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Abstract
The linear ordering problem is among core problems in combinatorial optimization. 
There is a squared non-negative matrix and the goal is to find the permutation of 
rows and columns which maximizes the sum of superdiagonal values. In this paper, 
we consider that columns of the matrix belong to different clusters and that the goal 
is to order the clusters. We introduce a new approach for the case when exactly one 
representative is chosen from each cluster. The new problem is called the linear 
ordering problem with clusters and consists of both choosing a representative for 
each cluster and a permutation of these representatives, so that the sum of super-
diagonal values of the sub-matrix induced by the representatives is maximized. A 
combinatorial linear model for the linear ordering problem with clusters is given, 
and eventually, a hybrid metaheuristic is carefully designed and developed. Compu-
tational results illustrate the performance of the model as well as the effectiveness of 
the metaheuristic.

Keywords  Linear ordering problem · Rank aggregation problem · Bucket ordering 
problem · Metaheuristics

Mathematics Subject Classification  90C27 · 90C59 · 90C05

 *	 Mercedes Landete 
	 landete@umh.es

	 Javier Alcaraz 
	 jalcaraz@umh.es

	 Eva M. García‑Nové 
	 eva.garcian@ua.es

	 Juan F. Monge 
	 monge@umh.es

1	 Carr. de San Vicente del Raspeig, University of Alicante,   San Vicente del Raspeig, 
03690 Alicante, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00552-3&domain=pdf


	 J. Alcaraz et al.

1 3

1  Introduction

The linear ordering problem is a well-established combinatorial optimization prob-
lem. Given a squared non-negative matrix, the problem consists in finding the per-
mutation of rows and columns that maximizes the sum of superdiagonal values. 
The linear ordering problem has been studied in many fields including antropology 
(Glover et  al. 1974), machine translation (Tromble and Eisner 2009), and voting 
theory (Kemeny 1959). It is also related to the single-machine scheduling problem, 
where the objective is to minimize the total weighted (or average weighted) com-
pletion time (Grötschel et  al. 1984). Given the broad interest in the problem, dif-
ferent computational strategies either exact or heuristics and metaheuristics have 
been developed. The book Marti and Reinelt (2011) provides a comprehensive 
study of the linear ordering problem and a thorough discussion of different solution 
techniques.

When the goal is to obtain the closest permutation of rows and columns to a given 
set of permutations and the distance among permutations is measured with the Ken-
dall–Tau distance,1 then the problem results in the rank aggregation problem (see 
Andoni et al. 2008; Dwork et al. 2001; Fagin et al. 2003; Yasutake et al. 2012 for 
a description and evolution of the rank aggregation problem and its applications). 
These two problems are closely related and it can be proved that the rank aggrega-
tion problem reduces to the linear ordering problem under a suitable transformation 
(García-Nové et al. 2017).

Both of the above problems, the linear ordering problem and the rank aggrega-
tion problem give total orders, i.e., do not leave unordered columns. If only a partial 
order of the columns/rows of a squared matrix is required, the solution would be a 
bucket order instead of a permutation. A bucket order is an ordered partition of the 
columns into buckets, so that all the elements (columns/rows) within a bucket are 
assumed to be tied or incomparable and the order between two elements of different 
buckets is given by the relative ordering of the buckets which they belong to. The 
notion of bucket order was formalized by Fagin et al. (2004) as a way to approach 
the rank aggregation problem with ties. Given a squared matrix with all the entries 
in [0, 1], the bucket order problem (Fagin et al. 2003, 2004; Feng et al. 2008; Gionis 
et al. 2006) consists of computing the bucket order that best captures the data. The 
bucket order problem has been used to discover ordering information among ele-
ments in many applications. It is used in the context of seriation problems in scien-
tific disciplines such as Paleontology (Fortelius et al. 2006; Puolamaki et al. 2006), 
Archaeology (Halekoh and Vach 2004), and Ecology (Miklos et al. 2005), and also 
to aggregate browsing patterns of visitors to a web portal (Feng et al. 2008). The 
bucket order problem gives a clustering of columns (rows).

In this paper, we consider that columns of the matrix belong to different clus-
ters and that the goal is to obtain good permutations of the clusters. The goal is 
to chose a representative column of each cluster and an order of the representative 

1  The Kendall–Tau distance (Kendall 1938) is a classical measure for comparing two permutations 
which counts the number of pairs for which the order is different in both permutations.
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columns, such that the sum of superdiagonal values of the sub-matrix induced by 
the representatives is maximum. Contrary to the bucket order problem, the column 
affiliation with clusters is an input instead of an output. If columns represent pol-
iticians, clusters could be parties; if columns represent athletes, clusters could be 
teams, etc. We propose a new approach to choose a representative of each cluster 
and find the best permutation of these representatives. The new problem is appropri-
ated when scheduling tasks, such that only one task of each cluster is required. Also 
when a representative of each cluster is required. Some Spanish Universities give 
a set of rewards, one for each Department, among all the teachers that sign up for 
the National Teaching Evaluation Program called Docentia (https​://progr​amado​centi​
a.umh.es/), and then, the Departments can be sorted according to the scores awarded 
to their teachers.

The new ranking order introduced in this paper generalizes the linear ordering 
problem and the rank aggregation problem. In fact, the linear ordering problem and 
the rank aggregation problem have been proved to be the same in some particular 
cases. In the case where clusters have one element, the new ranking orders coincide 
with linear ordering and rank aggregation. Besides, the new ranking orders are alter-
native partial rankings different from the bucket order problem and useful when the 
clusters are known and when the belonging of an element to a cluster is not part of 
the solution but of the data themselves.

Clusters are different to buckets, because clusters are inherent to the population 
and thus are inputs of the problem, while buckets are induced by the data in entries 
in the matrix and are outputs of the problem.

A small example is kept throughout the paper which illustrates the different 
ranking orders as well as the different percentages of voter preferences that can be 
achieved. In fact, it is the example proposed in Feng et al. (2008) for illustrating the 
bucket order problem.

The remainder of this paper is organized as follows. In Sect.  2, we give some 
preliminaries and definitions. In Sect.  3, we model the new ranking problem and 
we discuss about its integrality and linear gaps as well as about how to adapt valid 
inequalities from the Linear Ordering Problem. In Sect.  4, we propose a hybrid 
metaheuristic algorithm for the Linear Ordering Problem with Clusters. This will 
be followed in Sect. 5 by extensive numerical analysis, showing the performance of 
the linear ordering problem with clusters model and of the metaheuristic algorithm. 
Conclusions are drawn in Sect. 6.

2 � Preliminaries and notation

In this section, the definition of two known ranking methods is revised, the linear 
ordering problem and the rank aggregation problem, both consisting of obtaining 
total rankings.

Let V = {1,… , n} be a set of indices and let C be a non-negative n × n matrix. 
Let R be the set of all the permutations of V. The Linear Ordering Problem (LOP) 
for matrix C consists of finding the permutation � ∈ R , such that

https://programadocentia.umh.es/
https://programadocentia.umh.es/
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is maximized.
Let R′ ⊆ R be a set of permutations of V, and let d(r1, r2) be the Kendall–Tau 

distance between r1 and r2 for all r1, r2 ∈ R�. The Rank Aggregation Problem (RAP) 
consists of finding the permutation � ∈ R , such that:

is minimized.
Both LOP and RAP are defined for general non-negative squared matrices. Any-

way, in practice, general non-negative rankings can be transformed in [0, 1] ranking 
in several ways.

The following example illustrates the kind of solution of the LOP.

Example 1  Let V = {a, b, c, d, e, f } be a set of six candidates. Suppose that five vot-
ers rank them as Table 1 shows. The table corresponds to an example in Feng et al. 
(2008). Thus, the square non-negative matrix C in Table  2 represents the prefer-
ences: cij is the fraction of rankings in which candidate i is listed (ranked) before 
candidate j.

The solution for Linear Ordering Problem (LOP), which maximizes the prefer-
ences of the voters on the 6 candidates, is the rank (a | c | d | b | f | e) with an optimal 
value of 11.2. If a consensus permutation with zero disagreements with respect to 
a database of permutations was to exist, the optimal value of LOP would be 15, the 
superdiagonal sum of ones; therefore, 74.6%(= (11.2∕15) × 100) is the percentage 
in which the linear order solution guarantees voter preferences.

n−1∑

i=1

n∑

j=i+1

c�(i)�(j)

∑

r∈R�

d(�, r)

Table 1   Candidate rankings: list 
of five total orders Voter 1 a b c d e f

Voter 2 a c b d f e
Voter 3 a c d b f e
Voter 4 d f c a b e
Voter 5 c f e d b a

Table 2   Matrix C of preferences a b c d e f

a 0.8 0.6 0.6 0.8 0.6
b 0.2 0.2 0.4 0.8 0.6
c 0.4 0.8 0.8 1.0 0.8
d 0.4 0.6 0.2 0.8 0.8
e 0.2 0.2 0.0 0.2 0.2
f 0.4 0.4 0.2 0.2 0.8



1 3

The linear ordering problem with clusters: a new partial ranking﻿	

3 � A new partial ranking

In this section, a new partial ranking is introduced for the case where V is parti-
tioned into disjoint subsets (clusters): V = V1 ∪ V2 ⋯Vm and Vr ∩ Vs = � for all 
r, s ∈ {1,… ,m} r ≠ s.

We define M = {1,… ,m}.

3.1 � The linear ordering problem with clusters

The Linear Ordering Problem with Clusters (LOP-C) consists in finding the best lin-
ear order for V1,… ,Vm when only one representative of each cluster is considered to 
define the order.

For all i ∈ V , let zi be a binary variable which takes the value of one, if and only if 
index i is the representative of its cluster. For all i, j ∈ V belonging to different clusters, 
let xij be a binary variable which takes the value of one if and only if indexes i and j are 
the representative of theirs clusters and the cluster to which i belongs to goes before the 
cluster to which j belongs to. The IP formulation of the LOP-C can be stated as follows:

The objective function (1) is the weighted sum of all the x-variables. Even if matrix 
C has |V| × |V| elements, only the elements in positions associated with indexes 
belonging to different clusters are required. Constraints (2) state transitivity in the 
order of clusters, if cluster t goes before cluster s and cluster s goes before cluster 
r,  then cluster t must go before cluster r. Constraints (3) state that given i the rep-
resentative of a cluster and another cluster Vr, there is a variable xij or a variable xji 
with j ∈ Vr which takes the value of one and xjk = 0 if j, k ≠ i. Constraints (4) entail 

(1)
(LOP-C) max

∑

r,s∈M∶r≠s

∑

i ∈ Vr

j ∈ Vs

cijxij

(2)

s.t.
∑

k ∈ Vt

j ∈ Vs

xkj −
∑

i ∈ Vr

j ∈ Vs

xij −
∑

k ∈ Vt

i ∈ Vr

xki ≤ 0 r, s, t ∈ M∶ pairwise disjoint

(3)
∑

j∈Vr

(xij + xji) − zi = 0 r ∈ M, i ∉ Vr

(4)
∑

i∈Vr

zi = 1 r ∈ M

(5)xij ∈ {0, 1} i ∈ Vr, j ∈ Vs, r ≠ s

(6)zi ∈ {0, 1} i ∈ V ,
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that only one element from each cluster is selected. Constraints (5) and (6) are the 
domain constraints.

Any feasible solution of LOP-C induces a permutation of m elements in V, one in 
each cluster and thus a cluster permutation. The indexes of the variables in LOP-C 
are in V, while the optimal solution is an order of the elements of M.

Example 1  (cont) Let V1 = {a, b},V2 = {c, d} and V3 = {e, f }. The optimal solution 
for the LOP-C is (c, b, e) ≡ (�, d | a, � | �, f ) and the optimal value is 2.6. In terms 
of variables, zc = zb = ze = 1, xcb = xce = xbe = 1 and the rest of variables take 
the value zero. If the preferences of non-selected candidates are removed, the list 
of preferences would be the list in Table 3 and a consensus permutation with zero 
disagreement would give an objective value of 3. Then, the optimal solution (c, b, e) 
guarantees 86.6%((2.6∕3) × 100) of voter preferences.

Besides, the LOP solution does not lead to the LOP-C solution. The LOP solu-
tion is (a | c | d | b | f | e), then the first three elements of different clusters are 
(a, c, f ) ≡ (�, b | �, d | e, � ), which is not the LOP-C solution. In fact, the objec-
tive value for the solution (a,  c,  f) in the LOP-C is 2, which only guarantees the 
66.6%((2∕3) × 100) of voter preferences.

The Linear Ordering Problem with Clusters (LOP-C) is NP-hard, since it is the 
Linear Ordering Problem (LOP) when all the clusters have a single element.

3.2 � Integrality gap, linear gap, and valid inequalities

In this section, we show that LOP-C is more difficult than LOP in terms of integral-
ity gap and thus in terms of linear gap. Furthermore, we adapt some well-known 
families of valid inequalities of the LOP to the LOP-C.

In Boussaid et al. (2013), the authors establish that the LOP is “asymptotically 
easy”. Under certain mild probability assumptions, the ratio between the best and 
worst solution is arbitrarily close to 1 with probability tending to 1 if the problem 
size goes to infinity. If all the elements of the preference matrix follow from a uni-
form distribution, all the swapped  matrices look similar.

In Marti and Reinelt (2011), the authors define the integrality gap of the LOP 
as the ratio between the optimal value of the relaxation of the problem that allows 
in-transitivity and the integer optimal value. Note that when the transitivity con-
straint is removed, the relaxed LOP is trivial and its optimal value is achieved by 
forcing xrs = 1 if mrs > msr . Later, in Aparicio et al. (2019), the authors prove that 

Table 3   Voter preferences about 
selected candidates Voter 1 b c e

Voter 2 c b e
Voter 3 c b e
Voter 4 c b e
Voter 5 c e b
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the integrality gap of LOP converges to 4/3 if the preference matrix is in a certain 
normal form.

LOP-C is more difficult than LOP in the sense that the relaxed LOP-C is not 
trivial. The following example illustrates this issue.

Remark 3.1  The relaxation of the transitivity constraints in LOP-C does not provide 
an integer solution.

Example 2  Let V = {a, b, c, d, e, f } be a set of six elements in three clusters 
V1 = {a, b},V2 = {c, d} and V3 = {e, f }, and let the following matrix be the prefer-
ence matrix.

a b c d e f

a 1 2 2 0
b 3 1 0 1
c 0 2 3 1
d 0 0 1 1
e 0 1 3 2
f 1 2 0 3

The optimal solution of LOP-C is (e, b, c) ≡ (�, f , | a, � | �, d) and the optimal 
value is 7. If the transitivity constraints are relaxed, we obtain the same solution, 
but if the transitivity constraints are relaxed and the linear relaxation of the prob-
lem is considered, then the optimal value is 7.5 with a fractional solution, zi = 0.5 
∀i , and x14 = x23 = x15 = x62 = x53 = x64 = 0.5.

The integrality gap is related with the linear gap in the sense that the integral-
ity gap gives an upper bound of the linear gap: if the integrality gap of a LOP is �, 
its linear gap is smaller than � − 1. Thus, the linear gap for LOP is expected to be 
small. In fact, in Marti and Reinelt (2011), the authors propose several families of 
valid inequalities for the LOP and conclude that the linear gap is scarcely reduced 
when these are added to the problem.

Since the LOP-C is more complex than the LOP gap-wise, valid inequali-
ties for LOP-C could be sensible for reducing its linear gap. For instance, 
since xij + xji = zizj for all i,  j, the valid inequalities for the Boolean polytope in 
Remark 3.2 and the equalities in Remark 3.3 apply.

Remark 3.2  The following inequalities are valid for LOP-C:

Remark 3.3  The following equalities are valid for LOP-C:

zi + zj ≤ 1 + xij + xji i ∈ V , j ∈ V .

∑

i∈V

(xij + xji) = (m − 1)zj j ∈ V .



	 J. Alcaraz et al.

1 3

On the other hand, all the valid inequalities for LOP in the shape of 
∑

(i,j)∈T xij ≤ t 
for T ⊆ V × V , t ∈ ℕ can become a valid inequality for LOP-C by replacing vari-
ables by sum of variables.

By way of example, the LOP 3-fence inequality:

f,  g,  h,  i,  j,  k pairwise disjoint, which represents the 3-fence graph in Figure  1, 
becomes the inequality in Remark 3.4 for LOP-C.

Remark 3.4  The following 3-fence inequality is a valid inequality for LOP-C:

4 � A hybrid metaheuristic

For the last decades, metaheuristic techniques have been imposed on simple heuris-
tics to give approximate solutions to difficult combinatorial optimization problems. 
These techniques incorporate procedures that, well designed, are able to escape 
from local optima to achieve quality solutions. Scatter search (SS) and Genetic 
Algorithms (GA) are two of the most widely used and can be hybridized to improve 
their performance, both in terms of speed and effectiveness. SS was first introduced 
by Glover (1977) who described it as a method that uses a succession of coordi-
nated initializations to generate solutions. The original proposal did not provide 

xif + xfj + xfk + xjg + xgi + xgk + xkh + xhi + xhj ≤ 7;

∑

i ∈ Vr

f ∈ Vu

xif +
∑

f ∈ Vu

j ∈ Vs

xfj +
∑

f ∈ Vu

k ∈ Vt

xfk

+
∑

j ∈ Vs

g ∈ Vv

xjg +
∑

g ∈ Vv

i ∈ Vr

xgi +
∑

g ∈ Vv

k ∈ Vt

xgk

+
∑

k ∈ Vt

h ∈ Vw

xkh +
∑

h ∈ Vw

i ∈ Vr

xhi +
∑

h ∈ Vw

j ∈ Vs

xhj ≤ 7

r, s, t, f , g, h ∈ M ∶ pairwise disjoint .

Fig. 1   3-fence graph
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certain implementation details and later Glover in (1994) provided such details and 
expanded the scope of application of the method to nonlinear, binary, and permuta-
tion problems. In Glover (1998), Glover gives the scatter search template. The basic 
idea of the method is to generate a systematically dispersed set of points from a cho-
sen set of reference points to maintain a certain diversity level among the members 
of this set. Genetic algorithms were first introduced by Holland (1975) and imitate 
the evolution of species, based on the survival of the fittest principle. These algo-
rithms maintain a population of solutions and apply a set of genetic operators like 
crossover or mutation to generate new individuals and maintain an appropriate level 
of diversity. The original proposals of these methods have been later transformed 
by several authors, incorporating advanced designs and procedures obtaining hybrid 
algorithms that have been successfully applied to several combinatorial optimiza-
tion problems. A description of some of these methods and their applications are 
described in Boussaid et al. (2013) and Laguna and Marti (2003), among others.

Algorithm 1 Hybrid metaheuristic for LOP-C: MH LOP-C
Step 0: (Initialization)

Generate Initial Population(Pop size);

Generate RefSet(RefSet size);

Step 1: (Iterations)

while not (stopping criterion) do

Adapted Path relinking();

π0 := Random Select RefSet();

switch (random int(1, 4))

case 1:

π1 := Interchange(Insertion(OneNodeMutation(π0)));

case 2:

π1 = Interchange(Insertion(AllNodeMutation(π0)));

case 3:

π1 := Insertion(Interchange(OneClusterMutation(π0)));

case 4:

π1 := Insertion(Interchange(AllClusterMutation(π0)));

end switch

Update RefSet(π0, π1);

end while

Step 2: (Final Improvement)

RefSet Improvement();

In this paper, we propose an algorithm to give approximate solutions for the 
Linear Ordering Problem with Clusters (LOP-C) which is based on the Scat-
ter Search template but introduces efficient procedures, some of them based on 
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genetic operators, that incorporate problem specific knowledge. This makes the 
proposed algorithm an efficient hybrid metaheuristic tool to manage this problem. 
The algorithm starts generating an initial population pool of randomized feasible 
solutions of a given size. Then, a reference set of solutions with a good level of 
quality and diversity is selected from the initial population. Later, the evolutive 
process starts and is repeated until a stopping criterion is satisfied. First, a proce-
dure based on path relinking is applied over two solutions of the RefSet, creating 
a new solution that can replace one of the originals. Then, a new solution of this 
set is randomly chosen and undergoes three different operations: mutation, inter-
change, and insertion. The order in which these operators are applied over the 
solution depends on the type of mutation, which is selected randomly between 
two different types: one affects nodes and another modifies clusters. Moreover, 
each type has two different versions, depending on whether it affects only one or 
all the nodes/clusters of the solution, and the version to be applied is also cho-
sen randomly. After these operations are carried out, RefSet is updated and the 
new solution replaces the original one in RefSet if it is better. Once the evolution 
process is finished, a final improvement procedure is performed to increase the 
quality of the solutions in RefSet. It consists of applying to every solution in Ref-
Set, the interchange and insertion techniques in a successive way but in a random 
order. Once more, the modified solution replaces the original one if it has been 
improved. The result of the algorithm is the best solution of the reference set.

In the next subsections, the main operators and procedures performed by the 
hybrid metaheuristic are described in detail. In the following, we define the function 
� ∶ V ⟶ M which indicates the cluster to which the column belongs: �(i) = r iff 
i ∈ Vr . Abusing of notation, �(�) shall represent the vector (�(�(1)),… , �(�(m))) . 
Moreover, we shall refer to the objective value in LOP-C of a feasible solution � as 
v(�).

Example 1  (cont). Let V = {a, b, c, d, e, f },V1 = {a, b},V2 = {c, d},V3 = {e, f } . The 
optimal solution for the LOP-C is a node permutation �∗ = (c, b, e) ≡ (�, d | a, � | �, f ) , 
associated with a cluster permutation �(�∗) = (2, 1, 3).

4.1 � Initial population and reference set

In general, the initial population (IniPob) is a set of feasible solutions that can be 
obtained either randomly or through a specific algorithm. The first mechanism is 
faster, but the quality of the solutions is poorer and the second has the advantage of 
creating good solutions, but requires more computational effort.

In the proposed algorithm, we have employed a pure random mechanism to gen-
erate an initial population of feasible solutions, IniPob, sized Pop_size . Each solu-
tion is a partial ranking of V given by a permutation � of length m. After creating the 
IniPob, a set of RefSet_size good and diverse solutions called Reference Set (RefSet) 
is chosen from IniPob.

The construction of the initial RefSet starts with the selection of the best 
RefSet_size∕2 solutions [best value of the objective function (1)] from the initial 
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population. The remaining RefSet_size∕2 solutions are included in the RefSet to 
increase the level of diversity in it. The distance between two solutions �0 ∈ RefSet 
and �1 ∈ IniPob⧵RefSet is defined as:

where � is a value in (0,  1), d(�(�0), �(�1)) is the Kendall–Tau distance, s is the 
number of clusters with different representatives, and m(m − 1)∕2 is the maximum 
value of a Kendall–Tau distance between two permutations of size m. Note that the 
distance function D is bounded by 1 when � ∈ (0, 1).

The minimum distance from each solution in IniPob to the solutions in RefSet 
is computed. Then, the solution with the maximum of these minimum distances is 
added to RefSet. This process is repeated RefSet_size∕2 times. The resulting ref-
erence set has RefSet_size∕2 high-quality solutions and RefSet_size∕2 diverse 
solutions.

Example 1  (cont). Let �0 ∶= (d | a | e) ≡ (c,� | �, b | �, f ) and 
�1 = (f | a | c) ≡ (e, � | �, b | �, d) . The distance between �0 and �1 is:

4.2 � Adapted path relinking

Path relinking was originally proposed by Glover (1996) as an intensification strat-
egy to explore trajectories connecting elite solutions obtained by tabu search or scat-
ter search (Glover and Laguna 1997; Glover et al. 2000, 2004). The path relinking 
mechanism produces new solutions combining every pair of solutions in the RefSet. 
Given one pair of solutions selected to undergo the mechanism, one is used as the 
origin of the path and the other as the end of the same path. Going from the origin to 
the end consists of generating a set of intermediate solutions. The resulting solution 
is the best of the path.

We have designed an adapted path relinking operator which randomly chooses 
only one pair of solutions of RefSet, among the RefSet_size∕2 best solutions. The 
operator is bi-directional and moves from the origin to the end and then from the 
end to the origin. The operator evaluates all the neighbour solutions generated in 
both paths, returning the best as result. This solution replaces the worst of the origi-
nals if it is better. Given two solutions form RefSet, �0 and �1 , the way of moving 
from �0 to �1 is depicted in Algorithm 2.

(7)D(�0,�1) =
�

2

(
d(�(�0), �(�1))

m(m−1)

2

+
s

m

)
+ (1 − �)

(
v(�1)

v(�0)

)
,

D(�0,�1) =
�

2

(
3

3(3−1)

2

+
2

3

)
+ (1 − �)

(
v(�1)

v(�0)

)
.
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Algorithm 2 Path between two solutions
Step 0: (initialization)
if (v(π0) >= v(π1)) then
π∗ := π0;

else
π∗ := π1;

end if
π2 := π0;

r = 1;
Step 1: (Algorithm)
while π2 �= π1 do
if (ρ(π2(r)) = ρ(π1(r))) then

if (π2(r) = π1(r)) then
r = r + 1;

else
π2(r) := π1(r);
if (v(π2) >= v(π∗)) then
π∗ := π2;

end if
end if

else
t = r;

repeat
t = t+ 1;

until ρ(π2(t)) = ρ(π1(r))
π3 := π2;

π2(r) = π3(t);
for s = 1 to t− r do
π2(r + s) = π3(r + s− 1);

end for
if (v(π2) >= v(π∗)) then
π∗ := π2;

end if
end if

end while

Example 1  (cont). Let �0 = (a | d | e) ≡ (�, b | c,� | �, f ) and �1 = (c | b | e) ≡
(�, d | a,� | �, f ) . The first neighbour solution is � = (d | a | e) ≡ (c,� | �, b | �, f ) , 
and the second is � = (c | a | e) ≡ (�, d | �, b | �, f ) , while the third and the last is 
� = (c | b | e) ≡ (�, d | a, � | �, f ).

4.3 � Insertion

Given a solution � and two positions r, s ∈ M , we define the insertion of element 
�(r) in position s as a result of adding at position s the element �(r) and moving 
all subsequent elements up one position. Given a solution, the insertion operator 
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evaluates all the possible insertions in that solution checking the objective function 
for each. The result of the insertion operator is the best of the evaluated solutions. 
This operator is based on the idea of the “adding” procedure used in the metaheuris-
tic proposed in Alcaraz et al. (2019).

Remark 4.1  Let �0 be a solution of LOP-C and let r, s in M. Let � be the result of 
inserting the element �0(r) in position s, and then:

Remark 4.1 facilitates the evaluation of the new solutions. While the calculation 
of the objective function by (1) requires m(m − 1)∕2 operations, the calculation by 
the formula in Remark 4.1 requires between 2 and 2(m − 1) operations, depending 
on the positions being considered.

4.4 � Mutation

Mutation is used as one of the most important operators in GA, imitating the muta-
tion of genetic material that sometimes occurs in nature, changing the character-
istics of an individual. The mutation mechanism permits the introduction of new 
characteristics that were not present in the population into a solution or character-
istics that some individuals had in the past but were lost in the evolution process. 
This is very important in evolutionary algorithms, to introduce variability and avoid 
being trapped in local optima, producing a premature convergence of the algorithm. 
We have designed a mutation strategy that, making use of the problem-knowledge, 
allows us to introduce diversity into the RefSet in a very appropriate way. Here, we 
present two different types of mutation, mutation of nodes and mutation of clus-
ters, and for each one, two different versions depending on whether only one or all 
the nodes/clusters mutate. Given a solution � of the RefSet: OneNodeMutation(�) , 
AllNodeMutation(�) , OneClusterMutation(�) , and AllClusterMutation(�) can be 
applied to it. The first two procedures mutate nodes, while the others produce the 
mutation of clusters.

Given a solution � in RefSet, OneNodeMutation(�) chooses a random node i ∈ V , 
such that i is a node of the solution � , that is i = �(r) , and it is replaced by a random 
node j ∈ Vr with a probability of mutation, Pmut1 ; AllNodeMutation(�) selects every 
node i ∈ V , such that i is a node of the solution � , that is i = �(r) , and it is replaced by 
a random node j ∈ Vr with a probability of mutation, Pmut2 ; OneClusterMutation(�) 
chooses two random clusters r, s ∈ M and inserts the element �(r) in the position of 
cluster s (OneClusterMutation works as in Sect. 4.3) with a given probability Pmut1 ; 
Finally, AllClusterMutation(�) applies OneClusterMutation(�) for all r ∈ M , but with 
probability Pmut2 for each cluster. Therefore, the result of this procedure could be the 
original solution or the mutated one.

if r < s v(𝜋) = v(𝜋0) +

s∑

t=r+1

(c𝜋0(t)𝜋0(r) − c𝜋0(r)𝜋0(t))

if r > s v(𝜋) = v(𝜋0) +

r−1∑

t=s

(c𝜋0(r)𝜋0(t) − c𝜋0(t)𝜋0(r)).
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Example 1  (cont). Let �0 = (a | d | e) ≡ (�, b | c,� | �, f ) The output for OneNode-
Mutation(�0) with i = c is = (a | c | e) ≡ (�, b | �, d | �, f ) . The output for AllNode-
Mutation(�0) with random values b, d, e is (b | d | e) ≡ (a, � | c,� | �, f ) . The output 
for OneClusterMutation(�0) with r = 3 and s = 1 is (e | a | d) ≡ (�, f , | �, b | c,�) . 
Eventually, the output for AllClusterMutation(�0) when the first cluster is 
selected to move to the third position, the second cluster is selected to move to 
the third position, and the third cluster is selected to move to the first position is 
(e | d | a) ≡ (�, f | c,�, | �, b).

4.5 � Interchange

The interchange method was introduced by Teitz and Bart (1968) and consists of inter-
changing one solution attribute that is in the solution with one that is not. An extension 
of this version is the so-called k-interchange, in which k solution attributes are inter-
changed (Mladenovic et al. 1996).

We use a particular m-interchange previously proposed as operator of a metaheuris-
tic algorithm for a location problem (Alcaraz et al. 2012). Given a solution � , this oper-
ator replaces each element i in � for the best element i∗ ∈ V�(i) . The best element i∗ is 
the one whose interchange leads to the best possible objective value.

To evaluate the objective value for each j ∈ V�(i) , it is useful to make the following 
remark.

Remark 4.2  Let �0 and � be two solutions of LOP-C, such that �(�0(r)) = �(�(r)) , 
for all r ∈ M , and �0(s) ≠ �(s) for exactly one s ∈ M . Then:

Remark 4.2 also facilitates the evaluation of the new solutions. Again, the calcula-
tion of the objective function by (1) requires m(m − 1)∕2 operations, while the calcula-
tions by the formula in Remark 4.2 requires 2(m − 1).

The resulting solution of this procedure replaces the original solution in the RefSet 
only if it a better objective value.

5 � Computational study

We have used a set of instances in http://www.optsi​com.es/lolib​/ for the Linear Order-
ing. In particular, the set of instances comprises the 25 instances of size 100 in the 
group of problems called Random instances of type AI which are generated from a 
[0,  100] uniform distribution and were proposed in Reinelt (1985) and generated in 
Campos et al. (2001). Each instance of size n = 100 has been split in m = 4, 10, 20, 50 
clusters of equal size. Thus, we have used 100 different problems that form 4 groups.

All tests were performed on a PC with a 2.33 GHz Intel Xeon dual core proces-
sor, 8.5 GB of RAM, and LINUX Debian 4.0 operating system. A CPLEX v.11.0 

v(�) = v(�0) +

r−1∑

s=1

(c�0(s)�(r) − c�0(s)�0(r)) +

m∑

s=r+1

(c�(r)�0(s) − c�0(r)�0(s)).

http://www.optsicom.es/lolib/
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optimization engine was used for solving the LOP-C model, while MH_LOP-C was 
implemented in C.

First, we have solved the model LOP-C for all the instances imposing a time limit of 
3 h and for each group of instances, m = 4, 10, 20, 50 . After that, we have solved the 
linear relaxation and calculated the linear Gap of each instance.

Table 4 report the results for m = 4, 10, 20, 50 . Headings are as follows. The first 
column is the instance number. The second, third, fourth, and fifth blocks of columns 
are the results for the different clusters: v∗ shows the objective value of the best solu-
tion achieved by CPLEX (if CPLEX finishes before the time limit, it is the optimal 
solution), t∗ shows the CPU time (seconds) needed by CPLEX to reach that solution 
when solving the LOP-C model and Gap shows the difference between the integer and 
the linear relaxation problem. From the values in columns, Gap follows that LOP-C 
is more difficult than LOP. When m = 4, the problem has small linear gap, but when 
m increases, this linear gap also increases. When m = 10, the average linear gap is 
36.59 which is larger than the common upper bound for the linear gap of LOP, i.e., 0.33 
( = 4∕3 − 1 ). Anyway, the Gap when m = 20 and when m = 50 uses the best integer 
solution within the time limit.

The addition of valid inequalities in Remark 3.2 as well as the heuristic separation 
of the 3-fence inequality in Remark 3.4 have failed to reduce the linear gap or the CPU 
time.

Now, we check the goodness of the metaheuristic proposed and described in Sect. 4 
(Algorithm 1). The interest is on the efficiency of the method, that is, the quality of the 
solutions in a given computation time.

First with the results of Table 4, we have measured the average computation time 
needed by CPLEX to solve the instances in each group, t∗

aver_m
 . Then, we have run 

MH_LOP-C three times for each instance, and the time limit imposed in each one of 
those executions depends on the problem size and it has been calculated by the follow-
ing expression:

Preliminary studies have indicated some appropriate values for the parameters of 
the metaheuristic algorithm, and those are the ones employed in all the executions 
of MH_LOP-C: Pop_size = 100,RefSet_size = 10, � = 0.5,Pmut1 = 0.1 , and Pmut2 
depends on m, being Pmut2 = 0.05 for instances with 4 clusters, Pmut2 = 0.025 for the 
instances with m = 10 , Pmut2 = 0.0125 for instances where the number of clusters is 
25 and Pmut2 = 0.00625 for 50 cluster instances.

Tables  5, 6, 7, 8 report the results for m = 4, 10, 20, 50 , respectively. Headings 
are as follows. The first column is the instance number, v∗ shows the objective value 
of the best solution achieved by CPLEX (if CPLEX finishes before the time limit, 
it is the optimal solution), and t∗ shows the CPU time (seconds) needed by CPLEX 
to reach that solution when solving the LOP-C model. The third block of columns, 
called BEST SOLUTION, shows the results of the best among the three executions 
performed by MH_LOP-C. This block is divided into four columns: v∗

BS
 shows the 

best solution achieved, t∗
BS

 shows the CPUs time (seconds) to find this solution, #

min
{
t∗
aver_m

, log
(
n

m

)m}
.
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iter shows the number of iterations performed by the algorithm, and %diff shows the 
deviation from the solution reported by CPLEX, namely:

Column #OPT in Tables  5 and  6 indicates the number of times among the three 
executions that MH_LOP-C finds the optimum and column #BST in Tables 7 and 8 
reports the number of times that the metaheuristic finds, in the time limit consid-
ered, a solution which is better than the given by CPLEX. The last block of col-
umns, Average, gives the averages for the three executions: average optimal value 
( vA ), average time ( tA ), average number of iterations, and average deviation from the 
solution reported by CPLEX.

Table 5 reports the results for the case m = 4 , in which all the clusters have 25 
elements. In this case, the time limit imposed to the metaheuristic is, t∗

aver_4
 , the aver-

age time employed by CPLEX to solve the instances with 4 clusters. The results 
show that both methods obtain the optimal solution in the 25 instances of this 
group. The average time employed by CPLEX is 2 s and MH_LOP-C finds the opti-
mum, in the best of the three executions, in 0.03 s, on average. Moreover, in all the 
instances, the metaheuristic proposed finds the optimal solution in less than one-
fourth of a second, on average. Moreover, column #OPT, which reports the num-
ber of executions where the optimal solution is achieved by MH_LOP-C, shows 
that the metaheuristic reaches the optimum in all the three executions performed, 
which demonstrates its robustness and stability. The average number of iterations 

(8)% diff = 100
v∗
BS

− v∗
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Fig. 2   Comparison of Tables 5, 6, 7, and 8
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carried out by MH_LOP-C is around 90,000, which means that it performs more 
than 1,000,000 iterations by second.

Table 6 shows the results for the case m = 10 , that is, the instances have ten clus-
ters with ten nodes per cluster in each instance. The average computation time for 
solving LOP-C with CPLEX is 320.12 s. Therefore, the time limit imposed to the 
metaheuristic is 10  s, ( log(n∕m)m) , per execution. However, MH_LOP-C employs 
only 2.31 s on average for the instances in this group and, if we consider only the 
best of the three executions, less than 1 s on average. MH_LOP-C finds the optimal 
solution in the 25 instances and in 71 of the 75 executions performed. Only in 3 of 
the 25 instances, it does not achieve the optimal solution in all 3 executions. The 
average deviation of the solutions found by MH_LOP-C with respect to the opti-
mal solution given by CPLEX is always smaller than 0.53% , employing a cpu time 
140 times smaller. It varies from − 1.9 to − 6.53% in an average computation time 

Table 5   m = 4 (time limit: CPLEX 3 h, MH_LOP-C 2 s)

Instance CPLEX sol. Best solution #OPT Average

v
∗

t
∗

v
∗
BS

t
∗
BS

#iter % diff v
A

t
A

#iter % diff

1 463 2.19 463 0.00 78,467 0.00 3 463 0.03 81,384 0.00
2 486 2.01 486 0.05 86,340 0.00 3 486 0.09 85,461 0.00
3 477 2.64 477 0.00 89,832 0.00 3 477 0.03 89,265 0.00
4 466 2.60 466 0.00 90,629 0.00 3 466 0.03 92,431 0.00
5 465 1.20 465 0.02 88,232 0.00 3 465 0.15 87,253 0.00
6 462 2.30 462 0.10 92,795 0.00 3 462 0.13 86,849 0.00
7 469 2.35 469 0.05 94,988 0.00 3 469 0.14 93,803 0.00
8 494 0.42 494 0.01 90,413 0.00 3 494 0.04 92,612 0.00
9 469 0.54 469 0.01 93,224 0.00 3 469 0.03 92,938 0.00
10 448 2.11 448 0.00 88,901 0.00 3 448 0.06 91,893 0.00
11 480 1.23 480 0.06 90,653 0.00 3 480 0.10 91,266 0.00
12 468 1.65 468 0.02 94,057 0.00 3 468 0.03 93,886 0.00
13 466 2.29 466 0.08 90,575 0.00 3 466 0.09 90,173 0.00
14 456 2.15 456 0.03 94,829 0.00 3 456 0.06 91,328 0.00
15 452 2.73 452 0.02 94,627 0.00 3 452 0.03 94,116 0.00
16 466 1.78 466 0.11 95,773 0.00 3 466 0.21 94,119 0.00
17 463 2.07 463 0.02 93,375 0.00 3 463 0.12 91,349 0.00
18 480 1.96 480 0.05 89,228 0.00 3 480 0.08 90,895 0.00
19 466 3.16 466 0.05 95,397 0.00 3 466 0.12 93,929 0.00
20 470 1.29 470 0.00 96,202 0.00 3 470 0.01 94,745 0.00
21 520 0.25 520 0.01 92,451 0.00 3 520 0.01 90,972 0.00
22 470 2.00 470 0.02 95,610 0.00 3 470 0.09 93,888 0.00
23 465 2.00 465 0.05 96,410 0.00 3 465 0.19 94,029 0.00
24 472 1.80 472 0.02 94,284 0.00 3 472 0.04 94,436 0.00
25 461 2.47 461 0.03 94,451 0.00 3 461 0.12 94,908 0.00
Average 2.00 0.03 92,069 0.00 0.08 91,517 0.00
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which is 2245 times smaller. In this case the algorithm performs, on average, around 
80,000 iterations to find the optimum, more than 35,000 iterations per second.

Table  7 summarizes the results for the instances with m = 20. In this case, 
CPLEX cannot find the optimal solution in any of the 25 instances in 3 h and col-
umn v∗ reports the objective value of the best solutions achieved in that time. The 
time limit for MH_LOP-C is then 14 s. The metaheuristic needs, on average, 4.81 s 
to reach the best solution and only 1.43 s on average if only the best execution is 
considered. Negative values in column %diff indicate that the solution given by the 
metaheuristic is better than that the given by CPLEX. Moreover, column #BST indi-
cates that MH_LOP-C always finds a solution which is better than the reported by 
CPLEX, in all the instances and all the executions performed per instance. Although 
in all cases, MH_LOP-C finds the best solution in less than 4 s, some time averages 
require nearly 14 s. For instance, the time needed by this algorithm to reach the best 

Table 6   m = 10 (time limit: CPLEX 3 h, MH_LOP-C 10 s)

Instance CPLEX sol.  Best solution #OPT Average

v
∗

t
∗

v
∗
BS

t
∗
BS

#iter % diff v
A

t
A

#iter % diff

1 2253 391.21 2253 2.96 83,354 0.00 3 2253.00 4.13 83,105 0.00
2 2243 370.91 2243 0.13 80,224 0.00 3 2243.00 0.50 81,703 0.00
3 2238 419.62 2238 1.31 80,794 0.00 3 2238.00 2.24 82,079 0.00
4 2271 405.44 2271 0.19 82,900 0.00 3 2271.00 4.40 84,062 0.00
5 2262 55.10 2262 0.79 82,726 0.00 3 2262.00 3.85 82,009 0.00
6 2223 381.90 2223 0.58 79,467 0.00 3 2223.00 2.01 80,471 0.00
7 2237 409.46 2237 1.64 76,937 0.00 1 2228.33 2.12 78,832 0.39
8 2266 384.29 2266 0.11 82,763 0.00 3 2266.00 0.27 77,820 0.00
9 2280 398.43 2280 5.20 79,392 0.00 3 2280.00 6.49 80,279 0.00
10 2277 339.18 2277 0.59 80,453 0.00 3 2277.00 3.11 79,316 0.00
11 2275 46.37 2275 0.30 80,162 0.00 3 2275.00 0.32 80,461 0.00
12 2278 350.45 2278 0.52 79,965 0.00 3 2278.00 1.28 80,233 0.00
13 2246 366.01 2246 0.61 80,590 0.00 3 2246.00 2.84 78,762 0.00
14 2190 391.32 2190 0.05 81,858 0.00 3 2190.00 2.86 80,857 0.00
15 2204 426.02 2204 0.63 80,104 0.00 2 2199.00 1.43 81,451 0.23
16 2162 441.76 2162 1.78 82,505 0.00 3 2162.00 4.13 81,982 0.00
17 2280 36.91 2280 0.14 80,928 0.00 3 2280.00 2.88 81,531 0.00
18 2292 70.32 2292 1.25 80,959 0.00 3 2292.00 5.73 82,310 0.00
19 2332 369.05 2332 0.20 83,062 0.00 3 2332.00 1.65 83,881 0.00
20 2332 388.85 2332 0.19 83,980 0.00 2 2319.67 0.18 84,002 0.53
21 2229 377.29 2229 0.22 76,985 0.00 3 2229.00 0.83 78,153 0.00
22 2315 386.10 2315 0.28 82,719 0.00 3 2315.00 2.22 83,413 0.00
23 2239 377.21 2239 0.30 82,033 0.00 3 2239.00 0.87 83,179 0.00
24 2256 378.08 2256 0.36 81,757 0.00 3 2256.00 1.10 83,848 0.00
25 2252 51.03 2252 0.05 83,265 0.00 3 2252.00 0.27 84,260 0.00
Average 320.12 0.77 81,195 0.00 2.31 81,520 0.05
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solution for instance 22 is of 1.13, 13.98, and 5.89 s, respectively, that leads to an 
average computation time of 7  s. In this group of instances the ratio iterations by 
second is of 45,874∕4.81 = 9537.

Finally, Table 8 summarizes the results for the instances with m = 50 clusters and 
all the clusters of size 2. As CPLEX cannot find the optimal solution and it employs 
the 3 h in the solution process, the time limit for MH_LOP-C is then 15 s. The best 
option of each trio of iterations is always obtained in less than 14 s and in around 
8 s on average. As in the previous table, values in column %diff are negative, and 
column #BST shows that MH_LOP-C finds better solutions than CPLEX in all the 
instances and all the executions. In the best execution for instance 20, MH_LOP-C 
outperforms CPLEX by about 23.73%. In this group of instances, the average differ-
ences vary between − 5.68 and − 23.09% in only 10.66 s, in contrast to the 10,800 s 

Table 7   m = 20 (time limit: CPLEX 3 h, MH_LOP-C 14 s)

Instance CPLEX sol.  Best solution #BST Average

v
∗

t
∗

v
∗
BS

t
∗
BS

#iter % diff v
A

t
A

#iter % diff

1 6813 10,800.00 6999 3.43 46,174 − 2.73 3 6986.33 5.55 46,951 − 2.54
2 6790 10,800.00 7131 0.98 47,804 − 5.02 3 7131.00 5.32 47,911 − 5.02
3 6790 10,800.00 7082 0.84 46,269 − 4.30 3 7071.33 2.42 46,273 − 4.14
4 6734 10,800.00 6948 1.06 48,178 − 3.18 3 6885.67 5.47 47,594 − 2.25
5 6783 10,800.00 7118 3.04 47,582 − 4.94 3 7088.67 3.51 47,443 − 4.51
6 6736 10,800.00 7003 1.07 47,495 − 3.96 3 6877.67 3.84 46,645 − 2.10
7 6680 10,800.00 7041 0.23 48,516 − 5.40 3 7020.33 0.89 45,225 − 5.09
8 6737 10,800.00 6991 2.00 48,204 − 3.77 3 6943.33 7.14 46,639 − 3.06
9 6712 10,800.00 7137 1.38 42,904 − 6.33 3 7073.00 5.81 44,135 − 5.38
10 6830 10,800.00 7040 1.12 46,026 − 3.07 3 6998.00 2.18 45,606 − 2.46
11 6565 10,800.00 6873 2.10 47,733 − 4.69 3 6846.67 8.65 47,252 − 4.29
12 7021 10,800.00 7215 2.73 44,317 − 2.76 3 7154.33 5.54 47,031 − 1.90
13 6755 10,800.00 7187 0.32 47,953 − 6.40 3 7055.67 1.77 47,975 − 4.45
14 6599 10,800.00 6944 0.47 48,003 − 5.21 3 6836.67 4.99 47,573 − 3.60
15 6750 10,800.00 6977 2.47 42,920 − 3.36 3 6971.67 6.28 44,353 − 3.28
16 6439 10,800.00 6934 0.51 41,458 − 7.69 3 6859.67 1.90 44,692 − 6.53
17 6471 10,800.00 6931 0.32 48,694 − 7.11 3 6886.33 2.67 47,290 − 6.42
18 6790 10,800.00 7073 1.70 47,937 − 4.17 3 7048.67 4.00 47,575 − 3.81
19 6944 10,800.00 7130 3.85 45,863 − 2.68 3 7121.67 9.26 46,515 − 2.56
20 6817 10,800.00 7253 0.15 46,776 − 6.40 3 7204.67 4.34 47,221 − 5.69
21 6499 10,800.00 7003 2.53 42,357 − 7.76 3 6912.00 4.97 43,168 − 6.35
22 6857 10,800.00 7132 1.13 34,099 − 4.01 3 7080.67 7.00 40,781 − 3.26
23 6537 10,800.00 6873 1.10 45,846 − 5.14 3 6777.33 6.82 44,735 − 3.68
24 6586 10,800.00 7131 0.59 47,927 − 8.28 3 6965.67 6.25 41,980 − 5.76
25 6686 10,800.00 7106 0.62 46,469 − 6.28 3 6873.00 3.74 44,281 − 2.80
Average 10,800.00 1.43 46,039 − 4.98 4.81 45,874 − 4.04
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employed by CPLEX. Now, the number of iterations per second has decreased until 
to 900.

Results in Tables  5, 6, and 7, 8 illustrate that the difficulty of the problem 
increases as m increases. With regards to CPLEX, somehow, it is due to the number 
of binary variables that the model has. If all the clusters are of size n/m,  the LOP-C 
model has n2(m − 1)∕m + n binary variables. In particular, the number of binary 
variables is 7600, 9100, 9600, and 9900 for m = 4, 10, 20, and 50, respectively. In 
the case of the metaheuristic, the number of iterations per second decreases from 1 
million to less than 1000, which implies that the problem is computationally hardest 
mainly as the number of clusters increases if the number of nodes remains unaltered. 
However, although tA considerably increases with m, %diff decreases from zero to 
near -12%. Column %diff reports almost zero differences for the cases with 4 and 
10 clusters, but these differences become negative values in the hardest instances, 
where the number of clusters is 20 and 50. Therefore, the difference between both 
algorithms is larger as the difficulty of the problem increases. Figure 2 depicts the 
evolution in the average time ( tA ) and %diff for the different sizes considered in the 
computational study: computational time goes from 0 to 8  s, while the gap goes 
from values very close to zero to negatives values. For the easiest instances, with 
four or ten clusters, both resolution methods are effective, because the optimal solu-
tion is reached in all the instances, but MH_LOP-C is much more efficient, because 
this optimum is reached in a considerably much smaller computation time. When 
the difficulty of the problem increases, for instances with 20 or 50 clusters, CPLEX 
takes 3 h to reach solutions which are very far, in terms of quality, from the solutions 
reached by the metaheuristic in just a few seconds.

6 � Conclusions

In this paper, we have presented the problem of linear ordering clusters of elements. 
The option of considering that only one representative of each cluster is required 
has been modeled through a binary linear formulation, LOP-C. A metaheuristic 
algorithm has been developed for approximating optimal solutions of LOP-C when 
the model itself requires too much computational time. The computational section 
illustrates the goodness of both the LOP-C model and the metaheuristic. The model 
allows the solution of problems with 9100 binary variables and the metaheuristic 
algorithm proposed reaches the optimal solution in the easy instances in most cases 
and outperforms, in seconds, the solution given by the exact optimizer within a time 
limit of 3 h in the hardest instances. This demonstrates the robustness and stability 
of the metaheuristic proposed. The computational section also gives some insights 
on the complexity that the number of clusters adds to the problem; when the same 
number of nodes are split in more clusters, the difficulty of the problem in terms of 
computational time for solving the problem increases.
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