@"
Q(OD) mes Cs
C i Q(oDs"y csh Q(oDshy csh
~ Q(0D) 2. (Cé’h : T 2 (cgh )T
_sgeS,-,sheS sg€S, spES;
__¢ _1Q+(0D)+1Q’(0D)
- QD) |2 2
C
= —— - Q;(0D)
2Q(0D)
= SP;(a).

O

Finally, the next theorem provides an axiomatic characterization of the track-based pro-
portional rule.

Theorem 4 The unique rule that satisfies adjacent symmetry, weak null municipality, trip
decomposition, and weighted additivity is the track-based proportional rule.

Proof First, we prove that the track-based proportional rule satisfies the four properties in
the statement above.

(a) Adjacent symmetry. Let {i, j} € M, such that g € S;,h € S;, |g — h| = 1, and
wgp + wpg = 2(0D). Then

Th@=q0op~ 2 =

C  wep + oy C
J J 5 =TPj@,

(b) Weak null municipality. Let us assume that fori € M, the condition that wg; = wpg =0
forall j <i,forall s, € S;,andalls, € S holds. Then, this condition implies that for all
Sg,sp € §;, andsy € §;,suchthat g < f < h, g # h, wgy = wpg = 0. Therefore, by

the definition of the track-based proportional rule, R; (a) = 0. The proof is completely

analogous for the other condition.
(c) Trip decomposition. Leta = (M, S, OD, C),a’ = (M, S, OD’, C) € A, such that:

(@) h—g>1
Wep . _ Wgh _
(b) @yer1y = sta+ + Tsgl Qe )g42) = PErDEHD) T Fimgls 0 Qpmiyp =
a)(h Hi + |h gl’ and a)gh =0
(©) w,r = wey, if (ef) # (gh),

then for eachi € M, T P;(a’) is given by

TP(d) = Z Z W,
l Q(OD’ 2 — rli=dlle—flqye — g

SFES;  854,5¢€S,54FSe ( (e—d)?
fele,d]or feld,e]

We distinguish two situations, as follows:
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(a) Vs € S;, f ¢ [g, h]. In this situation, we have:

W), = g and @, ; = Weq, V54, e € S, such that f € [e, d].

Therefore, T P;(a') = T P;(a).

(b) Thereexists sy € §;, suchthat f € [g, h]. In this situation only the trips in ascending
and consecutive order from g to & are different from a to a’. Therefore, we will now
focus on these trips. We distinguish three cases, as follows:

1.

1l

1il.

If we assume that g < f = g + k < h, k € Z, then we only have to consider
the trips from (g4 —1) t0 S(g4x) and from s(g ) tO S(g4x+1). In this case, the
corresponding two terms in T P; (a’) are given by:

Wo Wy
D(grk-1)(g+0) T Trig]  Ple+ogrk+D) T g
2 — 01 2 -0l
W(otk—1 ) 1)
_ Dtk ek | @bkt | Ogh
2 2 h— gl

The first two terms correspond to the same terms in problem a and the third
term corresponds to the term associated with station s ¢ in the trip from s, to 55,
in problem a.

Let us consider that f = g. In this case, we only have to consider the trip from
Sg t0 5¢41. The corresponding term in T P; (a’) is given by

Wgap
Dge+h) t g gler) L@
Q-01 2 21h —g|’

The first term corresponds to the same term in problem a and the second term
corresponds to the term associated with station s ¢ in the trip from s, to 55, in
problem a.

Let us consider f = h. This case is analogous to Case ii.

Therefore, we can conclude that T P;(a’) = T P;(a).

(c) Weighted additivity. First, itis easy to prove that w,, = Zth1 a); - Now, foreachi € M,
we have the following:

T
ZQ D7 pyan

t=1

t

[l
i M’\]

t

=1 SFES;  Sg,ShES,SgFSh

h— 2
felg.h]or felh.g] “-8)

" QoD G >
=2 “laony & X (2_{@%}#@

DINEDS

—ol|.|h—

FESi  Sg.spES,SgFEsy (2 - ’7%-‘) |h - g'
felg.h]or felh,g]

T
> = “);h

S;‘ Z <2 _ P.f—gmh—fq) h — g

Sg.SRES,SgF#Sh

h— 2
felg.hor felh.g] -9
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QOD
=2 2 = ﬁgfﬂ - (C rr@.
SFES;  Sg,ShES,SgFSh <2'_ {__0%357__W)|h _'gl
felg,hlor felh,g]

Conversely, let R be a rule that satisfies adjacent symmetry, weak null municipality,
trip decomposition, and weighted additivity. We now show that R = T P. Let a8" =
M, S, oDs" C) € A be a problem such that all of the entries in the flow matrix are null,
except for the gh entry, which is equal to wgj, (wer = 0 for all (e, f) # (g, h)). In this
case, there are two municipalities (not necessarily different) i, j € M to which those stations
belong, i.e., s; € §; and s, € §;. The flow matrix for the problem as" has the following
form

h
0... 0 ...0
: 0
oD =g |0 Wgh 0
0
0 0 0

Now, wgp, in O D#" can be distributed equally among the consecutive trips from sg to
sp. The latter matrix can be written as the sum of matrices such that the only non-null entry
corresponds to two consecutive stations. Therefore, we consider a’8 h — (M,S,0D'8", C) €
A, such that |g — h| = 1.

R satisfies adjacent symmetry and weak null municipality, so R;(a'®") = R;(a’s") = %,
which matches with the track-based proportional rule.

Let a8 = (M, S, OD%",C) € A. Let us consider that g < h, and the other case is
comple.tely analogous. Let a’¢" = (M, S, OD’igh., C) e A, such that a)’(g+l.)(g+l.+1) = |Z)f';|,
foralli =0,1,2,...,h — g — 1 and the remaining entries are zero.

Now, R satisfies trip decomposition, so we find that R(a®") = R(a’®"). We can
additively split the problem a’¢" into |h — g| problems a”@+DE++D — ()1 g3,

+i)(g+i+1 +i)(g+i+1 P — / —
OD"EHDEHFD CletDE++l) e A i =0,1,2,...,h—g—1,suchthat of, ;) ;1)) =
Wgh

gl and the remaining entries are zero, and

C

CEHE+H+D) _ .
lh — gl

Therefore, we have:

h—g—1 h—g—1
oD'8" = Z oD/E&tDE+i+h) 4 = Z C &+ (g+i+D)
i=0 i=0

R satisfies weighted additivity, for each i € M, so the following holds:

) h—g—1 . .
Q(OD'sh) Q (0 D&+t o
¢ Ri(ath = Z C(g+)(g+i+1D) Ri(a"&F0EHHD),

i=0
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or equivalently,

C hg 1 Q (O D8+ (g+i+1))

(a8 =
Ri@™) = o peh ; C&HD(g+i+D)

R; (@& +)e++D)y

We have proved that R and T P coincide for problems with only traffic of passengers
between two consecutive stations, so we find that:

h—g—1
C g

Q(OD'sh) ; C g+ (g+i+1)

R; (a/gh) — T P; (a//(g-l-i)(g-l-i-i-l))‘

Now, the track-based proportional rule satisfies weighted additivity, so the following holds

C Q(oD’&h)

. o, Igh — . 1gh
Q0D c T P;(a’®") = TP;(a’").

Ri(a’$") =

Therefore, R; (a8") = T P;(a8"), foralli € M.
Finally, leta = (M, S, OD, C) € A be a problem without any restriction. We can addi-
tively split the problem a into other €2 (O D) problems a8” such that

C .
op= 3" oD% and csh = = Psh
Q(0D)
{g.h}CS

We already know that for each of those problems, ash = (M, S, OD$", Cgh), the weighted
additivity implies that, for eachi € M,

(8"
C Cgh Rl(a )v

{g.h}CS

or equivalently,

C Q(OD8")
Z kS

/
Q(OD) (o hles csh

Ri(a) = R; (a®h).

Therefore, R(a8") = T P(a%") and the track-based proportional rule satisfies weighted
additivity, so for each i € M, we obtain:

C Q(OD8™)
Z alo”m )

(a8 — .
Q0D) . ell T P;(a*") =TPi(a).

Ri(a) =

Sh}ES

7 Final comments

In this study, we propose a model for addressing the problem of dividing the fixed cost of a
tram line among the municipalities along that line. The infrastructure is already built and the
municipalities cannot decide whether to participate or not. A central planner must choose a
method to allocate the maintenance cost. As in many situations, the total cost is decomposed
into two parts: the variable cost (that depends on the use of the line, among other elements)
and the fixed cost. In the paper we have focused on the latter, and we have introduced and
characterized solutions for this particular setting.
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We have analyzed two types of rules. First, the uniform rule, which does not take into
account the intensity in the use of the line and it simply distributes the cost uniformly. And
second, rules that exploit the available information more intensively. Even though we are
allocating the part of the cost that is not due to the use, the central planner may be interested
in considering the information on flows to determine the allotment because municipalities
are obliged to participate. In this sense we have defined the station-based proportional and
the track-based proportional rules.

The uniform rule is the unique solution that satisfies two combinations of properties:
symmetry and additivity, or symmetry, weighted additivity and bilateral ratio consistency.
We have also shown that the station-based proportional rule is characterized by means of
symmetry, weighted additivity, and null municipality. Interestingly, both the uniform and the
station-based proportional rule share the common brach of symmetry and weighted additivity,
and their characterizations only differ by one axiom. We also prove that the track-based
proportional rule is the unique rule that satisfies adjacent symmetry, weak null municipality,
trip decomposition, and weighted additivity.

In Sect. 3 we have studied a cost game that naturally arises from the situation we deal with.
As shown by Shapley (1953), the unique solution for this cost game that satisfies symmetry,
null player, and additivity is the Shapley value, which matches with the uniform rule in our
setting. Interestingly, Theorem 3 proves that if these same principles are translated into our
model, then we characterize the station-based proportional rule instead.

There are still some open questions that we have not addressed. One is the structure of
the network. Here we have focused on line because we believe it is the canonical problem
that helps to understand how the rules work and the relations among the properties. A more
general setting would consider other network structures with overlaps and loops. Some other
natural rules, such as the station-based uniform rule in Appendix A also deserve a deeper
analysis.

Appendix A. Logical independence of the properties

In this section we show that all of the properties used in the characterization of each solution
are necessary.

Proposition 2 Symmetry, and additivity are necessary to characterize the uniform rule.

Proof (a) Let us consider the station-based uniform rule given by:
C
SUi(a) = — - [Sil.
n

It is clear that this rule does not satisfy symmetry because it depends only on the number
of stations in each municipality but not on the traffic through the network. It is easy to
check that this rule satisfies additivity.
(b) The station-based proportional rule satisfies symmetry, but not additivity because it
depends on the flow matrix.
O

Proposition 3 Symmetry, bilateral ratio consistency, and weighted additivity are necessary
to characterize the uniform rule.
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Proof (a) Let us consider the station-based uniform rule given by:

(b)

(c)

C
SU;i(a) = pa [Sil.

As stated above, it does not satisfy symmetry. It is easy to check that this rule satisfies
bilateral ratio consistency and weighted additivity.

The station-based proportional rule satisfies symmetry and weighted additivity but not
bilateral ratio consistency. We consider the case of a trolley line that passes across three
municipalities M = {1, 2, 3} with four stations S = {sy, 52, 53, 54}, which are distributed
as follows:

S Sy S3

| | | |
I T T 1

s1 $2 $3 S4

In this case, SP(a) = (1, %, %) Now, if we suppose that Municipality 3 leaves the
consortium, then the new (reduced) problem is: a(j 2} = ({1, 2}, S1U 82, ODyy 2y, C),
where

S N O
S O™
S W

For this reduced problem, we obtain:

14 30
SP(aj1,2y) = H, ﬁ .

Now we have:
L1
o7 30
8 11
Therefore, the station-based proportional rule does not satisfy bilateral ratio consistency.
Example of a rule that satisfies symmetry, bilateral ratio consistency but does not satisfy
weighted additivity. Leta = (M, S, OD, C) € A be a problem. We define the following
rule for each i € M:
c 0. .
Ri(a) S0 950D Qi (OD) if Qu(OD) #0Oforallk e M
Ui(a) otherwise.

By definition, this rule satisfies symmetry and bilateral ratio consistency. However, it does
not satisfy weighted additivity because we can transform a problem with Q4x (O D) #
O forall k € M into problems where this condition does not hold, and we can then
apply the uniform rule instead of the proportional distribution to the inner traffic in each
municipality.

O
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Proposition 4 Null municipality, symmetry and weighted additivity are necessary in the char-
acterization of the station-based proportional rule.

Proof (a) The uniform rule satisfies symmetry and weighted additivity but it does not satisfy
null municipality by definition, because all municipalities are allocated with part of the
fixed cost independently of the traffic in the transport system.

(b) Leta = (M, S, OD, C) € A be a problem and for each i € M we define the following
rule:

0 if;OD)=0
Ri@=1 ¢
4l otherwise
where K = {i e M : Q;(OD) # 0}.
By definition, this rule satisfies null municipality and symmetry, but not weighted additiv-
ity. Indeed, let us consider the case of a trolley line that passes across three municipalities
M = {1,2, 3} with three stations S = {s1, 52, s3}, which are distributed as follows:
S1 = {s1}, S2 = {52} and S3 = {s3}. The fixed costis C = 6 and the O D matrix is given
by

01 1
OoOD=1|10 1],
110
and

i o (oD) Q7 (0D) Q,; (0D)
1 2 2 4
2 2 2 4
3 2 2 4

c

Therefore, all of the municipalities are symmetric so they must pay the same %, and

thus:
R(a) = (2,2,2).

Now we divide the cost C into C{ +Cy = 2+4 = 6 and the O D matrix into O D+ O D,
in the following manner:

011 0 00O 011
OD=1|101]=1001 +11 00
110 010 1 00
For example, for Municipality 1, we obtain:
6 2 4 2 0+ 4 4
6 2 4 3

Therefore, this rule does not satisfy weighted additivity.

(c) Leta = (M, S,0D, C) € A be a problem. For each i € M, we define the following
rule:

L.C if|M|=2and|S| =2

Ri(@) =13
SP;(a) otherwise.
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For [M| = 2 and |S| = 2, it is clear that this rule satisfies weighted additivity because
it does not depend on the O D matrix. Furthermore, in this case, null municipality is
meaningless because it implies that there is no traffic at all in the network. Finally,
in this case, this rule does not satisfy symmetry because the allocation of the fixed
cost depends on the names of the agents. For the remaining cases, this rule satisfies
null municipality, symmetry and weighted additivity. Therefore, this rule satisfies null
municipality, weighted additivity but no symmetry.

O

Proposition 5 Adjacent symmetry, weak null municipality, trip decomposition, and weighted
additivity are necessary to characterize the track-based proportional rule.

Proof (a) By the definition of the uniform rule, it is straightforward to check whether it

(b)

(©)

satisfies adjacent symmetry, trip decomposition, and weighted additivity but not weak
null municipality.

Before giving a rule that satisfies weak null municipality, trip decomposition, and
weighted additivity but not adjacent symmetry, we introduce the following

o Wkh + Whk
P | |
k<g<g+l1<h

where w[, ¢+1] 1s the number of passengers between two consecutive stations when all
passengers are distributed equally among all tracks that they use in their trips. Now, we
define the following rule:

c 8 g .
Ri ((l) = m Z (ﬁa)[g_l’gj + mw[g’g_f_lJ) s foralli e M,

sg€S;

where w[0,1] = W[n,n+1] = 0.

By definition, this rule satisfies weak null municipality and trip decomposition. Analo-
gous to the track-based proportional rule, we can prove that this rule satisfies weighted
additivity. However, this rule does not satisfies adjacent symmetry because it depends on
the name of the stations.

It is easy to check that the station-based proportional rule satisfies weak null munic-
ipality, adjacent symmetry, and weighted additivity. However, it does not satisfy trip
decomposition as shown by the following example. Let us consider a problem with two
municipalities and three stations, S| = {s1} and S> = {s7, s3}, where the fixed cost that
needs to be distributed is 1 and the O D matrix is given by

OD =

—_ = O
—_ O =
O = =

The station-based proportional rule is S P (a) = (% , %) Now, if we distribute the passen-

gers such that there are only trips between consecutive stations, we obtain the following
O D’ matrix:

0 14 0
op' =15 0o 1i],
0 15 0
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and the station-based proportional rule is S P (a’) = (% , %) Therefore, the station-based

proportional rule does not satisfies trip decomposition.
(d) Given an O D matrix, we define the following [ O D] matrix:

0 if|g—h|>1

lwgn] = .
# wig,n] Otherwise,

where wyg 1 18 defined as in (b).
Now, we define the following rule for each i € M:

0 ifQ;(OD])=0
&l otherwise
where K = {i e M : Q;([OD]) # 0}.
By definition, we can prove that this rule satisfies weak null municipality, adjacent sym-
metry, and trip decomposition but not weighted additivity.

O
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Appendix B

Manipulability in the cost allocation

of transport systems.
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1 Introduction

The problem of how to divide the cost of maintaining infrastructures has become increasingly
relevant since regions or countries cooperate to manage those constructions. That is the case, for
example, of the Interstate Highway System in the United States, or the railroads that are planned
at European level and cross more than one country. Imagine that the Federal Government builds
a high-speed line from Miami to Boston with stations in the main cities. The further maintenance
cost is left to the states, which cannot exclude themselves from participation. How much should
each state contribute? The maintaining cost has two main components: the variable cost (which
depends on the intensity in use, flows of passengers, length of the line,...) and the fixed cost
(the salaries of the executive staff, the maintenance of the railway yard, the payment of some
fixed local taxes, and other expenses that do not depend on the usage). The problem of how
to distribute the variable cost has already been addressed by several authors (see Algaba et al.
(2019), Sudholter and Zarzuelo (2017), Bergantinos and Martinez (2014), Kuipers et al. (2013),
Bergantinos et al. (2012), Mallozzi (2011), Sanchez-Soriano et al. (2002), Henriet and Moulin
(1996), and Littlechild and Owen (1973), among others). However, the fixed cost has not been
deeply analyzed. In this work, following Estan et al. (2020), we study how to allocate the
invariant part of the cost.

In our setting a problem has four elements. One, the set of states or cities (if we think, for
instance, on a tram line across cities instead of a high-speed railway) located along the line.
Two the sets of stations that belong to each city. Three, the flow matrix that indicates the
number of users between any pair of stations. And four, the cost to be split (which is not a
function of the previous elements, unlike the problems considered in the other aforementioned
models). A rule is simply a way to distribute the cost among the cities.

We follow the axiomatic approach, in which the rules are justified in terms of the axioms or
properties that they satisfy. The goal is to identify the rules that satisfy these properties.
Thus, we introduce a collection of axioms that are suitable for the studied model: symmetry,
non-manipulability via merging and non-manipulability via splitting. Symmetry says that two
cities with the same number of stations contribute equally. Non-manipulability via merging
imposes that no group of cities should benefit by merging their stations and acting as a single
city. Dually, non-manipulability via splitting avoids manipulations by splitting the stations and
acting as different cities.

In our main result we prove that, if the three aforementioned axioms are required, then the cost
of the transport network must be allocated proportionally to the number of stations in each city.

The remainder of the paper is organized as follows. In Section 2, we present the mathematical
model. In Section 3, we define a collection of rules. In Section 4, we introduce the axioms we
consider in this study. Section 5 is devoted to the characterization. We conclude by giving some
final remarks in Section 7.



2 The model

Let M = {1,...,m} (m > 3) be the set of municipalities and let S; the set of stations of
municipality ¢ , S; = {1,...,s;}. where if two stations belong to %, sp,sp4; € S; then s4 € S;
for all g € [h,h +]. Therefore, S = S;U...US,, is the ordered set of stations, which are
located on a line. For a given station s, we assume that sp—; and sy are located on the left
and on the right of sp, respectively. Each station belongs to one (and only one) municipality, so

‘S| = ZieM ‘Sz| =n.

The flows of passengers are described by a flow matrix (denoted by OD), which specifies the
number of people that use the line between each pair of stations.

0 T2 ... Tin
21 0 oo T2
OD = . . . . eRixna
Tnl Tnp2 ... 0

where 7y, is a measure of the number of passengers whose trip starts in station s, and ends in
station s;,. We assume that at least one entry of OD is different from zero. Finally, the network
has a fixed cost, C' € Ry, which must be distributed among the municipalities in M

The allocation problem, is defined by the 4-tuple a = (M, S, OD,C). The class of all these
allocation problems is denoted by A.

An allocation vector for a € A is an efficient distribution of the cost among the municipalities,
that is, it is a vector x € Rf\([ such that ) .., 2; = C. Let X(a) be the set of all allocation
vectors for a € A. A rule is a way of selecting allocation vectors, that is, it is a function, R :
A — Jyen X (a), that selects, for each problem a € A, a unique allocation vector R(a) € X(a).

3 Rules

In this section we present some different rules that allocate a fixed cost of a tram transport
network. All rules are related to the principle of proportionality but each of them takes into
account a different concept on what the fixed cost distribution has to be proportional to.

The uniform rule is straightforward. It splits the cost uniformly among municipalities, regardless
other elements of the problem.

Uniform rule. For each a € A and each ¢ € M,
C
RY(a) = —.

Y(a) =~

The next rule allocates the cost in proportion to the number of passengers who use the stations
(to board or to get off) in a municipality.



Flow proportional rule. For each a € A and each ¢ € M,
C

R{"(a) = M(0D) I1;(OD),

where II;(OD) = ngeSi > s,es(Mgn + mhg) and II(OD) = [[OD|; = %Z:il I1;(OD).

In the line of the previous one, our last rule also divides the cost on a proportional basis, but
with respect to the number of stations in the municipalities.

Station proportional rule. For each a € A and each ¢ € M,
C
REP() = 18]

Example 1. Consider the case of a trolley line that passes across three municipalities M =
{1,2,3} with siz stations S = {s1, 2, S3, S4, S5, 86} that are distributed as follows:

S Sy Ss

= —_——

Thus, Municipality 1 only has one station, Municipality 2 has three stations, and Municipality 3
has two stations. Now, suppose that the line has a fized cost of maintenance C' = 21. The flow

matrix s
04 2 00 3
1 01 0 4 2
0D — 5 2 0 010
0000 20
01 0 2 00
0 00O 010

Here, w59 = 1 means that one person is traveling from s to ss, and w31 = 5 indicates that five
people are traveling from s3 to s1. For this particular situation, the three rules presented in this
section allocate the cost as follows:

RU RFP RSP

i

17 5.08 3.5
2 7 10.16 10.5
3 7 5.7 7.0

4 Properties

We now list some axioms whose fulfillment may be desirable for the problem of distributing the
fixed cost of a transport network.

The first requirement imposes a minimal criterion of equity, symmetry states that if two munici-
palities has the same number of stations then they must contribute equally, so this municipalities
are symmetric.



Symmetry. For each a € A and each {i,j} C M, if |S;| =|S;|. Then R;(a) = Rj(a).

L' In

The next property guarantees that the rule is inmune to a special type of manipulations.
particular, it states that the municipalities can not alter their contributions by merging and

pretending to be just one municipality.

Non-manipulability via merging: For each pair M, M’ such that M’ C M, each
(M,S,0D,C) € A, and each (M',S',0D,C) € A. 1If there is i € M’ such that S/ =
SiUU;enn mr Sj» and for each j € M"\{i}, Sj = S;, then R;(M',S",0D,C) > R;(M, S,0D,C)+
ZjGM\M’ RJ(M,S,OD,C)

Our last axiom is the dual of the previous one. It states that a municipality can not alter its
contribution by splitting itself into several municipalities.

Non-manipulability via splitting: For each pair M, M’ such that M’ C M, each
(M,S,0D,C) € A, and each (M',S',0D,C) € A. 1If there is ¢ € M’ such that S] =
SiUUjeM\M' Sj, and for each j € M"\{i}, S; = S}, then R;(M", 5", 0D, C) < R;(M,S,0D,C)+
ZjEM\M/ RJ(M,S,OD,C)

5 A characterization result

Our main result states that symmetry, non-manipulability via merging, and non-manipulability
via splitting leads to a distribution of the cost that is proportional to the number of stations in
each municipality.?

Theorem 1. A rule satisfies symmetry, non-manipulability via merging, and non-
manipulability via splitting if and only if it is the station proportional rule.

Proof. 1t is not difficult to check that the station proportional rule satisfies the axioms of the
statement. In order to prove the converse, we first need to consider the segregation of a munici-
pality into as many municipalities as stations it has, i.e., one new municipality for each station.
We denote by MS; = {m1, ..., m;s, } the set of all new municipalities obtained from municipal-
ity 4, where m;; is the new municipality obtained from the j-th station of municipality i, and by
MM =;cps MS; = Uiens {mat, - ... mis, }. Thus, it is obvious that [MS;| = |S;| for all i € M,
and |[MM| = Doty [MS;| =300 [Si| = n.

We now denote by M?% the set of municipalities where municipalities in R are segregated into
as many municipalities as stations they have and the rest of municipalities remain the same. In
particular, we have the following:

e For one municipality, i € M, we have the problem a' = (M* S,0D,C) and M’ =
{1,...,i—I}UMSZ-U{i—i—l,...,m}:{1,...,2'—1}U{mil,...,misi}u{i—i—l,...,m}.

!The requirement has been widely used in other models (O’Neill (1982), Moulin (1985), Chun (1988), de Frutos
(1999), Ju (2003), Ju et al. (2007), Moulin (2008), Knudsen and @sterdal (2012), Valencia-Toledo and Vidal-Puga
(2019), among others).

2See Estan et al. (2020) for characterizations of the uniform and flow proportional rules.



e For two municipalities, {i,k} € M, we have the problem al**} = (M1"*} S OD, C) and
MUK =1, i —1}UMS;U{i+1,... k—1}UMS,U{k+1,....m} ={1,...,i—
1}U{mi1,...,mi3i}u{i+1,...,k—l}U{mkl,...,mksk}U{k—l—1,...,m}.

e In general, a = (M¥,5,0D,C), where M¥ = {i€ M\K} U J;cx MS;, and oM =
(MM S,0D,0).

Note that all problems af, R C M, have the same number of stations, matrix OD and fixed
cost C to be distributed. The only change is the number of municipalities.

Let R be a rule that satisfies symmetry, non-manipulable via merging and non-manipulable via
splitting. We will prove that it coincides with the station proportional rule by starting with
the most segregate problem and then reconstructing municipality-by-municipality the original
distribution of stations among municipalities.

Let a = (M, S,0D,C) be a problem where M = {1,...,m} is the set of municipalities, |[M| = m,
and S is the set of stations where |S| = n, we should have into account that the number of
stations is always the same throughout the proof.

We start with problem o™ = (MM, S,0D,C), we know |M™| = n coincides with the number
of total stations |S| = n.

M

For this problem, by symmetry all the allocations in problem a are the same, i.c., R;(a™) =

a,Vi € MM . Now, by definition we have that

ZRi(aM):Cén-a:C:a:C@a:&,WEMM.
: n

In the second step, we consider all problems in which all municipalities are segregated into their
stations but one. For all i € M, we consider the problem o \{i} = (MM\{i},S, OD,C). By
non-manipulability via merging, the following holds:

C C
M\{} Z R;( _a-]Si|:E'|Si’=@“Si|‘
_]EMS

However, by non-manipulability via splitting, we have that

i C C
Rz’(aM\{ }) < Z Rj(aM) =a-[S]= n |5il = sl |Sil.

JEMS; | |

Therefore, R;(a™\i}) = |%| - 1S3

Now, by definition all municipalities except municipality ¢ must pay

> R = C = RN = € - 18] = (1= 1S,
lEMM\GH {1}



By symmetry, the previous amount should be equally distributed among all remaining |S| — |S;|

municipalities in problem a™\M# | ie.,

Ry(aM\ihy = |g| vl e MMM 4,

In the third step, we consider all problems in which all municipalities are segregated into their
stations but two. For every {i,j} € M, we have the problem a™\{i7} = (MM\ed} S OD, C).
By non-manipulability via merging and non-manipulability via splitting, and reasoning as in the
previous step with respect to problems a®\UU} and a™\{%}, respectively, we have that

e the allocation for municipality ¢ € M is given by

C
R;(a™\oh Z Ry(a™\U}) 185
IEMS; Rl

e and the allocation for municipality j € M is given by

Ri(@\ih) = 37 Ry(@) = < g,
lEMSj

By definition, all municipalities except municipalities ¢, j € M have to contribute with

Z Ry(aM\i}) =

1lEMMAEII\{ij}

|| (IS = [Sil = [551)-

By symmetry, the previous amount must be equally distributed between the remaining |S| —
|l = 1551, so

Ry(aM\it) — ‘g‘ vi e MMVEIT i, ).

Now, we assume that for all K C M, such that |K| <r < m, m > 3, we have that

Let H C M, such that |[H| = r +1 < m. By non-manipulability via merging and non-
manipulability via splitting, and reasoning as in the previous steps, we have that

; C
Ri(aM\H) = Z Rl(aM\(H\{Z})) =—-|Si], VieH.
leMsS;
By definition, all municipalities except municipalities H C M have to contribute with

> R = (151 IS

le MM\E\[ i€H



By symmetry, the previous amount must be equally distributed between the remaining |S| —

ZieH |Sl|a SO

Ry(aM\Hy = |C| vie MM\ H.

Therefore, we have that R;(a\M) = R;(a) = |—§| -1S;| = R¥F(a), Vie M. O

Next examples show that the properties in Theorem 1 are independent.

Example 2. A rule that satisfies symmetry, non-manipulability via merging but violates non-
manipulability via splitting. For each a € A and each i € M,

C
Ri(a)= ——+—- S;
W= s Ve

Example 3. A rule that satisfies symmetry, non-manipulability via splitting but violates non-
manipulability via merging. For each a € A and each i € M,

S
2ien 1Sil?

Example 4. The flow proportional rule satisfies non-manipulability via merging and splitting

Ri(a) = - |Si?

but violates symmetry.

6 Conclusions

We have showed that symmetry and non-manipulability (via merging and splitting) characterize
the station proportional rule. This result is in the line of some others in the literature for different
models (see, for example, Chun (1988), de Frutos (1999), Moreno-Ternero (2006) and Ju et al.
(2007)), in which the absence of manipulability is closely related with proportional mechanisms.
However, in our setting, proportionality is not unambiguously determined, since it can refer to
the stations, flows, or even a combination of both. Theorem 1 states that the properties we
consider are only compatible with one of those.
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Abstract

In this paper we study the class of claims problems where the amount to be divided
is perfectly divisible and claims are made on indivisible units of several items. Each
item has a price, and the available amount falls short to be able to cover all the
claims at the given prices. We propose several properties that may be of interest in
this particular framework. These properties represent the common principles of fair-
ness, efficiency, and non-manipulability by merging or splitting. Efficiency is our
focal principle, which is formalized by means of two axioms: non-wastefulness and
Pareto efficiency. We show that some combinations of the properties we consider are
compatible, others are not.

Keywords Claims problems - Indivisible items - Equal treatment of equals - Non-
wastefulness - Manipulability

1 Introduction

Resource allocation problems have been extensively studied in the literature for

their relevance, particularly when there is a shortage of resources. Decisions made
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reason, it is interesting to know what difficulties are faced by those who have to
make decisions about the allocation of resources, particularly when they are scarce.
Claims problems or bankruptcy problems are one type of these resource allocation
problems. In the classical claims problem, introduced by O’Neill (1982), a central
authority has to decide how to divide among the creditors the liquidation value of a
firm that goes into bankruptcy. Obviously, this liquidation value does not exceed the
debt to the creditors.! Usually, both the creditors’ claims and the value to be divided
are perfectly divisible. In this work we present a novel model where the amount to
be divided is in money (and therefore divisible) but the demands are made on indi-
visible items,” each with an associated price. Imagine a health authority responsible
for several hospitals that, as in the case of the COVID-19 pandemic, has to allocate
to all of them the scarce resources. Each of those hospitals will ask for several medi-
cal items (beds, ventilators, defibrillators...). Each of those items has a market price
and the health authority has a budget with which to buy them. How many items of
each type should be allocated to each hospital taking into consideration their claims,
the prices and the available budget? The fact that the demands are expressed in indi-
visible units of different items, while the amount to divide is continuous, presents
several decision difficulties that we analyze in this work.

To be more precise, in our setting, a claims problem can be condensed into five
elements. Namely: a set of agents of the claimants, a set of possible items demanded,
a vector of prices of those items, a matrix of claims that specifies the number of
units each agent claims on each item, and the available amount (called estate). In
addition, it happens that the estate falls short to be able to cover the whole claim at
the given prices. A rule is a way in which to solve claims problems. In particular,
we consider multi-valued functions, which may be more convenient in order to deal
with the indivisibilities in the model.

There are other authors that have studied allocations problems with indivisibili-
ties. In some cases both the budget and the demands are integers (Chen 2015; Her-
rero and Martinez 2011, 2008a, 2008b), while in other papers the estate is indivis-
ible but the claims are continuous (Fragnelli et al. 2016, 2014). With respect to those
works, the novelty we present is twofold. One, the claims are on multiple items. And
two, and more significant, the existence of prices, which allow us to consider and
combine a continuous estate with indivisible claims.

Following the axiomatic methodology, we wonder if rules exist that satisfy suit-
able combinations of properties (called axioms) that represent criteria on efficiency,
fairness, and stability. A claims problem represents a situation where there is a
shortage, and therefore the first requirement that comes to mind is to use the lim-
ited budget efficiently, trying to satisfy most of the claims with the least amount of
money. We implement this principle by means of the non-wastefulness condition,

! Thomson (2003, 2015) are two excellent surveys on this literature.
2 We should point out that if we consider situations in which the claims are also perfectly divisible, the
so-called multi-issue situations introduced by Calleja et al. (2005) arise.
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which simply says that we would waste as little estate as possible.> As an alternative
to non-wastefulness, we also analyze the Pareto efficiency condition. While the for-
mer represents efficiency from the point of view of a central authority/government
(wasting the least of the budget), the latter takes the perspective of the agents (their
allocation cannot be improved at the cost of worsening other individual). We also
study other properties that implement several principles of fairness and stability. For
the former we consider weak equal treatment of equals (agents with equal claims
should get equal allotments), while for the latter we impose non-manipulability by
merging or splitting (agents cannot manipulate their assignments either by splitting
or merging their claims).

Interestingly, the finding of non-wasteful rules is closely related with a well-
known programming problem, the so-called bounded knapsack problem.* Since the
seminal paper by Dantzig (1957), several extensions have been widely studied due
to their practical applications Kellerer et al. (2010), including choice theory Feuer-
man and Weiss (1973). As examples of interest which relate to our situation, Dar-
mann and Klamler (2014) study how to share the estate in a continuous setting by
means of optimal solutions, and Arribillaga and Bergantifios (2019) analyze two
rules related to the Shapley value of an optimistic game.

In the context of claims problems with indivisibilities, several papers have pro-
posed different type of solutions. Moulin (2000), Herrero and Martinez (2008a),
Chen (2015) use priority methods, while Giménez-Gémez and Vilella Bach (2012)
adopt a P-rights recursive process, described in Giménez-Gémez and Marco-Gil
(2014), to ensure weak order preservation.’ Discrete claim models have been widely
used to deal with scarce resources in technological problems such as mobile radio
networks (Lucas-Estafi et al. 2012; Gozalvez et al. 2012) or social problems such as
apportionment problems Sanchez-Soriano et al. (2016). On the other hand, in claims
problems with multi-dimensional and perfectly divisible claims Calleja et al. (2005)
introduce the run to the bank rule, while Bergantifios et al. (2011) present several
characterizations of the constrained equal awards rule, and Moreno-Ternero (2009)
studies the proportional rule.

With respect to our findings, we show that if we require non-wastefulness
together with properties such as weak equal treatment of equals Young (1988; 1994)
and non-manipulability (O’Neill 1982; de Frutos 1999; Ju et al. 2007), exemp-
tion Herrero and Villar (2001), conditional full compensation (Herrero and Villar
2002; Herrero and Martinez 2008b; securement (Moreno-Ternero and Villar 2004),
or self-duality Aumann and Maschler (1985), we end up with an impossibility. As
for Pareto efficiency, it is also incompatible with weak equal treatment of equal and

3 Because of the particular nature of the kind of situations we are dealing with (continuous estate and
discrete claims) we cannot impose that the rule must exhaust the estate completely. And this is a particu-
larity of our model that differs from other works, since in the vast majority of the papers in the literature,
both in continuous and discrete settings, the estate is completely allocated, and nothing remains.

* Bounded knapsack problems are knapsack problems in which the variables are bounded from above.

5 This property states that if the claim of agent i is larger than the claim of agent j, she should obtain
(lose) at least (at most) as much as agent j, and if two agents have equal claims, their amounts should dif-
fer at most by one unit.
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non-manipulability. However, this notion of efficiency is compatible with exemp-
tion, conditional full compensation, and weak securement.

The rest of the paper is structured as follows: In Sect. 2 we set the model. In
Sect. 3 we present the three core properties we analyze, including non-wastefulness.
In Sect. 4 we explore the compatibility of the axioms. In Sect. 5 we study several
protective and duality properties, and we illustrate their incompatibilities with non-
wastefulness. In Sect. 6 we analyze an alternative formulation of the efficiency prin-
ciple: Pareto efficiency. Finally, Sect. 7 concludes with a final discussion.

2 The mathematical Model

Let N = {1,...,n} be the set of agents and let H = {1, ..., h} be the set of possible
items, whose prices are given by p = (p,, ...,p;,) € [R{}jr.

A claims problem with indivisible items and different prices, or simply a prob-
lem, represents a situation in which a perfectly divisible quantity, £ € R, (called
estate) must be distributed among agents in N according to their demands. Those
demands are described by means of a matrix of claims ¢ € Z_ that has as many rows
as agents, and as many columns as items

Cll C12 oo Clh

C _ C21 C22 oo Czh
- . . . . ’

Cu1 Cp2 -+ Cyyy

where ¢;, € Z, indicates the amount of item g claimed by agent i. In any
claims problem, the estate falls short to fully cover all the demands, that is,
2 ZZ:I CigPg 2 E.

Therefore, a problem is given by a tuple a = (N, H, p, ¢, E), where N is the set of
agents, H is the set of items, p is the vector of prices, c is the matrix of claims, and £
is the estate. Since the elements N, H, and p are fixed throughout the paper, when no
confusion arises we simply write the claims problem as a = (c, E). Let A be the set
of all problems:

n h
A= a=(CE)eZ™ xR, :|c-pl= chigpg =2
i=1 g=1

An allocation for a € A is a distribution of the estate among the agents that speci-
fies how many items of each price are awarded to each agent. Thus, it is a matrix
X € Z’}r’(h that satisfies the following two conditions:

(a) Each agent receives a non-negative amount of each type of item, which is not
larger than her claim:

0<x,<c¢, foralieNandallgeH.
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(b) The overall cost does not exceed the available estate:

n h
ke pll = D ) xip <E.

i=1 g=1

We denote by X(a) the set of all feasible allocations for the problem a € A.

All standard models on claims problems impose that the estate must be exhausted
and nothing remains without being allocated. Notice that, Condition (b) relaxes
this requirement and part of the estate may be unassigned. Otherwise, if equality is
imposed, the set of allocations will be empty for some problems.

Example 1 Let N = {1,2,3,4}, H={1,2,3}, and p =(2,4,5). For the problem
a=(N,H,p,c,E), where E = 16 and

102
001
001]
112

The overall claimed amount is®

4 3
le-pll =YY ¢;p, =38 > 16 =E.

i=1 g=1

Three possible allocations for this problem are

000 001 001
L_|ooof , _Joorf ,_fooo

000 | 000 [ 000

000 001 111

All the three previous matrices satisfy the two conditions to be allocations of
the problem, but they differ in that part of the estate that is wasted or non-used
(E — ||x - p|)). Hence, for the null allocation x we have that ||x - p|| = 0, so all the
estate is left, for x', ||x” - p|| = 15, so only one unit is left, while in x”, ||x" - p|| = 16,
hence the estate is exhausted.

A rule is a way of selecting allocations. In our setting, it is a correspondence,
R:A =7} h, that selects, for each problem a € A, a non-empty subset of alloca-
tions R(a) C X(a).

We next present some examples of rules than can be used to solve a claims prob-
lem with indivisible items and prices.

The first rule is straightforward, it simply stipulates that no agent receives anything.
Obviously, from a practical perspective this rule is pointless, but it is useful from a

® For a given matrix A we denote by ||A[| the norm 1 of A, that is, the sum of all the entries of the matrix.
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theoretical point of view, since it can be used to illustrate certain problems with the
properties of the rules.
Null rule, R". For each a € A and each x € X(a),

x€RYa) & xig=OVi€NandVg€H

A rule is a multi-valued mapping, so it may select more than one allocation. The
next proposal is an extreme case, since it selects the whole set of allocations X(a). It
is the counterpart of the null rule.

Greedy rule, R°. For each a € A,

R%a) = X(a).

Let >, be an ordering on the set of claimants N, where i >, j means i has priority
over j. Let >, be an ordering on the set of items H, where f >, g means f has prior-
ity over g. Consider now a rule as the following modus operandi: the agents arrive
one at a time in the ordering >, and try to fully satisfy them, starting with the items
with the highest priority in >,. This process continues until, eventually, the estate
runs out. The formal definition of this rule is given below.

Agent-item priority arrival rule, RA"A, For each a € A and each x € X(a),

x€RMa) & [x,,> 0= xy=cyVf >y gandxy = c; Vj >y i Vf € H|.

As a result of the application of this rule, agents with higher priority are satisfied
before those with lower priority. Besides, for each agent, more relevant items are
fully served first. Consider, for example, the impact of the COVID-19 pandemic
in a country whose regions (agents) are significantly heterogenous with respect to
the pressure levels of their ICUs. It is natural to prioritize those regions with more
pressing needs. In addition, some items (ventilators, for instance) are more critical
than others for the patients survival. The agent-item priority arrival rule could be
appropriate for such a kind of situations.

Several generalizations of the previous rule can be defined by, for example, con-
sidering different orderings of items for different claimants. Alternatively, instead of
applying >, and then >, it is also possible to do the converse.

Another rule based on priority which better captures the idea behind rules with
similar name in other settings (see Thomson 2019) is the following. Given an order-
ing >, on the set of claimants, agents arrive one at a time in the ordering. The first
agent in the ordering selects the set of items so that she maximizes the value of her
choice subject to the budget constrained given by E. Let E' be the remaining estate.
Now, the second agent in the ordering selects the set of items so that she maximizes
the value of her choice subject to the budget constrained given by E'. We continue
the process until the estate, eventually, runs out.

Agent priority arrival rule, RA". For each a € A and each x € X(a),

APA _ . .
XxER"(a) & |x,>0=>x,=0c,Vi >N]].

Notice that, in comparison with the agent-item priority arrival rule, this rule con-
sumes more budget in each step of the process, since there is no ordering on the
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items that restricts the agent’s choice. Therefore, these two rules are suitable for

similar situations, depending on whether some item must or must no be prioritized.
The next rule is a two-step process. First, the estate is equally divided among the

items (% for each one). And second, for each item, amounts as equal as possible are

assigned to all claimants subject to no-one receiving more than her claim.” This rule

can be used when the central planner is interested in allocating the budget as equally

as possible not only among the agents but also among the different items.
Equal-by-item rule, R’. For each a € A and each x € X(a),

|x; — x| < Lforalli,j €N
n E
x € R(a@) & 3 P (T %) < 7 ;
pg(l +Zi=1xig) >

In the previous definition, for each possible item, the first condition states that the
difference between the awards of two agents is no larger than 1. The second condi-
tion imposes that the overall cost of all assigned units does not exceed the share of
the estate for this item. Finally, the third one says that the part of the estate corre-
sponding to this item is efficiently distributed, wasting as little as possible.

Several variations of the previous rule are possible. For example, we can consider
the distribution of the estate among the items different from the uniform split. We
can also restrict the set of allocations by introducing an ordering on N as a tie break-
ing scheme. Besides, we can obviate the third condition on the efficient usage of the
estate.

Another interesting rule could be obtained by applying the two step process of the
equal by item rule but to agents. Namely, some kind of equal by agent rule. For each
agent we select a set of items whose prlce is smaller or equal than £ and such that
adding a new item the price is larger than £ ~. Later the remaining budget is assigned
to any set of agents spending as much as possible.

Equal-by-agent rule, RE4. For each a € A and each x € X(a),

rZ y€E anh
Zﬁ_lpg g S ‘v’l EN
x=z4+yERM () & Z lpgzzg > mm{z —1 PyCigs %},VZ/ >z,VieN
Z, 1Zi_lpgy,~g —llz- pll
Y T Peig 2 Ty Ty Pl VY € X(d),

where 7/ > z means that there is at least one cell ig such that z;g > Zigs and the others

are greater or equal; and @’ = (N, H,p,c — 2, E — ||x - p||).

7 The second step of this procedure is closely related to some other extensions in settings with indivis-
ibilities of the so-called constrained equal awards rule (Herrero and Martinez 2008a, Chen 2015).
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Example 2 Continuing with the claims problem of Example 1, these are the alloca-
tions selected by each of the rules described above.

(a)

(b)

(c)

(d)

(e)

Null rule.
000
R@=1l 500
000
Greedy rule.
R%(a) = X(a).
Agent-item priority arrival rule. Let us suppose that the ordering >, and > are

such thatl >, 2 >y 3 >, 4and 3 > 2 > 1. Given >, we start with Agent 1.
When this agent is fully honored, the remaining estate is 16 — (2 -5+ 1 - 2) = 4.
Claimant 2 is the next in line. According to >, we should start by awarding her
demand on item 3. However, the unit cost of item 3 she is claiming is 5, which
exceeds the available estate. Then, the process stops and the allocation is the
following:

102
000
000
000

RATPA ((1) —

Agent priority arrival rule. Let us suppose again that the ordering >, is such that
1>y 2>y 3 >y 4. We start with Agent 1. He is fully honored obtaining x;; =1
and x;; = 2, and the remaining budget is 4. Agents 2 and 3 cannot obtain any-
thing since the items they demand have a price of 5. Finally, Agent 4 can choose
I unit of item 1 or 1 unit of item 2, but if we consider agents are maximizers
of the budget allocated to them, then the only alternative is x,, = 1. Then, the
process ends and the rule gives the following allocation:

102
000
000
010

RAPA (Cl) —

Note that if c,; had been 2 instead of 1, then RAPA(a) would have two possible
allocations.

Equal-by-item rule. First, we equally divide the estate among the items
(E,=E,=F; = %). We start with item 1. Since p; = 2, E| is enough to fully
cover the demands of Agents 1 and 4. The same argument applies to item 2.
Finally, item 3 must be rationed because the cost of honoring all the demands
exceeds the share of the estate devoted to this item. With E5 = 1% we can only
distribute 1 unit at a price p; = 5. Following the definition of the rule, this unit
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may be assigned to any agent. Therefore, the equal-by-item rule selects the fol-
lowing allocations:

101 100 100 100
000f]001 00011000
Ooo0Ofp|foo0O0p1001Y[]1000
110 110 110 111

REI(a) —

(f) Equal-by-agent rule. First, we equally divide the estate among the agents, 14—6 =4.
With this distribution of the budget there are only two alternatives

100 100
00011000
0001000
100){01O0

In the first case 12 units of the budget are left and in the second case 10 units
are left. In both cases, the allocations spending as much as possible of the
remaining budget are

4
Y = {yerG : ZyB =2,y =yi2=O,VieN}.

i=1

Therefore,
100 100
000 000
EA, N _ .
R*%(a) = 000 +y,000 +y:yeyY
100 010

All the previous rules (and their possible generalizations) arise as natural ways to
solve a claims problem with indivisible items of different prices. Some of them may be
more appealing than others. There are rules (like the null rule) that make very ineffi-
cient usage of the available estate, which is quite undesirable in a situation of shortage.
Other proposals may result in very ,,unfair" allocations. Thus, the priority arrival rules,
for instance, do not take into account any minimal principle of justice. Some claimants
are fully satisfied while others get nothing. Besides, solutions in the spirit of the equal-
by-item or the equal-by-agent rules are easily manipulated by the agents merging or
splitting their claims. In the next sections we deliberate over the existence of rules with
good properties that can be applied to our claims problems.
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3 Three Core Properties

In this section we present three minimal requirements a rule should satisfy, which
are quite standard in the literature on claims problems. The restrictions they
impose are so slight that they are usually compatible (O’Neill 1982; de Frutos
1999; Ju et al. 2007; Estafl et al. 2020). The first property stipulates that in a
rationing situation we should waste as little as possible. The second property is
a minimal criterion on fairness, and states that agents with equal claims should
be equally treated. Finally, the last property makes the rule immune to certain
manipulations by the agents. To summarize, efficiency, fairness, and non-manipu-
lability will be the core requirements we impose as starting point.

As we have seen in Example 2, it may happen that not all the allocations com-
pletely exhaust the estate. Given the nature of the problem, it is natural to require
that the rule chooses an allocation that misuses the estate as little as possible.
This is the counterpart of the efficiency requirement in claims problems with con-
tinuous claims and estate, which states that the entire amount available should be
allocated (see, Thomson (2003) and Thomson (2015), for example).

Non-wastefulness For each a € A, if x € R(a), then there is no other alloca-
tion X’ € X(a) such that E — ||x" - p|| < E = ||x - p|I.

The next property introduces a minimal condition of equality, imposing that
individuals with the same claims should be treated equally. Obviously, because of
the nature of the problem and the existence of indivisible items, complete equal-
ity is difficult to achieve (if not impossible in most cases). So, we modify the con-
dition to require that agents with equal claims must obtain allocations as equal as
the indivisibility allows, and equal agents must have the same opportunities. That
is, if two individuals demand the same units of all items, then (i) their allocations
differ, at most, by one unit per item (in each allocation their awards are as equal
as the indivisibility permits), and (ii) the set of selected allocations is symmetric
with respect to these two agents (both have the same opportunities to receive one
unit more than the other).

Weak equal treatment of equals For each a € A and each {i,j} CN, if
Cig = Cj, Vg € H, then for all x € R(a) it holds that

o forallge H,|x;, —x;,| <1, and
e for each g € H, there is X' € R(a), such that x;g = X xj’.g = x;, and the rest of
cells of x” are the same as in x.

Finally, the next principle says that the rule is immune to manipulation. More
precisely, it states that agents cannot manipulate the allocation by either merging
or splitting their demands. If a group of individuals merge into a single claimant
whose demand (for each item) is the sum of the demands of all the members of
such a group, then the allocation of this phantom claimant should coincide with
the aggregate allocation the group would have obtained if they had concurred
separately. Dually, if an agent splits into a group of different individuals, the



On the Difficulty of Budget Allocation in Claims Problems with... 1143

aggregate allocation should coincide with the allotment this single agent would
have received.®

Before formalizing the axiom, we must point out that we are working with cor-
respondences, which means that the outcome of a rule is a set of allocations. There-
fore, comparing two outcomes requires comparing two sets, and several possibilities
arise: S=T,S CT,orT C S. From those alternatives, non-manipulability by merg-
ing or splitting states that (1) for each allocation in the shrunk problem (the problem
with the phantom agent) there must exist a corresponding allocation in the expanded
problem (without the phantom agent), and (2), for each allocation in the expanded
problem there must exist a corresponding allocation in the shrunk problem.

Non-manipulability by merging or splitting For each (N, ¢, E),(N',c’,E) € A
with N’ C N, if there is i € N’ such that the following two conditions hold
¢, =Cig+ Lenmw g forallg € H

2. cjfg = c;, forall j € N'\{i} and for all g € H,
then

(a) VX' € R(N',c',E) there exists x € R(N, ¢, E) such that xlfg = X;, + ZjeN\N, Xjg
Vg e H.

(b) Vx € R(N,c,E) there exists X' € R(N’,c’, E) such that xlfg =X, + ZjeN\N, X
Vg e H.

Note that the definition of non-manipulability by merging or splitting states that any
allocation that a group of agents could receive through their merger could also have
been obtained by remaining separate, and conversely, any allocation that a group of
agents could receive by remaining separate could also have obtained through their
merger.

4 Compatibility Results

In the previous section, we have formalized three basic properties that implement
principles of efficiency, fairness, and non-manipulability. Now, we explore their
compatibility, that is, we analyze if rules exist that satisfy all or some of those
properties.

Given a problem a € A. Consider the following integer linear programming prob-
lem (ILP, for short):

8 It was first studied in O’Neill (1982) with the name strategy-proofness, and analyzed in works as de
Frutos (1999) or Ju et al. (2007).
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() T
IA
= %

ig < Cig» ViEN,Vg €H |

or equivalently,

max 2 Zpg Xig

xeznxh
i=1 g=I

S S s | "

i=1 g=1

0<x,<c, VieENVgeH)

Let us denote by /LP(a) the set of all optimal solutions for the program in (1). It is
easy to observe that a rule R satisfies non-wastefulness if it is a selection of solutions
of the previous optimization problem, i.e., R(a) C ILP(a) for all a € A. The integer
linear program defined by (1) belongs to the class of bounded knapsack problems.’
Since the seminal paper by Dantzig (1957) several extensions have been widely
studied due to their practical applications ( Kellerer et al. 2010). In general, the
solutions of a bounded knapsack problem cannot be obtained in polynomial time.
Besides, most of the algorithms are heuristic, and they are usually unable to find all
the possible allocations. In other words, finding the set of non-wasteful allocations
of the claims problem (and therefore the goal of efficiency) is a very hard task, if not
impossible. However, despite these technical difficulties, the following results shows
that some interesting conclusions can be derived.

Theorem 1 There are rules that satisfy non-wastefulness, weak equal treatment of
equals and non-manipulability by merging or splitting if and only if there are rules
that satisfy those properties for the subclass of problems with |H| = 1.

Proof 1t is obvious that if there are rules that satisfy non-wastefulness, weak equal
treatment of equals and non-manipulability by merging or splitting then those rules
satisfy those properties for the subclass of problems with |H| = 1.

Conversely, let us suppose that there are rules that satisfy non-wastefulness, weak
equal treatment of equals and non-manipulability by merging or splitting for the
subclass of problems with |[H| = 1. Let R be one of those rules, then we define the
following procedure for all problems a = (N, H,p,c, E) € A:

? Notice that the constrains 0 < Xy < Cjs Vi € N,Vg € H restrict the possible values of the optimization

variables, and therefore the knapsack problem is bounded.
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First, we consider the bankruptcy problem b(a) = (N, d, u, E) given by

e The set of claimants N = H, i.e the claimants are the different types of items.

e d,=p, Dien ¢, for all g € H, i.e. the claim of item g is exactly the total amount
claimed by all agents for the item g.

e 1y is a vector of utility functions defined for each g € N = H as follows:

ug(y) = L%J X Pys

8

where | 7| is the integer part of r € R.
e Finally, the estate E is exactly the same asina = (N,H,p,c,E) € A.

This bankruptcy problem is closely related to those studied in Gozélvez et al.
(2012), Lucas-Estaii et al. (2012) and Carpente et al. (2013), in which the agents are
considered to have different utility functions in the sense that the same part of the
estate has different degrees of satisfaction for the claimants. In our particular case,
for example, Claimant 1 must receive at least p, units of the estate to obtain one
level of satisfaction, i.e. one item of type 1 € H, and this can be different for each
claimant g € V' = H.

Second, we distribute the estate £ amongst the claimants A= H by solving the
following linear program:

h

max Zu (x,)
yeR! o g\

h
s.t.: Zyg <E > ()
g=1

n
0<y, <p, ) ¢ V8 EN=H

i=1 )

Note that every optimal solution of the integer linear program defined by (1) results
in a feasible solution of the linear program defined by (2), and this must be optimal
because, otherwise, we would be able to find a better solution for the problem given
in (1) from an optimal solution of the problem given in (2). We denote by LP(b(a))
the set of all optimal solutions X of the linear program given by (2) such that
I)% €z, NgeN.

Third, for every optimal solution y € LP(b(a)), we consider the family of prob-
lems a,=(N,H = {g},pg,cg,)';g), where Co = (Cpgs-evs Cpg)-

Finally, for each problem a, we consider R(a,). The set of allocations given by
this procedure is exactly

h
U Qra,.

YELP(b(a)) g=1
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where ) denotes the Cartesian product.

This procedure provides a rule R which satisfies non-wastefulness, weak equal
treatment of equals and non-manipulability by merging or splitting. Indeed, by defi-
nition and taking into account that R satisfies non-wastefulness and weak equal treat-
ment of equals, R satisfies non-wastefulness and weak equal treatment of equals too.

Leta=(N,H,p,c,E),d =(N',H,p,c’,E) € A with N’ C N such that fori € N’
the following holds

L ¢, =cig+ iemw ¢ forallg € H

2. c]fg = c;, forall j € N'\{i} and for all g € H

First of all, note that LP(b(a)) = LP(b(a’)). Now let X' € R(a’), then there is an opti-
mal solution y such that x’g € R(El; ) for all g € H. Since LP(b(a)) = LP(b(a’)) and R
satisfies non-manipulability by merging or splitting, then for each g € H there is an
X, € R(a,) such that x| = X;, + X ;cy\n Xj,- The proof of the second condition is
analogous. Therefore, R satisfies non-manipulability by merging or splitting. O

The previous result states that, if we are able to obtain rules that satisfy the three
conditions in a reduced domain of problems (with just one item), then they can be
extended to the general domain. And conversely, if the three properties are not com-
patible when |H| = 1, then they are not compatible in general. Theorem 2 exploits
this relation to conclude that, in this setting, it is not possible to find a rule that
fulfills non-wastefulness, weak equal treatment of equals and non-manipulability by
merging or splitting.

Theorem 2 There is no rule that satisfies non-wastefulness, weak equal treatment of
equals and non-manipulability by merging or splitting.

Proof Let us consider a= W =1{1,2,3,4,56},H={l}.p=(1).c=(1,1,1,1,1,5),E = 4),
and a rule R that satisfies non-wastefulness, non-manipulability by merg-
ing or splitting, and weak equal treatment of equals. Let us consider
a = (N’ ={1,6},H={1},p=(1),c =5,5),E = 4), in this case by non-waste-
fulness and weak equal treatment of equals R(a’) = {(2,2)}.

Now, let us consider

a’=(N=1{1,2,3,4,56,78,9,10},H = {1},p = (1),
c=(1LLLLLLILLL,E=4),

in this case, by non-wastefulness and weak equal treatment of equals R(a”’) is the
set of all possible 0-1 vectors, such that the sum of their coordinates is 4. Therefore,
by non-manipulability by splitting the allocation (0, 0, 0, 0, 0, 4) belongs to R(a).
Again, by non-manipulability by splitting R(a’) = {(2,2)} is the unique result and
the impossibility of x’] = 0 1s more evident. O

Theorem 2 provides a surprising result, since it states an incompatibility
among some principles that are compatible in the classical claims problem (see
Thomson (2019)). Notice that none of the properties in the previous result is very
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demanding by itself. Indeed, the next propositions show that any pairwise com-
bination of non-wastefulness, weak equal treatment of equals and non-manipula-
bility by merging or splitting is feasible. Besides, the set of rules that satisfy each
pairwise combination of properties is so wide that it does not seem to have a clear
structure.

Proposition 1 There are rules that satisfy non-wastefulness and weak equal treat-
ment of equals together.

Proof To prove the result is sufficient to show that there is at least one rule sat-
isfying these two properties for each a € A. We define the following rule
WE(a) = ILP(a) N E(a) for each a € A, where E(a) is the set of all weak equal treat-
ment of equals allocations in X(a). Now we only need to prove that WE(a) is always
nonempty for each a € A.

Let a=(N,H,p,c,E) € A and let i,j € N be such that Cig = Cjg for all g € H.
Given an allocation x* € ILP(a), let us suppose that there is some item g € H, such
that |x;.“g — x]’.kg| > 1. Now we consider the following allocation:

-

x;:f if k #1,],
%y iff # 8.
X, =1 : * % |X?§_Xj§| : ;
kf mzn{xig,xjg} + {T ifk=iandf =g,
min{x* ,x*} + lMJ + [m{w}] ifk=jandf =g
L g’ jg 2 2 ’

where given r € R, | r] is the integer part of r, [r]is the lowest integer larger than or
equal to r, and m{r} is the fractional part of r.

Finally, it is easy to check that x’ € ILP(a) and, obviously, also x' € E(a), there-
fore X' € WE(a). Now, since ILP(a) # @ and E(a) # @ for each a € A, WE(a) # @
for each a € A. O

Proposition 2 There are rules that satisfy non-wastefulness and non-manipulability
by merging or splitting together.

Proof To prove the result is sufficient to show that for each a € A, the set ILP(a)
satisfies non-manipulability by merging or splitting.
Leta=(N,H,p,c,E),a =(N',H,p,c’,E) € A with N’ C N, and leti € N’ such
that the following two conditions hold
/

L ¢, =cipt Djenw G forall g € H

ig

2. ¢ =c,forallg € Hand forall j € N'\{i}.

Let X' € ILP(d’), then we define for each j € N and for each g € H, the following
allocation:
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xj’.g ifjeN andj # i,
¢ ~ Y GR(N\N") Ui, (ckg>k€(N\N,)Ui,x£g) if j € (N\N") U i,
where GRIN\N") U i, (¢xg) e
method!” to distribute x;g according to the vector (ckg)

check that this allocation x belongs to ILP(a).
Conversely, let x € ILP(a), then we define for each j € N’ and for each g € H,
the following allocation:

N _{xjg ifj € N andj # i,
jg Xig + ZkeN\N, Xig ifj=1i.

,x! ) is the application of the greatest remainder
ig

kev\wnuir TYOWs 1L 1S easy to

Again, it is easy to check that this allocation x’ belongs to ILP(a’). Therefore, the
rule R'“P(a) = ILP(a) for each a € A satisfies non-wastefulness and non-manipula-
bility by merging or splitting. O

Proposition 3 There are rules that satisfy weak equal treatment of equals and non-
manipulability by merging or splitting together.

Proof The null rule satisfies both non-manipulability by merging or splitting and
weak equal treatment of equals. O

5 Protective Properties and Duality

In this section we study the compatibility between the non-wastefulness condition
and other standard properties required when solving claims problems. In particular,
we focus on requirements that protect small claimants. In some cases these proper-
ties establish the conditions under which an agent has such a small claim that she
should be excluded from rationing. In other cases they guarantee a minimum amount
of resources to each individual.

Consider an agent i, and replace any other agent’s claim (for all the items) by the
claim of agent i. Imagine that in the new problem resulting from this replacement
the overall demand does not exceed the available estate. Exemption states that, in
such a case, the claim of i is so small that she is not responsible for the shortage, and
she should be excluded from rationing. This is, i should receive her claim.'!

Exemption For each a € A and eachi € N, if

10 This is a well-known method in apportionment problems also known as the method of largest frac-
tions or the Hare Quota method (see, for instance, Lucas (1982)). The integer budget is distributed pro-
portionally to the integer claims, if the allocation is integer for all claimants that is the final allocation, if
not, each claimant receives the integer part of his allocation, and an extra unit is allocated to the claim-
ants with the highest fractional parts until the estate is exhausted.

' This property was introduced by Herrero and Villar (2001).
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h
n- Zpgcig <E,
g=1

then, for any x € R(a), x;, = ¢;, Vg € H.

The next property applies a different criterion to determine when an agent has
a small claim. Consider an agent 7, and replace any other agent’s claim (for all the
items) by the minimum between her claim and the claim of agent i. Imagine that
in the new problem resulting from this replacement the overall demand does not
exceed the available estate. Conditional full compensation states that, in such a case,
agent i should be excluded from rationing and receive her whole claim.!?

Conditional full compensation For each a € A and eachi € N, if

h h
3 Y pyes + (0= IND Y poc < E.
g=1

JEN: g=1

then, for any x € R(a), x;, = ¢;, Vg € H, where N; = {j EN X P < X, PeCie }
Notice that exemption implies conditional full compensation, and both properties
coincide when |[N| = 2.

Theorem 3 There is no rule that satisfies non-wastefulness and conditional full com-
pensation together.

Proof Let R be a rule that satisfies both properties in the statement of the theorem.
Let us consider the problem where N = {1,2,3}, H = {1,2}, p = (3,7), E = 35, and

23
c=1|12
11

For Claimant 3 we have that N; = ¢ and therefore ZJ.GN; ZZ:I PeCie + 3 —INT )
Z§=1 P,C3, = 30 < 35. Since the rule satisfies conditional full compensation, it must

happen that x;; = x3, = 1, which is not compatible with non-wastefulness. Indeed, if
X3; = X3, = 1 then 25 units of estate remains. But this remaining estate cannot be
allocated to Agents 1 and 2 fulfilling non-wastefulness, because the unique positive
and integer linear combination of the numbers p; = 3 and p, = 71s 6p, + 1p, = 25.
However, this would imply to assign 6 units of the first item, which exceeds the joint
claim of Agents 1 and 2. O

As a consequence of the previous result, neither exemption and non-wasteful-
ness are compatible. Theorem 3 illustrates that, for the problem of adjudicating
conflicting indivisible claims with different prices, efficiency (non-wastefulness)
and some protective conditions (exemption or conditional full compensation)

12 This requirement is called sustainability in Herrero and Villar (2002).
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cannot be conciliated. It is worth noting that this impossibility is a particular-
ity of the model with several items and prices. Both when claims and estate are
divisible, and when they are expressed in indivisible units these two properties
are compatible ( Herrero and Martinez (2008a)).

The next property, called securement, was introduced by Moreno-Ternero and
Villar (2004) and guarantees a minimal share to every agent. More precisely, it
imposes two conditions. One, an individual holding a feasible claim (the value of
her demand at the prices of the items is below the estate) should receive alloca-
tions whose value is, at least, one nth of the value of her claim. And two, an indi-
vidual holding an unfeasible claim (the value of her demand at the prices of the
items is above the estate) should receive allocations whose value is, at least, one
nth of the estate.

Securement For each a € A, each x € R(a), and eachi € N

Zpgx > - mm Zpg B ¢, ViEN.

Example 3 Let us consider the problem where N = {1,2,3}, H = {1,2}, p = (2,4),
E =10, and

o

Il
—
[\O TN \O I \9}

For any agent i € N, securement implies that 2x;; + 4x;, > ?. Besides, by the defi-
nition of a rule, it must happen that 2(x;; + x,; + x31) + 4(x}, + Xy, + x3,) < 10 with
X, € Z., but this is impossible.

The previous example illustrates that securement, as it is defined above, cannot
be directly applied to this model because it is incompatible with the definition of
a rule itself. The main reason is that the lower bound securement imposed is too
high. Therefore, it must be definitively discarded.

In the spirit of securement, the next criterion guarantees to each agent a mini-
mum amount that, at the same time, is also compatible with the existence of fea-
sible allocations. To this end, we look for the largest lower bound of the value of
the allocation of any agent i € N. That is, we are looking for a value a; such that
(1) we can impose that Z L Peig 2 (in the line of securement), (ii) @; is com-
patible with the ex1stence of feasible allocations, and (iii) if «; increases by an
infinitely small amount e € R, then the impossibility emerges again.

Weak securement For each a € A, each x € R(a), and eachi € N

h
Z1 Zyrg)%) Zpgy’g Zpgy’g< min Zpg Cig & , VieN.
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This is the explanation in detail of the previous alternative definition of securement.

We know, by Example 3, that it must happen that Zzzl PeYig < i min { 22:1 PyCig E }

because otherwise we have impossibility. So, among those allocations that generate
feasibility, we take those in which the claimant obtains the largest possible value.
Thus, weak securement can be applied to this model without the issues originated by
the standard definition of securement.

The next result shows that, however, when non-wastefulness is required in con-
junction with weak securement, an impossibility emerges.

Theorem 4 There is no rule that satisfies non-wastefulness and weak securement
together.

Proof Let R be a rule that satisfies both properties in the statement of the theorem.
Let us consider the problem where N = {1,2,3}, H = {1,2}, p=(3,7), E = 14, and

14
c=123}|.
60

Since R satifies non-wastefulness we have that

o1Y(o2)(o0o0
Raycilot1]fool]o2
oo)Jloofloo

Notice that, in any allocation x € R(a) the third agent does not receive any unit of any
item. And hence, 3x3; + 7x3, = 0. This implies, because of weak securement, that
3y31 + 7y3, = Oforall y € X(a) such that 3y;, + 7y;, < 3 min{3-6+7-0,14} = Z.
Which is not true. O

The last of the criteria, called self-duality, was formulated by Aumann and
Maschler (1985). It states that the problem of dividing profits should be solved sym-
metrically to the problem of dividing losses. Before defining the property we intro-
duce the dual problem of a claim problem. Given a = (¢, E) € A, the associated
dual problem of a is given by a® = (¢,L) € A, where L = ||c - p|| — E.

Self-duality For each a € A it holds that R(a) = ¢ — R(a?).

Proposition 4 If a rule satisfies the self-duality property then it exhausts the estate.

Proof Let R be a rule that is self-dual but does not exhaust the estate. Then, for a
given problem a € A there exists an allocation x € R(a) such that

n h
Z Zpgxig <E

i=1 g=1
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In application of self-duality, x* = ¢ — x € R(a?). However,

n h

Zng ig Zngclg Zngxlg> ”Cp”_E L

i=1 g=1 i=1 g=1 i=1 g=1

In other words, since ||x? - p|| > L, the allocation x? is not feasible and hence we

have a contradiction. Therefore, if R is self-dual then the estate must be completely
used. O

The converse of Proposition 4 is not true in general. For example, if we consider
the class of problems with H = {1} and p, = 1 and E a positive integer number, then
the discrete constrained equal awards rule (see, for example, Herrero and Martinez
(2008a)) always exhaust the estate but does not satisfies self-duality.

An immediate consequence of Proposition 4 is that there can be no rules that sat-
isfy the property of self-duality, since no rule can always exhaust the estate, in gen-
eral. Notice that, unlike the other results in this section, the lack of self-dual rules is
absolute, and the principle of non-wastefulness plays no role in that.

6 An Alternative to Non-Wastefulness: Pareto Efficiency

As we have already mentioned, most of the models on claims problems assume that
the estate must be fully distributed and nothing must remain. This requirement is
called balance by Thomson (2019), but it is also known as efficiency (Thomson
(2003), de Mesnard (2015)). It is quite obvious that this principle cannot be directly
applied to our setting. In the previous sections we have interpreted this requirement
from the point of view of a central authority whose goal is to do the most with the
least, focusing on the use of the budget and trying to minimize the wasted estate.
However, we have found this requirement to be very demanding and not compatible
with many reasonable properties.

In this section we explore an alternative formulation of the efficiency principle:
Pareto efficiency. In contrast with non-wastefulness, this property focuses on the
agents’ allocations rather than on the expenditure of the budget. An allocation is
Pareto efficient if there is no other allocation in which some individual is better off
and no individual is worse off.

Definition 1 For a € A, x € X(a) is Pareto efficient if there is no other allocation
x' € X(a) such that X ppxi 2 ey PeXi, Vi €N, with at least one strict
inequality.

Given a € A, we denote by P(a) C X(a) the set of all allocations which are Pareto
efficient.

Pareto efficiency For a € A, R(a) C P(a).

Notice that it is glaringly obvious that non-wastefulness implies Pareto efficiency,
but the converse is not true. Even though these two properties are not equivalent
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in general, it is not difficult to prove that they coincide when |H| = 1. As a conse-
quence, we can replace non-wastefulness by Pareto efficiency in Theorem 1, which
implies that weak equal treatment of equals and non-manipulability by merging or
splitting together are incompatible with Pareto efficiency. This result is the analo-
gous to Theorem 2.

Theorem 5 There is no rule that satisfies Pareto efficiency, weak equal treatment of
equals and non-manipulability by merging or splitting.

Since Pareto efficiency is milder than non-wastefulness, we obtain the counter-
parts of Propositions 1 and 2.

Proposition 5 There are rules that satisfy Pareto efficiency and weak equal treat-
ment of equals together.

Proposition 6 There are rules that satisfy Pareto efficiency and non-manipulability
by merging or splitting together.

With regard to self-duality, it is evident that it will not be compatible with Pareto
efficiency, since the latter does not guarantee that the estate is fully exhausted. The-
orems 3 and 4 state that conditional full compensation and weak securement are
incompatible with non-wastefulness. However, the next two results show that, if the
latter requirement is weakened to Pareto efficiency, then the possibility emerges.

Theorem 6 There are rules that satisfy Pareto efficiency and conditional full com-
pensation together.

Proof In order to prove this result is sufficient to show that there is at least one
rule satisfying both properties. Given a problem a = (N, H, p, ¢, E), we proceed as

follows:

e The agents are ordered according to their claims on the budget in this way,

ixje Zpgclg = Zpg Cjg
8=

For each i € N, we denote by N = {j EN: Zz=1pgqjg < ZZ=1pgcig }

e Leti,be an agent in the previous order such that the following inequalities hold

> Zpgc]g+(n IN, I)Zpg Ciog <

JEN; g=

and, for each k € N such thati, € N,
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h

h
3 3 pecio + (= INTD Y pycig > E.

JEN; g=1 g=1

Moreover, we denote by N® = {i € N : i < i, }. Note that N° is independent of
the chosen agent i,.
e Let x° be the following allocation, x?g =c,.Vg€H, if i€ NO and
x?g =0,Vg € H, otherwise.

We define X%(a) = {x € X(a) |x —xY € X(a) }. Now, we define the following rule
RS(a) = x" + ILP(d),

where @’ = (N,H,p,c —x°, E — ||x° - p||).
By definition this rule satisfies Pareto efficiency and conditional full compensa-
tion. O

Theorem 7 There are rules that satisfy Pareto efficiency and weak securement
together.

Proof Again, to prove this result is sufficient to show that there is at least one rule
satisfying both properties. Given a problem a = (N,H,p,c,E), we proceed as
follows:

First, we consider the set X"5(a) C X(a) given by

h h h h
|
WS
XEXT(a) & Zpgx"g 2 {Zpgyig Zpgyig <, min {Zpgcig’E} }
&=l &=l &=l &=l
VieN.

Now, we define the following rule
R(a) = X" (a) n P(a).

By definition RS satisfies weak securement and Pareto efficiency. Furthermore, this
rule is nonempty. Indeed, consider R4 (a) that we know it is nonempty. If there is an
allocation x € RF4(a) that is Pareto efficient, then x € R5(a). Otherwise, for each
x € REA(a) there exists X' € X(a) such that Y - pgx;g > Y ocn PeXigs Vi € N, with at
least one strict inequality, but this x' € X"3(a). If ¥’ is not Pareto efficient, we can
find another x” € X(a) such that ),y poxj, > Y ey PoXj,» Vi € N, with at least one

strict inequality. Furthermore,

Z Zpgxig < Z Zpgx;g < Z Zpgx;; <E.

ieN geH iEN geH iEN geH

Now, since X(a) is a finite set there exists K > 0 such that any positive improve-
ment of an agent from one allocation to another is larger than or equal to K, i.e., K
is the minimal positive improvement that an agent can obtain from one allocation
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to another. Therefore, since E is finite the above chain of allocations cannot be con-
tinued indefinitely, so that there will be an allocation in X"3(a) that it is Pareto effi-
cient. O

Therefore, Pareto efficiency is a sufficiently less demanding property to be
compatible with other reasonable properties. Furthermore, we can define rules
that satisfy several of the properties introduced in this paper. For example, the
following rule

RS@a) =x* + R3(d)),VYa € A,

where ' = (N JH,p,c—x% E — ||a° - pll), satisfies Pareto efficiency, conditional full
compensation, and weak securement.
Consider the rule RCES defined as follows. For each, a € A,

RES(a) = R%(a) N E(a)

This rule satisfies Pareto efficiency, weak equal treatment of equals, conditional full
compensation, and weak securement. The converse is not true, there are rules dif-
ferent from RS that also fulfill these four properties. However, any rule that satis-
fies Pareto efficiency, weak equal treatment of equals, conditional full compensation,
and weak securement must be a subselection of R¢ES,

Theorem 8 If a rule R satisfies Pareto efficiency, weak equal treatment of equals,
conditional full compensation, and weak securement, then R(a) C RF5(a), Va € A.

Proof Let R be a rule satisfying Pareto efficiency, equal treatment of equals, con-
ditional full compensation, and weak securement. Let a € A and x € R(a). Since
R satisfies conditional full compensation, x can be written as x° + (x — x°) so that
(x —x% € X%a).

Since R satisfies weak securement, we have that for each i such that
x?g =0,Vg € H,

h h h h

2 > max < min —Zg=1pgcig E
Peiy 2 2 PYie| 2 PeYig < e
grig yeX(a) pgyzg pgyzg n n

g=1 g=1 g=1

0

otherwise, by conditional full compensation Xig = Cig> Vg € H. Moreover, R satisfies

Pareto efficiency. Therefore, x € R (a).

Finally, since R satisfies weak equal treatment of equals, x € E(a). Therefore,
x € R(a) N E(a) = R5(a). O

We finish with a table that summarizes the properties each rule in Sect. 2 sat-
isfies (Table 1).
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7 Discussion

In this paper we have studied a particular class of claims problems. In our model
a group of agents demand several units of different items, each of which has a
price. The available estate is not sufficient to satisfy the aggregate claim. A rule
is a multi-valued function that selects a set of allocations, which indicate the
amount of units of each item that is assigned to each claimant.

In contrast with other models involving claims problems, efficiency cannot be
guaranteed. The closest requirement is non-wastefulness, which states that the
rule should waste as little estate as possible, and is closely related to the so-called
bounded knapsack problem, whose solutions, in general, are difficult to obtain.
Even though, with this milder condition of efficiency, we find that there is no
rule that satisfies non-wastefulness together with other criteria that protect small
agents or ensure claimants receive a minimum allocation.

In view of all the impossibility results obtained in this work, we can observe
that it is not easy to reconcile efficiency (via non-wastefulness) with fairness. At
the point we can follow to different paths. First, we contemplate an alternative
notion of efficiency that weakens non-wastefulness. Or second, we reconsider the
absolute necessity of the non-wastefulness property and simply guarantee that the
maximum amount of estate is distributed, while respecting certain properties of
fairness in the distribution. With regard to the first possibility, in Sect. 6 we ana-
lyze the implications of Pareto efficiency as a milder requirement of efficiency.
Even though some impossibilities persist, we find out that Pareto efficiency is
compatible with protective properties, in contrast with non-wastefulness. As for
the second possibility, it is a promising research line which is beyond the objec-
tives of this paper.

Finally, we should acknowledge there are several extensions of the model
that are not addressed in this work. For example, Carpente et al. (2013) consider
that, in addition to the claims, each agent is endowed with an utility function. In
our model we obviate the latter element, which may be relevant in some situa-
tions. However, we do not expect that the addition of utilities as in Carpente et al.
(2013) alters the main conclusions significantly, which rely on the discreteness
of the claims (or, eventually, the utility of those claims) and on the multi-valued
rules. For instance, with respect to non-wastefulness, the solution to the opti-
mization problem in Equation (1) would take different values, but the structure
(and implications) of the optimization program itself will still be the same. It is
also worth mentioning that we do not provide any characterization in this paper.
This is a very natural and convenient extension of this work, which we leave for
further research. In contrast with other models in the literature, we define a rule
as a correspondence, instead of a single-valued function. This change adds an
extra layer of complexity both to the rules and to the axioms. When we try to
extend the axioms from functions to correspondences many alternative arise.
Think, for example, in properties that compares the outcome of two or more dif-
ferent problems: additivity, composition, monotonicity, consistency, etc. When
rules are single-valued functions the comparison between two outcomes (x =y
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or x < y) is straightforward. When rules are multi-valued functions, as they are in
our model, the comparison between two outcomes is not so evident (R(a) = R(d’),
R(a) C R(d), R(d") C R(a), etc). That is, each axiom may have different and natu-
ral extensions. In this paper we have focused on the implications of one primary
requirement: efficiency. Other principles and their consequences deserve a deeper
analysis, which exceeds the purposes of this paper.
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