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a b s t r a c t 

In this work a modeling framework and a solution approach have been presented for a multi-period 

stochastic mixed 0–1 problem arising in tactical supply chain planning (TSCP). A multistage scenario tree 

based scheme is used to represent the parameters’ uncertainty and develop the related Deterministic 

Equivalent Model. A cost risk reduction is performed by using a new time-consistent risk averse measure. 

Given the dimensions of this problem in real-life applications, a decomposition approach is proposed. It 

is based on stochastic dynamic programming (SDP). The computational experience is twofold, a compar- 

ison is performed between the plain use of a current state-of-the-art mixed integer optimization solver 

and the proposed SDP decomposition approach considering the risk neutral version of the model as the 

subject for the benchmarking. The add-value of the new risk averse strategy is confirmed by the compu- 

tational results that are obtained using SDP for both versions of the TSCP model, namely, risk neutral and 

risk averse. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. The problem to be addressed, its importance and difficulty to 

olve 

The deterministic version of the tactical supply chain planning

roblem (TSCP) that is discussed in this work is based on the real-

ife case in the assembly sector. It has a broad applicability, specif-

cally, in sectors such as car, computer and domestic appliances

anufacturing, among others. It is the case in which a company

ith multiple raw material suppliers, plants, products, tiers of pro-

uction in the bill of material (BoM) and markets needs to satisfy

 product demand vector over a given time horizon. The goal is

o determine a raw material supplying plan and a master produc-

ion, inventory and distribution planning that best makes use of

he available resources and their capacity extension acquisitions in

he whole supply chain for each period of a given time horizon.
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Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
he resources’ best use consists of minimizing the raw material

upplying commitment cost, the production and inventory costs in

he plants, and the product backlog and demand lost penalization

long the time horizon. The raw material supplying commitment

ost is frequently modeled by a piecewise linear, concave and non-

ecreasing function of the total volume to commit for the whole

ime horizon. Typical types of constraints (some of them related

o either-or decisions) are as follows: Balance equations of end-

roducts and components, conditional lower and upper bounds for

aw material supplying and product release, resource consumption

ounds and capacity extension acquisitions, and balance equations

f lost demand and backlogging, among others. There are different

ypes of resources at different levels for groups of consecutive pe-

iods (so-called stages) along the time horizon. The cost of the re-

ources’ capacity extension acquisition is expressed as a piecewise

iscrete and nondecreasing function. Another important feature of

he problem is that that no warehouses are encouraged for inter-

ediate components and products stocking, although some stock-

ng is allowed in the plants. Even the burden of raw material stock-

ng is frequently transferred to the suppliers. 

There are many contributions on TSCP for several variants to

he case presented above, see the seminal works Cohen and Lee

1989) , Escudero (1994) and Shapiro (1993) , among others. How-

ver, given the volatility in the markets and the dynamic nature of

he planning problem, some parameters, besides being not known
ochastic dominance risk averse measure for tactical supply chain 
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with certainty when decisions are to be made, have high variabil-

ity in their realizations. Those parameters are the coefficients in

the function to minimize (e.g., production cost), the right-hand-

side vector (rhs) of some of the constraints (e.g., product demand

and resource availability) and the constraint matrix (e.g., product

demand lost fraction). Usually, those uncertain parameters are rep-

resented by their expected value (EV) and, thus, the parameters’

variability is not considered in the model. Hence, the very popu-

lar EV strategy is frequently inadequate for problem solving. This

work deals with stochastic tactical supply chain planning (STSCP),

where the available information about the parameters’ uncertainty

is represented in the form of a finite set of scenarios. They are con-

sidered in the constraints of the model and the expected cost to

be minimized. The problem’s formulation is so-called deterministic

equivalent model (DEM), see in e.g., Birge and Louveaux (2011) the

main concepts on stochastic optimization. An important uncertain

parameter is the lost demand fraction for the products in each pe-

riod of the time horizon. Given the high competitive character of

the markets, the demand volatility and the potential unavailability

of required resources, by no means the non-served demand in a

period can be considered with certainty a backlog for the next one.

So, the lost demand fraction is uncertain. On the other hand, the

time latency in the availability of raw material and subassemblies

for production and end-product availability in the markers should

be taken into account, due to its strong implication on the related

multistage scenario tree. 

1.2. Current topics in stochastic optimization 

In the presence of uncertain parameters, different approaches

for solving nonlinear separable mixed 0–1 problems can be found

in the literature in the two-stage and multistage settings. A re-

cent review of decomposition algorithms is presented in Aldasoro

et al. (2017) , most of the algorithms are intended for problem solv-

ing with moderate model dimensions. For bigger instances, some

types of scenario cluster decomposition approaches can be used,

such as Branch-and-Fix Coordination ( Aldasoro et al., 2017; Alonso-

yuso et al., 2003 ), two-stage Lagrangean decomposition ( Carœand

Schultz, 1999 ), Progressive Hedging algorithm ( Gade et al., 2016 )

and multistage cluster Lagrangean decomposition ( Escudero et al.,

2016b ), among others. For instances with very large dimensions,

such as real-life STSCP instances, matheuristic approaches should

be used, as the algorithms that belong to the stochastic nested de-

composition methodology, see Aldasoro et al. (2015) , Cristobal et al.

(2009) , Escudero et al. (2015) and Zou et al. (2016) . Those stochas-

tic optimization approaches deal with the minimization of the ob-

jective function expected value alone, so-called risk neutral (RN)

strategies. However, the variability of the STSCP cost over the sce-

narios is not completely taken into account and, then, inducing a

negative cost impact of the RN solutions on low-probability high-

cost scenarios. 

Some approaches that present risk reduction measures are as

follows: scenario immunization, see Dembo (1991) and its treat-

ment in Escudero (1995) , semi-deviations ( Ahmed, 2006; Ogryczak

and Ruszczy ́nski, 1999 ), min-risk (i.e, excess probabilities) ( Ahmed,

20 06; Schultz and Tiedemann, 20 03 ), value-and-risk ( Gaivoronski

and Plug, 2005 ), conditional value-at-risk (CVaR) ( Ahmed, 2006;

Pflug and Pichler, 2015b; Rockafellar and Uryasev, 20 0 0; Schultz

and Tiedemann, 2006 ) and stochastic dominance (SD) strategies

( Escudero et al., 2016a; Gollmer et al., 2011; 2008 ). For computa-

tional comparison of the time inconsistent versions of those mea-

sures, see Alonso-Ayuso et al. (2014) . 

Recent state-of-the-art surveys on risk management, specifically

dealing with supply chains, can be found in Esmaeilikia (2013) ,

Esmaeilikia et al. (2016a) ; 2016b ), Fahimnia et al. (2015) , Heckmann

et al. (2015) and Ho et al. (2015) . However, there are only a few re-
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
ent STSCP works dealing with risk averse measures, mainly CVaR

n Alem and Morabito (2013) and Nickel et al. (2012) , and mean-

isk and minmax for robust solutions in Govindan and Fattahi

2017) presenting real-life cases for validating the proposed ap-

roaches, among others. 

In addition, most of the approaches presented above are target-

ng stochastic two-stage problems and specific decomposition algo-

ithms are developed. In a stochastic multi-period two-stage prob-

em, a node in the scenario tree has only one immediate successor

nd, then, its parameters can only influence on the parameters of

he same scenario. So, the non-anticipativity (NA) principle is not

atisfied for the variables in any node but the first one. 

However, in a multistage setting the realizations in any node

n the scenario tree (besides the first one) may have an influence

n the parameters of its successor nodes in different scenarios. So,

he nodes that belong to any stage (but the first one) have a condi-

ional probability based on their ancestor common node (i.e., it is

 Markovian process). Hence, the NA principle should be satisfied

or the decision variables of the nodes in the tree with a one-to-

ne correspondence with the group of scenarios that have identical

ealizations up to the node-related period. 

Additionally, a SD risk averse measure is very appropriate for

he STSCP cost risk reduction, since it controls the expected cost

xcess over a set of modeler-driven increasingly cost thresholds in

he scenarios. That control is materialized in a policy for which the

igher the cost threshold is, the smaller the modeler-driven upper

ounds should be for the expected cost excess over the threshold

nd the failure probability to satisfy it. 

.3. Main contributions of this work in STSCP problem solving 

The main contributions of our work are aimed to reducing some

aps in the literature on STSCP problem solving that have been

dentified above. They are as follows: 

1. Presenting a realistic multi-period STSCP problem with a multi-

tier BoM for a multi-product, multi-supplier and multi-market

setting, a piecewise linear objective function and uncertainty

in dynamic product demand, demand lost fraction, production

cost and available resource base capacity. 

2. Modeling the STSCP via scenario analysis by using a multi-

period mixed 0–1 full recourse Deterministic Equivalent Model

(DEM) with S2 sets to represent the piecewise linear terms in

the objective function. Because the supplying ordering time lag

and transportation time between vendors and plants, origin and

destination plants, and end-product plants and markets, the or-

dering and delivering could belong to different time periods. As

a consequence, different modeling objects are required, given

the variety of scenarios that may occur in the time interval be-

tween the ordering and the delivering. 

3. Modeling the risk reduction of the cost impact of the STSCP

solutions on low-probability high-cost scenarios (i.e., the black

swans). For the reasons that will be fully formalized in

Section 4 , the dynamic SD risk averse measure takes benefit

from a new version so-called expected conditional stochastic

dominance (ECSD), that is introduced in this work. It is a time-

consistent risk averse measure consisting of a mixture of first-

and second-order SD functionals related to a set of modeler-

driven profiles in the nodes of a given subset of periods. Each

profile is included by a cost threshold, a bound on the expected

cost excess over the threshold in the scenario group with a

one-to-one correspondence with the nodes of the selected pe-

riods, and a bound on the probability of any of those scenarios

to fail on satisfying the cost threshold. The rationale behind it

is that the solution of any node and its successor node set in

the scenario tree should not consider the data, constraints and
ochastic dominance risk averse measure for tactical supply chain 
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Fig. 1. Bill of material in a supply chain. 
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variables that belong to scenarios that cannot occur from that

point. So, ECSD belongs to the type of risk averse measures that

have the time consistency property as presented in Homem-de

Mello and Pagnoncelli (2016) . 

4. Introducing a specialization of our stochastic nested decomposi-

tion (SND) approach in Cristobal et al. (2009) based on stochas-

tic dynamic programming (SDP) for dealing with the proposed

time-consistent risk averse measure, given the high number of

cross-scenario constraints and, as a consequence, the nice sce-

nario node-based modeling structure is lost. 

5. Performing a computational comparison in the multistage set-

ting between the time-consistent ECSD cost risk reduction

strategy and the Risk Neutral (RN) one, and between the time-

consistent model and its time-inconsistent counterpart. Addi-

tionally, the comparison is also performed between the plain

use of a state-of-the-art mixed integer optimization solver of

choice and our matheuristic SDP specialization for STSCP solv-

ing. 

The remainder of the paper is organized as follows. Section 2 in-

roduces the TSCP problem and the deterministic data is pre-

ented. Section 3 presents the uncertain information as well as

he RN based model for STSCP. Section 4 deals with the time-

nconsistent version of the stochastic dominance risk averse mea-

ure, so-called TSD, and it introduces the time-consistent ECSD ver-

ion. Section 5 introduces the SDP algorithm to deal with the ECSD

easure for STSCP problem solving. Section 6 reports the main re-

ults of our computational experience. Finally, some conclusions

re drawn from this work in Section 7 and it also outlines the fu-

ure research. 

. The TSCP problem 

The TSCP problem of concern is presented in detail. It is based

n a real life case but, in fact, it has a broad applicability. For the

ake of presentation, let us fix some notation to be used through-

ut the paper. The problem is formalized next. 

A time horizon is a set of consecutive time periods, which do

ot necessarily have the same length, where the planning is con-

idered. The periods are grouped in the so-called stages . 

A product is any item whose production volume, location and

cheduling is decided by the planner. An end-product is a final out-

ut of the supply chain. A subassembly is a product that is as-

embled by the supply chain and is used to produce either an

nd-product or another subassembly. Therefore, the term product

efers to both end-products and subassemblies. A component is any

torable item that is required for the production. 

A BoM of a product is the structuring of the set of compo-

ents that are required for its manufacturing/assembly, see Fig. 1 .

he BoM can be described as a set of tiers in the supply chain.

 so-called first tier component of a product is a component that

s directly required for the manufacturing/assembly of that prod-

ct. Note that a component can be used for the manufactur-
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
ng/assembly of one or more products. The cycle time of a product

s the set of consecutive time periods that are required for its com-

letion from its release in the manufacturing/assembly line until

ts availability for use. 

A raw material is any storable item that is required to produce

ny of the products, but whose own BoM is not a concern to the

lanner. Therefore, subassemblies and raw materials are compo-

ents. The stock of an item (either a product or a raw material)

s its available volume at the end of a given time period. A re-

ource is any non-storable item that is required for the manufac-

uring/assembly of products and its availability is limited for any

eriod along the time horizon, although its base capacity can be

xpanded. 

A vendor is any external source supplying raw materials. It is as-

umed that each raw material is only supplied by one vendor. We

odel the supplying cost for a given raw material as a piecewise

inear, concave and nondecreasing function. The supplying volume

ommitment is performed at the beginning of the time horizon,

nd a reward is received for each unit in surplus at the end of the

ime horizon. We assume that the stock of raw materials is han-

led by the vendor. There is usually a time interval between or-

ering and delivering the raw materials, due to handling and trans-

ortation, among other factors. 

A market is any external source having demand for end-

roducts. It is assumed that, if necessary, end-products are stocked

t the show centers in the markets. 

The supply chain consists of plants, where production, assembly

nd storage take place, that need to satisfy the demand of markets.

t is assumed that each product is only manufactured/assembled

n one plant, but plants can handle more than one product. Three

ypes of resources are considered for the plants. In one type the

xtension of the base capacity can be performed at the first period

nd can be used along the whole time horizon. In another type it

an be extended at the first period of any stage and can be used

ntil the last period of the stage. And in the their type the base

apacity can be extended independently for each period. The cost

f capacity expansion for any resource is modeled as a piecewise

iscrete nondecreasing function. 

The main TSCP decisions are those involving the raw material

olume whose supplying is to be committed from vendors, the

roduct volume to be processed and the stock volume of prod-

cts to be stored in the plants, the component volume to be trans-

orted from the origin plants to the destination plants, the re-

ources’ capacity expansion, if any, and the end-product volume

o be shipped from the plants to the markets. While the supply-

ng commitment of raw material is done at the beginning of the

lanning horizon, the remaining decisions have to be taken in each

eriod. 

The notation used for the deterministic TSCP is as follows. 

ets 

 , periods along the time horizon, lexicographi-

cally ordered, such that t = 1 is the first one

and T = |T | is the last period. 

E, stages in the time horizon, lexicographically 

ordered, such that T e is the set of consecu-

tive periods in stage e , where T e ∩ T e ′ = ∅ for

e, e ′ ∈ E : e � = e ′ . Note: E = |E| is the last stage.

J E, end-products. 

J S, subassemblies. 

J = J E 
⋃ 

J S products. 

DS j , demand markets for end-product j , for j ∈
J E. Note: Without loss of generality, it is as-

sumed that no subassembly has external de-

mand. 
ochastic dominance risk averse measure for tactical supply chain 
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j∈J E DS j . 

IR, raw materials. 

I, components. Note: I = J S 
⋃ 

IR . 

I j , first tier components for product j , for j ∈ J . 

R 1 , resources such that the capacity extension

is performed at the first period of the time

horizon, if any, and it can be used until the

end of the horizon. 

R e , resources such that the capacity extension is

performed at the first period of stage e , if any,

and it can only be used until the last period

of the stage, for e ∈ E . 

R 2 , resources such that the capacity extension is

performed at any period, if any, and it can

only be used at that period. 

R = R 1 ∪ e ∈E R e ∪ R 2 . Note: All the sets are disjoint. 

F i , segments in the cost function for supplying

commitment raw material i , for i ∈ IR . 

H r , segments for the capacity expansion of re-

source r , for r ∈ R . 

BoM parameters 

c j , cycle time of product j , for j ∈ J , and number of periods

in the time interval from ordering raw material j until it

is ready for starting its delivering, for j ∈ IR . 

N i, j , volume of first tier component i that is required by the

BoM to produce one unit of product j , for i ∈ I j , j ∈ J . 

Time latency for availability 

τ i , number of time periods required to deliver component

i from its origin plant to its destination plant, for i ∈
J S 

⋃ 

IR . 

τ d , delivery time, i.e., number of time periods to deliver end-

product j to market d after its completion, for d ∈ DS j , j ∈
J E. 

Production and product stock bounds 

X i,t , X i , minimum and maximum volume of raw material i

that can be ordered at time period t , respectively, if

any, for i ∈ IR, t ∈ T , and minimum and maximum vol-

ume whose manufacturing/assembly can be released

for product i at time period t , respectively, if any, for

i ∈ J , t ∈ T . Note: The upper bound X i is stationary

across the time horizon, but the assumption can be

easily removed. 

S j,t , S j , minimum and maximum volume of item j that can be

in stock at (the end of) time period t , respectively, for

j ∈ J 

⋃ 

IR, t ∈ T . 
Se d,t , Se d , minimum and maximum volume of end-product j that

can be in stock in (the show center of) market d at

(the end of) time period t , respectively, for d ∈ DS j , j ∈
J E, t ∈ T . 

Resource coefficients 

o r, j , amount of resource r required to produce one unit of

product j , for r ∈ R, j ∈ J . 

O r , base capacity of resource r , for r ∈ R 1 ∪ e ∈E R e . 
O 

h 
r , base capacity expansion of resource r related to its h th

segment, for h ∈ H r , r ∈ R 1 ∪ e ∈E R e . 
O 

h 
r,t , base capacity expansion of resource r related to its h th

segment at time period t , for h ∈ H r , r ∈ R 2 , t ∈ T . 

Cost coefficients 

( SC 
f 

i , Y 
f 

i ) , data defining the upper bound pair of the f th segment

of the supplying commitment cost function of raw ma-

terial i , for f ∈ F i , i ∈ IR, where SC 
f 

i is the cost, and
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
Y 
f 

i is the related volume. Note: Usually SC 
1 

i = 0 and

Y 
1 

i = 0 . 

fc j , fixed cost incurred when product j is manufac-

tured/assembled, for j ∈ J , and fixed cost incurred

when raw material j is ordered, for j ∈ IR . 

f c h r , fixed cost associated with the h th segment of the ca-

pacity expansion cost function of resource r , for h ∈
H r , r ∈ R 1 . 

f c h r,t , fixed cost associated with the h th segment of the ca-

pacity expansion cost function of resource r at time

period t , for h ∈ H r , r ∈ R e , e ∈ E, where t is the first

period in set T e . 
f c h r,t , fixed cost associated with the h th segment of the ca-

pacity expansion cost function of resource r at time

period t , for h ∈ H r , r ∈ R 2 , t ∈ T . 
hc j , unit holding cost of item j at any time period, for j ∈

J 

⋃ 

IR . 

hce d , unit holding cost of end-product j in market d at any

time period, for d ∈ DS j , j ∈ J E. 

� c d, t , (resp. bc d, t ), unit lost demand (resp. unit backlogging)

cost of end-product j for market d at time period t , for

d ∈ DS j , j ∈ J E, t ∈ T . 
u i , unit reward of the surplus volume of raw material i at

the end of the time horizon, for i ∈ IR . 

In the next section, the STSCP modeling to study is presented as

ell as the challenges posed by the topology of the supply chain

nd the timing of the events in there. 

. Uncertainty in tactical supply chain planning 

.1. Introduction 

The main uncertain parameters to consider in a realistic case

long a given time horizon are production cost, available resource

apacity, product demand and demand lost fraction. As usual, it

s assumed that the realization of the uncertain parameters takes

lace at periods. One of the important decisions to be made in

SCP consists of determining the ordering time period for raw mate-

ial supplying and subassembly readiness along the time horizon.

here is usually a time interval between ordering and delivering

he components (i.e., making them available) in the supply chain,

ue to handling of the ordering and transportation times that are

equired, among other factors. In the case that the time interval is

ot subject to specific constraints and costs related to the items’

ransportation and other factors, a deterministic model can con-

ider that the ordering time is the same one as the delivering time.

owever, in the stochastic setting the related time interval is im-

ortant, since the production and market environments can vary

long the time interval between both events, see below. This is one

f the challenges to be faced in this work. 

Let scenario be one realization of the uncertain parameters

long the periods of the time horizon, and a scenario group for a

iven period is the set of scenarios with the same realization of

he uncertain parameters up to the period. This information struc-

ure can be visualized as the tree depicted in Fig. 2 , where each

oot-to-leaf path represents one specific scenario and corresponds

o one realization of the whole set of the uncertain parameters.

ach node in the tree can be associated with a scenario group in a

ne-to-one correspondence, such that two scenarios belong to the

ame group in a given period, provided that they have the same

ealization of the uncertain parameters up to the period. Let us

oint out that it is beyond the scope of this work to present a

ethodology for multi-period scenario tree generation and reduc-

ion; see e.g., Dupa ̌cová et al. (20 0 0) , Heitsch and Römisch (2009) ,
ochastic dominance risk averse measure for tactical supply chain 
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G = {1, . . . , 17}; G2 = {2, 3, 4}
A17 = {1, 4, 9, 17}; σ(9) = 4

Fig. 2. Non-symmetric multi-period scenario tree. 
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oyland et al. (2003) , Leövey and Römisch (2015) and Pflug and

ichler (2015a) for ways to perform both tasks. 

ets (lexicographically ordered in the scenario tree) 

�, scenarios. 

G, nodes in scenario tree. 

G e ⊆ G, nodes in stage e , for e ∈ E . 

G t ⊆ G, nodes in period t , for t ∈ T . Note: By construction,

|G 1 | = 1 and 1 ∈ G 1 . 
�g ⊆�, scenarios in group g , for g ∈ G. 
˜ A g , node g and its ancestors, for g ∈ G. Notice that ˜ A 1 is

only included by node 1 and, then, 1 ∈ G 1 . 
A g ⊆ ˜ A g , nodes in 

˜ A g whose variables have nonzero elements in

constraints related to node g (including itself), for g ∈ G.

S g , node g and its successors, for g ∈ G. Note: S g = { g} for

g ∈ G T . 
Q 

e ⊆ G e , root nodes in the scenario subtrees starting in stage

e , for e ∈ E . As an illustration, let in Fig. 2 the set of

stages E = { 1 , 2 } with T 1 = { 1 , 2 } and T 2 = { 3 , 4 } , such

that G 1 = { 1 , 2 , 3 , 4 } and G 2 = { 5 , · · · , 17 } . So, e.g., Q 

2 =
{ 5 , 6 , 7 , 8 , 9 } , where node q = 7 is the root node of the

scenario subtree whose nodes are S 2 = { 7 , 13 , 14 } . 

ther elements in the scenario tree 

w g , weight factor representing the likelihood that is associ-

ated with node g , for g ∈ G. Note: w g = 

∑ 

ω∈ �g 
w ω , where

w ω gives the modeler-driven likelihood associated with

scenario ω (where w = g for g ∈ G T such that it is a sin-

gleton set), for ω ∈ �, and 

∑ 

g∈G t w g = 1 ∀ t ∈ T . 
σ ( g ), immediate ancestor node of node g , for g ∈ G. By con-

struction, σ (1) = 0 . 

t ( g ), period to which node g belongs to, so, g ∈ G t(g) . 

ncertain parameters in node g ∈ G
D 

g 

d 
, demand of end-product j from market d at time period

t ( g ), for d ∈ DS j , j ∈ J E. 

f 
g 

d 
, lost fraction of non-served accumulated demand of end-

product j from market d , for d ∈ DS j , j ∈ J E. 

O 

g 
r , base capacity of resource r , for r ∈ R 2 . 

pc 
g 
j 
, unit production cost for product j , for j ∈ J . 

The so-called risk neutral measure in STSCP can be represented

y the multi-period stochastic mixed 0–1 model (1) - (16) that is

resented next. 
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
.2. Decision variables 

ontinuous variables for raw material i ∈ IR . y i , volume of

raw material i that is committed at the beginning of the

time horizon. 

sc i , cost of supplying committed volume y i of raw material i .

x 
g 
j 
, volume of raw material j that is ordered at (the beginning

of) time period t ( g ), for j ∈ IR . 

z ω 
i 

, surplus volume of raw material i at the end of the time

horizon, for ω ∈ �. 

β f 
i 
, [0,1] value defining the fraction used of the f th segment

of the piecewise linear, concave and nondecreasing sup-

plying commitment cost function of raw material i . It be-

longs to the S2 sets for modeling that type of function.

An S2 set Beale and Forrest (1976) is an ordered set of

nonnegative variables { β f 
i 
∀ f ∈ F i } , such that the sum of

the variables in the set must be 1 and no more than two

members may be nonzero with the further condition that

if there are as many as two they must be adjacent. 

ontinuous variables in node g ∈ G
x 

g 
j 
, released volume of product j in the manufactur-

ing/assembly line at (the beginning of) time period t ( g ),

for j ∈ J . 

y 
g 

d 
, shipped volume of end-product j to market d at (the end

of) time period t ( g ), for d ∈ DS j , j ∈ J E. 

s 
g 
j 
, stock volume of item j at (the end of) time period t ( g ),

for j ∈ J 

⋃ 

IR . 

se 
g 

d 
, stock volume of end-product j in market d at (the end of)

time period t ( g ), for d ∈ DS j , j ∈ J E. 

� 
g 

d 
, lost demand of end-product j in market d at time period

t ( g ), for d ∈ DS j , j ∈ J E. 

b 
g 

d 
, demand backlog of end-product j in market d at (the end

of) time period t ( g ), for d ∈ DS j , j ∈ J E. 

Note: It is assumed that s 0 
j 
, se 0 

d 
, b 0 

d 
are input data for any j , d . 

–1 variables for resources’ capacity expansion and product release 

αh 
r , its value is 1 if the h th segment of the capacity expan-

sion of resource r is performed at (the beginning of)

the first period of the time horizon and otherwise 0, for

h ∈ H r , r ∈ R 1 . Note 1: It can be used until the last period

of the time horizon. Note 2: By construction, α0 
r = 1 . 

αq 

r,h 
, its value is 1 if the h th segment of the capacity expansion

of resource r is performed at (the beginning of) period

t ( q ) of node q in stage e ( q ), for h ∈ H r , r ∈ R e , q ∈ Q 

e , e ∈
ochastic dominance risk averse measure for tactical supply chain 

), http://dx.doi.org/10.1016/j.cor.2017.07.011 
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E . Note 1: It can be used until the last period of the stage.

Note 2: By construction, αq 
r, 0 

= 1 . 

αg 

r,h 
, its value is 1 if the h th segment of the capacity expansion

of resource r is to performed at (the beginning of) period

t ( g ) of node g and otherwise 0, for h ∈ H r , r ∈ R 2 , g ∈ G.

Note 1: It can only be used at the same period. Note 2:

By construction, αg 
r, 0 

= 1 . 

δg 
j 
, its value is 1 if product j is released in the manufactur-

ing/assembly line for j ∈ J , and it is 1 if raw material j

is ordered to vendor for j ∈ IR, both at (the beginning of)

time period t ( g ) of node g and otherwise, 0, for g ∈ G. 

3.3. Deterministic equivalent model, DEM 

The mixed 0–1 DEM can be expressed as follows, 

min 

∑ 

i ∈IR 

sc i + 

∑ 

r∈ R 1 

∑ 

h ∈H r 

f c h r α
h 
r 

+ 

∑ 

e ∈E 

∑ 

q ∈Q e 

∑ 

r∈ R e 

∑ 

h ∈H r 

w q f c 
h 
r,t(q ) α

q 

r,h 
+ 

∑ 

g∈G 

∑ 

r∈ R 2 

∑ 

h ∈H r 

w g f c 
h 
r,t(g) α

g 

r,h 

+ 

∑ 

g∈G 
w g 

[ ∑ 

j∈J 
pc g 

j 
x g 

j 
+ 

∑ 

j∈J ⋃ 

IR 

hc j s 
g 
j 
+ 

∑ 

d∈DS 

(hce d se g 
d 

+ �c d,t(g) � 
g 

d 

+ bc d,t(g) b 
g 

d 
) 
] 

+ 

∑ 

g∈G 
w g 

∑ 

j∈J ⋃ 

IR 

f c j δ
g 
j 
−

∑ 

i ∈IR 

∑ 

ω∈ �
w ω u i z 

ω 
i (1)

subject to 

sc i ≡
∑ 

f∈F i 
SC 

f 

i β
f 

i 
∀ i ∈ IR 

y i ≡
∑ 

f∈F i 
Y 

f 

i β
f 

i 
∀ i ∈ IR 

(β f 
i 
∀ f ∈ F i ) is an S2 set for raw material i ∀ i ∈ IR 

y i = 

∑ 

g∈A ω 
x g 

i 
+ z ω i ∀ ω ∈ �, i ∈ IR. 

(2)

s σ (g) 
j 

+ x q 
j 
= 

∑ 

d∈DS j 

y g 
d 

+ s g 
j 

∀ j ∈ J E, g ∈ G, 

where q ∈ A g : t(q ) = t(g) − c j + 1 (3)

s σ (g) 
i 

+ x q 
i 

= 

∑ 

j∈J : i ∈I j 
N i, j x 

h 
j + s g 

i 
∀ h ∈ S g : t(h ) = t(g) 

+ τi , g ∈ G, i ∈ I, 

where q ∈ A g : t(q ) = t(g) − c i + 1 (4)

S j,t(g) ≤ s g 
j 
≤ S j ∀ j ∈ J ∪ IR, g ∈ G (5)

X j,t(g) δ
g 
j 
≤ x g 

j 
≤ X j δ

g 
j 
, δg 

j 
∈ { 0 , 1 } ∀ j ∈ J ∪ IR, g ∈ G (6)

∑ 

j∈J 
o r, j x 

g 
j 
≤ O r + 

∑ 

h ∈H r 

O 

h 
r α

h 
r ∀ r ∈ R 1 , g ∈ G (7)

αh 
r ≤ αh −1 

r and αh 
r ∈ { 0 , 1 } ∀ h ∈ H r , r ∈ R 1 (8)

∑ 

j∈J 
o r, j x 

g 
j 
≤ O r + 

∑ 

h ∈H r 

O 

h 
r α

q 

r,h 
∀ r ∈ R 

e , g ∈ S q ∩ G e , q ∈ Q 

e , e ∈ E 

(9)
i

Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
αq 

r,h 
≤ αq 

r,h −1 
and αq 

r,h 
∈ { 0 , 1 } ∀ h ∈ H r , r ∈ R 

e , q ∈ Q 

e , e ∈ E 
(10)

∑ 

j∈J 
o r, j x 

g 
j 
≤ O 

g 
r + 

∑ 

h ∈H r 

O 

h 
r,t(g) α

g 

r,h 
∀ r ∈ R 2 , g ∈ G (11)

αg 

r,h 
≤ αg 

r,h −1 
and αg 

r,h 
∈ { 0 , 1 } ∀ h ∈ H r , r ∈ R 2 , g ∈ G (12)

se σ (g) 
d 

+ y q 
d 

+ � 
g 

d 
+ b g 

d 
= b σ (g) 

d 
+ D 

g 

d 
+ se g 

d 
∀ d ∈ DS, g ∈ G. 

where q ∈ A g : t(q ) = t(g) − τ e d (13)

� 
g 

d 
≡ f g 

d 
(b σ (g) 

d 
+ D 

g 

d 
− se σ (g) 

d 
− y q 

d 
) ≥ 0 ∀ d ∈ DS, g ∈ G (14)

b g 
d 

≡ (1 − f g 
d 
)(b σ (g) 

d 
+ D 

g 

d 
− se σ (g) 

d 
− y q 

d 
) ≥ 0 ∀ d ∈ DS, g ∈ G 

(15)

Se d,t(g) ≤ se g 
d 

≤ Se d ∀ d ∈ DS, g ∈ G, (16)

here it is assumed that x 
q 
j 
= 0 and y 

q 

d 
= 0 for t ( q ) ≤ 0, and x h 

j 
= 0

or t ( h ) > T . 

bjective function 

It consists of minimizing the supplying commitment raw mate-

ial cost, the expected cost of production and stock of the items,

esource capacity expansion, product stock at the markets and the

enalty due to lost demand and backlogging in the scenarios along

he time horizon, and minus the rewarding of the raw material

urplus volume at the end of the time horizon. 

aw material supplying commitment cost function based on S2 sets 

The constraint system (2) is the S2 sets object modeling for the

aw material supplying commitment cost function. In addition, it

mposes that the total supplying volume of a given raw material

long the time horizon, 
∑ 

g∈A ω x 
g 
i 
, for any scenario ω ∈ �, plus the

urplus, z ω 
i 

, is equal to the supplying volume, y i , that is committed

t the beginning of the time horizon. 

alance equations of end-products and components 

Constraint (3) is the balance equation for end-product j in node

 , where its cycle time c j needs to be taken into account. Without

oss of generality it is assumed that no discharges are made during

he process. Constraint (4) is the balance equation for component

 in node g . Note that this involves the set of products (subassem-

lies and end-products) { j ∈ J : i ∈ I j } that have component i in

he first tier of their BoM. Note: The cycle time and the product

elease time are taken into account. Constraint (5) impose upper

nd lower bounds on stock levels. 

pper and lower bounds for raw material supplying and product 

elease 

The Constraint (6) force the conditional bounds. 

esource consumption 

The constraint system (7), (9), (11) bounds the resources’ con-

umption, allowing the extension of the capacity of the resources,

hose costs are expressed by a piecewise discrete nondecreas-

ng functions. Given the character of the capacity expansion cost

unctions, the variable upper bounding system given by (8), (10),

12) forces the lexicographic order for the segments’s commitment

n the resources. 
ochastic dominance risk averse measure for tactical supply chain 
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alance equations of product demand, lost demand and backlogging 

Constraint (13) balance the total demand of market d in node

 , where the amount shipped to the markets is taken into account

s well as the inventory, backlogged demand, and the possibility

f lost demand. Constraints (14) and (15) ensure that the lost and

acklogged demand are well defined. Constraint (16) impose up-

er and lower bounds on stock levels in (the show centers of) the

arkets. Note that y 
q 

d 
is shipped at time period t(q ) = t(g) − τd to

atisfy the demand of end-product j from market d in the nodes

n set S q ∩ G t(q )+ τd 
. Observe also that if the stock is not enough for

erving the backlog and demand, then the shipment to the mar-

et will be used. If this is not still enough, then it is partially lost

nd partially backlogged to be served at the immediate successor

cenario nodes. 

.4. Synthesized risk neutral STSCP model 

The model (1) - (16) can be synthesized in the following risk

eutral (RN) model, whose aim consists of minimizing the ex-

ected tactical supply chain planning cost alone, 

z RN = min 

∑ 

g∈G 
w g (a g x g + b g y g ) 

[2 mm ] s.t. 
∑ 

q ∈A g 
(A 

g 
q x q + B 

g 
q y q ) = h g ∀ g ∈ G 

x g ∈ { 0 , 1 } nx (g) , y g ∈ IR 

ny (g) ∀ g ∈ G, 

(17) 

here, for each node g such that g ∈ G, x g and y g denote the nx ( g )-

nd ny ( g )-vectors of the 0–1 and continuous variables, respectively,

 g and b g are the related objective function vectors, A 

g 
q and B 

g 
q are

he constraints matrices whose nonzero coefficients give the influ-

nce of the appropriate 0–1 and continuous variables from ances-

or node q in node g , respectively, and h g is the rhs vector. 

. Time-based stochastic dominance measures 

Given the high variability on the uncertain parameters of the

TSCP model (1) - (16) , the time-inconsistent and time-consistent

ersions of risk averse measure are presented. It consists of a

tochastic dominance functional as a multi-period oriented mix-

ure of the first- and second-order stochastic dominance (SD) risk

verse measures considered in Section 1 . 

.1. Time-inconsistent TSD measure 

To perform the TSCP cost risk reduction, the multi-period

tochastic dominance risk averse measure proposed in Escudero

t al. (2016a ) is considered. In the following, we will refer to it as

SD. For that purpose, the operational cost function value is con-

rolled for a subset of periods, say, ˜ T ⊆ T , such that a set of cost-

elated profiles, say P t , is considered, for t ∈ 

˜ T . A profile p ∈ P t is

efined by a 3-tuple (c p , e p , θ
p 
) , where c p is the threshold on the

SCP cost up to any node in G t ; e p is the upper bound of the ex-

ected TSCP cost excess over threshold c p that is allowed in those

odes; and θ
p 

is the upper bound on the probability of failing to

atisfy the threshold. Additionally, let c t denote the maximum TSCP

ost that is allowed for any of those nodes. 

Let e 
p 
g denote the non-negative variable that defines the differ-

nce (if it is positive) between the TSCP cost up to node g and

hreshold c p , and θ p 
g is a 0–1 variable such that its value is 1 if the

ost up to node g is greater than the threshold and otherwise, 0. 
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
The TSD measure can be expressed 

z T SD = min 
∑ 

g∈G 
w g (a g x g + b g y g ) 

[2 mm ] s.t. 
∑ 

q ∈A g 
(A g q x q + B g q y q ) = h g ∀ g ∈ G 

∑ 

q ∈ ̃ A g 
(a q x q + b q y q ) − e p g ≤ c p ∀ g ∈ G t , p ∈ P t , t ∈ ˜ T 

0 ≤ e p g ≤ ( c t − c p ) θ p 
g , θ

p 
g ∈ { 0 , 1 } ∀ g ∈ G t , p ∈ P t , t ∈ ˜ T 

∑ 

g∈G t 
w g e 

p 
g ≤ e 

p ∀ p ∈ P t , t ∈ ˜ T 

∑ 

g∈G t 
w g θ

p 
g ≤ θ

p ∀ p ∈ P t , t ∈ ˜ T 

x g ∈ { 0 , 1 } nx (g) , y g ∈ IR ny (g) ∀ g ∈ G. 

(18) 

he concept of the expected cost excess of the objective value on

atisfying a given threshold have its roots in the Integrated Chance

onstraints concept introduced in Klein (1986) , see also Klein and

an der Vlerk (2006) . 

Following the rationale in Pflug (20 0 0) for the CVaR measure, it

an be shown that TSD is a coherent risk measure, according to the

tandards set in Artzner et al. (1999) ; 2007 ). In other words, TSD

atisfies the properties: translation invariance, positive homogene-

ty, monotonicity and convexity. In addition, it can also be shown

omem-de Mello and Pagnoncelli (2016) that the time-consistency

f TSD, as defined below, depends on the bounds e p and θ
p 
. The

ighter these bounds are, the lower the consistency probability of

SD. Thus, in general, it is a time-inconsistent measure. 

.2. Time-consistent ECSD measure 

The TSD risk reduction has an interesting add-value, since it

ontrols the period-based peak of the TSCP cost in given interme-

iate periods while minimizing the expected cost for the whole

ime horizon, such that the longer the time horizon, the more use-

ulness of that strategy. However, its time inconsistency is a draw-

ack. Notice that the outlooks of the scenarios that do not be-

ong to the groups with a one-to-one correspondence with some

odes in the scenario tree (and, then, they are not to occur in

hose situations) have influence on the solution of those groups.

o prove the statement it can be observed in model (18) that the

olution for node g ∈ G t ′ , t ′ ∈ T is affected by the satisfaction of

he risk constraint system related to period t over all of its nodes ,

or t ∈ 

˜ T : t ′ ≥ t . 

In this section, the expected conditional stochastic dominance

ECSD) measure is introduced. Here again a subset of periods ˜ T 
s given. However, the set of profiles, denoted by P g , are asso-

iated with node g , where t(g) ∈ 

˜ T , instead of been associated

ith period t ( g ). A profile p ∈ P g , t(g) ∈ 

˜ T consists of the 3-tuple

(c p , e p , θ
p 
) , where now c p is the TSCP cost threshold to be satis-

ed by any scenario in group �g from period 1 up to the last one,

 ; e p is the upper bound of the expected cost excess over thresh-

ld c p that is allowed for that group of scenarios; and θ
p 

is the up-

er bound on the probability of failing to satisfy the threshold. The

rofile set P g could be different for the nodes g in set G t , t ∈ 

˜ T . (It
s suggested to use this device for problems where there are high

ifferences in the objective function coefficients between the sce-

arios that belong to different groups in the same period, at least).

dditionally, let c g denote the maximum TSCP cost that is allowed

or any of scenario in set �g . Note that period T cannot be in 

˜ T 
nd, for practical reasons, the cardinality of ˜ T should be small. 

Let the continuous variable e 
p 
ω and the 0–1 variable θ p 

ω for ECSD
e as for TSD. The ECSD measure can be expressed 
ochastic dominance risk averse measure for tactical supply chain 
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z ECSD = min 
∑ 

g∈G 
w g (a g x g + b g y g ) 

[2 mm ] s.t. 
∑ 

q ∈A g 
(A g q x q + B g q y q ) = h g ∀ g ∈ G 

∑ 

q ∈ ̃ A ω 
(a q x q + b q y q ) − e p ω ≤ c p ∀ p ∈ P g , ω ∈ �g , g ∈ G t , t ∈ ˜ T 

0 ≤ e p ω ≤ ( c g − c p ) θ p 
ω , θ

p 
ω ∈ { 0 , 1 } ∀ p ∈ P g , ω ∈ �g , g ∈ G t , t ∈ ˜ T ∑ 

ω∈ �g 

w ω e 
p 
ω ≤ e 

p ∀ p ∈ P g , g ∈ G t , t ∈ ˜ T 

∑ 

ω∈ �g 

w ω θ
p 
ω ≤ θ

p ∀ p ∈ P g , g ∈ G t , t ∈ ˜ T 

x g ∈ { 0 , 1 } nx (g) , y g ∈ IR ny (g) ∀ g ∈ G. 

(19)

It is worth to point out that the TSCP cost risk reduction in

ECSD model (19) refers to the cost of the scenarios in group �g 

up to the end of the time horizon. However, the TSCP cost risk re-

duction in TSD model (18) refers to the cost of the same scenario

group, but it is only up to node g , for g ∈ G t , t ∈ 

˜ T . Also note that

if ˜ T is singleton and in both measures the cost risk reduction is

desired to be performed for all scenarios at the end of the time

horizon, then it happens that z ECSD = z T SD for ˜ T = { 1 } in ECSD and
˜ T = { T } in TSD. 

The concept of expected conditional risk measure (ECRM) was

introduced in Homem-de Mello and Pagnoncelli (2016) , where

the time-consistency is defined and proved, see also Asamov and

Ruszczynski (2015) , Pflug and Pichler (2015b) , Rudloff et al. (2014) ,

Ruszczy ́nski (2010) and Shapiro (2009) . Notice that the proof

only requires that the measure has the properties of translation-

invariance and monotonicity. In what follows the time-consistency

property of ECSD in (19) is proved to be a member of the family

of ECRMs. 

Let ˆ x q and ˆ y q ∀ q ∈ G denote the vectors with the values of the

variables in the vectors x q and y q of model (19) , for any of its

optimal solutions. Let ˜ z ECSD g denote the value of the sum of the

terms in the objective function of model (19) related to the op-

timal values ˆ x q and ˆ y q , for q ∈ 

˜ A g ∪ S g for any node g ∈ G, i.e.,

˜ z ECSD g = 

∑ 

q ∈ ̃  A g ∪S g w q (a q ̂  x q + b q ̂  y q ) . 

Let us consider the submodel (20) of model (19) related to node

g , for g ∈ G, whose elements are as follows: 

• The subtree from the original scenario tree that supports the

submodel is given by the node set ˜ A g ∪ S g , i.e., the nodes up to

node g plus the subtree rooted in g up to the leaf nodes. 

• The input data of the submodel is taken from the appropriate

nodes in model (19) . 

• The variables in the vectors x g and y q ∀ q ∈ A g \ { g} are fixed in

submodel (20) to the related values in the vectors ˆ x q and ˆ y q in

the optimal solution of model (19) that is being considered. 

z ECSD g = min 
∑ 

q ∈ ̃ A g ∪S g 
w q (a q x q + b q y q ) 

s.t. 
∑ 

q ∈A g ′ 
(A g 

′ 
q x q + B g 

′ 
q y q ) = h g ′ ∀ g ′ ∈ S g 

∑ 

q ∈ ̃ A ω 
(a q x q + b q y q ) −e p ω ≤ c p ∀ p ∈ P g ′ , ω ∈ �g ′ , g 

′ ∈ G t , t ∈ ̃  T : t ≥t(g

0 ≤ e p ω ≤ ( c g − c p ) θ p 
ω , θ

p 
ω ∈ { 0 , 1 } ∀ p∈P g ′ , ω ∈ �g ′ , g 

′ ∈ G t , t ∈ ̃  T : t ≥t(g)∑ 

ω∈ �g ′ 

w ω e 
p 
ω ≤ e 

p ∀ p ∈ P g ′ , g ′ ∈ G t , t ∈ ˜ T : t ≥ t(g) 

∑ 

ω∈ �g ′ 

w ω θ
p 
ω ≤ θ

p ∀ p ∈ P g ′ , g ′ ∈ G t , t ∈ ˜ T : t ≥ t(g) 

x q = ̂  x q , y q = ̂  y q ∀ q ∈ ˜ A g \ { g} 
x q ∈ { 0 , 1 } nx (q ) , y q ∈ IR ny (q ) ∀ q ∈ ˜ A g ∪ S g . 

(20)

It is easy to show that the ECSD measure is time-consistent ,

i.e., ˜ z ECSD g = z ECSD g , for any node g ∈ G, any scenario tree, any pro-
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
le set, any period subset, and any other input data. Let us as-

ume that the decisions in a given problem have been taken up

o node σ ( g ) according to the solution obtained in the original

odel (19) solved at period t = 1 . Then, the rationale behind a

ime-consistent risk averse measure is that the solution value to

e obtained for node set S g (where remember node g is also in-

luded) in the scenario tree for the related submodel (20) solved

t period t ( g ) should have the same value as in the original model

olved at period t = 1 . 

Notice that �g ′ ⊂ �g for t ( g ′ ) > t ( g ). And, given the structure of

CSD for risk reduction, it results that ECSD, as any other ECRM

ith cross-node constraints, is very appropriate for considering the

tochastic nested decomposition (SND) methodology as a suitable

ool for solving large sized instances. See also below and Cristobal

t al. (2009) , Escudero et al. (2013) , Escudero et al. (2015) and Zou

t al. (2016) , among others. Note: The SND variant where there is

ot any Markovian relationship between the uncertainty in succes-

ive periods was introduced in Pereira and Pinto (1985) . 

. Markovian-based stochastic dynamic programming 

In this section the matheuristic presented in Escudero et al.

2015) is extended to deal with the cross-scenario constraints in

CSD model (19) . The new algorithm, so-called SDP-ECSD, consid-

rs the set of stages E, so that the stochastic problem is decom-

osed into a collection of inter-connected subproblems. A key item

n the proposed matheuristic algorithm is the concept of the so-

alled Expected Future Value (EFV) curves. These curves estimate

he impact of the linking decisions made at a given stage on the

bjective function value related to the future stages. SDP-ECSD is a

ND variant where the linking variables between consecutive peri-

ds can also be continuous variables besides the 0–1 variables. 

The new proposal is designed to deal with the ECSD model

19) and it is not a trivial task. Apart from the problem size that

s allowed, another major challenge is to deal with the (probably,

umerous) cross-scenario constraints that link the scenarios in set

g , for g ∈ G t , t ∈ 

˜ T . To deal with those constraints, a mechanism

s devised that distributes the TSCP cost risk reduction bounds e p 

nd θ
p 
, for p ∈ P g , among the immediate successors of any given

ubproblem. 

.1. The subproblems 

In this section the subproblems and the EFV curve concept and

urpose are presented. Consider the additional notation: 

R 

e ⊆ G e , set of root nodes to the subtrees of stage e . Note:

Without loss of generality, let us assume that the

node set { g ∈ G : t(g) ∈ 

˜ T } where to perform the

TSCP cost risk reduction is a subset of 
⋃ 

e ∈E R 

e , i.e.,

only those root nodes can be a subject of TSCP cost

risk reduction. 

C r ⊆ G e , set of nodes in G e that belong to the subtree rooted

in node r , for r ∈ R 

e , e ∈ E . 

L r ⊆ C r , set of leaf nodes in C r , for r ∈ R 

e , e ∈ E . 

S 1 g ⊆ S g \ { g} , set of immediate successors of node g , for g ∈ G :
t(g) < T (i.e., q ∈ S 1 g provided that t(q ) = t(g) + 1 ). 

˜ ˜ A � ⊆ A � , set consisting of leaf node � ∈ L r and its ancestors,

such that their variables have nonzero elements in

the constraints associated with the nodes in the

immediate successor subproblems to node � . Ob-

serve that those nodes are in set 
⋃ 

r ′ ∈S 1 
� 
C r ′ . On the

other hand, the nodes r ′ are the root ones in set S 1 � 

(i.e., the root nodes in the related supporting sub-

trees), for � ∈ L r , r ∈ R 

e , e ∈ E \ { E} . 
ochastic dominance risk averse measure for tactical supply chain 
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Fig. 3. Breaking the time horizon into stages. 
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P 

r , set of profiles { p ∈ P g , g ∈ 

˜ A r : t(g) ∈ 

˜ T } , for r ∈
R 

e , e ∈ E . 

Fig. 3 illustrates the sets above where the time horizon is split

nto two stages. 

Consider r for r ∈ R 

e , e ∈ E . Let ˆ x q and ˆ y q be given values of

he vectors of variables x q and y q , respectively, for q ∈ 

˜ A σ (r) . There

re two types of variables for the TSCP cost risk reduction func-

ional in the r -rooted model (21) - (33) . The first type is included

y the continuous variable e 
p 

r ′ and the 0–1 variable θ p 

r ′ , for p ∈
 

r , r ′ ∈ S 1 � , � ∈ L r , where e < E , that result from the distribution

f the ECSD bounds ˆ e 
p 
r and 

ˆ θ p 
r , respectively, among the imme-

iate successor subprograms rooted in the nodes r ′ . (Notice that

he models rooted in the nodes in set R 

E do not need to perform

hat distribution). The second type of variables is included by the

ontinuous variable e r 
′ p and the 0–1 variable θ r ′ p , such that e r 

′ p 

ives the estimation of the TSCP cost excess of the expected sce-

ario in group �r ′ over threshold c p , and θ r ′ p is the related 0–

 variable (such that θ r ′ p = 1 for e r 
′ p > 0 and otherwise, 0), for

p ∈ P 

r , r ′ ∈ S 1 � , � ∈ L r . Notice that the latter type of variables is

imed to help to satisfying the ECSD bounds. Note: The satisfaction

f those bounds is increasingly important though the stages until

eaching the last one. The ECSD bounds for p ∈ P r : t(r) ∈ 

˜ T are as

ollows: ˆ e 
p 
r = e p (original bound) and 

ˆ θ p 
r = θ

p 
(original bound). On

he other hand, those ECSD bounds ˆ e 
p 
r and 

ˆ θ p 
r , for p ∈ P 

r \ P r , if

ny, are the values of the variables e 
p 
r and θ p 

r , respectively. Those

alues are taken from the solution of the r ′ ′ -rooted model (21) -

33) , for r ′′ ∈ R 

e −1 , e ∈ E \ { 1 } , such that r ∈ S 1 
� ′′ , � 

′′ ∈ L r ′′ . 
Let λ

′ 
r ′ (·) be a function that gives an approximation of the fu-

ure TSCP cost in the set of scenarios �r ′ for r ′ ∈ S 1 � , � ∈ L r , r ∈
 

e , e ∈ E \ E, related to the set { e ′ ∈ E : e ′ > e } . This function has
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
he argument (. ) = (x q , y q ∀ q ∈ 

˜ ˜ A σ (r) ; e 
p 
r , θ

p 
r ∀ p ∈ P 

r ). 

 

′ 
r (. ) = min 

∑ 

� ∈L r 
w � [ 

∑ 

q ∈ ̃  A � 

(a q x q + b q y q ) + 

∑ 

r ′ ∈S 1 � 

w r ′ 

w � 

λ
′ 
r ′ (·)] 

+ 

∑ 

p∈P r 
(M 

p 1 

r ε
p 1 

r + M 

p 2 

r ε
p 2 

r ) (21) 

ubject to ∑ 

q ∈A g 
(A 

g 
q x q + B 

g 
q y q ) = h g ∀ g ∈ C r (22) 

∑ 

q ∈ ̃  A � 

(a q x q + b q y q ) + 

1 

| �r ′ | λ
′ 
r ′ (·) − e r 

′ p ≤ c p 

∀ p ∈ P 

r , r ′ ∈ S 1 � , � ∈ L r (23) 

0 ≤ e r 
′ p ≤ ( c − c p ) θ r ′ p , θ r ′ p ∈ { 0 , 1 } ∀ p ∈ P 

r , r ′ ∈ S 1 � , � ∈ L r 

(24) 

∑ 

� ∈L r 

∑ 

r ′ ∈S 1 � 

w r ′ e 
r ′ p ≤ e p r + ε p 1 

r ∀ p ∈ P 

r (25) 

∑ 

� ∈L r 

∑ 

r ′ ∈S 1 � 

w r ′ θ
r ′ p ≤ θ p 

r + ε p 2 

r ∀ p ∈ P 

r (26) 

∑ 

� ∈L r 

∑ 

r ′ ∈S 1 � 

e p 
r ′ = e p r ∀ p ∈ P 

r : e < E (27) 

∑ 

� ∈L r 

∑ 

r ′ ∈S 1 � 

θ p 
r ′ = θ p 

r ∀ p ∈ P 

r : e < E (28) 
ochastic dominance risk averse measure for tactical supply chain 
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x q = 

ˆ x q , y q = 

ˆ y q ∀ q ∈ 

˜ A σ (r) : t(r) > 1 (29)

e p r = 

ˆ e p r , θ
p 
r = 

ˆ θ p 
r ∀ p ∈ P 

r (30)

x q ∈ { 0 , 1 } nx (q ) , y q ∈ IR 

ny (q ) ∀ q ∈ 

˜ A � , � ∈ L r (31)

e r 
′ p ∈ IR 

+ , θ r ′ p ∈ { 0 , 1 } , e p r ∈ IR 

+ , θ p 
r ∈ IR 

+ 

∀ p ∈ P 

r , r ′ ∈ S 1 � , � ∈ L r (32)

ε p 1 

r ∈ IR 

+ , ε p 2 

r ∈ IR 

+ ∀ p ∈ P 

r . (33)

Before describing the ingredients of the above formulation, let

us highlight some important differences between this subtree sup-

ported subproblem and the ECSD model (19) supported by the

whole tree. First, the formulation has fixed the x, y -variables of an-

cestor nodes to the subtree rooted in node r , see constraints (29) .

Second, with the aim that the objective function value of subprob-

lem (21) - (33) be a good approximation of the objective function

value of scenario set �r in problem (19) , the expected value of the

terms related to the successor subproblems is represented by the

functions λ
′ 
r ′ (·) for the sets of scenarios �r ′ , for r ′ ∈ S 1 � , � ∈ L r . No-

tice that those sets are the scenario groups with a one-to-one cor-

respondence with the immediate successor nodes to the leaf ones

in the subtree rooted in node r . So, those functions are added to

objective function (21) . Therefore, in the constraints (23) , λ
′ 
r ′ (·) is

also divided by the number of scenarios in set �r ′ . Note: It is as-

sumed that 1 
| �

r ′ | λ
′ 
r ′ (·) represents an approximation to the expected

cost of any scenario in that group. Observe that no decisions are

taken prior to the root node r = 1 , while no estimation is required

in the subproblems in the last stage E , since the time horizon ends

there. So, any reference to A 1 \ { 1 } or λ′ 
� (·) , for � ∈ G T should not

be considered in model (21) - (33) . 

The terms in the objective function (21) related to leaf node

� ∈ L r give the expected TSCP cost along the time horizon for the

set of scenarios in �� . The first term is the cost related to the an-

cestor node set ˜ A � of node � (including itself), and the second term

is an approximation of the expected cost of its successor subprob-

lems (whose nodes are in set S � ). The last term in the objective

function is the penalization of the infeasibility of the ECSD con-

straints (25) and (26) . 

Constraint (22) is related to the nodes in the subproblem. Each

constraint (23) defines the variable e r 
′ p that takes the expected ex-

cess of the TSCP cost over threshold c p for any scenario in group

�r ′ , r ′ ∈ S 1 � , � ∈ L r . Notice that the expected excess is an approxi-

mation. Constraint (24) force the variable θ r ′ p = 1 for e r 
′ p = 1 > 0

and otherwise, 0. 

Constraints (25) and (26) are the counterparts of the ECSD con-

straints in model (19) , where the new (slack) variables εp 1 

r and εp 2 

r 

ensure those constraints’ feasibility, respectively. The variables are

penalized in the objective function by using the big M type pa-

rameters M 

p 1 

r and M 

p 2 

r , for the p th profile with the aim of having

them equal to zero at the end of the algorithm’s execution. Note:

The value of those parameters is a non-decreasing function of the

SDP-ECSD iteration number, say ite . Observe that the left hand side

of constraint (25) gives the (approximate) expected cost excess for

the whole set of scenarios �r . 

Constraints (27) (resp. (28) ) distribute the ECSD variable e 
p 
r 

(resp. θ p 
r ) among the subproblems whose root nodes r ′ are the im-

mediate successors of the leaf nodes � , for � ∈ L r . The distribution

is made at random for the SDP-ECSD first iteration where a so-

lution to the original problem is obtained in its forward scheme.
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
owever, when the iterations go on, (hopefully) function λ
′ 
r ′ (·) will

orrectly assign the e - and θ-variables to the successor subprob-

ems. 

Constraints (29) (resp. (30) ) fix the variables in vectors x q and

 q (resp. variables e 
p 
r and θ p 

r ). 

.2. The EFV curves 

Notice that, in general, λ
′ 
r ′ (·) , for r ′ ∈ S 1 � , � ∈ L r , r ∈ R 

e , e ∈ E \
 E} is difficult to compute. The matheuristic SDP-ECSD approach

pproximates it by a piecewise linear convex function, whose re-

ated variable is notated as λr ′ ; it will be referred to as the ex-

ected future value (EFV). The matheuristic is an iterative algo-

ithm where each iteration consists of a forward scheme followed

y a backward scheme. The forward scheme is intended to improve

he current solution, where the single subproblem in the first stage

s solved and the linking variables are fed to subproblems in the

econd stage, which in turn are solved. This process is repeated

or each stage until the last one is reached, yielding a new solu-

ion. The backward scheme refines the current EFV curves by us-

ng all already obtained solutions. To refine those curves, strong

uality theory is applied by starting with the subproblems sup-

orted for the subtrees rooted in the nodes r ′ for r ′ ∈ R 

E around

he set of solutions obtained so far up to stage E (in the related

orward scheme up to the current iteration ite ). As a result, valid

uts are obtained for approximating function λ
′ 
r ′ (·) . So, its updated

onstraint system is appended to the immediate ancestor subprob-

em. It is supported by the subtree rooted in node r , for r ∈ R 

E−1 ,

uch that r ′ ∈ S 1 � for � ∈ L r . The process is repeated until the sec-

nd stage is reached, such that its cut-based updated constraint

ystems are appended to the subproblem related to stage e = 1 . It

s worth to point that, by construction, each subproblem to solve

t any stage (but the last one) has not full information about the

alue of the objective function terms related to later stages, but

n estimation. Notice that the later the stage and the deeper the

teration are in the algorithm’s execution, the more precise the in-

ormation is. 

So, let ˆ X i � , � ∈ L r denote the solution vector obtained while solv-

ng the subproblem (36) - (40) supported by the subtree rooted in

ode r ∈ R 

e for e ∈ E \ { E} in the forward scheme at iteration i , for

 = 1 , · · · , ite . It can be expressed as follows, 

ˆ 
 

i 
� ≡ ( ̂  x i q , ̂  y i q ∀ q ∈ 

˜ ˜ A � ; ˆ e p 
i 

r ′ , 
ˆ θ p i 

r ′ ∀ p ∈ P 

r , r ′ ∈ S 1 � ) . (34)

Additionally, let Z r ′ denote the set of so-called reference lev-

ls, for r ′ ∈ S 1 � , � ∈ L r , r ∈ R 

e , e ∈ E \ { E} , where the z th one is in-

luded by vector 

((π z 
q ) r ′ , (γ

z 
q ) r ′ ∀ q ∈ 

˜ ˜ A � ; (δp z ) r ′ , (τ
p z ) r ′ ∀ p ∈ P 

r , (μz ) r ′ ) , (35)

here (π z 
q ) r ′ , (γ z 

q ) r ′ and (δp z ) r ′ , (τ p z ) r ′ are the dual vectors of the

onstraints (29) and (30) , respectively, when solving the subprob-

em F r ′ ( ̂  X i 
σ (r ′ ) ) (36) - (40) , and (μz ) r ′ (45) is the constant of the cut

or the z th reference level in set Z r ′ to define the EFV curve ap-

roximation in the related immediate ancestor r -rooted subprob-

em. 

Consider again r ∈ R 

e , e ∈ E \ { E} . Let the variable λr ′ denote

he approximated value of the EFV curve λ
′ 
r ′ (·) . So, the subprob-

em (21) - (33) that defines the objective function F 
′ 

r (·) , at iteration

 , can be approximated as follows, 

 r ( ̂  X 

i 
σ (r) ) = min 

∑ 

� ∈L r 
w � [ 

∑ 

q ∈ ̃  A � 

(a q x q + b q y q ) + 

∑ 

r ′ ∈S 1 � 

w r ′ 

w � 

λr ′ ] 

+ 

∑ 

p∈P r 
(M 

p 1 

r ε
p 1 

r + M 

p 2 

r ε
p 2 

r ) (36)

ubject to 

Constraints (21) - (22) and (24) - (33) (37)
ochastic dominance risk averse measure for tactical supply chain 
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∑ 

q ∈ ̃  A � 

(a q x q + b q y q ) + 

1 

| �r ′ | λr ′ − e r 
′ p ≤ c p ∀ p ∈ P 

r , r ′ ∈ S 1 � , � ∈ L

(38)

λr ′ ≥ (μz ) r ′ + 

∑ 

q ∈ ̃ ˜ A � 

(
(π z 

q ) r ′ x q + (γ z 
q ) r ′ y q 

)
+ 

∑ 

p∈P r 

(
(δp z ) r ′ e 

p 
r ′ 

+ (τ p z ) r ′ θ
p 
r ′ 
) ∀ z ∈ Z r ′ , r 

′ ∈ S 1 � , � ∈ L r (39) 

r ′ ∈ IR ∀ r ′ ∈ S 1 � , � ∈ L r . (40) 

ote: F r ( ̂  X i 
σ (r) 

) for r = 1 is a lower bound of the solution value F 
′ 

r (. )

f model (21) - (33) , where ˆ X i 
σ (r) 

= ∅ . 

.3. SDP-ECSD algorithm 

.3.1. Forward scheme. Obtaining a feasible solution 

Let ˆ X i = ( ̂  x g , ˆ y g , ∀ g ∈ G) denote a feasible solution for the r -

ooted subproblems (36) - (40) ∀ r ∈ R 

E obtained in the forward

cheme at iteration, i , provided that εp 1 

r and εp 2 

r are small enough

 p ∈ P 

r , r ∈ R 

E , see (41) . Let also its related solution value ˆ F i be

omputed as ˆ F i = 

∑ 

g∈G w g (a g ̂  x g + c g ̂  y g ) . On the other hand, let i ∗

enote the iteration where the incumbent value has been obtained.

It is assumed that ˆ X ite is feasible if, besides satisfying the RN

nherited constraints, it also does the following constraint, 

ˆ ε p 1 

r 

e 
p ≤ ε1 and 

ˆ ε p 2 

r 

θ
p ≤ ε2 ∀ p ∈ P g , g ∈ G t , t ∈ 

˜ T , (41) 

here ˆ εp 1 

r and ˆ εp 2 

r are the violations of the ECSD bounds, and ε1 

nd ε2 are modeler-driven tolerances for still declaring feasibility.

o, those violations can be expressed as follows, 

ˆ p 
1 

r = max { ( ∑ 

ω∈ �g 

w ω ̂  e p ω ) − e 
p 
, 0 } 

ˆ p 
2 

r = max { ( ∑ 

ω∈ �g 

w ω ̂
 θ p 
ω ) − θ

p 
, 0 } , (42) 

here ˆ e 
p 
ω and 

ˆ θ p 
ω for p ∈ P g , ω ∈ �g , g ∈ G t , t ∈ 

˜ T are such that 

ˆ e p ω = max { ∑ 

q ∈ ̃  A ω 

(a q ̂  x q + b q ̂  y q ) − c p , 0 } , 

ˆ p 
ω = 1 if ˆ e p ω > 0 and, otherwise, 0 . (43) 

The feasible solution 

ˆ X ite (41) is assumed to improve the in-

umbent solution if the following testing is positive, 

( ̂ F i 
∗ − ˆ F ite ) 

ˆ F i ∗
> ε3 , (44) 

here ε3 is a positive tolerance. 

.3.2. Backward scheme. Refining the EFV curves for improving the 

ariable λr ′ estimation 

The mechanism in the backward scheme for refining the EFV

ariable λr ′ (39) at iteration ite of SDP-ECSD follows the steps

resented in Escudero et al. (2015) but, now, considering the pro-

les in set P 

r , and the reference levels (35) in Z r ′ , for r ′ ∈ S 1 � , � ∈
 r , r ∈ R 

e , e ∈ E \ { E} , instead of its expected aggregation vectors
z 
� , π

z 
q , γ

z 
q and δp z 

� 
, τ p z 

� 
over the related r ′ -vectors. 

The backward scheme aims to refine the EFV curves in the r -

ooted subproblems (36) - (40) by appending to the subproblems a

et of multicuts (39) (as many as 
∑ 

� ∈L r |S 1 � | ). For that purpose, let

ite 3 be a modeler-driven parameter to denote the number of r ′ -
ooted subproblems to be solved, for r ′ ∈ S 1 � , � ∈ L r . The rhs of the
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
onstraint system (29) - (30) is the solution vector ˆ X i � (34) obtained

n the forward scheme at iteration i , for i = ite − nite 3 + 1 , · · · , ite .

s by-products of the solution of the r ′ -rooted subproblems for

ach rhs, the reference levels (35) for z = |Z r ′ | + i are the elements

f the new cuts (39) to be appended to the r -rooted subproblem

36) - (40) . Constant (μz ) r ′ can be computed as follows by using

trong duality and Taylor’s expansion, 

(μz ) r ′ = F r ( ̂  X 

i 
� ) −

∑ 

q ∈ ̃ ˜ A � 

(
(π z 

q ) r ′ ˆ x i q + (γ z 
q ) r ′ ˆ y i q 

)

+ 

∑ 

p∈P r 

(
(δp z ) r ′ ˆ e p 

i 

r ′ + (τ p z ) r ′ ̂  θ p i 

r ′ 
)
. (45) 

Observe the high number of cuts that could be appended to the

oot node r -rooted subproblem (as many as nite 3 
∑ 

� ∈L r |S 1 � | ). So, a

echanism should be considered for removing non-active cuts. A

easonable criterion is as follows: A cut (39) is removed from the

ubproblem provided that it has been non-active in the forward

cheme of the last, say, nite 1 consecutive iterations (including the

urrent one, ite ). The expression for declaring non-active the z th-

ased cut, for z ∈ Z r ′ , r ′ ∈ S 1 � , � ∈ L r , is as follows, 

r ′ −
[
(μz ) r ′ + 

∑ 

q ∈ ̃ ˜ A � 

(
(π z 

q ) r ′ ˆ x i q + (γ z 
q ) r ′ ˆ y i q 

)

+ 

∑ 

p∈P r 

(
(δp z ) r ′ ˆ e p 

i 

r ′ + (τ p z ) r ′ ̂  θ p i 

r ′ 
)]

> ε4 . (46) 

here ε4 is a positive tolerance. Notice P 

r = P r for r = 1 . Note: By

onstruction, nite 1 = 0 means that the cut-removing strategy is not

sed. 

The SDP-ECSD matheuristic is formally presented in

lgorithm 1 . 

In Step 1 the forward scheme is executed at the current itera-

ion ite , such that the subproblem F r ( ̂  X ite 
σ (r) 

) (36) - (40) for r ∈ R 

e , e ∈
is solved. Additionally, the EFV non-active cut testing (46) is per-

ormed. Notice that node r = 1 has not any ancestor one. For iter-

tion ite > 1 the mechanism (46) for removing the non-active cuts

39) is used. 

The algorithm’s execution is stopped in Step 2 of iteration ite

f the modeler-driven upper bound, say, mite on the number of it-

rations is reached, or the modeler-driven upper bound, say, nite 2 

n the number of consecutive iterations without incumbent solu-

ion improvement has been reached. Let also the modeler-driven

ndicator first be such that if it is equal to ′ Y ′ then only the first

easible solution is required; otherwise, f irst = 

′ N 

′ . 
In Step 3 the backward scheme generates a nite 3 -cardinality

ulticut (39) in current iteration ite for r ′ ∈ S 1 � , � ∈ L r , r ∈
 

e −1 , e ∈ E \ { 1 } . The solution vectors ˆ X i � (34) obtained in the for-

ard scheme in the set of the previous nite 3 iterations { i } are to

e used for generating the multicut. Notice that each of those so-

utions is used for fixing the rhs of the constraint system (29) - (30)

n the related r ′ -rooted subproblem (36) - (40) to be solved in the

ackward scheme in iteration ite . So, for nite 3 = 1 , only the mul-

icut based on the solution 

ˆ X ite 
� is generated. The multicut is ap-

ended to the immediate ancestor r -rooted subproblem (36) - (40) ,

or r ∈ R 

e −1 , e ∈ E \ { 1 } . 
The meaning of the stopping indicators is as follows: stop1 , the

rst feasible has been obtained for indicator f irst = 

′ Y ′ ; stop2 , the

aximum allowed number of iterations mite has been reached;

nd stop3 , the maximum allowed number of iterations nite 2 with-

ut incumbent solution improvement has been reached. 
ochastic dominance risk averse measure for tactical supply chain 

), http://dx.doi.org/10.1016/j.cor.2017.07.011 
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Algorithm 1 SDP-ECSD for the tolerances ε1 , ε2 , ε3 and ε4 , the cut 

removing parameter nite 1 , the stopping parameters mite and nite 2 , 

the multicut generation parameter nite 3 , and the indicator first . 

Step 0: (Initialization) 

Set Z r ′ := ∅ ∀ r ′ ∈ R 

e , e ∈ E , ite := 1 , i ∗ := 0 , nonact := 0 , 

noimpr := 0 , e := 1 . 

Step 1: (Forward scheme: On solving the lexicographically or- 

dered subtree induced subproblems) 

For e = 1 , · · · , E: For r ∈ R 

e : 

Solve subproblem F r ( ̂  X ite 
σ (r) 

) (36)-(40).Output: ˆ X ite 
� (34) ∀ � ∈ 

L r . 

If ite > 1 and e < E and the EFV non-active cut testing (46) 

is negative for z ∈ Z r ′ , r ′ ∈ S 1 � , � ∈ L r then; nonact := 0 ; oth- 

erwise: 

Update nonact := nonact + 1 and if nonact = nite 1 then reset 

Z r ′ := Z r ′ \ { z} . Enfor r. Enfor e . 

Step 2: (Stopping criteria testing) 

If the solution vector ˆ X ite is not feasible (i.e., it does not sat- 

isfy (41)) then go to Step 2.1. 

If ite = 1 or the incumbent solution improvement testing 

(44) is positive then: 

If f irst = 

′ Y ′ then stop1 , i ∗ := ite , noimpr = 0 and go to 

Step3. 

Step 2.1: 

If ite ≥ mite then stop2 . 

Update noimpr := noimpr + 1 , if noimpr = nite 2 then stop3 . 

Step 3: (Backward scheme: Approximating the EFV curves in 

the lexicographically ordered subtree induced subprob- 

lems) 

For e = E, · · · , 2 : For r ∈ R 

e −1 : For � ∈ L r : For r ′ ∈ S 1 � : 

Set local vector Z 

′ := ∅ . 
For i = max { ite − nite 3 + 1 , 1 } , · · · , ite : 

Set z ′ := |Z r ′ | + i and update Z 

′ := Z 

′ ∪ { z ′ } . 
Solve subproblem F r ′ ( ̂  X i 

σ (r ′ ) ) (36)-(40).Output: The duals of 

the new z ′ th reference level (35). 

Compute constant (μz ′ ) r ′ (35) so that the z ′ th EFV cut (39) 

is generated. 

Append the new cut to the r-rooted subtree induced sub- 

problem (36)-(40). 

Enfor i . 

Update Z r ′ := Z r ′ ∪ Z 

′ . 
Enfor r ′ . Enfor � . Enfor r. Enfor e . 

Step 4: (Iteration ending) 

Update ite := ite + 1 and go to Step 1. 

Table 1 

TSCP instances’ dimensions. 

ID |J E| |J S| |J | |D| |IR | |I| |R| |F| | H r | 

M1 2 3 5 3 5 8 10 7 1 

M2 2 3 5 3 5 8 10 7 1 

M3 4 6 10 6 10 16 20 7 1 

M4 4 6 10 6 10 16 20 7 1 

M5 2 3 5 3 5 8 10 4 3 

M6 2 3 5 3 5 8 10 4 3 

M7 4 6 10 6 10 16 20 4 3 

M8 4 6 10 6 10 16 20 4 3 

L1 10 20 30 15 40 60 20 7 1 

L2 10 20 30 15 40 60 20 7 1 

L3 10 20 30 30 40 60 25 7 1 

L4 10 20 30 30 40 60 25 7 1 
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. Computational experience 

.1. Introduction 

In this section the performance of the RN STSCP model (1) - (16) ,

ynthesized in model (17) , is illustrated as well as the risk averse

odels TSD (18) and ECSD (19) . Two testbeds sets are considered

n the experiment with 8 instances the first one and 4 instances

he other one. The main goal of the experiment consists of em-

irically proving that tactical supply chain planing problems re-

uire very large formulations even for small to medium instances

s those in Testbed 1. In order to do so, computational complex-

ty results for the RN measure are shown using both solution ap-

roaches, namely, the SDP-ECSD matheuristic and the plain use of

he MIP solver CPLEX v12.5 ( CPLEX optimizer user manual, 2013 ).

t is shown that the former outperforms the latter in elapsed time,

hich reaches the imposed time limit (2h) in 11 out of the 12 test

nstances. Based on those results, CPLEX is only used as the MIP

olver in the computational testing of the risk averse measures for

ubproblems arising in the matheuristic. The second goal consists

f illustrating the cost risk reduction of the ECSD and TSD mea-

ures as well as showing the violations of the ECSD risk reduction

onstraints by the TSD and RN solutions. 

The experiment was conducted on a PC with a 2.5 GHz dual-

ore Intel Core i5 processor, 8 Gb of RAM and the operating system

as OS X 10.9. For plain use of CPLEX the optimality tolerance is

et to 0.001. The parameters of the strategies for SDP-ECSD that

ave been used in the experiment are as follows: nit e 1 = 0 , nit e 2 =
00 , nite 3 = 1 , f irst = 

′ N 

′ , mite = 200 , ε1 = 10 −6 , ε2 = 10 −6 , ε3 =
 and ε4 is not used. 

The reporting of the main results of our computational ex-

erience is organized as follows: Section 6.2 presents the two

estbeds of randomly generated instances of the realistic tacti-

al supply chain planning problem we have experimented with.

ections 6.3 and 6.4 report the results of using the matheuristic

DP-ECSD for solving the risk averse measures ECSD (19) and TSD

18) , respectively. And Section 6.5 is devoted to the computational

omparison of plain CPLEX and the matheuristic for solving the RN

odel (17) . 

.2. The test instances 

The instances in the experiment are identified as Mm , m =
 , . . . , 8 in Testbed 1 and Lm , m = 1 , . . . , 4 in (larger) Testbed 2.

able 1 shows the instances’ dimensions. The headings are as fol-

ows: |J E| , number of end-products; |J S| , number of subassem-

lies; |J | , number of products; DS, number of demand markets;

IR | , number of raw materials; |I| , number of components; |R| ,
umber of resources; | F |, number of segments in the piecewise

inear concave supplying commitment cost function for each raw

aterial; and |H r | , number of segments in the resource capacity

xpansion in set R 2 for instances M 1 to M 4 and L 1 to L 4 and sets

 

e for e = 1 , 2 for instances M 5 to M 8. 

It can be observed in Table 1 that instances M 5 to M 8 are, ba-

ically, as instances M 1 to M 4, but changing parameters in the ob-

ective function and the constraint system. Another important dif-

erence lies in the type of resources to consider. Instances M 5 to

 8 allow resources of type R e , for capacity expansion in each stage

 = 1 , 2 , instead of type R 2 as in instances M 1 to M 4 and L 1 to L 4

hat allow capacity expansion in each period along the time hori-

on. In fact, set R e allows in the experiment three segments in the

esources capacity expansion in the set of nodes in the scenario

ree related to the first period of concerned stage e , and that ex-

ansion can be used along the nodes until the end of the stage. On

he contrary, set R 2 allows one segment in the resources capacity

xpansion at each node in the scenario tree, and that expansion
ochastic dominance risk averse measure for tactical supply chain 

), http://dx.doi.org/10.1016/j.cor.2017.07.011 
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Table 2 

STSCP models’ dimensions. 

Scenario tree RN model TSD model ECSD model 

ID St ruct ure T t ∗ |G t ∗ | |G| | �| nc n 01 nS 2 m nc n 01 nS 2 m nc n 01 nS 2 m 

M1 2 4 2 4 8 5 16 255 128 9005 2560 35 15119 9261 2816 35 15635 9261 2816 35 15695 

M2 2 4 2 5 9 5 16 511 256 17965 5120 35 30223 18477 5632 35 31251 18477 5632 35 31311 

M3 2 4 2 4 8 5 16 255 128 17882 5120 70 30110 18138 5376 70 30626 18138 5376 70 30686 

M4 2 4 2 5 9 5 16 511 256 35674 10240 70 60190 36186 10752 70 61218 36186 10752 70 61278 

M5 2 4 2 4 8 5 16 255 128 9005 2900 20 15459 9261 3156 20 15975 9261 3156 20 16035 

M6 2 4 2 5 9 5 16 511 256 17965 5460 20 30563 18477 5972 20 31591 18477 5972 20 31651 

M7 2 4 2 4 8 5 16 255 128 17882 5800 40 30450 18138 6056 40 30966 18138 6056 40 31026 

M8 2 4 2 5 9 5 16 511 256 35674 10920 40 60530 36186 11432 40 61558 36186 11432 40 61618 

L1 2 4 2 4 8 5 16 255 128 56808 17870 280 89848 57064 18126 280 90364 57064 18126 280 90424 

L2 2 4 2 5 9 5 16 511 256 113256 35790 280 179576 113768 36302 280 180604 113768 36302 280 180664 

L3 2 4 2 4 8 5 16 255 128 72168 17875 280 98808 72424 18131 280 99324 72424 18131 280 99384 

L4 2 4 2 5 9 5 16 511 256 143976 35795 280 197496 14 4 488 36307 280 198524 14 4 488 36307 280 198584 
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Table 3 

ECSD model (19) solved with the SDP-ECSD matheuristic. 

ID objval ECSD objval Op t ECSD ite nprob dev ECSD % c 1 e 
1 θ

1 
c 2 e 

2 θ
2 

M1 576767 460675 1206 56 952 0.35 489634 24888 0.51 544038 10880 0.25 

M2 604267 456308 2405 51 867 −2.23 517328 25866 0.32 574809 18195 0.19 

M3 169701 167102 179 25 425 0.23 177052 25994 0.76 196724 3934 0.25 

M4 191791 190269 2005 49 833 −0.07 189406 13553 0.76 210451 4209 0.25 

M5 942335 887436 70 13 221 46.46 535116 42932 0.56 602740 16674 0.38 

M6 686788 534198 2329 51 867 1.43 543194 27159 0.6 603549 19105 0.32 

M7 1655257 1484588 1031 25 425 34.64 1260 0 0 0 1050 0 0 0.83 1470 0 0 0 52500 0.48 

M8 1435342 1190273 10703 74 1258 8.67 11550 0 0 1050 0 0 0.82 13650 0 0 52500 0.43 

L1 375127 364232 21065 200 3400 3.53 389681 41299 0.5 405091 10081 0.15 

L2 215544 229286 25032 200 3400 0.14 302316 12092 0.4 335907 5374 0.15 

L3 253152 246722 22103 200 3400 14.03 278247 58458 0.4 309164 14598 0.15 

L4 431792 428498 19403 200 3400 6.92 544140 27207 0.51 604600 12092 0.13 

Table 4 

TSD model (18) solved with the SDP-ECSD matheuristic. 

ID objval TSD t TSD ite nprob dev TSD % v ( e 1 T SD ) % v ( θ
1 

T SD ) % v ( e 2 T SD ) % v ( θ
2 

T SD ) % 

M1 572235 2549 77 1309 −0.44 73 0 74 50 

M2 605184 4004 72 1224 −2.08 36 186 20 400 

M3 169290 761 70 1190 −0.01 0 32 0 300 

M4 191001 5573 100 1700 −0.49 0 32 0 300 

Table 5 

RN model (17) solved with CPLEX and the SDP-ECSD matheuristic. 

CPLEX SDP-ECSD 

ID objval IP t IP OG % objval RN t RN ite nprob GG % v ( e 1 RN ) % v ( θ
1 

RN ) % v ( e 2 RN ) % v ( θ
2 

RN ) % 

M1 562705 3074 0.10 574783 12 15 255 2.15 102 0 127 50 

M2 592726 7200 0.38 618020 15 15 255 4.27 86 74 40 67 

M3 168066 7200 0.32 169308 38 18 306 0.74 0 15 44 50 

M4 189810 7200 0.45 191934 65 24 408 1.12 131 32 165 200 

M5 616644 7200 0.20 643412 113 20 340 4.34 153 0 24 0 

M6 641666 7200 0.43 677103 351 25 425 5.52 137 0 53 0 

M7 1207170 7200 0.04 1229357 638 35 595 1.84 57 0 0 200 

M8 1245789 7200 0.45 1320940 1032 37 629 6.03 104 10 8 0 

L1 358305 7200 0.62 362350 1409 76 1292 1.13 0 25 0 0 

L2 212922 7200 1.14 215236 3884 72 1224 1.09 52 9 4 25 

L3 218343 7200 0.72 221997 5032 200 3400 1.67 0 88 0 150 

L4 398303 7200 0.28 403833 8055 200 3400 1.39 0 96 0 700 
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can only be used in that node. Another important difference lies

in the number of segments in the raw material supplying commit-

ment cost function. All together it can be seen in Tables 3 and 5 the

high impact in the objective function and computational effort that

is required by using one or the other type of instances. 

Table 2 presents the structure of the scenario tree for each in-

stance as well as the dimensions of the three stochastic formula-

tions. The set of periods, T , has been split in two stages for the re-

source set R e , e = 1 , 2 , and, in any case, for problem solving by the

matheuristic SDP-ECSD. The first column of the table is the identi-

fier of the instance, and the second one gives the predefined struc-

ture A 

B 1 
1 

A 

B 2 
2 

of the scenario tree, where A i denotes the number of

children each node in stage i has and B i denotes the number of

periods in stage i . The period subset ˜ T is a singleton and t ∗ ∈ 

˜ T ,
where t ∗ is the period defining the groups of scenarios for cost

risk reduction in the ECSD measure. The headings of the columns

for the dimensions of the models are as follows: nc , number of

continuous variables; n 01, number of 0–1 variables; nS 2, number

of S2 variables; and m , number of constraints. 

The risk reduction on the TSCP cost is to be performed by con-

sidering two profiles for testing each of the risk reduction mea-

sures, namely TSD (18) and ECSD (19) . The first period of the sec-

ond stage, t ∗, has been chosen in ECSD model for deciding the

set of scenario groups where the cost risk reduction is to be per-

formed. So, the additional number of constraints with respect to

p  

Please cite this article as: L.F. Escudero et al., On the time-consistent st
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N model (17) is 4 | �| + 4 |G t ∗ | . And the additional number of the

 -continuous variables (cost excess over the thresholds) and 0–1

-variables (probability of failure on satisfying the thresholds) is

| �| for each one. 

On the other hand, the whole set of scenarios in the last pe-

iod of the second stage (see Section 6.4 ) has been chosen in the

SD model for deciding where the cost risk reduction is to be per-

ormed. So, the additional number of constraints with respect to

N model (17) is 4 | �| + 4 , and the additional number of the e -

ontinuous and 0–1 θ-variables for each type is the same as for

CSD. 

It is worth to point out that the TSD measure performs the cost

isk reduction for the whole set of scenarios as an entity and, on

he contrary, the ECSD one does it for each group of scenarios. 

.3. Computational complexity of the ECSD measure 

The testing of the computational complexity for the ECSD mea-

ure (19) is carried out by using the two testbeds as for the RN

easure (see Section 6.5 ). In this experiment the modeler-driven

eriod t ∗ has been chosen for deciding the scenario groups in G t ∗
o perform the TSCP cost risk reduction. 

The results for solving ECSD model (19) by matheuristic SDP-

CSD can be found in Table 3 . It shows the three items of the

rofiles, namely (c p , e p , θ
p 
) , for p = 1 , 2 in the ECSD measure for
ochastic dominance risk averse measure for tactical supply chain 
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(  
ach scenario group g in set G t ∗ . The maximum cost allowed c g 
as been set up to a big enough value. Some other headings are

s follows: objval ECSD and t ECSD , ESCD (incumbent) value and re-

ated elapsed time (in seconds); and objval Op , operational TSCP

ost that results by subtracting the supplying cost 
∑ 

i ∈IR sc i of the

aw material cost from the ECSD value objval ECSD (1) . Notice that

he raw material cost is due to the commitment made at the

eginning of the time horizon for its supplying along the time

orizon. (So, it is assumed that the modeler-driven risk reduc-

ion is only performed on the operational cost). The other head-

ngs are as follows: dev ECSD %, deviation of the ESCD cost from

he RN one (see Table 5 ), expressed as de v ECSD % = (ob jv al ECSD −
b jv al RN ) /ob jv al RN % ; ite , number of iterations that have been per-

ormed by the matheuristic; nprob , number of MIP subproblems

21) - (33) that have been solved by the whole set of iterations; and

he last block of columns in Table 3 gives the threshold c p , and the

ounds e p and θ
p 

for p = 1 , 2 that have been considered in the

odel. 

Notice the deterioration dev ECSD % of the expected TSCP total

ost in the ECSD model (while satisfying the risk reduction strat-

gy in the operational cost along the time horizon) with respect to

he expected TSCP total cost in the RN model. It is usually posi-

ive, in fact, it is 14.03% in instance L 3, 34.64% in M 7 and 46.46%

n M 5. However, sometimes it is negative, in fact, it is -2.33% M 2

nd -0.07% in M 4. Those latter results could be due to the heuris-

ic character of the approach, but there is also another important

eason that is explained at the end of Section 6.5 . Observe also in

he table the high computational effort (measured in the elapsed

ime) that is required to obtain the ECSD solution. 

.4. Computational results for TSD risk averse measure 

The testing of the computational complexity of SDP-ECSD for

he TSD measure (18) is carried out by using the instances M 1

o M 4. As said above, the cost risk reduction is performed on

he same set of profiles as considered for the ECSD measure in

ection 6.3 . The results can be found in Table 4 . The first block

f headings is as follows: objval TSD and t TSD , TSD value (for the

hosen group of scenarios, i.e., set �) and related elapsed time

in seconds); ite , number of iterations; nprob , number of solved

IP subproblems; and dev TSD %, deviation of the TSD value from

he RN value (see Table 5 ), expressed as de v T SD % = (ob jv al T SD −
b jv al RN ) /ob jv al RN %. 

Notice that TSD model (18) is less restrictive than ECSD model

19) for a case as ours where the parameters of the profiles are

xactly the same for both models. Observe that the TSD measure

atisfies the cost risk reduction bounds for the whole set of sce-

arios in a given period (in our case, the last one in the time hori-

on). However, it does not imply, at all, that those bounds are sat-

sfied by each of the groups of scenarios that are considered for the

CSD measure. See in Table 4 the violation of the cost risk reduc-

ion ECSD bounds incurred by the TSD solution. The last block of

olumns reports the expected violations v ( e p 
T SD 

) (47) and v ( θ
p 

T SD )

48) of the ECSD bounds e p and θ
p 

for p = 1 , 2 . Let ˆ x q and ˆ y q de-

ote the values of the vectors of variables x q and y q in the solution

f the TSD model (18) . 

 ( e 
p 
T SD ) = 

v (e p 
T SD 

) 

e 
p % where 

 (e p 
T SD 

) = 

∑ 

g∈G t ∗
w g 

( ∑ 

ω∈ �g 

w ω ̂  e p ω − e 
p 
)

+ and 

ˆ e p ω 

= 

( ∑ 

q ∈ ̃  A ω 

(a q ̂  x q + b q ̂  y q ) − c p 
)

+ (47) 
v  
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nd 

 ( θ
p 

T SD ) = 

v (θ p 
T SD 

) 

θ
p % where v (θ p 

T SD 
) 

= 

∑ 

g∈G t ∗
w g 

( ∑ 

ω∈ �g 

w ω ̂
 θ p 
ω ) − θ

p )
+ , (48) 

here (. ) + ≡ max { ., 0 } . Observe in Table 4 that, generally, those vi-

lations are high, although they are equal to zero for some in-

tances. 

Notice that the elapsed time required for providing the TSD so-

ution is one to two orders of magnitude higher than the time

equired for the RN solution, see Table 5 . On the other hand, al-

hough the ECSD model (19) has more constraints than the TSD

odel (18) , the latter is more difficult to solve than the former by

ur SDP-ECSD algorithm. The methodology distributes the cost risk

eduction bounds e p - and θ
p 

in a subproblem among its immedi-

te successor ones at any iteration. So, SDP-ECSD is not an ideal

cheme for risk reduction measures where those bounds have to

e distributed among many subproblems. However, since the num-

er of successor subproblems for each scenario group with a one-

o-one correspondence with the root nodes in G t ∗ is smaller than

 �|, then, by construction, matheuristic SDP-ECSD is more efficient

or ECSD with t ∗ > 1 than for TSD with t ∗ = 1 . 

.5. Computational complexity for RN measure 

In this section the performance results of the plain use of CPLEX

nd SDP-ECSD are reported for solving the RN model (17) in the

wo testbeds whose dimensions have been given in Table 1 . The

esults are shown in Table 5 . The first column refers again to the

dentifier of the instance. The following three columns reports the

PLEX results, where objval IP is the RN value, t IP is the elapsed

ime (in seconds) to obtain it, and OG % is its optimality gap (in%).

he smallest instance M1 gives a solution that satisfies the op-

imality tolerance but requires 51 minutes (approx.), mainly due

o the S2 variables in the raw material piecewise linear supply-

ng commitment cost functions. The optimization of the other in-

tances reaches the allowed time (2h) without proving the 0.1%-

ptimality of the solution. 

Another block of columns in Table 5 reports the SDP-ECSD re-

ults. The headings are as follows: objval RN and t RN , RN solution

alue and related elapsed time (in seconds); ite , number of itera-

ions; nprob , total number of MIP subproblems solved; and GG %,

oodness gap, i.e., the deviation of the solution value obtained by

he matheuristic from the value obtained by CPLEX, expressed as

G % = (ob jv al RN − ob jv al IP ) /ob jv al IP %. First, we can observe that,

enerally, the elapsed time that is required by SDP-ECSD is very

mall and, on the other hand, the goodness gap of its RN value

ersus the one provided by CPLEX is not too-high (it goes form

.74% to 6.03%). Anyway, that gap could be smaller (at the price of

igher elapsed time), provided that the CPLEX optimality tolerance

sed in the matheuristic is reduced from 0.05 to, say, 0.01 (while

he number of iterations is being increased). Notice that the SDP-

CSD elapsed time of the instances included in Testbed 1 is one

o two orders of magnitude smaller than the CPLEX time, but M8

here the former is 11.87% of the latter. Observe also that CPLEX

eaches the time limit (2h) in 11 out of the 12 instances we have

xperimented with, while the matheuristic requires more than 2h

n only one instance. 

The final block of columns in Table 5 reports the violation of the

CSD risk reduction bounds e p and θ
p 

incurred by the RN value

btained by SDP-ECSD, being those bounds v ( e p 
RN 

) (49) and v ( θ
p 

RN )

50) , respectively, for the profiles p = 1 , 2 . Let ˆ x q and ˆ y q denote the

alues of the vectors of variables x q and y q in the solution of the
ochastic dominance risk averse measure for tactical supply chain 
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RN model (17) , respectively. 

v ( e p RN ) = 

v (e p 
RN 

) 

e 
p % where 

v (e p 
RN 

) = 

∑ 

g∈G t ∗
w g 

( ∑ 

ω∈ �g 

w ω ̂  e p ω − e 
p 
)

+ and 

ˆ e p ω 

= 

( ∑ 

q ∈ ̃  A ω 

(a q ̂  x q + b q ̂  y q ) − c p 
)

+ (49)

and 

v ( θ
p 

RN ) = 

v (θ p 
RN 

) 

θ
p % where v (θ p 

RN 
) = 

∑ 

g∈G t ∗
w g 

( ∑ 

ω∈ �g 

w ω ̂
 θ p 
ω − θ

p )
+ . 

(50)

Notice that the higher the violations, the higher the solution’s risk

of having a high TSCP cost in non-wanted scenarios. It can be con-

firmed in Table 5 , where it is shown that there are 68.74% viola-

tions of the ECSD bounds (many of them with high values). Fre-

quently, the price paid (see column dev ECSD % in Table 3 ) for satisfy-

ing those bounds is also high. 

By comparing the solution values objval ECSD and objval RN in

Tables 3 and 5 , respectively, we can observe that the deterioration

of the former with respect to the latter is sometimes negative. It

could be due to the heuristic character of the approach. Notice that

the elapsed time required by the matheuristic for solving the ECSD

model (19) is much greater than the time required for solving the

RN model (17) . It confirms the common knowledge, namely the

stochastic dominance strategies are computationally much harder

than the RN one (requiring an elapsed time that is one to two or-

ders of magnitude higher than the time required for obtaining the

RN solution). It is due to the cross scenario constraints for satisfy-

ing the risk reduction measure. Notice that, probably, CPLEX could

not even solve the ECSD model, since it could not do it for the RN

one. 

Observe also in Tables 4 and 5 that the TSD model (18) requires

more iterations and elapsed time than the RN model (17) , It con-

firms the above statement but, contrary to what we could expect,

the deviation dev TSD is negative. The negative values of dev ECSD in

Table 3 and dev TSD in Table 4 could be due to the heuristic character

of the proposed approach. However, there is another strong reason,

specifically for the cases (very valid ones) where the risk reduction

is not performed over the objective function as a whole, but only

over the operational cost. Note that, in the experiment under con-

sideration, the thresholds c 1 and c 2 are for the operational cost in-

stead for the full cost function. The pressing for that risk reduction

may induce a decrease on the raw material supplying commitment

cost. 

7. Conclusions 

A modeling scheme for dynamic tactical supply chain planning

under uncertainty is presented. It is modeled with full recourse in

a multi-period scenario tree. The model is a stochastic version of a

real-life multi-period deterministic mixed 0–1 problem with large

sized instances. It appears in the car, computer and domestic ap-

pliances assembly sectors, among others. In any case, the presence

of 0–1 variables is very frequent for modeling the either-or deci-

sions as well as for implementing the risk averse measures under

consideration. Another element in real-life problems is the piece-

wise linear concave and nondecreasing function of the supplying

commitment raw material cost. Its modeling by using S2 sets in-

troduce a high difficulty in the model solving mainly for large sized

stochastic models. Additionally, the model considers what today

is a policy in industry, namely no warehouses are encouraged for

subassembly and end-product stocking, although some stocking is
Please cite this article as: L.F. Escudero et al., On the time-consistent st

planning under uncertainty, Computers and Operations Research (2017
llowed in the plants; even the burden of raw material stocking is

ransferred to the suppliers. 

A time consistent risk averse measure, so-called expected

tochastic dominance (ECSD) has been introduced in this work for

isk management in multi-period stochastic mixed 0–1 programs.

t is a mixture, see model (19) , of (time-inconsistent) two-stage

easures existing in the literature, namely, first- and second-order

tochastic dominance functionals. However, the measure has been

xpanded in this work to the multistage setting with the cost risk

eduction being performed in modeler-driven groups of scenarios

n chosen periods along the time horizon. And, so, the time con-

istency property of the new measure is guaranteed. The modeling

f the proposed measure requires to consider groups of cross sce-

ario constraints (as many groups as the number of nodes in the

odeler-driven period subset), such that the nice structure of the

cenario tree based constraints is destroyed. And, so, typical de-

omposition algorithms cannot handle in an affordable comput a-

ional effort for solving large sized instances. A specialized version,

o-called SDP-ECSD, of our matheuristic SDP ( Escudero et al., 2015 )

as been proposed for problem solving. 

A computational experiment has been carried out for assessing

he validity of the risk reduction approach as opposed to the risk

eutral (RN) one. The problem sizes that are considered in the ex-

eriment vary from medium to real-life dimensions and, so, they

re up to 10 end-products, 20 subassemblies, 40 raw materials, 30

arkets, 25 resources, 9 periods (related to a three month time

orizon) and 256 scenarios in the tree. The RN model (17) has

p to 20 0,0 0 0 (approx) constraints, 350 0 0+ 0-1 variables, 140 0 0 0+

ontinuous variables and 280 S2 variables. On the other hand, the

CSD risk reduction measure considers two profiles for each of

he modeler-driven 16 groups where the scenarios have been dis-

ributed. So, besides the dimensions that are inherited from the RN

odel, the ESCD model (19) has up to 1088 constraints, 512 0-1

ariables and 512 continuous variables. The RN solution obtained

y plain use of CPLEX has a good optimality gap (from 0.10% to

.14%), and the matheuristic SDP-ECSD has a reasonable goodness

ap (from 0.74% to 6.03%) while comparing it with CPLEX. The lat-

er one is stopped when reaching the 2h elapsed time limit in 11

ut of 12 instances and, by contrary, the former requires a much

maller elapsed time (from 12 to 5032 seconds) in 11 out of 12 in-

tances. On the other hand, the ECSD model is very much difficult

o solve, due to the tight risk reduction policy for the TCSP oper-

tional cost. Notice that the RN model violates 32 out of the 48

ounds (each one by a high value) on the cost risk reduction pro-

les. The model was unaffordable for plain use of CPLEX. On the

ontrary, SDP-ECSD satisfies all of those constraints, but at a cost

ncrease from −2.3% (notice that it is a matheuristic approach) to

6.46% over the RN model, and the elapsed varies from 1 min to

 h. Although the conclusions to draw from those results are still

rovisional, it seems that the proposal made in this work is a po-

ential good approach for dealing with the very difficult real STSCP

roblem. 

As a future research we are planning to consider to jointly mod-

ling the time-consistent ECSD measure (that has obvious advan-

ages) and the time-inconsistent TSD measure. The reason is that

he latter performs, in a direct way, cost risk reduction for inter-

ediate periods of the time horizon. So, it could be very attractive

or decision-makers while planning for a long enough time hori-

on. And, then, the SDP-ECSD algorithmic modifications are a chal-

enge to work on. 
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