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RESUMEN

Una Interfaz Cerebro-Máquina (del inglés, Brain-Machine Interface, BMI) es un dis-

positivo que permite registrar, procesar y clasificar las señales cerebrales de un sujeto

para generar comandos de control. En otras palabras, una BMI permite a una per-

sona prescindir de los caminos neuromusculares convencionales para interacturar con

el entorno. Las BMI pueden ser invasivas o no invasivas. Las BMI no invasivas se

basan en el análisis y la clasificación de patrones mentales sin la necesidad de realizar

ningún tipo de implante quirúrgico. Un ejemplo de esta tecnoloǵıa es el análisis de

señales electroencefalográficas (EEG) medidas sobre el cuero cabelludo. Estos sistemas

han experimentado un gran avance en su uso sobre humanos debido a su facilidad de

preparación y sus ventajas éticas y de seguridad frente a las alternativas invasivas. La

tecnoloǵıa BMI tiene un futuro prometedor en la rehabilitación de las capacidades mo-

toras, la restauración del control motor en pacientes con discapacidades severas o en

la asistencia de personas con una pérdida total de movilidad. En esta tesis se han de-

sarrollado varios tipos de BMI no invasivas con las que se pretende alcanzar una mejor

comprensión de la comunicación cerebro-máquina y que sirven como base de futuras

herramientas de rehabilitación y asistencia para personas con discapacidad motora.

En un primer estudio, el concepto de mapeado EEG se ha aplicado a una BMI

espontánea en tiempo real basada la imaginación motora para obtener clasificadores

precisos de dos tareas mentales. El clasificador se basa en una correlación de imágenes

entre mapas EEG. Los parámetros del clasificador se han optimizado para obtener

una clasificación robusta y fiable. Este clasificador se ha probado en la clasificación

en tiempo real de tareas mentales y posteriormente se ha empleado con éxito para
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controlar un robot planar asistivo para alcanzar objetivos en un entorno bidimensional.

Para ello, se han diseñado varias estrategias de control del robot y se han probado en

tiempo real para maximizar la fiabilidad del sistema BMI.

En un segundo estudio, se ha analizado la decodificación del movimiento del miembro

superior de la persona aplicando técnicas de regresión lineal a las componentes EEG

de baja frecuencia. Se han llevado a cabo distintos procedimientos experimentales para

mostrar las posibilidades reales de usar métodos de regresión lineal para decodificar la

cinemática del miembro superior a partir de señales EEG. Se ha estudiado la actividad

neural asociada al movimiento real e imaginado del miembro superior para mostrar

correlaciones significativas entre la cinemática real y decodificada. Adicionalmente, la

decodificación continua de la cinemática del miembro superior se ha simplificado a una

alternativa discreta para clasificar diferentes objetivos alcanzados mostrando ventajas

prometedoras en relación a la precisión y fiabilidad del proceso. También se ha estudiado

la influencia del movimiento del brazo realizado en relación a su velocidad, trayectoria

y variabilidad. Finalmente, el método de decodificación se ha aplicado en tiempo real

para detectar movimientos horizontales de la mano.

Esta tesis proporciona metodoloǵıas que se pueden emplear en multitud de aplica-

ciones asistivas o de rehabilitación de personas con discapacidad motora. Esta tesis

ha permitido además avanzar en la comprensión de las correlaciones neuro-motoras y

proporciona nuevos conocimientos para investigaciones futuras.
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ABSTRACT

A Brain-Machine Interface (BMI) is a device that allows registering, processing and

classifying the brain signals from a person to generate control commands. In other

words, a BMI allows a person to bypass the conventional neuromuscular pathways to

interact with the environment. A BMI can be invasive or non-invasive. Non-invasive

BMIs are based on the analysis and classification of brain patterns without the need of

any surgical implant. An example of this technology is the analysis of electroencephalo-

graphic (EEG) recordings from the scalp. The use of these systems has experienced

a great progress in humans due to their short-term preparation and their advantages

in terms of ethics and safety compared to invasive approaches. BMI technology has a

promising future in rehabilitating motor capabilities, restoring motor control of severely

disabled patients and assisting people with a total motor loss. In this thesis, different

BMI-based techniques have been developed to achieve a better understanding of brain-

machine communication and to serve as base of future rehabilitation and assistive tools

for motor disabled people.

In a first study, the concept of EEG mapping has been applied to a real-time spon-

taneous motor imagery BMI to obtain accurate classifiers for two mental tasks. The

classifier is based on an image correlation between EEG maps. The classifier parameters

have been optimized to obtain a robust and reliable classification. This classifier has

been tested in a real-time classification of mental tasks and then used to successfully

control an assistive planar robot to reach targets in a bidimensional setup. To that end,

several robot control strategies have been designed and tested in real-time to maximize

the reliability of the BMI system.
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In a second study, upper-limb movement decoding has been analyzed by applying

linear regression techniques to low frequency EEG components. Different experimental

procedures have been undertaken to assess the real possibilities of using linear regres-

sion methods to decode upper limb kinematics from EEG signals. Neural activity in

imagined and actual upper-limb movements has been studied to show significant cor-

relations between decoded and real kinematics. Additionally, continuous decoding of

upper-limb kinematics has been simplified to a discrete approach for the classification of

reached targets showing promising advantages in terms of accuracy and reliability. The

influence of the performed arm movement has been also studied in terms of velocity,

trajectory and variability. Finally, the decoding method has been applied in real-time

to decode horizontal hand movements.

This thesis provides methodologies to be applied in many rehabilitation and assistive

applications with motor disabled subjects. This thesis has also gone some way towards

enhancing our understanding of neural-motor correlations and provides new knowledge

for future research.



xiv



CONTENTS

AGRADECIMIENTOS vii

RESUMEN x

ABSTRACT xii

CONTENTS xv

LIST OF TABLES xix

LIST OF FIGURES xxiii

LIST OF ACRONYMS xxvii

1 INTRODUCTION 1

1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure and Publications . . . . . . . . . . . . . . . . . . . . . 5

2 BRAIN-MACHINE INTERFACES 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Causes of Motor Impairment . . . . . . . . . . . . . . . . . . . . . . . . 8

xv



xvi CONTENTS

2.2.1 Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Spinal Cord Injury . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Other Causes of Motor Impairment . . . . . . . . . . . . . . . . 13

2.3 What is a Brain-Machine Interface? . . . . . . . . . . . . . . . . . . . . 14

2.4 Methods for Measuring Brain Activity . . . . . . . . . . . . . . . . . . 16

2.4.1 Invasive Recordings . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Partially Invasive Recordings. Electrocorticography (ECoG) . . 17

2.4.3 Non-Invasive Recordings . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3.1 Functional Magnetic Resonance Imaging (fMRI) . . . . 18

2.4.3.2 Magnetoencephalography (MEG) . . . . . . . . . . . . 18

2.4.3.3 Electroencephalography (EEG) . . . . . . . . . . . . . 19

2.5 EEG-Based Brain-Machine Interfaces . . . . . . . . . . . . . . . . . . . 20

2.5.1 Mental Task Recognition . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 Evoked Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Other Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Brain-Machine Interfaces for Assistance and Rehabilitation . . . . . . . 22

3 EEG MAPPING CLASSIFICATION 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 EEG Mapping Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Image Correlation Classifier . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Classifier Parameters . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Analysis of the EEG Mapping Classifier . . . . . . . . . . . . . . . . . 33

3.3.1 EEG Data Used . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Frequency Study . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Time Interval Study . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 Uncertainty Study . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 40

3.4 Real-Time Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1.1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS xvii

3.4.1.3 EEG Mapping Classifier . . . . . . . . . . . . . . . . . 48

3.4.1.4 Classifier Adjustment Protocol . . . . . . . . . . . . . 49

3.4.1.5 Visual Interface and Trajectory Application . . . . . . 50

3.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Control of an Assistive Planar Robot . . . . . . . . . . . . . . . . . . . 56

3.5.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1.1 Hierarchical Control . . . . . . . . . . . . . . . . . . . 57

3.5.1.2 Directional Control . . . . . . . . . . . . . . . . . . . . 58

3.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 UPPER LIMB MOVEMENT DECODING 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Continuous and Discrete Decoding in Center-Out Tasks . . . . . . . . . 70

4.2.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Experimental Tests . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3.1 Continuous Decoding . . . . . . . . . . . . . . . . . . . 76

4.2.3.2 Discrete Decoding . . . . . . . . . . . . . . . . . . . . 79

4.2.3.3 Decoding passive movement . . . . . . . . . . . . . . . 82

4.2.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 85

4.3 Analysis of Movement Variability . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1.2 Experimental Paradigm . . . . . . . . . . . . . . . . . 90

4.3.1.3 EEG Recordings and Preprocessing . . . . . . . . . . . 90

4.3.1.4 Data Decoding Procedure . . . . . . . . . . . . . . . . 91



xviii CONTENTS

4.3.1.5 Participant Survey . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Real-Time Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1.1 Experimental Procedure . . . . . . . . . . . . . . . . . 100

4.4.1.2 Register and Preprocessing . . . . . . . . . . . . . . . 101

4.4.1.3 Decoding Method and Classification of Targets . . . . 101

4.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 CONCLUSIONS AND FUTURE WORK 109

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 CONCLUSIONES Y TRABAJOS FUTUROS 115

6.1 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Trabajos Futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

BIBLIOGRAPHY 121

A Hardware and Equipment 137

A.1 EEG Acquisition Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1.1 gUSBamp BMI System . . . . . . . . . . . . . . . . . . . . . . . 137

A.1.2 BioSemi ActiveTwo BMI System . . . . . . . . . . . . . . . . . 140

A.2 Planar Robot Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



LIST OF TABLES

2.1 Methods for measuring brain activity: a comparative . . . . . . . . . . 16

3.1 EEG Mapping success rate (%) with a time interval of 5 seconds . . . . 36

3.2 Subject 1, results with uncertainty (Frequency: 10 Hz, Time Interval: 3

seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Subject 2, results with uncertainty (Frequency: 10 Hz, Time Interval: 2

seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Subject 3, results with uncertainty (Frequency: 12 Hz, Time Interval: 3

seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Optimal parameters of the image correlation classifier for each subject . 44

3.6 Training results with the BMI based on EEG Mapping . . . . . . . . . 54

3.7 Tests results with the BMI based on EEG Mapping . . . . . . . . . . . 56

3.8 Experimental results using the BMI based on EEG Mapping to control

the planar robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Accuracy percentages (%) for different disc speeds (mm/s) and sizes

(diameter in pixels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Pearson correlation coefficients after decoding hand trajectories performed

with the planar robot for different disc speeds (mm/s) and sizes (diam-

eter in pixels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xix



xx LIST OF TABLES

4.3 Success rate (%) obtained for the classification of two targets . . . . . . 104



LIST OF TABLES xxi



xxii LIST OF TABLES



LIST OF FIGURES

1.1 Cerebro-Vascular Disease (CVD) burden across the world . . . . . . . . 2

1.2 Brain-Machine Interfaces publications . . . . . . . . . . . . . . . . . . . 3

2.1 Types of stroke: (a) Ischemic stroke. (b) Hemorrhagic Stroke . . . . . . 9

2.2 Consequences of SCI depending on the location of the injury . . . . . . 12

2.3 General structure of a Brain-Machine Interface. . . . . . . . . . . . . . 15

2.4 International System 10/20 (left). International System 10/10 (right). . 20

3.1 Classification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Optimization protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Electrodes position for BCI Competition using International 10/10 Sys-

tem (left). Example of an EEG map from Subject 1, 12 Hz, Word Task

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Average success rate after cross-validation for different frequencies . . . 36

3.5 Average success rate after cross-validation for different time intervals

with the selected frequencies . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Subject 1 - Evolution of the success (SR), error (ER) and uncertainty

rate (UR) for different uncertainty thresholds and selection of thresholds

using the three methods proposed (M1, M2 and M3) . . . . . . . . . . 38

xxiii



xxiv LIST OF FIGURES

3.7 Subject 2 - Evolution of the success (SR), error (ER) and uncertainty

rate (UR) for different uncertainty thresholds and selection of thresholds

using the three methods proposed (M1, M2 and M3) . . . . . . . . . . 39

3.8 Subject 3 - Evolution of the success (SR), error (ER) and uncertainty

rate (UR) for different uncertainty thresholds and selection of thresholds

using the three methods proposed (M1, M2 and M3) . . . . . . . . . . 39

3.9 Real-time Brain-Machine Interface environment . . . . . . . . . . . . . 46

3.10 Electrodes location on the motor cortex (left). Example of EEG map

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 Visual interface for BMI training . . . . . . . . . . . . . . . . . . . . . 51

3.12 Offline BMI register timing paradigm . . . . . . . . . . . . . . . . . . . 52

3.13 Several trajectories performed by the volunteers using a BMI based on

EEG Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.14 Evolution of the success rate for left and right mental tasks during the

online training for Subject 1 . . . . . . . . . . . . . . . . . . . . . . . . 55

3.15 Experimental environment of the planar robot . . . . . . . . . . . . . . 58

3.16 Hierarchical control protocol . . . . . . . . . . . . . . . . . . . . . . . . 59

3.17 Hierarchical control interface (left). Directional control interface (right) 60

3.18 Example of test with the hierarchical control protocol . . . . . . . . . . 60

3.19 Results with the directional control strategy for goals 1, 2 and 3 (scale

in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Continuous decoding of center-out trajectories for motor imagery center-

out (A) and real center-out movement (B) for the frequency band 0.1-2

Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Continuous decoding of kinematics using the linear regression decoding

method (Subject 3 - Real Center-out Movement) . . . . . . . . . . . . . 78

4.4 Continuous decoding of center-out trajectories comparing different ex-

perimental data: motor imagery center-out, real center-out movement,

shuffled data and random data . . . . . . . . . . . . . . . . . . . . . . . 80



LIST OF FIGURES xxv

4.5 Comparison between different frequency bands: 0.1-2 Hz (low frequen-

cies), 8-12 Hz (alpha band), 14-30 Hz (beta band) and 0.1-40 Hz . . . . 81

4.6 Discrete decoding of center-out trajectories for motor imagery center-out

(A) and real center-out movement (B) . . . . . . . . . . . . . . . . . . 83

4.7 Discrete decoding of center-out trajectories comparing different experi-

mental data: motor imagery center-out, real center-out movement, shuf-

fled data and random data . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Continuous (A) and discrete (B) decoding of center-out trajectories for

passive center-out movement . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9 Continuous (A) and discrete (B) decoding of center-out trajectories com-

paring active center-out movement and passive center-out movement . . 87

4.10 Experimental environment showing the subject performing the tracking

movements in front a screen . . . . . . . . . . . . . . . . . . . . . . . . 91

4.11 Example of trajectory followed by a subject . . . . . . . . . . . . . . . 93

4.12 Example of a decoded trajectory for subject 4 . . . . . . . . . . . . . . 93

4.13 Decoding performance regarding speed (mm/s) and disc size (small,

medium, big) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.14 Radial representation of the volunteers general impressions . . . . . . . 97

4.15 System architecture to decode horizontal hand movements . . . . . . . 101

4.16 Experimental environment where the subject performs horizontal trajec-

tories with the computer mouse . . . . . . . . . . . . . . . . . . . . . . 102

4.17 Example of the decoded X position during horizontal hand movements 103

4.18 Average classification rates for each subject compared to chance level rates105

A.1 gUSBamp technical specifications . . . . . . . . . . . . . . . . . . . . . 138

A.2 gUSBamp passive 16-electrodes system . . . . . . . . . . . . . . . . . . 138

A.3 gUSBamp active 16-electrodes system . . . . . . . . . . . . . . . . . . . 139

A.4 BioSemi ActiveTwo active 64-electrodes system . . . . . . . . . . . . . 141

A.5 Pneumatic planar robot: Parts. . . . . . . . . . . . . . . . . . . . . . . 142

A.6 Pneumatic planar robot: Components. . . . . . . . . . . . . . . . . . . 143



xxvi LIST OF FIGURES



LIST OF ACRONYMS

BMI Brain-Machine Interface

BCI Brain-Computer Interface

EEG Electroencephalography

CVA Cerebro-Vascular Accident

SCI Spinal Cord Injury

ALS Amyotrophic Lateral Sclerosis

ECoG Electrocorticography

fMRI Functional Magnetic Resonance Imaging

MEG Magnetoencephalography

SCP Slow Cortical Potentials

ERD Event Related Desynchronization

PSD Power Spectral Density

GSR Global Success Rate

xxvii





1
INTRODUCTION

1.1 Background and Motivations

According to the European Commission in the VI Framework Programme of Research

and Development (2002-2006) [1], the number of people with disability in Europe is

around 50 million people (10% of the population) affected by different deficiencies:

wheelchair users (2.8 millions), deaf people (1.1 millions), hearing impaired (80 mil-

lions), blind people (1.1 millions), other visual impairments (11.5 millions), speech dif-

ficulties (5.5 millions), cognitive impairment (30 millions) and reduced strength (22.5

millions). From this statistics, it can be concluded that more than 25 million people in

Europe have disability related to motor impairment.

In the particular case of Spain, according to the Olivenza Report in 2010 [2], there

are around 3.8 million people with a disability. From this total, 25.9% are affected

by vision problems, 28.1% from hearing limitations, 19.5% have problems with com-

munication, 16.6% suffer from cognitive impairment, 67.2% have a reduced mobility,

48.4% have self-care limitations, 55.3% have domestic problems and 16.4% suffer from

difficulties in personal relationships. This means that in Spain there are around 2.5

million people with mobility or motor limitations.

One of the main causes of motor limitation is stroke (Figure 1.1). The World

Health Organization estimates that more than 17.3 million people died of cardiovascular

diseases such as heart attack or stroke in 2008 [3]. For people who survive a stroke

(around 85% of the total), the rehabilitation of the affected side is crucial to maintain

1
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or even regain motor and cognitive capabilities. In Spain, the number of stroke survivors

was around 329.500 in 2008 (8.7% of the total disabled population) [4].

Figure 1.1: Cerebro-Vascular Disease (CVD) burden (Disability-Adjusted Life Year,

DALY) across the world (Source: World Health Organization [3]).

In recent years, the interest for solving and reducing the limitations caused by motor

problems of disabled people has been accompanied by a very important development of

assistive and rehabilitation technologies. Focusing on the specific case of motor disabil-

ity, the main goal is to rehabilitate the motor capabilities of a patient with movement

limitations or, if this is not possible, to replace the natural movement by a commanded

action over a external device. In this sense, Brain-Machine Interfaces (BMIs) allow,

through voluntary thoughts of the subject, interacting with the environment without

the need of any actual motor activity or physical effort. The field of Brain-Machine

Interfaces has seen an impressive development during the last few years (Figure 1.2).

Only in the present decade, the number of publications about BMIs has almost doubled.

It is particularly remarkable the interest of applying this technology for assistive and re-
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(a) (b)

Figure 1.2: Brain-Machine Interfaces publications (Source: Science Direct [5]): (a)

Search criteria: Brain-Machine Interface. (b) Search Criteria: Brain-Machine Interface

+ Rehabilitation/Assistive/Disabled.

habilitation purposes, which has become one of the most important fields of application

of BMIs in current research.

In this thesis, the main motivation is to achieve a better understanding of brain-

machine communication to serve as base of future rehabilitation and assistive tools for

motor disabled people, particularly for people suffering from stroke. Other causes of

motor impairment will also benefit from the contributions of this work (a further review

on stroke and these other causes is undertaken in Chapter 2). This thesis is part of the

BRAIN2MOTION Project supported by Ministerio de Economı́a y Competitividad of

the Spanish Government (DPI2011-27022-C02-01). The main goal of BRAIN2MOTION

project is to develop a new hybrid Exoskeletal Robot/Motor Neuro-Prostheses (ER-

MNP) for the upper limb interfaced to the users by means of non-invasive brain-machine

interfaces (BMIs). This thesis serves as a methodological support for future experimen-

tal procedures with the ER-MNP and disabled subjects. The robotic hybrid system

combines a light and kinematically compatible ER, and a textile-based surface MNP. In

this combined ER-MNP, hardware and control strategies are being developed to combine

the action of the ER and MNP while preserving motor latent capabilities of the user. A

non-invasive EEG-based Brain-Machine Interface is being used to differentiate between

several mental tasks. This is achieved by incorporating new adaptive classifiers into the
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BMI. Learning strategies are being developed in order to improve the performance and

versatility of the BMI. The hybrid ER-MNP controlled by the BMI is being used to

perform reaching and grasping operations. The system is being validated with patients

suffering from neurological conditions leading to severe motor disorders, in particular

cerebrovascular accident (CVA). This thesis has also been supported by the predoctoral

grant VALi+d ACIF/2012/135 and the research visitor grant BEFPI/2013/043 both

from Conselleria d’Educació, Cultura i Esport of Generalitat Valenciana of Spain.

1.2 Thesis Contributions

This thesis has led to the following contributions to the current literature:

• This thesis presents a novel classification of mental tasks method based

on the correlation of EEG maps. This classifier has been successfully tested

in non-invasive spontaneous Brain-Machine Interfaces.

1. The EEG mapping classifier has been optimized by designing a proper pa-

rameter adjustment methodology.

2. The EEG mapping classifier has been successfully tested with healthy sub-

jects in real-time environments.

3. The EEG mapping classifier has been successfully tested with healthy sub-

jects in a real world scenario by controlling an assistive robot arm.

• This thesis gives additional evidence with respect to the decoding of upper

limb kinematics from low frequency EEG components.

1. Continuous decoding of hand kinematics has shown significant correlations

not related to muscular artifacts between real and decoded kinematics during

the performance of center-out movements.

2. Discrete decoding of center-out movements has been applied to report an

advantage in future real-time applications.
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3. The influence of the performed arm movement has been studied in terms of

velocity, trajectory and variability.

4. The discrete decoding method has been successfully applied to a real-time

application to detect horizontal arm movements.

This research will serve as a base for future studies and provides useful methodologies

to be applied in rehabilitation and assistive applications with motor disabled subjects.

This thesis has also gone some way towards enhancing our understanding of neural-

motor correlations and provides new knowledge for future research.

1.3 Thesis Structure and Publications

The thesis document is organized as follows:

• Chapter 2 describes Brain-Machine Interfaces and their applications. First, it

shows a brief description of the causes of motor disability that may lead to the

need of assistive and rehabilitation systems such as Brain-Machine Interfaces.

Then, the chapter reviews the different types of Brain-Machine Interfaces and

their applications in the field of assistive and rehabilitation technologies.

• Chapter 3 describes a non-invasive spontaneous Brain-Machine Interface based

on the correlation of EEG maps. On a first section, the EEG mapping classifier is

presented in detail. This has led to the publication of two conference papers [6, 7]

and a journal article [8]. Afterwards, the system has been successfully tested in

a real-time environment. This has led to the publication of a journal article [9].

Finally, the classifier has been applied to a real world scenario, particularly, to

the control of a planar robot arm in an assistive application. This has led to the

publication of two conference papers [10, 11].

• Chapter 4 gives new evidences of the decoding of upper limb kinematics from low

frequency EEG components. To that end, different experimental procedures have

been undertaken to assess the real possibilities of using linear regression methods
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to decode upper limb kinematics from EEG signals. First, continuous and dis-

crete decoding of center-out movements have been analyzed. This has led to the

submission of a journal article [12]. Afterwards, the influence of the performed

arm movement in terms of velocity, trajectory and variability has been studied.

This has led to the submission of a journal article [13]. Finally, the discrete de-

coding method has been tested in real-time. This has led to the preparation of a

conference paper [14].

• Chapter 5 and 6 contain the conclusions and future work related to the contents

and contributions of this thesis.

• Appendix 1 contains information about the hardware and equipment used in

this thesis.



2
BRAIN-MACHINE INTERFACES

2.1 Introduction

In recent years, the interest for solving or, at least, reducing the limitations caused by

motor problems of disabled people has been accompanied by a very important devel-

opment of assistive technologies. These technologies can be defined as the use of any

assistive, adaptive and rehabilitation device that enables disabled people to perform

tasks that they were formerly unable to accomplish. In the case of motor disability,

these devices can replace the natural movement by a commanded action over a external

device such as a prosthesis or orthosis (motor substitution), but also can help in the

rehabilitation of the motor capabilities of a patient with movement difficulties. A more

common way to improve the interaction between the subject and the environment con-

sists of establishing alternative communication channels with external devices such as a

computer or a robot through the so-called human-machine interfaces (HMIs). Amongst

these devices, there is a great number of possibilities such as ocular interfaces, voice

control, adapted mechanical switches and many more. A particular case of this kind

of devices, which will be explained in detail throughout the chapter, are brain-machine

interfaces (BMIs) which allow, through voluntary thoughts of the subject, interacting

with the environment without the need of any actual motor activity or physical effort.

7
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2.2 Causes of Motor Impairment

Motor disability may be caused by many different conditions. The most common one

is a cerebrovascular accident (CVA), which occurs when the blood supply to the brain

stops [15, 16]. If the length of this interruption is longer than several seconds, brain

cells can die causing a permanent damage in the patient. When this damage occurs

in the brain areas responsible for motor control, the patients may suffer permanent or

temporal loss of mobility, coordination and control of their limbs. Another important

cause of motor disability is due to Spinal Cord Injury (SCI), which provokes the total

loss of sensibility and movement capability below the level of the injury [16, 21, 22]. In

this case, the patient assistance must be purely based on motor substitution, given that

it is impossible to perform a rehabilitation procedure. Finally, less frequent illnesses and

diseases may cause motor disfunctions, such as cerebral palsy, spina bifida, muscular

dystrophy, amyotrophic lateral sclerosis (ALS) or central nervous system diseases such

as Parkinson syndrome or Huntington disease [16].

2.2.1 Stroke

A stroke or cerebrovascular accident (CVA) happens when blood flow to a part of the

brain stops. If blood flow is stopped for longer than a few seconds, the brain cannot get

blood and oxygen. When this happens, brain cells can die, causing permanent damage

[15, 16].

There are two major types of stroke: ischemic stroke and hemorrhagic stroke (Figure

2.1). Ischemic stroke is the most common one (85% of cases). It occurs when a blood

vessel that supplies blood to the brain is blocked by a blood clot. Ischemic strokes

may be caused by clogged arteries. Fat, cholesterol, and other substances collect on

the artery walls, forming a sticky substance called plaque. A hemorrhagic stroke occurs

when a blood vessel in part of the brain becomes weak and bursts open, causing blood

to leak into the brain. Some people have defects in the blood vessels of the brain that

make this more likely.

Some strokes result in death whereas others cause permanent or temporary disabil-

ity. About 2 out of 10 people who have a stroke die within the first month, 3 out of 10
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(a) (b)

Figure 2.1: Types of stroke: (a) Ischemic stroke (Source: Mayo Foundation for Med-

ical Education and Research). (b) Hemorrhagic stroke (Source: Barrow Neurological

Institute).

die within the first year, and 5 out of 10 die within the first 5 years. The more time

that passes after a stroke, the lesser is the risk of dying from it. People who have a

subarachnoid or intracerebral hemorrhage as the cause of their stroke are more likely

to die than people who have an ischemic stroke.

High blood pressure is the main risk factor for strokes. Other major risk factors are:

atrial fibrillation, diabetes, familiar history of stroke, high cholesterol, increasing age or

race. People who have heart disease or poor blood flow in their legs caused by narrowed

arteries are also more likely to have a stroke. Also, the chance of suffering stroke is

higher in people who live an unhealthy lifestyle. Birth control pills can increase the

chances of having blood clots. The risk is highest in women who smoke and are older

than 35.

The symptoms of stroke depend on what part of the brain is damaged. In some

cases, a person may not know that he or she has had a stroke. Symptoms usually

develop suddenly and without warning. Or, symptoms may occur on and off for the

first day or two. Symptoms are usually most severe when the stroke first happens, but

they may slowly get worse. The main symptom is the headache suffered due to the

bleeding in the brain. Other symptoms depend on how severe the stroke is and what
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part of the brain is affected. Symptoms may include changes in feeling, hearing, taste or

alertness, clumsiness, confusion, memory loss, difficulty swallowing, reading or writing

and motor symptoms such as loss of balance and coordination, muscle weakness and

lack of control.

The goal of treatment after a stroke is to help the patient recover as much function

as possible and prevent future strokes. Problems moving, thinking, and talking often

improve from weeks to months after a stroke. A number of people who have had a

stroke will keep improving in the months or years after the stroke. The recovery time

and need for long-term treatment is different for each person and it is generally divided

into four phases [17]:

1. Treatment: This begins when a person first enters the hospital. Doctors will

determine the type of stroke and will provide the appropriate treatment. This

may consist of drugs to break up clots, tPA, and thin the blood or surgery to

repair a broken blood vessel. Treatment is aimed at preventing another stroke

from taking place and limiting the amount of brain damage that occurs.

2. Recovery: After a stroke, some spontaneous recovery takes place for most people.

Abilities that may have been lost will begin to return. This process can take place

very quickly over the first few weeks, and then, it may begin to taper off.

3. Rehabilitation: This phase usually takes place while the patient is still in the

hospital. Various therapists and specialists will work with the stroke victim to

bring back lost skills.

4. Returning home: In this phase, the patient usually continues the rehabilitation

procedures that started in the hospital.

Motor impairment after stroke is the major cause of permanent disability. This

kind of subjects usually suffer from upper limb movement limitations in their affected

side, and the recovery of the arm movement is often variable and incomplete [18]. This

recovery is crucial in order to perform activities of the daily life. In this sense, the use

of non-invasive BMIs may be useful to support traditional motor restoration procedures

[19, 20].
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2.2.2 Spinal Cord Injury

A spinal cord injury is a damage to the spinal cord that may result from direct injury to

the cord itself or indirectly from disease of the surrounding bones, tissues or blood ves-

sels [16, 21, 22]. Spinal cord trauma can be caused by a number of injuries to the spine,

including: assault, falls, gunshot wounds, industrial accidents, motor vehicle accidents

or sports injuries. Most spinal cord trauma happens to young, healthy individuals so

people ages 15 - 35 are most commonly affected. The death rate tends to be higher in

young children with spinal injuries.

A minor injury can cause spinal cord injury if the spine is weakened (such as from

rheumatoid arthritis or osteoporosis) or if the spinal canal protecting the spinal cord

has become too narrow (spinal stenosis) due to the normal aging process. More often,

a direct injury, such as cuts, can occur to the spinal cord, especially if the bones or the

disks have been weakened. Direct damage can also occur if the spinal cord is pulled,

pressed sideways, or compressed. Bleeding, fluid buildup, and swelling can occur inside

or outside the spinal cord (but within the spinal canal). The buildup of blood or fluid

can press on the spinal cord and damage it.

Symptoms vary depending on the location of the injury (Figure 2.2). Spinal cord in-

jury causes weakness and loss of feeling at, and below the injury. How severe symptoms

are depends on whether the entire cord is severely injured (complete) or only partially

injured (incomplete).

• When spinal cord injuries occur in the neck area, symptoms can affect the arms,

legs, and middle of the body. The symptoms may occur on one or both sides of

the body. Symptoms can also include breathing difficulties from paralysis of the

breathing muscles, if the injury is high up in the neck.

• When spinal injuries occur at chest level, symptoms can affect the legs. Injuries

to the cervical or high thoracic spinal cord may also result in blood pressure

problems, abnormal sweating, and trouble maintaining normal body temperature.

• When spinal injuries occur at the lower back level, symptoms can affect one or

both legs, as well as the muscles that control the bowels and bladder.
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Injuries near the top of the spine lead to more disability than injuries low in the

spine. Paralysis and loss of sensation of part of the body are common. This includes

total paralysis or numbness, and loss of movement and feeling. Death is possible,

especially if there is paralysis of the breathing muscles. A person who recovers some

movement or feeling within one week usually has a good chance of recovering more

function, although this may take 6 months or more. Losses that remain after 6 months

are more likely to be permanent.

Patients who have suffered from spinal cord injuries are incapable of performing

daily life activities and they generally need modifications in their homes to adapt them

to their needs. Most of the SCI paralyzed make use of wheelchairs and assistive devices

so the application of non-invasive BMIs can be very useful to assist them in daily life

activities.

Figure 2.2: Consequences of SCI depending on the location of the injury (Source:

Internet, Unknown Author).
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2.2.3 Other Causes of Motor Impairment

Stroke and spinal cord injuries are not the only causes of a partial or complete paralysis

of the limbs. Cerebral palsy, spina bifida, muscular distrophy or multiple sclerosis are

pathologies that affect motor capabilities to a greater or lesser extent and the people

affected by these diseases may require external assistance to develop their activities.

• Cerebral palsy:

Cerebral palsy is caused by injuries or abnormalities of the brain [16]. Most of

these problems occur as the baby grows in the womb. But they can happen at any

time during the first 2 years of life, while the brain of the baby is still developing.

In some people with cerebral palsy, parts of the brain are injured due to a low level

of oxygen (hypoxia) in the area. Premature infants have a slightly higher risk of

developing cerebral palsy. Cerebral palsy may also occur during early infancy as a

result of several conditions such as bleeding in the brain, infections or head injury.

The effects of cerebral palsy are diverse including muscle weakness, abnormal gait,

tremors, loss of coordination, speech and hearing problems and even seizures.

• Spina bifida:

Spina bifida occurs when there is birth defect involving incomplete closure of the

spine [16]. It is thought that the main cause of spina bifida may be a lack of folic

acid in the body of the woman before and during early pregnancy. The effects of

this malformation are partial or total loss of sensations, partial or total paralysis

of lower limbs and loss of motor control in hips and legs.

• Muscular dystrophy:

Muscular dystrophy is a disorder that involves muscle weakness and loss of mus-

cle tissue, which get worse over time [16]. As any other degenerative illness, the

muscular capabilities change depending on the stage of the disease. The loss of

muscle tissue leads to a progressive motor limitation as strength and muscular

control decreases, generating problems in walking and frequent falls. In severe

cases, people who suffer from muscular dystrophy cannot look after themselves,
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but symptoms can be generally slowed down and controlled through proper reha-

bilitation therapies.

• Multiple sclerosis:

Multiple sclerosis is caused by damage to the myelin sheath, the protective cover-

ing that surrounds nerve cells [16]. When this nerve covering is damaged, nerve

signals slow down or stop. It provokes problems with coordination, spasticity,

fatigue and loss of mobility in severe cases, often when the illness is not treated

in time.

• Other diseases that affect the nervous system:

Parkinson syndrome, Huntington disease and other illnesses that affect the cen-

tral nervous system [16] may lead to tremors and involuntary movements in the

upper limb that, in advanced stages, may cause important limitations in daily life

activities.

2.3 What is a Brain-Machine Interface?

A Brain-Machine Interface (BMI) is a system that processes brain signals and translates

them into useful information that can be used to generate control commands without

performing any muscular movement. The general structure of a BMI can be seen in

Figure 2.3. After the proper signal processing, external devices or applications can be

controlled with the only help of our thoughts. The use of a BMI has a potentially wide

range of useful outcomes. However, in terms of usability and reliability there are still

great prospects for improvement [23].

The system architecture of a BMI is generally structured according to four main

blocks: data acquisition, preprocessing, feature extraction and classification.

• Data acquisition: Neural information is recorded through specific equipment.

The analog data of the brain activity is translated into a digital output that can

be processed to identify the intention of the subject.
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• Preprocessing: To obtain reliable outputs, neural information is processed to

improve the quality of the signal or filter specific features of the brain activity.

After this preprocessing, the valuable information can be extracted.

• Feature extraction: From the preprocessed signals, the feature extractor ob-

tains the most representative characteristics of the neural information that iden-

tify the particular brain process.

• Classification: The classifier differentiates between different brain processes by

computing the signal features and generates an output command.

During the last decade, the field of BMIs has seen an outstanding progress in many

fields: communication, assistance, rehabilitation, games, device control and many more.

In the following sections, we will briefly explain the different types of BMI and its

applications, particularly in assistive and rehabilitation procedures.

Figure 2.3: General structure of a Brain-Machine Interface.
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2.4 Methods for Measuring Brain Activity

There are several methods for measuring brain activity. Depending on the invasiveness

of the recordings they can be divided into invasive, partially invasive and non-invasive.

Table 2.1 shows a comparative between methods stating advantages and disadvantages

in terms of spatial and temporal resolution, cost and complexity.

INTRACORTICAL ECoG EEG fMRI MEG

Invasiveness High Medium Low Low Low

Spatial Very Medium Very Low Very

Resolution High Low Low

Temporal High Medium Medium Low High

Resolution

Measurement Neuronal Cortical Cortical Oxygen Level Neuronal

Activity Activity Activity Blood Flow Activity

Cost High High Low High High

Facilities Little Little Little Large Large

Space Space Space Space Space

Table 2.1: Methods for measuring brain activity: a comparative (ECoG: Electro-

corticography, EEG: Electroencephalography, fMRI: Functional Magnetic Resonance

Imaging, MEG: Magnetoencephalography).

2.4.1 Invasive Recordings

Invasive BMI approaches are based on recordings of individual neurons (single units),

groups of them (multi-units) or local field potentials (LFPs). When a neuron generates

an action potential, the signal propagates down the neuron as a current which flows

in and out of the cell through excitable membrane regions in the soma and axon.

This activity can be measured with precise microelectrode systems that are implanted

directly on the brain cortex. The first experiments began in the 1960s, where monkeys

learned to control their cortical activity voluntarily supported by a biofeedback of the
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firing rate of single neurons [24]. In 1980, Schmidt suggested the possibility of obtaining

a voluntary motor control of a prosthetic device extracted from the information of

cortical activity [25]. These findings opened a promising future in the restoration of

motor functions of the paralyzed.

During the last few years, the development of invasive approaches has importantly

increased, mainly centered in the experimentation with non-human primates. Further

research has been undertaken to study the number of cortical implants, the cortical

location of these implants and the type of neural signal measured (local field potentials

or single/multi units). Particularly remarkable are the works from Nicolelis team,

engrossing the knowledge about neural ensembles physiology [26, 27, 28, 29]. Other

important studies have also given account of intracortical experiments in monkeys [30,

31]. Invasive approaches have been successfully used in people with motor disabilities

to perform reaching and grasping tasks [32, 33].

Intracortical recordings provide the highest resolution and signal quality of brain

recording methods. The main problem of invasive recordings is the high complexity of

the intracranial operation to implant the electrodes arrays. This leads to risk of tissue

damage and infection, and the stability and durability of the implants during long-term

recordings is still a problem to be solved.

2.4.2 Partially Invasive Recordings. Electrocorticography (ECoG)

Electrocorticography (ECoG) consists of recording electroencephalographic (EEG) ac-

tivity directly from the surface of the brain cortex. ECoG was first used to treat

epilepsy by Penfield and Jasper in 1950. Despite being less invasive than single unit

or LFP recordings, this methodology still requires the use of surgery to implant the

electrodes and, as a consequence, entails the same risks and disadvantages of invasive

procedures. Another drawback is that ECoG is usually applied to short-term studies

as it is generally associated to the clinical needs of the patients [34]. However, this

technique keeps good signal to noise ratio and improves the quality of EEG recorded

signals (electrodes are closer to the source of information). Also, the surgery is far

less complex providing a very interesting tool for BMI research. In this sense, recent

works have obtained significant results by applying this measurement technique for BMI
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applications [35, 36, 37, 38].

2.4.3 Non-Invasive Recordings

2.4.3.1 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) is a functional neuroimaging procedure

that uses magnetic resonance imaging to measure brain activity by detecting associated

changes in blood flow. In 1890, Roy and Sherrington found a link between brain function

and blood flow. In 1990, Ogawa discovered that mental activity could be assessed by

measuring blood oxygenation. The blood oxygen level dependent (BOLD) could be

measured through MRI and near-infrared spectroscopy (NIRS). This correlation with

neural activity has been widely studied in current research [39, 40, 41]. The main

advantage of fMRI is its high spatial resolution. Researchers have successfully trained

subjects to volitionally control brain regions using feedback from a real-time fMRI [42].

Recent work has even shown the possibility of controlling a two-dimensional robotic

arm through motor imagery tasks [43]. The main drawback of this technology is the

high cost and big space needed for the equipment which makes fMRI non-portable and

unsuitable for commercial purposes.

2.4.3.2 Magnetoencephalography (MEG)

Magnetoencephalography (MEG) consists of the recording of the magnetic fields pro-

duced in the brain. MEG signals where first measured by Cohen in 1968. This technique

is based on the fact that electrical currents inside the brain generate associated magnetic

fields. This effect is clearly measurable on the brain cortex. MEG has been recently

used as a potential source to operate BMIs [44, 45]. This procedure is not invasive

and has a slightly higher spatial resolution than other non-invasive methods such as

EEG. MEG-based BMI systems have been applied in the rehabilitation of stroke pa-

tients [46] and for two-dimensional control of computers [47]. The main drawback is

the high cost of the equipment and the need of magnetic shielding to prevent external

magnetic sources to interfere with the measurements which reduces the portability of

these devices.



2.4. METHODS FOR MEASURING BRAIN ACTIVITY 19

2.4.3.3 Electroencephalography (EEG)

Electroencephalography (EEG) is the recording of the activity of the cerebral cortex

through electrodes placed on the surface of the scalp. Hans Berger recorded the first

EEG in 1924. During the last century, EEG recordings were mainly used to detect

epilepsy, but in the 90s, the application of this technique experimented a huge progress

for all sorts of applications. To the date, EEG recordings have seen a rapid development

and are widespread for BMI-based applications as the equipment is relatively cheap

and portable and it has a good temporal resolution. However, the signal to noise ratio

and the spatial resolution of the signals is still quite low compared to other recording

methods. Current research has successfully designed EEG-based BMIs for the control

of external devices, communication, clinical applications, assistance and rehabilitation

[48, 49, 50, 51].

The EEG is usually described in terms of rhythmic activity and this activity has been

divided into several frequency bands. Although this characterization is still a matter of

discussion, the following list shows some of the most common frequency bands applied

to EEG processing:

• Delta band (<4 Hz): it usually appears in frontal regions and it is characterized

by high-amplitude waves found during sleep or, sometimes, continuous-attention

tasks [52]. It can be a symptom of subcortical lesions and other brain pathologies

[53].

• Theta band (4-7 Hz): it reflects drowsiness and it is sometimes associated with in-

hibition of elicited responses and with cognitive control [54]. It can be a symptom

of subcortical lesions and other brain pathologies [55].

• Alpha band (8-15 Hz): it is usually located in posterior regions of both sides of

the cortex and appears when closing the eyes or relaxing. It is also common in

comatose states [56].

• Beta band (16-31 Hz): beta activity is symmetrically distributed over the cortex

with a higher activity in frontal regions and characterized by low-amplitude waves.

It reflects active thinking, focusing and stress [57].
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• Gamma band (>32 Hz): located in the somatosensory cortex it usually appears

during dual tasks that involve more than one sense and short-term memory match-

ing [58].

• Mu band (8-12 Hz): located in the sensorimotor cortex it reflects the activity of

the motor neurons [59].

To measure EEG activity, a standard criteria for the placement of electrodes has

been agreed. The International System 10/20 is an internationally recognized method

to describe the location of scalp electrodes in the context of an EEG test or experiment

[60]. This system is based on the relationship between the location of an electrode

and the underlying area of cerebral cortex. One of its modifications, the International

System 10/10, is widely used in current BMI research (Figure 2.4).

Figure 2.4: International System 10/20 (left). International System 10/10 (right).

2.5 EEG-Based Brain-Machine Interfaces

There are several techniques that have been applied to EEG-Based Brain-Machine

Interfaces. Non-invasive BMIs have been traditionally divided into spontaneous and

evoked systems. However, current development in EEG signal analysis has opened a
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wide range of methodologies to detect neural patterns. In this section, some of the most

important ones are briefly described.

2.5.1 Mental Task Recognition

Spontaneous BMIs have a great advantage when using applications where performing

voluntary commands is necessary. In these systems, the user performs a volitive cog-

nitive action, i.e., thinks of a particular mental task, generating a command willingly.

This approach has been used to control a robot arm [61, 62] or a virtual keyboard

[63]. Motor imagery consists of the imagination of real motor movement performed by

the user. According to Decety and Lindgren, the mental activity of an actual and an

imagined motor movement follows the same pattern [64]. The analysis of the activity

in regions destined to motion action may allow the detection of different mental tasks

such as motor imagery. Moreover, other kinds of mental activity (e.g., concentration

tasks) can be studied in order to obtain a better differentiation between mental tasks.

The use of these EEG signals can allow patients with mobility impairments to control

systems that provide an improvement in their quality of life.

2.5.2 Evoked Potentials

Evoked BMIs are based on the extraction of a characteristic EEG signal pattern pro-

duced automatically in the brain as a response to some external stimuli [65].

One evoked potential widely explored in the field of BMI is the P300 [66]. P300 is

a potential evoked by an awaited infrequent event and it is characterized by a positive

deflection in the EEG signal approximately produced 300 milliseconds after receiving

a visual stimulus and mostly located covering the parietal lobe. This paradigm was

first used in 1998 to develop a speller application [65]. However, this paradigm has

been used recently on other applications, such as controlling a wheelchair [67] or an

Internet browser [68, 69]. In these applications, in order to evoke the P300, subjects

are given a sufficiently large number of options (e.g., letters of the alphabet or icons)

from which they choose one by paying attention to the desired one. These options are

pseudo-randomly flickering in a screen and it is possible to determine which choice the
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subject intended as a target, simply by selecting the stimulus that elicits the largest

P300. This technique is known as oddball paradigm.

Another example of evoked potential is the N2PC, which is a negative deflection in

the EEG approximately produced 200 milliseconds after a visual stimulus that appears

in the visual cortex contralateral to the side where the stimulus is attended. This

potential has been widely studied to prove its relationship with selective attention

[70, 71]. There are also other visual evoked potentials, such as Steady State Visually

Evoked Potentials (SSVEP), which are signals that are natural responses to visual

stimulation at specific frequencies [72, 73, 74].

2.5.3 Other Potentials

Slow Cortical Potentials (SCPs) are slow EEG changes that last between a second to

several seconds. Researchers have discovered that it is possible to self-regulate these

brain potentials with the help of a proper feedback [75, 76]. This kind of potentials have

also been applied to the decoding of upper and lower limb kinematics [77, 78]. Other

event-related potentials such as Event-Related Desynchronization have been studied

[79]. The standard measure of ERD quantifies the induced change in signal band

power as the difference between a baseline prior to the event and a post-event period.

By convention an ERD corresponds to a negative value, i.e., a decrease in power, while

event-related synchronization (ERS) refers to an increased signal power. This paradigm

has been used to study gait onset [80].

2.6 Brain-Machine Interfaces for Assistance and Re-

habilitation

As it has been reported, Brain-Machine Interfaces suppose a novel way to enhance hu-

man capabilities beyond the neuromuscular system. This opens a promising path to the

development of tools to help people with severe motor disabilities to rehabilitate their

motor capabilities or to replace their natural movement with the use of a commanded

device. In this section, current applications of BMIs both for rehabilitation [49] and
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assistive purposes [51] are analyzed.

Brain-Machine Interfaces have been widely used to command communication and

control systems [48]. Birbaumer et al. developed a spelling device system that could

be operated by people suffering from Amyotrophic Lateral Sclerosis (ALS) [76]. Other

BMI-driven devices have been developed to work either synchronously [62] or asyn-

chronously [81, 82]. Some web browsers are based on evoked potentials such as P300

[68, 83]. This kind of potentials have been also tested with ALS patients using a four

odd-ball paradigm for task selection [84].

Another important application of brain interfaces is assisting mobility. BMI-driven

wheelchairs enable quadriplegic patients to move around on their own [67, 85]. Also,

telepresence robots have been mentally controlled [86]. These robots are equipped with

sensors to detect obstacles and reconstruct pathways. In both cases, a shared-control

approach is necessary to evaluate the user intention along with the information provided

by the sensors and cameras.

One of the main challenges of BMIs is motor substitution. Mental commands can

control hand and arm prostheses and orthoses or even lower-limb exoskeletons. This is

extremely useful for people with a complete paralysis such as SCI patients. Intracortical

BMIs have taken the lead of current applications. In some studies, the motor cortical

activity of monkeys was used to perform reaching and grasping activities with a robot

arm [30], or to perform three dimensional movements that included force grasping for

self-feeding using a mechanical device [31]. By using implanted electrodes, it is also

possible to control a computer cursor [87, 88]. Recently, non-invasive approaches have

been used in the research of clinical applications. Wolpaw et al. have demonstrated

that it is possible to achieve one, two and three dimensional control of a cursor from

EEG signals [89, 90]. In other study, a hand orthosis was controlled by tetraplegic

patients by learning to generate separable motor imagery tasks [91].

The use of BMIs to support rehabilitation procedures has been recently explored

with promising expectations [49]. The use of these systems during motor recovery is

still in its early stages [92]. Nevertheless, according to Mak and Wolpaw, the applica-

tion of BMI systems can augment the current rehabilitation therapies by reinforcing

and increasing effective use of impaired brain areas and connections [50]. An example
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of this reinforcement is the use of neuroprostheses guided through Functional Electrical

Stimulation (FES) and motor imagery classification [81]. In another study, the BMI

was guided by a four-class SSVEP, which controlled a hand prosthesis [93]. With these

techniques it would be possible to restore motor capabilities such as grasping in severely

impaired patients. However, the system bit rate is still quite low and it is necessary

to develop intelligent controllers to avoid system errors. An interesting approach to

post-stroke recovery has also shown that motor imagery can activate sensorimotor net-

works affected by the lesion. In this study, hand motor imagery led to a simultaneous

contralateral ERD and ipsilateral ERS after some training sessions [94]. The main

drawback of these procedures is the lack of information of how the brain cortex behaves

when an injury occurs. In those cases, further research should explore and particularize

the neural activity of stroke patients.



3
MENTAL TASK CLASSIFICATION FROM EEG

SIGNALS USING EEG MAPPING

3.1 Introduction

In recent years, there has been an increasing interest in performing an accurate classifi-

cation of mental tasks in non-invasive spontaneous BMIs [95, 96, 97]. The classification

of mental activity related to motor imagery is very common in literature. When a mo-

tor movement is performed, a particular band of frequencies between 8 and 12 Hz (Mu

band) is activated. The classification of this kind of mental tasks has been proved to be

quite accurate. The most common mental task classification methods in spontaneous

BMIs are usually based on mathematical algorithms like LDA (Linear Discriminant

Analysis) or SVM (Support Vector Machine) which are used to find a combination of

features to separate two or more classes [96]. There are also techniques based on neu-

ral networks [98, 99] or methods using k Nearest Neighbours (kNN) and probabilistic

Bayesian classifiers [97, 95]. Different methods for motor imagery classification have

also been studied [100, 101, 102].

The main purpose of this chapter is to apply the concept of EEG mapping to

a real-time spontaneous motor imagery BMI. To that end, a classification algorithm

based on image correlation between EEG maps has been developed. EEG mapping

was mainly used related to clinical diagnosis of mental diseases whose origin is located

in EEG alterations such as epilepsy [103, 104] or schizophrenia [105]. It was also

used in electrotherapy [106]. This technique consists of obtaining a visual plotting

25
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of the brain activity (usually in terms of frequency), which is a more representative

method for determining EEG alterations. In these clinical works, each session processed

consisted of several minutes of recording. This processing time is totally useless for a

BMI, which works with small windows of time to be able to perform commands in

real time. An alternative to EEG mapping is the use of EEG microstates, which are

transient patterned states of EEG that are associated with initializations of human

neurological tasks. This approach has been used to decode visual-related stimulus [107]

or to analyze timing of exploratory and exploitation decisions [108]. Regarding motor

imagery classification, EEG microstates have been applied to provide feedback about

relevant task-related mental patterns [109]. However, the use of short processing time

windows may affect the stability of classification.

In this chapter, we first present a classifier based on EEG mapping (Section 3.2).

The classification algorithm is based on an image correlation between the EEG maps

obtained from the EEG data processed. To test the classifier, we have used data

provided by IDIAP Research Institute for BCI Competition 2003, based on the perfor-

mance of mental tasks related to motor imagery (Section 3.3). The classifier depends

on several parameters that affect the overall accuracy. An in-depth analysis of these

parameters (the frequency chosen for each subject, the time interval processed, and an

uncertainty threshold) previously introduced in the classifier, has been undertaken to

optimize the method and obtain a suitable configuration protocol for tests in a real

BMI environment.

Afterwards, the EEG mapping classifier is tested in real time (Section 3.4). For

this purpose, the EEG maps are obtained after a suitable processing of the raw EEG

data registered from 4 healthy subjects who have participated in the experiments. Two

mental tasks related to motor imagery are classified, including an uncertainty state to

prevent errors in classification. To measure the accuracy and reliability of the EEG

mapping classifier, the subjects have performed several trajectories in order to control

the cursor position in a visual interface using the BMI. An in-depth analysis of the

frequency and uncertainty threshold chosen for each subject has been performed to

optimize the method and to obtain a better performance of the classification.

Finally, the classifier has been applied to a real world scenario (Section 3.5). A BMI
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based on the correlation of EEG maps has been used to control a pneumatic planar

robot arm in an assistive application. The application designed consists of moving the

end effector of the robot in a plane in order to reach a certain target. The subject sits

in front of a screen located in the robot environment. A visual interface showed the

different movement options. The first strategy is based on a hierarchical control where

the subject can decide the axis and the direction of movement. The second strategy is

based on a directional control, where the subject can continuously decide the direction

of the movement and the command is generated periodically. Both strategies have been

tested by performing trajectories to reach several goals on a plane. The results show

that the subject is able to successfully reach the goals and suggest that the system

is capable of performing more complex tasks in a realistic environment, for example,

grasping daily objects with a gripper.

3.2 EEG Mapping Classifier

In this section, we present a classifier based on EEG mapping. The classification al-

gorithm is based on an image correlation between the EEG maps obtained from the

EEG data processed. The classifier depends on several parameters that affect the over-

all accuracy. An in-depth analysis of these parameters (the frequency chosen for each

subject, the time interval processed, and an uncertainty threshold) introduced in the

classifier, has been undertaken to optimize the method and obtain a suitable configu-

ration protocol for future tests in a real BMI environment.

3.2.1 Image Correlation Classifier

The EEG maps obtained from EEG data are used to perform the classification. The

EEG mapping consists of the geometrical representation of the activity of the recorded

electrodes in terms of frequency. Each EEG map shows a particular frequency and

mental task. Figure 3.1 shows an example of the classification process for three mental

tasks. This classification is divided into two main parts: models obtention and the

classifier itself. The data used to test the classifier has been split into model sessions and

test session. The model data has been used to obtain suitable EEG models to perform
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the classification. These models, together with the test session, are the input of the

image correlation classifier. The input data takes into account two main parameters:

processing time interval and frequency. The election of these parameters is critical for a

good classification and the protocol to obtain them, as well as the uncertainty threshold

used in the classifier block, will be explained in detail later.

In the top block of the classification algorithm (Figure 3.1) the models for each men-

tal task are obtained by processing the data registered in the model sessions. To that

end, several EEG maps are created using a particular frequency and a particular pro-

cessing time interval (between 1 and 5 seconds). The selection of these two parameters

is critical as they affect the accuracy of the classification.

For each mental task, the data are processed in windows of an specific duration (time

interval) and several images of the same task are created. These images are averaged

to obtain a unique image for each mental task so the final output of this block will be

a set of several images (model EEG maps) corresponding to the mental tasks trained

(one EEG model map for each task).

After obtaining the models, a different set of data is used to test the classification. To

that end, the data are processed in trials (with the selected time interval and frequency)

to obtain the EEG map. This image is compared using a normalized cross-correlation

[110] with the models obtained before as it is explained in Figure 3.1. This kind of

comparison between images improves substantially the accuracy of the classification of

a previous work based on simpler methods of image comparison [6].

The correlation between two signals (cross correlation) is a standard approach to

feature detection and also a component of more sophisticated techniques [110, 111].

However, there are several disadvantages of using this technique for template matching

or in this case, in image comparison:

• If the image varies with position, matching can fail.

• The range is dependent on the size of the feature. In this case the size of the

shape.

• The algorithm is not invariant to changes in image amplitude, which are common

in the EEG maps obtained as the amplitude of the signal is not stable.
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Figure 3.1: Classification algorithm. FR: optimal frequency. TI: time interval.
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The normalized cross-correlation has been used to solve these limitations. The

similarity between the EEG maps will be obtained as shown in (3.1):

γ(u, v) =

∑
x,y[f(x, y)− f̄u,v][m(x− u, y − v)− m̄]

{∑x,y[f(x, y)− f̄u,v]2
∑

x,y[m(x− u, y − v)− m̄]2}0.5
(3.1)

where f(x, y) is the EEG map of the trial to be classified, m(x, y) is EEG map of

the model, m̄ is the mean of the EEG map of the model and f̄u,v is the mean of the

EEG map of the trial which is going to be classified.

The resulting matrix γ(u, v) contains the correlation coefficients of each point of

the output image (u, v), which can range in value from -1 to 1. To obtain a unique

correlation coefficient, the highest value of the matrix is selected as the images change

in shape and position. This is made to work with a more reliable correlation parameter.

When a particular session of data is tested (Figure 3.1), each trial is compared with

the models using the normalized cross-correlation algorithm. After this comparison,

an index of correlation for each task is obtained. The maximum value of the index

is selected obtaining the corresponding class. Afterwards, an uncertainty condition is

evaluated. To that end, the indexes of correlation previously obtained are compared.

An uncertainty threshold is subtracted to the maximum value, if one or both of the

remaining two indexes are still above this limit, the trial is rejected and classified as

uncertainty. If not, the mental task with the maximum correlation value remains. The

computational load of this operation is around 200 ms which makes it suitable for

real-time BMI applications.

3.2.2 Classifier Parameters

As it has been mentioned before, the selection of the parameters of the classifier (fre-

quency, time interval and uncertainty threshold) is a very important factor. The ac-

curacy of the final classifier depends substantially on this selection of parameters. To

obtain the best success rate on the final classification, an optimization protocol is pro-

posed in Figure 3.2. The protocol follows a specific order:

1. The optimal frequency is studied. Only the best one is selected.



3.2. EEG MAPPING CLASSIFIER 31

Figure 3.2: Optimization protocol. SR: success rate. UR: uncertainty rate. ER: error

rate.
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2. Using the frequency chosen, the suitable time interval is studied.

3. Once the first two parameters are selected, the best uncertainty threshold is ob-

tained.

The parameters are studied in order of importance. In other words, changes in each

parameter studied should not affect the previous one.

Frequency:

When creating the EEG maps for each mental task, it is desirable to obtain the

maximum difference between each of them. It has been proved that the motor activity

is mainly produced in the Mu band (8-12 Hz), so a better accuracy is expected if the

image correlation classifier is used to classify motor imagery tasks. If not, different

frequencies should be analyzed to obtain the best success rate. To obtain the optimal

frequency, the classifier is applied using a cross-fold validation for all the frequencies at

its disposal. The frequency with the highest success rate is then selected. The initial

time interval used is 5 seconds to obtain the highest accuracy of the classifier.

Time interval:

The processing time interval is inversely proportional to accuracy. It is expected

that with a bigger amount of data, the brain activity will provide more information

and the classification will improve. However, in BMIs, this processing time is critical

as they work in real time. The range of time has been defined between 1-5 seconds to

show the different accuracies and select the more suitable time interval for each subject.

A limit of a 10% of success rate loss has been defined when selecting this time interval

(Figure 3.2). This has been done to assure an acceptable accuracy in the classifier.

Uncertainty:

The final parameter to optimize is the uncertainty threshold. This threshold is used

to reject trials that cannot be clearly classified. The uncertainty rate affects the global

speed of the BMI system and the accuracy of the classifier. When the uncertainty is high

the reliability increases but the speed is lower. On the other hand, if the uncertainty is
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low the speed increases, but the error is higher. In order to select the suitable threshold,

three different methods have been implemented (Figure 3.2):

• Method 1: the uncertainty threshold is selected when the uncertainty rate is the

same as the error rate. This method seeks the same proportion between error and

uncertainty.

• Method 2: the proportion between success rate and error rate is obtained. A

maximum of 30% uncertainty rate is fixed. This method seeks a higher uncertainty

rate and, as a result, a higher reliability on the classification.

• Method 3: the uncertainty threshold where the maximum difference between the

success rate and the error rate (maximum speed) occurs is selected. This method

seeks a lower uncertainty rate but a higher speed on the classification.

3.3 Analysis of the EEG Mapping Classifier

The classifier has been tested with the data provided by IDIAP Research Institute

for BCI Competition 2003. These data are based on the performance of mental tasks

related to motor imagery. The optimization protocol previously described has been used

to select the optimal parameters of the classifier. After studying this optimization, the

final results are presented using the selected parameters. For each subject, the protocol

explained in the previous section has been tested using a 4-fold cross-validation (three

sessions used for training and one for test) and an average success rate of the four

combinations has been obtained. The success rate using the predefined model sessions

from BCI Competition (1 to 3) and the predefined test session (4) are also shown and

compared with the results of the BCI Competition III-Set V [112]. These results have

led to the publication of two conference papers [6, 7] and a journal article [8].

3.3.1 EEG Data Used

The data set V of “mental imagery, multi-class” provided by IDIAP Research Institute

for BCI Competition 2003 has been used to test the classifier [113]. This data set
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contains recordings from 3 subjects without motor impairment during 4 non-feedback

sessions (3 for training and 1 for test). The subjects made these experiments in 4

sessions on the same day, each one lasting 4 minutes and with 5-10 minutes breaks

between them. For each session, the subjects performed three different tasks:

1. Imagination of repetitive self-paced left hand movements (“left” mental task).

2. Imagination of repetitive self-paced right hand movements (“right” mental task).

3. Generation of words beginning with the same random letter (“word” mental task).

The data are provided in two ways: raw EEG signals with a sampling rate of 512

Hz, and precomputed features. To obtain these features the raw EEG potentials were

first spatially filtered with a surface Laplacian and then, every 62.5 ms (16 times per

second), the power spectral density (PSD) in the band 8-30 Hz was estimated over the

last second of data with a frequency resolution of 2 Hz.

The electrodes used to register the EEG signals are the 8 centro-parietal of the

International 10/10 System [60]: C3, Cz, C4, CP1, CP2, P3, Pz and P4 (Figure 3.3,

left). The final EEG sample is a 96-dimensional vector (8 channels with 12 frequency

components).

The EEG mapping consists of the geometrical representation of the activity of these

8 electrodes. To that end, a grid of 99x99 pixels has been created performing an

interpolation of the PSD values of the electrodes that have been represented on the

grid in their approximate real position. To that end, the inverse distance interpolation

method has been used [114], creating a smooth surface. In Figure 3.3, right, an example

of EEG map can be seen. The axes show the normalized position of the electrodes over

the scalp (X and Y) and the values are scaled between 0 and 1 to improve the differences

on the image. Each EEG map shows a particular frequency and mental task.

3.3.2 Frequency Study

To obtain the optimal frequency for each subject, the classifier has been used with

an initial time interval of five seconds, obtaining the success rate for each frequency

between 8 and 30 Hz with a resolution of 2 Hz. The EEG maps are created for each



3.3. ANALYSIS OF THE EEG MAPPING CLASSIFIER 35

time window and then averaged for the whole model session. The results obtained for

each subject can be seen in Figure 3.4.

The best success rate is obtained in a particular frequency band. This band (8-12

Hz) is called Mu band and reflects the activity of the sensorimotor cortex. This seems

a logical consequence to the mental activity classified, which is mainly related to motor

imagery. Another peak of success rate is centered in frequencies between 22 and 26 Hz.

This is the central region of the Beta band (16-31 Hz) which reflects states of active

concentration and is linked to beta depression and rebound in motor tasks. Although

this is a peak that can be taken into consideration in future studies, only one frequency

has been selected and is the one where the maximum success rate is obtained, usually

centered in the Mu band for all subjects. The optimal frequencies selected are: 10 Hz

for Subject 1, 10 Hz for Subject 2 and 12 Hz for Subject 3. Only one frequency was

selected to reduce computational load. The success rate obtained for each subject is

shown in Table 3.1.

From the table it can be seen that the average success rate is 76.91% for Subject

1, 72.61% for Subject 2 and 53.02% for Subject 3, what makes an average success rate

for the three subjects of 67.51%. The time interval used is still too high to make a

Figure 3.3: Electrodes position for BCI Competition using International 10/10 System

(left). Example of an EEG map from Subject 1, 12 Hz, Word Task (right).
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(a) (b) (c)

Figure 3.4: Average success rate after cross-validation for different frequencies.

Table 3.1: EEG Mapping success rate (%) with a time interval of 5 seconds.

Fold Subject 1 Subject 2 Subject 3

123+4 85.71 73.80 64.28

124+3 79.06 85.71 40.47

134+2 78.57 66.66 65.85

234+1 64.28 64.28 41.46

Average 76.91 72.61 53.02

BCI Competition Winner 79.60 70.30 56.00
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(a) (b) (c)

Figure 3.5: Average success rate after cross-validation for different time intervals with

the selected frequencies.

direct comparison between these results and the BCI Competition ones. However, it is

remarkable that the success rates of the first row (123+4) are substantially above the

ones obtained by the winner of the competition [112].

3.3.3 Time Interval Study

The processing time interval is a very important factor in real time systems such as a

BMI. The main goal is to reduce as much as possible the length of the trials processed

in a real-time application. After defining the optimal frequency for each subject, the

time interval has been studied. To that end, the selected frequency is used to obtain the

success rate of the classifier for different time intervals: 1, 2, 3, 4 and 5 seconds. The

results obtained show a small reduction of the success rate each second reduced (Figure

3.5). The processing time interval is selected by taking into account a reliability limit

of reduction that is fixed as a 10% of maximum success rate loss. Using this limit, the

time interval selected is 3 seconds for Subject 1, 2 seconds for Subject 2 and 3 seconds

for Subject 3, obtaining a success rate of 71.38%, 66.82% and 50.87% respectively.

3.3.4 Uncertainty Study

Once the first two parameters (frequency and time interval) are selected, an uncertainty

threshold is introduced in order to reduce the error. The main goal of this uncertainty
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Figure 3.6: Subject 1 - Evolution of the success (SR), error (ER) and uncertainty rate

(UR) for different uncertainty thresholds and selection of thresholds using the three

methods proposed (M1, M2 and M3).

threshold is to reject trials which cannot be clearly classified. In this way, the success

rate of the classifier decreases but also the error rate. If the proportion of reduction is

greater for the error rate than for the success rate, the introduction of the uncertainty

threshold will increase the global success rate of the system.

Three different methods to obtain the uncertainty threshold have been described

in Section 3.2.2. The use of a particular method will be more suitable depending on

the final application of the BMI, as the proportion of uncertainty affects the speed and

accuracy of the system. Figures 3.6, 3.7 and 3.8 show examples for each of the subjects.

The uncertainty threshold ranges between 0 and 0.06 with a resolution of 0.0025. The

success, error and uncertainty rates are calculated for the whole range of thresholds and

for each method. A cross marks the final uncertainty threshold obtained after applying

the criterium for each method. This procedure has been followed four times using the

same 4-fold cross-validation already described in the previous studies of frequency and

time interval and the average of the four thresholds obtained has been carried out to

calculate a unique uncertainty threshold for each subject and method.
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Figure 3.7: Subject 2 - Evolution of the success (SR), error (ER) and uncertainty rate

(UR) for different uncertainty thresholds and selection of thresholds using the three

methods proposed (M1, M2 and M3).

Figure 3.8: Subject 3 - Evolution of the success (SR), error (ER) and uncertainty rate

(UR) for different uncertainty thresholds and selection of thresholds using the three

methods proposed (M1, M2 and M3).
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Tables 3.2, 3.3 and 3.4 show the results obtained for Subject 1, 2 and 3 using the

three methods. It also shows the results without using uncertainty thresholds, i.e.,

UT = 0. The first three columns present the success, uncertainty and error rate, and

the fourth column presents the global success rate, where GSR = SR/(SR+ER). The

uncertainty rate affects the speed of the BMI applied to a global system. In other words,

the accuracy improves by reducing the speed of the application controlled by the BMI.

The selection of the uncertainty estimation method will depend on the characteristics

of the final application controlled, particularly in terms of speed and reliability.

The results indicate that the introduction of uncertainty in the classifier substan-

tially increases the global success rate. In fact, the improvement is about a 5% for all

subjects and methods. This seems quite remarkable, as the success rate was already

quite high in at least two subjects (71.38% and 66.82%). The results for the three

methods are slightly different but this difference is still remarkable. As it has been

already stated, depending on the final application of the BMI, a method may be more

useful than another. In particular, methods 1 and 2 are quite similar and have low error

but high uncertainty. These methods will be useful in applications where reliability is

more critical. On the other hand, method 3 has a worse performance in terms of accu-

racy but is better for applications where the speed of decision is more important. The

results obtained may also change depending on the subject. This general optimization

protocol is applied to make the selection of the most suitable method possible for each

subject and final application.

3.3.5 Discussion and Conclusions

The results of success rate for each subject have been presented after optimizing the

three parameters of the classifier based on EEG mapping analysis (Table 3.5). The

study of frequencies shows that the motor activity is mainly focused in the Mu band

(8-12 Hz), although the Beta band (16-31 Hz) is also activated. Only the main fre-

quency (the one where success rate is higher) has been selected. The use of other

frequencies may be useful in future improvements of the classifier where EEG maps of

different frequencies can be compared to support the classification. With a processing

time interval of 5 seconds, it was shown that the success rate improves for all subjects
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Table 3.2: Subject 1, results with uncertainty (Frequency: 10 Hz, Time Interval: 3

seconds). SR: success rate (%). UR: uncertainty rate (%). ER: error rate (%). GSR:

global success rate (%). UT: uncertainty threshold.

SR UR ER GSR

123+4 66.66 23.61 9.72 87.27

METHOD 1 124+3 61.64 16.43 21.92 73.77

134+2 60.56 23.94 15.49 79.63

UT = 0.0146 234+1 45.07 28.16 26.76 62.75

AVERAGE 58.48 23.03 18.47 76.00

123+4 61.11 30.55 8.33 88.00

METHOD 2 124+3 60.27 21.91 17.08 77.92

134+2 60.56 25.35 14.08 81.14

UT = 0.0169 234+1 45.07 29.57 25.35 64.00

AVERAGE 56.75 26.84 16.21 77.78

123+4 73.61 12.50 13.88 84.14

METHOD 3 124+3 65.75 12.32 21.91 75.01

134+2 69.01 8.45 22.53 75.39

UT = 0.0069 234+1 54.92 11.26 33.8 61.90

AVERAGE 65.82 11.13 23.03 74.08

123+4 79.17 0.00 20.83 79.17

NO THRESHOLD 124+3 73.97 0.00 26.03 73.97

134+2 73.24 0.00 26.76 73.24

UT = 0 234+1 59.15 0.00 40.85 59.15

AVERAGE 71.38 0.00 28.62 71.38
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Table 3.3: Subject 2, results with uncertainty (Frequency: 10 Hz, Time Interval: 2

seconds). SR: success rate (%). UR: uncertainty rate (%). ER: error rate (%). GSR:

global success rate (%). UT: uncertainty threshold.

SR UR ER GSR

123+4 63.55 22.42 14.01 81.94

METHOD 1 124+3 77.57 12.15 10.28 88.30

134+2 47.66 22.42 29.90 61.45

UT = 0.0409 234+1 36.44 20.84 32.71 52.70

AVERAGE 56.31 19.46 21.73 72.16

123+4 63.55 22.42 14.01 81.94

METHOD 2 124+3 77.57 12.15 10.28 88.30

134+2 47.66 22.42 29.90 61.45

UT = 0.0419 234+1 36.44 30.84 32.71 52.70

AVERAGE 56.31 21.96 21.73 72.16

123+4 66.35 19.62 14.01 82.57

METHOD 3 124+3 78.50 11.21 10.28 88.42

134+2 49.53 20.56 29.90 62.36

UT = 0.0381 234+1 40.18 27.10 32.71 55.12

AVERAGE 58.64 19.62 21.73 72.97

123+4 72.90 0.00 27.10 72.90

NO THRESHOLD 124+3 84.11 0.00 15.89 84.11

134+2 58.88 0.00 41.12 58.88

UT = 0 234+1 51.40 0.00 48.60 51.40

AVERAGE 66.82 0.00 33.20 66.82
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Table 3.4: Subject 3, results with uncertainty (Frequency: 12 Hz, Time Interval: 3

seconds). SR: success rate (%). UR: uncertainty rate (%). ER: error rate (%). GSR:

global success rate (%). UT: uncertainty threshold.

SR UR ER GSR

123+4 36.61 39.43 23.94 60.46

METHOD 1 124+3 31.42 32.85 35.71 46.80

134+2 42.85 37.14 20.00 68.18

UT = 0.0469 234+1 37.14 30.00 32.85 53.06

AVERAGE 37.01 34.86 28.13 56.82

123+4 38.02 38.02 23.94 61.36

METHOD 2 124+3 31.42 31.42 32.14 49.43

134+2 42.85 35.71 21.42 66.67

UT = 0.0462 234+1 37.14 30.00 32.85 53.06

AVERAGE 37.36 33.79 27.59 57.52

123+4 45.97 23.94 30.98 59.74

METHOD 3 124+3 31.42 24.28 44.28 41.51

134+2 45.71 27.14 27.14 62.75

UT = 0.0394 234+1 38.57 24.28 37.14 50.94

AVERAGE 40.42 24.91 34.89 53.67

123+4 56.34 0.00 43.66 56.34

NO THRESHOLD 124+3 40.00 0.00 60.00 40.00

134+2 58.57 0.00 41.43 58.57

UT = 0 234+1 48.57 0.00 51.43 48.57

AVERAGE 50.87 0.00 49.13 50.87
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Table 3.5: Optimal parameters of the image correlation classifier for each subject.

Global Success Rate (%) after cross-validation (GSR 1) and for the combination 123+4

(GSR 2). FR: Optimal frequency. TI: Time interval. UT: Uncertainty threshold.

FR TI Method UT GSR 1 GSR 2

1 0.0146 76.00 87.27

Subject 1 10 Hz 3 seconds 2 0.0169 77.78 88.00

3 0.0069 74.08 84.14

1 0.0409 72.16 81.94

Subject 2 10 Hz 2 seconds 2 0.0419 72.16 81.94

3 0.0381 72.97 82.57

1 0.0469 56.82 60.46

Subject 3 12 Hz 3 seconds 2 0.0462 57.52 61.36

3 0.0394 53.67 59.74

in comparison to BCI Competition results [112]. However, these results take into ac-

count a smaller processing interval so a smaller time interval is desirable. The study of

this reduction has shown that only a maximum processing time interval of 3 seconds

is necessary (2 seconds in one case) to perform a robust classification. This reduction

makes possible the use of this kind of classifier in real-time BMIs. The reduction of

success rate is substantially compensated by the introduction of an uncertainty thresh-

old which rejects trials that cannot be clearly classified. Three methods were defined

to obtain these uncertainty thresholds. All the methods (explained in Section 3.2.2)

prove that, with the introduction of uncertainty, the proportion of error rate reduc-

tion is greater than the proportion of success rate reduction. The global success rate

has been calculated showing that the improvement of success rate is nearly a 5% in

all cases. The results for GSR 2, which uses the same combination of sessions shown

in BCI Competition, are higher than the results obtained in [112]. Nevertheless, each

method has its own characteristics which make them more or less suitable depending

on the final application of the BMI. Methods 1 and 2 are slower but more accurate,
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while Method 3 is faster but a bit less accurate.

This section has shown the application of the EEG mapping classifier to a BCI

database (BCI Competition 2003). The time interval of processing has been reduced

and an uncertainty threshold has been introduced showing an important improvement

of the success rates. The suitability of three different methods to obtain this threshold

has been discussed and the results suggest that each method may be suitable depending

on the final application in terms of speed and reliability. The final success rates improve

the results of previous classifiers and encourage us to introduce new improvements in

this kind of classification. The findings of this study suggest that this EEG mapping

method may be suitable for classification of more than three mental tasks as the image

models obtained for each task show big differences between them. The next section will

be centered in testing the classifier in a real-time BMI environment.

3.4 Real-Time Application

In this section, the EEG mapping classifier is tested in real time. For this purpose, the

EEG maps are obtained after a suitable processing of the raw EEG data registered from

4 healthy subjects who participated in the experiments. Two mental tasks related to

motor imagery have been classified, including an uncertainty state to prevent errors in

classification. To measure the accuracy and reliability of the EEG mapping classifier,

the subjects have performed several bidimensional trajectories in order to control the

cursor position in a visual interface using the BMI. An in-depth analysis of the frequency

and uncertainty threshold chosen for each subject has been performed to optimize the

method and to obtain a better performance of the classification. These results have led

to the publication of a journal article [9].

3.4.1 Materials and Methods

3.4.1.1 Register

To register the EEG signals, the gUSBamp device (g.Tec, Austria) has been used (Figure

3.9). This device has 16 channels. The signal is registered with a sample frequency of
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Figure 3.9: Real-time Brain-Machine Interface environment.

1200 Hz and two filters are applied: a bandpass filter between 0.1 and 100 Hz, and a

Notch filter of 50 Hz to remove the perturbation of the electrical network. These filters

are internally included in the device.

The software used for registering the EEG signals has been developed in Matlab

(Mathworks Inc.) using the API (Application Programming Interface) provided by

the device (gUSBamp). Previous studies indicate that the imagination of a movement

generates the same mental process as the performance of the movement itself [64].

Therefore, the imagination of motor movements is expected to generate a sufficient

modulation of the Mu band making possible an accurate future classification. The

volunteers have performed two different mental tasks:

• Imagination of low circular movements of the left arm (“left” mental task).

• Imagination of low circular movements of the right arm (“right” mental task).

The selection of the electrodes on the scalp is based on an extension of the Interna-

tional 10/10 System [60]. This selection is mainly located on the motor cortex, which
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Figure 3.10: Electrodes location on the motor cortex (left). Example of EEG map

(right). The scale is normalized between 0 and 1 as it can be seen on the scale bar.

Each electrode is placed in its particular position and the value generates the map.

is the area of motor activation (Figure 3.10, left). Seven electrodes have been chosen

to register the EEG signals: FC1, FC2, C3, Cz, C4, CP1 and CP2. The main goal of

this selection is to obtain a more specific area of the motor cortex activity to improve

the classification.

3.4.1.2 Processing

Once the EEG signals are registered, first a preprocessing of the signals must be per-

formed to improve the quality of the signals. As it has been mentioned, the amplifier

has its own filters. So, in this case, only a Laplacian smoothing filter is applied as seen in

[115]. It consists of subtracting, on each electrode, the contribution of the surrounding

electrodes by taking into account the distance to the main electrode:

V LAP
i = V ER

i −
∑
j∈Si

gijV
ER
j (3.2)

where:
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gij =

(
1

dij

)
/
∑
j∈Si

(
1

dij

)
(3.3)

According to this formulation, Si is the set of electrodes that surround the main

electrode. In our case, all the surrounding electrodes in the selected set, while dij

is the distance between the main electrode i to the surrounding electrodes j. After

the preprocessing, the extraction of the features of the EEG signals is done using an

algorithm based on the frequency domain. The algorithm used is the Fast Fourier

Transform (FFT), which decomposes the input signal into different frequencies. After

studying experimentally the data the range of frequencies between 8 and 30 Hz (with

a resolution of 2 Hz) have been considered. This means that for each electrode, 12

frequency features are obtained centered in the selected frequencies.

3.4.1.3 EEG Mapping Classifier

To classify the different mental tasks, the EEG mapping classifier explained in the

previous section has been used. The classifier is based on the correlation of EEG maps.

The EEG maps corresponding to the models of each mental task (right and left) are

created. These models are compared to the EEG maps obtained from the registered

signal which is classified. Each EEG map shows a particular frequency and task (Figure

3.10). A total of 12 frequencies have been obtained but only the most suitable frequency

is selected for each subject. As it will be explained in the adjustment of the classifier, to

obtain the proper frequency and the models (left and right) from this frequency, offline

data are tested for each frequency by performing a cross-validation. The models with

the best success rate are selected to be used in the remaining tests. The EEG maps are

obtained for a window of 5 seconds and classified each 0.5 seconds.

The two models (left and right) are compared with the trials that need to be clas-

sified using a normalized cross-correlation [110]. When a particular session of data is

tested, each trial is compared with the previously obtained models using this method

(see Section 3.2.1). After this comparison, an index of correlation for each task is ob-

tained. The maximum value of the index is selected obtaining the corresponding class.

Afterwards, two uncertainty conditions are evaluated:
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• The first uncertainty condition is applied by introducing a fixed threshold to both

indexes of correlation (left and right). If the models do not fulfill this condition,

the trial is rejected as uncertain. In other words, the correlation between the

models and the trial classified should be enough to consider that the data is

correctly registered and does not correspond to noise and other issues related

to the incorrect operation of the amplifier and to prevent errors in classification.

This threshold has been experimentally fixed to a minimum of 90 % of correlation

between the models and the trials classified.

• The second uncertainty condition is applied by introducing a threshold between

both indexes of correlation (left and right). If both are too similar, the trial

is rejected as uncertainty. This second threshold prevents wrong classifications.

This uncertainty threshold is selected when the uncertainty rate is the same as the

error rate after performing a cross-validation between sessions. This method seeks

the same proportion between error and uncertainty in the overall classification.

Finally, to obtain the final decision of the BMI, a simple statistical operation has

been performed to reduce errors. The final decision is calculated as the mode of the last

five outputs provided by the BMI. This is also done to reduce errors while performing

changes of mental tasks.

3.4.1.4 Classifier Adjustment Protocol

The uncertainty thresholds, the suitable frequency and the models for each subject are

selected after performing a particular protocol:

1. First, five offline sessions are registered. The offline sessions consist of asking the

subjects to think about both tasks in a particular sequence. In this case, the sub-

jects do not have visual feedback to show a real-time classification accuracy. From

these sessions, the models (left and right) are obtained and tested using a 5-fold

cross-validation between sessions, where the most suitable frequency is selected.

The classifier is tested for each of the 12 frequencies obtained after processing

the EEG signals (8-30 Hz with a resolution of 2 Hz). The most significant one,
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i.e. the one with the best success rate (normally contained in the Mu band), is

selected. The models for left and right tasks corresponding to this frequency are

kept for future sessions.

2. Afterwards, the classifier is updated by performing sets of three online sessions.

After each set, a new model is obtained. Now, the subjects obtain a continuous

visual feedback of the tasks performed. This improves the accuracy of the clas-

sification and allows obtaining better models. These online sessions are repeated

until the final success rate is accurate enough.

3. Finally, the proper uncertainty thresholds are selected from the last set of online

sessions.

After performing this protocol, the two EEG mapping models obtained for both

mental tasks are ready to be used in a real-time application. In our case, this real-

time application consists of a visual interface where the subject controls the cursor

position using the BMI in order to perform several trajectories. This application ad-

equately shows the performance of a real-time classification and can be translated to

more complex tasks in future works.

3.4.1.5 Visual Interface and Trajectory Application

A visual interface to perform both training and trajectory sessions has been designed.

It is mainly divided into three sections: offline, online and trajectory interfaces. The

appearance of the visual interface during a training session is shown in Figure 3.11. For

the offline sessions, a similar timing paradigm as the one described in [116] is used to

register the data. First, a cross is shown for three seconds, then the mental task to

think about is shown for two seconds and finally there is a period between eight and ten

seconds to perform the mental task (Figure 3.12). The cross is shown to relax between

each task. Both left and right tasks are repeated randomly 8 times per session. For the

online sessions, the same paradigm is used, but in this case, the subject is able to see the

performance of the classification during the third period (8-10 seconds). To that end, an

arrow moves left or right every time the classification is correct. After the task is shown,

the arrow appears on the center of the screen pointing the corresponding direction (left
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Figure 3.11: Visual interface for BMI training.

or right, depending on the task). For each processed trial (each 0.5 seconds) the arrow

moves to the corresponding direction if the classification is successful, if not, the arrow

does not move.

Finally, the trajectory screen consists of two targets placed on a grid as shown in

Figure 3.13. The trajectory starts at the top point and goes downwards automatically

until reaching the bottom border. The subject is asked to think right or left (moving the

cursor right or left) to pass through the targets. The targets are aimed at encouraging

the subjects and the final accuracy is measured by obtaining the distance in pixels to

the center of each target. This means, that a 100% accuracy is obtained when passing

through the center and decreases with the distance until reaching an accuracy of 0% (50

pixels away from the center). Score is also measured after dividing each target into three

different areas (different colors). The outer section scores 1 point, the medium section

scores 5 points and, finally, the inner section scores 10 points. This numerical score

is calculated later and it is not shown to the subjects. This kind of scoring system is

quite qualitative, as BMI systems are still far from being able to perform very accurate

trajectories, but it has been proved to be very useful to stimulate competitiveness
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Figure 3.12: Offline BMI register timing paradigm.

Figure 3.13: Several trajectories performed by the volunteers using BMI based on EEG

Mapping.

between subjects.

3.4.2 Results and Discussion

Four able-bodied volunteers have taken part on the experiments. The volunteers are

four men, all healthy and with ages between 25 and 39 years old (mean 30.2±6.4). All of

them are familiarized with biomedical technologies. Two of the subjects have experience

using BMIs, while the others are naive in this kind of devices. The experiments took

place in an separate room to prevent distractions. As it has been explained before, the

volunteers have performed 5 offline sessions (4 minutes each) and, then, sets of 3 online
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sessions (4 minutes each) to completely adjust the EEG mapping models. Afterwards,

10 trajectories (around 1 minute each) have been performed and score and accuracy

have been measured. The total time of the tests (including resting periods) is about

one hour and half.

In Table 4.2, the offline and online results obtained are shown. First, the average

results of the offline cross-validation for each subject are shown. These results do not

include uncertainty. Then, the results obtained for the last set of online sessions for

each subject are shown (final adjustment). As it can be seen, the offline results are still

far from being useful to accurately classify the signals. However, the models obtained in

these sessions are used for the online training by introducing a visual feedback where the

volunteer can see if the classification is performed correctly. The success rate improves

in the online training for Subjects 1 and 2. Particularly, for Subject 1, the success rate

is above 80%. For Subjects 3 and 4, error decreases as well (more uncertainty). Figure

3.14 shows the evolution of the online results for both tasks (left and right) obtained

by Subject 1. As it can be seen, the volunteer obtains a very high success rate for the

right mental task and during the tests he/she is able to get used to the system and to

improve the success rate for the left mental task and even more for the right mental

task.

As mentioned before, the application designed consists of a grid where two targets

are shown. The subject is able to perform motor imagery mental tasks (right and left)

to reach the targets. First, the volunteer continuously performs a right mental task in

order to move the cursor and reach the first target and then continuously performs a

left mental task to reach the last one. Figure 3.13 shows three different trajectories.

The first one is a perfect trajectory where the subject is able to score in both targets.

The second one shows a typical example of trajectory where the subject has difficulties

when performing a particular mental task (in this case, the imagination of left arm

movement). Finally, the third one shows a quite satisfactory trajectory in terms of

accuracy and intention. However, in terms of score, the subject is not able to reach the

second target.

The results of accuracy and score are shown in Table 3.7. As it can be seen, the

score results are poor. As it has been previously mentioned, giving score is aimed
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Table 3.6: Training results with the BMI based on EEG Mapping.

Test Success Uncertainty Error

Subject 1 Offline 52.0 % - 48.0 %

Online 1 76.0 % 12.0 % 12.0 %

Online 2 72.0 % 16.0 % 12.0 %

Online 3 80.8 % 3.8 % 15.4 %

Subject 2 Offline 46.2 % - 53.9 %

Online 1 65.4 % 0.0 % 34.6 %

Online 2 56.0 % 16.0 % 28.0 %

Online 3 64.0 % 0.0 % 36.0 %

Subject 3 Offline 52.0 % - 48.0 %

Online 1 42.3 % 19.2 % 38.5 %

Online 2 40.0 % 8.0 % 52.0 %

Online 3 56.0 % 12.0 % 32.0 %

Subject 4 Offline 57.7 % - 42.3 %

Online 1 54.5 % 12.0 % 33.5 %

Online 2 56.0 % 16.0 % 28.0 %

Online 3 52.0 % 16.0 % 32.0 %
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Figure 3.14: Evolution of the success rate for left and right mental tasks during the

online training for Subject 1.

at encouraging the volunteers. BMI systems are not accurate enough to obtain precise

trajectories. However, Subjects 1 and 2 clearly achieve better scores than the remaining

two. The accuracy percentage calculated is a more realistic measure of the general

performance of the BMI. For Subjects 1 and 2, accuracy in both targets are similar

and high. These volunteers are able to totally control the trajectory with an acceptable

error. Subjects 3 and 4 are able to obtain good results with the first target (perform a

right mental task), but sometimes fail to reach the second one (perform a left mental

task). This means that the success rate is high for right and poor for left. In general,

all four volunteers are able to control the trajectories, particularly Subjects 1 and 2,

who obtain very good results.

3.4.3 Conclusions

In this section, a non-invasive BMI based on the correlation of EEG maps has been

tested to perform applications in real-time. To that end, a visual application to perform

trajectories has been designed. Two targets are shown on a grid and the volunteers

are asked to reach the targets by performing tasks related to motor imagery (in this

case, the imagination of the movement of the left and right arm). The classifier has
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Table 3.7: Tests results with the BMI based on EEG Mapping.

Score Score Total Accuracy Accuracy Average

target 1 target 2 score target 1 target 2 accuracy

Subject 1 4.6 2.5 7.1 76.0 % 73.0 % 74.5 %

Subject 2 4.6 5.7 10.3 78.0 % 84.0 % 81.0 %

Subject 3 4.6 1.1 5.7 73.3 % 31.3 % 52.3 %

Subject 4 2.3 3.3 5.5 59.3 % 28.7 % 44.0 %

Mean 4.0 3.2 7.2 71.7 % 54.2 % 63.0 %

been improved from previous works by introducing two uncertainty conditions. Four

able-bodied volunteers tested the application. The accuracy and score obtained prove

that this BMI is ready to be used in more complex applications for people with a severe

motor disability that could help them in their daily life.

In future works, the main goal will be to adapt this BMI to more useful and meaning-

ful environments, such as the control of a robot arm to perform grasping operations of

daily objects and the control of web browser. The next section will show the application

of this classifier to the control of an assistive planar robot.

3.5 Control of an Assistive Planar Robot

In this section, the EEG mapping classifier has been applied to a real world scenario.

The BMI based on the correlation of EEG maps described in previous sections has

been used to control a pneumatic planar robot arm in an assistive application. The

BMI system follows the same training protocol explained in the previous section. After

training it, the BMI has been used to control the robot arm. The application designed

consists of moving the end effector of the robot in a plane in order to reach a particular

target. The subject sits in front of a screen located in the robot environment. A

visual interface shows the different movement options. The first strategy is based on a

hierarchical control where the subject can decide the axis and the direction of movement.
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The second strategy is based on a directional control, where the subject can continuously

decide the direction of the movement and the command is generated continuously. Both

strategies are tested by performing trajectories to reach several goals on a plane. The

results show that the subject is able to successfully reach the goals and suggest that

the system is capable of performing more complex tasks in a realistic environment, for

example, grasping daily objects with a gripper. These results have led to the publication

of two conference papers [10, 11].

3.5.1 Materials and Methods

The BMI based on the correlation of EEG maps has been used to control the PuParm

[117, 118] (see Figure 3.15), a force-controlled planar robot designed and developed by

the nBio research group at the Miguel Hernández University of Elche (Spain) (for more

details see Appendix A). To control the assistive planar robot (PuPArm) with the

BMI, two different control strategies have been defined. The first one is a hierarchical

control where the subject can choose the axis and direction of the movement obtaining

4 possible commands (up, down, left and right). The second one is a directional control

where the subject can continuously control the direction of the movement using a wheel-

designed interface that generates periodical commands to move the robot in the selected

direction.

3.5.1.1 Hierarchical Control

The first control strategy is a hierarchical approach where the subject is able to select

the axis and direction of the movement of the end effector using a hierarchical interface.

With this control strategy, the subject can move to any of the four possible directions

(up, down, left or right) a predefined distance of 10 cm. The decisions (direction) are

sent via UDP to the computer that controls the planar robot and the robot is controlled

via USB through Simulink. The output command from the BMI is translated to an

absolute position by increasing the position in 10 cm on the selected direction. This

position is sent to the robot controller, where the current position is updated and the

torque command is generated, moving the robot to the desired direction.
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Each decision is taken using the BMI following a hierarchical control protocol (Figure

3.16). Two decision menus are shown to the subject using a visual interface. With

the first one, the axis of movement is chosen. Afterwards, another menu asks for

the direction of the movement depending on the axis previously selected. The visual

interface shows a cursor that is moved with the BMI (left or right) to select one of

the options (Figure 3.17, left). The minimum BMI commands sent to reach an option

are 10 and time taken to select one of the options is around 5.4 seconds (5 seconds of

decisions and 0.4 seconds to change menus), so the minimum time taken to perform a

movement is around 10.8 seconds.

The hierarchical strategy has been chosen to allow a more precise and slower control

of the end effector which can be critical in future grasping applications.

3.5.1.2 Directional Control

The second control strategy allows the subject to continuously control the direction of

the movement and to generate commands every 5 seconds. As it can be seen in Figure

Figure 3.15: Experimental environment of the planar robot. The subject sits in front

the robot arm and a screen provides visual feedback.
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3.17, right, a wheel is shown to the subject where an arrow points to the direction of the

movement of the end effector. The subject can rotate the arrow right or left using the

BMI as far as the left and right limits allow it. These limits have a range of 60 degrees

and the arrow moves 5 degrees anytime a mental task is classified (each 0.5 seconds).

Every 5 seconds, the robot moves in the direction pointed by the arrow and the wheel

is updated showing new limits, but in this case drawing them equidistant to the final

position of the arrow. This way, it is possible to rotate the arrow 360 ◦ after several

decisions. Each final command moves the end effector 5 cm to the selected direction.

As before, the decisions are sent via UDP to the computer that controls the planar

robot via a similar Simulink scheme. The output command from the BMI is translated

to an absolute position by increasing the position in X and Y to obtain a movement of

5 cm in the selected direction. Then, this position is sent to robot controller where the

current position is updated and the torque command is generated.

The directional strategy has been chosen to allow a faster and less restricted control

of the robot end effector.

Figure 3.16: Hierarchical control protocol. The subject decides both axis and direction

to perform a single movement.
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Figure 3.17: Hierarchical control interface (left). Directional control interface (right).

3.5.2 Results and Discussion

An assistive application has been designed to control the planar robot with the BMI

and test both control strategies. The application consists of reaching three goals on a

table. The end effector of the PuPArm is placed over the start position (Figure 3.15)

and then, the subject takes control of the robot and moves it to the desired goal.

One able-bodied volunteer has taken part on the experiments. The volunteer was

a man, healthy and with an age of 25 years old. Before performing the tests, the

volunteer had already performed a previous training session (which is not reported in

the previous section) where the classifier was adjusted showing an average success rate

Figure 3.18: Example of test with the hierarchical control protocol (expected trajec-

tory).
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of 76.3%, with 10.6% uncertainty and 13.1% error. From this results it can be seen

that the EEG mapping classifier is accurate enough to perform real-time applications

like the one proposed in this section.

For each goal and control strategy, the volunteer has performed three trajectories

with the planar robot. For the hierarchical control strategy, the volunteer is asked to

reach exactly the position where each goal is marked. In Figure 3.18, an example of a

perfect trajectory for each goal is shown. The minimum movement decisions taken to

reach the objectives 1, 2 and 3 are 3, 4 and 6, respectively. In this case, the movements

are predefined by the range of movement selected for the robot (10 cm). However, for

the directional control strategy, the volunteer has to move as close as possible to the

goals, as the output commands for this strategy depend on the position pointed by the

arrow.

In Table 3.8, the results obtained are shown. For the hierarchical approach, time

taken to reach each objective is measured, as well as decision errors made on each

trajectory along with the number of movement decisions taken to reach the objective.

The average time taken in each decision (two decisions per movement) is also shown.

For the directional approach, time taken to reach the goals is measured and error taken

is also shown. In Figure 3.19, the trajectories obtained for each goal are shown.
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With the hierarchical control strategy, the results obtained in terms of decision

success are quite high (88.2 %), as the subject generally makes no more than one

wrong movement decision in a single trajectory (except from one case). Any wrong

decision needs to be solved in the following movement affecting the final time taken

to reach the objective. However, the introduction of the hierarchical control solves the

lower reliability of a pure BMI and allows the subject to achieve every objective in a

quite reasonable time. The average time taken to reach the furthest goal (objective

3) is 106.4 seconds. Contrary to expectations, the second goal takes more time than

the third (122.7 seconds). This is due to the hierarchical control protocol, where the

decisions taken to achieve this objective imply a greater number of mental task changes.

This has been proved to be more difficult for the subject. It is also interesting to note

that in all nine cases of these experimental tests, the subject is capable of reaching

the objectives and the average time to take a decision (9.8 seconds) which makes this

system sufficiently fast and reliable.

Figure 3.19: Results with the directional control strategy for goals 1, 2 and 3 (scale in

mm). The goals are marked with a circle and the start and final position are marked

with a cross.

With the directional control strategy, the precision is accurate enough in most of the

cases. As it can be seen in Figure 3.19, the subject is able to reach 6 of 9 goals, which

means a correct approaching in a 66% of the cases. The maximum error measured

is 11.1 cm. In this sense, for future experiments, the improvement of this precision

will be important when undertaking grasping operations in a real environment. As

it can be observed, time taken to reach the goals dramatically decreases compared to
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the hierarchical control, so the directional control has been proved to be a quite fast

approaching method. In fact, the average time taken of all 9 tests is 65.1 seconds,

around a 40% faster than the hierarchical control (106.2 seconds). It is also remarkable

that the volunteer is able to correct a wrong trajectory (see Figure 3.19, left). As it can

be seen, all the trajectories start with the same initial angle (the arrow points down)

which reflects an initial bias of the interface that could be corrected with additional

control commands.

In terms of usability and comfortability, the volunteer has pointed out that the

concentration taken to perform the BMI mental tasks is lower for the directional control

as relaxation is possible when the movement direction is on the way of the goal. The

higher speed of this strategy is also an important advantage for the subject. On the

other hand, the volunteer thought that the hierarchical approach was more reliable.

As commented before, this fact can be relevant in a realistic application to grasp daily

objects.

3.5.3 Conclusions

In this section, two control strategies to move a planar robot with a Brain-Machine

Interface based on the correlation of EEG maps have been tested by performing 2D

movements to reach several goals. The first strategy consists on a hierarchical control

where the subject can choose both the axis and direction of the movement. With

the second strategy, the subject is able to continuously control the direction of the

movement to approach the goals. The results obtained show that the hierarchical

control strategy is more reliable but slower than the directional one, which is less

precise but more comfortable for the subject. Moreover, the volunteer has been able to

reach the goals with both strategies which suggests that this system could successfully

work in more complex applications.

In future works, a more realistic environment will be designed to perform grasping

tasks of daily objects. In this sense, a pneumatic gripper will be attached at the robot

end effector. The EEG mapping classifier will be enhanced by studying different mental

tasks and different electrodes positioning to adapt it to a greater range of subjects. The

control strategies will be also be improved to reduce positioning error, when necessary,
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and time taken to perform the movements of the end effector.

3.6 Conclusions

In this chapter, a novel method of classification for spontaneous motor imagery BMIs

based on a normalized cross-correlation of EEG maps has been presented. An opti-

mization protocol has been applied to adjust the parameters of the classifier for each

subject. This protocol takes into account not only the final accuracy of the classifier

but also the speed of the classification. To that end, the time interval of processing has

been reduced and an uncertainty threshold has been introduced showing an important

improvement of the success rates. The suitability of three different methods to obtain

this threshold has been discussed and the results suggest that each method may be

suitable depending on the final application in terms of speed and reliability. The final

success rates improve the results of previous classifiers and encourage us to introduce

new improvements in this kind of classification. The findings of this study suggest that

this EEG mapping method may be suitable for the classification of more than three

mental tasks as the image models obtained for each task show big differences between

them.

A non-invasive BMI based on the correlation of EEG maps has been tested to per-

form applications in real-time. To that end, a visual application to perform trajectories

has been designed. Two targets are shown on a grid and the volunteers are asked to

reach the targets by performing tasks related to motor imagery (in this case, the imag-

ination of the movement of the left and right arm). The classifier has been improved

from previous works by introducing two uncertainty conditions. Four able-bodied vol-

unteers tested the application. The accuracy and score obtained prove that this BMI is

ready to be used in more complex applications for people with a severe motor disability

that could help them in their daily life.

The EEG Mapping classifier has been applied to a real world scenario. Two control

strategies to move a planar robot with a Brain-Machine Interface based on the corre-

lation of EEG maps have been tested by performing 2D movements to reach several

goals. The first strategy consists on a hierarchical control where the subject can choose
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both the axis and direction of the movement. With the second strategy, the subject is

able to continuously control the direction of the movement to approach the goals. The

results obtained show that the hierarchical control strategy is more reliable but slower

than the directional one, which is less precise but more comfortable for the subject.

Moreover, the volunteer is able to reach the goals with both strategies which suggests

that this system could successfully work in more complex applications.



4
UPPER LIMB MOVEMENT DECODING FROM

LOW FREQUENCY EEG SIGNALS

4.1 Introduction

Currently, one of the main challenges of BMIs is to characterize and decode upper limb

kinematics from brain signals. Up to now, decoding approaches are mainly centered

on intracortical recordings, usually performed in non-human primates, where arrays

of microelectrodes are implanted directly in the motor cortex. In some studies, the

motor cortical activity of monkeys was used to perform reaching and grasping activities

with a robot arm [30], or to perform three dimensional movements that included force

grasping for self-feeding using a mechanical device [31]. Invasive approaches have been

successfully used in people with motor disabilities to perform reaching and grasping

tasks [32, 33]. Less invasive procedures such as electrocorticography (ECoG) have been

used to decode two-dimensional arm trajectories [119] and different types of grasping

[120]. Despite its potential, invasive approaches require surgery, what limits its use.

In this respect, non invasive methods can compensate the drawbacks of intracortical

recordings. In this sense, some studies have used magnetoencephalographic (MEG)

signals to predict hand movements to perform 2D trajectories [121]. Also, this kind

of signals have been used in combination with electroencephalographic (EEG) signals

to discriminate between different center-out movements [122]. Regarding EEG signals,

their low signal-to-noise ratio challenges the kind of trajectory decoders that can be

67
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built.

Recent works suggest that it is possible to decode hand or arm kinematics (position

and velocity) from slow cortical potentials, i.e., EEG signals oscillations below 2 Hz [77].

To that end, multidimensional linear regression models are applied to the data. In this

work, the volunteers were asked to perform random selections of eight targets in a 3D

environment. The results showed that better correlations between velocity and EEG

recordings were found when the users performed linear hand-reaching movements. In

other works, the use of low frequency components (<2Hz) showed the best correlation

results when performing continuous and rhythmic right arm movements [123]. In this

case, volunteers were asked to perform natural arm movements with a variable speed.

From these studies it was concluded that decoding performance is at least partially

related to the type of movement performed.

Decoding methods based on the analysis of low frequency EEG components have

gone some way towards a deeper knowledge of motor neural correlates. However, there

is certain controversy about how the decoding performance is assessed. A very recent

study holds that this methodology has the risks of overestimating the decoding perfor-

mance due to the mathematical properties of linear regression between signals in the

same frequency range (in this case, slow arm movements and slow cortical potentials)

[124]. This study states that, in fact, the results do not show higher accuracies than

chance level and the correlation is not sensitive to scaling. In a previous work, the use

of multidimensional linear regression was proposed as the decoding method to control

a cursor reporting that it is possible to accomplish a two-dimensional control of this

cursor with performance levels comparable to those of invasive BMI systems [125]. In

their study, the decoding models had to be recalibrated to include a scaling factor due

to the fact that the correlation metric is invariant to scale. The controversy of how these

results are assessed is still a matter of discussion [125, 126, 127], so it is necessary to

gather further evidence of the real possibilities of decoding arm trajectories from EEG

slow cortical potentials. Some studies have suggested the introduction of electromyo-

graphic information (EMG) into this decoding procedure [128] or even a simplification

of it using the new conceptual approach of muscle synergies [129].

In this chapter, we first assess the real possibilities of using linear regression methods
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to decode upper limb kinematics from EEG signals (Section 4.2). To that end, we

compare several results obtained by applying linear regression techniques to decode

upper limb kinematics from EEG signals using a center-out reaching approach. The

difference between real arm movement and imagined arm movement has been computed

using the decoding approach presented in [77], which consists of a multidimensional

linear regression model. First, the correlation between the decoded and the performed

kinematics has been obtained. The results show that real arm movement decoding

is significantly above chance levels which were calculated from random and shuffled

EEG data. However, imagined arm movements are not significantly above chance

levels and, in fact, below real arm movements. Passive movements have been then

performed using the same protocol to study the influence of movement artifacts in

the decoding. The results show non-significant decoding correlations and prove that

decoding accuracy during movement is due purely to a neural correlation and not

related to muscle artifacts. Finally, all the tests have been recomputed to obtain a

discrete classification of reached targets and allow obtaining the same conclusions with

a very high classification accuracy. From these findings, it can be concluded that

the discrete classification of reached targets from decoding approaches may be a more

suitable real-time methodology than a direct decoding of hand position.

Additionally we analyze the influence in the decoding of the performed arm move-

ment in terms of velocity, trajectory and variability (Section 4.3). To that end, the

decoding correlation has been studied by performing upper limb movements with dif-

ferent speeds and trajectories. Low frequency components of the EEG signals have

been decoded with linear models to obtain the position of the hand during performed

trajectories using a planar robot. A visual interface, showing a disc moving in a 2D

environment, has been used as feedback. The volunteers are asked to follow the disc,

which moves randomly on the screen with a constant speed, by controlling a cursor

with the planar robot. The disc size is changed in each session to evaluate the influence

of movement accuracy. Finally, concentration and ergonomic aspects are also taken

into account. To that end, volunteers are asked to fill a comprehensive survey of the

tests that includes questions about tiredness, comfort, frustration, entertainment and

difficulty. This survey allows solving different small issues during the experimental tests
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and improves ergonomics of the robot arm and the tests in general.

Finally, the discrete classification of reached targets has been applied in real time

(Section 4.4). In the experiments, subjects are asked to reach two targets on a screen by

moving the computer mouse. First, the decoding models have been obtained from fast

training runs where both mouse trajectories and EEG signals are recorded. Then, these

models have been applied to decode the mouse cursor trajectories and, afterwards, the

direction of movement has been classified and compared to the actual performed tra-

jectories. The results obtained show significant classification rates of horizontal move-

ments. This work is aimed at obtaining an accurate way of decoding hand movement

intention that could be applied on the control of an exoskeleton in future rehabilitation

tasks.

4.2 Continuous and Discrete Decoding of Upper Limb

Kinematics from EEG Signals in Center-Out

Reaching Tasks

In this section, we compare several results obtained by applying linear regression tech-

niques to decode upper limb kinematics from EEG signals using a center-out reaching

approach. The experimental tests are based on a center-out protocol where a cursor

moves from a central position to several targets equally distributed around it. The dif-

ference between real arm movement and imagined arm movement was computed using

a decoding approach consisting of a multidimensional linear regression model. Passive

movements were also performed using the same protocol to study the influence of move-

ment artifacts in the decoding. Finally, we also evaluated the discrete classification of

reached targets. To that end, the decoding has been computed to obtain the trajectory

of the cursor for each movement and then, the angle of movement (or momentum) has

been calculated to classify the direction of the movement, i.e., the reached target. The

results obtained in this section have led to the preparation of a journal article [12].
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4.2.1 Materials and Methods

4.2.2 Experimental Tests

The experimental tests are based on a center-out protocol in which subjects sat in front

of a computer screen where a cursor moves from a central position to several targets

equally distributed around it (see Figure 4.1, top). EEG signals were recorded along

with the position and velocity of the cursor. Three different tests were performed. The

first one took place in the Defitech Foundation Chair in Non-Invasive Brain-Machine

Interface (CNBI) at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzer-

land. The remaining tests took place in the Brain-Machine Interface Systems Lab at

the Miguel Hernández University in Elche (Spain).

• Motor imagery center-out : the cursor is moved automatically to reach 8 different

targets that are randomly highlighted on the screen. Each time the cursor reaches

a target, it returns to the central position and a new target is highlighted. Subjects

are asked to follow the cursor with their eyes while imagining hand or finger

movements on a plane. The cursor takes 4 seconds to reach each target and 4

seconds to return to the central position without any waiting period in between.

5 runs of 5 minutes (around 37 reached targets) each were performed by 5 able-

bodied subjects (A1-A5), all male (26.4±0.9 year-old). EEG signals were acquired

using a Biosemi ActiveTwo amplifier with a sample frequency of 2048 Hz. 64

electrodes were placed following the 10/10 International System. Ground and

reference electrodes were replaced by the Common Mode Sense (CMS) active

electrode and the Driven Right Leg (DRL) active electrode.

• Real center-out movement : in this case, the subjects control the cursor movement

using a planar robot (see Figure 4.1, top). The planar robot arm used is the

PuPArm, a force-controlled robot designed and developed by the nBio research

group at the Miguel Hernández University of Elche (Spain) [117, 118] (for more

details see Appendix A). As before, the goal is to reach the target that is randomly

highlighted on the screen. The subject must reach it and then return to the central

position. Each time a target is reached or the cursor enters the central position,
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a waiting period of 400 ms is introduced. Each subject executed 10 runs in which

40 targets were highlighted (around 3 minutes per run). 5 able-bodied subjects

(B1-B5), all male (26.4± 3.1 year-old) performed the tests. The equipment used

was the gUSBamp (g.Tec, GmbH, Austria) with a sample frequency of 1200 Hz.

16 electrodes were recorded distributed over the central and parietal cortex, where

a higher activity related to arm movements is expected. The reference was placed

on the right earlobe and ground was placed on the AFz position.

• Passive center-out movement : subjects are asked to passively grasp the planar

robot end effector while the researcher operates the robot. The experimental tests

are the same as with the real center-out movement. Subjects carried out 5 runs

in which 40 targets were highlighted (around 3 minutes per run). 5 able-bodied

subjects (C1-C5), all male (25.2± 2.6 year-old) performed the tests.

4.2.2.1 Preprocessing

First, cursor kinematics were resampled to match EEG signals. EEG signals were

visually inspected to reject blinks, and frontal channels were discarded to diminish

ocular artifacts. For this reason, the same 16 electrodes were considered for the analysis

of all conditions: FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P3, Pz, P4,

PO3 and PO4. According to previous literature, information related to Slow Cortical

Potentials (SCPs) is localized above 0.1 Hz [130]. As a consequence, EEG signals were

band-pass filtered with a zero-phase 4th-order Butterworth filter between 0.1-2 Hz. For

comparison purposes they were also filtered between 8-12 Hz, 14-30 Hz and 0.1-40 Hz,

to estimate the amount of information present in each frequency band performing a

similar analysis to the one shown by Antelis et al. [124]. Cursor kinematics (position

and speed) were also low-pass filtered with a zero-phase 4th-order Butterworth filter

below 2 Hz. Finally, EEG data from each electrode i were standardized by subtracting,

for each time sample (t), the mean (V̄i) of the signal and dividing the result by the

standard deviation (SDV i) as shown in (4.1).

EVi[t] =
Vi[t]− V̄i
SDV i

(4.1)
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Figure 4.1: Top, experimental setup. The subject performs the center-out movements

in front a screen showing the cursor and target locations. The subject is asked to reach

the highlighted targets with the planar robot or follow the automatic movement of

the cursor while performing motor imagery of hand or finger movements on a plane.

Bottom, different configuration of possible targets have been analyzed to compare the

performance of target decoding. Configuration A covers all the targets shown. For

configurations B and C, 4 targets are taken into account in the analysis. Finally,

configurations D and E correspond to a discrimination between two opposite target

directions.
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4.2.2.2 Decoding

A multidimensional linear regression has been applied to decode kinematics from EEG

signals,

x [t] = a+
N∑

n=1

L∑
k=0

bnkSn [t− k] (4.2)

where x[t] is the kinematics state (position and velocity) at time t and Sn is the signal

from channel n. L corresponds to the number of lags and N to the number of channels.

The decoding parameters, a and b, were estimated using a cross-fold validation for each

condition. The values for the parameters L and N are: L = 10 (around 80 ms of signal)

and N = 16 (central and occipital electrodes uniformly distributed).

To simplify the process, the matrix form of (4.2) has been used as follows:

X[4× 1] = A[4×NF ] ∗ Z[NF × 1] +R[4× 1] (4.3)

where X is the kinematic state [PxPyV xV y]′, A is the transformation matrix, Z is the

features array, R is the scale matrix (independent term of the linear regression) and

NF is the number of features used which depends on the time lag L and the number

of channels N (NF = L ∗N + 1).

4.2.2.3 Analysis

The decoding performance has been analyzed in two ways. First, by obtaining the

Pearson correlation coefficient between the decoded and the performed trajectories

(continuous decoding) and finally, by classifying the direction of each movement and

compare it with the actual reached target (discrete decoding).

• Continuous Decoding:

For the continuous decoding, the matrices A and R in (4.3) have been obtained

using a ten-fold cross validation. For each fold, the training data has been used to

compute the decoding matrices that are then applied to the test data to obtain the

decoded kinematics. We computed the Pearson correlation coefficient between the

real and decoded kinematics for each fold and then computed the average to obtain
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the final decoding accuracy. The results have been compared for different ranges

of frequencies (0.1-2 Hz, 8-12 Hz, 14-30 Hz and 0.1-40 Hz). Additionally, shuffled

and random data have been used as input to assess if the decoding accuracy was

above chance levels. Shuffled data have been obtained by randomly mixing target

labels of real data and the associated kinematics to keep the temporal structure

of the EEG signals. Random data have been obtained by generating a uniform

noise with the same size of real input data. Both shuffled and random data have

been filtered and standardized in the same way as the actual experimental data.

Random and shuffled data decoding coefficients have been computed 100 times

to avoid chance effects due to the stochastic nature of the process.

• Discrete Decoding:

For the discrete decoding analysis, the success rate of reaching a particular tar-

get has been obtained for the frequency range (0.1-2 Hz). Only SCPs have been

analyzed as the continuous decoding shows non-significant results in other bands

(see Section 4.2.3.1). To that end, EEG signals and kinematics have been man-

ually segmented into blocks for each center-out movement and labeled with the

corresponding target. First, the trajectory of the cursor has been decoded for

each movement block (from the decoded X and Y positions) and then, the angle

of movement (or momentum) has been calculated and compared to the angular

position of each target to classify the direction of the movement, i.e., the reached

target. This classification has been performed using a ten-fold cross-validation

for 5 different target configurations (see Figure 4.1, bottom). The movement

workspace is divided into sectors depending on the configuration of targets. For

example, for two targets, the workspace is divided into two sectors and the es-

timated angle is assigned to the nearest target. As before, shuffled and random

data was used to estimate chance levels.
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4.2.3 Results

4.2.3.1 Continuous Decoding

The Pearson correlation coefficient has been obtained after computing a cross-fold val-

idation between all sessions for each subject. Figure 4.2 shows the Pearson correlation

coefficient obtained while performing imagined and real center-out movements when

decoding signals in the frequency band 0.1-2 Hz. Motor imagery decoding (Figure

4.2A) did not yield high correlation coefficients for any of the subjects. However, most

subjects showed a high correlation in the X velocity component, with small deviations.

In general, the correlation for the decoded X velocity component (averaged between all

subjects) is clearly higher than the rest (0.265±0.103 versus 0.055±0.160 for X position,

0.037±0.115 for Y position and 0.054±0.121 for Y velocity). On the other hand, real

center-out movement showed higher decoding correlations (Figure 4.2B). Particularly,

subjects B3 and B5 obtain the best decoding accuracy with some components reaching

a value of 0.5.

Figure 4.3 shows an example of 30 seconds kinematic reconstruction (2D position

and velocity) for one of the subjects performing real movements. In this particular

example, decoding coefficients above 0.5 show a very accurate reconstruction of the

performed trajectories (X Position and Y Position). When the decoding correlation

decreases (X Velocity, Y Velocity), the reconstructed signal preserves its tendency but

reduces its accuracy.

To estimate the significance of our findings, the decoding models have been tested

with random and shuffled data and compared with the results for motor imagery and

real movement (Figure 4.4). For motor imagery, only X Velocity yielded results above

chance level (p<0.001) (Figure 4.4A). This suggests that the SCPs do not convey enough

information to decode kinematic information from motor imagery. On the other hand,

the results show that real movement is decoded significantly above chance level for any

component (p<0.001, Wilcoxon Sum-Rank Test)(Figure 4.4B). Interestingly, decoded

X velocity from imagined movements shows no significant difference when compared

to the corresponding X velocity component for real movements (Figure 4.4C). The

reason for the higher accuracy of the X Velocity component is not clear. For the



4.2. CONTINUOUS AND DISCRETE DECODING IN CENTER-OUT TASKS 77

Figure 4.2: Continuous decoding of center-out trajectories for motor imagery center-out

(A) and real center-out movement (B) for the frequency band 0.1-2 Hz. The boxplot

represents the Pearson correlation coefficient obtained after computing a cross-fold val-

idation between all sessions. For each subject (1-5) the graph shows results for position

(Px and Py) and velocity (Vx and Vy).



78 CHAPTER 4. UPPER LIMB MOVEMENT DECODING

Figure 4.3: Continuous decoding of kinematics using the linear regression decoding

method (Subject 3 - Real Center-out Movement). The grey dotted line represents the

real performed movement. The continuous black line represents the decoded kinematics

(A: X Position, B: Y Position, C: X Velocity, D: Y Velocity). The correlation coefficient

(CC) obtained from the correlation of both signals is also shown.
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remaining components, decoding from real movements is always significantly higher

than motor imagery (p<0.001)(Figure 4.4C). These findings differ from previous reports

[124], where the correlations and normalized errors of the results of real models were

not statistically different from shuffled and random models.

Previous studies have claimed that upper limb kinematics are better reconstructed

from low frequency EEG signals [77, 123, 124]. We test this hypothesis by analyzing

the decoding performance using the signal in four different frequency bands: 0.1-2 Hz

(SCPs), 8-12 Hz (alpha band), 14-30 Hz (beta band) and 0.1-40 Hz (Figure 4.5). The

results were computed for four different sets of data: motor imagery center-out, real

center-out movement, random data and shuffled data.

In agreement with these studies, our analysis showed that decoding correlations of

higher frequency bands were not significantly above zero and that the low frequency

band (0.1-2 Hz) yielded the best decoding accuracies. Decoding performance using

SCPs was slightly but not significantly above results obtained with a larger frequency

band (0.1-40 Hz) that includes the irrelevant higher frequencies.

4.2.3.2 Discrete Decoding

Figure 4.6 shows the success rate of targets correctly classified after computing a cross-

fold validation between all sessions recorded for imagined and real center-out movement

(4.6A and 4.6B, respectively). For each subject the graph shows the five different

target configurations proposed (Figure 4.1, bottom). The success rate obtained from

motor imagery is quite low (averaged: 14.05±4.81 for configuration A, 27.67±8.40 for

configuration B, 29.9±9.93 for configuration C, 61.52±15.25 for configuration D and

55.61±18.43 for configuration E). On the other hand, the results from real movement

yield important improvements for all the configurations (averaged: 29.00±11.82 for

configuration A, 51.30±19.24 for configuration B, 52.30±20.53 for configuration C,

79.60±15.90 for configuration D and 75.60±17.04 for configuration E). As expected,

these discrete results show certain similarities with the corresponding continuous results.

Unsurprisingly, subjects B3 and B5, who obtained the best decoding accuracies in the

continuous approach, also had the highest success rates. The success rate obtained

in the classification of two targets (configurations D and E) is particularly remarkable
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Figure 4.4: Continuous decoding of center-out trajectories comparing different exper-

imental data: motor imagery center-out, real center-out movement, shuffled data and

random data. The Pearson correlation coefficient is obtained after computing a cross-

fold validation between all sessions and then averaged between subjects. Each graph

shows results for position (Px and Py) and velocity (Vx and Vy). Graph A reflects dif-

ferences of motor imagery center-out versus random and shuffled data. Graph B reflects

differences of real center-out movement versus random and shuffled data. Finally, graph

C reflects differences of real center-out movement versus motor imagery center-out. The

stars represent significant differences with respect to random and shuffle conditions.
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Figure 4.5: Comparison between different frequency bands: 0.1-2 Hz (low frequencies),

8-12 Hz (alpha band), 14-30 Hz (beta band) and 0.1-40 Hz. The boxplot represents the

Pearson correlation coefficient obtained after computing a cross-fold validation between

all sessions for each subject and then averaged between subjects. Position (Px and Py)

and velocity (Vx and Vy) are shown for different experimental data: motor imagery

center-out (A), real center-out movement (B), shuffled data (C) and random data (D).
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(subject B3, 93.00±6.75 and subject B5, 89.00±11.00 for configuration D; and subject

B3, 88.00±11.35 and subject B5, 87.00±9.48 for configuration E).

Theoretically, chance level for configuration A (8 targets) should be a 12.5%, for

configurations B and C (4 targets) a 25% and for configurations D and E (2 targets) a

50%. However, as the number of sessions is small, these levels may not be representative.

As a consequence, discrete decoding has been computed for shuffled data and random

data the same way as in the continuous decoding and compared with motor imagery and

real movement results (Figure 4.7). The results show that motor imagery is significantly

above chance level (Figure 4.7A) for configurations C (p<0.001, Wilcoxon Sum-Rank

Test), D (p<0.001) and E (p<0.001 compared to random data and p<0.05 compared to

shuffled data). Real movement is significantly above chance level for all configurations

(p<0.001, Wilcoxon Sum-Rank Test)(Figure 4.7B). These new findings show differences

with the continuous approach, indicating neural correlates of motor imagery movement

directions when a small number of targets are classified (configurations C, D and E).

The reduction of targets and, as a consequence, trials computed to obtain the decoding

models may be a cause of this significance. On the other hand, significance levels

between motor imagery and real movement indicate that success rate is clearly higher

when performing the real center-out movement for all configurations (Figure 4.7C). In

this case, X Velocity, which showed similar decoding correlations for both experiments

in the continuous decoding, is not used for the discrete decoding and, subsequently, the

difference between real movement and motor imagery increases.

4.2.3.3 Decoding passive movement

Although the results obtained from the decoding of real center-out movement are sig-

nificantly above chance level, it cannot be concluded with complete certainty that this

is not caused by the influence of muscle artifacts while reaching each of the targets and

that the neural correlation between EEG signals and upper limb movements is, in fact,

non-existent. To discard this possibility, a third set of experiments was undertaken.

During these experiments, subjects were asked to repeat the same protocol used for the

real center-out movement experiments but, in this case, they had to passively grasp the

planar robot end effector and their arm was moved by the experimenter. This new data
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Figure 4.6: Discrete decoding of center-out trajectories for motor imagery center-out

(A) and real center-out movement (B). The barplot represents the success rate of targets

correctly classified obtained after computing a cross-fold validation between all sessions.

For each subject (1-5) the graph shows results of five different target configurations (as

shown in Figure 4.1).
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Figure 4.7: Discrete decoding of center-out trajectories comparing different experi-

mental data: motor imagery center-out, real center-out movement, shuffled data and

random data. The success rate of targets correctly classified is obtained after computing

a cross-fold validation between all sessions and then averaged between subjects. Each

graph shows results of five different target configurations: A-E (see Figure 4.1). Graph

A reflects differences of motor imagery center-out versus random and shuffled data.

Graph B reflects differences of real center-out movement versus random and shuffled

data. Finally, graph C reflects differences of real center-out movement versus motor

imagery center-out.
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set was then analyzed the same way as the previous data (decoding of low frequency

components 0.1-2 Hz) and it is expected to have non-significant decoding accuracies,

both with the continuous and the discrete approach.

Figure 4.8A shows the Pearson correlation coefficient obtained while performing

passive center-out movements (continuous approach) and Figure 4.8B shows the success

rate of targets correctly classified (discrete approach). The results obtained from this

set of data were not above chance level for both continuous and discrete approaches

and corroborate our initial assumptions, indicating EEG slow cortical potentials carry

significant information to decode real center-out movements. The significance of neural

activity during active center-out movements is analyzed in Figure 4.9 showing that

the decoding accuracy is always significantly above the levels of passive movement

for all the components (X Position, Y Position, X Velocity and Y Velocity)(p<0.001,

Wilcoxon Sum-Rank Test, Figure 4.9A) and the success rate is significantly above the

levels of passive movements for all the configurations (p<0.001, Wilcoxon Sum-Rank

Test, Figure 4.9B).

4.2.4 Discussion and Conclusions

This section contributes to the assessment of feasibility of using linear regression meth-

ods to decode upper limb kinematics from EEG signals. Previous work states that it

is possible to decode hand or arm kinematics (position and velocity) from slow cortical

potentials, i.e., EEG signals below 2 Hz [77, 123, 131, 132]. However, these results may

have been misinterpreted due to the inherent properties of linear regression methods,

particulary, when comparing EEG signals with the same frequency range as the de-

coded kinematics [124]. To confirm or reject this conclusion, we have applied a similar

methodology to center-out movement and center-out motor imagery experimental data

in a two dimensional space and we have analyzed the significance of the results.

As previously reported [77, 124, 125], low frequency bands (0.1-2 Hz) concentrate

most of the information extracted from upper limb kinematics decoding, this is con-

sistent with the properties of linear regression. However, our findings indicate that

decoding accuracies obtained from real center-out movements are significantly above

chance levels and do not depend on muscle artifacts produced during the reaching
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Figure 4.8: Continuous (A) and discrete (B) decoding of center-out trajectories for pas-

sive center-out movement. (A) represents the Pearson correlation coefficient obtained

after computing a cross-fold validation between all sessions. For each subject (1-5) the

graph shows results for position (Px and Py) and velocity (Vx and Vy). (B) represents

the success rate of targets correctly classified obtained after computing a cross-fold

validation between all sessions. For each subject (1-5) the graph shows results of five

different target configurations (see Figure 4.1).
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Figure 4.9: Continuous (A) and discrete (B) decoding of center-out trajectories compar-

ing active center-out movement and passive center-out movement. For the continuous

decoding, the Pearson correlation coefficient is obtained after computing a cross-fold

validation between all sessions and then averaged between subjects. The results for po-

sition (Px and Py) and velocity (Vx and Vy) are displayed. For the discrete decoding,

the success rate of targets correctly classified is obtained after computing a cross-fold

validation between all sessions and then averaged between subjects. The results of five

different target configurations (see Figure 4.1) are displayed.
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movements. Indeed, our results show that is not possible to decode passive move-

ments using EEG slow cortical potentials. On the other hand, motor imagery, shuffled

and random conditions show that individual correlation values are high but not above

chance (likely due to the properties of the correlation metric which is invariant to scale

and has a non-linear nature [124]). This implies that decoding performance of active

arm movements is significantly above motor imagery center-out trajectories. The low

decoding performance of motor imagery center-out trajectories may be due to the po-

tential confound of having smooth pursuit in the motor imagery condition. In fact,

the motor imagery condition is subject to an important limitation as subjects do not

undertake any training process which could eventually improve decoding as they learn

to better modulate their EEG. Nevertheless, the presence of significant information

in horizontal imagined movement opens an encouraging possibility of improving this

decoding accuracy in future reoriented experiments.

The decoding accuracies are quite low compared to what is reported in other recent

works [125], where the authors state that it is possible to accomplish a two-dimensional

real time control of a cursor with performance levels comparable to those of invasive

BMI systems. These findings are still subject of controversy [126, 127] and it is sug-

gested that, in fact, the results obtained are closer to chance levels than what it is

actually claimed. In any case, direct two-dimensional control appears to be difficult to

achieve with acceptable accuracy levels using continuous decoding methods. For this

reason, in this work we have proposed a simplification of the method by computing a

discrete classification of reached targets. This kind of approach has been recently ex-

plored in several works [122, 133, 134]. In our case, the results have shown high success

rates for different target configurations, presenting a clear coherence with the previ-

ously obtained decoding accuracies. These results are quite encouraging and suggest

that an online application of this methodology may provide an accurate identification

of upper limb movement intention. By reducing the dimensionality of the classification

output, this discrete approach presents promising advantages in future neurorehabilita-

tion procedures, where EEG slow cortical potentials could be exploited to classify arm

movement directions [135] and even detect movement onset [136]. Regarding rehabili-

tation assistance, this simplification should not affect its application as rehabilitation
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therapy is often based on repetitive movements [137].

4.3 Analysis of Movement Variability in Upper Limb

Kinematics Decoding from EEG Signals

In this section, the influence of arm movement variability in the decoding performance

has been analyzed. To that end, the decoding correlation has been studied by per-

forming upper limb movements with different speeds and trajectories. To that end,

low frequency components of the EEG signals have been decoded with linear mod-

els to obtain the position of the hand during performed trajectories using a planar

robot. A visual interface, showing a disc moving in a 2D environment, has been used

as feedback. The volunteers are asked to follow the disc, which moves randomly on the

screen with a constant speed, by controlling a cursor with the planar robot. The disc

size has been changed in each session to evaluate the influence of movement accuracy.

Finally, concentration and ergonomic aspects have been also taken into account. To

that end, volunteers have been asked to fill a comprehensive survey of the tests that

included questions about tiredness, comfort, frustration, entertainment and difficulty.

This survey allows solving different small issues during the experimental tests to im-

prove ergonomics of the robot arm and the tests in general. The results obtained in

this section have led to the preparation of a journal article [13]

4.3.1 Materials and Methods

4.3.1.1 Subjects

Five healthy volunteers (all male and right-handed) with ages between 25 and 30 years

(mean 27.8±2.0) took part in the experiments. All volunteers are engineering students

or researchers and are familiar to the technologies applied in this work. Written consent

according to the Helsinki declaration was obtained from each subject.
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4.3.1.2 Experimental Paradigm

The volunteers were asked to follow a disc that moved randomly on the screen with a

constant speed by controlling a black cursor with a planar robot arm (Figure 4.10). To

that end, the disc randomly changed its orientation each 100 ms (10 degrees clockwise

or anti-clockwise) and moved forward a particular amount of pixels. In previous works,

it was proved that subjects do not fixate on the moving object but on the movement

starting and finishing points [138]. However, in these tests, subjects were specifically

asked to fixate on the cursor movement. To control the cursor a planar robot arm the

volunteer had to move the end effector of a planar robot inside a workspace of 225x150

mm. The planar robot arm used is the PuPArm, a force-controlled robot designed and

developed by the nBio research group at the Miguel Hernández University of Elche

(Spain) [117, 118] (for more details see Appendix A). 4 different speeds were defined

(approximately 20, 30, 40 and 50 mm/second). For each speed, 3 sessions, with a

different disc size (5, 7.5 and 10 pixels/diameter), were performed. The order of sessions

was not randomized. Each session consisted of five runs of continuous movements

during 45 seconds. After each round, a success percentage, representing the time the

volunteer was able to stay inside the disc, was shown and a resting period of 4 seconds

was included between runs. The total time of the experiment was about 1 hour. All

volunteers sat in front of a computer screen in an isolated room to avoid disturbances

during the recordings.

4.3.1.3 EEG Recordings and Preprocessing

For the recordings, a cap with 16 sintered Ag/AgCl ring electrodes has been used

(g.GAMMAcap and g.LADYbird models, g.Tec). The electrodes were placed over the

scalp with the following distribution: FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1,

CP2, CP6, P3, Pz, P4 , PO3 and PO4, according to the International 10/10 System.

The electrodes were chosen around motor and premotor cortex, the area where more

information was expected to appear. Moreover, frontal electrodes, which can be influ-

enced by ocular artifacts, were not selected. The signal was recorded and amplified

through a gUSBamp (g.Tec, GmbH, Austria) with a sampling rate of 1200 Hz and then

band-pass filtered between 0.01 and 200 Hz with a zero-phase high-order Chebyshev
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Figure 4.10: Experimental environment showing the subject performing the tracking

movements in front a screen. The subject should follow the red circle by controlling a

black cursor with the planar robot.

filter. Then, a zero-phase Butterworth low-pass filter was applied to eliminate frequen-

cies higher than 2 Hz. Finally, EEG data from each electrode were standardized as

shown in previous sections (Section 4.2.2.1). This standardization was computed for

each performed round.

4.3.1.4 Data Decoding Procedure

To decode the position of the upper limb, the same procedures already used in Section

4.2.2.2 have been applied. In this case, only X and Y positions have been decoded. The

resulting decoded hand positions have been compared to the original hand positions.

To that end, the Pearson correlation coefficient has been obtained for each axis after

performing a 5-fold cross validation between all 5 runs for each session. Additionally,

shuffled and random data have been used as input to assess if the decoding accuracy
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was above chance levels. Shuffled data have been obtained by randomly mixing trials

of real data. Random data have been obtained by generating a uniform noise with the

same size of real input data. Both shuffled and random data have been filtered and

standardized in the same way as the actual experimental data. Random and shuffled

data decoding coefficients have been computed 100 times to avoid chance effects due to

the stochastic nature of the process.

4.3.1.5 Participant Survey

After and during the rest periods between tests, all volunteers were asked to fill a

comprehensive survey of the experiments. Regarding the whole experimental proce-

dure, volunteers were asked about tiredness, comfort, frustration, entertainment and

difficulty. They were also asked about particular aspects of the recording system, the

planar robot and the graphical interface. Finally, they included their general impres-

sions and suggestions about the tests.

4.3.2 Results

In Figure 4.11, an example of the bidimensional reconstruction of a trajectory is shown

(up-left). The gray path represents the original disc trajectory, while the black path

shows the one performed by the subject with the planar robot. For the X-axis and

the Y-axis (right), the subject is able to follow the original disc trajectory with a small

delay. Table 4.1 shows the tracking accuracy measured during the performed trajectory.

This percentage represents the amount of time the volunteer is able to stay inside the

disc during each round. The average tracking accuracy (µ) for each speed and disc size

and the standard deviation (SD) is also presented. From Table 4.1 it can be observed

a natural decreasing in the tracking accuracy when the speed increases and the disc

gets smaller. This relationship is generally similar for all subjects. However, Subject

5 shows a very low tracking accuracy compared to the rest of subjects likely biased by

his ability to control the planar robot arm.

Table 4.2 shows the Pearson correlation coefficients obtained for each volunteer after

performing the hand position decoding. The results are shown for each speed and disc
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Figure 4.11: Example of the trajectory followed by the subject. 2D Representation of

the trajectory (top-left). X and Y axis trajectories (right). Appearance of the visual

interface (bottom-left)

Figure 4.12: Example of a decoded trajectory for subject 4. Horizontal axis (left) and

vertical axis (right).

size regarding X-axis and Y-axis. The mean (µ) and standard deviation (SD) is also

presented for each axis and speed, showing a decrease in the decoding performance for

faster trajectories. In Figure 4.12, an example of decoded trajectories is shown. The
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decoded X and Y position is shown for Subject 4 with the minimum speed (20 mm/s)

and the smallest disc size. Figure 4.13 shows a graphical representation of the averaged

Pearson correlation coefficients for the different disc sizes and speeds. It also presents

the results for random and shuffled conditions. From these results, it can be observed

that there is a significant difference between the two chance conditions (random and

shuffled) and the different movement conditions. A negative correlation between speed

and decoding performance is also deduced from this analysis.

Figure 4.14 shows the volunteers general perception of the experimental tests. Each

category was given a score from 1 (low) to 5 (high). The radial representation of these

scores for each volunteer is shown (in grey) as well as the average radial representation

(in black). Five general aspects are studied: tiredness, comfort, frustration, entertain-

ment and difficulty. Volunteers found that the tests had a reasonable level of tiredness

(2.8±0.4). The evolution of the tests was not very frustrating (2.8±1.3), except from

Subject 5 which had serious difficulties when following the disc for the first set of ex-

periments. Also, the tests had an important increasing difficulty (3.2±0.4). There was

a general agreement regarding comfort (3.0±0.0) and all the subjects found the exper-

iments quite entertaining (3.8±0.4). The volunteers were also asked about hardware

and software issues. Each category was given a score from 1 (low) to 5 (high). The use

of the EEG cap showed an average satisfaction of 3.2±0.4, which was below the average

satisfaction obtained from the planar robot and the graphical interface (3.8±0.4 and

3.8±0.4, respectively).

After the experimental tests, volunteers were asked about their general opinion. All

the volunteers agreed about the suitability of the graphical interface, although they

suggested some visual modifications that could be made to improve contrast during the

disc and cursor movements. Regarding resting periods between runs and task duration,

all volunteers agreed that the time protocol was satisfactory. Finally, after explaining

the purpose of the experimental procedure, the general opinion among the volunteers

was favorable in terms of usefulness.
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Table 4.1: Accuracy percentages (%) for different disc speeds (mm/s) and sizes (diam-

eter in pixels).

SPEED SIZE S1 S2 S3 S4 S5 AVG

10 99.29 99.56 97.69 99.47 87.38 96.68±5.25

20 7.5 96.71 96.89 96.62 97.69 73.29 92.24±10.60

5 93.24 82.22 84.53 87.29 42.44 77.94±20.27

10 96.00 97.87 95.38 94.67 63.24 89.43±14.69

30 7.5 90.76 84.71 88.89 88.89 50.27 80.70±17.15

5 73.78 59.56 70.93 68.98 27.51 60.15±19.01

10 28.31 45.64 38.31 37.11 45.91 39.59±6.29

40 7.5 22.36 16.18 33.38 25.42 37.47 26.96±8.53

5 16.00 6.09 15.38 9.38 15.91 12.55±4.55

10 28.22 27.11 35.11 31.96 29.73 30.43±3.19

50 7.5 21.33 13.29 24.00 15.64 17.64 18.38±4.31

5 9.60 4.22 12.36 6.13 9.24 8.31±3.18
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Table 4.2: Pearson correlation coefficients after decoding hand trajectories performed

with the planar robot for different disc speeds (mm/s) and sizes (diameter in pixels).

S1 S2 S3

SPEED SIZE X-AXIS Y-AXIS X-AXIS Y-AXIS X-AXIS Y-AXIS

10 0.38 0.37 0.38 0.38 0.13 0.20

20 7.5 0.34 0.40 0.22 0.39 0.41 0.22

5 0.35 0.40 0.44 0.41 0.37 0.37

10 0.19 0.20 0.22 0.17 0.19 0.31

30 7.5 0.38 0.25 0.30 0.20 0.49 0.29

5 0.26 0.24 0.32 0.27 0.37 0.13

10 0.18 0.19 0.20 0.11 0.13 0.26

40 7.5 0.17 0.27 0.15 0.15 0.15 0.20

5 0.22 0.17 0.08 0.12 0.15 0.18

10 0.16 0.10 0.21 0.14 0.14 0.12

50 7.5 0.15 0.11 0.21 0.18 0.17 0.16

5 0.12 0.10 0.06 0.16 0.10 0.10

S4 S5 MEAN±STD

SPEED SIZE X-AXIS Y-AXIS X-AXIS Y-AXIS X-AXIS Y-AXIS

10 0.29 0.29 0.30 0.14 0.30±0.10 0.27±0.10

20 7.5 0.26 0.45 0.13 0.25 0.27±0.11 0.34±0.10

5 0.34 0.54 0.25 0.23 0.35±0.07 0.39±0.11

10 0.36 0.29 0.22 0.14 0.24±0.07 0.22±0.08

30 7.5 0.28 0.35 0.23 0.19 0.34±0.10 0.25±0.07

5 0.43 0.29 0.27 0.26 0.33±0.07 0.24±0.06

10 0.16 0.09 0.10 0.10 0.15±0.04 0.15±0.07

40 7.5 0.29 0.19 0.12 0.16 0.18±0.07 0.19±0.05

5 0.14 0.19 0.16 0.22 0.15±0.05 0.17±0.03

10 0.23 0.17 0.26 0.25 0.20±0.05 0.16±0.06

50 7.5 0.23 0.15 0.20 0.29 0.20±0.03 0.18±0.07

5 0.26 0.28 0.14 0.22 0.13±0.08 0.17±0.08
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Figure 4.13: Decoding performance regarding speed (mm/s) and disc size (small,

medium, big). The stars represent significant differences with respect to random and

shuffled conditions.

Figure 4.14: Radial representation of the volunteers general impressions. In black,

average impression of the experimental tests.

4.3.3 Discussion

The significance of the decoding performances has been analyzed from the results pre-

sented in Figure 4.13. To that end, random and shuffled conditions have been compared
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to the average decoding coefficients obtained for different disc sizes. This analysis has

shown that decoding performance of slower speeds (20 and 30 mm/s) is always sig-

nificantly above chance (p<0.05, Wilcoxon Sum-Rank Test) for both axes and for all

disc sizes. In the case of faster trajectories (40 and 50 mm/s), this occurs for several

of the experimental conditions mainly when the speed is 40 mm/s. For the remaining

conditions, decoding performance was not significantly above chance, which suggests

that the stability of the decoding performance over the folds during the cross-validation

process is not sufficient to obtain significant results. Nevertheless, a consequence of this

non-significance may be the small number of samples introduced in the statistical anal-

ysis so further research should be undertaken to assess the effects of performing a larger

set of trajectories to validate this significance.

The presence of significant decoding correlations in most of the experimental condi-

tions differs from what is claimed in [124], where decoding performance of upper-limb

movements was not above chance, and suggest that kinematic parameters of hand

movement can be inferred from neural information through linear regression models.

Nonetheless, the improvements obtained when reducing movement speed may be caused

by the inherent properties of the correlation metric [124]. According to the results,

movement speed has an influence over the decoding performance. In fact, higher speeds

cause a decrease in the decoding correlation coefficients for both axis. This significant

relationship between both variables (movement speed and tracking accuracy) was found

after performing a two-way ANOVA analysis (p<0.05) using the decoding correlation

as the dependant variable.

It is also relevant how decoding accuracy and tracking accuracy are strongly related.

In fact, the average Pearson correlation coefficient obtained between tracking success

rates and the corresponding decoding rates for all volunteers is quite high (0.83 for S1,

0.77 for S2, 0.72 for S3, 0.74 for S4 and 0,78 for S5), which means that a better tracking

of the disc while performing the movements with the robot arm is translated, generally,

into a better decoding performance. From these analysis, we conclude that the stability

of movement may explain the good correlation between tracking accuracy and decoding

performance. This is consistent with the results obtained in [77, 123], where continuous

and linear movements obtained a better decoding performance.
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The participant survey performed during and after the experimental tests has helped

to evaluate human factors during the execution of hand movements with the planar

robot arm. The results presented in Figure 4.14 have shown a general agreement in

terms of usability and satisfaction. This results, however, may be biased by the previous

experience of all participants with this kind of interfaces. Moreover, the fact that

disc speed and size are not randomized over the different runs may influence decoding

performance due to tiredness or familiarization with the task. Further experimental

research should focus in enlarging the number of subjects with naive participants and

randomizing speed and size conditions to obtain a better evaluation of the decoding

performance.

4.3.4 Conclusions

In this section, we reported the influence of speed, trajectory and movement variability

in hand kinematics decoding by performing bidimensional trajectories with a planar

robot arm. To that end, five healthy volunteers were asked to follow a disc, which

moved aleatory on the screen with a constant speed, by controlling a cursor with the

planar robot. The results obtained show better decoding accuracies when performing

steady and regular movements. The study has gone some way towards enhancing our

understanding of the neural mechanisms during upper limb movement and it serves as

a first step to apply this kinematics decoding technique to control assistive robotics in

a more natural way, as well as opening new possibilities in rehabilitation procedures

with exoskeletons.

In future works, real time testing is needed to show if this decoding is feasible

in upper limb decoding applications. Also, brain signals variability of final patients,

particularly people suffering from stroke, should be studied to prove the viability of

this method in rehabilitation procedures. This research will serve as a base for future

studies regarding upper limb kinematics decoding where further research to eliminate

artifact influence and improve accuracy should be undertaken.
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4.4 Real-Time Decoding of Arm Movements from

EEG Signals

In this section, a discrete decoding of horizontal arm movements has been performed.

In the experiments, subjects are asked to reach two targets on a screen by moving the

computer mouse. First, the decoding models are obtained from fast training runs where

both mouse trajectories and EEG signals are recorded. Then, these models are applied

to decode the mouse cursor trajectories and, afterwards, the direction of movement is

classified and compared to the actual performed trajectories. The results obtained have

led to the submission of a conference paper [14].

4.4.1 Materials and Methods

The system architecture is shown in Figure 4.15. Subjects perform mouse movements to

control a cursor on the screen. First, EEG signals are registered and preprocessed. Af-

terwards, the cursor kinematics are decoded and the direction of movement is classified

and displayed on the screen which acts as visual feedback.

4.4.1.1 Experimental Procedure

Five healthy subjects (all male and right-handed) with ages between 23 and 31 years

old (26.8±3.3) performed the experiments. The experimental tests were performed in

front of a computer screen as shown in Figure 4.16. Subjects were asked to perform one

training run and then five online runs of the decoding protocol. During the training,

subjects control the cursor movement using a computer mouse. The goal is to reach

the target that is randomly highlighted on the screen. The subject must reach it and

then return to the central position. Each time a target is reached or the cursor enters

the central position, a waiting period of 400 ms is introduced. Subjects perform 10

movements and both cursor position and EEG signals are recorded simultaneously. The

same protocol is followed during the five online runs, but in this case subjects perform

40 movements and each time a target is reached, a message with the classification is

shown (LEFT or RIGHT).
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Figure 4.15: System architecture to decode horizontal hand movements. EEG Signals

are registered and processed. Afterwards, from the decoded trajectories the movement

direction is classified.

4.4.1.2 Register and Preprocessing

EEG signals were registered with the gUSBamp amplifier of g.Tec using a gGammaCap

of 16 electrodes with a distribution chosen according to the International 10/10 System:

Fz, FC5, FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P3, Pz and P4. EEG

signals were manually analyzed to reject blinks, and frontal channels were discarded to

diminish ocular artifacts. Both EEG signals and cursor kinematics were low-pass filtered

with a 2th-order Butterworth filter below 2 Hz. Finally, EEG data from each electrode

were standardized as shown in previous sections (Section 4.2.2.1). This standardization

was computed for all the data session for the training run and in windows of 1 second

during the online runs.

4.4.1.3 Decoding Method and Classification of Targets

A multidimensional linear regression has been applied to decode kinematics from EEG

signals according to the method described in Section 4.2.2.2. To classify the direction

of movement in real time, the decoding method is applied on the training run to obtain
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Figure 4.16: Experimental environment where the subject performs horizontal trajec-

tories with the computer mouse. In the computer screen two targets are randomly

highlighted and the subject must reach them by moving the computer mouse. The

online classification is indicated on the top of the screen (LEFT or RIGHT message).
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the transformation matrices A and R that will act as the decoding model. This model

is applied in real time during the performance of the online runs. To that end, 1 second

windows of EEG data are analyzed every time a target is reached and the decoded

trajectory is obtained. Afterwards, the angle (or momentum) of this trajectory is

computed and left or right direction is assigned depending on the decoded angle.

Figure 4.17: Example of the decoded X position during horizontal hand movements.

Additionally, random data was used to compute the significance of our findings. To

that end, decoding models have been obtained with a random uniform noise and then

applied to the online runs by performing 400 horizontal movements. In this case, the

input data were always a random uniform noise.

4.4.2 Results and Discussion

Figure 4.17 shows an example of the decoded X position of the mouse cursor compared

to the actual trajectory. From this graph, it is apparent that the decoded signal follows

the original one but it may not be accurate enough to obtain a proper real time control

of the cursor. For this reason, the methodology proposed in this section tries to increase

the reliability of the decoding by reducing the number of classified outputs to only two.

Table 4.3 shows the success rate (%) obtained for the classification of 2 targets. Sub-

jects 2 (71.5±12.1) and 5 (80.0±10.6) obtain the best results. For Subject 4, the success
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Table 4.3: Success rate (%) obtained for the classification of two targets.

RUN S1 S2 S3 S4 S5

1 55.0 87.5 47.5 62.5 70.0

2 52.5 80.0 62.5 60.0 65.0

3 62.5 57.5 52.5 70.0 87.5

4 55.0 75.0 52.5 60.0 85.0

5 40.0 57.5 62.5 60.0 92.5

AVG 53.0±7.3 71.5±12.1 55.5±6.0 62.5±3.9 80.0±10.6

rate decreases (62.5±3.9). The remaining subjects obtained success rates slightly above

a 50% (53.0±7.3 for Subject 1 and 55.5±6.0 for Subject 3). These findings have been

compared to chance levels as reported in Figure 4.18. The success rates obtained for

Subjects 1 and 3, although above the averaged chance level, are not significant. On

the other hand, for the rest of the subjects, we found significant correlations during the

online experiments which suggest interesting applications of this decoding technique.

In view of these results, some improvements can be applied to obtain accurate

classification rates for all the subjects. The introduction of an uncertainty threshold

could increase the success rate. In this case, the system would become slower but

much more reliable which is a key aspect in rehabilitation robotics. Also, the decoding

parameters L and N could be particularized for different subjects to obtain higher

decoding correlations.

4.4.3 Conclusions

In this section, we have presented a methodology to decode horizontal hand movements

from low frequency EEG components. To that end, multidimensional linear regression

models have been applied to obtain the decoded trajectories of the computer mouse and

then, the direction of the movement is classified according to the angle or momentum of

the trajectory. The results for the classification of two directions are significantly higher

than chance levels for most of the subjects which implies that this online classification
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Figure 4.18: Average classification rates for each subject compared to chance level rates.

Wilconox Sum-Rank Test (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).
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could be applied in future rehabilitation procedures with an upper limb exoskeleton.

Moreover, the reliability of the system can be improved by introducing some modi-

fications in the methodology such as uncertainty thresholds to improve the robustness

of classification and an in-depth analysis of the decoding parameters. In future works,

the extension of this methodology to a larger number of directions should improve the

possibilities of application to more complex rehabilitation procedures. Also, other as-

sistive applications that require the classification of discrete states could be benefited

from the proposed methods.

4.5 Conclusions

In this chapter, the decoding of upper limb movements from low frequency EEG com-

ponents has been studied. First, the decoding performance of center-out reaching tasks

has been analyzed to assess the real possibilities of using linear regression methods to

decode upper limb kinematics from EEG signals. The results show that tow frequency

bands (0.1-2 Hz) concentrate most of the information extracted from upper limb kine-

matics decoding, confirming the properties of linear regression. Additionally, our cur-

rent findings indicate that decoding accuracies obtained from real center-out movements

are significantly above chance levels and do not depend on muscle artifacts produced

during the reaching movements. Motor imagery, shuffled and random conditions show

that individual correlation values are high but not above chance (likely due to the

properties of the correlation metric). Although active arm movements are significantly

above motor imagery center-out trajectories, the presence of significant information in

horizontal imagined movement opens an encouraging possibility of improving this de-

coding accuracy in future reoriented experiments. These results are, however, subject

to an important limitation, as a direct two-dimensional control appears to be difficult

to achieve with acceptable accuracy levels using continuous decoding methods. For

this reason, in this chapter we have proposed a simplification of the method by com-

puting a discrete classification of reached targets. The results have shown high success

rates for different target configurations, presenting a clear coherence with the previously

obtained decoding accuracies. By reducing the dimensionality of the classification out-
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put, this discrete approach presents promising advantages in future neurorehabilitation

procedures, where it could be applied to classify arm movement onset and direction.

In a second section, the influence of speed, trajectory and movement variability in

hand kinematics decoding has been reported by performing bidimensional trajectories

with a planar robot arm. To that end, five healthy volunteers were asked to follow a

disc, which moved aleatory on the screen with a constant speed, by controlling a cursor

with the planar robot. The results obtained show better decoding accuracies when

performing steady and regular movements. The study has gone some way towards en-

hancing our understanding of the neural mechanisms during upper limb movement and

it serves as a first step to apply this kinematics decoding technique to control assistive

robotics in a more natural way, as well as opening new possibilities in rehabilitation

procedures with exoskeletons.

Finally, the decoding methodology has been used to decode horizontal hand move-

ments in real-time. To that end, multidimensional linear regression models have been

applied to obtain the decoded trajectories of the computer mouse and then, the direc-

tion of the movement has been classified according to the angle or momentum of the

trajectory. The results for the classification of two directions are significantly higher

than chance levels for most of the subjects which implies that this real-time classification

could be applied in future rehabilitation procedures with an upper limb exoskeleton.

The success rate obtained in the real-time classification of horizontal movement direc-

tions using decoding techniques is, up to a certain point, below the results obtained

from classical motor imagery classification such as the EEG mapping methodology pro-

posed in Chapter 3. Nevertheless, motor imagery techniques may be less suitable for

rehabilitation purposes as they do not take into account human ergonomic factors re-

sulting in a less intuitive and more unnatural control of external devices, such as a

prosthetic arm.
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5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This thesis has led to several contributions in the field of Brain-Machine Interfaces.

It also provides tools in order to assess the suitability and benefits of applying these

methodologies in rehabilitation and assistive applications with motor disabled subjects.

This thesis has also gone some way towards enhancing our understanding of neural-

motor correlations and provides new knowledge for future research.

This thesis presents a novel classification method of mental tasks based

on the correlation of EEG maps. This classifier has been successfully tested in

non-invasive spontaneous Brain-Machine Interfaces. These studies have provided the

following contributions:

• A novel classification method for spontaneous motor imagery BMIs based on a

normalized cross-correlation of EEG maps has been presented. An optimization

protocol has been applied to adjust the parameters of the classifier for each sub-

ject. This protocol takes into account not only the final accuracy of the classifier

but also the speed of the classification. To that end, the time interval of process-

ing has been reduced and an uncertainty threshold has been introduced showing

an important improvement of the success rates. The suitability of three differ-

ent methods to obtain this threshold has been discussed and the results suggest

that each method may be suitable depending on the final application in terms
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of speed and reliability. The final success rates improve the results of previous

classifiers and encourage us to introduce new improvements in this kind of classi-

fication. The findings of this study suggest that this EEG mapping method may

be suitable for classification of more than three mental tasks as the image models

obtained for each task show big differences between them.

• A non-invasive BMI based on the correlation of EEG maps has been tested to

perform applications in real-time. To that end, a visual computer application to

perform trajectories has been designed. Two targets are shown on a grid and the

volunteers are asked to reach the targets by performing tasks related to motor

imagery (in this case, the imagination of the movement of the left and right

arm). The classifier has been improved from previous works by introducing two

uncertainty conditions. Four able-bodied volunteers tested the application. The

accuracy and score obtained prove that this BMI is ready to be used in more

complex applications for people with a severe motor disability that could help

them in their daily life.

• The EEG Mapping classifier has been applied to a real world scenario. Two

control strategies to move a planar robot with a Brain-Machine Interface based

on the correlation of EEG maps have been tested by performing 2D movements to

reach several goals. The first strategy consists on a hierarchical control where the

subject can choose both the axis and direction of the movement. With the second

strategy, the subject is able to continuously control the direction of the movement

to approach the goals. The results obtained show that the hierarchical control

strategy is more reliable but slower than the directional one, which is less precise

but more comfortable for the subject. Moreover, the volunteer is able to reach

the goals with both strategies which suggests that this system could successfully

work in more complex applications.

In addition, this thesis gives additional evidence with respect to the decoding

of upper limb kinematics in humans from low frequency EEG components.

These studies have provided the following contributions:
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• This thesis assesses the real possibilities of using linear regression methods to

decode upper limb kinematics from EEG signals. Low frequency bands (0.1-2

Hz) concentrate most of the information extracted from upper limb kinematics

decoding, confirming the properties of linear regression. Additionally, our current

findings indicate that decoding accuracies obtained from real center-out move-

ments are significantly above chance levels and do not depend on muscle artifacts

produced during the reaching movements. Motor imagery, shuffled and random

conditions show that individual correlation values are high but not above chance

(likely due to the properties of the correlation metric). Although active arm move-

ments are significantly above motor imagery center-out trajectories, the presence

of significant information in horizontal imagined movement opens an encouraging

possibility of improving this decoding accuracy in future reoriented experiments.

These results are, however, subject to an important limitation, as a direct two-

dimensional control appears to be difficult to achieve with acceptable accuracy

levels using continuous decoding methods. For this reason, in this work we have

proposed a simplification of the method by computing a discrete classification of

reached targets. The results have shown high success offline rates for different

target configurations, presenting a clear coherence with the previously obtained

decoding accuracies. By reducing the dimensionality of the classification output,

this discrete approach presents promising advantages in future neurorehabilita-

tion procedures, where it could be applied to classify arm movement onset and

direction.

• The influence of speed, trajectory and movement variability in arm kinematics

decoding has been reported by performing bidimensional trajectories with a pla-

nar robot arm. To that end, five healthy volunteers were asked to follow a disc,

which moved aleatory on the computer screen with a constant speed, by control-

ling a cursor with the planar robot. The results obtained show better decoding

accuracies when performing steady and regular movements. The study has gone

some way towards enhancing our understanding of the neural mechanisms dur-

ing upper limb movement and it serves as a first step to apply this kinematics

decoding technique to control assistive robotics in a more natural way, as well as
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opening new possibilities in rehabilitation procedures with exoskeletons.

• A methodology to decode horizontal hand movements in real-time from low fre-

quency EEG components has been presented. To that end, multidimensional

linear regression models have been applied to obtain the decoded trajectories of

the computer mouse and then, the direction of the movement is classified accord-

ing to the angle or momentum of the trajectory. The results for the classification

of two directions are significantly higher than chance levels for most of the sub-

jects which implies that this real-time classification could be applied in future

rehabilitation procedures with an upper limb exoskeleton.

5.2 Future Works

The results obtained in this thesis encourage us to undertake more ambitious goals. In

future works, more realistic environments can be designed to perform grasping tasks

of daily objects by applying EEG mapping classification to the control of a robot arm.

The EEG mapping classifier will be enhanced by studying different mental tasks and

different electrodes positioning to adapt it to a greater range of users. The control

strategies will be also improved to reduce positioning error, when necessary, and time

taken to perform the movements of the end effector.

Regarding decoding procedures, brain signals variability of final patients, particu-

larly people suffering from stroke, should be studied to prove the viability of this method

in rehabilitation procedures. This research will serve as a base for future studies re-

garding upper limb kinematics decoding where further research to eliminate artifact

influence and improve accuracy should be undertaken. Also, other decoding models,

such as non-linear and adaptive approaches, may be applied to reduce, or even elim-

inate, the influence of the related arm movements. Moreover, the reliability of the

discrete decoding can be improved by introducing some modifications in the method-

ology such as uncertainty thresholds to improve the robustness of classification and an

in-depth analysis of the decoding parameters. In future works, the extension of this

methodology to a larger number of directions should improve the possibilities of ap-

plication to more complex rehabilitation procedures. Also, other assistive applications
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that require the classification of discrete states could be benefited from the proposed

methods.
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6
CONCLUSIONES Y TRABAJOS FUTUROS

6.1 Conclusiones

Esta tesis ha conducido a varias contribuciones en el campo de las Interfaces Cerebro-

Máquina. También proporciona herramientas para evaluar la idoneidad y los beneficios

de aplicar estas metodoloǵıas en aplicaciones asistivas y de rehabilitación en sujetos con

discapacidad motora. Esta tesis ha supuesto además una mejora en el conocimiento

actual de las correlaciones neuro-motoras y proporciona nuevos hallazgos para investi-

gaciones futuras.

La tesis presenta un nuevo método de clasificación de tareas mentales

basado en la correlación de mapas EEG. Este clasificador se ha probado con

éxito en Interfaces Cerebro-Máquina no invasivas. Estos estudios han proporcionado

las siguientes contribuciones:

• Se ha presentado un nuevo método de clasificación de tareas motoras para BMIs

espontáneas basado en la correlación cruzada normalizada de mapas EEG. Se ha

aplicado un protocolo de optimización para ajustar los parámetros del clasificador

para cada sujeto. Este protocolo tiene en cuenta tanto la precisión final del

clasificador como la velocidad de clasificación. Para ello, el intervalo de tiempo

procesado se ha reducido y se ha introducido un umbral de incertidumbre que

muestra una mejora importante en la tasa de acierto. Se ha discutido la idoneidad

de tres métodos distintos utilizados para obtener este umbral y los resultados
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sugieren que cada método puede ser adecuado dependiendo de la aplicación final

en términos de velocidad y fiabilidad. Las tasas de acierto finales mejoran los

resultados de clasificadores previos y nos animan a introducir nuevas mejoras en

este tipo de clasificación. Los hallazgos de este estudio sugieren que el método

de mapping EEG puede ser adecuado para la clasificación de más de tres tareas

mentales puesto que los modelos obtenidos para cada tarea muestran grandes

diferencias entre ellos.

• Se ha utilizado un sistema BMI no invasivo basado en la correlación de mapas

EEG en aplicaciones en tiempo real. Para ello, se ha diseñado una aplicación

visual de ordenador para la realización de trayectorias. En esta aplicación se

muestran dos objetivos en la pantalla que los voluntarios deben alcanzar medi-

ante la realización de tareas mentales relacionadas con la imaginación motora (en

este caso, la imaginación del movimiento del brazo izquierdo y derecho). El clasifi-

cador se ha mejorado respecto a trabajos previos mediante la introducción de dos

condiciones de incertidumbre. Cuatro usuarios sanos han probado la aplicación.

La precisión y la puntuación obtenida demuestran que este BMI está listo para

ser usado en aplicaciones más complejas que permitan ayudar a personas con una

discapacidad motora severa en su vida diaria.

• Se ha aplicado el clasificador basado en mapas EEG a un escenario real. Se han

probado dos estrategias de control para mover un robot planar mediante una In-

terfaz Cerebro-Máquina basada en la correlación de mapas EEG. Para ello, se han

realizado movimientos 2D para alcanzar diversos objetivos. La primera estrate-

gia consiste en un control jerárquico donde el sujeto puede elegir la dirección y el

sentido del movimiento. Con la segunda estrategia, el sujeto es capaz de controlar

de forma continua la dirección del movimiento para aproximarse a los objetivos.

Los resultados obtenidos muestran que la estrategia de control jerárquico es más

fiable pero más lenta mientras que la direccional, aunque menos precisa, es más

confortable para el sujeto. Además, el voluntario ha sido capaz de alcanzar todos

los objetivos con ambas estrategias lo que sugiere que el sistema puede funcionar

en aplicaciones más complejas.



6.1. CONCLUSIONES 117

Adicionalmente, esta tesis proporciona evidencias adicionales respecto a la de-

codificación de la cinemática del miembro superior en humanos a partir

de componentes EEG de baja frecuencia. Estos estudios han proporcionado las

siguientes contribuciones:

• Esta tesis evalua las posibilidades reales de usar métodos de regresión lineal para

decodificar la cinemática del miembro superior a partir de señales EEG. Las ban-

das de baja frecuencia (0.1-2 Hz) concentran la mayoŕıa de la información ex-

tráıda de la decodificación de la cinemática del miembro superior, confirmando

las propiedades de la regresión lineal. Adicionalmente, nuestros hallazgos indi-

can que la precisión de la decodificación obtenida a partir de movimientos reales

center-out es significativamente superior a niveles aleatorios y no se ve influida

por artefactos musculares producidos durante los movimientos de alcance de ob-

jetivos. Las condiciones con datos reales de imaginación motora, datos aleatorios

y datos mezclados muestran que los valores individuales de correlación son altos

pero no superiores a la aleatoriedad (probablemente debido a las propiedades de

la métrica de correlación). A pesar de que los movimientos activos del brazo

son significativamente superiores a las trayectorias center-out con imaginación

motora, la presencia de información significativa en los movimientos horizontales

imaginados abre una posibilidad muy interesante de mejorar esta precisión de

decodificación en experimentos futuros reorientados en este sentido. Estos re-

sultados están, sin embargo, sujetos a una importante limitación, puesto que

un control bidimensional directo parece dif́ıcil de lograr con niveles de precisión

aceptables usando métodos de decodificación continua. Por esta razón, en este

trabajo se ha propuesto la simplificación del método mediante la obtención de

una clasificación discreta de los objetivos alcanzados. Los resultados muestran

altas tasas de acierto offline para diferentes configuraciones de objetivos, presen-

tando una clara coherencia con las precisiones de decodificación obtenidas previ-

amente. Mediante la reducción de la dimensionalidad de las salidas clasificadas,

esta aproximación discreta presenta ventajas prometedoras en procedimientos de

rehabilitación futuros donde podŕıa ser aplicada para clasificar el inicio y la di-

rección del movimiento del brazo.
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• La influencia de la velocidad, la trayectoria y la variabilidad de movimiento en

la decodificación de la cinemática del brazo se ha estudiado mediante la real-

ización de trayectorias bidimensionales con un robot planar. Para ello, se solicitó

que cinco voluntarios sanos siguieran un disco, que se mov́ıa aleatoriamente en

la pantalla de un ordenador a una velocidad constante, mediante el control de

un cursor con el robot planar. Los resultados obtenidos muestran una mejor

precisión de decodificación cuando se realizan movimientos estables y regulares.

Este estudio ha avanzado en la comprensión de los mecanimos neurales durante el

movimiento del miembro superior y sirve como un primer paso para aplicar esta

técnica de decodificación para controlar robótica asistiva de una manera más nat-

ural. Además, abre nuevas posibilidades en los procedimientos de rehabilitación

con exoesqueletos.

• Se ha presentado una metodoloǵıa para decodificar movimientos horizontales de

la mano en tiempo real a partir de componentes EEG de baja frecuencia. Para

ello, se han aplicado modelos de regresión lineal multidimensional para obtener las

trayectorias decodificadas del ratón del ordenador y posteriormente, la dirección

del movimiento se ha clasificado de acuerdo al ángulo o momento de la trayectoria.

Los resultados de esta clasificación de dos direcciones son significativamente su-

periores a los niveles de aleatoriedad para la mayoŕıa de los sujetos lo que implica

que esta clasificación en tiempo real puede ser aplicada en futuros procedimientos

de rehabilitación con exoesquelétos de miembro superior.

6.2 Trabajos Futuros

Los resultados obtenidos en esta tesis nos animan a emprender objetivos más ambiciosos.

En trabajos futuros, se pueden diseñar entornos más realistas para realizar tareas de

agarre de objetos cotidianos mediante la aplicación del clasificador basado en mapas

EEG en el control de un brazo robot. El clasificador será mejorado mediante el estudio

de diferentes tareas mentales y diferentes configuraciones de electrodos para adaptarlo

a un mayor rango de usuarios. Las estrategias de control también serán mejoradas

para reducir el error de posicionamiento, cuando sea necesario, y el tiempo empleado
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en realizar los movimientos del efector final.

Respecto a los procedimientos de decodificación, la variabilidad de las señales cere-

brales de los pacientes finales, en concreto aquellos que han sufrido un ictus, debe ser

estudiada para probar la viabilidad de este método en procedimientos de rehabilitación.

Esta investigación servirá como base de estudios futuros en relación a la decodificación

de la cinemática del miembro superior, donde una investigación más profunda debe

ser llevada a cabo para eliminar la influencia de los artefactos y mejorar la fiabilidad.

Además, otros modelos de decodificación, como los no lineales y los adaptativos, pueden

ser aplicados para reducir, o incluso eliminar, la influencia de los movimientos relativos

del brazo. También, la fiabilidad de la decodificación discreta puede ser mejorada me-

diante la introducción de una serie de modificaciones en la metodoloǵıa, como el uso de

umbrales de incertidumbre para robustecer la clasificación o un análisis en detalle de los

parametros de decodificación. En trabajos futuros, la ampliación de esta metodoloǵıa

a un mayor número de direcciones debeŕıa mejorar las posibilidades de aplicación a

procedimientos de rehabilitación más complejos. Además, otras aplicaciones asistivas

que requieren la clasificación de estados discretos pueden beneficiarse de los métodos

propuestos.
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Kübler, “Control of an internet browser using P300 event-related potential,” Int.

J. Bioelectromagn., vol. 10, pp. 56-63, 2008.

[69] M. Bensch, A. A. Karim, J. Mellinger, T. Hinterberger, M. Tangermann, W. Rosen-

stiel and N. Birbaumer, “Nessi: An EEG-controlled web browser for severely par-

alyzed patients,” Computational Intelligence and Neuroscience, 2007.

[70] M. Eimer, “The N2pc component as an indicator of attentional selectivity,” Elec-

troencephalography and clinical Neurophysiology, vol. 99, pp. 225-234, 1996.

[71] M. Kiss, J. Van Velzen and M. Eimer, “The N2pc component and its links to

attention shift and spatially selective visual processing,” Psychophysiology, vol.

45(2), pp. 240-249, 2008.

[72] D. Regan, “Steady-state evoked potentials,” Journal of the Optical Society of

America, vol. 67(11), pp. 1475-1489, 1977.

[73] R. B. Silberstein, P. L. Nunez, A. Pipingas, P. Harris and F. Danieli, “Steady state

visually evoked potential (SSVEP) topography in a graded working memory task,”

International Journal of Psychophysiology, vol. 42(2), pp. 219-232, 2001.



BIBLIOGRAPHY 129

[74] J. Ding, G. Sperling and R. Srinivasan, “Attentional modulation of SSVEP power

depends on the network tagged by the flicker frequency,” Cerebral Cortex, vol.

16(7), pp. 1016-1029, 2006.

[75] T. Hinterberger, S. Schmidt, N. Neumann, J. Mellinger, B. Blankertz, G. Curio

and N. Birbaumer, “Brain-computer communication and slow cortical potentials,”

IEEE Transactions on Biomedical Engineering, vol. 51(6), pp. 1011-1018, 2004.

[76] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, J. Perel-

mouter, E. Taub and H. Flor, “A spelling device for the paralysed,” Nature, vol.

398, pp. 297-298, 1999.

[77] T. J. Bradberry, R. J. Gentili and J. L. Contreras-Vidal, “Reconstructing three-

dimensional hand movements from non-invasive electroencephalographic signals,”

The Journal of Neuroscience, vol. 30(9), pp. 3432-3437, 2010.

[78] A. Presacco, L. W. Forrester and J. L. Contreras-Vidal, “Decoding lower-limb intra

and inter-limb coordination during treadmill walking from scalp EEG signals,”

IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20(2),

pp. 212-219, 2012.

[79] G. Pfurtscheller and F. H. Lopes Da Silva, “Event-related EEG/MEG synchro-

nization and desynchronization: basic principles,” Clinical Neurophysiology, vol.

110(11), pp. 1842-1857, 1999.

[80] D. Planelles, E. Hortal, A. Costa, E. Iáñez and J. M. Azoŕın, “First steps in the
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A
Hardware and Equipment

A.1 EEG Acquisition Devices

A.1.1 gUSBamp BMI System

The g.USBamp is a high-performance and high-accuracy biosignal amplifier and ac-

quisition/processing system [139]. It allows investigation of brain-, heart- and muscle-

activity, eye movements, respiration, galvanic skin response and many other physiolog-

ical and physical parameters (Figure A.1).

The amplifier uses wide-range DC-coupled amplifier technology in combination with

24-bit sampling. The result is an input voltage range of +/- 250 mV with a resolution

of < 30 nV. This means that any electrophysiological signal can be recorded directly

without additional hardware. The use of digital filters avoids hardware-related varia-

tions between channels. An active electrode system can also be connected directly, as

well as different sensors (e.g. GSR, skin temperature or blood pressure among others).

Each of the 16 analog to digital converters operates at 2.4576 MHz. Oversampling

64 times yields the internal sampling rate of 38.400 Hz. In addition, a floating point

Digital Signal Processor performs oversampling and real-time filtering of the biosignal

data (between 0 Hz - 2.400 Hz). This results in a very high signal to noise ratio.

In this thesis, two gUSBamp solutions for the recording of the EEG signals have

been used: a passive 16-electrodes system (Figure A.2) and an active 16-electrodes

system (Figure A.3). The main components of these systems are summarized next:
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Figure A.1: gUSBamp technical specifications

Figure A.2: gUSBamp passive 16-electrodes system. A-gUSBamp amplifier, B-

g.EEGelectrode Au, C-Ear-clip electrode Au, D-g.EEGcap, 65 positions.
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• gUSBamp amplifier: multi-modal biosignal amplifier (silver) with USB interface;

16 channels; 4 separated grounds.

• g.EEGelectrode Au: screwable passive gold EEG electrode, 100 cm lead, 1.5 mm

safety connector.

• Ear-clip electrode Au: gold; to apply at the earlobes.

• g.LADYbird: active ring electrode, can be used with g.GAMMAcap2 (EEG)

or with adhesive washer (ECG, EMG, EOG), sintered Ag/AgCl crown (for DC

recordings), 125 cm lead, 2-pin safety connector.

• g.LADYbirdGND: passive ground ring electrode, can be used with g.GAMMAcap2

(EEG) or with adhesive washer (ECG, EMG, EOG), sintered Ag/AgCl crown (for

DC recordings), 125 cm lead, 2-pin safety connector.

• g.GAMMAearclip Ag/AgCl: active earclip Ag/AgCl electrode (reference), sin-

tered Ag/AgCl crown, 125 cm lead, 2-pin safety connector.

• g.EEGcap, 65 positions: electrode cap with 65 electrode positions; extended 10/20

system.

Figure A.3: gUSBamp active 16-electrodes system. A-gUSBamp amplifier,

B-g.USBampGAMMAbox for 16 channels, C-g.USBampGAMMAconnector, D-

g.LADYbirdREF, E-g.LADYbirdGND, F-g.LADYbird, G-g.GAMMAcap2, 74 position.
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• g.GAMMAcap2, 74 position: electrode cap with 74 standard and 86 intermediate

position; extended 10/10 system.

• g.USBampGAMMAbox for 16 channels: power supply and driver/interface box

for 16 active electrodes.

• g.USBampGAMMAconnector: connector cable between the g.USBamp (system

connector) and the g.GAMMAbox; 40 cm lead.

A.1.2 BioSemi ActiveTwo BMI System

The ActiveTwo AD-box forms a compact, low power galvanically isolated front-end

(close to the subject) in which up to 256 sensor-signals are digitized with 24 bit resolu-

tion [140]. These sensors can be Active electrodes but also BioSemi Bufferboxes with

normal passive electrodes, as well as a range of additional active sensors measuring

parameters like respiration, temperature, force etc. Each AD-box channel consists of a

low noise DC coupled post-amplifier, with a first order anti-aliasing filter, followed by

a Delta-Sigma modulator with an oversampling rate of 64, and decimation filter with

a steep fifth order sinc response and high resolution 24-bit output. The digital outputs

of all the AD converters (up to 256) are digitally multiplexed and sent to the PC via a

single optical fiber without any compression or other form of data reduction.

The main features of this biomedical device are:

• Special input stage matched with the output of the new 2-wire Active electrodes.

• Powersupply to active electrodes has auto-shutdown for optimal safety.

• ADC per channel offers synchronized sampling, no skew, zero-reference principle.

• 24 bit sampling, 31nV digital resolution with guaranteed no missing codes.

• Sigma-Delta converter technology for unsurpassed linearity and dynamic range.

• Configurable/upgradeable number of channels: 8 up to 256 channels.

• Up to 16 kHz sample-rate per channel, user selectable (1.5MByte/sec total through-

put).
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• Full DC operation, with input range as large as found in AC designs.

• Battery powersupply with fiber optic link offers optimal interference rejection and

subject safety.

• Low power design: 5 hour battery life for 256 channels, 1 week for 8 channels.

In this thesis, a Biosemi ActiveTwo 64-electrodes solution for the recording of the

EEG signals has been used (Figure A.4). The main components of this system are

summarized next:

• ActiveTwo AD-box: a compact, low power galvanically isolated front-end (close to

the subject) in which up to 256 sensor-signals are digitized with 24 bit resolution.

• BioSemi headcap, 64 electrodes: consists of an elastic cap with plastic, electrode

holders.

• Pin-Type Active-electrodes: sintered Ag-AgCl electrode, extremely low-noise mea-

surements free of interferences.

Figure A.4: BioSemi ActiveTwo active 64-electrodes system. A-ActiveTwo AD-box,

B-BioSemi headcap, C-Pin-Type Active-electrodes.
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A.2 Planar Robot Arm

The planar robot arm used in this thesis is the PuPArm, a force-controlled planar robot

designed and developed by the nBio research group at the Miguel Hernández Univer-

sity of Elche (Spain). It is based on a four bar mechanism similar to the MIT-MANUS

rehabilitation robot [117, 118]. The mechanism is configured as a generic planar two-

dimensional manipulator and optimized for delivering rehabilitation therapies, in which

end-point impedance must be minimized. The pneumatic rehabilitation robot is com-

posed of several parts as it can be seen in Figure A.5. It consist of a two-dimensional

manipulator fixed to a table, a tactile monitor with a custom developed software which

is used as a Graphical User Interface.

Figure A.5: Pneumatic planar robot: Parts.

The technical characteristics of the PuPArm robot are the following (see Figure

A.6):

• A pneumatic swivel module with angular displacement encoder (DSMI-25-270-A-

B of Festo) has been used as actuator for each two joints. This kind of actuators

can exert enough driving power despite being lightweight and having a small

size because the ratio of its output power to its weight is large. The semi-rotative

drives are controlled by two proportional pressure valves (MPPE manufactured by

Festo) to achieve a maximum torque of 5 Nm at 6 bar and a maximum swivel angle
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of 270◦. The valve MPPE is designed so that pressure output is proportional to

voltage input through a proportional electromagnet. With this configuration (two

proportional valves and a pneumatic actuator), the pressure of the two chambers

of the pneumatic drive can be regulated to get a desired output force.

Figure A.6: Pneumatic planar robot: Components.

• The core of the control system is a motion controller board (DMC-40) manu-

factured by Galil. It operates stand-alone or interfaces to a PC with Ethernet

10/100Base-T or RS232. The controller includes optically isolated I/O, high-

power outputs capable of driving brakes or relays, and analog inputs for interfac-

ing to analog sensors. Four analog outputs from the DMC-40 board are used to

control each pneumatic actuator through two proportional pressure valves. An

electronic board, called distributor, has been designed to convert the control sig-

nal from each joint into two voltage inputs for its respective proportional pressure

valves (it is assumed that the valves behavior is identical).


