
Chapter 15
Sharpe Portfolio Using a Cross-Efficiency
Evaluation

Mercedes Landete, Juan F. Monge, José L. Ruiz, and José V. Segura

Abstract The Sharpe ratio is a way to compare the excess returns (over the risk-
free asset) of portfolios for each unit of volatility that is generated by a portfolio.
In this paper, we introduce a robust Sharpe ratio portfolio under the assumption that
the risk-free asset is unknown. We propose a robust portfolio that maximizes the
Sharpe ratio when the risk-free asset is unknown, but is within a given interval. To
compute the best Sharpe ratio portfolio, all the Sharpe ratios for any risk-free asset
are considered and compared by using the so-called cross-efficiency evaluation. An
explicit expression of the Cross-Efficiency Sharpe Ratio portfolio is presented when
short selling is allowed.

Keywords Finance · Portfolio · Minimum-variance portfolio · Cross-efficiency

15.1 Introduction

In 1952 Harry Markowitz made the first contribution to portfolio optimization. In
the literature on asset location, there has been significant progress since the seminal
work by Markowitz in 1952, Markowitz (1952), who introduced the optimal way of
selecting assets when the investor only has information about the expected return
and variance for each asset in addition to the correlation between them.
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In 1990, Harry Markowitz, Merton Miller and William Sharpe won the Nobel
Prize in Economics for their portfolio optimization theory.

The optimal portfolio obtained by the Markowitz model usually shows high long-
term volatility. This feature has motivated a body of research oriented to control the
present error in the Markowitz model. Since the variance of the portfolio cannot be
considered as an adequate measure of risk, a number of alternative measures have
been proposed in the literature in an attempt to quantify the portfolio variance more
appropriately (see Markowitz (1959); Jin et al. (2006); Nawrocki (1999) among oth-
ers). Another way to control the risk in the optimization model is based on setting a
minimum threshold for the expected return. Following that approach, several models
which incorporate risk measures such as “safety measure”, “value at risk”, “condi-
tional value at risk”, etc., have been proposed in order to control the volatility of the
solution. See Artzener et al. (1999); Krokhmal et al. (2002) and references therein.

The incorporation of new restrictions to the problem is also a tool that has been
used both to prevent the risk and to incorporate the knowledge of the analyst in search
of the best solution. New models have emerged in the last years, which include lin-
ear programming models, integer optimization models and stochastic programming
models (see Mansini et al. (2014) among others).

Another important feature of the Markowitz model is its myopia about the future
scenario of potential returns that will happen. For this reason, producing accurate
forecasts in portfolio optimization is of outmost importance. In this sense, fore-
casting models, factor models in covariance matrix and return estimation, bayesian
approaches, or uncertainty estimates (see Ben-Tal and Nemirovski (1999) and refer-
ences therein) are helpful. The need to improve predictions and consider the present
uncertainty in the Markowitz model has motivated the development of what is col-
lectively known as “robust optimization” techniques. Robust methods in mathemat-
ical programming were introduced by Bertsimas and Pachamanova (2008) and after
studying in a portfolio context by Goldfarb and Iyengar (2003) among others.

There exist several methods in the literature aimed at improving the performance
of Markowitz’s model, but none of these methods can be considered better than
the others. To the authors’ knowledge, a systematic comparison of the approaches
discussed above has not yet been published. However, in DeMiguel et al. (2009) 14
different models are compared on the basis of a number of datasets with different
quality measures. The results obtained show that “none of the sophisticated models
consistently beat the naïve 1/N benchmark”.

Our objective in this paper is to determine the best tangent portfolio, when the free
risk rate asset is unknown or the information on this parameter is not deterministic
for a long time period. The goal is to find a robust portfolio in the sense of a tangent
portfolio better than other tangent portfolios compared with it. To achieve that goal,
weuse some techniques based onDataEnvelopmentAnalysis (DEA),which provides
an analysis of the relative efficiency of the units involved. In the context of portfolio
optimization, several authors have used such DEA techniques, specifically the cross-
efficiency evaluation (like us here), yet with a different purpose (see, for example,
Lim et al. (2014)).
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In the next section we present a brief description of the original Markowitz and
Sharpe ratio models for portfolio optimization, and discuss some of the features
related to the solutions and the efficient frontier that will be needed for the remainder
of the paper. In Sect. 15.3 we propose an approach to portfolio optimization based
on the cross-efficiency evaluation. In Sect. 15.4 we compare our approach with other
classical solutions through the study of two pilot cases. And in the last section we
offer a conclusion.

15.2 Overview

In this section, we present a brief description of the Sharpe ratio for asset allocation.
The portfolio optimization problem seeks the best allocation of investment among
a set of assets. The model introduced by Markowitz provides a portfolio selection
as a return-risk bicriteria tradeoff where the variance is minimized under a specified
expected return. The mean-variance portfolio optimization model can be formulated
as follows:

min σ 2
P = 1

2
wT �w (15.1)

s.t. wT μ = ρ (15.2)

wT1n = 1. (15.3)

The objective function (15.1), σ 2
P , gives the variance of the return wT μ, where �

denotes the n × n variance–covariance matrix of n−vector of returns μ, and w is the
n−vector of portfolio weights invested in each asset. Constraint (15.2) requires that
the total return is equal to the minimum rate ρ of return the investor wants. The last
constraint (15.3) forces to invest all the money. We denote by 1n the n−dimensional
vector of ones. Note that the weight vector w is not required to be non-negative as
we want to allow short selling, whose weight of vector w is less than 0.

This model uses the relationship betweenmean returns and variance of the returns
to find a minimum variance point in the feasible region. This minimum variance is
a point on the efficient frontier, Wρ . The efficient frontier is the curve that shows all
efficient portfolios in a risk-return framework, see Fig. 15.1.

15.2.1 Global Minimum Variance Portfolio

The Global Minimum Variance (GMV) portfolio from the Efficient Frontier (Wρ)
is obtained without imposing the expected-return constraint (15.2). The portfolio
weights, (w∗

GMV ), expected return (r∗
GMV ) and variance (σ ∗2

GMV ) are given by
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Fig. 15.1 Efficient frontier and cloud of possible portfolios

Fig. 15.2 Hyperbola and the assymptotes for mean-variance efficient portfolios

w∗
GMV = �−11n

1T
n �−11n

, r∗
GMV = 1T

n �−1μ

1T
n �−11n

and σ∗2
GMV = 1

1T
n �−11n

. (15.4)

The hyperbola of the feasible portfolios is enclosed by the asymptotes r = c/b ±√
(ab − c2)/b σ with

a = μT �−1μ, b = 1T
n �−11n and c = 1T

n �−1μ. (15.5)

The expected return of the global minimum variance portfolio, rGMV , is the apex
of the hyperbola. Figure15.2 represents the hyperbola for the feasible portfolios, the
efficient frontier, the global minimum variance portfolio (GMV) and the asymptotes.
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15.2.2 Sharpe Ratio

The Tangent Portfolio (TP) is the portfolio where the line through the origin is tan-
gent to the efficient frontierWρ . This portfolio represents the portfoliowithmaximum
ratio mean/variance.

w∗
TP = arg max

w

wT μ√
wT �w

s.t. wT1n = 1. (15.6)

Another studied portfolio is obtained by maximizing the same ratio when a risk-
free asset, rf , is considered. This portfolio is called the Maximum Sharpe Ratio
(MSR) portfolio. The Sharpe ratio is the expected excess returns (over the risk-free
asset) per unit of risk. Therefore, the Maximum Sharpe Ratio (MSR) portfolio is the
solution to the model:

w∗
MSR = arg max

w

wT (μ − rf )√
wT �w

s.t. wT1n = 1 (15.7)

where rf denotes the risk-free asset. The allocationw∗
MSR is knownasmarket portfolio,

M . If the risk-free rate is rf = 0, the market portfolio is identical to the tangent
portfolio solution of problem (15.6).

Capital Market Theory asks about the relationship between expected returns
and risk for portfolios and free-risky securities.

The solution to (15.7) includes only risky assets. This solution is known as the
Market Portfolio (M ). A line from the risk-free interest rate through theMarket Port-
folio (M ) is known as the Capital Market Line (CML). All the efficient portfolios
must lie along this line,

CML : E(r) = rf + rM − rf

σM
σ

where E(r) is the expected portfolio return, rf the risk-free rate of interest, and rM ,
σM , respectively, the return and risk of the market portfolio M . All the portfolios on
the CML have the same Sharpe ratio. See Fig. 15.3.

The CML summarizes a simple linear relationship between the expected return
and the risk of efficient portfolios. Sharpe assumed that the total funds were divided
between the market portfolio (M ) and security f . The inversion is fully invested here,

wM + wf = 1.

The expected return of the portfolio is

E(rp) = wf rf + wM rM .
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Fig. 15.3 Efficient frontier obtained from four assets. The Global Minimum Variance (GMV) is
the portfolio with less risk. The Maximum Sharpe Ratio (MSR) is the tangent portfolio located
in the Efficient frontier in the presence of a risk-free asset. The combination of the risk-free asset
and the tangency portfolio (MSR) generates the Capital Market Line (CML). CML is the set of
non-dominated portfolios when a risk-free asset is present

In order to calculate the optimal MSR portfolio of (15.7) we have to maximize
(15.7) subject to wT1n = 1. In Chapados (2011) we can see how to derive the fol-
lowing expression for the solution of this problem:

w∗
MSR = �−1(μ − rf )

1T
n �−1(μ − rf )

. (15.8)

The risk σ ∗ and the expected excess returns r∗ for the optimal solution to the
maximization Sharpe ratio problem with free risk rf is

r∗
MSR = w∗T

MSR μ = (μ − rf )
T �−1μ

1T
n �−1(μ − rf )

(15.9)

σ ∗
MSR =

√
w∗T

MSR � w∗
MSR =

√
(μ − rf )T �−1(μ − rf )

1T
n �−1(μ − rf )

. (15.10)

Tangent portfolios are portfolios usually designed for long-term investors. Most
investors tend to take on too much risk in good times, and then sell out in bad times.
Tangent Portfolios are designed to let investors do well enough in both good and bad
times. This lets us reap the long-term benefits of investing in stocks and bonds with
a simple, low-maintenance solution.
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Fig. 15.4 Different CML lines when the risk-free asset is 0, 0.0013 and 0.0025, and their maximum
Sharpe ratio portfolios

Fig. 15.5 W
rf
ρ set when the risk-free asset is in the interval [0, 0.0025]

Denote by W
rf
ρ the subset of efficient portfolios, W

rf
ρ ⊂ Wρ , formed for maximum

Sharpe ratio portfolios, i.e., tangent portfolios obtained for some value of rf . Note
that, all the tangent portfolios in W

rf
ρ are obtained varying rf from 0 to the hyperbola

apex r∗
GMV , i.e., rf ∈ [0, r∗

GMV ]. See Figs. 15.4 and 15.5.
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15.3 Portfolio Selection Based on a Cross-Efficiency
Evaluation

In this section we propose an approach to make the selection of a portfolio within the
setW

rf
ρ . This approach is inspired by the so-calledDataEnvelopmentAnalysis (DEA)

and cross-efficiency evaluation methodologies. DEA, as introduced in Charnes et al.
(1978), evaluates the relative efficiency of decision-making units (DM Us) involved
in production processes. For each DM U0, it provides an efficiency score in the form
of a weighted sum of outputs to a weighted sum of inputs. DEA models allow the
DM Us total freedom in the choice of the input and output weights. This means that
each DM U0 chooses the weights that show it in its best possible light, with the only
condition that the efficiency ratios calculated for the otherDM Us with those weights
are lower than or equal to a given quantity, usually set at 1. Thus, DM U0 is rated
as efficient if its efficiency score equals 1. Otherwise, it is inefficient, and the lower
the efficiency score, the larger its inefficiency. DEA has been successfully used in
many real applications to analyze efficiency in areas such as banking, health care,
education or agriculture.

Inspired by DEA, we propose to solve the following model for each portfolio
(σ0, ro) in W

rf
ρ

Maximize
u (r0 − u0)

v σ0

Subjet to.
u (r − u0)

v σ
≤ 1 ∀(σ, r) ∈ W

rf
ρ

u, v ≥ 0

u0 ≥ 0. (15.11)

In (15.11), the portfolios in W
rf
ρ would be playing the role of the DMUs, which

in this case have one single input (risk, σ ) and one single output (return, r). It should
be noted that, unlike the problem we address here, in standard DEA we have a finite
number of DMUs. Obviously, the optimal value of (15.11) when solved in the eval-
uation of each portfolio in W

rf
ρ , (σ0, ro), equals 1, because there exist non-negative

weights u∗, v∗ and v∗
0 such that u∗(r0 − u∗

0)/v∗σ0 = 1, and u∗(r − u∗
0)/v∗σ ≤ 1 for

the rest of the portfolios (σ, r) ∈ W
rf
ρ . These weights are actually the coefficients of

the tangent hyperplane to the curve (efficient frontier) Wρ at (σ0, r0).
Denote in general by (σ ∗

MSRi
, r∗

MSRi
) ∈ W

rf
ρ the MSR portfolio obtained when the

risk-free rate rf is ri
f . This portfolio maximizes the Sharpe ratio (15.7). Therefore,

the optimal solution of (15.11) when (σ ∗
MSRi

, r∗
MSRi

) is evaluated is

u∗
i = 1

r∗
MSRi

− ri
f

, v∗
i = 1

σ ∗
MSRi

and u∗
i0 = ri

f . (15.12)
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As said before, its optimal value equals 1. Nevertheless, these optimal solutions
for the weights allow us to define the cross-efficiency score of a given portfolio
obtained with the weights of the others.

Definition 1 Let (u∗
j , v∗

j , u∗
j0) be an optimal solution of (15.11) for portfolio

j := (σ ∗
MSRj

, r∗
MSRj

). The cross-efficiency of a given portfolio i := ((σ ∗
MSRi

, r∗
MSRi

)

obtained with the weights of portfolio j is defined as follows

Efi(r
j
f ) = u∗

j (r
∗
MSRi

− u∗
j0)

v∗
j σ

∗
MSRi

. (15.13)

We can see that (15.13) provides an evaluation of the efficiency of portfolio i from
the perspective of portfolio j.

The following proposition holds.

Proposition 1

Efi(r
j
f ) = (r∗

MSRi
− rj

f )/σ
∗
MSRi

(r∗
MSRj

− rj
f )/σ

∗
MSRj

. (15.14)

Proof of Proposition 1.

Efi(r
j
f ) =

u∗
j (r∗

MSRi
− uj0)

v∗
j σ∗

MSRi

=
σ∗

MSRj
(r∗

MSRi
− r

j
f )

σ∗
MSRi

(r∗
MSRj

− r
j
f )

=
(r∗

MSRi
− r

j
f )/σ∗

MSRi

(r∗
MSRj

− r
j
f )/σ∗

MSRj

. �

Equation (15.14) provides a different interpretation of the cross-efficiency scores.
Specifically, Efi(r

j
f ) represents the ratio between the excess return by risk of portfolio

i with respect to portfolio j when the risk-free asset is rj, that is, how bad the Sharpe
ratio of portfolio i is compared to the optimal Sharpe ratio of portfolio j.

Cross-efficiency evaluation (Sexton et al. 1986;Doyle andGreen 1994) arose as an
extension ofDEA aimed at rankingDMUs.DEAprovides a self-evaluation ofDMUs
by using input and output weights that are unit-specific, and this makes impossible
to derive an ordering. In addition, it is also claimed that cross-efficiency evalua-
tion may help improve discrimination, which is actually the problem we address
in the present paper. DEA often rates many DMUs as efficient as a result of the
previously mentioned total weight flexibility: DMUs frequently put the weight on
a few inputs/outputs and ignore the variables with poor performance by attaching
them a zero weight. The basic idea of cross-efficiency evaluation is to assess each
unit with the weights of all DMUs instead of its own weights only. Specifically,
the cross-efficiency score of a given unit is usually calculated as the average of its
cross-efficiencies obtained with the weights profiles provided by all DMUs. Thus,
each unit is evaluated with reference to the range of weights chosen by all DMUs,
which provides a peer-evaluation of the unit under assessment, as opposed to the
conventional DEA self-evaluation. In particular, this makes possible a ranking of the
DMUs based on the resulting cross-efficiency scores. Cross-efficiency evaluation
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has also been widely used to address real-world problems, in particular to deal with
issues related to portfolios (see Lim et al. (2014); Galagedera (2013); Pätäri et al.
(2012)). Next, we adapt the idea of the standard cross-efficiency evaluation to the
problem of portfolio selection we address here. In order to do so, we first define the
cross-efficiency score of a given portfolio, which is the measure that will be used for
the selection of portfolios among those in W

rf
ρ .

15.3.1 Cross-Efficiency Sharpe Ratio Portfolio

In this section we present the average cross-efficiency measure for any portfolio
(σ, r) ∈ Wρ and obtain an expression for the Maximum Cross-Efficiency Sharpe
Ratio portfolio (MCESR).

Definition 2 Let rf be the risk-free rate, which satisfies rf ∈ [rmin, rmax], then the
average cross-efficiency score (CEi) of portfolio i, i = (σ ∗

MSRi
, r∗

MSRi
) ∈ Wρ with ri ∈

[rmin, rmax], is given by

CEi = 1

rmax − rmin

∫ rmax

rmin

Efi(rf ) drf . (15.15)

Note that the expression (15.15) is a natural extension of the cross-efficiency
evaluation in DEA for a continuous frontier. Using the expression of Efi(r

j
f ), see

Eq. (15.14), the cross-efficiency CEi can be written as

CEi = r∗
MSRi

σ ∗
MSRi

I1 − 1

σ ∗
MSRi

I2 (15.16)

where

I1 = 1

rmax − rmin

∫ rmax

rmin

σ ∗
MSRf

r∗
MSRf

− rf
drf (15.17)

I1 = 1

rmax − rmin

∫ rmax

rmin

σ ∗
MSRf

rf

r∗
MSRf

− rf
drf . (15.18)

Proposition 2 The efficient portfolio i = (σ ∗
MSRi

, r∗
MSRi

) that maximizes the cross-
efficiency CEi, in the interval [r1, r2], is reached when
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r∗
i = r∗

GMV + σ ∗
GMV

r∗
MSR2

− r2
σ ∗

MSR2

− r∗
MSR1

− r1
σ ∗

MSR1

ln

⎛

⎜⎜⎜
⎝

r∗
MSR2

− r2
σ ∗

MSR2

− r∗
GMV − r2
σ ∗

GMV

r∗
MSR1

− r1
σ ∗

MSR1

− r∗
GMV − r1
σ ∗

GMV

⎞

⎟⎟⎟
⎠

. (15.19)

Proof of Proposition 2. See the appendix. �

Corollary 1 The maximum cross-efficiency (MCESR) portfolio in the interval
[0, r∗

GMV ] is reached when

r∗
i = r∗

GMV + σ ∗
GMV

r∗
MSR2

− r∗
GMV

σ ∗
MSR2

− r∗
TP

σ ∗
TP

ln

(
r∗

MSR2
− r∗

GMV

σ ∗
MSR2

)

− ln

(
r∗

TP

σ ∗
TP

− r∗
GMV

σ ∗
GMV

) (15.20)

and, we can write the above expression as

r∗
i = r∗

GMV

⎛

⎜⎜
⎝1 −

mah

mGMV
− mTP

mGMV

ln

(
mTP

mah
− mGMV

mah

)

⎞

⎟⎟
⎠ , (15.21)

where mah = (r∗
MSR2

− r∗
GMV )/σ ∗

MSR2
is the slope of the asymptote of Wρ , mTP =

r∗
TP/σ ∗

MSR2
is the slope of the CML line when rf = 0, i.e., the slope of the linear line

from the origin to the tangent portfolio, and, mGMV = r∗
GMV /σ ∗

GMV is the slope of
the linear line from the origin to the global minimum variance portfolio (GMV), see
Fig. 15.6.

Proof of Corollary 1. It follows from proposition 2. �

Proposition 3 There exists a Pythagorean relationship between the slopes of the
Tangent and Global Minimum portfolios and the slope of the asymptote of Wρ .

m2
TP = m2

ah + m2
GMV . (15.22)

Proof of Proposition 3. See the appendix. �

Corollary 2 The maximum cross-efficiency (MCESR) portfolio in [0, r∗
GMV ]

depends only on Minimal Global Variance and Tangent portfolios.
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Fig. 15.6 Linear lines for the global minimum variance and tangent portfolios; and for the asymp-
tote of the hyperbola

r∗
i = r∗

GMV

⎛

⎜⎜⎜⎜⎜
⎝
1 −

√
r∗

TP

r∗
GMV

−
√

r∗
TP

r∗
GMV

− 1

ln

(√
r∗

TP

r∗
GMV

− 1

)

− ln

(√
r∗

TP

r∗
GMV

− 1

)

⎞

⎟⎟⎟⎟⎟
⎠

. (15.23)

Proof of Corollary 2. See the appendix. �

15.3.2 No Short-Sales Constraint

This constraint corresponds to the requirement that all asset weights be non-negative.
If no short selling is allowed, then we need to add the non-negativity of each weight
in vector w to the maximization Sharpe ratio problem (15.7),

w∗
MSR =max

w

wT (μ − rf )√
wT �w

(15.24)

s.t. wT1n = 1

w ≥ 0.

Markowitz’s original formulation (15.1–15.3) included those constraints as an
integral part of the portfolio optimization method. Note that the inclusion of these
non-negativity constraints makes impossible to derive an analytical solution for the
portfolio optimization problem (15.24). Model (15.24) is not a convex problem, so it
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is not easy to solve it. In Tütüncü (2003), R.H. Täutäuncäu present a convex quadratic
programming problem equivalent to (15.24). This new formulation of the problem
considers a higher dimensional space where the quadratic problem is convex when
applying the lifting technique that follows.

It is easy to derive the equivalent problem of (15.24) as

min xT �x (15.25)

s.t. xT (μ − rf ) = 1

x ≥ 0

where the weight vector w of (15.24) is given by

w = x

xT1n
.

Note that problem (15.25) can be solved by using the well-known techniques for
convex quadratic programming problems.

Although it is not possible to find a closed expression for the Maximum Cross-
Efficiency (MCESR) portfolio, model (15.25) allows us to obtain an optimal port-
folio, for the maximization Sharpe ratio problem, and for different values of the
risk-free asset. We propose the following procedure to obtain an approximation to
the Maximum Cross-Efficiency (MCESR) portfolio when no short-sales constraints
are present.

1. Dividing the interval [rmin, rmax] into n equal parts.
2. For (i = 1 to n + 1), solving (15.25) with rf = rmin ∗ (n − i + 1)/n + rmax ∗ (i −

1)/n, and obtaining the efficient portfolio i = (σMSRi , rMSRi ), ∀i = 1 to n.
3. Computing the solution (u∗

i , v∗
i , u∗

i0) of problem (15.11) through expressions
(15.12). Note that is not necessary to solve the problem (15.11), the solution of
the problem is the tangent hyperplane to efficient curve Wρ .

4. For (i = 1 to n + 1), calculating the cross-efficiency (CEi) of portfolio i as the
mean of the efficiency score of portfolio i by using the optimal weights of the
remaining portfolios in the interval, i.e.,

CEi = 1

n + 1

n+1∑

j=1

(r∗
MSRi

− rj
f )/σ

∗
MSRi

(r∗
MSRj

− rj
f )/σ

∗
MSRj

. (15.26)

5. Obtaining the efficient portfolio i that maximizes the cross-efficiency CEi.
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15.4 Numerical Example

Wecarried out two computational studies in order to illustrate the proposed approach.
In the first one, we evaluate the goodness of the maximum cross-efficiency portfolio
(MCESR) and draw some conclusions. The second part of the study allows us to
compare the (MCESR) allocation depending on whether short sales are allowed or
not.

The whole computational study was conducted on a MAC-OSX with a 2.5GHz
Intel Core i5 and 4GB of RAM. We used the R-Studio, v0.97.551 with the library
stockPortfolio, Diez and Christou (2020). In our computational study the required
computational time did not exceed a few seconds; for this reason the times have not
been reported.

15.4.1 Case 1. EUROSTOCK

In this section we compare the performance of our Maximum Cross-Efficiency
Sharpe Ratio (MCESR) portfolio allocation with different Sharpe ratio allocations
on a small example with real data. The set of assets that were chosen are listed
in Table15.1, and these were obtained from EUROSTOCK50. We selected the six
Spanish assets in EUROSTOCK50.

Table15.1 shows some descriptive statistics for the set of assets considered: return
(average weekly returns), risk (standard deviation of weekly returns) and the Mini-
mum andMaximum return. The first row- block corresponds to the period from 2009
to 2012 (in-sample or estimation period) and the second row-block to the period from
2013 to 2014 (out-sample or test period); being the last row-block the aggregate data
from both periods. Figures15.9, 15.8 and 15.7 show the accumulated weekly returns
for the two periods considered and for the entire period.

In order to evaluate the performance of our solution, the Maximum Cross-
Efficiency Sharpe Ratio (MCESR), we compare it with the global minimum vari-
ance (GMV), tangent (TP) andMaximum Sharpe Ratio (MSR) portfolios. Table15.2
shows the different solutions evaluated in the in-sample period for the four portfolios
considered. The risk-free asset in the interval (0, 0.003) was considered to evaluate
the MCESR portfolio, and we chose the upper limit of the interval considered by
the risk-free asset to evaluate the Maximum Sharpe Ration portfolio. Note that the
optimal MCESR is obtained when rf is 0.001773.

Table15.3 shows the reaching value for each out-sample portfolio, i.e., in the test
period. Note that we divided the out-sample period in three sub-periods of 25 weeks
each in order to evaluate the evolution of the four allocations. In the first 25 weeks,
all the portfolios decrease in value, being the minimum variance portfolio (GMV)
the best hold. Returns increase in the next 25 weeks and in this case the portfolio
with the higher volatility (MSR) obtains a better performance. Finally, for the entire
period out-sample, the GMV portfolio is the only one that provides benefits, and
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Fig. 15.7 Case 1. Returns for the total period, from 2009-01-01 to 2014-06-06

Fig. 15.8 Case 1. Returns for in-sample period, from 2009-01-01 to 2012-12-31

Fig. 15.9 Case 1. Returns for out-sample period, from 2013-01-01 to 2014-06-06
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Table 15.1 Case 1. Weekly descriptive statistics returns for 6 EUROSTOCK assets

BBVA.MC IBE.MC ITX.MC REP.MC SAN.MC TEF.MC

In-sample (Estimation) Period (from 2009-01-01 to 2012-12-31)

Return 0.0026 0.00044 0.0092 0.0022 0.0034 0.00018

Risk 0.0623 0.04268 0.0381 0.0455 0.0587 0.03400

Minimum −0.1916 −0.1483 −0.1558 −0.1496 −0.1760 −0.0977

Maximum 0.1838 0.1385 0.1292 0.1249 0.1916 0.1139

Out-sample (Test) Period (from 2013-01-07 to 2014-06-02)

Return 0.0056 0.0045 0.0021 0.0036 0.0053 0.0034

Risk 0.0377 0.0287 0.0297 0.0316 0.0335 0.0316

Minimum −0.0882 −0.0909 −0.0723 −0.0697 −0.0773 −0.0826

Maximum 0.0943 0.0861 0.0669 0.0719 0.0901 0.1102

Total period (from 2009-01-01 to 2014-06-02)

Return 0.0035 0.0014 0.0069 0.0028 0.0040 0.0011

Risk 0.0567 0.0394 0.0365 0.0422 0.0530 0.0333

Minimum −0.1916 −0.1483 −0.1558 −0.1496 −0.1760 −0.0977

Maximum 0.1838 0.1385 0.1292 0.1249 0.1916 0.1139

Table 15.2 Case 1. In-sample results for different portfolio solutions

GMV—Global Minimum Variance Portfolio

Expected return = 0.00338 Risk = 0.02762

TP—Tangent Portfolio

Expected return = 0.01612 Risk = 0.06025

MSR—Maximum Sharpe Ratio Portfolio (rf = 0.003)

Expected return = 0.1149 Risk = 0.4699

MCESR—Maximum Cross-Efficiency Sharpe Ratio Portfolio (rf = 0.001773)

Expected return = 0.02940 Risk = 0.1129

the worst benefit is obtained for the MSR portfolio where the losses outweigh the
investment. Note that this last situation is possible because short sales are allowed.

Figure 15.10 shows the out-sample performance for the four strategies considered.
We see the high volatility associated with the MSR (rf = 0.003) portfolio. Note that
although the MCESR portfolio is worse than GMV and TP portfolios, the MCESR
provides greater benefits in good times and contains the losses in the bad ones .
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Table 15.3 Case 1. Change in portfolio value for the out-sample period, from 2014-01-07 to
2014-06-02

Portfolio First 25 weeks (%) 50 weeks (%) 75 weeks (%)

GMV −6.1 5.9 15.1

TP −11.1 8.6 −0.3

MSR (rf = 0.003) −49.3 29.0 −119.8

MCESR
(rf = 0.001773)

−16.2 11.3 −16.4

Fig. 15.10 Case 1. Out-sample expected returns from 2013-01-01 to 2013-12-31

Table 15.4 Dataset description

Case 2 N In-sample (estimation)
period

Out-sample (test)
period

Ten industry portfolios 10 Jan 1963 to Dec 2012 Jan 2013 to Jul 2014

Monthly data (600 observations) (19 observations)

Source Ken French’s Web Site

15.4.2 Case 2. USA Industry Portfolios

For the second numerical example, we selected 10 industry portfolios from the USA
market. In the same way as in the case above, we considered two time periods, the
first time period to estimate (in-sample period) and the second period (out-sample)
to evaluate the performance of each strategy. The data source and the number of
observations are shown in Table15.4. In Table15.5 we keep the same observations
as in Table15.1.

Table15.6 shows the different portfolios in the in-sample period, and for each
portfolio we report their allocation. The risk-free asset in the interval (0, 0.9) was
considered in order to calculate the MCESR portfolio, which leads to obtaining the
optimal MCESR rf as 0.57103. If short sales are not allowed, the optimal MCESR is
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Table 15.5 Case 2. Monthly descriptive statistics returns for 10 industry portfolios
NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

In-sample (estimation) Period (from Jan 1963 to Dec 2012)

Return 1.1 0.86 0.97 1.1 0.96 0.86 1.0 1.1 0.83 0.92

Risk 4.3 6.36 4.98 5.4 6.59 4.67 5.2 4.9 4.03 5.35

Minimum −21.03 −32.63 −27.33 −18.33 −26.01 −16.22 −28.25 −20.46 −12.65 −23.6

Maximum 18.88 42.62 17.51 24.56 20.75 21.34 25.85 29.52 18.84 20.22

Out-sample (test) Period (Jan 2013 to Jul 2014)

Return 1.4 2.3 1.7 1.7 2.0 1.9 1.5 2.4 1.4 1.9

Risk 3.3 4.0 3.2 3.7 2.5 2.8 3.5 3.4 3.8 3.2

Minimum −5.71 −4.6 −4.33 −6.97 −2.84 −3.94 −6.65 −3.67 −6.96 −4.37

Maximum 5.21 9.9 6.03 7.71 5.97 5.62 5.97 8.11 5.51 6.87

Total period (Jan 1963 to Jul 2014)

Return 1.1 0.9 0.99 1.1 1.0 0.89 1.0 1.1 0.85 0.95

Risk 4.3 6.3 4.93 5.4 6.5 4.63 5.2 4.9 4.02 5.30

Minimum −21.03 −32.63 −27.33 −18.33 −26.01 −16.22 −28.25 −20.46 −12.65 −23.6

Maximum 18.88 42.62 17.51 24.56 20.75 21.34 25.85 29.52 18.84 20.22

Table 15.6 Case 2. In-sample results for different portfolio solutions. 10 industry portfolios. Short
Sales

NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

GMV—Global Minimum Variance portfolio

Expected return = 0.96 Risk = 3.45

Allocation 0.29 0.00 0.09 0.11 0.02 0.26 0.08 0.15 0.45 −0.44

TP—Tangent portfolio

Expected return = 1.09 Risk = 3.68

Allocation −0.70 −0.05 −0.05 0.30 0.03 0.18 0.14 0.17 0.17 −0.58

MSR—Maximum Sharpe Ratio portfolio (rf = 0.9)

Expected return = 3.08 Risk = 20.84

Allocation 6.85 −0.77 −2.13 3.19 0.24 −1.04 1.01 0.53 −4.15 −2.72

MCESR—Maximum Cross-Efficiency Sharpe Ratio portfolio (rf = 0.57103)

Expected return = 1.29 Risk = 4.67

Allocation 1.29 −0.12 −0.25 0.58 0.05 0.06 0.22 0.21 −0.26 −0.79

obtained when rf is 0.576. See Table15.7 for the same results as in Table15.6 when
short sales are not allowed. Figure15.11 shows the efficient frontier of Malkowitz
for both cases, with and without short sales.

In order to compare the performance of four strategies, we evaluated them in
the out-sample period. The expected returns for each portfolio, with and without
short sales, are shown inTable15.8.Note that if short sales are allowed, theMSR(rf =
0.9) portfolio originates losses of 14.3%, while the same strategy portfolio causes a
benefit of 33.5% if short sales are not allowed.
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Table 15.7 Case 2. In-sample results for different portfolio solutions. 10 industry portfolios. No
short sales

NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

GMV—Global Minimum Variance portfolio

Expected return = 0.93 Risk = 3.70

Allocation 0.30 0.00 0.03 0.00 0.00 0.14 0.00 0.06 0.47 0.00

TP—Tangent portfolio

Expected return = 1.03 Risk = 3.90

Allocation 0.53 0.00 0.02 0.07 0.00 0.00 0.03 0.19 0.15 0.00

MSR—Maximum Sharpe Ratio portfolio (rf = 0.9)

Expected return = 1.076 Risk = 4.14

Allocation 0.67 0.00 0.00 0.23 0.00 0.00 0.00 0.10 0.00 0.00

MCESR—Maximum Cross-Efficiency Sharpe Ratio portfolio (rf = 0.576)

Expected return = 1.07 Risk = 4.09

Allocation 0.63 0.00 0.00 0.14 0.00 0.00 0.00 0.22 0.00 0.00

Fig. 15.11 Case 2. Efficient frontiers for 10 industry portfolios

The portfolio with less variation with or without short sales is the GMV portfolio.
TheMCESR portfolio provides a profit of 25.5%with short sales, and 36.1%without
short sales, being this last profit the highest value for all portfolios considered in both
situations.

Figures15.12 and 15.13 show the out-sample performance for the four strategies
considered.Note the high volatility of theMSRportfoliowhen short sales are allowed
in front to the homogeneity of the rest. If short sales are not allowed, the four portfolios
present practically the same curve, although in this case the MCESR provides the
best performance.
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Table 15.8 Case 2. Change in portfolio value for the period from 2014-01-07 to 2014-06-02

Portfolio Short sales (%) No short sales (%)

GMV 32.7 32.9

Tangent Portfolio 29.8 35.1

MSR (rf = 0.9) −14.3 33.5

MCESR 25.5 36.1

Fig. 15.12 Case 2. Returns from 2014-01-07 to 2014-06-02. With short sales

Fig. 15.13 Case 2. Returns from 2014-01-07 to 2014-06-02. Without short sales
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15.5 Conclusions

This paper proposes a new portfolio selection strategy based on a cross-efficiency
evaluation. We compare the new allocation with the classic global minimum and
tangent portfolios through a numerical study. The results show that our allocation is
comparable with the others in terms of performance in the out-sample period.

We have derived an explicit expression for the MCESR portfolio when short sales
are allowed, andproposedprocedures to obtain itwhen short sales are not allowed.We
have also found a relationship between the slopes of the three portfolios considered
and that between the MCESR portfolio with the expected returns of the GMV and
TP portfolios.

For future research, we plan to apply this new portfolio solution (MCESR) to a
large testbed in order to investigate their advantages over the rest.
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15.6 Appendix

Proof of Proposition 2. The efficient portfolio i = (σ ∗
MSRi

, r∗
MSRi

) that maximizes
the cross-efficiency CEi, in the interval [r1, r2], is reached when

r∗
i = r∗

GMV + σ ∗
GMV

r∗
MSR2

− r2
σ ∗

MSR2

− r∗
MSR1

− r1
σ ∗

MSR1

ln

⎛

⎜⎜⎜
⎝

r∗
MSR2

− r2
σ ∗

MSR2

− r∗
GMV − r2
σ ∗

GMV

r∗
MSR1

− r1
σ ∗

MSR1

− r∗
GMV − r1
σ ∗

GMV

⎞

⎟⎟⎟
⎠

.

The cross-efficiency of portfolio i,CEi, depends of the risk-free rate, ri, associated
with the portfolio i. We can considered CEi as a function of ri, for ri ∈ [rmin, rmax].
We can write CEi(ri) as follows

CEi(ri) = r∗
MSRi

σ ∗
MSRi

∫ rmax

rmin

σ ∗
MSR

r∗
MSR − rf

drf − 1

σ ∗
MSRi

∫ rmax

rmin

σ ∗
MSR rf

r∗
MSR − r

drf .

From expressions (15.4), (15.9) and (15.10), using notation of (15.5), we can
derivate the following identities for the expected return and variance of GMV and
MSR portfolios:
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r∗
GMV = c

b
, σ∗

GMV = 1√
b
,

r∗
GMV − rf

σ∗2
GMV

= c − b rf ,
r∗
MSR

σ∗
MSR

= a − c rf√
a − 2c rf + b r2f

,

1

σ∗
MSR

= c − b rf√
a − 2c rf + b r2f

, and
σ∗

MSR
r∗
MSR − rf

= 1
√

a − 2c rf + b r2f

, (15.27)

and write the cross-efficiency, CEi(ri), in terms of variable ri.

CEi(ri) = a − c ri√
a − 2c ri + b r2i

I1 − c − b ri√
a − 2c ri + b r2i

I2

where

I1 = 1

rmax − rmin

∫ rmax

rmin

drf√
a − 2c rf + b r2f

and I2 = 1

rmax − rmin

∫ rmax

rmin

rf drf√
a − 2c rf + b r2f

.

The function CEi(Ri) has first derivate

CE′
i(ri) =

−c
√

a − 2cri + br2i − (a − cri)(br − c)/
√

a − 2cri + br2i
(√

a − 2cri + br2i

)2 I1−

−
−b

√
a − 2cri + br2i − (c − bri)(bri − c)/

√
a − 2cri + br2i

(√
a − 2cri + br2i

)2 I2

= (c2ri − abri)I1 + (ba − c2)I2
(√

a − 2cri + br2i

)3 .

It is left to show that CE′
i(ri) = 0 for ri = I2/I1, therefore, ri = I2/I1 is a point

with slope zero, and it is a candidate to a maximum in the interval [rmin, rmax]. The
second derivate of the function CEi(ri) is given by the following expression

CE′′
i (ri) =

(c2 − ab)I1

(√
a − 2cri + br2i

)3

(√
a − 2cri + br2i

)6 −
3

(
(ba − c2)I2 + (c2 − ab)I1ri

)
(bri − c)

(√
a − 2cri + br2i

)5
(15.28)

and the second term of (15.28) is zero at ri = I2/I1, and

CE′′(I2/I1) = (c2 − ab)I1
(a − 2c I2/I1 + b I22 /I21 )

.
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Since �−1 is positive-definite matrix, then (μ − r)T �−1(μ − r) = a − 2cr +
br2 > 0, with discriminant 4(c2 − ab) < 0, then the second derivate at ri = I2/I1,
CE′′(I2/I1), is less to 0.

Next, we show the expression of I2/I1.

(rmax − rmin)I1 =
∫ rmax

rmin

drf√
a − 2crf + br2f

=
[

1√
b
ln

(√
b
√

a − 2crf + br2f + brf − c
)]rmax

rmin

(rmax − rmin)I2 =
∫ rmax

rmin

rf drf√
a − 2crf + br2f

=

=
[

c
√

b
3 ln

(√
b
√

a − 2crf + br2f + brf − c
)

+ 1

b

√
a − 2crf + br2f

]rmax

rmin

.

Now, we can write the above expression using the identities of (15.27) as follows:

(rmax − rmin)I1 = σ ∗
GMV ln
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⎝
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and, finally we can write the maximum ri as
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. (15.29)

�

Proof of Proposition 3. There exists a Pythagorean relationship between the slopes
of the Tangent and Global Minimum portfolios and the slope of the asymptote of
Wρ .

m2
TP = m2

ah + m2
GMV . (15.30)
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From expressions (15.5), we can derivate the following identities for the mTP , mah

and mGMV slopes:

mTP = √
a, mah =

√
ab − c2

b
and mGMV = c√

b
. (15.31)

and now, we can derivate the relationship m2
TP = m2

ah + m2
GMV ,

m2
ah + m2

GMV = ab − c2

b
+ c2

b
= a = m2

TP
�

Proof ofCorollary2.Themaximumcross-efficiency (MCESR)portfolio in [0, r∗
GMV ]

depends only of Minimal Global Variance and Tangent portfolios.
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. (15.32)

From (15.27) and (15.31), we can derivate the following expressions:

m2
TP

m2
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b
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c/b
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.

From the expression (15.21), it is left to show that (15.32) is true. �
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