
Vol.:(0123456789)

TOP
https://doi.org/10.1007/s11750-020-00552-3

1 3

ORIGINAL PAPER

The linear ordering problem with clusters: a new partial
ranking

Javier Alcaraz1 · Eva M. García‑Nové1 · Mercedes Landete1 · Juan F. Monge1

Received: 21 January 2020 / Accepted: 29 February 2020
© Sociedad de Estadística e Investigación Operativa 2020

Abstract
The linear ordering problem is among core problems in combinatorial optimization.
There is a squared non-negative matrix and the goal is to find the permutation of
rows and columns which maximizes the sum of superdiagonal values. In this paper,
we consider that columns of the matrix belong to different clusters and that the goal
is to order the clusters. We introduce a new approach for the case when exactly one
representative is chosen from each cluster. The new problem is called the linear
ordering problem with clusters and consists of both choosing a representative for
each cluster and a permutation of these representatives, so that the sum of super-
diagonal values of the sub-matrix induced by the representatives is maximized. A
combinatorial linear model for the linear ordering problem with clusters is given,
and eventually, a hybrid metaheuristic is carefully designed and developed. Compu-
tational results illustrate the performance of the model as well as the effectiveness of
the metaheuristic.

Keywords  Linear ordering problem · Rank aggregation problem · Bucket ordering
problem · Metaheuristics

Mathematics Subject Classification  90C27 · 90C59 · 90C05

 *	 Mercedes Landete
	 landete@umh.es

	 Javier Alcaraz
	 jalcaraz@umh.es

	 Eva M. García‑Nové
	 eva.garcian@ua.es

	 Juan F. Monge
	 monge@umh.es

1	 Carr. de San Vicente del Raspeig, University of Alicante, San Vicente del Raspeig,
03690 Alicante, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00552-3&domain=pdf

	 J. Alcaraz et al.

1 3

1  Introduction

The linear ordering problem is a well-established combinatorial optimization prob-
lem. Given a squared non-negative matrix, the problem consists in finding the per-
mutation of rows and columns that maximizes the sum of superdiagonal values.
The linear ordering problem has been studied in many fields including antropology
(Glover et al. 1974), machine translation (Tromble and Eisner 2009), and voting
theory (Kemeny 1959). It is also related to the single-machine scheduling problem,
where the objective is to minimize the total weighted (or average weighted) com-
pletion time (Grötschel et al. 1984). Given the broad interest in the problem, dif-
ferent computational strategies either exact or heuristics and metaheuristics have
been developed. The book Marti and Reinelt (2011) provides a comprehensive
study of the linear ordering problem and a thorough discussion of different solution
techniques.

When the goal is to obtain the closest permutation of rows and columns to a given
set of permutations and the distance among permutations is measured with the Ken-
dall–Tau distance,1 then the problem results in the rank aggregation problem (see
Andoni et al. 2008; Dwork et al. 2001; Fagin et al. 2003; Yasutake et al. 2012 for
a description and evolution of the rank aggregation problem and its applications).
These two problems are closely related and it can be proved that the rank aggrega-
tion problem reduces to the linear ordering problem under a suitable transformation
(García-Nové et al. 2017).

Both of the above problems, the linear ordering problem and the rank aggrega-
tion problem give total orders, i.e., do not leave unordered columns. If only a partial
order of the columns/rows of a squared matrix is required, the solution would be a
bucket order instead of a permutation. A bucket order is an ordered partition of the
columns into buckets, so that all the elements (columns/rows) within a bucket are
assumed to be tied or incomparable and the order between two elements of different
buckets is given by the relative ordering of the buckets which they belong to. The
notion of bucket order was formalized by Fagin et al. (2004) as a way to approach
the rank aggregation problem with ties. Given a squared matrix with all the entries
in [0, 1], the bucket order problem (Fagin et al. 2003, 2004; Feng et al. 2008; Gionis
et al. 2006) consists of computing the bucket order that best captures the data. The
bucket order problem has been used to discover ordering information among ele-
ments in many applications. It is used in the context of seriation problems in scien-
tific disciplines such as Paleontology (Fortelius et al. 2006; Puolamaki et al. 2006),
Archaeology (Halekoh and Vach 2004), and Ecology (Miklos et al. 2005), and also
to aggregate browsing patterns of visitors to a web portal (Feng et al. 2008). The
bucket order problem gives a clustering of columns (rows).

In this paper, we consider that columns of the matrix belong to different clus-
ters and that the goal is to obtain good permutations of the clusters. The goal is
to chose a representative column of each cluster and an order of the representative

1  The Kendall–Tau distance (Kendall 1938) is a classical measure for comparing two permutations
which counts the number of pairs for which the order is different in both permutations.

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

columns, such that the sum of superdiagonal values of the sub-matrix induced by
the representatives is maximum. Contrary to the bucket order problem, the column
affiliation with clusters is an input instead of an output. If columns represent pol-
iticians, clusters could be parties; if columns represent athletes, clusters could be
teams, etc. We propose a new approach to choose a representative of each cluster
and find the best permutation of these representatives. The new problem is appropri-
ated when scheduling tasks, such that only one task of each cluster is required. Also
when a representative of each cluster is required. Some Spanish Universities give
a set of rewards, one for each Department, among all the teachers that sign up for
the National Teaching Evaluation Program called Docentia (https​://progr​amado​centi​
a.umh.es/), and then, the Departments can be sorted according to the scores awarded
to their teachers.

The new ranking order introduced in this paper generalizes the linear ordering
problem and the rank aggregation problem. In fact, the linear ordering problem and
the rank aggregation problem have been proved to be the same in some particular
cases. In the case where clusters have one element, the new ranking orders coincide
with linear ordering and rank aggregation. Besides, the new ranking orders are alter-
native partial rankings different from the bucket order problem and useful when the
clusters are known and when the belonging of an element to a cluster is not part of
the solution but of the data themselves.

Clusters are different to buckets, because clusters are inherent to the population
and thus are inputs of the problem, while buckets are induced by the data in entries
in the matrix and are outputs of the problem.

A small example is kept throughout the paper which illustrates the different
ranking orders as well as the different percentages of voter preferences that can be
achieved. In fact, it is the example proposed in Feng et al. (2008) for illustrating the
bucket order problem.

The remainder of this paper is organized as follows. In Sect. 2, we give some
preliminaries and definitions. In Sect. 3, we model the new ranking problem and
we discuss about its integrality and linear gaps as well as about how to adapt valid
inequalities from the Linear Ordering Problem. In Sect. 4, we propose a hybrid
metaheuristic algorithm for the Linear Ordering Problem with Clusters. This will
be followed in Sect. 5 by extensive numerical analysis, showing the performance of
the linear ordering problem with clusters model and of the metaheuristic algorithm.
Conclusions are drawn in Sect. 6.

2 � Preliminaries and notation

In this section, the definition of two known ranking methods is revised, the linear
ordering problem and the rank aggregation problem, both consisting of obtaining
total rankings.

Let V = {1,… , n} be a set of indices and let C be a non-negative n × n matrix.
Let R be the set of all the permutations of V. The Linear Ordering Problem (LOP)
for matrix C consists of finding the permutation � ∈ R , such that

https://programadocentia.umh.es/
https://programadocentia.umh.es/

	 J. Alcaraz et al.

1 3

is maximized.
Let R′ ⊆ R be a set of permutations of V, and let d(r1, r2) be the Kendall–Tau

distance between r1 and r2 for all r1, r2 ∈ R�. The Rank Aggregation Problem (RAP)
consists of finding the permutation � ∈ R , such that:

is minimized.
Both LOP and RAP are defined for general non-negative squared matrices. Any-

way, in practice, general non-negative rankings can be transformed in [0, 1] ranking
in several ways.

The following example illustrates the kind of solution of the LOP.

Example 1  Let V = {a, b, c, d, e, f } be a set of six candidates. Suppose that five vot-
ers rank them as Table 1 shows. The table corresponds to an example in Feng et al.
(2008). Thus, the square non-negative matrix C in Table 2 represents the prefer-
ences: cij is the fraction of rankings in which candidate i is listed (ranked) before
candidate j.

The solution for Linear Ordering Problem (LOP), which maximizes the prefer-
ences of the voters on the 6 candidates, is the rank (a | c | d | b | f | e) with an optimal
value of 11.2. If a consensus permutation with zero disagreements with respect to
a database of permutations was to exist, the optimal value of LOP would be 15, the
superdiagonal sum of ones; therefore, 74.6%(= (11.2∕15) × 100) is the percentage
in which the linear order solution guarantees voter preferences.

n−1∑

i=1

n∑

j=i+1

c�(i)�(j)

∑

r∈R�

d(�, r)

Table 1   Candidate rankings: list
of five total orders Voter 1 a b c d e f

Voter 2 a c b d f e
Voter 3 a c d b f e
Voter 4 d f c a b e
Voter 5 c f e d b a

Table 2   Matrix C of preferences a b c d e f

a 0.8 0.6 0.6 0.8 0.6
b 0.2 0.2 0.4 0.8 0.6
c 0.4 0.8 0.8 1.0 0.8
d 0.4 0.6 0.2 0.8 0.8
e 0.2 0.2 0.0 0.2 0.2
f 0.4 0.4 0.2 0.2 0.8

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

3 � A new partial ranking

In this section, a new partial ranking is introduced for the case where V is parti-
tioned into disjoint subsets (clusters): V = V1 ∪ V2 ⋯Vm and Vr ∩ Vs = � for all
r, s ∈ {1,… ,m} r ≠ s.

We define M = {1,… ,m}.

3.1 � The linear ordering problem with clusters

The Linear Ordering Problem with Clusters (LOP-C) consists in finding the best lin-
ear order for V1,… ,Vm when only one representative of each cluster is considered to
define the order.

For all i ∈ V , let zi be a binary variable which takes the value of one, if and only if
index i is the representative of its cluster. For all i, j ∈ V belonging to different clusters,
let xij be a binary variable which takes the value of one if and only if indexes i and j are
the representative of theirs clusters and the cluster to which i belongs to goes before the
cluster to which j belongs to. The IP formulation of the LOP-C can be stated as follows:

The objective function (1) is the weighted sum of all the x-variables. Even if matrix
C has |V| × |V| elements, only the elements in positions associated with indexes
belonging to different clusters are required. Constraints (2) state transitivity in the
order of clusters, if cluster t goes before cluster s and cluster s goes before cluster
r, then cluster t must go before cluster r. Constraints (3) state that given i the rep-
resentative of a cluster and another cluster Vr, there is a variable xij or a variable xji
with j ∈ Vr which takes the value of one and xjk = 0 if j, k ≠ i. Constraints (4) entail

(1)
(LOP-C) max

∑

r,s∈M∶r≠s

∑

i ∈ Vr

j ∈ Vs

cijxij

(2)

s.t.
∑

k ∈ Vt

j ∈ Vs

xkj −
∑

i ∈ Vr

j ∈ Vs

xij −
∑

k ∈ Vt

i ∈ Vr

xki ≤ 0 r, s, t ∈ M∶ pairwise disjoint

(3)
∑

j∈Vr

(xij + xji) − zi = 0 r ∈ M, i ∉ Vr

(4)
∑

i∈Vr

zi = 1 r ∈ M

(5)xij ∈ {0, 1} i ∈ Vr, j ∈ Vs, r ≠ s

(6)zi ∈ {0, 1} i ∈ V ,

	 J. Alcaraz et al.

1 3

that only one element from each cluster is selected. Constraints (5) and (6) are the
domain constraints.

Any feasible solution of LOP-C induces a permutation of m elements in V, one in
each cluster and thus a cluster permutation. The indexes of the variables in LOP-C
are in V, while the optimal solution is an order of the elements of M.

Example 1  (cont) Let V1 = {a, b},V2 = {c, d} and V3 = {e, f }. The optimal solution
for the LOP-C is (c, b, e) ≡ (�, d | a, � | �, f) and the optimal value is 2.6. In terms
of variables, zc = zb = ze = 1, xcb = xce = xbe = 1 and the rest of variables take
the value zero. If the preferences of non-selected candidates are removed, the list
of preferences would be the list in Table 3 and a consensus permutation with zero
disagreement would give an objective value of 3. Then, the optimal solution (c, b, e)
guarantees 86.6%((2.6∕3) × 100) of voter preferences.

Besides, the LOP solution does not lead to the LOP-C solution. The LOP solu-
tion is (a | c | d | b | f | e), then the first three elements of different clusters are
(a, c, f) ≡ (�, b | �, d | e, �), which is not the LOP-C solution. In fact, the objec-
tive value for the solution (a, c, f) in the LOP-C is 2, which only guarantees the
66.6%((2∕3) × 100) of voter preferences.

The Linear Ordering Problem with Clusters (LOP-C) is NP-hard, since it is the
Linear Ordering Problem (LOP) when all the clusters have a single element.

3.2 � Integrality gap, linear gap, and valid inequalities

In this section, we show that LOP-C is more difficult than LOP in terms of integral-
ity gap and thus in terms of linear gap. Furthermore, we adapt some well-known
families of valid inequalities of the LOP to the LOP-C.

In Boussaid et al. (2013), the authors establish that the LOP is “asymptotically
easy”. Under certain mild probability assumptions, the ratio between the best and
worst solution is arbitrarily close to 1 with probability tending to 1 if the problem
size goes to infinity. If all the elements of the preference matrix follow from a uni-
form distribution, all the swapped matrices look similar.

In Marti and Reinelt (2011), the authors define the integrality gap of the LOP
as the ratio between the optimal value of the relaxation of the problem that allows
in-transitivity and the integer optimal value. Note that when the transitivity con-
straint is removed, the relaxed LOP is trivial and its optimal value is achieved by
forcing xrs = 1 if mrs > msr . Later, in Aparicio et al. (2019), the authors prove that

Table 3   Voter preferences about
selected candidates Voter 1 b c e

Voter 2 c b e
Voter 3 c b e
Voter 4 c b e
Voter 5 c e b

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

the integrality gap of LOP converges to 4/3 if the preference matrix is in a certain
normal form.

LOP-C is more difficult than LOP in the sense that the relaxed LOP-C is not
trivial. The following example illustrates this issue.

Remark 3.1  The relaxation of the transitivity constraints in LOP-C does not provide
an integer solution.

Example 2  Let V = {a, b, c, d, e, f } be a set of six elements in three clusters
V1 = {a, b},V2 = {c, d} and V3 = {e, f }, and let the following matrix be the prefer-
ence matrix.

a b c d e f

a 1 2 2 0
b 3 1 0 1
c 0 2 3 1
d 0 0 1 1
e 0 1 3 2
f 1 2 0 3

The optimal solution of LOP-C is (e, b, c) ≡ (�, f , | a, � | �, d) and the optimal
value is 7. If the transitivity constraints are relaxed, we obtain the same solution,
but if the transitivity constraints are relaxed and the linear relaxation of the prob-
lem is considered, then the optimal value is 7.5 with a fractional solution, zi = 0.5
∀i , and x14 = x23 = x15 = x62 = x53 = x64 = 0.5.

The integrality gap is related with the linear gap in the sense that the integral-
ity gap gives an upper bound of the linear gap: if the integrality gap of a LOP is �,
its linear gap is smaller than � − 1. Thus, the linear gap for LOP is expected to be
small. In fact, in Marti and Reinelt (2011), the authors propose several families of
valid inequalities for the LOP and conclude that the linear gap is scarcely reduced
when these are added to the problem.

Since the LOP-C is more complex than the LOP gap-wise, valid inequali-
ties for LOP-C could be sensible for reducing its linear gap. For instance,
since xij + xji = zizj for all i, j, the valid inequalities for the Boolean polytope in
Remark 3.2 and the equalities in Remark 3.3 apply.

Remark 3.2  The following inequalities are valid for LOP-C:

Remark 3.3  The following equalities are valid for LOP-C:

zi + zj ≤ 1 + xij + xji i ∈ V , j ∈ V .

∑

i∈V

(xij + xji) = (m − 1)zj j ∈ V .

	 J. Alcaraz et al.

1 3

On the other hand, all the valid inequalities for LOP in the shape of
∑

(i,j)∈T xij ≤ t
for T ⊆ V × V , t ∈ ℕ can become a valid inequality for LOP-C by replacing vari-
ables by sum of variables.

By way of example, the LOP 3-fence inequality:

f, g, h, i, j, k pairwise disjoint, which represents the 3-fence graph in Figure 1,
becomes the inequality in Remark 3.4 for LOP-C.

Remark 3.4  The following 3-fence inequality is a valid inequality for LOP-C:

4 � A hybrid metaheuristic

For the last decades, metaheuristic techniques have been imposed on simple heuris-
tics to give approximate solutions to difficult combinatorial optimization problems.
These techniques incorporate procedures that, well designed, are able to escape
from local optima to achieve quality solutions. Scatter search (SS) and Genetic
Algorithms (GA) are two of the most widely used and can be hybridized to improve
their performance, both in terms of speed and effectiveness. SS was first introduced
by Glover (1977) who described it as a method that uses a succession of coordi-
nated initializations to generate solutions. The original proposal did not provide

xif + xfj + xfk + xjg + xgi + xgk + xkh + xhi + xhj ≤ 7;

∑

i ∈ Vr

f ∈ Vu

xif +
∑

f ∈ Vu

j ∈ Vs

xfj +
∑

f ∈ Vu

k ∈ Vt

xfk

+
∑

j ∈ Vs

g ∈ Vv

xjg +
∑

g ∈ Vv

i ∈ Vr

xgi +
∑

g ∈ Vv

k ∈ Vt

xgk

+
∑

k ∈ Vt

h ∈ Vw

xkh +
∑

h ∈ Vw

i ∈ Vr

xhi +
∑

h ∈ Vw

j ∈ Vs

xhj ≤ 7

r, s, t, f , g, h ∈ M ∶ pairwise disjoint .

Fig. 1   3-fence graph

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

certain implementation details and later Glover in (1994) provided such details and
expanded the scope of application of the method to nonlinear, binary, and permuta-
tion problems. In Glover (1998), Glover gives the scatter search template. The basic
idea of the method is to generate a systematically dispersed set of points from a cho-
sen set of reference points to maintain a certain diversity level among the members
of this set. Genetic algorithms were first introduced by Holland (1975) and imitate
the evolution of species, based on the survival of the fittest principle. These algo-
rithms maintain a population of solutions and apply a set of genetic operators like
crossover or mutation to generate new individuals and maintain an appropriate level
of diversity. The original proposals of these methods have been later transformed
by several authors, incorporating advanced designs and procedures obtaining hybrid
algorithms that have been successfully applied to several combinatorial optimiza-
tion problems. A description of some of these methods and their applications are
described in Boussaid et al. (2013) and Laguna and Marti (2003), among others.

Algorithm 1 Hybrid metaheuristic for LOP-C: MH LOP-C
Step 0: (Initialization)

Generate Initial Population(Pop size);

Generate RefSet(RefSet size);

Step 1: (Iterations)

while not (stopping criterion) do

Adapted Path relinking();

π0 := Random Select RefSet();

switch (random int(1, 4))

case 1:

π1 := Interchange(Insertion(OneNodeMutation(π0)));

case 2:

π1 = Interchange(Insertion(AllNodeMutation(π0)));

case 3:

π1 := Insertion(Interchange(OneClusterMutation(π0)));

case 4:

π1 := Insertion(Interchange(AllClusterMutation(π0)));

end switch

Update RefSet(π0, π1);

end while

Step 2: (Final Improvement)

RefSet Improvement();

In this paper, we propose an algorithm to give approximate solutions for the
Linear Ordering Problem with Clusters (LOP-C) which is based on the Scat-
ter Search template but introduces efficient procedures, some of them based on

	 J. Alcaraz et al.

1 3

genetic operators, that incorporate problem specific knowledge. This makes the
proposed algorithm an efficient hybrid metaheuristic tool to manage this problem.
The algorithm starts generating an initial population pool of randomized feasible
solutions of a given size. Then, a reference set of solutions with a good level of
quality and diversity is selected from the initial population. Later, the evolutive
process starts and is repeated until a stopping criterion is satisfied. First, a proce-
dure based on path relinking is applied over two solutions of the RefSet, creating
a new solution that can replace one of the originals. Then, a new solution of this
set is randomly chosen and undergoes three different operations: mutation, inter-
change, and insertion. The order in which these operators are applied over the
solution depends on the type of mutation, which is selected randomly between
two different types: one affects nodes and another modifies clusters. Moreover,
each type has two different versions, depending on whether it affects only one or
all the nodes/clusters of the solution, and the version to be applied is also cho-
sen randomly. After these operations are carried out, RefSet is updated and the
new solution replaces the original one in RefSet if it is better. Once the evolution
process is finished, a final improvement procedure is performed to increase the
quality of the solutions in RefSet. It consists of applying to every solution in Ref-
Set, the interchange and insertion techniques in a successive way but in a random
order. Once more, the modified solution replaces the original one if it has been
improved. The result of the algorithm is the best solution of the reference set.

In the next subsections, the main operators and procedures performed by the
hybrid metaheuristic are described in detail. In the following, we define the function
� ∶ V ⟶ M which indicates the cluster to which the column belongs: �(i) = r iff
i ∈ Vr . Abusing of notation, �(�) shall represent the vector (�(�(1)),… , �(�(m))) .
Moreover, we shall refer to the objective value in LOP-C of a feasible solution � as
v(�).

Example 1  (cont). Let V = {a, b, c, d, e, f },V1 = {a, b},V2 = {c, d},V3 = {e, f } . The
optimal solution for the LOP-C is a node permutation �∗ = (c, b, e) ≡ (�, d | a, � | �, f) ,
associated with a cluster permutation �(�∗) = (2, 1, 3).

4.1 � Initial population and reference set

In general, the initial population (IniPob) is a set of feasible solutions that can be
obtained either randomly or through a specific algorithm. The first mechanism is
faster, but the quality of the solutions is poorer and the second has the advantage of
creating good solutions, but requires more computational effort.

In the proposed algorithm, we have employed a pure random mechanism to gen-
erate an initial population of feasible solutions, IniPob, sized Pop_size . Each solu-
tion is a partial ranking of V given by a permutation � of length m. After creating the
IniPob, a set of RefSet_size good and diverse solutions called Reference Set (RefSet)
is chosen from IniPob.

The construction of the initial RefSet starts with the selection of the best
RefSet_size∕2 solutions [best value of the objective function (1)] from the initial

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

population. The remaining RefSet_size∕2 solutions are included in the RefSet to
increase the level of diversity in it. The distance between two solutions �0 ∈ RefSet
and �1 ∈ IniPob⧵RefSet is defined as:

where � is a value in (0, 1), d(�(�0), �(�1)) is the Kendall–Tau distance, s is the
number of clusters with different representatives, and m(m − 1)∕2 is the maximum
value of a Kendall–Tau distance between two permutations of size m. Note that the
distance function D is bounded by 1 when � ∈ (0, 1).

The minimum distance from each solution in IniPob to the solutions in RefSet
is computed. Then, the solution with the maximum of these minimum distances is
added to RefSet. This process is repeated RefSet_size∕2 times. The resulting ref-
erence set has RefSet_size∕2 high-quality solutions and RefSet_size∕2 diverse
solutions.

Example 1  (cont). Let �0 ∶= (d | a | e) ≡ (c,� | �, b | �, f) and
�1 = (f | a | c) ≡ (e, � | �, b | �, d) . The distance between �0 and �1 is:

4.2 � Adapted path relinking

Path relinking was originally proposed by Glover (1996) as an intensification strat-
egy to explore trajectories connecting elite solutions obtained by tabu search or scat-
ter search (Glover and Laguna 1997; Glover et al. 2000, 2004). The path relinking
mechanism produces new solutions combining every pair of solutions in the RefSet.
Given one pair of solutions selected to undergo the mechanism, one is used as the
origin of the path and the other as the end of the same path. Going from the origin to
the end consists of generating a set of intermediate solutions. The resulting solution
is the best of the path.

We have designed an adapted path relinking operator which randomly chooses
only one pair of solutions of RefSet, among the RefSet_size∕2 best solutions. The
operator is bi-directional and moves from the origin to the end and then from the
end to the origin. The operator evaluates all the neighbour solutions generated in
both paths, returning the best as result. This solution replaces the worst of the origi-
nals if it is better. Given two solutions form RefSet, �0 and �1 , the way of moving
from �0 to �1 is depicted in Algorithm 2.

(7)D(�0,�1) =
�

2

(
d(�(�0), �(�1))

m(m−1)

2

+
s

m

)
+ (1 − �)

(
v(�1)

v(�0)

)
,

D(�0,�1) =
�

2

(
3

3(3−1)

2

+
2

3

)
+ (1 − �)

(
v(�1)

v(�0)

)
.

	 J. Alcaraz et al.

1 3

Algorithm 2 Path between two solutions
Step 0: (initialization)
if (v(π0) >= v(π1)) then
π∗ := π0;

else
π∗ := π1;

end if
π2 := π0;

r = 1;
Step 1: (Algorithm)
while π2 �= π1 do
if (ρ(π2(r)) = ρ(π1(r))) then

if (π2(r) = π1(r)) then
r = r + 1;

else
π2(r) := π1(r);
if (v(π2) >= v(π∗)) then
π∗ := π2;

end if
end if

else
t = r;

repeat
t = t+ 1;

until ρ(π2(t)) = ρ(π1(r))
π3 := π2;

π2(r) = π3(t);
for s = 1 to t− r do
π2(r + s) = π3(r + s− 1);

end for
if (v(π2) >= v(π∗)) then
π∗ := π2;

end if
end if

end while

Example 1  (cont). Let �0 = (a | d | e) ≡ (�, b | c,� | �, f) and �1 = (c | b | e) ≡
(�, d | a,� | �, f) . The first neighbour solution is � = (d | a | e) ≡ (c,� | �, b | �, f) ,
and the second is � = (c | a | e) ≡ (�, d | �, b | �, f) , while the third and the last is
� = (c | b | e) ≡ (�, d | a, � | �, f).

4.3 � Insertion

Given a solution � and two positions r, s ∈ M , we define the insertion of element
�(r) in position s as a result of adding at position s the element �(r) and moving
all subsequent elements up one position. Given a solution, the insertion operator

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

evaluates all the possible insertions in that solution checking the objective function
for each. The result of the insertion operator is the best of the evaluated solutions.
This operator is based on the idea of the “adding” procedure used in the metaheuris-
tic proposed in Alcaraz et al. (2019).

Remark 4.1  Let �0 be a solution of LOP-C and let r, s in M. Let � be the result of
inserting the element �0(r) in position s, and then:

Remark 4.1 facilitates the evaluation of the new solutions. While the calculation
of the objective function by (1) requires m(m − 1)∕2 operations, the calculation by
the formula in Remark 4.1 requires between 2 and 2(m − 1) operations, depending
on the positions being considered.

4.4 � Mutation

Mutation is used as one of the most important operators in GA, imitating the muta-
tion of genetic material that sometimes occurs in nature, changing the character-
istics of an individual. The mutation mechanism permits the introduction of new
characteristics that were not present in the population into a solution or character-
istics that some individuals had in the past but were lost in the evolution process.
This is very important in evolutionary algorithms, to introduce variability and avoid
being trapped in local optima, producing a premature convergence of the algorithm.
We have designed a mutation strategy that, making use of the problem-knowledge,
allows us to introduce diversity into the RefSet in a very appropriate way. Here, we
present two different types of mutation, mutation of nodes and mutation of clus-
ters, and for each one, two different versions depending on whether only one or all
the nodes/clusters mutate. Given a solution � of the RefSet: OneNodeMutation(�) ,
AllNodeMutation(�) , OneClusterMutation(�) , and AllClusterMutation(�) can be
applied to it. The first two procedures mutate nodes, while the others produce the
mutation of clusters.

Given a solution � in RefSet, OneNodeMutation(�) chooses a random node i ∈ V ,
such that i is a node of the solution � , that is i = �(r) , and it is replaced by a random
node j ∈ Vr with a probability of mutation, Pmut1 ; AllNodeMutation(�) selects every
node i ∈ V , such that i is a node of the solution � , that is i = �(r) , and it is replaced by
a random node j ∈ Vr with a probability of mutation, Pmut2 ; OneClusterMutation(�)
chooses two random clusters r, s ∈ M and inserts the element �(r) in the position of
cluster s (OneClusterMutation works as in Sect. 4.3) with a given probability Pmut1 ;
Finally, AllClusterMutation(�) applies OneClusterMutation(�) for all r ∈ M , but with
probability Pmut2 for each cluster. Therefore, the result of this procedure could be the
original solution or the mutated one.

if r < s v(𝜋) = v(𝜋0) +

s∑

t=r+1

(c𝜋0(t)𝜋0(r) − c𝜋0(r)𝜋0(t))

if r > s v(𝜋) = v(𝜋0) +

r−1∑

t=s

(c𝜋0(r)𝜋0(t) − c𝜋0(t)𝜋0(r)).

	 J. Alcaraz et al.

1 3

Example 1  (cont). Let �0 = (a | d | e) ≡ (�, b | c,� | �, f) The output for OneNode-
Mutation(�0) with i = c is = (a | c | e) ≡ (�, b | �, d | �, f) . The output for AllNode-
Mutation(�0) with random values b, d, e is (b | d | e) ≡ (a, � | c,� | �, f) . The output
for OneClusterMutation(�0) with r = 3 and s = 1 is (e | a | d) ≡ (�, f , | �, b | c,�) .
Eventually, the output for AllClusterMutation(�0) when the first cluster is
selected to move to the third position, the second cluster is selected to move to
the third position, and the third cluster is selected to move to the first position is
(e | d | a) ≡ (�, f | c,�, | �, b).

4.5 � Interchange

The interchange method was introduced by Teitz and Bart (1968) and consists of inter-
changing one solution attribute that is in the solution with one that is not. An extension
of this version is the so-called k-interchange, in which k solution attributes are inter-
changed (Mladenovic et al. 1996).

We use a particular m-interchange previously proposed as operator of a metaheuris-
tic algorithm for a location problem (Alcaraz et al. 2012). Given a solution � , this oper-
ator replaces each element i in � for the best element i∗ ∈ V�(i) . The best element i∗ is
the one whose interchange leads to the best possible objective value.

To evaluate the objective value for each j ∈ V�(i) , it is useful to make the following
remark.

Remark 4.2  Let �0 and � be two solutions of LOP-C, such that �(�0(r)) = �(�(r)) ,
for all r ∈ M , and �0(s) ≠ �(s) for exactly one s ∈ M . Then:

Remark 4.2 also facilitates the evaluation of the new solutions. Again, the calcula-
tion of the objective function by (1) requires m(m − 1)∕2 operations, while the calcula-
tions by the formula in Remark 4.2 requires 2(m − 1).

The resulting solution of this procedure replaces the original solution in the RefSet
only if it a better objective value.

5 � Computational study

We have used a set of instances in http://www.optsi​com.es/lolib​/ for the Linear Order-
ing. In particular, the set of instances comprises the 25 instances of size 100 in the
group of problems called Random instances of type AI which are generated from a
[0, 100] uniform distribution and were proposed in Reinelt (1985) and generated in
Campos et al. (2001). Each instance of size n = 100 has been split in m = 4, 10, 20, 50
clusters of equal size. Thus, we have used 100 different problems that form 4 groups.

All tests were performed on a PC with a 2.33 GHz Intel Xeon dual core proces-
sor, 8.5 GB of RAM, and LINUX Debian 4.0 operating system. A CPLEX v.11.0

v(�) = v(�0) +

r−1∑

s=1

(c�0(s)�(r) − c�0(s)�0(r)) +

m∑

s=r+1

(c�(r)�0(s) − c�0(r)�0(s)).

http://www.optsicom.es/lolib/

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

optimization engine was used for solving the LOP-C model, while MH_LOP-C was
implemented in C.

First, we have solved the model LOP-C for all the instances imposing a time limit of
3 h and for each group of instances, m = 4, 10, 20, 50 . After that, we have solved the
linear relaxation and calculated the linear Gap of each instance.

Table 4 report the results for m = 4, 10, 20, 50 . Headings are as follows. The first
column is the instance number. The second, third, fourth, and fifth blocks of columns
are the results for the different clusters: v∗ shows the objective value of the best solu-
tion achieved by CPLEX (if CPLEX finishes before the time limit, it is the optimal
solution), t∗ shows the CPU time (seconds) needed by CPLEX to reach that solution
when solving the LOP-C model and Gap shows the difference between the integer and
the linear relaxation problem. From the values in columns, Gap follows that LOP-C
is more difficult than LOP. When m = 4, the problem has small linear gap, but when
m increases, this linear gap also increases. When m = 10, the average linear gap is
36.59 which is larger than the common upper bound for the linear gap of LOP, i.e., 0.33
( = 4∕3 − 1 ). Anyway, the Gap when m = 20 and when m = 50 uses the best integer
solution within the time limit.

The addition of valid inequalities in Remark 3.2 as well as the heuristic separation
of the 3-fence inequality in Remark 3.4 have failed to reduce the linear gap or the CPU
time.

Now, we check the goodness of the metaheuristic proposed and described in Sect. 4
(Algorithm 1). The interest is on the efficiency of the method, that is, the quality of the
solutions in a given computation time.

First with the results of Table 4, we have measured the average computation time
needed by CPLEX to solve the instances in each group, t∗

aver_m
 . Then, we have run

MH_LOP-C three times for each instance, and the time limit imposed in each one of
those executions depends on the problem size and it has been calculated by the follow-
ing expression:

Preliminary studies have indicated some appropriate values for the parameters of
the metaheuristic algorithm, and those are the ones employed in all the executions
of MH_LOP-C: Pop_size = 100,RefSet_size = 10, � = 0.5,Pmut1 = 0.1 , and Pmut2
depends on m, being Pmut2 = 0.05 for instances with 4 clusters, Pmut2 = 0.025 for the
instances with m = 10 , Pmut2 = 0.0125 for instances where the number of clusters is
25 and Pmut2 = 0.00625 for 50 cluster instances.

Tables 5, 6, 7, 8 report the results for m = 4, 10, 20, 50 , respectively. Headings
are as follows. The first column is the instance number, v∗ shows the objective value
of the best solution achieved by CPLEX (if CPLEX finishes before the time limit,
it is the optimal solution), and t∗ shows the CPU time (seconds) needed by CPLEX
to reach that solution when solving the LOP-C model. The third block of columns,
called BEST SOLUTION, shows the results of the best among the three executions
performed by MH_LOP-C. This block is divided into four columns: v∗

BS
 shows the

best solution achieved, t∗
BS

 shows the CPUs time (seconds) to find this solution, #

min
{
t∗
aver_m

, log
(
n

m

)m}
.

	 J. Alcaraz et al.

1 3

Ta
bl

e 
4  

 m
=
4
,
1
0
,
2
0
y
5
0
 (t

im
e

lim
it:

 C
PL

EX
 3

 h
)

In
st

an
ce

m
 =

 4
 m

 =
 1

0
 m

 =
 2

0
m

 =
 5

0

v
∗

t∗
G

ap
v
∗

t∗
G

ap
v
∗

t∗
G

ap
v
∗

t∗
G

ap

1
46

3
2.

19
8.

61
22

53
39

1.
21

37
.5

7
68

13
10

,8
00

.0
0

59
.7

6
28

,9
58

10
,8

00
.0

0
68

.5
3

2
48

6
2.

01
2.

87
22

43
37

0.
91

36
.7

9
67

90
10

,8
00

.0
0

57
.0

2
29

,8
00

10
,8

00
.0

0
62

.5
2

3
47

7
2.

64
5.

98
22

38
41

9.
62

38
.9

6
67

90
10

,8
00

.0
0

60
.9

8
29

,6
43

10
,8

00
.0

0
68

.7
0

4
46

6
2.

60
8.

21
22

71
40

5.
44

38
.6

9
67

34
10

,8
00

.0
0

62
.4

2
29

,1
00

10
,8

00
.0

0
68

.6
1

5
46

5
1.

20
7.

00
22

62
55

.1
0

36
.2

2
67

83
10

,8
00

.0
0

59
.3

1
28

,4
97

10
,8

00
.0

0
73

.2
7

6
46

2
2.

30
8.

62
22

23
38

1.
90

37
.6

3
67

36
10

,8
00

.0
0

61
.1

5
28

,8
84

10
,8

00
.0

0
71

.9
5

7
46

9
2.

35
7.

27
22

37
40

9.
46

37
.7

8
66

80
10

,8
00

.0
0

61
.6

5
29

,2
47

10
,8

00
.0

0
68

.8
5

8
49

4
0.

42
1.

03
22

66
38

4.
29

35
.8

5
67

37
10

,8
00

.0
0

60
.3

6
27

,8
39

10
,8

00
.0

0
77

.2
4

9
46

9
0.

54
6.

90
22

77
33

9.
18

37
.0

4
67

12
10

,8
00

.0
0

62
.5

9
29

,3
03

10
,8

00
.0

0
69

.9
6

10
44

8
2.

11
11

.1
8

22
80

39
8.

43
34

.8
5

68
30

10
,8

00
.0

0
58

.6
6

29
,5

59
10

,8
00

.0
0

66
.9

6
11

48
0

1.
23

2.
98

22
75

46
.3

7
34

.4
5

65
65

10
,8

00
.0

0
63

.9
8

28
,8

83
10

,8
00

.0
0

70
.7

6
12

46
8

1.
65

7.
04

22
78

35
0.

45
36

.0
3

70
21

10
,8

00
.0

0
53

.3
2

29
,1

46
10

,8
00

.0
0

67
.6

7
13

46
6

2.
29

8.
63

22
46

36
6.

01
37

.4
2

67
55

10
,8

00
.0

0
60

.4
1

29
,2

09
10

,8
00

.0
0

67
.5

7
14

45
6

2.
15

8.
11

21
90

39
1.

32
39

.0
4

65
99

10
,8

00
.0

0
61

.1
2

29
,8

42
10

,8
00

.0
0

62
.7

8
15

45
2

2.
73

11
.3

3
22

04
42

6.
02

40
.8

0
67

50
10

,8
00

.0
0

62
.4

6
28

,3
48

10
,8

00
.0

0
75

.7
3

16
46

6
1.

78
5.

54
21

62
44

1.
76

40
.6

4
64

39
10

,8
00

.0
0

66
.6

2
29

,5
33

10
,8

00
.0

0
65

.7
6

17
46

3
2.

07
10

.4
8

22
80

36
.9

1
34

.6
3

64
71

10
,8

00
.0

0
65

.6
7

28
,2

60
10

,8
00

.0
0

72
.0

2
18

48
0

1.
96

5.
85

22
92

70
.3

2
34

.8
1

67
90

10
,8

00
.0

0
59

.5
5

28
,3

43
10

,8
00

.0
0

73
.8

4
19

46
6

3.
16

6.
89

23
32

36
9.

05
32

.5
3

69
44

10
,8

00
.0

0
57

.1
8

27
,9

93
10

,8
00

.0
0

77
.7

7
20

47
0

1.
29

7.
22

23
32

38
8.

85
33

.6
6

68
17

10
,8

00
.0

0
60

.7
1

27
,3

48
10

,8
00

.0
0

82
.5

4
21

52
0

0.
25

0.
00

22
29

37
7.

29
38

.3
3

64
99

10
,8

00
.0

0
66

.9
5

28
,6

48
10

,8
00

.0
0

70
.8

3
22

47
0

2.
00

7.
90

23
15

38
6.

10
34

.1
8

68
57

10
,8

00
.0

0
60

.4
3

29
,7

83
10

,8
00

.0
0

66
.4

1
23

46
5

2.
00

6.
27

22
39

37
7.

21
35

.1
8

65
37

10
,8

00
.0

0
62

.5
7

28
,5

30
10

,8
00

.0
0

67
.6

2

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

Ta
bl

e 
4  

(c
on

tin
ue

d)

In
st

an
ce

m
 =

 4
 m

 =
 1

0
 m

 =
 2

0
m

 =
 5

0

v
∗

t∗
G

ap
v
∗

t∗
G

ap
v
∗

t∗
G

ap
v
∗

t∗
G

ap

24
47

2
1.

80
6.

54
22

56
37

8.
08

37
.4

9
65

86
10

,8
00

.0
0

63
.9

4
29

,2
55

10
,8

00
.0

0
67

.3
3

25
46

1
2.

47
7.

13
22

52
51

.0
3

34
.2

3
66

86
10

,8
00

.0
0

58
.7

3
28

,9
12

10
,8

00
.0

0
67

.9
1

A
ve

ra
ge

6.
78

36
.5

9
61

.1
0

70
.1

3

	 J. Alcaraz et al.

1 3

iter shows the number of iterations performed by the algorithm, and %diff shows the
deviation from the solution reported by CPLEX, namely:

Column #OPT in Tables 5 and 6 indicates the number of times among the three
executions that MH_LOP-C finds the optimum and column #BST in Tables 7 and 8
reports the number of times that the metaheuristic finds, in the time limit consid-
ered, a solution which is better than the given by CPLEX. The last block of col-
umns, Average, gives the averages for the three executions: average optimal value
( vA ), average time ( tA ), average number of iterations, and average deviation from the
solution reported by CPLEX.

Table 5 reports the results for the case m = 4 , in which all the clusters have 25
elements. In this case, the time limit imposed to the metaheuristic is, t∗

aver_4
 , the aver-

age time employed by CPLEX to solve the instances with 4 clusters. The results
show that both methods obtain the optimal solution in the 25 instances of this
group. The average time employed by CPLEX is 2 s and MH_LOP-C finds the opti-
mum, in the best of the three executions, in 0.03 s, on average. Moreover, in all the
instances, the metaheuristic proposed finds the optimal solution in less than one-
fourth of a second, on average. Moreover, column #OPT, which reports the num-
ber of executions where the optimal solution is achieved by MH_LOP-C, shows
that the metaheuristic reaches the optimum in all the three executions performed,
which demonstrates its robustness and stability. The average number of iterations

(8)% diff = 100
v∗
BS

− v∗

v∗
.

Time / %diff

0

2

4

6

8

10

Ti
m

e
(s

ec
.)

%
di

ff

−15

−10

−5

0

4 10 20 50

 Number of Clusters

TIME
%diff

Fig. 2   Comparison of Tables 5, 6, 7, and 8

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

carried out by MH_LOP-C is around 90,000, which means that it performs more
than 1,000,000 iterations by second.

Table 6 shows the results for the case m = 10 , that is, the instances have ten clus-
ters with ten nodes per cluster in each instance. The average computation time for
solving LOP-C with CPLEX is 320.12 s. Therefore, the time limit imposed to the
metaheuristic is 10 s, ( log(n∕m)m) , per execution. However, MH_LOP-C employs
only 2.31 s on average for the instances in this group and, if we consider only the
best of the three executions, less than 1 s on average. MH_LOP-C finds the optimal
solution in the 25 instances and in 71 of the 75 executions performed. Only in 3 of
the 25 instances, it does not achieve the optimal solution in all 3 executions. The
average deviation of the solutions found by MH_LOP-C with respect to the opti-
mal solution given by CPLEX is always smaller than 0.53% , employing a cpu time
140 times smaller. It varies from − 1.9 to − 6.53% in an average computation time

Table 5   m = 4 (time limit: CPLEX 3 h, MH_LOP-C 2 s)

Instance CPLEX sol. Best solution #OPT Average

v
∗

t
∗

v
∗
BS

t
∗
BS

#iter % diff v
A

t
A

#iter % diff

1 463 2.19 463 0.00 78,467 0.00 3 463 0.03 81,384 0.00
2 486 2.01 486 0.05 86,340 0.00 3 486 0.09 85,461 0.00
3 477 2.64 477 0.00 89,832 0.00 3 477 0.03 89,265 0.00
4 466 2.60 466 0.00 90,629 0.00 3 466 0.03 92,431 0.00
5 465 1.20 465 0.02 88,232 0.00 3 465 0.15 87,253 0.00
6 462 2.30 462 0.10 92,795 0.00 3 462 0.13 86,849 0.00
7 469 2.35 469 0.05 94,988 0.00 3 469 0.14 93,803 0.00
8 494 0.42 494 0.01 90,413 0.00 3 494 0.04 92,612 0.00
9 469 0.54 469 0.01 93,224 0.00 3 469 0.03 92,938 0.00
10 448 2.11 448 0.00 88,901 0.00 3 448 0.06 91,893 0.00
11 480 1.23 480 0.06 90,653 0.00 3 480 0.10 91,266 0.00
12 468 1.65 468 0.02 94,057 0.00 3 468 0.03 93,886 0.00
13 466 2.29 466 0.08 90,575 0.00 3 466 0.09 90,173 0.00
14 456 2.15 456 0.03 94,829 0.00 3 456 0.06 91,328 0.00
15 452 2.73 452 0.02 94,627 0.00 3 452 0.03 94,116 0.00
16 466 1.78 466 0.11 95,773 0.00 3 466 0.21 94,119 0.00
17 463 2.07 463 0.02 93,375 0.00 3 463 0.12 91,349 0.00
18 480 1.96 480 0.05 89,228 0.00 3 480 0.08 90,895 0.00
19 466 3.16 466 0.05 95,397 0.00 3 466 0.12 93,929 0.00
20 470 1.29 470 0.00 96,202 0.00 3 470 0.01 94,745 0.00
21 520 0.25 520 0.01 92,451 0.00 3 520 0.01 90,972 0.00
22 470 2.00 470 0.02 95,610 0.00 3 470 0.09 93,888 0.00
23 465 2.00 465 0.05 96,410 0.00 3 465 0.19 94,029 0.00
24 472 1.80 472 0.02 94,284 0.00 3 472 0.04 94,436 0.00
25 461 2.47 461 0.03 94,451 0.00 3 461 0.12 94,908 0.00
Average 2.00 0.03 92,069 0.00 0.08 91,517 0.00

	 J. Alcaraz et al.

1 3

which is 2245 times smaller. In this case the algorithm performs, on average, around
80,000 iterations to find the optimum, more than 35,000 iterations per second.

Table 7 summarizes the results for the instances with m = 20. In this case,
CPLEX cannot find the optimal solution in any of the 25 instances in 3 h and col-
umn v∗ reports the objective value of the best solutions achieved in that time. The
time limit for MH_LOP-C is then 14 s. The metaheuristic needs, on average, 4.81 s
to reach the best solution and only 1.43 s on average if only the best execution is
considered. Negative values in column %diff indicate that the solution given by the
metaheuristic is better than that the given by CPLEX. Moreover, column #BST indi-
cates that MH_LOP-C always finds a solution which is better than the reported by
CPLEX, in all the instances and all the executions performed per instance. Although
in all cases, MH_LOP-C finds the best solution in less than 4 s, some time averages
require nearly 14 s. For instance, the time needed by this algorithm to reach the best

Table 6   m = 10 (time limit: CPLEX 3 h, MH_LOP-C 10 s)

Instance CPLEX sol. Best solution #OPT Average

v
∗

t
∗

v
∗
BS

t
∗
BS

#iter % diff v
A

t
A

#iter % diff

1 2253 391.21 2253 2.96 83,354 0.00 3 2253.00 4.13 83,105 0.00
2 2243 370.91 2243 0.13 80,224 0.00 3 2243.00 0.50 81,703 0.00
3 2238 419.62 2238 1.31 80,794 0.00 3 2238.00 2.24 82,079 0.00
4 2271 405.44 2271 0.19 82,900 0.00 3 2271.00 4.40 84,062 0.00
5 2262 55.10 2262 0.79 82,726 0.00 3 2262.00 3.85 82,009 0.00
6 2223 381.90 2223 0.58 79,467 0.00 3 2223.00 2.01 80,471 0.00
7 2237 409.46 2237 1.64 76,937 0.00 1 2228.33 2.12 78,832 0.39
8 2266 384.29 2266 0.11 82,763 0.00 3 2266.00 0.27 77,820 0.00
9 2280 398.43 2280 5.20 79,392 0.00 3 2280.00 6.49 80,279 0.00
10 2277 339.18 2277 0.59 80,453 0.00 3 2277.00 3.11 79,316 0.00
11 2275 46.37 2275 0.30 80,162 0.00 3 2275.00 0.32 80,461 0.00
12 2278 350.45 2278 0.52 79,965 0.00 3 2278.00 1.28 80,233 0.00
13 2246 366.01 2246 0.61 80,590 0.00 3 2246.00 2.84 78,762 0.00
14 2190 391.32 2190 0.05 81,858 0.00 3 2190.00 2.86 80,857 0.00
15 2204 426.02 2204 0.63 80,104 0.00 2 2199.00 1.43 81,451 0.23
16 2162 441.76 2162 1.78 82,505 0.00 3 2162.00 4.13 81,982 0.00
17 2280 36.91 2280 0.14 80,928 0.00 3 2280.00 2.88 81,531 0.00
18 2292 70.32 2292 1.25 80,959 0.00 3 2292.00 5.73 82,310 0.00
19 2332 369.05 2332 0.20 83,062 0.00 3 2332.00 1.65 83,881 0.00
20 2332 388.85 2332 0.19 83,980 0.00 2 2319.67 0.18 84,002 0.53
21 2229 377.29 2229 0.22 76,985 0.00 3 2229.00 0.83 78,153 0.00
22 2315 386.10 2315 0.28 82,719 0.00 3 2315.00 2.22 83,413 0.00
23 2239 377.21 2239 0.30 82,033 0.00 3 2239.00 0.87 83,179 0.00
24 2256 378.08 2256 0.36 81,757 0.00 3 2256.00 1.10 83,848 0.00
25 2252 51.03 2252 0.05 83,265 0.00 3 2252.00 0.27 84,260 0.00
Average 320.12 0.77 81,195 0.00 2.31 81,520 0.05

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

solution for instance 22 is of 1.13, 13.98, and 5.89 s, respectively, that leads to an
average computation time of 7 s. In this group of instances the ratio iterations by
second is of 45,874∕4.81 = 9537.

Finally, Table 8 summarizes the results for the instances with m = 50 clusters and
all the clusters of size 2. As CPLEX cannot find the optimal solution and it employs
the 3 h in the solution process, the time limit for MH_LOP-C is then 15 s. The best
option of each trio of iterations is always obtained in less than 14 s and in around
8 s on average. As in the previous table, values in column %diff are negative, and
column #BST shows that MH_LOP-C finds better solutions than CPLEX in all the
instances and all the executions. In the best execution for instance 20, MH_LOP-C
outperforms CPLEX by about 23.73%. In this group of instances, the average differ-
ences vary between − 5.68 and − 23.09% in only 10.66 s, in contrast to the 10,800 s

Table 7   m = 20 (time limit: CPLEX 3 h, MH_LOP-C 14 s)

Instance CPLEX sol. Best solution #BST Average

v
∗

t
∗

v
∗
BS

t
∗
BS

#iter % diff v
A

t
A

#iter % diff

1 6813 10,800.00 6999 3.43 46,174 − 2.73 3 6986.33 5.55 46,951 − 2.54
2 6790 10,800.00 7131 0.98 47,804 − 5.02 3 7131.00 5.32 47,911 − 5.02
3 6790 10,800.00 7082 0.84 46,269 − 4.30 3 7071.33 2.42 46,273 − 4.14
4 6734 10,800.00 6948 1.06 48,178 − 3.18 3 6885.67 5.47 47,594 − 2.25
5 6783 10,800.00 7118 3.04 47,582 − 4.94 3 7088.67 3.51 47,443 − 4.51
6 6736 10,800.00 7003 1.07 47,495 − 3.96 3 6877.67 3.84 46,645 − 2.10
7 6680 10,800.00 7041 0.23 48,516 − 5.40 3 7020.33 0.89 45,225 − 5.09
8 6737 10,800.00 6991 2.00 48,204 − 3.77 3 6943.33 7.14 46,639 − 3.06
9 6712 10,800.00 7137 1.38 42,904 − 6.33 3 7073.00 5.81 44,135 − 5.38
10 6830 10,800.00 7040 1.12 46,026 − 3.07 3 6998.00 2.18 45,606 − 2.46
11 6565 10,800.00 6873 2.10 47,733 − 4.69 3 6846.67 8.65 47,252 − 4.29
12 7021 10,800.00 7215 2.73 44,317 − 2.76 3 7154.33 5.54 47,031 − 1.90
13 6755 10,800.00 7187 0.32 47,953 − 6.40 3 7055.67 1.77 47,975 − 4.45
14 6599 10,800.00 6944 0.47 48,003 − 5.21 3 6836.67 4.99 47,573 − 3.60
15 6750 10,800.00 6977 2.47 42,920 − 3.36 3 6971.67 6.28 44,353 − 3.28
16 6439 10,800.00 6934 0.51 41,458 − 7.69 3 6859.67 1.90 44,692 − 6.53
17 6471 10,800.00 6931 0.32 48,694 − 7.11 3 6886.33 2.67 47,290 − 6.42
18 6790 10,800.00 7073 1.70 47,937 − 4.17 3 7048.67 4.00 47,575 − 3.81
19 6944 10,800.00 7130 3.85 45,863 − 2.68 3 7121.67 9.26 46,515 − 2.56
20 6817 10,800.00 7253 0.15 46,776 − 6.40 3 7204.67 4.34 47,221 − 5.69
21 6499 10,800.00 7003 2.53 42,357 − 7.76 3 6912.00 4.97 43,168 − 6.35
22 6857 10,800.00 7132 1.13 34,099 − 4.01 3 7080.67 7.00 40,781 − 3.26
23 6537 10,800.00 6873 1.10 45,846 − 5.14 3 6777.33 6.82 44,735 − 3.68
24 6586 10,800.00 7131 0.59 47,927 − 8.28 3 6965.67 6.25 41,980 − 5.76
25 6686 10,800.00 7106 0.62 46,469 − 6.28 3 6873.00 3.74 44,281 − 2.80
Average 10,800.00 1.43 46,039 − 4.98 4.81 45,874 − 4.04

	 J. Alcaraz et al.

1 3

Ta
bl

e 
8  

m
=
5
0
 (t

im
e

lim
it:

 C
PL

EX
 3

 h
, M

H
_L

O
P-

C
 1

5
s)

In
st

an
ce

C
PL

EX
 so

l.
 B

es
t s

ol
ut

io
n

#B
ST

A
ve

ra
ge

v
∗

t∗
v
∗ B
S

t∗ B
S

#i
te

r
%

 d
iff

v
A

t A
#i

te
r

%
 d

iff

1
28

,9
58

10
,8

00
.0

0
31

,8
84

3.
88

85
93

−
 1

0.
10

3
31

,7
44

.0
0

9.
07

86
72

−
 9

.6
2

2
29

,8
00

10
,8

00
.0

0
31

,9
32

8.
41

84
19

−
 7

.3
9

3
31

,9
44

.0
0

9.
77

87
93

−
 7

.1
9

3
29

,6
43

10
,8

00
.0

0
32

,7
81

9.
23

98
60

−
 1

1.
35

3
32

,7
80

.3
3

11
.5

3
93

00
−

 1
0.

58
4

29
,1

00
10

,8
00

.0
0

32
,3

43
8.

80
88

16
−

 1
2.

14
3

32
,4

71
.0

0
9.

12
93

44
−

 1
1.

58
5

28
,4

97
10

,8
00

.0
0

32
,4

17
7.

16
99

66
−

 1
3.

76
3

32
,1

66
.0

0
11

.5
8

98
35

−
 1

2.
88

6
28

,8
84

10
,8

00
.0

0
31

,6
06

10
.7

5
94

71
−

 1
1.

28
3

31
,8

23
.3

3
13

.3
8

95
33

−
 1

0.
18

7
29

,2
47

10
,8

00
.0

0
32

,2
35

9.
75

90
67

−
 1

0.
24

3
32

,1
14

.0
0

10
.3

3
95

31
−

 9
.8

0
8

27
,8

39
10

,8
00

.0
0

31
,8

31
8.

09
94

49
−

 1
7.

05
3

32
,2

99
.6

7
11

.0
8

94
69

−
 1

6.
02

9
29

,3
03

10
,8

00
.0

0
33

,0
05

3.
64

95
39

−
 1

2.
63

3
32

,7
20

.3
3

8.
70

95
34

−
 1

1.
66

10
29

,5
59

10
,8

00
.0

0
32

,8
37

10
.0

0
10

,2
38

−
 1

1.
16

3
32

,8
35

.0
0

12
.5

5
99

55
−

 1
1.

08
11

28
,8

83
10

,8
00

.0
0

32
,2

47
12

.5
0

10
,1

25
−

 1
1.

65
3

32
,1

41
.0

0
12

.9
0

99
17

−
 1

1.
28

12
29

,1
46

10
,8

00
.0

0
32

,5
03

9.
93

10
,2

65
−

 1
3.

18
3

32
,8

10
.3

3
12

.5
5

10
,2

45
−

 1
2.

57
13

29
,2

09
10

,8
00

.0
0

32
,5

30
6.

83
99

12
−

 1
1.

37
3

32
,4

42
.6

7
10

.5
3

10
,1

22
−

 1
1.

07
14

29
,8

42
10

,8
00

.0
0

31
,4

37
8.

49
98

77
−

 6
.1

0
3

31
,5

35
.6

7
10

.1
8

99
67

−
 5

.6
8

15
28

,3
48

10
,8

00
.0

0
32

,0
89

6.
60

10
,0

30
−

 1
3.

20
3

31
,8

50
.6

7
10

.9
1

10
,0

02
−

 1
2.

36
16

29
,5

33
10

,8
00

.0
0

31
,8

66
10

.6
1

97
10

−
 9

.4
0

3
32

,1
40

.3
3

11
.2

0
97

43
−

 8
.8

3
17

28
,2

60
10

,8
00

.0
0

31
,9

28
6.

51
98

16
−

 1
2.

98
3

31
,7

72
.6

7
9.

31
97

03
−

 1
2.

43
18

28
,3

43
10

,8
00

.0
0

32
,3

64
5.

85
10

,1
94

−
 1

6.
83

3
32

,6
04

.3
3

9.
83

10
,2

05
−

 1
5.

03
19

27
,9

93
10

,8
00

.0
0

31
,8

58
4.

43
10

,0
18

−
 1

4.
22

3
31

,7
53

.3
3

5.
63

10
,0

97
−

 1
3.

43
20

27
,3

48
10

,8
00

.0
0

33
,6

77
4.

68
98

58
−

 2
3.

73
3

33
,6

61
.3

3
7.

55
99

97
−

 2
3.

09
21

28
,6

48
10

,8
00

.0
0

31
,8

62
7.

35
94

99
−

 1
1.

22
3

31
,7

90
.6

7
11

.5
6

96
46

−
 1

0.
97

22
29

,7
83

10
,8

00
.0

0
32

,5
59

12
.0

7
95

51
−

 9
.3

2
3

32
,2

01
.6

7
13

.0
0

98
19

−
 8

.1
2

23
28

,5
30

10
,8

00
.0

0
32

,1
60

13
.4

4
88

17
−

 1
2.

72
3

31
,9

80
.0

0
14

.0
1

88
76

−
 1

2.
09

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

Ta
bl

e 
8  

(c
on

tin
ue

d)

In
st

an
ce

C
PL

EX
 so

l.
 B

es
t s

ol
ut

io
n

#B
ST

A
ve

ra
ge

v
∗

t∗
v
∗ B
S

t∗ B
S

#i
te

r
%

 d
iff

v
A

t A
#i

te
r

%
 d

iff

24
29

,2
55

10
,8

00
.0

0
32

,6
26

8.
39

91
81

−
 1

1.
84

3
32

,6
69

.6
7

11
.7

9
94

99
−

 1
1.

67
25

28
,9

12
10

,8
00

.0
0

32
,0

29
6.

44
91

49
−

 1
0.

78
3

31
,8

59
.6

7
8.

57
95

44
−

 1
0.

20
A

ve
ra

ge
10

,8
00

.0
0

8.
15

95
77

−
 1

2.
22

10
.6

6
96

54
−

 1
1.

58

	 J. Alcaraz et al.

1 3

employed by CPLEX. Now, the number of iterations per second has decreased until
to 900.

Results in Tables 5, 6, and 7, 8 illustrate that the difficulty of the problem
increases as m increases. With regards to CPLEX, somehow, it is due to the number
of binary variables that the model has. If all the clusters are of size n/m, the LOP-C
model has n2(m − 1)∕m + n binary variables. In particular, the number of binary
variables is 7600, 9100, 9600, and 9900 for m = 4, 10, 20, and 50, respectively. In
the case of the metaheuristic, the number of iterations per second decreases from 1
million to less than 1000, which implies that the problem is computationally hardest
mainly as the number of clusters increases if the number of nodes remains unaltered.
However, although tA considerably increases with m, %diff decreases from zero to
near -12%. Column %diff reports almost zero differences for the cases with 4 and
10 clusters, but these differences become negative values in the hardest instances,
where the number of clusters is 20 and 50. Therefore, the difference between both
algorithms is larger as the difficulty of the problem increases. Figure 2 depicts the
evolution in the average time ( tA ) and %diff for the different sizes considered in the
computational study: computational time goes from 0 to 8 s, while the gap goes
from values very close to zero to negatives values. For the easiest instances, with
four or ten clusters, both resolution methods are effective, because the optimal solu-
tion is reached in all the instances, but MH_LOP-C is much more efficient, because
this optimum is reached in a considerably much smaller computation time. When
the difficulty of the problem increases, for instances with 20 or 50 clusters, CPLEX
takes 3 h to reach solutions which are very far, in terms of quality, from the solutions
reached by the metaheuristic in just a few seconds.

6 � Conclusions

In this paper, we have presented the problem of linear ordering clusters of elements.
The option of considering that only one representative of each cluster is required
has been modeled through a binary linear formulation, LOP-C. A metaheuristic
algorithm has been developed for approximating optimal solutions of LOP-C when
the model itself requires too much computational time. The computational section
illustrates the goodness of both the LOP-C model and the metaheuristic. The model
allows the solution of problems with 9100 binary variables and the metaheuristic
algorithm proposed reaches the optimal solution in the easy instances in most cases
and outperforms, in seconds, the solution given by the exact optimizer within a time
limit of 3 h in the hardest instances. This demonstrates the robustness and stability
of the metaheuristic proposed. The computational section also gives some insights
on the complexity that the number of clusters adds to the problem; when the same
number of nodes are split in more clusters, the difficulty of the problem in terms of
computational time for solving the problem increases.

Acknowledgements  This work was supported by the Spanish Ministerio de Ciencia, Innovación y Univer-
sidades and Fondo Europeo de Desarrollo Regional (FEDER) through project PGC2018-099428-B-100

1 3

The linear ordering problem with clusters: a new partial ranking﻿	

and by the Spanish Ministerio de Economía, Industria y Competitividad under Grant MTM2016-79765-P
(AEI/FEDER, UE).

References

Alcaraz J, Landete M, Monge JF (2012) Design and analysis of hybrid metaheuristics for the Reliability
p-Median Problem. Eur J Oper Res 222:54–64

Alcaraz J, Landete M, Monge JF, Sainz-Pardo JL (2019) Multi-objective evolutionary algorithms for a
reliability location problem. Eur J Oper Res. https​://doi.org/10.1016/j.ejor.2019.10.043

Andoni A, Fagin R, Kumar R, Patrascu M, Sivakumar D (2008) Efficient similarity search and classi-
fication via rank aggregation. In: Proceedings of the ACM SIG-MOD international conference on
management of data, pp 1375–1376

Aparicio J, Landete M, Monge JF (2019) A linear ordering problem of sets. Ann Oper Res. https​://doi.
org/10.1007/s1047​9-019-03473​-y

Boussaid I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117
Campos V, Glover F, Laguna M, Martí R (2001) An experimental evaluation of a scatter search for the

linear ordering problem. J Glob Optim 21:397–414
Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceed-

ings of the tenth international world wide web conference, pp 613–622
Fagin R, Kumar R, Sivakumar D (2003) Efficient similarity search and classification via rank aggrega-

tion. In: Proceedings of the ACM SIGMOD international conference on management of data, pp
301–312

Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2004) Comparing and aggregating rankings with
ties. In: Proceedings of the ACM symposium on principles of database systems(PODS), pp 47–58

Feng J, Fang Q, Ng W (2008) Discovering bucket orders from full rankings. In: Proceedings of the 2008
ACM SIGMOD international conference on management of data, pp 55–66

Fortelius M, Gionis A, Jernvall J, Mannila H (2006) Spectral ordering and biochronology of european
fossil mammals. Paleobiology 32:206–214

García-Nové EM, Alcaraz J, Landete M, Monge JF, Puerto J (2017) Rank aggregation in cyclic
sequences. Optim Lett 11:667–678

Gionis A, Mannila H, Puolamaki K, Ukkonen A (2006) Algorithms for discovering bucket orders
from data. In: Proceedings of the ACM SIGKDD conference on knowledge discovery and data
mining (KDD), pp 561–566

Glover F (1977) Heuristics for integer programming using surrogate constraints. Decis Sci 8:156–166
Glover F (1994) Genetic algorithms and scatter search unsuspected potentials. Stat Comput 4:131–140
Glover F (1996) Tabu search and adaptive memory programing—advances, applications and chal-

lenges. In: Barr RS, Helgason RV, Dennington JL (eds) Interfaces in computer science and oper-
ations research. Kluwer Academic Publishers, Dordrecht, pp 1–75

Glover F (1998) A template for scatter search and path relinking. In: Hao JK, Lutton E, Ronald E,
Schoenauer M, Snyers D (eds) Artificial evolution, Lectures Notes in Computer Science, vol
1363. Springer, Berlin, pp 13–54

Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Dordrecht
Glover F, Klastorin T, Kongman D (1974) Optimal weighted ancestry relationships. Manag Sci

20:1190–1193
Glover F, Laguna M, Martí R (2000) Fundamentals of scatter search and path relinking. Control Cybern

39:653–684
Glover F, Laguna M, Martí R (2004) Scatter search and path relinking. Foundations and advanced

designs. In: Onwubolu GC, Babu BV (eds) New optimization techniques in engineering, Studies in
Fuzziness and Soft Computing, vol 141. Springer, Berlin, pp 87–100

Grötschel M, Jänger M, Reinelt G (1984) A cutting plane algorithm for the linear ordering problem. Oper
Res 32:1195–1220

Halekoh U, Vach W (2004) A Bayesian approach to seriation problems in archeology. Comput Stat Data
Anal 45:651–673

Holland HJ (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

https://doi.org/10.1016/j.ejor.2019.10.043
https://doi.org/10.1007/s10479-019-03473-y
https://doi.org/10.1007/s10479-019-03473-y

	 J. Alcaraz et al.

1 3

Kemeny J (1959) Mathematics without numbers. Daedalus 88:577–591
Kendall M (1938) A new measure of rank correlation. Biometrika 30:81–89
Laguna M, Martí R (2003) Scatter search. In: Sharda CR, Stefan Voss (eds) Methodology and implemen-

tations. Kluwer, Dordrecht
Martí R, Reinelt G (2011) The linear ordering problem exact and heuristic methods in combinational

optimization, 1st edn. Springer, Berlin
Miklos I, Somodi I, Podani J (2005) Rearrangement of ecological matrices via markov chain monte carlo

simulation. Ecology 86:3398–3410
Mladenovic JA, Moreno-Perez JM, Moreno-Vega A (1996) A chain-interchange heuristic method. Yugo-

slav J Oper Res 6:41–54
Puolamaki M, Fortelius M, Mannila H (2006) Seriation in paleontological data matrices via Markov

chain Monte Carlo methods. PLoS Comput Biol 2:62–70
Reinelt G (1985) The linear ordering problem algorithms and applications. Research and exposition in

mathematics series. Heldermann, Berlin
Teitz MB, Bart P (1969) Heuristic methods for estimating the generalized vertex median of a weighted

graph. Oper Res 16:955–961
Tromble R, Eisner J (2009) Learning linear ordering problems for better translation. In: Proceedings of

the 2009 conference on empirical methods in natural language processing, vol 2, pp 1007–1016
Yasutake S, Hatano K, Takimoto E, Takeda M (2012) Online rank aggregation. In: JMLR workshop and

conference proceedings, vol 25. Asian conference on machine learning, pp 539–553

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	The linear ordering problem with clusters: a new partial ranking
	Abstract
	1 Introduction
	2 Preliminaries and notation
	3 A new partial ranking
	3.1 The linear ordering problem with clusters
	3.2 Integrality gap, linear gap, and valid inequalities

	4 A hybrid metaheuristic
	4.1 Initial population and reference set
	4.2 Adapted path relinking
	4.3 Insertion
	4.4 Mutation
	4.5 Interchange

	5 Computational study
	6 Conclusions
	Acknowledgements
	References

