

UNIVERSIDAD MIGUEL HERNÁNDEZ

Programa de Doctorado en Biología Molecular y Celular

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (<u>IDiBE</u>)

DESCUBRIMIENTO Y CARACTERIZACIÓN DE LA ACTIVIDAD ANTIVIRAL INDUCIDA POR LAS MOLÉCULAS TIPO CRP DE PEZ CEBRA (DANIO RERIO)

TESIS DOCTORAL

Melissa Belló Pérez

DIRECTOR

Luis Pérez García-Estañ

CODIRECTOR

Alberto Falcó Graciá

PREFACIO

La memoria correspondiente a la presente tesis doctoral se presenta **con un compendio de publicaciones**. A continuación se detallan las publicaciones científicas que constan en este documento:

Publicación 1. Bello-Perez M, Falco A, Medina R, Encinar JA, Novoa B, Perez L, et al. Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. Dev Comp Immunol. 2017;69:33-40. doi: 10.1016/j.dci.2016.12.001. PubMed PMID: 27965017.

Publicación 2. Bello-Perez M, Falco A, Medina-Gali R, Pereiro P, Encinar JA, Novoa B, et al. Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Molecular immunology. 2017;91:145-55.

Publicación 3. Bello-Perez M, Falco A, Novoa B, Perez L, Coll J. Hydroxycholesterol binds and enhances the anti-viral activities of zebrafish monomeric c-reactive protein isoforms. PloS one. 2019;14(1):e0201509.

***Publicación 4.** Bello-Perez M., Pereiro P, Coll J, Novoa B, Perez L, Falco A. Zebrafish Creactive protein isoforms inhibit SVCV replication by blocking autofagy through the interaction with cell membrane cholesterol. Autophagy. **Enviado*.

Publicación 5. Bello-Perez M, Falco A, Galiano V, Coll J, Perez L, Encinar JA. Discovery of nonnucleoside inhibitors of polymerase from infectious pancreatic necrosis virus (IPNV). Drug Des Devel Ther. 2018;12:2337-59. doi: 10.2147/DDDT.S171087. PubMed PMID: 30104863; PubMed Central PMCID: PMCPMC6072831.

Publicación 6. Bello-Perez M, Medina-Gali R, Coll J, Perez L. Viral interference between infectious pancreatic necrosis virus and spring viremia of carp virus in zebrafish. Aquaculture. 2019;500:370-7.

La presente tesis doctoral se ha desarrollado en el Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) de la Universidad Miguel Hernández (UMH), bajo la dirección de los doctores Luis Pérez Garcia-Estañ y Alberto Falcó Graciá, con el **apoyo de una beca para la contratación de personal investigador de carácter predoctoral de la Comunidad Valenciana (identificación ACIF/2016/207) y el Fondo Social Europeo (FSE) 2014-2020**. Siguiendo la normativa interna de la UMH, la memoria consta de los siguientes apartados:

- 1. Resumen
- 2. Introducción general
- 3. Objetivos, antecedentes y sistema modelo
- 4. Resumen de los resultados obtenidos
- 5. Discusión global
- 6. Conclusiones
- 7. Bibliografía
- 8. Compendio de publicaciones
- 9. Anexo 1 (material no publicado presente en la tesis)
- 10. Anexo 2 (indicios de calidad extra)

D. Luis Pérez García-Estañ, Profesor Titular de la Universidad Miguel Hernández, y D. Juan Alberto Falcó Graciá, doctor en el Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche de la Universidad Miguel Hernández,

CERTIFICAN:

Que el trabajo de investigación para optar al título de doctor, titulado: "Descubrimiento y caracterización de la actividad antiviral inducida por las moléculas tipo CRP de pez cebra (*Danio rerio*)", del que es autora Melissa Belló Pérez, ha sido realizado bajo su dirección en el Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche de la Universidad Miguel Hernández.

INIVERSITAS Miguel Hermände:

Para que conste y surta los efectos oportunos, firman el presente certificado en Elche, a de de 2019.

Fdo: Dr. Luis Pérez García-Estañ Director Fdo: Dr. Juan Alberto Falcó Graciá Codirector

Dr. Ricardo Mallavia, Catedrático del Departamento de Química Inorgánica de la Universidad Miguel Hernández y coordinador del Programa de Doctorado en Biología Molecular y Celular del Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, de la Universidad Miguel Hernández (UMH).

CERTIFICA que la doctoranda Melissa Belló Pérez, ha completado el Programa de formación Doctoral en Biología Molecular y Celular, alcanzado los objetivos establecidos en el mismo. Y que la tesis reúne los indicios de calidad exigidos para el campo de evaluación. La estudiante es la primera firmante de los siguientes artículos indexados en el *Journal of Citation Report:*

 Bello-Perez M, Falco A, Medina R, Encinar JA, Novoa B, Perez L, et al. Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. Dev Comp Immunol. 2017;69:33-40. doi: 10.1016/j.dci.2016.12.001. PubMed PMID: 27965017.

La revista pertenece al primer cuartil en las áreas *Fisheries* y *Zoology* y al tercer cuartil en el área de *Immunology* y posee un índice de impacto de 2,913.

 Bello-Perez M, Falco A, Medina-Gali R, Pereiro P, Encinar JA, Novoa B, et al. Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Molecular immunology. 2017;91:145-55.

La revista pertenece al segundo cuartil en las áreas *Immunology* y *Biochemistry & molecular biology* y posee un índice de impacto de 3,188.

• Bello-Perez M, Falco A, Novoa B, Perez L, Coll J. Hydroxycholesterol binds and enhances the anti-viral activities of zebrafish monomeric c-reactive protein isoforms. PloS one. 2019;14(1):e0201509.

La revista pertenece al primer cuartil en el área *Multidisciplinary Sciences* y posee un índice de impacto de 2,766.

• Bello-Perez M., Pereiro P, Coll J, Novoa B, Perez L, Falco A. Zebrafish C-reactive protein isoforms inhibit SVCV replication by blocking autofagy through the interaction with cell membrane cholesterol. Autophagy. **Enviado*.

La revista pertenece al primer cuartil en el área *Cell biology* y posee un índice de impacto de 11,1.

 Bello-Perez M, Falco A, Galiano V, Coll J, Perez L, Encinar JA. Discovery of nonnucleoside inhibitors of polymerase from infectious pancreatic necrosis virus (IPNV). Drug Des Devel Ther. 2018;12:2337-59. doi: 10.2147/DDDT.S171087. PubMed PMID: 30104863; PubMed Central PMCID: PMCPMC6072831.

La revista pertenece al segundo cuartil en las áreas *Chemistry, medicinal y Pharmacology* & *pharmacy* y posee un índice de impacto de 2,935.

 Bello-Perez M, Medina-Gali R, Coll J, Perez L. Viral interference between infectious pancreatic necrosis virus and spring viremia of carp virus in zebrafish. Aquaculture. 2019;500:370-7.

La revista pertenece al primer cuartil en las áreas *Fisheries* y *Marine & Freshwater biology* y posee un índice de impacto de 2,710.

Por ello, **DA SU CONFORMIDAD** para la defensa por compendio de publicaciones de la Tesis doctoral "Descubrimiento y caracterización de la actividad antiviral inducida por las moléculas tipo CRP de pez cebra (*Danio rerio*)".

Y para que así conste al efecto de certificar la presencia de indicios de calidad firmo la presente.

Fdo.

de

AGRADECIMIENTOS

Me gustaría agradecer al Dr. Alberto Falcó y al Dr. Luis Pérez el apoyo y guía que me han ofrecido a lo largo de esta etapa. Asimismo, esta tesis no hubiese sido posible sin la preocupación y la predisposición a ayudarme de los doctores Julio Coll y Beatriz Novoa y de todo su equipo, en especial el Dr. Antonio Figueras, la Dra. Patricia Pereiro y Paula Pérez.

Gracias al Dr. José Antonio Encinar por sus consejos y discusiones científicas, al Dr. José Manuel González Ros por ayudarme a agilizar todo este proceso, al Dr. José Luis Neira por amenizarme los fines de semana de trabajo y, por supuesto, a los doctores Ricardo Mallavia y Amparo Estepa por confiar en mí y convencerme de que esto merecería la pena.

Gracias a mis compañeros por hacerme más fuerte, a mis amigos y a mi familia porque de principio a fin he sentido que estabais orgullosos de que hiciese esto. Gracias a Diego Sanz, porque además me ha ayudado en el diseño de las ilustraciones.

Y como no, gracias a la ciencia, por enamorarme cada día un poco más, por los retos a los que me somete y por conseguir que algo me apasione tanto.

"La ciencia nunca resuelve un problema sin crear otros 10 más"

George Bernard Shaw

ÍNDICE

ABREVIATURAS	1
RESUMEN	5
ABSTRACT	6
INTRODUCCIÓN	9
1. EL SISTEMA INMUNE: CONSIDERACIONES GENERALES	9
1.1. El sistema inmune	9
1.2. La inmunidad innata y adaptativa	9
2. NUEVOS CONCEPTOS DEL SISTEMA INMUNE	11
3. INTEGRACIÓN DE RESPUESTAS DEL SISTEMA INMUNE	
3.1. Quimiotaxis	13
3.2. Autofagia	14
3.3. Las pentraxinas	16
4. EVOLUCIÓN DEL SISTEMA INMUNE	17
5. LAS PENTRAXINAS	20
5.1. Consideraciones generales	20
5.2. La proteína C-reactiva (CRP)	22
5.3. Actividad antimicrobiana de las CRPs	23
5.4. Evolución de las CRPs	24
5.5. Potencial actividad antiviral de las pentraxinas	27
OBJETIVOS, ANTECEDENTES Y SISTEMA MODELO	31
1. El pez cebra como sistema modelo para el estudio de las pentraxinas cortas	32
2. Los rabdovirus de peces: SVCV y VHSV	
MATERIAL Y MÉTODOS	
1. ANIMALES DE ESTUDIO	
2. LÍNEAS CELULARES	
3. VIRUS	40
4. CONSTRUCCIÓN DE PLÁSMIDOS QUE CODIFICAN zfcrp1-7	40

5. TRANSFECCIÓN DE CÉLULAS CON pMCV1.4- <i>zfcrp1-7</i> Y PRODUCCIÓN DE SOBRENADANTES ENRIQUECIDOS	40		
6. PRODUCCIÓN DE CRPs RECOMBINANTES			
7. PRODUCCIÓN DE ANTICUERPOS EN CONEJO PARA RECONOCER LAS ISOFORMAS DE zfCRP1-7	42		
8. CARACTERIZACIÓN DE LOS ssCRPs	42		
8.1. Western blot	42		
8.2. <i>Dot-blot</i>	43		
9. INFECCIONES DE PECES CEBRA ADULTOS Y RECOLECCIÓN DE ÓRGANOS Y PLASMA SANGUÍNEO	43		
9.1. Infecciones <i>in vivo</i>	43		
9.2. Recolección de órganos de peces cebra adultos	43		
9.3. Recolección de sangre de peces cebra adultos	44		
10. EXTRACCIÓN DE ARN, RT y qPCR	44		
11. MICROMATRICES	45		
12. ANÁLISIS PROTEÓMICO DE LAS zfCRPs INDUCIDAS POR LA INFECCIÓN CON SVCV EN EL PLASMA DE PECES CEBRA	45		
13. ESTUDIO DEL EFECTO DE LAS zfCRPs EN LA INFECCIÓN DE SVCV	46		
13.1. Ensayos de neutralización <i>in vitro</i>	46		
13.2. Ensayos de neutralización <i>in vivo</i>	46		
13.3. Ensayos de neutralización con ssCRPs empobrecidos (deplet-ssCRPs)	47		
13.4. Ensayos de neutralización con LPS	47		
14. ENSAYOS DE ACTIVIDAD ANTIVIRAL DE LAS zfCRPs	47		
14.1. Ensayos para determinar la inhibición de la unión del virus a la célula	48		
14.2. Ensayos de fusión mediada por la proteína G de SVCV	48		
14.3. Actividad de los sobrenadantes condicionados por el tratamiento con ssCRPs	49		
14.4. Determinación de los niveles de replicación de SVCV <i>in vitro</i> en etapas tempranas después de la adsorción	49		
14.5. Análisis de la capacidad de los ssCRPs para inducir el sistema de interferón	49		
15. EVALUACIÓN DEL PAPEL DE LA IL6 EN LA INDUCCIÓN DE zfcrps	49		
16. PREDICCIONES IN SILICO	50		

16.1. Estructuras tridimensionales de las zfCRPs	
16.2. Energías libres de unión de las zfCRPs a lípidos de membrana	50
17. ESTUDIO DE LA UNIÓN DE zfCRPs A LÍPIDOS	50
17.1. Unión en fase sólida	50
17.2. Análisis de secuencias de péptidos superpuestas (Pepscan)	51
18. EVALUACIÓN DEL EFECTO DE LA METIL-β-CICLODEXTRINA (MβCD) Y EL COLESTEROL (CH) SOBRE LA INFECCIÓN DE SVCV	51
19. ANÁLISIS DEL EFECTO DEL 25-HOC SOBRE LA ACTIVIDAD ANTIVIRAL DE LAS zfCRPs	52
20. ENSAYOS PARA LA DETERMINACIÓN DEL PAPEL DE LAS zfCRPs, 25-HOC, MβCD Y CH SOBRE LA AUTOFAGIA	52
20.1. Inmunofluorescencias	
20.2. Determinación de autofagosomas intracelulares	
20.3. Ensayos <i>in vivo</i>	53
20.4. Ensayos funcionales <i>in vitro</i>	54
21. ANÁLISIS ESTADÍSTICO	54
RESULTADOS	57
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS	57 57
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>z</i> fCRPs	57 57 59
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zf</i> CRPs 2.1. Caracterización de los sobrenadantes enriquecidos con <i>z</i> fCRPs (ssCRPs)	57 57 59 59
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zf</i> CRPs 2.1. Caracterización de los sobrenadantes enriquecidos con <i>zf</i> CRPs (ssCRPs) 2.2. Actividad antiviral de las <i>zf</i> CRPs	57 57 59 59 61
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zf</i> CRPs 2.1. Caracterización de los sobrenadantes enriquecidos con <i>zf</i> CRPs (ssCRPs) 2.2. Actividad antiviral de las <i>zf</i> CRPs 3. ANÁLISIS DE LA AFINIDAD DE LAS <i>zf</i> CRPs A LÍPIDOS.	57 57 59 59 61 63
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zf</i> CRPs 2.1. Caracterización de los sobrenadantes enriquecidos con <i>zf</i> CRPs (ssCRPs) 2.2. Actividad antiviral de las <i>zf</i> CRPs 3. ANÁLISIS DE LA AFINIDAD DE LAS <i>zf</i> CRPs A LÍPIDOS 4. DETERMINACIÓN DEL MECANISMO ANTIVIRAL DE LAS <i>zf</i> CRPs.	57 57 59 61 63 65
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zf</i> CRPs 2.1. Caracterización de los sobrenadantes enriquecidos con <i>zf</i> CRPs (ssCRPs) 2.2. Actividad antiviral de las <i>zf</i> CRPs 3. ANÁLISIS DE LA AFINIDAD DE LAS <i>zf</i> CRPs A LÍPIDOS 4. DETERMINACIÓN DEL MECANISMO ANTIVIRAL DE LAS <i>zf</i> CRPs 5. IMPLICACIÓN DEL COLESTEROL EN LA ACCIÓN ANTIVIRAL DE LAS	57 57 59 61 63 65
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zf</i> CRPs 2.1. Caracterización de los sobrenadantes enriquecidos con <i>zf</i> CRPs (ssCRPs) 2.2. Actividad antiviral de las <i>zf</i> CRPs 3. ANÁLISIS DE LA AFINIDAD DE LAS <i>zf</i> CRPs A LÍPIDOS 4. DETERMINACIÓN DEL MECANISMO ANTIVIRAL DE LAS <i>zf</i> CRPs 5. IMPLICACIÓN DEL COLESTEROL EN LA ACCIÓN ANTIVIRAL DE LAS <i>zf</i> CRPs	57 57 59 61 63 65
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zfCRPs</i>	57 59 61 63 65 69 73
RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zf</i> CRPs 2.1. Caracterización de los sobrenadantes enriquecidos con <i>zf</i> CRPs (ssCRPs) 2.2. Actividad antiviral de las <i>zf</i> CRPs 3. ANÁLISIS DE LA AFINIDAD DE LAS <i>zf</i> CRPs A LÍPIDOS 4. DETERMINACIÓN DEL MECANISMO ANTIVIRAL DE LAS <i>zf</i> CRPs 5. IMPLICACIÓN DEL COLESTEROL EN LA ACCIÓN ANTIVIRAL DE LAS <i>zf</i> CRPs DISCUSIÓN 1. REGULACIÓN DE LA EXPRESIÓN GÉNICA DE LAS PENTRAXINAS CORTAS DE PECES ANTE DIFERENTES ESTÍMULOS	57 57 59 61 63 65 69 73
 RESULTADOS 1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS <i>zfcrps</i> TRAS DIFERENTES ESTÍMULOS 2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS <i>zfCRPs</i>. 2.1. Caracterización de los sobrenadantes enriquecidos con <i>zfCRPs</i> (ssCRPs) 2.2. Actividad antiviral de las <i>zfCRPs</i>. 3. ANÁLISIS DE LA AFINIDAD DE LAS <i>zfCRPs</i> A LÍPIDOS. 4. DETERMINACIÓN DEL MECANISMO ANTIVIRAL DE LAS <i>zfCRPs</i>. 5. IMPLICACIÓN DEL COLESTEROL EN LA ACCIÓN ANTIVIRAL DE LAS <i>zfCRPs</i>. DISCUSIÓN 1. REGULACIÓN DE LA EXPRESIÓN GÉNICA DE LAS PENTRAXINAS CORTAS DE PECES ANTE DIFERENTES ESTÍMULOS. 2. ACTIVIDAD ANTIVIRAL DE LAS <i>zfCRPs</i>. 	57 59 59 61 63 65 65 73 73 73

4. EVALUACIÓN DE LA CAPACIDAD BLOQUEADORA DE LA ENTRADA DEL	
VIRUS	79
5. REGULACIÓN DE MECANISMOS CON ACCIÓN ANTIVIRAL	
5.1. Sistema de interferón	79
5.2. La regulación de la autofagia como mecanismo de defensa antiviral	80
6. INFLUENCIA DE LOS LÍPIDOS EN LA ACTIVIDAD ANTIVIRAL DE LAS	
zfCRPs	
CONCLUSIONES	87
BIBLIOGRAFÍA	
COMPENDIO DE PUBLICACIONES	109
Publicación 1	111
Publicación 2	133
Publicación 3	171
Publicación 4 (enviada)	197
ANEXO 1	243
ANEXO 2	247

ABREVIATURAS

En la siguiente lista, para cada sigla se proporciona el término del que procede en inglés y su correspondiente en castellano. En el caso de siglas comúnmente utilizadas en castellano como ADN y ARN, se obviará el término en inglés. Asimismo, sólo se incluye el término en inglés en aquellas siglas en las que el vocablo al que se hace referencia nunca se utiliza en castellano. Respecto a las abreviaturas de especies, se citan tanto su nombre científico como su nombre común en castellano.

Aa: aminoácido

ADN: ácido desoxirribonucleico

ADNc: ADN complementario

Af: *Achatina fulica,* caracol gigante africano

AMPs: *antimicrobial peptides*, péptidos antimicrobianos

AP: *alternative pathway*, vía alternativa del sistema de complemento

APC: *antigen presenting cell,* célula presentadora de antígenos

APP: *acute phase protein*, proteína de fase aguda

ARN: ácido ribonucleico

ARNm: ARN mensajero

ATG16L1: *autophagy related 16 like 1 complex*

BCA: *bicinchoninic acid assay,* ensayo de ácido bicinconínico

Cc: Cyprinus carpio, carpa común

Ch: colesterol

CP: *classical pathway,* vía clásica del sistema de complemento

CQ: cloroquina

CRP: *C-reactive protein,* proteína C-reactiva

Cs: *Cynoglossus semilaevis,* perteneciente al género lengua

CyHV-3: Cyprinid herpesvirus 3, herpesvirus de los ciprínidos 3. DAPI: 4,6-diamidino-2-fenilindol DCs: dendritic cells, células dendríticas DMSO: dimetilsulfóxido dpf: días post-fertilización EPC: células de Epithelioma papulosum cyprini FBS: fetal bovine serum, suero fetal bovino FcR: Fc receptor, receptor transmembrana de inmunoglobulinas ffu: foci forming units, unidades formadoras de focos ΔG : energía libre de Gibbs/de unión G: glycoprotein, glicoproteína de membrana de los rabdovirus GFP: green fluorescence protein, proteína verde fluorescente GlcNAc: N-acetylglucosamine, Nacetilglucosamina **7β-HOC:** 7β-hidroxicolesterol 25-HOC: 25-hidroxicolesterol 27-HOC: 27-hidroxicolesterol 24S-HOC: 24S-hidroxicolesterol hCRP: proteína C-reactiva humana HIV: human immunodeficiency virus, virus de la inmunodeficiencia humana

H3K4me3: trimetilación de la histona 3 en la lisina 4

IFN: interferón

Igs: inmunoglobulinas

IL1β: interleuquina 1 beta

IL4: interleuquina 4

IL6: interleuquina 6

IL13: interleuquina 13

IL18: interleuquina 18

IFN-Υ: interferón gamma

ISG: *interferon-stimulated gene*, gen estimulado por interferón

i.p.: intraperitoneal

7KC: 7-ketocolesterol

L: *polymerase,* ARN polimerasa ARN dependiente de rabdovirus

LB: Luria Bertani

LC3: *microtubule-associated protein light chain 3*

LD: lipid dropelets, gotas de lípidos

LP: *lectin pathway,* vía de la lectina del sistema de complemento

Lp: *Limulus polyphemus,* cangrejo herradura del Atlántico

LPS: lipopolisacárido

3-MA: 3-metiladenina

M: *matrix protein,* proteína de la matriz de los rabdovirus

MAC: *membrane attack complex,* complejo de ataque de membrana

MALT: *mucosa-associated lymphoid tissue,* tejido linfoide asociado a mucosas

MβCD: metil-β-ciclodextrina

mCRP: proteína C-reactiva monomérica

MHC: *major histocompatibility complex,* complejo mayor de histocompatibilidad

MOI: *multiplicity of infection,* multiplicidad de infección

N: *nucleoprotein*, nucleocápsida de rabdovirus

NAC: N-acetilcisteína

NF-kB: *nuclear factor kappa-light-chainenhancer of activated B cells,* factor nuclear potenciador de las cadenas ligeras kappa de las células B activadas

NK: *natural killer*, linfocito natural citolítico

NO: nitric oxide, óxido nítrico

NOS: *reactive nitrogen species*, especies reactivas de nitrógeno

Nv: nonvirion protein

OIE: Oficina Internacional de Epizooatis

P: *phosphoprotein*, fosfoproteína de los rabdovirus

PAMPs: *pathogen-associated molecular patterns*, patrones moleculares asociados a patógenos

PBMC: células mononucleares de sangre periférica

PC: phosphatidylcholine, fosfatidilcolina

PCR: *polymerase chain reaction,* reacción en cadena de la polimerasa

pCRP: proteína C-reactiva pentamérica

PE: *phosphatidylethanolamine,* fosfatidiletanolamina

Pfu: *plaque forming units,* unidades formadoras de placas

PI: punto isoeléctrico

PI3KC3: the class III phosphatidylinositol 3kinase complex **PI3P:** *phosphatidylinositol 3-phosphate,* fosfatidilinositol 3-fosfato

PRRs: *pattern recognition receptors,* receptores de reconocimiento de patrones

PTMs: modificaciones post-taduccionales

PTX3: pentraxin 3, pentraxina 3

Rb: Oplegnathus fasciatus, pez pico rayado

rCRP: proteína C-reactiva recombinante producida en insecto

Rf: Sebastes schlegelii, pez roca coreano

ROS: *reactive oxygen species,* especies reactivas de oxígeno

RSIV: *red sea bream iridovirus,* iridovirus de la dorada japonesa.

SAA: *serum amyloid A,* proteína de suero amiloide A

SAP: *serum amyloid protein,* proteína amiloide del suero

s.d: standard deviation, desviación estándar

SDS-PAGE: electroforesis en gel de poliacrilamida con dodecilsulfato sódico

Ss: Salmo salar, salmón común

ssCRP: sobrenadante enriquecido con CRP

ssGFP: sobrenadante enriquecido con GFP

SVCV: *spring viremia of carp virus,* virus de la viremia primaveral de la carpa

TCR: *t-cell receptor*, receptores de linfocitos T

TLRs: toll-like receptors, receptores tipo toll

TLR7: *toll-like receptor 7*, receptor tipo toll 7

TNF-*α*: *tumor necrosis factor alpha,* factor de necrosis tumoral alfa

ULK1: *Unc-51 like autophagy activating kinase 1 complex*

VHSV: *viral hemorrhagic septicemia virus,* virus de la septicemia hemorrágica vírica

VLR: variable lymphocyte receptor B

VSV: *vesicular stomatitis virus,* virus de la estomatitis vesicular

zfCRP: CRP de pez cebra

ZF4: *zebrafish embrionic fibroblast,* fibroblastos embriónicos de pez cebra

RESUMEN

La proteína C-reactiva (CRP) es una pentraxina corta cuyos niveles séricos en mamíferos aumentan en presencia de estímulos desencadenantes de la respuesta de fase aguda y, por tanto, es ampliamente utilizada en clínica como biomarcador de inflamación. Clásicamente, la CRP ha sido descrita como una molécula de reconocimiento de patrones bacterianos y de células dañadas que actúa como primera línea de defensa del huésped. El presente trabajo aporta evidencias sobre una nueva función de esta molécula que se añade a su ya extensa lista de actividades descritas.

En esta tesis se ha demostrado, in vitro e in vivo, la actividad protectora de las CRPs de pez cebra (zfCRP1-7) frente al virus de la viremia primaveral de la carpa (SVCV). Asimismo, se ha descubierto que existe una alta afinidad de las zfCRPs por los colesteroles, mostrando una unión preferencial por el 25-hidroxicolesterol (25-HOC), un lípido cuya actividad anti-SVCV ha sido descrita previamente y que muestra efectos sumatorios con la protección ofrecida por las zfCRPs. La exploración de los posibles mecanismos responsables de la protección antiviral conferida por las zfCRPs descartó la interferencia de estas moléculas con el proceso de entrada (unión al receptor y fusión) del virus, sugiriendo la regulación de algún mecanismo antiviral en la célula. También se ha descartado que esta actividad antiviral sea mediada por el sistema de interferón, el cual incluso se reprime tras el tratamiento de las células con zfCRPs. De acuerdo con nuestros resultados, las zfCRPs bloquean la autofagia o la vía endocítica del virus, dos procesos que convergen en el ciclo de replicación de otros virus. Por tanto, en este estudio se propone que la inhibición de la infectividad de SVCV se produce como consecuencia del bloqueo de la fusión de los endosomas/autofagosomas que contienen SVCV con el lisosoma. Este bloqueo evita la acidificación requerida para la actividad fusogénica de la proteína G vírica y, por tanto, impide la liberación del virus al citoplasma y su replicación. Este efecto también se observó tras el tratamiento de las células con 25-HOC o metil-β-ciclodextrina (secuestrador de colesterol) previo a la infección con SVCV, sugiriendo la alteración de los niveles de colesterol celulares como causa de la actividad antiviral. La desregulación de estos niveles parece estimular la producción de especies reactivas de oxígeno, lo que llevaría a la inhibición de la fusión autofagosoma-lisosoma.

ABSTRACT

C-reactive protein (CRP) is a short pentraxin whose serum levels in mammals increase in the presence of stimuli that trigger the acute phase response and, therefore, it is widely used in clinic as an inflammation biomarker. CRP has been classically described as a molecule of recognition of bacterial patterns and damaged cells that acts as the first line of defence of the host. The present work provides evidence of a novel function of this molecule expanding its already wide range of biological activities.

Our work demonstrates in vitro and in vivo the protective activity of zebrafish's Creactive proteins (zfCRPs) on the infection of the spring viremia of carp virus (SVCV). Likewise, a high affinity of zfCRPs for cholesterols was found, showing a preferential binding by 25-hydroxycholesterol (25-HOC), a lipid whose anti-SVCV activity has been previously described, showing additive antiviral effects over the protection confered by the zfCRPs. The exploration of the possible mechanisms responsible for the zfCRPs antiviral activity ruled out the interference of these molecules with the process of viral entry (binding and fusion), suggesting the regulation of some antiviral mechanism in the cell. We could not find a relationship of the CRP antiviral activity with the stimulation of interferon system, which appears to be repressed after the treatment of the cells with zfCRPs. According to our results, zfCRPs block autophagy or the endocytic pathway of the virus, two processes that converge in the replication cycle of other viruses. Therefore, this study proposed that the inhibition of SVCV infectivity is consequence of blocking the fusion of the endosomes/autophagosomes containing SVCV with the lysosome. This blocking prevents the acidification required for the fusogenic activity of the viral G protein and, consequently prevents the release of the virus to the cytoplasm and its replication. This effect was also observed after treatment of the cells with 25-HOC or methyl-β-cyclodextrin (a cholesterol depleting agent) prior to infection with SVCV, suggesting the involvement of cellular cholesterol levels in antiviral activity. Deregulation of membrane cholesterol seems to stimulate the production of reactive oxygen species, which has an inhibitory effect of the autophagosome-lysosome fusion.

INTRODUCCIÓN

1. EL SISTEMA INMUNE: CONSIDERACIONES GENERALES

1.1. El sistema inmune

Los seres vivos están constantemente amenazados por un gran número de patógenos: virus, bacterias, hongos y parásitos. Sin embargo, en condiciones normales los individuos presentan un estado saludable. Esta capacidad de resistencia es conferida por el **sistema inmune**. Principalmente éste diferencia las células propias, o aquellas exógenas pero inocuas, de los organismos invasores. De esta manera, garantiza la integridad del cuerpo frente a los intrusos mediante una serie de órganos, células y moléculas solubles [1, 2]. No obstante, no siempre es así en individuos inmunocompetentes y el organismo no es capaz de eliminar el agente patógeno [3, 4].

Los avances en inmunología han permitido aumentar el conocimiento de algunas enfermedades y desarrollar/mejorar estrategias terapéuticas como las vacunas [5, 6], los adyuvantes [7, 8], los anticuerpos terapéuticos [9, 10] y los inmunomoduladores [11]. Se han creado vacunas exitosas contra numerosos microorganismos patógenos responsables de enfermedades como la viruela, la poliomelitis, la difteria y el tétanos. Sin embargo, la amenaza que representan las enfermedades infecciosas no ha desaparecido. Por ejemplo los virus de la inmunodeficiencia humana (HIV) [12], el dengue [13] y la malaria [14] causan miles de muertes anuales en la población humana.

Este panorama, al que se le suman las alergias, el cáncer, las enfermedades autoinmunes y los rechazos de trasplantes, convierte la búsqueda de nuevas estrategias para combatir situaciones patológicas en uno de los principales retos de la inmunología actual. Es por ello que una mayor comprensión del sistema inmune es incuestionablemente necesaria para abordar estos problemas.

1.2. La inmunidad innata y adaptativa

Clásicamente, el sistema inmune de los vertebrados se diferenciaba en dos ramas: el sistema inmune innato y el sistema inmune adaptativo. Sin embargo, es tal la integración de estos sistemas que actualmente esta clasificación se considera exclusivamente didáctica [15, 16].

El **sistema inmune innato** es la primera línea de defensa frente a la agresión de patógenos y está presente evolutivamente desde los organismos invertebrados [17]. Este sistema está activo desde el origen de cada individuo y no requiere un reconocimiento o exposición previo del/al patógeno, sino que responde "inespecíficamente" desde su entrada **a**) mediante barreras naturales: la piel, las mucosas y el tracto gastrointestinal [2, 18] y **b**) a través de la inflamación [19, 20].

Cuando un patógeno invade a otro organismo, se inicia rápidamente una respuesta inflamatoria que incluye elementos celulares y humorales. Esta respuesta empieza tras el reconocimiento de estructuras moleculares, denominadas patrones moleculares asociados a patógenos (PAMPs), que son identificados por receptores de reconocimiento de patrones (PRRs) [21] presentes en la mayoría de células [22]. La identificación de los PAMPs estimula la expresión y liberación de citoquinas, aminas biogénicas y prostaglandinas que inducen un estado de "alerta" en las células del individuo [19, 23]. Las quimioquinas y algunas moléculas del sistema de complemento producidas en respuesta al patógeno, junto con cambios vasculares [24], contribuyen a la atracción de leucocitos circulantes hacia los tejidos dañados [19]. Para eliminar los patógenos y las células dañadas/infectadas, las citoquinas también pueden inducir las proteínas de fase aguda (lectinas, pentraxinas, moléculas del sistema de complemento, etc.) y, los leucocitos, moléculas efectoras como especies reactivas de oxígeno y nitrógeno, ROS y NOS y péptidos antimicrobianos [25].

Si bien generalmente el sistema inmune innato es capaz de neutralizar las amenazas, en otras no consigue dar una solución definitiva. Aun así su función es esencial ya que ralentiza la infección y contribuye a la activación del **sistema inmune adaptativo**. En el sistema inmune adaptativo de mamíferos, las células dendríticas o los macrófagos capturan al patógeno transformándose en células presentadoras de antígenos (APC) que, posteriormente, migrarán hasta los nódulos linfáticos profesionales. Allí presentarán, a través de las moléculas del complejo mayor de histocompatibilidad (MHC), antígenos derivados del procesamiento de los patógenos fagocitados a las células T *naïve*, que se activarán y diferenciarán en células efectoras [26, 27].

La especificidad de la respuesta inmune adaptativa y su capacidad de establecer una memoria específica y de larga duración de cada encuentro con un patógeno ha clasificado, tradicionalmente, las respuestas inmunes en innatas o adaptativas [16, 28]. No obstante, la inmunidad adaptativa aparece en la evolución por primera vez en los peces, en la divergencia entre los ciclóstomos (peces sin mandíbula) y los peces cartilaginosos (ya con mandíbula) hace aproximadamente 450 millones de años [29]. Por lo tanto, es difícil concebir

que la memoria inmunológica sea exclusiva de tan sólo un 1% del total de los seres vivos, los vertebrados [30], o que el sistema inmune innato no posea algún tipo de mecanismo que le confiera "memoria" en cierto grado.

2. NUEVOS CONCEPTOS DEL SISTEMA INMUNE

El dogma de la inmunología contemporánea afirma que sólo los vertebrados poseen memoria inmunológica, la cual se caracteriza por ser específica y estar vinculada al sistema inmune adaptativo. Sin embargo, esta afirmación es incapaz de explicar resultados que demuestran una defensa mejorada en huéspedes carentes de sistema inmune adaptativo cuando se producen re-infecciones con el mismo patógeno u otro diferente [30-32]. Esta respuesta inmune innata mejorada recibe el nombre de **inmunidad entrenada** (*trained immunity*, en inglés) y su aparición ha revolucionado el campo de la inmunología, ya que extiende el concepto de memoria inmunológica en tres aspectos: taxonómico, celular y temporal [33]. Así, actualmente la memoria inmunológica abarca fenómenos: a) con duraciones muy diversas (desde pocos días en invertebrados hasta toda la vida en el caso de mamíferos), b) que se dan incluso en invertebrados, plantas, bacterias y arqueas y c) que no se limita a los linfocitos, sino que también se producen en otras células como los linfocitos citolíticos naturales (NK), los macrófagos y los monocitos [15, 30-38].

El entrenamiento de las células de la inmunidad innata para que adquieran memoria inmunológica parece ser consecuencia de la adquisición de marcas epigenéticas en el ADN y en las histonas que modulan la activación de la transcripción de genes del sistema inmune [39, 40]. Una de las modificaciones de histonas más extendidas es la trimetilación de la histona 3 en la lisina 4 (H3K4me3), que está asociada con una configuración abierta de la cromatina y, por tanto, con un estado transcripcional activo [41-43]. Esto explicaría una mejora de la defensa innata (en términos de rapidez y magnitud) como consecuencia de una mejor accesibilidad de los factores de transcripción a los promotores de genes implicados en la respuesta inmune [30].

Estos descubrimientos sugieren la posibilidad de nuevas estrategias de vacunación mediante la potenciación de la inmunidad entrenada que permitiría desarrollar vacunas que: a) funcionasen en organismos invertebrados y plantas, b) fueran eficaces en pacientes inmunodeprimidos [31] y, c) sobre todo, que modulasen la resistencia general del huésped. Además, estas nuevas vacunas, al ser efectivas contra un amplio espectro de patógenos al

mismo tiempo [44], reducirían los gastos asociados a investigación, desarrollo, producción e implementación que supone la generación de vacunas específicas.

No obstante, el campo de investigación sobre la inmunidad entrenada acaba de nacer y, por tanto, ciertas cuestiones todavía no tienen respuesta. En este sentido, un claro ejemplo es el desconocimiento sobre la duración de la protección ofrecida por la inmunidad entrenada [45].

Figura 1. Representación gráfica de las respuestas coordinadas que ofrece el sistema inmune para proteger al organismo frente a un encuentro con un patógeno. Las zonas sombreadas en gris representan la zona de protección. Esta figura ha sido diseñada a partir de [46].

Que el sistema inmune innato carece de memoria no es el único concepto en inmunología que ha quedado obsoleto. La separación clásica entre respuesta inmune innata y adaptativa es otro. Actualmente sabemos que esta separación es artificial, pues en realidad la protección que ofrece el sistema inmune está formada por diferentes respuestas coordinadas temporalmente según las necesidades del huésped para enfrentarse al patógeno. Tras el encuentro con un patógeno, se desencadena una respuesta inmune innata que regresa a sus niveles basales una vez neutralizada la infección. Sin embargo, esto no es siempre así, pudiendo suceder dos fenómenos opuestos: que la respuesta quede inhibida (tolerancia) o, por el contrario, aumentada, de manera que frente a un segundo encuentro con un patógeno se produjese más rápido de lo normal (inmunidad entrenada) [46]. Esta primera reacción del sistema inmune, que aparece durante las primeras 12 horas, también alerta a otras células más especializadas sobre la invasión, lo que permite el reclutamiento y activación de los linfocitos. Esta última respuesta no decae totalmente con el tiempo debido a la formación de poblaciones linfocitarias de memoria que, en un futuro, mediarán una respuesta específica más rápida si el organismo es invadido por el mismo patógeno [47] (Figura 1).

3. INTEGRACIÓN DE RESPUESTAS DEL SISTEMA INMUNE

Como se ha descrito previamente, establecer una línea que separe la respuesta inmune innata de la adaptativa es difícil ya que, por ejemplo existen células, moléculas y procesos que conectan y/o participan en ambos sistemas. Por tanto, el sistema inmune consiste en realidad en una sucesión temporal y coordinada de respuestas relacionadas íntimamente.

3.1. Quimiotaxis

Para que la comunicación entre elementos del sistema inmune tenga lugar, es esencial la migración de las APCs a los órganos linfoides secundarios, donde se realiza la presentación de antígenos a los linfocitos T [48]. Esta migración ocurre porque los receptores presentes en las membranas de las APCs reconocen quimioquinas que transmiten un mensaje de desplazamiento [49, 50]. Este mensaje permite que las APCs se acoplen al endotelio de los vasos sanguíneos donde sufren un cambio morfológico que les permite cruzarlo [51].

Los quimioatrayentes no están únicamente involucrados en la migración de las APCs, sino que también regulan el tráfico de células del sistema inmune innato como los granulocitos (neutrófilos, eosinófilos y basófilos), los macrófagos y los mastocitos [52]. En esta línea, algunos componentes del sistema de complemento, como veremos a continuación, también funcionan como quimioatrayentes, contribuyendo a la rápida movilización de leucocitos al sitio de lesión [53].

El sistema de complemento de los vertebrados está formado por aproximadamente 35 proteínas que se encuentran en el plasma sanguíneo [54]. Cuando se produce una infección, los factores del complemento se dirigen hacia los tejidos diana donde pueden realizar tres funciones: **a**) quimiotaxis de leucocitos al sitio de infección, **b**) opsonización del patógeno favoreciendo así la fagocitosis o **c**) formación de poros en las membranas de las bacterias [55]. Asimismo, la activación del sistema de complemento puede llevarse a cabo a través de tres vías: la clásica (CP), la alternativa (AP) y la de lectina (LP). No obstante, en la mayoría de los casos, todas ellas comparten un objetivo final común: la formación del complejo de ataque de membrana, el cual forma poros en las bicapas de fosfolípidos de las células diana [56].

Pese a que cada vía de activación del sistema de complemento se inicia de una manera distinta e implica moléculas diferentes, en todas ellas intervienen dos moléculas llamadas convertasa de C3 y convertasa de C5 encargadas de escindir las moléculas C3 y C5, respectivamente en C3a y C3b, y C5a y C5b. Cada una de estas moléculas resultantes tiene una función diferente entre las que destacamos C3a y C5a que funcionan como quimiotrayentes de leucocitos al tejido diana [55, 56].

3.2. Autofagia

Otra prueba de la gran integración de las respuestas del sistema inmune es que existen procesos tales como la autofagia, que participan tanto en las respuestas innatas como en las adaptativas. El término autofagia hace referencia a un mecanismo evolutivamente conservado en eucariotas en el que los componentes citoplasmáticos innecesarios (como orgánulos dañados o proteínas desnaturalizadas) son engullidos por una vesícula de doble membrana: autofagosoma. Posteriormente, el autofagosoma se fusiona con un lisosoma para formar el autolisosoma cuyo contenido se degrada y se recicla [57-60]. Este proceso, en el que se diferencian básicamente dos etapas, **a**) la inducción del autofagosoma y **b**) la fusión del autofagosoma con el lisosoma, implica una multitud de moléculas que forman tres complejos principales: ULK1, PI3KC3 y ATG16L1 [60, 61] (Tabla 1).

Complejos	Moléculas integrantes del complejo
ULK1	ULK1/2, FIP200, ATG13 y ATG101
PI3KC3	BECLIN-1, VPS24, VPS15 y ATG14L
ATG16L1	ATG16L1, ATG5 y ATG12

Tabla 1. Complejos de moléculas implicados en la formación del autofagosoma

Para mantener la homeostasis celular se requieren unos niveles basales de autofagia. No obstante, frente a una diversa variedad de situaciones de estrés, entre ellas las infecciones, las células incrementan la actividad de este proceso. La autofagia se inicia porque el complejo ULK1 activa el complejo PI3KC3 que crea subdominios ricos en PI3P en regiones de dobles membranas, llamadas fagoforos, que proceden del retículo endoplasmático y de las mitocondrias asociadas a las membranas del retículo. A continuación, el complejo ATG16L1 es reclutado por las proteínas de unión a PI3P al fagoforo, donde anclará la molécula LC3 mediante su conjugación con fosfatidiletanolamina (PE). La unión LC3-PE media en la extensión del fagoforo a través del reclutamiento de membranas de múltiples fuentes. La autofusión de estas membranas crea una estructura cerrada de doble membrana: el autofagosoma, que envuelve el material que será degradado gracias a la fusión del mismo con el lisosoma [60-62] **(Figura 2)**.

Figura 2. Representación gráfica de la activación de la autofagia con el fin de eliminar un patógeno.

Pese a que la autofagia fue inicialmente descrita como un proceso metabólico [63], recientemente se ha demostrado que no sólo proporciona una homeostasis celular básica, sino que también está involucrada en la inmunidad ya que: **a**) elimina directamente los patógenos [62, 64, 65], **b**) regula la producción de citoquinas y el proceso de inflamación [66], **c**) activa la señalización mediada por PRRs [59, 67] y **d**) participa en la presentación de antígenos [57-59].

Las investigaciones en el campo de la autofagia han revelado que las células utilizan una forma especializada de este proceso, conocida como xenofagia, para degradar patógenos intracelulares [65]. En este proceso cobra un papel importante la ubiquitinación, es decir, la marca que será reconocida por los adaptadores de autofagia que reclutan LC3 para introducir los patógenos en el autofagosoma [64].

Asimismo, se ha identificado una asociación entre la autofagia y la inflamación consistente en un circuito de retroalimentación negativa [68]. Esta regulación, en la que la secreción de ciertas citoquinas que estimulan la autofagia se ve inhibida por la misma, se interpreta como una estrategia para evitar respuestas exacerbadas, tales como las observadas en enfermedades como fibrosis quística, enfermedad pulmonar obstructiva crónica y

enfermedad de Crohn [57]. Las citoquinas proinflamatorias, como el factor de necrosis tumoral (TNF), la interleuquina 1 beta (IL1 β) y los interferones de tipo I y II, la inducen mejorando en algunos casos el control de la infección. A su vez, las anti-inflamatorias, como la interleuquina 4 (IL4) y la interleuquina 13 (IL13), la inhiben a través de la activación de mTOR (responsable de la inhibición del complejo ULK) [69]. Por otro lado, y relacionado con este aspecto, la autofagia también regula la activación del inflamasoma y viceversa. La existencia de esta regulación es lógica, pues una de las funciones del inflamasoma es promover la maduración de las citoquinas proinflamatorias IL1 β e IL18 que, como ya se ha comentado anteriormente, son reguladas negativamente por la autofagia [66].

Otro proceso relevante para la inmunidad que se encuentra regulado por la autofagia es el suministro de PAMPs citosólicos a los PRRs localizados en las membranas de los endosomas [70]. Por ejemplo, la autofagia trasloca los intermediarios de replicación del virus de la estomatitis vesicular (VSV) al TLR7 en células dendríticas (DCs), un PRR encargado del reconocimiento de ssARN. Sin embargo, la relación entre la autofagia y la señalización de PRR es más amplia que el suministro de PAMPs a PRRs endosómicos. Recientemente se ha demostrado que la estimulación de varios TLRs por sus ligandos activa la autofagia como un mecanismo de defensa capaz de eliminar los patógenos intracelulares de una manera directa [59, 67]. No obstante, como se comentará en la discusión de esta tesis, la autofagia no siempre funciona como un mecanismo de defensa frente a las infecciones, ya que, en ocasiones, la replicación de los virus es favorecida por la activación de este mecanismo [71].

Por otra parte, existen evidencias de que la autofagia participa en la presentación de antígenos. Los autofagosomas, que expresan MHC-II, son capaces de presentar antígenos a los linfocitos T CD4⁺ [57]. Esta presentación, que conlleva un retraso de la fusión del autofagosoma con el lisosoma, permite el montaje de una respuesta inmune adaptativa contra el antígeno secuestrado [58].

3.3. Las pentraxinas

Aunque el papel inmunológico de las pentraxinas será descrito ampliamente más adelante, cabe comentar en este apartado que las pentraxinas, caracterizadas como componentes humorales del sistema inmune innato, tienen características muy similares a los anticuerpos, hasta el punto de que han sido consideradas por algunos autores como anticuerpos ancestrales [72, 73]. Entre sus semejanzas con los anticuerpos naturales o preexistentes, éstas: **a**) reconocen y opsonizan patógenos, **b**) activan el sistema de complemento

a través de la vía clásica [74, 75], **c)** aumentan sus niveles en sangre rápidamente en la respuesta de fase aguda, **d)** tienen afinidad por fosfolípidos como la fosfatidilcolina (PC) y la fosfaetanolamina (PE) y **e)** reconocen múltiples sitios de unión para aumentar las posibilidades de actividad frente a patógenos [20, 76].

No obstante, las pentraxinas y los anticuerpos no son moléculas redundantes: **a**) los anticuerpos reconocen a los patógenos específicamente a diferencia de las pentraxinas que lo hacen a través de PAPMs [77] y **b**) las pentraxinas se liberan generalmente más rápido y en mayor cantidad al torrente sanguíneo en respuesta a una infección [20], de ahí que algunas de ellas sean importantes proteínas de fase aguda (APPs) [76]. La importancia de las pentraxinas en nuestra especie se reafirma por el hecho de que no se conocen individuos deficientes en proteína C-reactiva (CRP) [78].

4. EVOLUCIÓN DEL SISTEMA INMUNE

La separación didáctica que se ha realizado entre sistema inmune innato y adaptativo se debe a que si bien todas las formas de vida poseen sistema inmune innato, el adaptativo aparece evolutivamente más tarde, como consecuencia de las innovaciones moleculares asociadas a los vertebrados. Así, con el origen de los peces aparecieron nuevos tipos celulares y tejidos inexistentes en los organismos invertebrados que fueron clasificados como parte del sistema inmune adaptativo [79, 80].

Ya los primeros gnatóstomos (vertebrados con mandíbula) presentan linfocitos y células dendríticas además de los llamados tejidos linfoides, como por ejemplo el timo y el bazo [79]. En estos nuevos tipos celulares está activada la maquinaria necesaria para desencadenar la denominada respuesta del sistema inmune adaptativo. Entre los principales grupos moleculares involucrados en esta respuesta destacan: MHC, receptores de linfocitos T (TCR) e inmunoglobulinas (Igs) [80].

Existen dos tipos de MHC: MHC-I y MHC-II. Estas moléculas están implicadas en el reconocimiento y la presentación de antígenos. Cuando MHC-I interacciona con un antígeno, éste es procesado por las células que expresan MHC-I en su membrana (todas las células nucleadas) para su posterior presentación a los linfocitos T CD8⁺. Esta presentación, consecuencia de la interacción del complejo MHC-péptido con el receptor TCR presente en los linfocitos, será la responsable de la activación de éstos, encargados de destruir las células infectadas. Por el contrario, la presencia de MHC-II se encuentra restringida a las superficies

de las APCs, que tras el reconocimiento de un antígeno interaccionan con los receptores TCR de los linfocitos T CD4⁺. Esta interacción concluye con la activación y diferenciación de los linfocitos B, que producirán anticuerpos específicos frente al antígeno presentado, así como células B de memoria [81-84].

Las Igs han supuesto una gran ventaja evolutiva en los cordados, pues presentan una enorme especificidad de reconocimiento de antígenos. Estas proteínas variables se expresan en las membranas de los linfocitos B a modo de receptores y son capaces de interaccionar con antígenos. La unión antígeno-Ig permite la conversión de los linfocitos B en células plasmáticas capaces de secretar Igs solubles circulantes (anticuerpos). Los anticuerpos se diseminan por todo el organismo para reconocer epítopos específicos de patógenos y marcarlos para su posterior destrucción mediada por los fagocitos y el sistema de complemento [85-89].

Los primeros indicios de inmunidad adaptativa aparecen en las lampreas (vertebrados agnatos, sin mandíbula), que poseen homólogos a Igs, denominados receptores VLR (*variable lymphocite receptor B*, en inglés), capaces de reconocer antígenos y secretarse al medio ante una estimulación. Actualmente se conocen tres isoformas de VLR: VLRA, VLRB y VLRC. Remarcablemente, las células que expresan en su membrana la primera y la tercera isoforma también expresan genes específicos de linfocitos T, mientras que aquellas que expresan la segunda, inducen genes específicos de linfocitos B. Asimismo, en este organismo también están presentes los genes que codifican MHC-I y MHCII. Es decir, existe un sistema inmune adaptativo, aunque muy primitivo, anterior al presente en los vertebrados con mandíbula. Este sistema, sin embargo, no depende de la recombinación V(D)J a partir de la cual se generan los anticuerpos y los TCR [79, 90-92].

A pesar de la aparición del sistema inmune adaptativo en vertebrados, el innato no ha desaparecido y ambos conviven en estos organismos. De hecho, muchos elementos del sistema innato parecen ser críticos en la defensa frente a infecciones, ya que se han mantenido a lo largo de la evolución. Por ello, incluso en los invertebrados más primitivos encontramos ortólogos de **moléculas de reconocimiento de patógenos**, **moléculas efectoras** y **moléculas de señalización** presentes también en humanos. Aun así, en vertebrados se ha reducido la presión selectiva sobre estos elementos y, con ello, la abundancia de isoformas. Asimismo, otros de estos elementos han adaptado sus funciones para coordinar su actividad con la respuesta inmune adaptativa.

Muchos invertebrados poseen células con apariencia y función similar a la de macrófagos que, dependiendo de la especie, reciben un nombre diferente (amebocitos, hemocitos o coelomocitos) [25]. Estas células expresan PRRs, que son sistemas de reconocimiento muy sencillos que tienen como diana motivos conservados en diferentes grupos de patógenos. Aunque existen muchas familias de PRR, la más ampliamente estudiada es la formada por los receptores tipo toll (TLRs) [93]. Los TLRs son proteínas transmembrana cuyo dominio extracelular reconoce componentes específicos de hongos, virus, bacterias y protistas [93, 94]. Se conservan desde los invertebrados (esponjas, cnidarios, oligoquetos, moluscos, crustáceos e insectos) [25] y parecen tener especial trascendencia en los invertebrados marinos, ya que, mientras los gnatóstomos poseen alrededor de 10 TLRs, el repertorio en éstos se incrementa enormemente, habiéndose descrito hasta 253 TLRs distintos en el caso del erizo de mar púrpura (*Strongylocentrotus purpuratus*) [23].

La interacción PRR-PAMP inicia una cascada de señalización para activar la respuesta inmune del huésped. Esta cascada culmina con la activación del factor nuclear de transcripción kappaB (NF-kB) que controla la expresión, entre otras, de moléculas solubles mensajeras que activan las respuestas inmunitarias locales y sistémicas [94]. Estas moléculas mensajeras son las citoquinas, que no sólo se encuentran en los vertebrados sino también en muchos invertebrados [95]. De hecho, el factor de necrosis tumoral alfa (TNF- α), el interferón gamma (IFN- γ) y la interleuquina 8 (IL8) están presentes en gusanos, moluscos e insectos [25].

Aparte de moléculas de reconocimiento y moléculas de señalización, también hay moléculas efectoras comunes en vertebrados e invertebrados. Un claro ejemplo de ello son los péptidos antimicrobianos (AMPs), componentes humorales de la inmunidad innata que se encuentran presentes desde los procariotas hasta los organismos más desarrollados.

Otro caso de familia de moléculas efectoras conservadas evolutivamente son las pentraxinas, que fueron inicialmente descritas como parte del sistema inmune innato de invertebrados y vertebrados, no obstante, estudios recientes también muestran su intervención en el sistema inmune adaptativo [96, 97].

5. LAS PENTRAXINAS

5.1. Consideraciones generales

Uno de los principales componentes de la respuesta humoral del sistema inmune son las pentraxinas, una superfamilia de PRRs filogenéticamente muy conservada que se secretan al medio donde reconocen PAMPs (membranas celulares dañadas, componentes nucleares y antígenos microbianos) y reclutan otros elementos de defensa del huésped. Según la estructura primaria de sus subunidades, se dividen en pentraxinas largas y cortas (~50 y 25 kDa, respectivamente). Ambos grupos presentan un dominio homólogo en el extremo C-terminal de ≈200 aa, en el que se diferencia "la firma de las pentraxinas" (His-x-Cys-x-Ser/Thr-Trp-x-Ser, donde x puede ser cualquier aa), pero sólo las pentraxinas largas presentan un dominio N-terminal adicional [75, 98, 99]. Actualmente, se conocen diversas pentraxinas largas; no obstante la más estudiada es la pentraxina 3 (PTX3). En cuanto a las pentraxinas cortas, existen dos: la CRP, que es la molécula prototipo dentro de este grupo, y la proteína amiloide sérica (SAP) [72, 76, 99-102].

Las pentraxinas recibieron su nombre al descubrir que la CRP humana (hCRP) presentaba una estructura simétrica de cinco protómeros idénticos, cada uno de ellos formados por un sándwich β con dos láminas β antiparalelas [103]. Sin embargo, esta estructura pentamérica no se conserva en todas las especies. Por ejemplo, se ha descrito como dímero en la rana (*Xenopus*) y en el carpín dorado (*Carassius auratus*) [104], como trímero en el pez cebra (*Danio rerio*) [105] y como hexámero en el cangrejo de herradura chino (*Tachypleus tridentatus*) [106]. Asimismo, la SAP del cangrejo de herradura del Atlántico (*Limulus polyphemus*) se organiza en heptámeros y octámeros [107].

La capacidad funcional de las pentraxinas está polarizada estructuralmente y se distribuye entre los dos planos que forma el anillo oligomérico. Así, mientras una de las caras del anillo (cara de reconocimiento) actúa ligando PAMPs **(Tabla 2)**, la otra (cara efectora) puede interactuar con el factor C1q del sistema de complemento o con FcRs (receptores presentes en la superficie de los linfocitos para el reconocimiento de anticuerpos unidos a patógenos) [20, 108]. La principal característica de la cara de reconocimiento es la presencia de un bolsillo hidrofóbico, que en el caso de la hCRP presenta dos sitios de unión a Ca²⁺. Dado que las características hidrofóbicas de este bolsillo son diferentes para cada pentraxina, cada una de éstas muestra mayor afinidad por un ligando distinto [101]. Por ejemplo, en el caso de la hCRP este bolsillo une preferentemente, y dependientemente de Ca²⁺, residuos de PC presentes en bacterias y en membranas de células dañadas [109]. Esta

unión se produce gracias a dos tipos de interacciones: la de los grupos metilo hidrofóbicos de la cola de PC con Phe⁶⁶ y la de los nitrógenos cargados positivamente de la cabeza de colina, con el Glu⁸¹ [110]. Por otra parte, en el caso de la cara efectora de la hCRP, los aa que parecen interaccionar con C1q son Asp¹¹² y Tyr¹⁷⁵ [74, 111].

Tipo de	Ligandos		Referencia
pentraxina	Motivos de membrana	Microorganismos	
CRP	Fosfatidilcolina (PC)	Streptococcus pneumoniae (+)	[101, 112]
		Aspergillus fumigatus	
		Saccharomyces cerevisiae	
		Leishmania donovani	
SAP	Fosfatidiletanolamina (PE)	Salmonella typhimurium (-)	[77, 101]
	Lipopolisacáridos (LPS)	Saccharomyces cerevisiae	
		Influenza virus	
РТХЗ	Proteína transmembrana KpOmpA de <i>Klebsiella</i> pneumoniae	Pseudomonas aeruginosa (-)	[77]
		Klebsiella pneumoniae (-)	
	LAS .	Salmonella typhimurium (-)	
		Aspergillus fumigatus	
		Paracoccidioides brasiliensis	
		Saccharomyces cerevisiae	
		Influenza virus	
		Citomegalovirus	

Tabla 2. Ligandos microbianos de las pentraxinas humanas prototipo

(+), bacterias grampositivas; (-), bacterias gramnegativas

Frente a una infección aguda ocurre una respuesta rápida y sistémica, caracterizada por el aumento de determinadas proteínas en suero, con un papel clave en el desencadenamiento de la reacción inflamatoria. Entre estas proteínas, llamadas proteínas de fase aguda (APP), está conservada evolutivamente la presencia mayoritaria de las pentraxinas cortas.

5.2. La proteína C-reactiva (CRP)

La APP más relevante en mamíferos, la CRP, se identificó en 1930 en los pacientes infectados por *Streptococcus pneumoniae* como consecuencia de su interacción con los residuos de fosfocolina (PC) del polisacárido C de la pared celular del pneumococo, razón por la cual se le asignó dicho nombre [99, 101, 113, 114]. Esta proteína, que comparte un 51% de identidad con la SAP en humanos, fue ampliamente estudiada, ya que, al formar parte de la reacción de fase aguda, aumentaba en sangre durante la inflamación y las infecciones bacterianas. Por tanto, la detección de sus niveles funciona como un biomarcador muy útil en clínica. Además, actualmente también se utiliza para predecir riesgo cardiovascular, ya que existe una estrecha relación entre el aumento de los niveles de CRP en sangre y el riesgo de padecer enfermedad coronaria, isquemia o muerte súbita [115-117]. De hecho, los humanos sanos tienen niveles bajos de CRP en sangre (0-5 mg/L) [118] que pueden aumentar hasta 1000 veces en 24 h debido a la síntesis *de novo*, mayoritariamente desde el hígado, estimulada por las interleuquinas 6 (IL6) y 1 β y su posterior secreción al torrente sanguíneo [78, 108, 113, 119, 120].

Como se ha expuesto anteriormente, la hCRP tiene una estructura pentamérica formada por la interacción no covalente de 5 monómeros de 206 aa cada uno, que se disponen en dos láminas β antiparalelas y una hélice α [74, 110]. Existen ciertas condiciones bajo las cuales la CRP pentamérica (pCRP) se puede disociar en monómeros (mCRP) de manera irreversible: pH ácido, altas concentraciones de urea, temperaturas elevadas, ausencia de calcio, detergentes y monocapas/bicapas lipídicas [114]. Estas dos conformaciones tienen funciones biológicas diferentes [121, 122]: a) la mCRP induce respuestas proinflamatorias en los neutrófilos y las células endoteliales, en contraste con las funciones antiinflamatorias del pCRP [123-125]; b) aunque ambas conformaciones pueden unirse a C1q y activar la vía clásica del sistema de complemento, sólo la mCRP recluta inhibidores del complemento como el factor H y C4b, que reducen la inflamación previniendo la actividad proinflamatoria excesiva de la mCRP [126, 127]; c) la pCRP genera superóxido por estallido respiratorio y, por tanto, apoptosis, mientras que la mCRP puede retrasar este proceso desencadenando la supervivencia celular en neutrófilos; d) mCRP, pero no pCRP, induce la generación de ROS mediadas por la unión a balsas lipídicas [128]; y e) la pCRP inhibe la producción del óxido nítrico (NO) mientras que la mCRP estimula la expresión de este mensajero celular [129].
INTRODUCCIÓN

5.3. Actividad antimicrobiana de las CRPs

Dado que la hCRP tiene afinidad por ligandos bacterianos y sus niveles en sangre se elevan enormemente tras las infecciones bacterianas [130, 131], ésta ha sido tradicionalmente considerada como una proteína antibacteriana. Hoy sabemos que esta actividad en humanos no se debe a una acción directa de la CRP sobre las bacterias sino a una activación del sistema de complemento [76, 101, 132-134] y a una mejora de la presentación de antígenos y de las respuestas citotóxicas [96, 135].

La hCRP es capaz de activar la vía clásica del sistema de complemento a través de su unión, dependiente de Ca²⁺, al C1q de una manera más rápida y efectiva que los anticuerpos [76]. Como se ha comentado en el apartado 3, el sistema de complemento puede eliminar las bacterias a través de dos mecanismos: opsonización o lisis de membrana [134]. Sin embargo, cuando la activación de este sistema se debe a la CRP, como se favorece la unión al factor H, se fomenta la opsonización respecto a la lisis celular al impedir el ensamblaje del complejo de ataque de la membrana (MAC: C5b-C9) [101, 132, 133]. Esta opsonización mejora el reconocimiento de las bacterias por los receptores del complemento presentes en fagocitos profesionales, promoviendo su endocitosis [134]. La opsono-fagocitosis dependiente de complemento es crítica para la eliminación de algunas bacterias que expresan PC en la superficie, por ejemplo, *Streptococcus pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, Neisseria meningitidis, Salmonella enterica y Morganella morganii* [134].

Algunos estudios han propuesto que la CRP no actúa sola, sino que colabora con otros PRRs del plasma para formar complejos estables de reconocimiento de PAMPs que permiten la activación de más de una vía del sistema de complemento [136]. Por ejemplo, la interacción entre la hCRP y las ficolinas permite que la CRP reconozca y estabilice su anclaje con ciertas bacterias que no son reconocidas de forma independiente. Esta colaboración no sólo aumenta el reconocimiento de *S. enterica*, sino que también activa el complemento por la vía de las lectinas en la superficie del patógeno [76].

Aparte de activar la respuesta inmune humoral vía sistema de complemento, la hCRP también puede activar la respuesta celular del sistema inmune [98, 137]. Una vez la hCRP opsoniza una bacteria, interacciona con FcRs presentes en la mayoría de las células hematopoyéticas humanas [138, 139]. Esta unión mejora **a**) la fagocitosis de bacterias [140], **b**) la presentación de antígenos por células dendríticas [135], **c**) la citotoxicidad mediada por linfocitos y células NK [96] y **d**) la reducción de la respuesta autoinmune como consecuencia de una mejor fagocitosis de células apoptóticas [141].

Por otra parte, existen estudios que sugieren que la hCRP se une a otros receptores, aún desconocidos, aparte de los FcRs. En este sentido se ha observado que la hCRP promueve la diferenciación de linfocitos T *naïve* a linfocitos T CD4⁺, una diferenciación que, pese a ser independientemente de FcR y de Ca²⁺, requiere un receptor, pues se insensibiliza con el uso de proteasas [97].

5.4. Evolución de las CRPs

Como se ha comentado en el apartado 4, la CRP está muy conservada filogenéticamente (desde moluscos y artrópodos hasta mamíferos); no obstante, aunque en mamíferos existe una clara diferenciación entre CRP y SAP, la diferenciación de estas proteínas en organismos ancestrales no está tan clara. Tradicionalmente esta diferenciación se ha realizado por la afinidad a los ligandos (la CRP se une preferentemente a PC y la SAP a PE). Sin embargo, en muchos peces la identidad de estas moléculas se ha basado en la homología de secuencia con ortólogos de otras especies y, por tanto, pueden haberse clasificado como CRP o SAP erróneamente [100]. Por ello, hay que tener en cuenta que cuando se habla de CRP o SAP en organismos no mamíferos en muchas ocasiones no se sabe con seguridad a qué tipo de pentraxina corta se hace referencia.

Pese a la notable conservación de algunas características de las CRPs desde invertebrados hasta mamíferos, existen diferencias a lo largo de la evolución en cuanto a la distribución de su expresión (Tabla 3), número de isoformas, estructura molecular, ligandos y funciones que, muy probablemente, tienen un significado biológico (Tabla 4). Por ejemplo, la CRP, que es la principal APP en humanos [78, 113], no se comporta así o no es la principal en todos los organismos: en ratones es la SAP la pentraxina que funciona como APP [142, 143] y en salmón, la SAA (proteína de suero amiloide A) [144]. Asimismo, como se había comentado anteriormente, la estructura oligomérica que le da nombre a la familia tampoco se mantiene en todas las especies [104-107]. Tampoco los monómeros tienen el mismo tamaño en cada especie dado que experimentan distintos cambios post-traduccionales [145]. Incluso en algunos casos como en el caracol Achatina fulica, los monómeros que forman el oligómero no son idénticos, sino que cada uno tiene un peso molecular diferente [146]. Los cambios estructurales a nivel molecular suelen estar asociados a cambios funcionales, de ahí que CRPs de diferentes organismos presenten afinidades desiguales y requisitos diferentes para interaccionar con los mismos ligandos. Por ejemplo, la necesidad de Ca²⁺ reportada en las pentraxinas cortas humanas para unirse a sus ligandos no se observa en la CRP del

cangrejo *Limulus polyphemus*, [147] y la SAP de trucha arcoíris (*Oncorhynchus mykiss*) no sólo requiere Ca²⁺, sino también N-Acetilglucosamina (GlcNAc) para unirse a LPS [148].

	Tejidos									
Isoforma	Sangre/H	Piel	Bazo	Branquias	Cerebro	Corazón	Hígado	Intestino	Músculo	Riñón
Af-CRP										
Lp-CRP										
Lp-SAP										
SsCRP1a	Х	х			Х	х		х		
SsCRP1b	х	Х			Х	Х		Х		
SsCRP1c	х	Х			Х	Х		Х		
SsCRP2	х	Х			Х	Х		Х		
SsCRP3	х	Х		I	Х	Х		Х		
<i>Rf</i> CRP					Х					
CcCRP1						Х				
CcCRP2		_			Х	Х				
RbSAP1	х		-		D	10	TC	CCC	1	
CsCRP		Х		-		-			12	

Tabla 3. Distribución por tejidos de las isoformas de CRP/SAP en los diferentes organismos adultos.

Por otra parte, la expresión basal de las isoformas de CRP en diferentes tejidos de los organismos estudiados sigue una distribución heterogénea. Por ejemplo, mientras la CRP del pez roca coreano (*Sebastes schlegelii*) se expresa mayoritariamente en bazo [149], los mayores niveles de CRP en la carpa común (*Cyprinus carpio*) se encuentran en sangre e intestino (**Tabla 3**). Sin embargo, cada una de las isoformas de CRP de este último organismo sigue un patrón de expresión específico. Ejemplo de ello es que en su riñón anterior existen niveles de expresión bajos de ccCRP1 pero altos de ccCRP2 [100] (**Tabla 3**). Esta expresión diferencial de CRPs entre tejidos y organismos sugiere: **a**) que la CRP no tenga las mismas funciones en todos los organismos y **b**) que las diversas isoformas de CRP de cada organismo no realicen funciones redundantes. Estos resultados, junto con el hecho de que algunos peces tengan numerosas isoformas de CRP/SAP [100] mientras que, por ejemplo, los humanos sólo dos, sugieren que las funciones de las CRPs y/o su relevancia ha cambiado a lo largo de la evolución.

Los niveles de expresión de CRP se representan de acuerdo a una escala de grises en la que la expresión mínima aparece en blanco y la máxima, en negro. "X" indica que no se ha determinado la expresión en ese tejido. H: hemolinfa; *Af: Achatina fulica; Lp: Limulus polyphemus; Ss: Salmo salar; Rf: Sebastes schlegelii; Cc: Cyprinus carpio; Rb: Oplegnathus fasciatus; Cs: Cynoglossus semilaevis.*

INTRODUCCIÓN

Tabla 4. Características	s generales de las	CRP/SAPs de invertebrados	y vertebrados inferiores.
--------------------------	--------------------	---------------------------	---------------------------

Especie	Isoformas	Estructura	Monómero (kDa)	Ligandos	APP	Actividad	Ref
Moluscos							
Achatina fulica (caracol gigante	CRP	Pentámero	110, 90, 62 y 60	PC (Ca²+), poly-L- arginina	nd	Bacteriostática sobre Gram- Bactericida sobre Gram+	[146, 150]
africano)							
Limulus polyphemus (cangrejo herradura)	L-CRP L-SAP	L-CRP: Hexámero, L-SAP: Heptámero Octómero	≈24	L-CRP: LPS L-SAP: PE (Ca²+)	CRP: (+)	Aglutinación, citolisis de bacterias	[107, 147, 151, 152]
Peces							
<i>Salmo salar</i> (salmón del Atlántico)	CRP-1a CRP-1b CRP-1c CRP-2 CRP-3	Pentámero	≈37	nd	No	nd	[144 <i>,</i> 153, 154]
Oncorhynchus mykiss (trucha arcoíris)	CRP SAP1, SAP2, SAP3	CRP: monómero SAP: pentámero	CRP ≈24 SAP ≈34,5	CRP: PC (Ca ²⁺) SAP: LPS (Ca ²⁺ y GlcNAc)	CRP: (+) SAP: (-)	CRP: Opsoniza Vibrio anguillarum	[148, 155]
Ictalurus punctatus (pez gato)	CRP	Pentámero	nd	Polisacárido C de Pneumococo (Ca²+)	(+)	nd	[156]
<i>Sebastes</i> <i>schlegelii</i> (pez roca coreano)	RfCRP	nd	≈25	LPS	(+)	Antibacteriana frente <i>Escherichia coli</i> y <i>S. iniae.</i> Aglutina <i>E.</i> <i>Coli</i>	[149]
<i>Cyprinus carpio</i> (carpa común)	CcCRP1 CcCRP2	nd	≈25	nd	(+)	CyHV-3 aumenta sus niveles en sangre	[100, 157, 158]
Gadus morhua (bacalao común)	CRP-I CRP-II	Pentámero	≈30	PC	No	nd	[159- 161]
Anfibios							
Xenopus laevis (rana africana)	CRP	Dímero	≈24	nd	No	nd	[104]

nd, no determinado; (+), APP positiva; (-), APP negativa; CyHV-3, herpesvirus de los ciprínidos tipo 3

INTRODUCCIÓN

5.5. Potencial actividad antiviral de las pentraxinas

En mamíferos, aunque las APPs se desencadenan tanto tras una infección bacteriana como tras una infección vírica [162], los cambios en los niveles séricos tras esta última son mucho menores (1 logaritmo frente a 3) [162-164]. Por el contrario, en el caso de los peces, los pocos estudios existentes indican que los niveles séricos de las CRPs aumentan de manera moderada en respuesta a infecciones tanto bacterianas como víricas. Es decir, que las CRPs son igualmente reactivas a cualquiera de estos dos estímulos en peces [157, 158, 165]. Dado que este aumento es significativo y se observa muy rápidamente, cuando todavía el daño tisular debido a la infección no es aparente, dicha estimulación frente a virus sugiere que esta respuesta podría ser consecuencia de una actividad directa o indirecta frente al virus. Por ejemplo, en la carpa se ha descrito aumentos séricos de hasta 2, 6 y 10 veces en respuesta a las infecciones por *Aeromonas salmonicida* [166], *Aeromonas hydrophila* [167] y el herpesvirus de los ciprínidos tipo 3 (CyHV-3) [168], respectivamente.

Asimismo, análisis transcripcionales revelan aumentos significativos de la expresión de *crps* en tejidos de diversas especies de peces en respuesta a la infección con CyHV-3 [158], el iridovirus de la dorada japonesa (RSIV) [169, 170], el virus de la septicemia hemorrágica viral (VHSV) [171, 172] y el virus de la viremia primaveral de la carpa (SVCV) [171, 173]. De manera similar, se ha observado una mayor expresión transcripcional de dichos genes en carpa común tratada con ácido poliinosínico-policitidílico (poly I:C, compuesto que imita el ARN vírico)[165] y en trucha arcoíris tratada oralmente con vacunas de ADN [174].

Pese a la existencia de multitud de estudios sobre pentraxinas cortas, fundamentalmente por su relevancia como biomarcador en humanos, la mayoría son en mamíferos. Existen, por tanto, importantes lagunas en el conocimiento de las funciones y la significancia biológica de estas proteínas en organismos ancestrales. Por esto, y dados los resultados previos que sugieren, aunque no ha sido descrita, una función asociada a contrarrestar infecciones víricas, estas proteínas son el objeto de estudio de esta tesis doctoral.

27

Obj., antece	d. y s	s. modelo						
Introducción)	(Mat. y métodos	Resultados	Discusión	Conclusiones	Bibliografía	Publicaciones	Anexos

OBJETIVOS, ANTECEDENTES

Y SISTEMA MODELO

OBJETIVOS

El **objetivo general** de este trabajo es determinar y caracterizar el papel antiviral de las moléculas tipo CRP en organismos ancestrales, concretamente en peces. Con este fin, se seleccionó el sistema modelo de pez cebra y SVCV. Para alcanzar el objetivo general se establecieron los siguientes objetivos específicos:

- 1. Describir los niveles de expresión de las proteínas C-reactivas de pez cebra (*zfcrps*) tras una infección de origen vírico.
- 2. Evaluar la actividad antiviral de las zfCRPs in vitro e in vivo.
- 3. Analizar la afinidad de las zfCRPs a diferentes lípidos de membrana.
- 4. Determinar el/los mecanismos responsables de la actividad antiviral de las zfCRPs.

Los estudios realizados para lograr cada objetivo específico se encuentran descritos en capítulos independientes, que se corresponden con las cuatro publicaciones enumeradas en el PREFACIO. Los resultados de cada publicación serán referenciados utilizando el número de publicación y el número de figura de cada artículo. Por ejemplo, la referencia de la figura 1 de la publicación 1 sería: (Fig.1, P1).

UNIVERSITAS Miguel Hernández

ANTECEDENTES

Además de las evidencias ya descritas en el apartado de introducción, existen antecedentes recientes sobre las zfCRPs que son muy relevantes para abordar los obtejivos planteados:

- a) El pez cebra tiene siete isoformas de CRP [100], por lo que cada una de ellas podría tener diferentes afinidades por ligandos y, por tanto, diferentes funciones. Asimismo, en este estudio se sugiere que las múltiples posibilidades de combinación entre los monómeros de las diferentes isoformas podrían ampliar el espectro de reconocimiento de PAMPs [100].
- b) La expresión transcripcional de *crp* en los órganos internos de peces cebra supervivientes a la infección por VHSV y de peces supervivientes re-infectados sigue el mismo patrón de expresión que los genes del sistema de interferón. Dado que el sistema de interferón está implicado en la respuesta antiviral de los peces, se propone que las zfCRPs podrían ser también antivirales [172].

- c) Los niveles de tránscritos de *crps* en aletas de peces cebra mutantes carentes de sistema inmune adaptativo (*rag1-/-*) aumentan tras la infección con SVCV, lo que sugiere una actividad antiviral de estas proteínas [175].
- d) Las histonas asociadas a las regiones promotoras de las zfCRPs están metiladas a 2 y 5 días post-infección con SVCV. Esta activación transcripcional de los genes *zfcrp* no sólo sugiere una función antiviral de las zfCRPs, también un papel de estas proteínas en la inmunidad entrenada [173].

SISTEMA MODELO

1. El pez cebra como sistema modelo para el estudio de las pentraxinas cortas.

Como los peces son los primeros organismos en los que se desarrolla el sistema inmune adaptativo, éste se considera "poco" evolucionado (no tiene recombinación de IgGs, maduración de IgMs, IgT e IgZ, ni linfocitos B fagocíticos) [172]. Aún así, los peces generalmente son capaces de hacer frente a los numerosos patógenos a los que se ven expuestos continuamente [176, 177]. Esta supervivencia sugiere que su sistema inmune innato apoya en gran medida al sistema inmune adaptativo y que incluso es capaz de suplir posibles carencias.

Para comprobar la existencia de una actividad antiviral de moléculas presentes en el sistema inmune innato de peces, como las CRPs, se ha elegido el pez cebra como modelo experimental. Éste destaca como sistema modelo para estudios en vertebrados, en general, por su pequeño tamaño, la obtención de un gran número de embriones por apareamiento, su rápido desarrollo hasta la edad adulta, los bajos costes de mantenimiento y manejo, la posible manipulación genética, disponibilidad de mutantes, etc [178]. Además, el pez cebra es un buen modelo para el estudio de la respuesta antiviral en peces, ya que es susceptible a la infección experimental de una variedad de familias víricas que afectan a peces de gran importancia comercial: *Birnaviridae, Rhabdoviridae* e *Iridoviridae* [179].

Otra ventaja de este sistema animal es que ofrece la posibilidad de estudiar la respuesta del huésped frente a patógenos en fase de embrión y larva. Los embriones de los peces se desarrollan externamente y, por tanto, están expuestos muy tempranamente a un gran número de patógenos. Por este motivo, desarrollan rápidamente su sistema inmune [180] y, como consecuencia, a uno y dos días post-fertilización (dpf) ya poseen macrófagos y neutrófilos funcionales, respectivamente. Esto permite que las infecciones en el laboratorio

puedan desarrollarse en estado larvario (ya a 1-2 días dpf) con la posibilidad de bioimagen en tiempo real para el seguimiento de cualquier proteína de interés, ya que los embriones permanecen trasparentes hasta que la larva tiene varios días [181].

Asimismo, pese a que el pez cebra adulto tiene sistema inmune adaptativo, las funciones del sistema inmune innato pueden ser estudiadas sin interferencia del adaptativo en las larvas. Esto es posible porque la respuesta adaptativa funcional en las larvas de esta especie no aparece hasta la 4^a-5^a semana post-fertilización (**Figura 3**) [180, 181].

Figura 3. Esquema del desarrollo del sistema inmune del pez cebra. Tomada de [181].

Aparte de las ventajas comentadas anteriormente, el pez cebra ofrece múltiples estrategias para estudiar funciones de genes, pues su manipulación génica está muy optimizada [182]. Por una parte, se puede anular transitoriamente la función de ciertos genes inyectando oligonucleótidos antisentido en embriones de una sola célula para bloquear la traducción del ARNm [183]. Por otra parte, se puede aumentar la expresión de un gen por inyección de ARNm, ADNc o de plásmidos en embriones (en estado de una sola célula) [182]. En muchas ocasiones la transgénesis puede conducirse junto con proteínas reporteras, como la proteína verde fluorescente (GFP), ligada a los genes o a los promotores de genes de interés, lo que permite visualizar procesos de interés a tiempo real mediante microscopía de fluorescencia [184].

Cabe también destacar que el genoma completo del pez cebra está secuenciado y estudios comparativos han desvelado que al menos el 70% del genoma codificante humano, incluyendo genes asociados con enfermedades, tiene ortólogos en pez cebra [185]. Adicionalmente, las células del sistema inmune innato de mamíferos también se encuentran conservadas en este organismo, que presenta macrófagos y neutrófilos muy similares (en términos de morfología y funcionalidad) a los de los mamíferos y un tipo de células consideradas como percursores de las NK [186]. Todas estas características, junto con la conservación de ciertas moléculas del sistema inmune innato (TLRs, AMPs, CRPs, sistema de complemento...) [187, 188], convierten al pez cebra en un buen sistema modelo para el

estudio de numerosas afecciones. Los descubrimientos derivados de estos estudios podrían ser extrapolables a otros vertebrados superiores, incluidos los humanos [189].

2. Los rabdovirus de peces: SVCV y VHSV

Los rabdovirus se caracterizan por ser envueltos, tener morfología de bala y poseer un genoma de ARN monocatenario de cadena negativa (grupo V de la clasificación de Baltimore) que codifica cinco proteínas estructurales: la nucleocápsida (N), la fosfoproteína (P), la proteína de la matriz (M), una glicoproteína de membrana (G) y una ARN polimerasa ARN dependiente (L) [190]. En el caso de los rabdovirus pertenecientes al género *Novirhabdovirus*, están especializados en infectar organismos acuáticos y se caracterizan por tener un sexto gen, ubicado entre los genes G y L (Figura 4), que codifica una proteína no estructural denominada Nv (del inglés, *nonvirion protein*) [191], que parece participar en la patogénesis causada por los virus [192].

Genoma SVCV

Figura 4. Organización del genoma y predicción de sus pesos moleculares en kDa del virus prototipo del género *Sprivivirus*, SVCV y del género *Novirhabdovirus*, VHSV. Modificada de [192].

De estas proteínas, las más utilizadas para detectar la presencia de los rabdovirus son: la glicoproteína G, porque se encuentra en la superficie externa del virus y la N, por ser la más abundante. La glicoproteína G es la encargada de mediar el proceso de entrada del virus al inducir la endocitosis (mediada por receptor) y la fusión de la membrana vírica con la celular del huésped. La proteína N, asociada con el ARN viral, da simetría helicoidal a la nucleocápside [193].

Pese a que muchos virus envueltos pueden penetrar en el citoplasma directamente mediante la fusión con la membrana plasmática, los rabdovirus utilizan la endocitosis de la célula huésped para su internalización [194]. El ciclo de replicación se inicia por la unión de la proteína G del virus a un receptor de la superficie celular que, en el caso de los rabdovirus de peces, se desconoce, aunque parece estar implicada la fibronectina [195]. Una vez adherido el virus a la célula, éste ingresa a través de la vía endocítica donde se transporta desde los endosomas tempranos hasta los tardíos. Los endosomas tardíos se fusionan con los lisosomas, produciendo una disminución de pH. Esta bajada de pH produce un cambio conformacional en la proteína G que permite la fusión de la envoltura vírica y la membrana endosomal. A partir de entonces se libera el genoma vírico al citoplasma [196].

El SVCV y el VHSV son dos rabdovirus que causan enfermedades hemorrágicas graves en los ciprínidos [190] y los salmónidos [197], respectivamente. A pesar de la cantidad de investigaciones realizadas, ambas enfermedades de obligada notificación por la Oficina Internacional de Epizootias (OIE) [198] causan anualmente pérdidas económicas masivas en la industria de la acuicultura a nivel mundial [199]. Por esta razón, la comprensión de la respuesta inmune de los peces frente a estos virus es fundamental para desarrollar medidas de control preventivas y profilácticas. En este sentido, sabemos que el primer sistema de defensa que utilizan los peces para protegerse frente a las infecciones virales, incluidas las de los rabdovirus, es el sistema del interferón tipo I. Este sistema está formado por un grupo de citoquinas cuya inducción provoca la transcripción de los genes estimulados por el interferón (ISG), que codifican proteínas efectoras para la defensa del huésped como por ejemplo las Mx, que controlan la replicación viral restringiendo la propagación del virus a las células vecinas [200].

En este trabajo, para demostrar que las zfCRPs conservan funciones ancestrales inexistentes o no descritas en mamíferos, se ha utilizado principalmente el SVCV. La elección de este virus se debe esencialmente a que el pez cebra es susceptible a su infección tanto en etapa adulta [201] como en fase de larva [175] a temperaturas cercanas a las óptimas para el desarrollo del pez. Asimismo, en este pez, los síntomas que cursan con la infección de SVCV son similares a los que se observan en otras especies, entre los que cabe destacar las hemorragias y la exoftalmia [202].

Mat. y métodos Introducción Obj., ant., s. modelo) Resultados Discusión Conclusiones Bibliografía Publicaciones Anexos

MATERIAL Y MÉTODOS

1. ANIMALES DE ESTUDIO

En la presente tesis se utilizaron peces cebra (*Danio rerio*) adultos XL (700–900 mg y 3–4 cm) obtenidos de un proveedor local (Fauna Flor, Elche, España). También se utilizaron peces cebra mutantes (*rag1-/-*) con el gen activador de recombinación truncado, y sus correspondientes homólogos *wild type* (*rag1+/+*), de ~6 meses y 0,5-1 g, los cuales se reprodujeron y caracterizaron en las instalaciones del Dr. Victoriano Mulero en la Universidad de Murcia. Todos los peces fueron mantenidos a 24–28 °C en tanques de 30 L equipados con un sistema de recirculación de agua declorada y alimentados diariamente con alimento comercial (Vipan BioVip, Alemania). Antes de los experimentos, los peces se aclimataron durante dos semanas a las condiciones del laboratorio.

Además de peces adultos, se utilizaron embriones de peces cebra *wild type* y transgénicos GFP-Lc3. Los embriones se obtuvieron mediante el desove natural de los apareamientos de adultos en las instalaciones de la Dra. Beatriz Novoa en el Instituto de Investigaciones Marinas-CSIC (Vigo, España).

Todos los procedimientos experimentales con pez cebra se realizaron de acuerdo con la Ley Española de Experimentación Animal (Real Decreto 53/2013) y la Directiva 2010/63/UE del Parlamento Europeo y del Consejo. Asimismo, todos los protocolos fueron aprobados por el comité de ética del gobierno regional sobre la experimentación con animales (Dirección General de Agricultura, Ganadería y Pesca, Generalitat Valenciana) y la Oficina Evaluadora de Proyectos de la Universidad Miguel Hernández y sus homólogos en las instituciones colaboradoras.

2. LÍNEAS CELULARES

En el presente estudio se utilizó la línea celular *Epithelioma papulosum cyprini* (EPC, ATCC #CRL-2872) procedente de *Pimephales promelas* y fibroblastos embriónicos de pez cebra (ZF4, ATCC #CRL-2050). Las células EPC se cultivaron en medio RPMI-1640 Dutch (Gibco, Invitrogen Corporation, Reino Unido) suplementado con un 10% de suero fetal bovino (FBS) (Sigma, St. Louis, EE.UU.), 1 mM de piruvato sódico, 2 mM de glutamina, 50 µg/mL de gentamicina y 2 µg/mL fungizona (Gibco BRL-Invitrogen, Carlsbad, CA, EE.UU.). Las células ZF4 se cultivaron con medio DMEM/F12 (Dulbecco's modified Eagle's, Gibco)

suplementado con 10 % FBS y 100 μ g/mL de primocina (InvivoGen, San Diego, CA, EE.UU.). Ambos tipos celulares se mantuvieron a 28 °C con un 5 % de atmósfera de CO₂.

3. VIRUS

Las infecciones experimentales en este trabajo se realizaron con la cepa 07.71 de VHSV aislada de la trucha arcoíris y el aislado de carpa 56/70 de SVCV. Los aislados de VHSV y SVCV se propagaron en monocapas de EPC a 14 °C y de ZF4 a 22 °C, respectivamente, en los medios de cultivo celular descritos anteriormente, con la excepción del uso de un 2 % de FBS en lugar de un 10 %, y en ausencia de suplemento de CO₂. Los sobrenadantes de las monocapas infectadas se clarificaron por centrifugación a 4000 g y 4 °C durante 30 min y se mantuvieron a -80 °C hasta su uso.

4. CONSTRUCCIÓN DE PLÁSMIDOS QUE CODIFICAN zfcrp1-7

Cada uno de los genes *zfcrp1-7* y *gfp* sintetizados químicamente se subclonaron en el plásmido pMCV1.4 como se describe en la P2. Los plásmidos pMCV1.4-*zfcrp1-7* y pMCV1.4*gfp* resultantes se utilizaron para transformar *E. coli* DH5- α mediante electroporación. Posteriormente, las bacterias transformadas se cultivaron en placas de agar Luria Bertani (LB) con kanamicina (50 µg/mL) durante 24 h a 37 °C y se seleccionó una colonia aislada de cada transformación. Esa colonia se cultivó en medio LB-kanamicina (50 µg/mL) a 37 °C en agitación. Las construcciones de plásmidos se aislaron con el kit de purificación Endofree Plasmid Midi (Qiagen, Alemania) de acuerdo con las instrucciones del fabricante.

5. TRANSFECCIÓN DE CÉLULAS CON pMCV1.4-*zfcrp*1-7 Y PRODUCCIÓN DE SOBRENADANTES ENRIQUECIDOS

Para los experimentos en células transfectadas, las células EPC se transfectaron en placas de 96 pocillos con 100 ng de pMCV1.4-*zfcrp1*-7 utilizando como agente transfectante FuGENE HD (Promega, WI, EE.UU.) durante 24 horas a 22 °C en un volumen total de 100 µL. Tras la transfección, se retiró el medio de cultivo y se añadió medio fresco durante 48 h. Todas las transfecciones realizadas durante esta tesis se realizaron mediante este procedimiento salvo las destinadas a la producción de sobrenadantes enriquecidos con zfCRPs (ssCRPs) o los sobrenadantes control (ssGFP). La eficiencia de transfección se determinó por el porcentaje de células fluorescentes después de la transfección con pMCV1.4-*sfp*.

Para la producción de ssCRP1-7 se transfectaron células EPC en botes de 25 cm² con pMCV1.4-*zfcrp1*-7. Tres días después de la transfección, el medio de las células fue retirado y se añadió medio RPMI 2 %. Dos días después, los sobrenadantes recogidos fueron procesados y almacenados en alícuotas a -80 °C hasta su uso.

6. PRODUCCIÓN DE CRPs RECOMBINANTES

Para la obtención de las proteínas recombinantes CRP2, CRP5 y CRP7, se ha utilizado el sistema Bac-to-Bac. Esta ténica se basa en la transposición de un casete de expresión desde un plásmido donador a un bácmido que se propaga en *E. coli*. La producción de estas proteínas fue realizadad por GenScript (Piscataway, NJ, EE.UU.). Para más detalle, consultar la P3.

Brevemente, se sintetizó una construcción de ~ 3 Kpb, formada por el péptido señal gp67 + CRP1-7 + secuencia (DYKDDDK) + 6 x His, que se insertó en el plásmido donador pFastBac1 (Invitrogen). Los pFastBac1 recombinantes se transfectaron en células de E. coli DH10Bac (Invitrogen) que presentan, además de un bácmido con un segmento de ADN que codifica para el péptido LacZ, un plásmido auxiliar que codifica una transposasa que permite la transposición del gen de interés (contenido en el vector pFastBac1) al genoma del baculovirus. La transposición del gen de interés al bácmido interrumpe el marco de lectura del péptido LacZ permitiendo identificar las bacterias recombinantes por el desarrollo de colonias blancas. Posteriormente, los bácmidos recombinantes aislados se transfectaron en células de insecto Spodoptera frugiperda (Sf9) utilizando Cellfectin II (ThermoFisher, Massachusetts, EE.UU.) como se describe detalladamente en la P3. A 72 h post-transfección se obtuvieron sobrenadantes que contenían ~ 107 pfu (unidades formadoras de placas)/mL de baculovirus recombinantes. Posteriormente, estos sobrenadantes se centrifugaron y dializaron frente a 50 mM Tris y 500 mM NaCl. Aprovechado las colas de His, las proteínas recombinantes se purificaron mediante cromatografía de afinidad de metales inmovilizados utilizando columnas de Ni2+. La identificación de las proteínas CRP se realizó mediante electroforesis en gel de poliacrilamida (SDS-PAGE) seguida de western blot. Sus concentraciones se determinaron utilizando el ensayo de ácido bicinconínico (BCA).

7. PRODUCCIÓN DE ANTICUERPOS EN CONEJO PARA RECONOCER LAS ISOFORMAS DE zfCRP1-7

Se generaron anticuerpos (GenScript) frente a los tres péptidos (p1, p2 y p3) más conservados en las zfCRPs: p1 (¹⁸SYVKLSPEKPLSLSAFTLC), p2 (¹⁸⁹DWDTIEYDVTGN) y p3 (¹²⁹RPGGTVLLGQDPDSYVGGPDC). Los tres anticuerpos fueron purificados mediante cromatografía de afinidad contra los péptidos sintéticos correspondientes acoplados a sefarosa activada con CNBr. Solamente el anticuerpo anti-p3 reconoció por *western blot* tanto las CRPs de los sobrenadantes enriquecidos como las rCRPs producidas en insecto. No obstante, el anticuerpo anti-p2 identificó CRPs en los ssCRPs por *dot-blot*.

8. CARACTERIZACIÓN DE LOS ssCRPs

La caracterización de los sobrenadantes incluyó la determinación de los niveles de tránscritos de *zfcrp1-7* por RT-qPCR (sección 10) y el reconocimiento por *western blot* y *dot-blot* de cada una de las isoformas de zfCRP utilizando los anticuerpos específicos citados en la sección 7.

8.1. Western blot

Se llevó a cabo una electroforesis en gel de poliacrilamida al 15 % durante 90 min a 100 V y bajo condiciones reductoras. Tras esta electroforesis, las proteínas fueron transferidas a membranas de nitrocelulosa (BioRad, 162-0115) a 4 °C y 15 V durante toda la noche en un tampón de transferencia (2,5 mM Tris, 9 mM glicina, 20 % metanol). Esta membrana fue bloqueada durante 2 h con una disolución de PBS con 8 % de leche en polvo y 0,05 % de Tween-20 (Sigma) y, posteriormente, incubada durante toda la noche a 4 °C con el anticuerpo anti-p3 diluido 1:500 en PBS con un 5 % de BSA (Sigma) y 0,05 % de Tween-20 (tampón blot). Tras estas incubaciones, las membranas fueron lavadas tres veces con una disolución de PBS con 0,05 % de Tween-20 e incubadas durante 1 h a temperatura ambiente con el anticuerpo secundario Alexa Fluor® 546 goat anti-rabbit IgG (ThermoFisher) diluido 1:200 en tampón blot. La actividad peroxidasa fue detectada por ECL Select[™] Western Blotting Detection Reagent (Sigma) en un sistema de imágenes LIAS ChemLite 200F/400F (Avegene).

8.2. *Dot-blot*

En este ensayo las zfCRPs no fueron ni separadas por cromatografía ni electrotransferidas a la membrana. Se aplicaron 500 μ l de ssCRPs directamente sobre la membrana de nitrocelulosa donde se fijaron por vacío. A partir de aquí, la detección de las zfCRPs se realizó del mismo modo que en los ensayos de *western blot* con la única diferencia de que el anticuerpo utilizado fue el anti-p2 en lugar del anti-p3.

9. INFECCIONES DE PECES CEBRA ADULTOS Y RECOLECCIÓN DE ÓRGANOS Y PLASMA SANGUÍNEO

9.1. Infecciones in vivo

Los peces cebra se aclimataron durante 2 semanas a 14 °C para la infección con VHSV o a 22 °C para la infección con SVCV. Tras este periodo de aclimatación, los peces fueron infectados durante 2 h por baño-inmersión con 10⁷ pfu/mL de VHSV o 10⁴ pfu/mL de SVCV. El grupo de peces control fue tratado con una cantidad correspondiente de medio celular fresco.

9.2. Recolección de órganos de peces cebra adultos

El tiempo post-infección al que se realiza el sacrificio de los peces mediante una sobredosis de anestesia (mesilato de tricaína, MS-222, Sigma) para recoger tejidos y/o sangre depende del experimento. A lo largo de esta tesis se han realizado ensayos con tejidos de animales sacrificados a diferentes días post-inefcción (Tabla 5).

Tipo de infección	Tiempo post-infección
	2 días
SVCV	5 días
	30 días
VHSV	2 días
	60 días
VHSV+VHSV	2 días en supervivientes de 60 días
A. hydrophila y Vibrio fluvialis	5 meses

Tabla 5. Tiempo post-infección de recogida de tejidos y/o sangre

En función del ensayo, los tejidos recogidos se utilizaron y procesaron de manera diferente. En los estudios de *microarray*, para la obtención de cada réplica biológica se recolectaron muestras conjuntas de órganos linfoides (riñón anterior y bazo) o de aletas de tres peces. Sin embargo, para los estudios por RT-qPCR se utilizaron los tejidos aislados de cada pez. Estos tejidos se mantuvieron en RNAlater (Qiagen, Venlo, Países Bajos) a -70 °C hasta su uso.

9.3. Recolección de sangre de peces cebra adultos

Para los estudios proteómicos, la sangre de peces cebra adultos anestesiados se obtuvo cortando el extremo final de sus colas a 0, 24, 48 y 120 h post-infección de SVCV. Para obtener el plasma, la sangre se procesó como se describe en el apartado 2.5 de la P2. El plasma se mantuvo congelado a -70 °C hasta su uso.

10. EXTRACCIÓN DE ARN, RT y qPCR

Para evaluar la expresión de tránscritos de *crp1-7* en órganos de pez cebra mediante RT-qPCR, el ARN de cada uno de los tejidos se extrajo utilizando el kit E.Z.N.A HP Tissue RNA (Omega Bio-tek, GA, EE.UU.) y, posteriormente, se trató con DNAsa Turbo[™] (Ambion, Thermo Fischer Scientific Inc.) para eliminar el ADN genómico residual. Sin embargo, para evaluar los niveles de tránscritos en EPC o ZF4, el ARN se extrajo utilizando el kit HP Total RNA (Omega Bio-tek) de acuerdo con las instrucciones del fabricante. Las concentraciones de ARN fueron estimadas mediante el espectrofotómetro NanoDrop® Spectrophotometer (Thermo-fisher Scientific, MA, EE.UU.) y la síntesis de ADNc se llevó a cabo utilizando la transcriptasa inversa M-MLV (Moloney murine leukemia virus, Invitrogen).

Finalmente, las PCR cuantitativas se realizaron usando el sistema ABI PRISM 7300 (Applied Biosystems, NJ, EE.UU). Las reacciones se llevaron a cabo en un volumen final de 20 μ L que contenía 2 μ L of ADNc, 900 nM de cada cebador (listados en cada publicación) y 10 μ L de la master mix SYBR Green (Life Technologies, Reino Unido). Se incluyeron controles sin ADNc para cada análisis genético y todas las reacciones se realizaron utilizando duplicados técnicos. Las condiciones de reacción incluyeron: una desnaturalización inicial (95 °C durante 10 min), 40 ciclos de desnaturalización (95 °C durante 15 s) y una etapa de hibridación-elongación (65 °C durante 1 min). Además, en cada reacción se analizaron las curvas de disociación.

La expresión relativa de cada gen se determinó mediante el método 2^{-ΔΔCt} [203]. El valor de expresión de cada gen fue normalizado respecto a un gen endógeno de referencia (*ef1a* o 18S, en función de la línea celular u organismo).

11. MICROMATRICES

Para la realización de la micromatriz se utilizó ARN extraído de los órganos linfoides (riñón anterior y bazo) de peces cebra adultos no infectados, infectados y supervivientes a la infección con VHSV o SVCV. Asimismo, se utilizaron peces cebra mutantes rag1-/- y sus respectivos *wild types*. Las sondas específicas para cada *zfcrp1*-7 se diseñaron mediante el programa Array Designer 4.3 (Premier Biosoft, Palo Alto CA, EE.UU.), la hibridación fue llevada a cabo por NIMGENETICS (Madrid, España) como fue descrito anteriormente en otros trabajos [172, 204], y la fluorescencia se detectó mediante el escáner Agilent (G2565B, AgilentTechnologies) usando el software Agilent Feature Extraction (v9.5). Los resultados de expresión génica se representaron con respecto a los grupos control utilizando las siguientes fórmulas: fluorescencia de cada gen en peces infectados / fluorescencia de cada gen en peces *wild type;* fluorescencia de cada gen en los mutantes *rag 1-/-* infectados / fluorescencia de cada gen en los mutantes *rag 1-/-* sin infectar.

12. ANÁLISIS PROTEÓMICO DE LAS zfCRPs INDUCIDAS POR LA INFECCIÓN CON SVCV EN EL PLASMA DE PECES CEBRA

Las proteínas plasmáticas fueron precipitadas mediante un procedimiento con metanol/cloroformo. Posteriormente fueron cuantificadas por el ensayo BCA y digeridas con tripsina. Tras un proceso de purificación, 1 µg de cada muestra fue analizado mediante cromatografía líquida y espectrofotometría de masas en un aparato Sciex Triple-TOF 6600 (LC/LC-MS/MS) de las Instalaciones Proteómicas del Centro Nacional de Biotecnología (CNB, España). Las señales correspondientes a los péptidos obtenidos tras la digestión zfCRP1-7 fueron identificadas. Sólo las zfCRPs para las que se identificaron dos o más péptidos diferentes fueron consideradas para los análisis posteriores. Para más detalles de este procedimiento, consultar la sección 2.10 de la P2.

13. ESTUDIO DEL EFECTO DE LAS zfCRPs EN LA INFECCIÓN DE SVCV

13.1. Ensayos de neutralización in vitro

Para determinar si las zfCRPs interfieren en la replicación del SVCV se utilizaron diferentes estrategias. En primer lugar se estimó el efecto de las zfCRPs sobre la infección in vitro. Para ello, monocapas celulares transfectadas con cada uno de los plásmidos (pMCV1.4*zfcrp1-7*) o incubadas con los ssCRPs fueron infectadas con SVCV (multiplicidad 10^{-2} o 10^{-3}) a 4 °C. Dos horas post-infección, los sobrenadantes de las células infectadas fueron retirados para eliminar el virus no unido y se incubaron con medio RPMI 2 % FBS a 22 °C durante 20 h más. La infección de estas células fue evaluada por citometría de flujo y/o mediante el recuento de unidades formadoras de focos (ffu). Brevemente, las monocapas se fijaron con 4 % formaldehído (Sigma, F1635) durante 20 min y fueron incubadas con el anticuerpo policlonal anti-SVCV (BioX Diagnostics SA, Bélgica) y el anticuerpo secundario de cabra marcado con Alexa Fluor® 488 que reconoce IgG de ratón (ThermoFisher). Posteriormente se contaron los focos de infección mediante microscopía de fluorescencia para determinar el número de ffu. Alternativamente, la células de estas monocapas fueron suspendidas con tripsina y analizadas por BD FACS Canto II apparatus (BD Biosciences). El porcentaje de células infectadas fue calculado utilizando la siguiente fórmula: 100 x nº células con fluorescencia por encima del umbral / nº células por pocillo. Los resultados finales se expresan como porcentaje de neutralización mediante la fórmula: 100-100 x (nº células tratadas con CRP e infectadas / nº células control infectadas). Cada uno de estos ensayos fue realizado al menos tres veces y por triplicado.

Durante estos ensayos se utilizaron dos líneas celulares: EPC para determinar el efecto de la transfección de pMCV1.4-*zfcrps* sobre la infección vírica y tanto EPC como ZF4 para estudiar el efecto de los ssCRPs. La incubación de las EPC con los distintos ssCRPs se realizó de cinco maneras: 2 o 20 h antes de la inoculación, al mismo tiempo que la inoculación y durante 2 o 20 h después de la adsorción. No obstante, como el tratamiento con mejores resultados fue la incubación 2 h antes de la infección, las incubaciones en ZF4 se realizaron exclusivamente de esa manera.

13.2. Ensayos de neutralización in vivo

Por otra parte, para estudiar el efecto de las zfCRPs sobre la infección con SVCV *in vivo*, se microinyectaron embriones de pez cebra en estado de una sola célula con 150 pg de

las construcciones pMCV1.4-*gfp*/*zfcrp2-5* siguiendo la metodología descrita anteriormente [205]. Tres días después, las larvas resultantes de esas microinyecciones se anestesiaron e infectaron, utilizando también el sistema de microinyección, con SVCV (10⁴ pfu) o PBS. La infección fue monitorizada durante siete días y los resultados se representaron como supervivencia acumulada utilizando la siguiente fórmula: 100-100 x (nº peces muertos inyectados con pMCV1.4-*zfcrp2-5* / nº peces muertos inyectados con pMCV1.4-*gfp*).

13.3. Ensayos de neutralización con ssCRPs empobrecidos (depletssCRPs)

Para demostrar que la actividad antiviral de los ssCRPs se debe a las zfCRPs en lugar de a otros compuestos derivados de EPC, las zfCRPs fueron retiradas de los ssCRPs al incubar los sobrenadantes con 25-hidroxicolesterol (25-HOC) inmovilizado en fase sólida. Se utilizó el 25-HOC por ser un lípido por el que la mayoría de las zfCRPs muestran niveles altos de afinidad, como se describe en la P3. Brevemente, los pocillos de las placas de 96 pocillos Maxisorb (Nunc, Roskilde, Dinamarca) se recubrieron en sequedad con 100 μM de 25-HOC disuelto en etanol y se mantuvieron secos hasta su uso. Después de tres lavados con PBS, se agregaron los ssCRPs diluidos 4 veces y se incubaron durante 2 h. Finalmente, los sobrenadantes empobrecidos (deplet-ssCRPs) se recogieron y fueron utilizados para realizar ensayos de neutralización *in vitro* como los que se describen en la sección 13.1.

13.4. Ensayos de neutralización con LPS

Para estudiar las interferencias producidas por las posibles contaminaciones de LPS de *E. coli* en los plásmidos purificados, se realizó un ensayo de neutralización como el descrito en la sección 13.1. En este ensayo, las monocapas de EPC se incubaron con concentraciones crecientes de LPS (20 a 500 ng por pocillo) de dos cepas bacterianas (*E.coli* O55B5 y 0111:B4). Estas concentraciones fueron mayores a las que pueden estar presentes en nuestras transfecciones según las instrucciones del fabricante.

14. ENSAYOS DE ACTIVIDAD ANTIVIRAL DE LAS zfCRPs

Con el objetivo de determinar el mecanismo por el cual las zfCRPs tienen actividad antiviral, se estudió la influencia de las zfCRPs: a) en la unión del virus a la célula, b) en el proceso de fusión de la membrana vírica con los endosomas, c) en la secreción de moléculas antivirales al medio celular, d) en las etapas tempranas después de la adsorción de SVCV, e) en la inducción del sistema de interferón y f) en la regulación de la autofagia (descrita en la sección 20).

14.1. Ensayos para determinar la inhibición de la unión del virus a la célula

Para estudiar si las zfCRPs inhiben la unión de partículas de SVCV a las potenciales células huéspedes, las monocapas de EPC fueron incubadas con SVCV (multiplicidad de infección, MOI 1) en ausencia (ssGFP) o presencia de zfCRP1-7 (ssCRPs) sólo durante el período de adsorción (2 h a 4 °C), para permitir la unión del virus pero no su endocitosis. Posteriormente, las células se lavaron tres veces con medio RPMI 2 % FBS para eliminar el virus sin unir. Las diferencias en la unión del virus a las potenciales células huéspedes por el tratamiento con ssCRPs se estimaron por la medida mediante RT-qPCR del gen que codifica la proteína N de SVCV.

14.2. Ensayos de fusión mediada por la proteína G de SVCV

Para evaluar el efecto de los ssCRPs sobre la capacidad de fusión de membranas de la proteína G de SVCV, monocapas de EPC sembradas en placas de 96 pocillos se infectaron con SVCV (MOI 10⁻²). Tras 20 h, los medios celulares se eliminaron de las células infectadas, que se lavaron tres veces con medio RPMI 2 % FBS. Posteriormente, las células se trataron con ssCRP o ssGFP durante 2 h a 22 °C. Después de otros tres lavados, la conformación de fusión de membrana de la proteína G de SVCV se indujo mediante la incubación de las monocapas celulares con medios de fusión (pH 6) durante 30 min a 22 °C. Luego las células se lavaron de nuevo tres veces y se incubaron nuevamente con medio a pH 7,5 durante 2 h a 22 °C. Finalmente estas células fueron fijadas con metanol frío (-20 °C) durante 15 min, se secaron al aire y se tiñeron con Giemsa (5 mg/mL en PBS). Los sincitios resultantes de la fusión de células adyacentes se contaron y fotografiaron en el microscopio óptico. El porcentaje de sincitios se calculó mediante la fórmula: 100 x nº sincitios en monocapas tratadas con ssCRPs / nº sincitios en monocapas tratadas con ssGFP. Se realizaron tres ensayos diferentes por triplicado. Los resultados se muestran como media y desviación estándar (s.d.).

14.3. Actividad de los sobrenadantes condicionados por el tratamiento con ssCRPs

Para producir medios condicionados destinados a evaluar si las zfCRPs inducen la secreción de factores antivirales en las células tratadas, las monocapas de EPC se incubaron durante 2 h a 22 °C con ssCRPs. Tras tres lavados, los ssCRPs se reemplazaron con medio RPMI 10 % FBS y se incubaron durante 24 h más a 22 °C. Finalmente, estos sobrenadantes se recogieron y se utilizaron para hacer ensayos de neutralización *in vitro* como se describe en la sección 13.1.

14.4. Determinación de los niveles de replicación de SVCV *in vitro* en etapas tempranas después de la adsorción

Para determinar si las zfCRPs afectan a la replicación de SVCV en etapas tempranas después de la adsorción, las monocapas de EPC y ZF4 se incubaron con una mezcla que contenía ssCRP2-6 a partes iguales (mix-CRP) durante 2 h a 22 °C. A continuación, las células se lavaron tres veces con medio RPMI 2 % FBS y se inocularon a 4 °C con SVCV (MOI 0,01) durante 2 h más. Después de otros tres lavados, se agregaron nuevos medios y las monocapas se incubaron a 22 °C. Las células infectadas se recolectaron 0, 1, 2, 3, 4 y 5 h postadsorción para analizar los niveles de replicación viral midiendo la expresión génica de *n* y *g* de SVCV por RT-qPCR.

14.5. Análisis de la capacidad de los ssCRPs para inducir el sistema de interferón

Para evaluar si las zfCRPs estaban afectando el sistema de interferón (IFN) a nivel transcripcional, las células EPC se trataron con ssCRP durante 2 h a 22 °C. Tras este periodo, las monocapas se lavaron tres veces y se recogieron muestras a las 20 h. Con estas muestras se analizó la regulación transcripcional de mx (ISG) mediante RT-qPCR. En las monocapas de ZF4, la medida de expresión génica de mx no fue sólo a las 20 h, también se realizó a 1, 2, 3, 4 y 5 horas post-tratamiento con la mixCRPs. A estos tiempos también se analizó la expresión de *ifnphi1* e *ifnphi2* en estas últimas muestras.

15. EVALUACIÓN DEL PAPEL DE LA IL6 EN LA INDUCCIÓN DE *zfcrps*

Para probar los efectos de IL6 en la expresión de *crp1-7*, se microinyectaron 2 nL de PBS que contenían 150 pg de pMCV1.4 o pMCV1.4-*il6* en embriones de una sola célula,

como se describe en la sección 13.2. Tres días después, se extrajo el ARN de grupos de tres larvas y se midieron los niveles de tránscritos de *zfcrp1-7* por RT-qPCR como se describe en la sección 10.

16. PREDICCIONES IN SILICO

16.1. Estructuras tridimensionales de las zfCRPs

La predicción de las estructuras tridimensionales de zfCRP1-7 se realizó mediante el servidor de homología SWISS-MODEL (<u>https://swissmodel.expasy.org/interactive</u>) [206-208]. Este servidor compara la secuencia de aminoácidos de la proteína diana (zfCRP) con otras secuencias proteicas de su base de datos e identifica la mejor plantilla para modelar su estructura. En este caso, la plantilla seleccionada por modelado automático fue la correspondiente a la zfCRP5 en presencia y ausencia de Ca²⁺ (4PBP.pdb y 4PBO.pdb) [105].

16.2. Energías libres de unión de las zfCRPs a lípidos de membrana

La energía libre de unión (Δ G) de las zfCRPs a los diferentes lípidos se calculó utilizando AutoDock Vina [209] incluido en el paquete del programa PyRx [210]. Para la comparación de algunos datos experimentales, los valores de la constante de inhibición (Ki) fueron calculados a partir de los valores de Δ G mediante la fórmula: Ki = exp ([Δ G*1000] / [R*T]) (R = 1,98 cal/mol, y T=298 °C) [211]. Las estructuras predichas se visualizaron en PyRx y/o PyMOL (https://www.pymol.org/).

17. ESTUDIO DE LA UNIÓN DE zfCRPs A LÍPIDOS

17.1. Unión en fase sólida

La unión de CRP1-7 (rCRPs y ssCRPs) a los lípidos se analizó en placas de 96 pocillos (Nunc, Maxisorb) modificando los métodos descritos anteriormente [212]. En primer lugar, en cada uno de los pocillos se inmovilizaron diferentes concentraciones de lípidos disueltos en etanol, que se dejaron secar hasta que estuvieron listos para su uso. Posteriormente, las placas se lavaron con 0,1 M de borato de sodio y 1 mM de CaCl₂ (pH 8) y se incubaron durante 2 h con 0,5 µg de rCRPs o ssCRP1-7 (diluidos 10 veces en el mismo tampón). Tras otro lavado, las zfCRPs unidas a los lípidos se detectaron mediante el anticuerpo anti-p3 e IgG anti-conejo de cabra conjugado con peroxidasa. Los niveles de

sustrato coloreado (o-fenilenodiamina, OPD) se midieron mediante espectrofotometría como se describió anteriormente [213, 214].

17.2. Análisis de secuencias de péptidos superpuestas (Pepscan)

Para evaluar el sitio de unión de las zfCRPs al 25-HOC, se realizaron ensayos de unión entre 25-HOC y péptidos sintéticos/pepscan (Quiron Mimotopes, Victoria, Australia) procedentes de la secuencia de zfCRP5. Estos péptidos de 15-mer se superponen 5 aminoácidos y tienen agregada una molécula de biotina en el amino terminal. Los ensayos de unión se realizaron siguiendo el protocolo descrito anteriormente. Brevemente, durante 60 min se incubaron 0,05 µg de cada péptido con 2 µg de 25-HOC inmovilizado previamente en las placas. Esta unión fue posteriormente detectada por la incubación durante 30 min de estreptavidina conjugada con peroxidasa y espectrofotometría.

Para predecir estas uniones *in silico*, los péptidos pepscan de CRP5 modelados con mejores valores por el programa Mobyle (<u>http://mobyle.rpbs.univ-parisdiderot.fr/cgibin/portal.py#forms::PEP-FOLD</u>) [215] se enfrentaron a todas las conformaciones posibles pronosticadas para 25-HOC.

18. EVALUACIÓN DEL EFECTO DE LA METIL-β-CICLODEXTRINA (MβCD) Y EL COLESTEROL (CH) SOBRE LA INFECCIÓN DE SVCV

Las monocapas de EPC tratadas durante 2 h con diferentes concentraciones (0–8 mM) de M β CD se incubaron con SVCV (MOI 10⁻²) durante 24 h (sección 13). El número de células infectadas se estimó por citometría de flujo tras su detección con el anticuerpo monoclonal anti-SVCV (BioX Diagnostics SA, Bélgica) y la IgG anti-ratón de cabra marcada con fluoresceína. Los resultados se expresaron como el porcentaje de infectividad de SVCV calculado por la siguiente fórmula: 100 × (ffu en tratamientos con M β CD / ffu en tratamientos sin M β CD). El efecto de 1 mM de M β CD y 0,5 y 1 mM de colesterol se analizó de manera similar. Además, en otro experimento se evaluó el efecto de 1 mM de M β CD con 0,5 o 1 mM de colesterol durante 2 horas a 22 ° C.

Para analizar la viabilidad, las monocapas de EPC tratadas con MβCD (0-8 mM) se incubaron durante 3 h con 0,5 mg/mL bromuro de 3-(4,5- dimetiltiazol-2-ilo)-2,5difeniltetrazol (MTT) diluido en un buffer a pH 7,4 (115 mM NaCl, 5 mM KCl, 1 mM KH2PO4, 1,2 mM MgSO4, 2 mM CaCl2 y 25 mM HEPES). La absorbancia medida a 570 nm sirvió para calcular el porcentaje de viabilidad por la siguiente fórmula: 100 x absorbancia de células tratadas con M β CD / absorbancia de células no tratadas.

19. ANÁLISIS DEL EFECTO DEL 25-HOC SOBRE LA ACTIVIDAD ANTIVIRAL DE LAS zfCRPs

Para detectar los efectos de 25-HOC sobre la actividad de los ssCRP1-7 en la infección por SVCV, las monocapas de EPC se incubaron durante 20 h a 26 °C con ssCRP1-7 o ssGFP diluidos 4 veces en ausencia o presencia de 10 μ M de 25-HOC. Tras el lavado del tratamiento, las células fueron infectadas con SVCV (MOI 0,01) durante 24 h y el número de células infectadas fue estimado por citometría de flujo. Los resultados de la preincubación de 25-HOC y ssCRPs se expresaron como porcentajes relativos de infección ± 25-HOC calculados por la siguiente fórmula, 100 x (porcentaje de células EPC infectadas preincubadas con ssCRPs + 25-HOC / porcentaje de células EPC infectadas con ssCRPs - 25-HOC).

20. ENSAYOS PARA LA DETERMINACIÓN DEL PAPEL DE LAS zfCRPs, 25-HOC, MβCD Y CH SOBRE LA AUTOFAGIA

20.1. Inmunofluorescencias

La primera evaluación del efecto de las zfCRPs, el 25-HOC y la MβCD sobre la autofagia se realizó *in vitro*. Las monocapas de ZF4 cultivadas al 80 % de confluencia en placas de 24 pocillos con cubreobjetos de vidrio de 12 mm se trataron con los siguientes compuestos en medios de infección durante 4 h: cloroquina (CQ, 25 µM), 25-HOC (10 µg/mL, que incluye etanol al 2,5%), Ch (10 µg/mL, que incluye etanol al 2,5%), SVCV (MOI 1), mix-ssCRP, mix-ssCRP+25-HOC, mix-ssCRP+SVCV, MβCD (4 mM), MβCD+SVCV. También se incluyeron células tratadas con ssGFP. Después del tratamiento, las células se lavaron tres veces con medios de infección y se fijaron con formalina al 2 % durante 15 minutos a 4 °C. Tras tres lavados con PBS, las células se bloquearon con BSA al 1 % y Triton X-100 al 0,5 % (Sigma) (tampón de bloqueo) en PBS durante 1 h, se lavaron de nuevo y luego se incubaron durante la noche a 4 °C con una dilución de 1:200 del anticuerpo monoclonal anti-LC3B de ratón (NanoTools Antikoerper Technik, Alemania). Después del lavado, las células se incubaron con el anticuerpo secundario de cabra marcado con Alexa Fluor®488 anti IgG de ratón (dilución 1:500 en tampón de bloqueo) durante 1 h a temperatura

ambiente, y los núcleos se tiñeron con una solución de 4,6-diamido-2-fenilindol (DAPI) (0,1 μg/mL) (Molecular Probes-Life Technologies, Reino Unido) para la localización nuclear. Finalmente, las muestras de células se lavaron tres veces y se montaron utilizando ProLong AntifadeReagents (Life Technologies). Las imágenes confocales se capturaron utilizando un microscopio confocal TSC SPE y el software LAS AF (todos de Leica).

20.2. Determinación de autofagosomas intracelulares

La cuantificación de los autofagosomas se llevó a cabo mediante el análisis de las imágenes de inmunofluorescencia con el software ImageJ v1.52a (US National Institutes of Health, Bethesda, MD, EE.UU.). Para ello, la fluorescencia derivada de FITC de cada imagen, que se había convertido previamente a escala de grises, se midió aplicando un umbral de 1,2 %, que excluía el fondo y seleccionaba los puntos marcados fluorescentemente. Los núcleos teñidos con DAPI se contaron manualmente. Para cada tratamiento se analizaron tres imágenes por réplica y se representó la cantidad de autofagasomas por célula en comparación con el control (células no tratadas). Los datos se representan como la media y s.d. de tres experimentos independientes.

20.3. Ensayos in vivo

Para evaluar los efectos de las zfCRPs en el proceso autofágico *in vivo*, tres grupos de cinco peces cebra adultos se inyectaron por vía intraperitoneal con 5 µL de ssGFP o mixssCRPs. Dos días post-inyección, los órganos linfoides (bazo, hígado y riñón anterior) de cada pez fueron extraídos individualmente y sumergidos en RNAlater (Ambion, Austin, EE.UU.) donde se mantuvieron a -70 °C hasta su uso. Los niveles de expresión de genes relacionados con la autofagia fueron evaluados mediante RTqPCR como se describe en la sección 10. Los niveles de expresión génica en peces inyectados con la mix-ssCRPs se representaron en relación con los obtenidos con la inyección de ssGFP.

El estudio del efecto de las zfCRPs en la autofagia *in vivo* también incluyó la evaluación de los cambios en la distribución tisular de LC3 en larvas de pez cebra transgénicos (GFP-Lc3) ocasionados por la inyección de pMCV1.4-*zfcrp1-4-5/il6*. Este ensayo consistió en la microinyección de grupos de 30 embriones en etapa unicelular con 2 nL de PBS que contenía 150 pg de pMCV1.4, pMCV1.4-*zfcrp1-4-5* o pMCV1.4-*il6*. Posteriormente, las larvas resultantes de tres días se anestesiaron con una solución de MS-222 al 0,05 % y se fotografiaron en una lupa de fluorescencia (microscopio AZ100, Nikon).

20.4. Ensayos funcionales in vitro

Se utilizaron MβCD, 25-HOC y mix-ssCRPs como consecuencia de sus propiedades anti-SVCV; CQ, 3-MA y rapamicina como moduladores de autofagia y N-acetilcisteína (NAC) como reductor de ROS. Sus soluciones madre (40 mM MβCD en PBS; 0,4 mg/mL 25-HOC en etanol; 0,1 M CQ en H2O; 0,6 M NAC en H2O; 0,2 M 3-MA en H2O y 2 mM rapamicina en dimetilsulfóxido, DMSO) se almacenaron a -20 °C hasta su uso.

Para determinar que la actividad antiviral de las zfCRPs, M β CD y 25-HOC es consecuencia de una regulación de la autofagia, los porcentajes de infección obtenidos con el tratamiento de las células con cada uno de estos tres compuestos se compararon con los obtenidos en presencia de 3-MA, CQ, rapamicina y NAC. Brevemente, las monocapas de EPC se incubaron con 3-MA (0,5 mM y un gradiente de 0-1 mM, 20 h), CQ (25 μ M, 30 min), rapamicina (25 μ M, 4 h) o NAC (1 mM, 20 h) a 28°C. Después del período de incubación, las células se lavaron con medio de infección tres veces y luego se trataron durante 20 horas a 22 °C con: ssGFP, mix-ssCRPs, 4 mM M β CD o 10 μ g/mL 25-HOC. Posteriormente, estas monocapas se lavaron tres veces con medio de infección y se infectaron con SVCV (MOI 10-3), como se describió en la sección 13, para la posterior determinación del número de focos de infección.

INIVERSITAS Miguel Hermändez

21. ANÁLISIS ESTADÍSTICO

Los resultados de supervivencia representados por las curvas de Kaplan-Meier fueron analizados estadísticamente mediante la prueba log-Rank (Mantel-Cox), utilizando la función de análisis de supervivencia correspondiente del paquete de software de computadora OriginPro 2017. Este análisis comparó la supervivencia de las larvas sobreexpresoras de *zfcrp* con las sobre-expresoras de *gfp*. Los resultados de *microarray*, RTqPCR y neutralización se representaron como la media y s.d. de al menos 3 experimentos independientes. Para determinar sus diferencias significativas, los datos correspondientes se analizaron con GraphPad Prism 7 utilizando el análisis estadístico más apropiado en función del diseño experimental. A menos que indique lo contrario, las diferencias entre dos muestras se analizaron mediante la prueba t de Student y las diferencias entre grupos utilizando ANOVA. Las diferencias fueron estadísticamente significativas (*, a) cuando p $\leq 0,05$, (**, b) cuando p $\leq 0,01$ y (***, c) cuando p $\leq 0,001$.

RESULTADOS

RESULTADOS

RESULTADOS

1. DESCRIPCIÓN DE LOS NIVELES DE EXPRESIÓN DE LAS *zfcrps* TRAS DIFERENTES ESTÍMULOS

Comenzamos los estudios de caracterización de la actividad de las zfCRPs analizando la expresión de estas moléculas a nivel constitutivo y en respuesta a diferentes estímulos patogénicos. Se analizaron los niveles de transcripción basal por RT-qPCR de las siete isoformas de zfCRPs en un conjunto de tejidos: riñón anterior, hígado, piel, branquias, intestino, músculo y bazo. Los resultados mostraron que las isoformas más expresadas basalmente son la 3, 4 y 5; y las que menos, la 1, 6 y 7 (Fig. 1A, anexo 1). Asimismo, cada tejido presentó un patrón de expresión de zfcrps diferente, ya que mientras la expresión principal en bazo es de zfcrp3-5, en branquias es de zfcrp4 (Tabla 1, P2; Fig. 1A, anexo 1). Para estudiar si los niveles y el patrón de distribución basal de zfcrp1-7 cambiaban tras una infección vírica, se analizaron los tránscritos de estas isoformas en los mismos tejidos tras 2 y 5 dpi con SVCV. Estos resultados mostraron que las isoformas más expresadas tras la infección seguían siendo 3, 4 y 5, alcanzándose los niveles más altos a los 5 dpi, coincidiendo con una mayor expresión de n-SVCV en los tejidos estudiados (Fig. 1B, anexo 1). No obstante, el resto de isoformas también se modularon. Esta tendencia, ya observada a 2 dpi, fue mucho más evidente a 5 dpi, cuando los niveles de tránscritos de zfcrps 3-7 aumentaron en la mayoría de los tejidos estudiados (Fig. 1C, anexo 1). Sin embargo, no todas las isoformas sufrieron la misma regulación tras la infección ya que, aparte de sobreexpresiones, las isoformas 4 y 5 aparecieron reprimidas significativamente en branquias y piel, respectivamente, a 2 dpi. Una represión que no se observó en ninguna isoforma a 5 dpi, que es cuando mayor cantidad de virus se detecta, salvo en la *zfcrp1*. En este caso, excepto en el hígado, el órgano que menor cantidad de n-SVCV expresó, la zfcrp1 aparece reprimida en todos los tejidos estudiados, aunque no significativamente (Fig. 1C, anexo 1).

La sobre-expresión de *zfcrp2-7* tras la infección con SVCV se comprobó mediante el análisis transcripcional por *microarray* de estas isoformas en los órganos linfoides (riñón anterior y bazo) y en las aletas y piel adyacente de peces infectados y supervivientes a la infección. Este análisis mostró que la expresión de *zfcrp4/zfcrp7* en órganos linfoides y la de *zfcrp2/zfcrp4/zfcrp5* en aletas (Fig. 2A, P2) aumentaba ligeramente a 2 dpi con SVCV, especialmente la expresión de *zfcrp5* en aletas (~7 veces). De manera similar, los órganos linfoides y las aletas de los peces supervivientes tras un mes de la infección con SVCV sobre-expresaban *zfcrp2-5* y *zfcrp2-6*, respectivamente (Fig. 2B, P2).

RESULTADOS

El perfil transcripcional de las *zfcrps* también se estudió tras la infección con VHSV mediante *microarray*. Los resultados mostraron que, al igual que la infección con SVCV, el VHSV aumentaba los niveles de tránscritos de *zfcrps* en órganos internos a tiempos cortos después de la infección (2 dpi, VHSV+) (**Fig. 1, P2, barras rojas**). No obstante, la expresión de *zfcrp2-6* aparecía reprimida en los órganos internos de los supervivientes a dos meses de la infección con VHSV antes (VHSVS) y después de la re-infección con VHSV (VHSVS+) (**Fig. 1, P2, barras amarillas**). Esta represión de la expresión de *zfcrps* en órganos internos también se observó en los mutantes *rag1-/-* (carentes de sistema inmune adaptativo), que presentan constitutivamente niveles de expresión de *zfcrps* menores que los observados en los peces *wild type* (**Fig. 3, P2**). No obstante, a diferencia de lo ocurrido tras la infección de los supervivientes a VHSV, la infección de los mutantes *rag1-/-* con SVCV aumentó la expresión de todas las isoformas de *zfcrp* salvo la 4 y la 7, de hecho, la expresión de *zfcrp4* siguió reprimida (**Fig. 3, P2**).

Aparte de la infección vírica, existen otros estímulos que pueden conducir a un aumento de la expresión de las *zfcrps*. Este es el caso de la infección bacteriana con *A. hydrophila* y *V. fluvialis* que, de acuerdo con los resultados de *microarray*, a 5 meses postinfección aumenta la expresión de *zfcrp2-6* en los órganos internos de los peces (Fig. 1, P2, **barras azules**). Asimismo, la sobre-expresión de *il6* en larvas de pez cebra, debido a la microinyección de pMCV1.4-*zfil6* en estado embrionario de una sola célula, indujo la expresión de *zfcrp4-5* (Fig. 6B, P2). Estos resultados sugieren: a) que al igual que las CRPs de mamíferos, las zfCRPs podrían tener actividad antibacteriana, b) que la *il6*, el mayor inductor de la síntesis de CRP en mamíferos [216], también es responsable de la estimulación de algunas isoformas de zfCRPs y c) que algunas zfCRPs podrían comportarse como proteínas de fase aguda ya que la IL6 está involucrada en la activación de la respuesta inflamatoria aguda frente a la infección vírica [217, 218].

Con el fin de determinar si las zfCRPs actuaban como proteínas de fase aguda, se realizó un análisis proteómico para evaluar los niveles de CRP en el plasma sanguíneo de peces cebra infectados con SVCV a diferentes tiempos. Los resultados de este estudio revelaron un aumento significativo de todas las zfCRPs (~1,5-3 veces) salvo de la CRP7 a 24 hpi, siendo este aumento mayor para las isoformas 2 y 5. Asimismo, a 48 hpi sólo había más CRP2 en los peces infectados que en los peces control. Tras 5 dpi, los niveles de todas las zfCRPs eran inferiores a los observados a tiempo 0 **(Fig. 4, P2)**.
2. EVALUACIÓN DE LA ACTIVIDAD ANTIVIRAL DE LAS zfCRPs

El aumento de tránscritos de zfCRPs tras infecciones víricas sugiere una función antiviral de estas proteínas. Para evaluar esta actividad, en la presente tesis se utilizaron: **a**) células transfectadas con plásmidos de expresión (pMCV1.4-*zfcrp1*-7); **b**) células tratadas con sobrenadantes enriquecidos con zfCRPs (ssCRPs) procedentes de células EPC transfectadas con los pMCV1.4-*zfcrp1*-7, ya que las zfCRPs son proteínas que se secretan al medio y **c**) proteínas recombinantes producidas en insecto (rCRPs). Sin embargo, como las rCRPs no mostraron ni actividad antibacteriana ni antiviral, probablemente por la ausencia de modificaciones post-traduccionales esenciales para su actividad como se ha visto en los ssCRPs (**Fig. 6D, P3**), finalmente su uso se limitó a control en los ensayos de caracterización de los ssCRPs y de afinidad a lípidos.

2.1. Caracterización de los sobrenadantes enriquecidos con zfCRPs (ssCRPs)

Previamente a la evaluación de las actividades de las zfCRPs, se realizó una caracterización de los ssCRPs. Esta caracterización incluyó: **a**) la cuantificación de tránscritos de *zfcrp* por RT-qPCR en células transfectadas con pMCV1.4-*zfcrp1*-7, **b**) la detección de zfCRPs en los ssCRP por *western-blot* y *dot-blot* y **c**) la determinación del estado de oligomerización de las zfCRPs presentes en los ssCRPs.

La cuantificación de tránscritos de *zfcrp* por RT-qPCR en las células transfectadas con pMCV1.4-*zfcrp1*-7 demostró la sobre-expresión de todas las isoformas de *zfcrp* con respecto a las células transfectadas con pMCV1.4-*gfp*. Asimismo, como los niveles de expresión fueron similares para todas las isoformas, la eficiencia de transfección de cada una de ellas se consideró comparable (**Fig. S1A, P2**). Una vez comprobada la transfección de todas las *zfcrps*, se procedió a la identificación de cada una de las isoformas en los ssCRPs. Los ensayos de *western blot* detectaron todas las isoformas salvo la 1 (**Fig. 6D, P3**). No obstante, como esta isoforma sí estaba sobre-expresada en las células transfectadas con pMCV1.4-*zfcrp1* de las que procedían los ssCRPs, la no localización de CRP1 fue asociada a la incapacidad de detección de esta isoforma por el anticuerpo utilizado. Esta hipótesis concuerda con el hecho de que el anticuerpo utilizado (anti-p3) identifique una secuencia (¹³⁰SGGTVVLGQDPDSYVGSF¹⁴⁷) muy conservada en todas las *zfCRPs* salvo en la 1 que presenta 7 sustituciones (¹²⁹PQGTALLGQDPDKLLGDFE¹⁴⁷). La *zfCRP1* fue finalmente identificada por *dot blot* utilizando un anticuerpo diferente (anti-p2) que reconoce otra secuencia también muy conservada entre las *zfCRPs* (¹⁸⁹DWDTIEYDVTGN²⁰⁰) (**Fig. S1B, P2**).

Estos estudios no sólo demostraron la presencia de zfCRPs en los ssCRPs que se utilizarán a lo largo de esta tesis, también revelaron cambios en la masa molecular esperada (~25 kDa) para las zfCRPs. Estos cambios incluyeron tanto incrementos en CRP4, CRP6 y CRP7 como reducciones en CRP2 y CRP3 (Fig. 6D, P3).

Los estudios realizados para conocer el estado de oligomerización de las rCRPs y de las zfCRPs presentes en los ssCRPs se llevaron a cabo mediante electroforesis en gel de poliacrilamida (PAGE). Como las condiciones nativas de esta técnica excluyen el dodecilsulfato sódico (SDS), no se pudo determinar el peso molecular de las CRPs con precisión. Sin embargo, las diferencias observadas entre los pesos moleculares de las rCRPs, que coincidían con la predicción bioinformática de la estructura tridimensional de las zfCRPs, dieron una idea de las posibles conformaciones de las proteínas con las que estábamos trabajando.

En ausencia de SDS, la migración de las proteínas sometidas a un campo eléctrico depende de su carga y no de su peso molecular. Por ello, rCRP5 y rCRP7, que tienen el mismo punto isoeléctrico (PI=4,6), presentan un peso molecular aparente diferente al de rCRP2 que tiene un PI mayor (6,35) (Fig. 6A izquierda, P3). Sin embargo, la comparación de la migración de estas tres proteínas tras un tratamiento breve en condiciones desnaturalizantes (calor, SDS y β -mercaptoetanol) reveló tamaños más grandes para rCRP2 y rCRP5 que para rCRP7 (Fig. 6A derecha, P3). Aun así, no se pudo estimar el peso molecular de las rCRPs dado que estas condiciones siguen siendo imprecisas al excluir el SDS del tampón.

La migración de las rCRPs bajo condiciones nativas (sin calor, sin SDS, sin βmercaptoetanol) pero con la inclusión de SDS en los tampones mostró diferentes bandas a ~75, ~50 y ~25 kDa, que se interpretaron como trímeros, dímeros y monómeros de zfCRP, respectivamente (Fig. 6B izquierda, P3). Sin embargo, en estas condiciones, cuando las proteínas fueron sometidas a un tratamiento desnaturalizante breve, el número de monómeros aumentó, especialmente en el caso de rCRP7 que no mostró bandas con pesos moleculares superiores a 25 kDa (Fig. 6B derecha, P3). Finalmente, sólo en condiciones completamente desnaturalizantes las tres rCRPs mostraron un peso molecular similar (~25 kDa) (Fig. 6A derecha, P3), a diferencia de las zfCRPs presentes en los ssCRPs que se detectaron como monómeros en todos los casos (condiciones nativas, desnaturalizantes breves y completamente desnaturalizantes) (Fig. 6C, P3).

Todos estos resultados parecen indicar **a**) que mientras rCRP2 y rCRP5 existen en equilibrio entre trímeros, dímeros y monómeros, rCRP7 tiende a formar exclusivamente monómeros y **b**) que las zfCRPs son secretadas al medio de las células EPC transfectadas principalmente como monómeros. Estos resultados concuerdan con las predicciones tridimensionales de las estructuras de las zfCRPs realizadas mediante SWISS-MODEL, que revelan la estructura de todas las isoformas de CRP como monómeros, salvo la de la CRP2 y la del 97,8% de las variantes transcripcionales de CRP5, que se modelan como trímeros **(Tabla 2, P3)**.

2.2. Actividad antiviral de las zfCRPs

La evaluación de las propiedades antivirales de las zfCRPs se realizó en primer lugar in vitro, en la línea celular EPC y utilizando SVCV, uno de los virus cuya infección incrementaba los niveles de tránscritos de zfcrps en los diferentes tejidos de pez cebra. Estos experimentos demostraron que tanto la transfección de las células con pMCV1.4-zfcrp2-7 como su tratamiento con ssCRP2-7 (previo a la infección) neutralizaban la infección de SVCV (Fig. 5, P2). Con el objetivo de identificar la etapa del ciclo viral en la que los ssCRPs ejercían la actividad neutralizante, y si tal actividad era consecuencia de una interacción directa con las partículas víricas, los ssCRPs fueron introducidos en diferentes puntos críticos del ciclo vírico de SVCV: antes, durante y después de la adsorción del virus (diagramas Fig. 1, P4). Cuando las células (Fig. 1A, P4) o el virus (Fig. 1B, P4) fueron tratados con los ssCRPs antes de la adsorción, se observaron actividades inhibitorias significativas (47,1-76,2 %) en todos los casos a excepción de los tratamientos con ssCRP1 (Fig. 1A-B, P4) y el tratamiento de 2 h de SVCV con ssCRP7 (Fig. 1B, P4). Los tratamientos que se limitaron a la adsorción también mostraron porcentajes de neutralización altos, que fueron significativos en el caso de las isoformas 2, 4 y 5 (55,6 ± 11.8 %, 54,2 ± 6.2 % y 46,6 ± 16,3 %, respectivamente) (Fig. 1C, P4) y similares, salvo en el caso de los ssCRP3/6/7, a los obtenidos tras la incubación de los ssCRPs con SVCV previamente a la infección (Fig. 1B, P4). Este resultado demostró la baja intervención de la interacción directa de los ssCRPs sobre las partículas víricas. Por otro lado, al contrario de lo ocurrido en los tratamientos previos a la adsorción, la duración del tratamiento sí afectó a la actividad inhibitoria de los ssCRP2-7 cuando fueron administrados en etapas posteriores a la absorción. El efecto neutralizante aumentó significativamente cuando los tratamientos duraron 20 h (52,3-84,2 %) en comparación con los tratamientos de 2 h (12,1-27,7%), que no inducían una neutralización significativa (Fig. 1D, P4).

Para comprobar que la actividad antiviral de los sobrenadantes se debía realmente a las zfCRPs y no al efecto de los lipopolisacáridos de *E. coli* remanentes en las preparaciones de los plásmidos, se comprobó si la incubación de LPS durante 2 h en las monocapas de EPC tenía efecto antiviral. Los resultados muestran que el LPS no neutralizó la infección de SVCV a la mayor concentración utilizada (500 ng/100µl) **(Fig. S2, P2)**, que fue ~1000 veces más alta que la esperada en los plásmidos de acuerdo con la estimación del fabricante del kit de purificación.

Asimismo se verificó que todos los ssCRPs, a excepción de los ssCRP7, perdían capacidad neutralizante cuando las zfCRPs eran retiradas del medio por unión a 25hidroxicolesterol (25-HOC) en fase sólida (Fig. S1, P4), un lípido por el que las zfCRPs presentan alta afinidad ($\Delta G \sim -9$ Kcal/mol) (Fig. 2, P3). A nivel individual, tras las la unión a 25-HOC, los ssCRP3/5 redujeron su capacidad antiviral hasta niveles de neutralización no significativos y los ssCRP2/4/6 mantuvieron una actividad neutralizante pero significativamente menor a sus controles no tratados con 25-HOC (Fig. S1, P4).

Una vez comprobada que la actividad antiviral observada *in vitro* era al menos en parte consecuencia de las zfCRPs, con el objetivo de constatar esta actividad *in vivo*, se microinyectaron 150 pg de plásmidos pMCV1.4-*zfcrp2-5* en embriones de pez cebra en estado de una sola célula. Tres días después, cada larva eclosionada fue infectada con 10⁴ pfu de SVCV también por microinyección y sus mortalidades fueron monitorizadas diariamente durante 7 días. Las supervivencias acumuladas obtenidas fueron mayores en los grupos de peces inyectados con los plásmidos pMCV1.4-*zfcrp2-5* (~ 18, 12, 24 y 32 %, respectivamente) que en los inyectados con pMCV1.4-*gfp* (0 %) **(Fig. 6A, P2)**. Estos resultados corroboraron que las zfCRPs ofrecían protección frente al desafío con SVCV.

Las evidencias presentadas en los apartados 1 y 2 de esta sección apuntan a una actividad antiviral de las zfCRPs. Pese a que la actividad antibacteriana de las CRPs está ampliamente descrita, ésta es la primera vez que se describe una actividad antiviral *in vitro* e *in vivo* de esta proteína. Debido al carácter novedoso de este descubrimiento, los dos siguientes apartados de la tesis se centran en esclarecer el mecanismo de acción por el cual las zfCRPs protegen frente a la infección por SVCV.

3. ANÁLISIS DE LA AFINIDAD DE LAS zfCRPs A LÍPIDOS

Los resultados descritos en el apartado anterior definen la incubación de las monocapas de EPC con los ssCRPs durante 2 h antes de la infección como el tratamiento óptimo para inhibir la infección vírica. Este resultado sugiere que las zfCRPs actúan sobre las células para inhibir alguno de los pasos del proceso de entrada del virus. Dado que esta inhibición podría estar mediada por la afinidad de las zfCRPs a lípidos de membrana, como se ha reportado anteriormente con la hCRP [164, 219], se realizaron estudios para analizar la afinidad de las zfCRPs a diferentes lípidos. Entre los diferentes lípidos se incluyó el colesterol debido a la preferencia de determinados rabdovirus por las balsas lipídicas (*lipid rafts*) para su entrada [220].

En primer lugar se realizó una predicción de las energías libres de unión (Δ G) de zfCRP1-7 a una selección de lípidos que incluía, entre otros, la PC y el colesterol (Ch) debido a su interacción con la hCRP [111, 221-223]. Curiosamente, las menores Δ G fueron predichas para la unión de CRPs a Ch (Δ G de ~-7,5 a -9 Kcal/mol) mientras que las mayores, fueron para la unión a PC (Δ G de ~-4 a -5 Kcal/mol) (**Fig. 1A, P3**), el ligando prototipo de las CRPs de mamíferos [216]. Estos resultados no sólo revelan una alta afinidad de las zfCRPs a los Chs, también predicen una independencia de Ca²⁺ en esta unión ya que los valores de Δ G no mejoran en presencia de este catión (**Tabla S1, P3**).

Dado que las predicciones mostraban una alta afinidad de las zfCRPs por el Ch, los siguientes estudios centraron sus esfuerzos en predecir la energía libre de unión de las zfCRPs a un conjunto de 26 compuestos fisiológicos estructuralmente relacionados con el Ch. En este caso, las menores ΔG fueron obtenidas con los hidroxicolesteroles (entre -7,5 y - 9,3 Kcal/mol) independientemente de la presencia o no de Ca⁺² (Fig. 2 y Tabla S2, P3). La unión de las zfCRPs a los hidroxicolesteroles fue comprobada *in vitro* mediante ELISA. En estos ensayos de unión, se compararon las afinidades de las zfCRPs a la PC, el Ch y el 25-hidroxicolesterol (25-HOC), un hidroxicolesterol cuya actividad antiviral ha sido descrita previamente [205] y, por tanto, podría estar relacionado con la actividad antiviral de las zfCRPs. Los primeros ensayos de unión se realizaron con las rCRPs y, tras verificar que las rCRPs presentaban mayor afinidad por el Ch y por el 25-HOC que por la PC (Fig. 3A, P3), se comprobó si los distintos ssCRPs también se unían al 25-HOC. Estos últimos resultados mostraron que los ssCRPs se unen al 25-HOC con diferentes perfiles dependientes de concentración. Concretamente, el ssCRP1 y el ssCRP7 fueron en este sentido el más y el menos activo, respectivamente, a las concentraciones más bajas de 25-HOC analizadas (<10

 μ M). Por otro lado, a las concentraciones más altas estudiadas, la afinidad por el 25-HOC fue similar para todas las isoformas (Fig. 3B y Tabla S4, P3).

Para ampliar el conocimiento de la unión de las zfCRPs al 25-HOC, se intentó identificar la región de las zfCRPs responsable de esta unión mediante la evaluación de la interacción de péptidos de 15 aa de CRP5 con 25-HOC en fase sólida (pepscan). Esta aproximación identificó cuatro posibles regiones de unión a 25-HOC entre los aa ~30-50, 70-90, 110-150 y 170-190 (Fig. 4A, línea negra, P3), que coincidieron con la posiciones predichas *in silico* (Fig. 4A, línea azul, P3). De estas cuatro regiones identificadas, sólo la de la posición 30-50 estaba en una región similar a la del péptido 35-47 identificado previamente en hCRP como el principal dominio de unión a Ch [224]. Finalmente, se utilizó el software PyMol para localizar la interacción de 25-HOC con las estructuras tridimensionales de zfCRP1-7. Estos estudios revelaron un acoplamiento del 25-HOC a la superficie de la estructura CRP5 con ΔG entre -7,5 y -8,4 Kcal/mol (algunas de las posiciones de contacto son T41, E48, R71, F84, F85, S117) (Fig. 4B, CRP5, P3). Por el contrario, el 25-HOC se unió a otras regiones en el resto de las isoformas con ΔG entre -8,6 y -9,1 Kcal/mol (algunas de las posiciones de contacto para CRP1 son R113, S115, G153, E154, Y161 y E206) (Fig. 4B, CRP1, P3). Tanto los valores de ΔG obtenidos como las ubicaciones de acoplamiento para mCRP5 y tCRP5 fueron similares (Tabla S5, P3).

Hasta ahora se ha comprobado que las zfCRPs se unen con mayor afinidad a los Chs que al resto de lípidos. Sin embargo, para que esta interacción sea el desencadenante de la neutralización del SVCV tendría que **a**) impedir la entrada del virus a la célula (*binding*) o **b**) inducir una respuesta inmune capaz de inhibir la infección. Se ha descrito que algunos virus envueltos necesitan interaccionar con las balsas lipídicas de la superficie celular para entrar de manera eficiente en la célula [224, 225]; si este fuese el caso del SVCV, la unión de las zfCRPs al colesterol presente en las balsas lipídicas como consecuencia de la preincubación de las células con los ssCRPs, podría estar impidiendo la posterior unión del SVCV a la célula y, por tanto, la infección. Por ello, los siguientes ensayos consistieron en determinar la posible función del Ch en la infección del SVCV.

El secuestro del Ch mediante la incubación de las monocapas de EPC con concentraciones crecientes de metil- β -cyclodextrina (M β CD) (0,5 a 8 mM) durante 2 h disminuyó un 80 % la infectividad del SVCV (Fig. 1B, P3). Este resultado confirma la necesidad de Ch en las membranas celulares para la infección de SVCV y, por tanto, sugiere que las zfCRPs podrían estar interfiriendo en el *binding* del SVCV a la célula.

Por otra parte, como se ha demostrado una actividad independiente contra el SVCV tanto del 25-HOC [205] como de las zfCRPs y una alta afinidad de las zfCRPs por este hidroxicolesterol, se quiso comprobar el efecto de la combinación de ambos tratamientos. Los resultados mostraron que el efecto anti-SVCV del 25-HOC era mejor en presencia de ssCRPs (Fig. 5, P3). La combinación de 25-HOC con todas las isoformas de zfCRPs redujo significativamente la infección de SVCV en comparación con sus tratamientos por separado. Concretamente la combinación con las isoformas 4, 5 y 7 redujo la infección a más de la mitad.

4. DETERMINACIÓN DEL MECANISMO ANTIVIRAL DE LAS zfCRPs

El último objetivo de esta tesis es determinar el mecanismo por el cual las zfCRPs protegen frente a la infección por SVCV. Los resultados procedentes de la introducción de los ssCRPs en las diferentes fases del ciclo de replicación de SVCV revelaron que el efecto de los ssCRPs se producía en alguna etapa temprana (Fig. 1, P4). Las etapas iniciales del ciclo de replicación de los rabdovirus comprenden, secuencialmente: a) la unión de la proteína G de la superficie de los rabdovirus a un receptor celular de membrana (*binding*), b) la internalización por endocitosis y c) la fusión de la membrana vírica con los endosomas del huésped para liberar el genoma vírico al citoplasma [226].

Debido a la alta afinidad de las zfCRPs por el Ch y a la necesidad de Ch en las membranas celulares para que la infección de SVCV sea posible, la primera hipótesis que se barajó fue la interferencia de los ssCRPs con la entrada (procesos de *binding* y fusión) del virus. Sin embargo, la incubación de las células con SVCV (MOI 1) junto con cualquier ssCRP durante el periodo de adsorción (2 h a 4 °C) no modificó la cantidad de partículas víricas unidas a la superficie celular, cuantificadas a partir del número copias del gen *n*-SVCV por RT-qPCR (Fig. 2A, P4). Asimismo, en general, los ssCRPs tampoco modificaron la capacidad de fusión dependiente de pH de la proteína G, como refleja la ausencia de cambios en la cantidad de sincitios inducidas en las células infectadas. Sólo el ssCRP7 redujo la capacidad de fusión de la proteína G en ~20 % (Fig. 2B, P4).

Aunque estos últimos ensayos demuestran que los ssCRPs no alteran la entrada del virus (Fig. 2A-B, P4), el seguimiento de la infección durante las primeras horas postadsorción evidencia que el pretratamiento de las células durante 2 h con una mezcla de ssCRPs reduce la transcripción de la n y g de SVCV, cuantificadas por RT-qPCR, a las 4 h post-adsorción (Fig. 2C, P4). Por tanto, los ssCRPs inhiben la infección de SVCV en una

etapa temprana de la replicación del virus. Considerando este resultado, se procedió a comprobar una segunda hipótesis: si la incubación de los ssCRPs era capaz de inducir en la célula una respuesta inmune antiviral. Esta respuesta inmune podría ser del sistema de interferón, una de las principales frente a virus [227, 228]. Sin embargo, la incubación de las monocapas de EPC con los ssCRPs durante 2 h no aumentó los niveles de tránscritos de *mx* (gen estimulado por interferón) cuantificados por RT-qPCR a las 20 h post-retirada del tratamiento (Fig. 2D, P4). Del mismo modo, la incubación con ssCRPs tampoco indujo la secreción de ningún factor antiviral al medio, ya que los medios condicionados procedentes de células tratadas con ssCRP1-7 no confirieron actividad antiviral a otras células (Fig. 2E, P4).

Hasta ahora, todos los ensayos se han realizado en EPC, una línea celular muy empleada en la investigación de enfermedades de peces [229] y susceptible a SVCV [230]. No obstante, como las CRPs con las que se hicieron las construcciones son de pez cebra y existe una mayor disponibilidad de herramientas moleculares para esta especie, se empezó a trabajar con una línea celular procedente de este organismo, la ZF4. Los ensayos antivirales con los ssCRPs en ZF4 demostraron que la incubación de las monocapas durante 2 h antes de la infección con cualquier ssCRPs (salvo ssCRP1 y ssCRP6) o la mezcla de todos ellos (mix-ssCRPs, que no incluye ssCRP1 ni ssCRP7) neutralizaba el SVCV (**Fig. 3A, P4**).

El análisis de la progresión de la replicación vírica en ZF4 en las etapas tempranas posteriores a la adsorción (**Fig. 3B**, **P4**) mostró un perfil análogo al observado anteriormente en EPC (**Fig. 2C, P4**), es decir, inhibiciones significativas de \geq 2 veces a partir de 4 h postadsorción. Además, en consonancia con los datos obtenidos en EPC, la mix-ssCRPs tampoco activó la respuesta de IFN en ZF4, ya que el análisis transcripcional reveló una reducción significativa de los niveles de *mxa* desde el inicio (t=0 h) del tratamiento de las células durante 2 h (p <0,01) y de los niveles de *mxe* a 4 h post-tratamiento (p <0,05) (**Fig. 3C, P4**). Los niveles de tránscritos de los genes que codifican zfIFN φ 1 y 2 también se analizaron en esta línea celular. No obstante, pese a aparecer diferencias a partir de la 5º hora posttratamiento (**Fig. S2, P4**), los niveles de tránscritos de *ifn* no alcanzaron aumentos >2 veces y, por tanto, no se consideraron representativos de esta respuesta, ni causantes de la protección antiviral observada, ya que los niveles de expresión de estos genes suelen ser mucho mayores, de hasta más de 1000 veces [231].

La neutralización de la replicación de SVCV observada a partir de la 4ª hora postadsorción debe ser consecuencia de la activación de algún otro mecanismo celular. Como se ha descrito que algunos rabdovirus como SVCV, VHSV y SHVV (*Snakehead vesiculovirus*)

modulan la autofagia [232, 233], se decidió comprobar si la neutralización generada por los ssCRPs involucraba la regulación de este mecanismo. En este sentido, la expresión de tránscritos obtenida tras el tratamiento de 2 h de las células con la mix-ssCRPs reveló la estimulación algunos genes relevantes en este proceso. Particularmente, el tratamiento con la mix-ssCRPs moduló los niveles de *wipi1* (> 2 veces a 2 h), de *ambra1* (> 2,5 veces a 2 h) y de *lc3a* (1,5-2 veces a 3-5 h) (Fig. 3D, P4). Estos niveles transcripcionales comenzaron a estabilizarse a las 5 h post-tratamiento y se re-establecieron completamente a las 20 h, excepto en el caso de *lc3a* que mostró una reducción significativa (~2 veces) (Fig. 3D, P4). Esta misma modulación se observó en tejidos relevantes del sistema inmune (bazo, hígado y riñón anterior) de peces cebra inyectados i.p. con la mix-ssCRPs a 2 días post-inyección (Fig. 3E, P4).

Adicionalmente al estudio transcripcional, la modulación de la autofagia se analizó a nivel proteico. En circunstancias normales LC3B-I se distribuye uniformemente en las células, por lo que aparece un patrón difuso, pero cuando se activa la autofagia, LC3B-I se convierte en LC3B-II y forma agregados. Por tanto, para establecer si existe o no una regulación de la autofagia como consecuencia del tratamiento con la mix-ssCRPs, la cuantificación de estos agregados es determinante. Los resultados de la cuantificación de puntos de LC3 (en verde) mostraron que el tratamiento de las células con la mix-ssCRPs aumentaba de manera significativa el número de autofagosomas (2,3 ± 0,6 veces) (Fig. 4A, P4), al igual que el tratamiento con CQ (Fig. 6A, P4). Conviene recordar que la CQ es un agente inhibidor de la autofagia que actúa bloqueando la fusión del autofagosoma con el lisosoma, lo cual se refleja en una acumulación de vesículas marcadas con LC3 [234].

La regulación de la autofagia producida por las zfCRPs también se estudió *in vivo* a nivel proteico. Para ello se visualizó la expresión de Lc3 en larvas de pez cebra transgénico con expresión de GFP-Lc3 que fueron microinyectadas, en etapa embrionaria de una sola célula, con pMCV1.4-*zfcrp1/4/5* o pMCV1.4-*zfil6*. Las imágenes mostraron que la sobreexpresión recombinante de *zfcrps* aumentaba la fluorescencia de las larvas, especialmente en el saco vitelino (Fig. 4B, P4). Entre los genes de *zfcrps* analizados, la sobreexpresión de *zfcrp5* indujo más este efecto; sin embargo, la sobreexpresión de *zfil6* (citoquina estimuladora de la expresión de *crps*) causó incluso una fluorescencia mayor. En estos dos casos también se pudo detectar una mayor agregación de Lc3 definiendo los ganglios de la raíz dorsal (Fig. 4B, P4).

Todos los resultados anteriores sugieren que las zfCRPs son capaces de inducir un estado antiviral como consecuencia de la regulación de la autofagia. Sin embargo, si

la infección con SVCV activa la autofagia como describen otros autores [71, 232, 235], estos resultados no son tan fáciles de interpretar. Por ello, también se analizó la acumulación de agregados de LC3 *in vitro* en respuesta a SVCV en presencia y ausencia de la mix-ssCRPs (**Fig. 5A, P4**). De acuerdo con nuestros resultados, el tratamiento de las células ZF4 con SVCV (MOI 1) durante 4 h no moduló el flujo autofágico (0,7 ± 0,1 veces) en comparación con las células control tratadas con ssGFP (1,0 ± 0,3 veces). Sin embargo, este mismo tratamiento en combinación con la mix-ssCRPs sí aumentó significativamente la formación de autofagosomas (2,6 ± 1,1 veces, p <0.05). Este último aumento fue similar al obtenido al tratar las células con la mix-ssCRPs sola (2,3 ± 0,6) (**Fig. 4A, P4**).

El análisis transcripcional *in vitro* en las etapas tempranas de la infección (0-5 h postadsorción) reveló que, en comparación con los resultados obtenidos con la mix-ssCRPs sola (Fig. 3D, P4), la adición del virus retrasaba 2 h la modulación transcripcional de genes relacionados con la autofagia provocada por la mix-ssCRPs (Fig 5B, P4). No obstante, este retraso transcripcional aumentó significativamente los niveles de transcripción de *wipi1* (3,5 \pm 1,1 veces a las 4 h y 4,9 \pm 1,1 veces a las 5 h) y *atg5* (4,0 \pm 0,6 veces a las 5 h) en comparación con los obtenidos tras el tratamiento con la mix-ssCRPs sola. En el caso de *lc3a*, sus niveles ya fueron significativos a las 3 h post-adsorción (1,9 \pm 0,6 veces) y permanecieron altos hasta el final del periodo analizado (2,0 \pm 0,3 veces a las 4 h; 2,4 \pm 0,2 veces a las 5 h).

En consonancia con estos resultados, en las células infectadas con SVCV en ausencia de la mix-ssCRPs no se observó ningún incremento transcripcional a ningún tiempo postadsorción estudiado (0-5 h) sino que por el contrario, se observaron reducciones significativas en la expresión de *wipi1* y *lc3a* a 0 h (~2 veces) (Fig. S4, P4).

Como se explica más detalladamente en la discusión, aunque los resultados transcripcionales obtenidos podrían sugerir que las zfCRPs estuviesen induciendo la autofagia, los estudios funcionales revelan lo contrario. En este contexto, la **Fig. 5C**, **P4** muestra que el tratamiento de las células ZF4 con 3-MA, un bloqueador de la autofagia [236], previo a la infección inhibe la replicación de SVCV, alcanzando los máximos niveles de neutralización (87,4 ± 1,6 %) a la mayor concentración utilizada (1 mM durante 20 h). Por tanto, nuestros resultados confirman la necesidad del proceso autofágico para la replicación de SVCV. Para confirmar que los ssCRPs ejercen un efecto inhibitorio sobre la autofagia, se realizaron ensayos con ssCRPs en combinación con algunos moduladores de la autofagia: bloqueadores como 3-MA y CQ y activadores como la rapamicina. Como se había

demostrado anteriormente (Fig. 5C, P4), el tratamiento con los bloqueadores neutralizó la infectividad de SVCV, siendo esta neutralización mayor en combinación con la mix-ssCRPs (Fig. 5D, P4). Por otro lado, el tratamiento con rapamicina no sólo favoreció la replicación del virus, sino que también revirtió parte del efecto neutralizante de la mix-ssCRPs (~20 %) (Fig. 5D, P4).

5. IMPLICACIÓN DEL COLESTEROL EN LA ACCIÓN ANTIVIRAL DE LAS zfCRPs.

Dada la relación funcional de las zfCRPs con la M β CD (ambas unen Ch) y con el 25-HOC (sus actividades antivirales son sumatorias) y tras comprobar que la inhibición de la autofagia estaba implicada en el mecanismo antiviral de las zfCRPs, se estudió si la actividad antiviral de estos dos compuestos también era consecuencia de un bloqueo de este mecanismo. Este estudio siguió la misma línea experimental que los realizados para determinar el mecanismo antiviral de las zfCRPs. Como muestra la Fig. 6B, P4, el análisis de la distribución de LC3 en ZF4 en respuesta al tratamiento durante 4 h con 25-HOC (10 μg/mL) o MβCD (4 mM) no reveló acumulación de autofagosomas en comparación con las células control (0,9 ± 0,2 veces para 25-HOC y 1,2 ± 0,2 veces para M β CD). No obstante, cuando estos tratamientos eran aplicados en combinación con la mix-ssCRPs, la cuantificación de autofagosomas aumentaba significativamente en comparación con cualquiera de los tratamientos individuales (16,1 ± 2,8 veces para 25-HOC + mix-ssCRPs y 7,3 \pm 1,4 veces para M β CD + mix-ssCRPs). Asimismo, los ensayos de neutralización de SVCV realizados con 25-HOC o M β CD en combinación con los reguladores de autofagia mostraron: a) que las combinaciones de ambos compuestos con cualquier bloqueador (3-MA o CQ) aumentaban la actividad antiviral y b) que las combinaciones con el inductor (rapamicina) revertían la neutralización (Fig. 6C, P4). El tratamiento con NAC, un secuestrador de ROS, pese a no afectar a la replicación de SVCV, revirtió significativamente la neutralización ejercida tanto por la mix-ssCRPs como por el 25-HOC y la M β CD (~50%) (Fig. 6D, P4).

Pensando que el efecto antiviral de estos compuestos podría ser consecuencia de un desequilibrio en la concentración de Ch celular, se comprobó si la adición de Ch (C₂₇H₄₆O) también regulaba la autofagia. El tratamiento de las monocapas de ZF4 con 10 μ g/mL de Ch indujo significativamente la acumulación de agregados de LC3 (Fig. S5A, P4). Asimismo, el tratamiento de ZF4 con 0,5 o 1 mM de Ch durante 2 h neutralizó la infección con SVCV. Esta

neutralización se redujo cuando el tratamiento de Ch se realizó en combinación con 0,5 mM de MβCD, su agente secuestrante **(Fig. S5B, P4)**.

Discusión Introducción Obj., ant., s. modelo Mat. y métodos Resultados) (Conclusiones Bibliografía Publicaciones Anexos

1. REGULACIÓN DE LA EXPRESIÓN GÉNICA DE LAS PENTRAXINAS CORTAS DE PECES ANTE DIFERENTES ESTÍMULOS

Basándonos en nuestros resultados, las siete isoformas de *zfcrps* se expresan constitutivamente en todos los tejidos estudiados, demostrando una producción extrahepática generalizada de *crps* en peces, que también parece ocurrir en menor medida en mamíferos [237]. Esta expresión, al igual que en otras especies de peces como la carpa [100], el salmón (*Salmo salar*) [144], el pez pico rayado (*Oplegnathus fasciatus*) [169] y el lenguado (*Cynoglossus semilaevis*) [238], sigue un patrón específico de tejido. En el caso del pez cebra, los mayores niveles de tránscritos de pentraxinas cortas se encuentran en branquias, como también se ha descrito en lenguado [238]; en riñón, como en el pez pico rayado[169] y en bazo, como se observa tanto en el pez roca coreano [149] como en lenguado[239]. Estos resultados aumentan la relevancia en la expresión de *crps*, en peces con respecto a mamíferos, de tejidos que funcionan como principales órganos linfoides [240] o forman parte del sistema inmune de mucosas de peces teleósteos [241].

La exposición de los peces cebra a diferentes patógenos virales provoca un cambio en el patrón constitutivo de expresión de las isoformas de *zfcrps*. De acuerdo con los datos obtenidos por RT-qPCR y *microarray*, la infección con rabdovirus (SVCV y VHSV) aumenta la expresión tisular de las *zfcrps*, al menos, durante el primer mes post-infección. Esta tendencia, que no se observa en *zfcrp1* tras la infección con SVCV/VHSV ni en *zfcrp5/7* tras la infección con VHSV, se ha encontrado también en el hígado del pez pico rayado tras 3 dpi con RSIV [169] y en los órganos internos (riñón, bazo e hígado) de lenguado tras 1-7 dpi con megalocitovirus [238]. Sorprendentemente, la expresión de *zfcrps* aumentó más en las aletas y la piel adyacente que en los órganos internos de peces cebra adultos infectados con SVCV a 2 días y 1 mes post-infección [171]. La piel forma parte del sistema inmune de mucosas de los teleósteos [241, 242], por tanto, el hecho de que tras una infección vírica las *zfcrps* se sobre-expresen preferentemente en este tejido sugiere un papel de estas proteínas en la defensa antiviral de los tejidos linfoides asociados a mucosas (MALT). En este sentido, se ha identificado CRP en el moco de las branquias y de la piel del salmón infectado con el parásito *Neoparamoeba perurans* [243].

El cambio de expresión como consecuencia de la infección por rabdovirus que sufre cada una de las isofomas de *zfcrp* es diferente. De hecho, a 2 dpi con SVCV algunos tejidos

expresan preferencialmente unas isoformas, quedando otras reprimidas y, por tanto, haciendo que algunas isoformas sufran regulaciones diferentes en función del tejido. La regulación negativa de las pentraxinas cortas a tiempos cortos post-infección se ha comprobado también en otras especies: la expresión de *crp1* en hígado de carpa aparece reprimida a 1-5 dpi con CyHV-3 pero no a 14 dpi, cuando los niveles de *crp1* aumentan [158].

El análisis de los resultados de *microarray* reveló que los peces supervivientes a la infección con VHSV, a diferencia de los supervivientes a SVCV, tenían reprimida la expresión de las *zfcrps* en los órganos internos. Aunque este hallazgo fue explicado por una migración de las células del sistema inmune desde los órganos linfoides hasta los tejidos periféricos (sitio de entrada del virus) [171], todavía no se ha descrito ningún tipo celular sobreexpresor de *crps* en peces que permita explicar esto. A falta de esta información, proponemos que las marcas epigenéticas que definen la accesibilidad de la maquinaria de transcripción a los promotores de las *zfcrps* son diferentes en función del patógeno que las origina [244] y, por tanto, los supervivientes a VHSV pueden tener marcas inhibitorias en lugar de activadoras como se ha descrito para SVCV [173].

El aumento de la expresión de las *zfcrps* tras la infección con SVCV ocurre incluso en los órganos linfoides de los peces mutantes *rag1-/-* que parten con un estado inmunológico en los órganos internos inferior al de los peces *wild type*. Este aumento de expresión tras la infección vírica, dependiente de isoforma y de tejido, sugiere que las *zfcrps* tengan un papel en la respuesta inmune inducida por virus con diferentes aportaciones en función de la isoforma y del tejido. El aumento de la expresión de genes que codifican proteínas antivirales tras la infección con SVCV ha sido descrito en varios estudios tanto *in vitro* como *in vivo*. Entre los diferentes ejemplos: *mx, viperin, ifn* [245], *β-defensina* [175] y *trim32* [246].

Aparte de la exposición a virus, la infección bacteriana también aumenta la expresión de todas las *zfcrps* (salvo la 1 y la 7) en los órganos linfoides de los peces cebra. Sin embargo este aumento, que también se ha descrito en los órganos linfoides del pez pico rayado [169] y del lenguado [238], no tiene lugar ni en el hígado del salmón tras 24 hpi con *A. salmonicida* [144], ni en el de la trucha [247] durante los primeros 28 dpi con *Yersina ruckeri*. Estas observaciones sugieren: **a)** un papel secundario del hígado en la producción de las pentraxinas cortas de los peces y **b)** una protección temprana a patógenos específica de especie como la observada en tres tipos de salmones (*Salmo salar, Oncorhynchus keta y Oncorhynchus gorbuscha*) tras la infección con *Lepeophtheirus salmonis* [248].

El cambio de expresión de las *zfcrps* tras la exposición a bacterias es muy similar al observado tras la infección con VHSV, a excepción de la isoforma *zfcrp5*, que parece tener una respuesta dependiente de patógeno ya que su expresión aumenta tras la exposición a SVCV o bacterias, pero no tras la exposición a VHSV. La especificidad de algunas isoformas de *zfCRPs* por ciertos patógenos podría explicar: **a**) la falta de modulación de la expresión de *zfcrp1* bajo los estímulos estudiados y **b**) la sobreexpresión de *zfcrp7* tras la infección con SVCV pero no con VHSV o bacterias. Por ello, no se descarta que otros estímulos, como la infección por parásitos, pudieran modular la expresión de las *zfcrp1*/7.

El aumento de expresión de *zfcrp4-5* en las larvas que sobre-expresan *il6* sugiere que el incremento de expresión de estas isoformas tras la infección sea mediado por la expresión de esta citoquina, que a su vez, es la responsable de aumentar los niveles de pCRP circulante en humanos [216]. Este hallazgo concuerda con el incremento de la expresión de *il6* descrito en carpa [249], lenguado olivo (*Paralichthys olivaceus*) [250] y lenguado senegalés (*Solea senegalensis*) [251] pocas horas después de la infección vírica, así como en trucha tras la exposición a LPS [252]. No obstante, los altos niveles de expresión de *il6* presentes en las especies de salmón resistentes a *L. salmonis* (coho y sockeye) no cursan con niveles elevados de expresión de *sap* o *crp* [253]. Sin embargo, como *L. salmonis* es un parásito, la función de la *il6* en la respuesta antiparasítica no tiene porque ser la misma que en la respuesta antibacteriana o antiviral y, por tanto, este resultado no contradice el nuestro.

Las APPs son secretadas en respuesta a citoquinas proinflamatorias como la IL6 [254], por ello no sorprendió que las zfCRPs aumentasen sus niveles en sangre tras la infección vírica. Por el contrario, la escasa magnitud de este aumento sí fue inesperada, ya que mientras la CRP humana aumenta sus niveles en sangre ~1000 veces después de la infección bacteriana [99], los niveles de zfCRPs sólo se incrementaron entre ~1,5 y 3 veces tras la infección con SVCV. No obstante, esta subida en los niveles de CRPs, pequeña en comparación con la observada en humanos, ya ha sido descrita en otras especies de peces donde las pentraxinas cortas son consideradas APP [154, 255, 256]. Las CRPs son consideradas APP positivas en muchas especies de peces como el pez gato americano (*Ictalurus punctatus*) [156], el pez roca coreano [149] y la carpa [158]. Sin embargo, no lo son en otros peces como el bacalao (*Gadus morhua*) [159].

Para determinar si las zfCRPs también se comportan como proteínas de fase aguda en pez cebra, se midieron las concentraciones de las 7 isoformas de zfCRPs en la sangre de peces control e infectados. Este método posibilitó la clasificación de todas las zfCRPs salvo la CRP7 como proteínas de fase aguda. Como el cambio en los niveles de APPs refleja la

presencia y la intensidad de la inflamación durante una infección o lesión, el conocimiento de las principales APP de cada especie de pez es importante para el pronóstico de enfermedades virales, bacterianas y parasíticas presentes en acuicultura [257]. Además, como los vertebrados inferiores dependen en gran medida de la inmunidad innata en la protección contra patógenos, pensamos que las APP podrían tener un papel más crítico en la respuesta inmune proinflamatoria que en los vertebrados superiores. Como consecuencia de esta dependencia de la inmunidad innata, el abanico de APPs podría ser superior en peces que en mamíferos. En este sentido, se necesitan más estudios para determinar: **a)** si las zfCRPs son las principales APP en pez cebra y **b)** cuál es el estímulo que permite la secreción de las zfCRP2/3/6/7 tras una infección.

2. ACTIVIDAD ANTIVIRAL DE LAS zfCRPs

Nuestros trabajos son los primeros en describir que las zfCRPs neutralizan la infección de SVCV. Hasta ahora, la única actividad antiviral descrita asociada a las pentraxinas era la actividad anti-Influenza A de la SAP [258] y la PTX3 humanas [259]. Sin embargo, mientras la actividad antiviral de estas pentraxinas se debe a un efecto directo sobre el virus [259], la inhibición observada tras el tratamiento de las células previamente a la infección indica que la actividad antiviral de las zfCRPs, a excepción de la isoforma 6, es consecuencia de una interacción con la célula. Este efecto se ha reportado también para otros antivirales. Por ejemplo, la proteína VIPERINA (*virus inhibitory protein, endoplasmic reticulum [ER]-associated, IFN-inducible*) suprime la replicación de SVCV *in vitro* facilitando la producción de IFN1 e ISGs a través de la activación de RIG-I, IRF3 e IRF7 [260].

La ausencia de actividad antiviral de la zfCRP1 en la mayoría de los ensayos fue explicada porque es la única isoforma sin péptido señal de acuerdo con las predicciones *in silico*. Teniendo en cuenta la carencia de péptido señal, pensamos que su detección por *dot-blot* en los ssCRP1 es debido a su liberación desde las células muertas durante la transfección. Esta hipótesis fue propuesta anteriormente para explicar la actividad antiviral de los interferones intracelulares (iIFN) que carecen de péptido señal [261].

Los resultados obtenidos al añadir los ssCRPs en diferentes estadíos del ciclo viral mostraron que la protección conferida por estas moléculas es muy rápida, ya que se observan inhibiciones incluso en los tratamientos post-adsorción. Este resultado está en consonancia con el obtenido en el examen del curso de la infección de SVCV *in vitro*, que mostró que el pre-tratamiento con ssCRP reducía la carga viral ya a 4 h, lo que también

sugiere que dicha inhibición se produce en una etapa teprana del ciclo de replicación viral. De todas formas, aunque en este estudio se haya profundizado más en esta línea, con los datos obtenidos no se puede descartar que también puedan producirse efectos inhibitorios en las etapas de salida del ciclo de replicación viral.

La actividad antiviral de las zfCRPs fue demostrada *in vitro* en dos líneas celulares procedentes de especies diferentes de ciprínido (EPC y ZF4), sugiriendo que esta actividad no es específica de especie. Además, la mayor supervivencia de las larvas sobre-expresoras de *zfcrps* a infecciones con SVCV confirmó esta actividad *in vivo*. Este último resultado mostró que algunas proteínas del sistema inmune innato pueden actuar como inhibidores naturales de virus, limitando el crecimiento y la propagación de éste durante las primeras etapas de infección antes de la inducción de las respuestas inmunes adaptativas.

Las modificaciones post-taduccionales (PTMs) tienen gran impacto en la función de algunas proteínas. Tanto es así que una misma proteína puede tener funciones diferentes dependiendo de las PTMs que sufra [262]. En el caso de las zfCRPs, la zfCRP5 recombinante producida en insecto, cuyo peso molecular experimental coincide con el teórico, no presenta actividad antiviral ni antibacterina (resultados pendientes de publicación). Sin embargo, los ssCRPs cuyas zfCRPs tienen un peso molecular experimental ligeramente diferente al teórico, sí presentan dicha actividad. Se piensa que estas pequeñas diferencias en el peso molecular son consecuencia de PTMs. Como las PTMs dependen de enzimas presentes en el retículo endoplasmático y en el aparato de Golgi de la célula del huésped eucariota, es lógico que la expresión de *zfcrps* en diferentes sistemas (insecto y células de pez), con diferentes medios de cultivo y diferentes eficiencias [263], pueda afectar las PTMs sufridas por las zfCRPs.

Entre las posibles PTMs sufridas por las zfCRPs, es muy probable que los aumentos de masa molecular sean debidos a glicosilaciones, como revelan las predicciones derivadas de los análisis bioinformáticos (resultados pendientes de publicación). Además, como se ha descrito una heterogeneidad de glicosilación en las pentraxinas cortas de algunos peces [255], esta PTM podría explicar las múltiples bandas que revelan los SDS-PAGE realizados durante esta tesis para una única zfCRP. Por otra parte, el peso molecular de algunas zfCRPs determinado experimentalmente es menor que el teórico. Esta reducción de peso molecular podría explicarse por una proteólisis entre los aminoácidos 159 y 181, que generaría péptidos con pesos moleculares entre 17,9 y 20,3 kDa. En este sentido se ha reportado que las proteasas derivadas de neutrófilos humanos son capaces de digerir la CRP humana y formar

péptidos similares a la tuftsina (un péptido producido por el clivaje del dominio Fc de la cadena pesada de la inmunoglobulina G) con potente actividad inmunomoduladora [264].

3. RECONOCIMIENTO DE LIGANDOS POR LAS zfCRPs

Dado que no se ha realizado una clasificación basada en la afinidad a ligandos, no se sabe con seguridad si las zfCRPs son CRPs o SAPs. El análisis de afinidad a moléculas lipídicas *in silico* predijo energías libres de unión ligeramente menores para PC, el ligando prototipo de la hCRP [216], que para el ligando principal de la hSAP, la PE [77, 101]. No obstante, como estas diferencias fueron mínimas y sólo observadas en presencia de Ca²⁺ no se puden extraer conclusiones concretas en este aspecto.

De acuerdo con los experimentos *in silico* e *in vitro*, el lípido con mayor afinidad por las zfCRPs es el colesterol. La unión de la hCRP y la hSAP a colesterol ya ha sido descrita por otros autores [221] como consecuencia de la realización de estudios para comprender la acumulación específica de hCRP y hSAP en las lesiones ateroscleróticas [265]. Sin embargo, dicha unión a colesterol, al contrario de la observada con las zfCRPs, sí que es dependiente de Ca²⁺ [221]. La unión a lípidos independiente de Ca²⁺ observada en las zfCRPs está en consonancia con la actividad antiviral de estas proteínas a bajas concentraciones de Ca²⁺ (0,42 mM, en el medio de los ssCRPs). Actividad que no mejora a concentraciones más altas (1 mM). Si suponemos que la actividad antiviral de las zfCRPs se inicia con el reconocimiento de lípidos en la superficie de las células infectadas, es lógico que si la actividad antiviral es independiente de este catión, la unión de las zfCRPs a estos lípidos también lo sea.

Las diferentes afinidades de cada una de las isoformas de zfCRPs por cada lípido (Ch, 25-HOC y PC), podría explicar diferencias funcionales, así como diferentes estados de oligomerización. Sin embargo, sólo se ha podido demostrar estados monoméricos en los sobrenadantes. Esto puede deberse a la baja concentración de Ca²⁺ en los medios de los ssCRPs, ya que ha sido descrito que la estructura de las pentraxinas de peces cambia en función de la presencia/ausencia de Ca²⁺, tendiendo a la formación de oligómerios en los tampones que contienen Ca²⁺ [255].

4. EVALUACIÓN DE LA CAPACIDAD BLOQUEADORA DE LA ENTRADA DEL VIRUS

Los resultados obtenidos tras el tratamiento de las células con M β CD demostraron la necesidad de la integridad de las balsas lipídicas, dominios de membrana ricos en colesterol y esfingolípidos, en las membranas celulares para la infección por SVCV. Este papel de las balsas lípidicas en la infección ha sido previamente descrito para otros virus envueltos como Influeza A [266-268], Sendai [269], el virus del sarampión [270, 271] y el virus de la enfermedad Newcastle [272-274]. Como la unión de la hCRP a las balsas lipídicas ya ha sido descrita [275] y nuestros resultados muestran bajas energías libres de unión a la interacción zfCRP-Ch, pensamos que las zfCRPs podrían estar interaccionando con las balsas lipídicas de manera que estuviesen impidiendo la entrada del virus por competición. Sin embargo, el tratamiento de las células con ssCRPs 2 h antes de la infección no afectó a la unión del virus a la célula. Asimismo, los ssCRP1-6 no inhibieron los sincitios generados por el proceso de fusión de membranas inducido por el virus, otra etapa importante en la fase de entrada del virus; a excepción del tratamiento con ssCRP7 que sí redujo el proceso de fusión. Este último resultado estuvo en consonancia con los ensayos de binding realizados mediante ELISA, que demuestran una mayor afinidad de la CRP7 por el colesterol con respecto al resto de isoformas estudiadas. Esta alta afinidad podría estar inhibiendo parte de la fusión vírica, no obstante, no explicaría la totalidad de la neutralización observada, sugiriendo que la zfCRP7 utiliza múltiples mecanismos para inhibir la infección de SVCV. La actividad antiviral a través de la modulación de múltiples mecanismos se ha observado en otras proteínas del sistema inmune innato como las TRIM de los mamíferos, que restringen al virus directamente, modulan la señal inmune y, además, regulan la autofagia [276]. Asimismo, la contribución de las balsas lipídicas en el proceso de fusión ha sido sugerida anteriormente por otros autores en virus como varicela-zoster [277] y el virus linfotrópico de células T humanas [278].

5. REGULACIÓN DE MECANISMOS CON ACCIÓN ANTIVIRAL

5.1. Sistema de interferón

El sistema de interferón es una estrategia muy utilizada por los vertebrados inferiores para establecer un estado antiviral [279] a través de la inducción de unas moléculas efectoras, codificadas por los genes estimulados por interferón (ISGs), que limitan

la capacidad de replicación de los virus [280]. Sin embargo, la activación de este sistema como mecanismo antiviral de las zfCRPs fue descartado tras comprobar que tanto la incubación de EPC como la de ZF4 con ssCRPs no inducía la expresión de *mx*, sino que por el contrario, la inhibía. La Mx es la ISG mejor estudiada dentro de la ruta de IFN en peces [280], es inducida tanto por IFN tipo I como por IFN tipo II [281] y el análisis de sus niveles de expresión es utilizado para determinar la activación del sistema de interferón [282-284]. Asimismo, esta no es la primera vez que se reporta la inhibición del sistema de interferón por la CRP: se describió un aumento significativo de la expresión de IFN tipo I y de *isg15* al silenciar la expresión de *crp* con siRNA en células de hepatocarcinoma [285]. Los resultados de expresión de *mx* en células tratadas con ssCRPs estuvieron en consonancia con la carencia de actividad de los medios condicionados procedentes de células EPC tratadas con ssCRP.

5.2. La regulación de la autofagia como mecanismo de defensa antiviral

La regulación de la muerte celular es una respuesta importante del huésped para combatir la infección vírica. Dentro de los diferentes tipos de muerte celular observadas en peces tras la infección se incluyen: apoptosis, necroptosis, piroptosis y autofagia [286-289]. En este sentido, en esta tesis hemos encontrado evidencias de que SVCV necesita que el proceso autofágico esté activo para replicar, como ha sido descrito para muchos otros virus [290-293]. De hecho, existen trabajos previos que relacionan la infección de SVCV con la activación de la autofagia [71, 232, 235]. No obstante, mientras esta activación fue interpretada en algunos casos como un mecanismo regulador negativo de la replicación del virus [232, 235], en otros, en consonancia con este estudio, fue interpretado como un mecanismo requerido por el virus para realizar su ciclo de replicación [71]. La autofagia es un tema reciente de estudio, de hecho, el verdadero mecanismo de algunos bloqueadores como la CQ no ha sido desvelado hasta hace muy poco [234]. Por tanto, cabe la posibilidad de la existencia de interpretaciones erróneas en los estudios pioneros.

En este trabajo los ensayos de bloqueo químico de la autofagia se llevaron a cabo no sólo con 3-MA sino también con CQ. Este bloqueo reveló una disminución de la replicación de SVCV que mejoró cuando el tratamiento se realizó en combinación con la mix-ssCRPs, MβCD o 25-HOC. Este resultado, junto con la disminución de la neutralización al combinar cada uno de estos tres compuestos con rapamicina, mostró que la neutralización de SVCV *in vitro* producida por el tratamiento de las células con la mix-ssCRPs, MβCD o 25-HOC es consecuencia de un bloqueo de la autofagia o de algún elemento común entre la autofagia y la vía de endocitosis viral. En este sentido, ya se han descrito casos en los que estas dos vías

convergen como consecuencia de la fusión de los autofagosomas con los endosomas que contienen a los virus. Esta fusión da lugar a unas estructuras llamadas anfisomas [294-296]. Además, como nuestros resultados fueron acompañados por una acumulación de autofagosomas cuando las células eran tratadas con alguno de estos tres compuestos, planteamos la hipótesis de que dicho bloqueo se produce en una etapa tardía, como la fusión del autofagosoma o endosoma intermedio o anfisoma con el lisosoma [292], tal y como ocurre al tratar las células con CQ [234, 297, 298] o con L-asparagina [294].

Teniendo en cuenta que los lisosomas son vulnerables al estrés oxidativo [299], con el fin de comprender el mecanismo por el cual las zfCRPs, 25-HOC y MβCD bloquean la fusión del autofagosoma, endosoma o anfisoma con el lisososma, se analizó la posible implicación de las ROS en este proceso. Los resultados mostraron una reducción significativa del efecto antiviral de los tres compuestos tras el tratamiento con NAC (reductor de estrés oxidativo [290]) y, en consecuencia, se estableció una relación directa entre el aumento de ROS y el bloqueo de la autofagia. Esta relación ha sido descrita para otros bloqueadores de la autofagia [297]. En cuanto a las implicaciones de estos en la replicación de SVCV, un aumento en la concentración de ROS incrementa el pH en los lisosomas evitando tanto la fusión del lisosoma con el autofagosoma [297] como el cambio conformacional de la proteína G de SVCV. Sin el cambio conformacional de la G, las partículas víricas son incapaces de entrar en el citoplasma del huésped [226, 300].

La capacidad de las zfCRPs de bloquear la autofagia explica no sólo la actividad anti-SVCV sino también la disminución de la expresión de *mx* en las células tratadas con la mix-ssCRPs. De hecho, ha sido descrito que la inducción de la actividad antiviral del sistema de interferón es sensible al pH de los lisosomas o endosomas y, por ello, la actividad de IFN se ve afectada por ejemplo en presencia de CQ [301].

Esta tesis aporta además evidencias *in vivo* que apoyan las conclusiones obtenidas *in vitro*: **a**) la inyección i.p. de la mix-ssCRPs en peces cebra adultos aumenta los niveles de tránscritos de un conjunto de genes implicados en la autofagia y **b**) la sobre-expresión de *zfcrps* en larvas de pez cebra transgénico con expresión de GFP-Lc3 cambia el patrón de fluorescencia tisular. El cambio de patrón de fluorescencia en las larvas transgénicas GFP-Lc3 ha sido demostrado anteriormente al modificar los niveles de autofagia de estas larvas con el tratamiento de bloqueadores como la CQ [302] y de activadores como la rapamicina [235].

Esta no es la primera vez que se describe que una molécula del sistema inmune innato, a la que se le asigna otra función diferente a la antiviral, modula la autofagia para inhibir la infección de un virus. Ejemplo de ello es que el péptido antimicrobiano NK-lysina, que posee actividad directa contra bacterias, hongos y parásitos, es capaz de inhibir la replicación del VHSV en los eritrocitos de rodaballo (*Scophthalmus maximus*) activando la autofagia [205].

Por otra parte, la autofagia ha sido recientemente descrita como un mecanismo importante en la generación de memoria del sistema inmune innato [303]. Por tanto, la persistencia de los cambios de expresión de las zfCRPs en los peces supervivientes a las infecciones víricas (tras 1 mes) y bacterianas (tras 5 meses) podría estar indicando un papel importante de esta familia multigénica en la inmunidad entrenada. Esto explicaría por qué los promotores de las zfCRPs presentan marcas epigenéticas tras la infección con SVCV [173].

6. INFLUENCIA DE LOS LÍPIDOS EN LA ACTIVIDAD ANTIVIRAL DE LAS zfCRPs

El mecanismo por el cual los inhibidores de la autofagia (zfCRPs, MβCD y 25-HOC) aumentan los niveles de ROS intracelulares no está todavía claro. Sin embargo, teniendo en cuenta el contenido de NAPDH oxidasa (enzimas generadoras de ROS) en las balsas lipídicas [304], una posible explicación podría ser que el secuestro del colesterol de membrana indujese la formación de ROS [305]. Esta hipótesis explicaría el bloqueo de la autofagia dependiente de ROS observado tras el tratamiento de las células con zfCRPs y MβCD, ya que su alta afinidad por Ch podría alterar las balsas lipídicas de membrana. En esta línea, se ha descrito que la mCRP humana induce la generación de ROS en células mononucleares de sangre periférica (PBMC) como consecuencia de su unión a balsas lipídicas [128].

Además, dado que tanto el 25-HOC como el Ch ejercen un efecto muy parecido sobre la autofagia y la replicación de SVCV, en esta tesis sugerimos que cualquier desequilibrio en el contenido de colesterol de las membranas celulares, lo que incluye también el desafío lipídico exógeno, reduce la eficacia de estos procesos (la autofagia y la endocitosis del virus) o su probable efecto convergente (Fig. 7, P4). En este sentido, otros estudios han demostrado la incapacidad de la autofagia para adaptarse a una carga lipídica exógena tanto *in vitro* como *in vivo*: a) el tratamiento de hepatocitos con lípidos reduce la co-

localización de LD (gotas de lípidos) con LAMP1 (proteína de membrana asociada a lisosoma 1) y b) el aumento de grasas en la dieta de los ratones disminuye notablemente el número de autofagosomas que contienen LD [306].

El 25-HOC pertenece a la familia de los oxisteroles, que son derivados de la oxidación del colesterol que contienen un grupo hidroxilo, epóxido o cetona en el núcleo del esterol y/o un grupo hidroxilo en la cadena lateral [307]. Entre las múltiples funciones fisiológicas de algunos oxisteroles específicos, como el 25-HOC [308-312] y el 27-hidroxicolestreol (27-HOC) [313], se encuentra la capacidad de inhibir infecciones víricas. El 25-HOC inhibe la replicación de SVCV *in vitro*, en la línea celular EPC (en este trabajo) y. en ZF4 [205]. En estudios precedentes, se ha demostrado que el tratamiento de las células con 25-HOC antes de la infección con virus envueltos bloquea la fusión de la membrana vírica con la celular al inducir cambios (expansiones y agregaciones) en la última [312]. Este hecho, lejos de contradecir, encaja con el modelo que proponemos (**Fig. 7, P4**) ya que, como se discutió anteriormente, la generación de ROS aumenta el pH lisosomal reduciendo su capacidad de fusión con autofagososmas y endosomas. Este bloqueo se traduce en la limitación de la capacidad de fusión dependiente de pH de la proteína G del SVCV, o de otras proteínas fusogénicas de otros virus que también requieran un pH ácido, evitando la liberación del genoma vírico al citoplasma.

La capacidad de inhibición del proceso autofágico podría ser exclusiva del 25-HOC dentro del grupo de los oxisteroles ya que el 24S-hidroxicolesterol (24S-HOC) [314, 315], el 7-ketocolesterol (7KC), el 7 β -hidroxicolesterol (7 β -HOC) [315] y el 27-HOC [316] activan la autofagia en lugar de inhibirla. No obstante, más estudios son necesarios en este sentido y, sobre todo, en relación con la replicación vírica.

Conclusiones Introducción Obj., ant., s. modelo Mat. y métodos Resultados Discusión Bibliografía Publicaciones Anexos

CONCLUSIONES

CONCLUSIONES

CONCLUSIONES

- 1. Las zfCRPs tienen actividad protectora frente a la infección del SVCV tanto *in vitro*, en células EPC y ZF4, como *in vivo*, en larvas de pez cebra.
- Los colesteroles, y de entre ellos el 25-HOC, son los lípidos por los que las zfCRPs presentan mayor afinidad, lo que las sugiere como secuestradoras de este tipo de moléculas.
- La perturbación del nivel de colesterol en las balsas lipídicas producida por el tratamiento con zfCRPs, MβCD o 25-HOC podría ser el desencadenante de la neutralización de la infección de SVCV con estos tratamientos.
- 4. El SVCV requiere la maquinaria autofágica o algunos de sus componentes para su replicación en las células huésped.
- 5. El efecto anti-SVCV producido por zfCRPs, MβCD o 25-HOC es consecuencia de un bloqueo de la autofagia o de la ruta de endocitosis del virus, a través de la inhibición de la etapa de fusión del autofagosoma, anfisoma o endosoma con el lisosoma.
- El bloqueo de la autofagia producido por zfCRPs, MβCD o 25-HOC parece ser consecuencia de la estimulación de la generación de ROS.

				Bibli	ogra	ufía 🔵		
Introducción Obj., ant., s.	. modelo Mat. y métod	os Resultados	Discusión	Conclusiones) (Publicacion	es An	iexos

BIBLIOGRAFÍA

1. Goldszmid RS, Trinchieri G. The price of immunity. Nature immunology. 2012;13(10):932.

2. Grubbs H, Whitten R. Physiology, Active Immunity. StatPearls [Internet]: StatPearls Publishing; 2018.

3. Andrade VM, Stevenson M. Host and viral factors influencing interplay between the macrophage and hiv-1. Journal of Neuroimmune Pharmacology. 2018:1-11.

4. Boyer Z, Palmer S. Targeting immune checkpoint molecules to eliminate latent HIV. Frontiers in Immunology. 2018;9:2339.

5. Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef SK, et al. Advances in Designing and Developing vaccines, Drugs, and Therapies to Counter ebola virus. Frontiers in immunology. 2018;9:1803.

6. Parvizpour S, Razmara J, Omidi Y. Breast cancer vaccination comes to age: impacts of bioinformatics. BioImpacts: BI. 2018;8(3):223.

7. Del Giudice G, Rappuoli R, Didierlaurent AM, editors. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Seminars in immunology; 2018: Elsevier.

8. Harandi AM, editor Systems analysis of human vaccine adjuvants. Seminars in immunology; 2018: Elsevier.

9. Niwa R, Satoh M. The current status and prospects of antibody engineering for therapeutic use: focus on glycoengineering technology. Journal of pharmaceutical sciences. 2015;104(3):930-41.

10. Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR, editors. Site-specific antibody drug conjugates for cancer therapy. mabs; 2014: Taylor & Francis.

11. Benvenuto LJ, Anderson MR, Arcasoy SM. New frontiers in immunosuppression. Journal of Thoracic Disease. 2018;10(5):3141-55.

12. Danforth K, Granich R, Wiedeman D, Baxi S, Padian N. Global Mortality and Morbidity of HIV/AIDS. Disease Control Priorities, (Volume 6): Major Infectious Diseases. 2017.

13. Pollett S, Melendrez M, Berry IM, Duchêne S, Salje H, Cummings D, et al. Understanding dengue virus evolution to support epidemic surveillance and countermeasure development. Infection, Genetics and Evolution. 2018.

14. Okafor CN, Finnigan NA. Malaria (Plasmodium Ovale). StatPearls [Internet]: StatPearls Publishing; 2018.

15. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098.

16. Netea MG, van der Meer JW. Trained immunity: an ancient way of remembering. Cell host & microbe. 2017;21(3):297-300.

17. Italiani P, Boraschi D. New insights into tissue macrophages: from their origin to the development of memory. Immune network. 2015;15(4):167-76.

18. Chabalgoity J, Pereira M, Rial A. Inmunidad contra los agentes infecciosos. Temas de Bacteriología y Virología Médica 2a ed Uruguay: FEFMUR. 2006:99-114.

19. Cronkite DA, Strutt TM. The Regulation of Inflammation by Innate and Adaptive Lymphocytes. Journal of Immunology Research. 2018;2018.

20. Daigo K, Inforzato A, Barajon I, Garlanda C, Bottazzi B, Meri S, et al. Pentraxins in the activation and regulation of innate immunity. Immunological reviews. 2016;274(1):202-17.

21. Vijay K. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. International immunopharmacology. 2018;59:391-412.

22. Mesa-Villanueva M, Patiño P. Receptores tipo Toll: entre el reconocimiento de lo no propio infeccioso y las señales endógenas de peligro. Inmunología (1987). 2006;25(2):115-30.

23. Tassia MG, Whelan NV, Halanych KM. Toll-like receptor pathway evolution in deuterostomes. Proceedings of the National Academy of Sciences. 2017;114(27):7055-60.

24. Abdulkhaleq L, Assi M, Abdullah R, Zamri-Saad M, Taufiq-Yap Y, Hezmee M. The crucial roles of inflammatory mediators in inflammation: A review. Veterinary world. 2018;11(5):627.

25. Buchmann K. Evolution of innate immunity: clues from invertebrates via fish to mammals. Frontiers in immunology. 2014;5:459.

26. Lewis KL, Del Cid N, Traver D. Perspectives on antigen presenting cells in zebrafish. Developmental & Comparative Immunology. 2014;46(1):63-73.

27. ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harbor perspectives in biology. 2013;5(12):a016873.

28. Sun JC, Lanier LL. Is there natural killer cell memory and can it be harnessed by vaccination? NK cell memory and immunization strategies against infectious diseases and cancer. Cold Spring Harbor perspectives in biology. 2018;10(10):a029538.

29. Rauta PR, Nayak B, Das S. Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunology letters. 2012;148(1):23-33.

30. Gourbal B, Pinaud S, Beckers GJ, Van Der Meer JW, Conrath U, Netea MG. Innate immune memory: An evolutionary perspective. Immunological reviews. 2018;283(1):21-40.

31. Mourits VP, Wijkmans JC, Joosten LA, Netea MG. Trained immunity as a novel therapeutic strategy. Current Opinion in Pharmacology. 2018;41:52-8.

32. de Bree CL, Koeken VA, Joosten LA, Aaby P, Benn CS, van Crevel R, et al., editors. Non-specific effects of vaccines: Current evidence and potential implications. Seminars in immunology; 2018: Elsevier.

33. Pradeu T, Du Pasquier L. Immunological memory: What's in a name? Immunological reviews. 2018;283(1):7-20.

34. Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. Journal of leukocyte biology. 2018.

35. Rojo-Cebreros AH, Ibarra-Castro L, Martínez-Brown JM. Immunostimulation and trained immunity in marine fish larvae. Fish & shellfish immunology. 2018.

36. Cassone A. The Case for an Expanded Concept of Trained Immunity. mBio. 2018;9(3):e00570-18.

37. Rusek P, Wala M, Druszczyńska M, Fol M. Infectious agents as stimuli of trained innate immunity. International journal of molecular sciences. 2018;19(2):456.

38. Zhang Z, Chi H, Dalmo RA. Trained innate immunity of fish is a viable approach in larval aquaculture. Frontiers in Immunology. 2019;10.

39. Melillo D, Marino R, Italiani P, Boraschi D. Innate Immune Memory in Invertebrate Metazoans: A Critical Appraisal. Frontiers in immunology. 2018;9.

40. Norouzitallab P, Baruah K, Biswas P, Vanrompay D, Bossier P. Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system. Scientific reports. 2016;6:21166.

41. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823-37.

42. Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nature Reviews Immunology. 2009;9(10):692.

43. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30(1):155-67.

44. Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares O, Subiza JL. Trained immunity-based vaccines: a new paradigm for the development of broad-spectrum anti-infectious formulations. Frontiers in immunology. 2018;9.

45. Quintin J, Cheng S-C, van der Meer JW, Netea MG. Innate immune memory: towards a better understanding of host defense mechanisms. Current opinion in immunology. 2014;29:1-7.

46. Netea MG. Training innate immunity: the changing concept of immunological memory in innate host defence. European journal of clinical investigation. 2013;43(8):881-4.

47. Gardiner CM, Mills KH, editors. The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases. Seminars in immunology; 2016: Elsevier.

48. Saiz ML, Rocha-Perugini V, Sánchez-Madrid F. Tetraspanins as organizers of antigen-presenting cell function. Frontiers in immunology. 2018;9.

49. Platt AM, Randolph GJ. Dendritic cell migration through the lymphatic vasculature to lymph nodes. Advances in immunology. 120: Elsevier; 2013. p. 51-68.

50. Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. Journal of Investigative Dermatology. 2005;125(4):615-28.

51. Petri B, Sanz M-J. Neutrophil chemotaxis. Cell and tissue research. 2018:1-12.

52. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694-707.

53. Gasque P. Complement: a unique innate immune sensor for danger signals. Molecular immunology. 2004;41(11):1089-98.

54. Lidani KC, Bavia L, Ambrosio AR, de Messias-Reason IJ. The complement system: a prey of Trypanosoma cruzi. Frontiers in microbiology. 2017;8:607.

55. Giang J, Seelen MA, van Doorn M, Prens EP, Damman JD. Complement activation in inflammatory skin diseases. Frontiers in immunology. 2018;9:639.

56. Mödinger Y, Teixeira G, Neidlinger-Wilke C, Ignatius A. Role of the Complement System in the Response to Orthopedic Biomaterials. International journal of molecular sciences. 2018;19(11):3367.

57. Qian M, Fang X, Wang X. Autophagy and inflammation. Clinical and translational medicine. 2017;6(1):24.

58. Paulus GL, Xavier RJ. Autophagy and checkpoints for intracellular pathogen defense. Current opinion in gastroenterology. 2015;31(1):14.

59. Puleston DJ, Simon AK. Autophagy in the immune system. Immunology. 2014;141(1):1-8.

60. Cadwell K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nature Reviews Immunology. 2016;16(11):661.

61. Kinsella RL, Nehls EM, Stallings CL. Roles for autophagy proteins in immunity and host defense. Veterinary pathology. 2018;55(3):366-73.

62. Gomes LC, Dikic I. Autophagy in antimicrobial immunity. Molecular cell. 2014;54(2):224-33.

63. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nature reviews Molecular cell biology. 2015;16(8):461.

64. Bah A, Vergne I. Macrophage Autophagy and Bacterial Infections. Frontiers in immunology. 2017;8:1483.

65. Kohler LJ, Roy CR. Autophagic targeting and avoidance in intracellular bacterial infections. Current opinion in microbiology. 2017;35:36-41.

66. Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165(4):792-800.

67. Delgado M, Singh S, De Haro S, Master S, Ponpuak M, Dinkins C, et al. Autophagy and pattern recognition receptors in innate immunity. Immunological reviews. 2009;227(1):189-202.

68. Fattah EA, Bhattacharya A, Herron A, Safdar Z, Eissa NT. Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency. The Journal of Immunology. 2015;194(11):5407-16.

69. Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea MG. Modulation of inflammation by autophagy: consequences for human disease. Autophagy. 2016;12(2):245-60.

70. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science. 2007;315(5817):1398-401.

71. Liu L, Zhu B, Wu S, Lin L, Liu G, Zhou Y, et al. Spring viraemia of carp virus induces autophagy for necessary viral replication. Cellular microbiology. 2015;17(4):595-605.

72. Golconda U, Sobonya R, Klotz S. Do Pentraxins Bind to Fungi in Invasive Human Gastrointestinal Candidiasis? Journal of Fungi. 2018;4(3):111.

73. Garlanda C, Bottazzi B, Salvatori G, De Santis R, Cotena A, Deban L, et al. Pentraxins in innate immunity and inflammation. Innate Immunity to Pulmonary Infection. 2007:80-91.

74. Roumenina LT, Ruseva MM, Zlatarova A, Ghai R, Kolev M, Olova N, et al. Interaction of C1q with IgG1, C-reactive protein and pentraxin 3: mutational studies using recombinant globular head modules of human C1q A, B, and C chains. Biochemistry. 2006;45(13):4093-104.

75. Doni A, Garlanda C, Mantovani A, editors. Innate immunity, hemostasis and matrix remodeling: PTX3 as a link. Seminars in immunology; 2016: Elsevier.

76. Ma YJ, Lee BL, Garred P. An overview of the synergy and crosstalk between pentraxins and collectins/ficolins: their functional relevance in complement activation. Experimental & molecular medicine. 2017;49(4):e320.

77. Mantovani A, Valentino S, Gentile S, Inforzato A, Bottazzi B, Garlanda C. The long pentraxin PTX3: a paradigm for humoral pattern recognition molecules. Annals of the New York Academy of Sciences. 2013;1285(1):1-14.

78. Richter K, Sagawe S, Hecker A, Küllmar M, Askevold I, Damm J, et al. C-reactive protein stimulates nicotinic acetylcholine receptors to control ATP-mediated monocytic inflammasome activation. Frontiers in immunology. 2018;9.

79. Boehm T, Swann JB. Origin and evolution of adaptive immunity. Annu Rev Anim Biosci. 2014;2(1):259-83.

80. Wilson AB. MHC and adaptive immunity in teleost fishes. Immunogenetics. 2017;69(8-9):521-8.

81. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol. 2008;26:171-203.

82. Edholm E-S, Grayfer L, Robert J. Evolution of nonclassical MHC-dependent invariant T cells. Cellular and molecular life sciences. 2014;71(24):4763-80.

83. Edholm E-S, Banach M, Robert J. Evolution of innate-like T cells and their selection by MHC class I-like molecules. Immunogenetics. 2016;68(8):525-36.

84. Rangarajan S, Mariuzza RA. T cell receptor bias for MHC: co-evolution or co-receptors? Cellular and molecular life sciences. 2014;71(16):3059-68.

85. Bengten E, Wilson M, Miller N, Clem L, Pilström L, Warr G. Immunoglobulin isotypes: structure, function, and genetics. Origin and Evolution of the Vertebrate Immune System: Springer; 2000. p. 189-219.

86. Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature Reviews Genetics. 2010;11(1):47.

87. Anelli T, Van Anken E. Missing links in antibody assembly control. International journal of cell biology. 2013;2013.
88. Jackson D, Elsawa S. Factors regulating immunoglobulin production by normal and disease-associated plasma cells. Biomolecules. 2015;5(1):20-40.

89. Ollila J, Vihinen M. B cells. The international journal of biochemistry & cell biology. 2005;37(3):518-23.

90. Flajnik MF. A cold-blooded view of adaptive immunity. Nature Reviews Immunology. 2018:1.

91. Flajnik MF. Re-evaluation of the immunological Big Bang. Current Biology. 2014;24(21):R1060-R5.

92. Patel B, Banerjee R, Samanta M, Das S. Diversity of Immunoglobulin (Ig) Isotypes and the Role of Activation-Induced Cytidine Deaminase (AID) in Fish. Molecular biotechnology. 2018;60:435-53.

93. Gauthier ME, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evolution & development. 2010;12(5):519-33.

94. Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends in molecular medicine. 2007;13(11):460-9.

95. Vanha-aho L-M, Valanne S, Rämet M. Cytokines in Drosophila immunity. Immunology letters. 2016;170:42-51.

96. Stein M-P, Mold C, Du Clos TW. C-reactive protein binding to murine leukocytes requires Fcγ receptors. The Journal of Immunology. 2000;164(3):1514-20.

97. Zhang L, Liu S-H, Wright TT, Shen Z-Y, Li H-Y, Zhu W, et al. C-reactive protein directly suppresses Th1 cell differentiation and alleviates experimental autoimmune encephalomyelitis. The Journal of Immunology. 2015:1402909.

98. Lu J, Marjon KD, Mold C, Du Clos TW, Sun PD. Pentraxins and F c receptors. Immunological reviews. 2012;250(1):230-8.

99. Bottazzi B, Inforzato A, Messa M, Barbagallo M, Magrini E, Garlanda C, et al. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. Journal of hepatology. 2016;64(6):1416-27.

100. Falco A, Cartwright JR, Wiegertjes GF, Hoole D. Molecular characterization and expression analysis of two new C-reactive protein genes from common carp (Cyprinus carpio). Developmental & Comparative Immunology. 2012;37(1):127-38.

101. Du Clos TW. Pentraxins: structure, function, and role in inflammation. ISRN inflammation. 2013;2013.

102. Daigo K, Mantovani A, Bottazzi B. The yin-yang of long pentraxin PTX3 in inflammation and immunity. Immunology letters. 2014;161(1):38-43.

103. McFadyen J, Kiefer J, Loseff-Silver J, Braig D, Potempa LA, Eisenhardt SU, et al. Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of CRP and its conformational changes. Frontiers in immunology. 2018;9:1351.

104. Lin L, Liu T-Y. Isolation and characterization of C-reactive protein (CRP) cDNA and genomic DNA from Xenopus laevis. A species representing an intermediate stage in CRP evolution. Journal of Biological Chemistry. 1993;268(9):6809-15.

105. Chen R, Qi J, Yuan H, Wu Y, Hu W, Xia C. Crystal structures for short-chain pentraxin from zebrafish demonstrate a cyclic trimer with new recognition and effector faces. Journal of structural biology. 2015;189(3):259-68.

106. Iwaki D, Osaki T, Mizunoe Y, Wai SN, Iwanaga S, Kawabata Si. Functional and structural diversities of C-reactive proteins present in horseshoe crab hemolymph plasma. European journal of biochemistry. 1999;264(2):314-26.

107. Shrive AK, Burns I, Chou H-T, Stahlberg H, Armstrong PB, Greenhough TJ. Crystal structures of Limulus SAP-like pentraxin reveal two molecular aggregations. Journal of molecular biology. 2009;386(5):1240-54.

108. Lu J, Marjon KD, Marnell LL, Wang R, Mold C, Du Clos TW, et al. Recognition and functional activation of the human IgA receptor (FcαRI) by C-reactive protein. Proceedings of the National Academy of Sciences. 2011:201018369.

109. Narkates AJ, Volanakis JE. C-reactive protein binding specificities: artificial and natural phospholipid bilayers. Annals of the New York Academy of Sciences. 1982;389(1):172-82.

110. Thiele J, Zeller J, Bannasch H, Stark G, Peter K, Eisenhardt S. Targeting C-reactive protein in inflammatory disease by preventing conformational changes. Mediators of inflammation. 2015;2015.

111. Agrawal A, Shrive AK, Greenhough TJ, Volanakis JE. Topology and structure of the C1q-binding site on C-reactive protein. The Journal of Immunology. 2001;166(6):3998-4004.

112. Agrawal A, Simpson MJ, Black S, Carey MP, Samols D. A C-reactive protein mutant that does not bind to phosphocholine and pneumococcal C-polysaccharide. The Journal of Immunology. 2002;169(6):3217-22.

113. Gulhar R, Jialal I. Physiology, Acute Phase Reactants. StatPearls [Internet]: StatPearls Publishing; 2018.

114. Boncler M, Watała C. Regulation of cell function by isoforms of C-reactive protein: a comparative analysis. Acta Biochimica Polonica. 2009;56(1):17-31.

115. Di Napoli M, Slevin M, Popa-Wagner A, Singh P, Lattanzi S, Divani AA. Monomeric C-reactive protein and cerebral hemorrhage: from bench to bedside. Frontiers in immunology. 2018;9.

116. Adukauskienė D, Čiginskienė A, Adukauskaitė A, Pentiokinienė D, Šlapikas R, Čeponienė I. Clinical relevance of high sensitivity C-reactive protein in cardiology. Medicina. 2016;52(1):1-10.

117. Ridker PM. A test in context: high-sensitivity C-reactive protein. Journal of the American College of Cardiology. 2016;67(6):712-23.

118. Ocakli B, Tuncay E, Gungor S, Sertbas M, Adiguzel N, Irmak I, et al. Inflammatory Markers in Patients Using Domiciliary Non-invasive Mechanical Ventilation: C Reactive Protein, Procalcitonin, Neutrophil Lymphocyte Ratio. Frontiers in public health. 2018;6.

119. Sack GH. Serum amyloid A–a review. Molecular Medicine. 2018;24(1):46.

120. Black S, Kushner I, Samols D. C-reactive protein. Journal of Biological Chemistry. 2004;279(47):48487-90.

121. Trial J, Potempa LA, Entman ML. The role of C-reactive protein in innate and acquired inflammation: new perspectives. Inflammation and cell signaling. 2016;3(2).

122. Singh SK, Suresh MV, Hammond Jr DJ, Rusiñol AE, Potempa LA, Agrawal A. Binding of the monomeric form of C-reactive protein to enzymatically-modified low-density lipoprotein: effects of phosphoethanolamine. Clinica Chimica Acta. 2009;406(1-2):151-5.

123. Caprio V, Badimon L, Di Napoli M, Fang W-H, Ferris GR, Guo B, et al. pCRP-mCRP dissociation mechanisms as potential targets for the development of small-molecule antiinflammatory chemotherapeutics. Frontiers in Immunology. 2018;9.

124. Badimon L, Peña E, Arderiu G, Padró T, Slevin M, Vilahur G, et al. C-reactive protein in atherothrombosis and angiogenesis. Frontiers in immunology. 2018;9:430.

125. Fujita M, Takada YK, Izumiya Y, Takada Y. The binding of monomeric C-reactive protein (mCRP) to Integrins $\alpha\nu\beta3$ and $\alpha4\beta1$ is related to its pro-inflammatory action. PLoS One. 2014;9(4):e93738.

126. Molins B, Fuentes-Prior P, Adán A, Antón R, Arostegui JI, Yagüe J, et al. Complement factor H binding of monomeric C-reactive protein downregulates proinflammatory activity and is impaired with at risk polymorphic CFH variants. Scientific reports. 2016;6:22889.

127. Mihlan M, Blom AM, Kupreishvili K, Lauer N, Stelzner K, Bergström F, et al. Monomeric C-reactive protein modulates classic complement activation on necrotic cells. The FASEB Journal. 2011;25(12):4198-210.

128. Thiele JR, Zeller J, Kiefer J, Braig D, Kreuzaler S, Lenz Y, et al. A conformational change in C-reactive protein enhances leukocyte recruitment and reactive oxygen species generation in ischemia/reperfusion injury. Frontiers in immunology. 2018;9:675.

129. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of inflammation and infection. Frontiers in immunology. 2018;9.

130. Bansal T, Pandey A, Deepa D, Asthana AK. C-reactive protein (CRP) and its association with periodontal disease: a brief review. Journal of clinical and diagnostic research: JCDR. 2014;8(7):ZE21.

131. Peltola H. C-reactive protein for rapid monitoring of infections of the central nervous system. The Lancet. 1982;319(8279):980-3.

132. Agrawal A. CRP after 2004. Molecular immunology. 2005;42(8):927-30.

133. Kishore U, Ghai R, Greenhough TJ, Shrive AK, Bonifati DM, Gadjeva MG, et al. Structural and functional anatomy of the globular domain of complement protein C1q. Immunology letters. 2004;95(2):113-28.

134. Mukerji R, Mirza S, Roche AM, Widener RW, Croney CM, Rhee D-K, et al. Pneumococcal surface protein A inhibits complement deposition on the pneumococcal surface by competing with the binding of C-reactive protein to cell-surface phosphocholine. The Journal of Immunology. 2012:1201967.

135. Thomas-Rudolph D, Du Clos TW, Snapper CM, Mold C. C-reactive protein enhances immunity to Streptococcus pneumoniae by targeting uptake to $Fc\gamma R$ on dendritic cells. The Journal of Immunology. 2007;178(11):7283-91.

136. Ng PM, Le Saux A, Lee CM, Tan NS, Lu J, Thiel S, et al. C-reactive protein collaborates with plasma lectins to boost immune response against bacteria. The EMBO journal. 2007;26(14):3431-40.

137. Marnell LL, Mold C, Volzer MA, Burlingame RW, Du Clos T. C-reactive protein binds to Fc gamma RI in transfected COS cells. The Journal of Immunology. 1995;155(4):2185-93.

138. Bharadwaj D, Stein M-P, Volzer M, Mold C, Du Clos TW. The major receptor for C-reactive protein on leukocytes is Fcγ receptor II. Journal of Experimental Medicine. 1999;190(4):585-90.

139. Tron K, Manolov DE, Röcker C, Kächele M, Torzewski J, Nienhaus GU. C-reactive protein specifically binds to Fcγ receptor type I on a macrophage-like cell line. European journal of immunology. 2008;38(5):1414-22.

140. Kindmark C-O. Stimulating effect of C-reactive protein on phagocytosis of various species of pathogenic bacteria. Clinical and experimental immunology. 1971;8(6):941.

141. Mold C, Baca R, Du Clos TW. Serum amyloid P component and C-reactive protein opsonize apoptotic cells for phagocytosis through Fcγ receptors. Journal of autoimmunity. 2002;19(3):147-54.

142. Garlanda C, Bottazzi B, Bastone A, Mantovani A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol. 2005;23:337-66.

143. Pepys M, Baltz M, Gomer K, Davies A, Doenhoff M. Serum amyloid P-component is an acute-phase reactant in the mouse. Nature. 1979;278(5701):259-61.

144. Lee P, Bird S, Zou J, Martin S. Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish. Fish & shellfish immunology. 2017;65:42-51.

145. Behrens A-J, Duke RM, Petralia LM, Harvey DJ, Lehoux S, Magnelli PE, et al. Glycosylation profiling of dog serum reveals differences compared to human serum. Glycobiology. 2018;28(11):825-31.

146. Bose R, Bhattacharya S. C-reactive protein in the hemolymph of Achatina fulica: interrelationship with sex steroids and metallothionein. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2000;125(4):485-95.

147. Tan SS, Ng PM, Ho B, Ding JL. The antimicrobial properties of C-reactive protein (CRP). Journal of endotoxin research. 2005;11(4):249-56.

148. Hoover GJ, El-Mowafi A, Simko E, Kocal TE, Ferguson HW, Hayes MA. Plasma proteins of rainbow trout (Oncorhynchus mykiss) isolated by binding to lipopolysaccharide from Aeromonas salmonicida. Comparative Biochemistry and physiology part B: biochemistry and molecular biology. 1998;120(3):559-69.

149. Elvitigala DAS, Wan Q, Kim HC, Lee J. Identification of a C-reactive protein like homologue from black rockfish (Sebastes schlegelii) evidencing its potent anti-microbial properties at molecular level. Developmental & Comparative Immunology. 2015;53(1):169-78.

150. Mukherjee S, Barman S, Sarkar S, Mandal NC, Bhattacharya S. Anti-bacterial activity of Achatina CRP and its mechanism of action. 2014.

151. Harrington JM, Chou H-T, Gutsmann T, Gelhaus C, Stahlberg H, Leippe M, et al. Membrane activity of a C-reactive protein. FEBS letters. 2009;583(6):1001-5.

152. Pathak A, Agrawal A. Evolution of C-reactive protein. Frontiers in Immunology. 2019;10:943.

153. Lund V, Olafsen JA. A comparative study of pentraxin-like proteins in different fish species. Developmental & Comparative Immunology. 1998;22(2):185-94.

154. Lund V, Olafsen JA. Changes in serum concentration of a serum amyloid P-like pentraxin in Atlantic salmon, Salmo salar L., during infection and inflammation. Developmental & Comparative Immunology. 1999;23(1):61-70.

155. Talbot AT, Pottinger TG, Smith TJ, Cairns MT. Acute phase gene expression in rainbow trout (Oncorhynchus mykiss) after exposure to a confinement stressor: a comparison of pooled and individual data. Fish & shellfish immunology. 2009;27(2):309-17.

156. Szalai AJ, Norcum M, Bly J, Clem L. Isolation of an acute-phase phosphorylcholinereactive pentraxin from channel catfish (Ictalurus punctatus). Comparative biochemistry and physiology B, Comparative biochemistry. 1992;102(3):535-43.

157. MacCarthy EM, Burns I, Irnazarow I, Polwart A, Greenhough TJ, Shrive AK, et al. Serum CRP-like protein profile in common carp Cyprinus carpio challenged with Aeromonas hydrophila and Escherichia coli lipopolysaccharide. Developmental & Comparative Immunology. 2008;32(11):1281-9.

158. Pionnier N, Adamek M, Miest JJ, Harris SJ, Matras M, Rakus KŁ, et al. C-reactive protein and complement as acute phase reactants in common carp Cyprinus carpio during CyHV-3 infection. Diseases of aquatic organisms. 2014;109(3):187-99.

159. Magnadottir B, Audunsdottir SS, Bragason BT, Gisladottir B, Jonsson ZO, Gudmundsdottir S. The acute phase response of Atlantic cod (Gadus morhua): humoral and cellular response. Fish & shellfish immunology. 2011;30(4-5):1124-30.

160. Magnadóttir B, Hayes P, Gísladóttir B, Bragason BÞ, Hristova M, Nicholas AP, et al. Pentraxins CRP-I and CRP-II are post-translationally deiminated and differ in tissue specificity in cod (Gadus morhua L.) ontogeny. Developmental & Comparative Immunology. 2018;87:1-11.

161. Gisladottir B, Gudmundsdottir S, Brown L, Jonsson ZO, Magnadottir B. Isolation of two C-reactive protein homologues from cod (Gadus morhua L.) serum. Fish & Shellfish Immunology. 2009;26(2):210-9.

162. Cray C. Acute phase proteins in animals. Progress in molecular biology and translational science. 105: Elsevier; 2012. p. 113-50.

163. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunologic research. 2013;56(1):131-42.

164. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. The Journal of clinical investigation. 2003;111(12):1805-12.

165. Pionnier N, Falco A, Miest JJ, Shrive AK, Hoole D. Feeding common carp Cyprinus carpio with β -glucan supplemented diet stimulates C-reactive protein and complement immune acute phase responses following PAMPs injection. Fish & shellfish immunology. 2014;39(2):285-95.

166. Pionnier N, Falco A, Miest J, Frost P, Irnazarow I, Shrive A, et al. Dietary beta-glucan stimulate complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio) during an Aeromonas salmonicida infection. Fish Shellfish Immunol. 2013;34(3):819-31. doi: 10.1016/j.fsi.2012.12.017. PubMed PMID: 23291104.

167. MacCarthy EM, Burns I, Irnazarow I, Polwart A, Greenhough TJ, Shrive AK, et al. Serum CRP-like protein profile in common carp Cyprinus carpio challenged with Aeromonas hydrophila and Escherichia coli lipopolysaccharide. Dev Comp Immunol. 2008;32(11):1281-9. doi: 10.1016/j.dci.2008.04.004. PubMed PMID: 18538390.

168. Pionnier N, Adamek M, Miest JJ, Harris SJ, Matras M, Rakus KL, et al. C-reactive protein and complement as acute phase reactants in common carp Cyprinus carpio during CyHV-3 infection. Dis Aquat Organ. 2014;109(3):187-99. doi: 10.3354/dao02727. PubMed PMID: 24991845.

169. Choi K-M, Shim SH, An CM, Nam B-H, Jeong J-M, Kim J-W, et al. Functional characterisation and expression analysis of recombinant serum amyloid P isoform 1 (RbSAP1) from rock bream (Oplegnathus fasciatus). Fish & shellfish immunology. 2015;45(2):277-85.

170. Hwang SD, Bae JS, Jo DH, Kim KI, Cho MY, Jee BY, et al. Gene expression and functional characterization of serum amyloid P component 2 in rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol. 2015;47(1):521-7. doi: 10.1016/j.fsi.2015.09.048. PubMed PMID: 26455663.

171. Bello-Perez M, Falco A, Medina-Gali R, Pereiro P, Encinar JA, Novoa B, et al. Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Molecular immunology. 2017;91:145-55.

172. Estepa A, Coll J. Innate multigene family memories are implicated in the viralsurvivor zebrafish phenotype. PloS one. 2015;10(8):e0135483.

173. Medina-Gali R, Belló-Pérez M, Martínez-López A, Falcó A, Ortega-Villaizan M, Encinar JA, et al. Chromatin immunoprecipitation and high throughput sequencing of SVCV-infected zebrafish reveals novel epigenetic histone methylation patterns involved in antiviral immune response. Fish & shellfish immunology. 2018;82:514-21.

174. Ballesteros NA, Saint-Jean SS, Encinas PA, Perez-Prieto SI, Coll JM. Oral immunization of rainbow trout to infectious pancreatic necrosis virus (Ipnv) induces different immune gene expression profiles in head kidney and pyloric ceca. Fish Shellfish Immunol. 2012;33(2):174-85. doi: 10.1016/j.fsi.2012.03.016. PubMed PMID: 22521628.

175. García-Valtanen P, Martínez-López A, López-Muñoz A, Bello-Perez M, Medina-Gali RM, Ortega-Villaizán MdM, et al. Zebra fish lacking adaptive immunity acquire an antiviral alert state characterized by upregulated gene expression of apoptosis, multigene families, and interferon-related genes. Frontiers in immunology. 2017;8:121.

176. Valério E, Chaves S, Tenreiro R. Diversity and impact of prokaryotic toxins on aquatic environments: a review. Toxins. 2010;2(10):2359-410.

177. Gozlan RE, Peeler EJ, Longshaw M, St-Hilaire S, Feist SW. Effect of microbial pathogens on the diversity of aquatic populations, notably in Europe. Microbes and Infection. 2006;8(5):1358-64.

178. Yoder JA, Nielsen ME, Amemiya CT, Litman GW. Zebrafish as an immunological model system. Microbes and Infection. 2002;4(14):1469-78.

179. Crim MJ, Riley LK. Viral diseases in zebrafish: what is known and unknown. ILAR journal. 2012;53(2):135-43.

180. Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Current Topics in Innate Immunity II: Springer; 2012. p. 253-75.

181. H Meijer A, P Spaink H. Host-pathogen interactions made transparent with the zebrafish model. Current drug targets. 2011;12(7):1000-17.

182. Iwanami N. Zebrafish as a model for understanding the evolution of the vertebrate immune system and human primary immunodeficiency. Experimental hematology. 2014;42(8):697-706.

183. Trede NS, Langenau DM, Traver D, Look AT, Zon LI. The use of zebrafish to understand immunity. Immunity. 2004;20(4):367-79.

184. Rembold M, Lahiri K, Foulkes NS, Wittbrodt J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nature protocols. 2006;1(3):1133.

185. Torraca V, Mostowy S. Zebrafish infection: from pathogenesis to cell biology. Trends in cell biology. 2017.

186. Varela M, Figueras A, Novoa B. Modelling viral infections using zebrafish: innate immune response and antiviral research. Antiviral research. 2017;139:59-68.

187. Sun G, Li H, Wang Y, Zhang B, Zhang S. Zebrafish complement factor H and its related genes: identification, evolution, and expression. Functional & integrative genomics. 2010;10(4):577-87.

188. Brugman S. The zebrafish as a model to study intestinal inflammation. Developmental & Comparative Immunology. 2016;64:82-92.

189. Gabor KA, Goody MF, Mowel WK, Breitbach ME, Gratacap RL, Witten PE, et al. Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment. Disease models & mechanisms. 2014;7(11):1227-37.

190. Hoffmann B, Beer M, Schütze H, Mettenleiter T. Fish rhabdoviruses: molecular epidemiology and evolution. The World of Rhabdoviruses: Springer; 2005. p. 81-117.

191. Snow M. The contribution of molecular epidemiology to the understanding and control of viral diseases of salmonid aquaculture. Veterinary research. 2011;42(1):56.

192. Purcell MK, Laing KJ, Winton JR. Immunity to fish rhabdoviruses. Viruses. 2012;4(1):140-66.

193. Ashraf U, Lu Y, Lin L, Yuan J, Wang M, Liu X. Spring viraemia of carp virus: recent advances. Journal of General Virology. 2016;97(5):1037-51.

194. Shao L, Zhao J, Zhang H. Spring viraemia of carp virus enters grass carp ovary cells via clathrin-mediated endocytosis and macropinocytosis. Journal of General Virology. 2016;97(11):2824-36.

195. Bearzotti M, Delmas B, Lamoureux A, Loustau A-M, Chilmonczyk S, Bremont M. Fish rhabdovirus cell entry is mediated by fibronectin. Journal of virology. 1999;73(9):7703-9.

196. Liu H, Liu Y, Liu S, Pang D-W, Xiao G. Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus. Journal of virology. 2011;85(13):6252-62.

197. Collet B. Innate immune responses of salmonid fish to viral infections. Developmental & Comparative Immunology. 2014;43(2):160-73.

198. Liu Z, Teng Y, Liu H, Jiang Y, Xie X, Li H, et al. Simultaneous detection of three fish rhabdoviruses using multiplex real-time quantitative RT-PCR assay. Journal of virological methods. 2008;149(1):103-9.

199. Balmer BF, Getchell RG, Powers RL, Lee J, Zhang T, Jung ME, et al. Broad-spectrum antiviral JL122 blocks infection and inhibits transmission of aquatic rhabdoviruses. Virology. 2018;525:143-9.

200. Ortega-Villaizan M, Chico V, Martinez-Lopez A, Garcia-Valtanen P, Coll J, Estepa A. Development of new therapeutical/adjuvant molecules by pepscan mapping of autophagy and IFN inducing determinants of rhabdoviral G proteins. Molecular immunology. 2016;70:118-24.

201. Sanders GE, Batts WN, Winton JR. Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comparative medicine. 2003;53(5):514-21.

202. Ahne W, Bjorklund H, Essbauer S, Fijan N, Kurath G, Winton J. Spring viremia of carp (SVC). Diseases of aquatic organisms. 2002;52(3):261-72.

203. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2-\Delta\Delta$ CT method. methods. 2001;25(4):402-8.

204. Encinas P, Garcia-Valtanen P, Chinchilla B, Gomez-Casado E, Estepa A, Coll J. Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV) suggest preventive drug candidates. PLoS One. 2013;8(9):e73553.

205. Pereiro P, Forn-Cuní G, Dios S, Coll J, Figueras A, Novoa B. Interferon-independent antiviral activity of 25-hydroxycholesterol in a teleost fish. Antiviral research. 2017;145:146-59.

206. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research. 2014;42(W1):W252-W8.

207. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a webbased environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195-201.

208. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. electrophoresis. 1997;18(15):2714-23.

209. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry. 2010;31(2):455-61.

210. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chemical Biology: Springer; 2015. p. 243-50.

211. Shityakov S, Förster C. In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and applications in bioinformatics and chemistry: AABC. 2014;7:23.

212. Bíró A, Cervenak L, Balogh A, Lőrincz A, Uray K, Horváth A, et al. Novel anticholesterol monoclonal immunoglobulin G antibodies as probes and potential modulators of membrane raft-dependent immune functions. Journal of lipid research. 2007;48(1):19-29.

213. Torrent F, Villena A, Lee P, Fuchs W, Bergmann S, Coll J. The amino-terminal domain of ORF149 of koi herpesvirus is preferentially targeted by IgM from carp populations surviving infection. Archives of virology. 2016;161(10):2653-65.

214. Coll JM. herpesvirus infection induces both specific and heterologous antiviral antibodies in carp. Frontiers in immunology. 2018;9:39.

215. Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, et al. Mobyle: a new full web bioinformatics framework. Bioinformatics. 2009;25(22):3005-11.

216. Du Clos TW, Mold C. Pentraxins (CRP, SAP) in the process of complement activation and clearance of apoptotic bodies through $Fc\gamma$ receptors. Current opinion in organ transplantation. 2011;16(1):15.

217. Paludan SR. Requirements for the induction of interleukin-6 by herpes simplex virus-infected leukocytes. Journal of virology. 2001;75(17):8008-15.

218. Wang J, Wang Q, Han T, Li Y-K, Zhu S-L, Ao F, et al. Soluble interleukin-6 receptor is elevated during influenza A virus infection and mediates the IL-6 and IL-32 inflammatory cytokine burst. Cellular & molecular immunology. 2015;12(5):633.

219. Goda T, Miyahara Y. Calcium-independent binding of human C-reactive protein to lysophosphatidylcholine in supported planar phospholipid monolayers. Acta biomaterialia. 2017;48:206-14.

220. Wang W, Fu Y, Zu Y, Wu N, Reichling J, Efferth T. Lipid rafts play an important role in the vesicular stomatitis virus life cycle. Archives of virology. 2009;154(4):595-600.

221. Pilely K, Fumagalli S, Rosbjerg A, Genster N, Skjoedt M-O, Perego C, et al. c-reactive Protein Binds to cholesterol crystals and co-localizes with the Terminal complement complex in human atherosclerotic Plaques. Frontiers in immunology. 2017;8:1040.

222. Taskinen S, Hyvönen M, Kovanen PT, Meri S, Pentikäinen MO. C-reactive protein binds to the 3β -OH group of cholesterol in LDL particles. Biochemical and biophysical research communications. 2005;329(4):1208-16.

223. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999;7(2):169-77.

224. Wang M-Y, Ji S-R, Bai C-J, El Kebir D, Li H-Y, Shi J-M, et al. A redox switch in C-reactive protein modulates activation of endothelial cells. The FASEB Journal. 2011;25(9):3186-96.

225. Clemente R, De Parseval A, Perez M, Juan C. Borna disease virus requires cholesterol in both cellular membrane and viral envelope for efficient cell entry. Journal of virology. 2009;83(6):2655-62.

226. Pöhlmann S, Simmons G. Viral entry into host cells: Springer; 2013.

227. Langevin C, Aleksejeva E, Passoni G, Palha N, Levraud J-P, Boudinot P. The antiviral innate immune response in fish: evolution and conservation of the IFN system. Journal of molecular biology. 2013;425(24):4904-20.

228. Zhang Y, Gui J. Fish interferon response and its molecular regulation: a review. Sheng wu gong cheng xue bao= Chinese journal of biotechnology. 2011;27(5):675-83.

229. Zou PF, Nie P. Zebrafish as a Model for the Study of Host-Virus Interactions. Innate Antiviral Immunity: Springer; 2017. p. 57-78.

230. Yuan J, Yang Y, Nie H, Li L, Gu W, Lin L, et al. Transcriptome analysis of epithelioma papulosum cyprini cells after SVCV infection. BMC genomics. 2014;15(1):935.

231. Zou J, Gorgoglione B, Taylor NG, Summathed T, Lee P-T, Panigrahi A, et al. Salmonids have an extraordinary complex type I IFN system: characterization of the IFN locus in rainbow trout Oncorhynchus mykiss reveals two novel IFN subgroups. The Journal of Immunology. 2014;193(5):2273-86.

232. García-Valtanen P, Ortega-Villaizán MdM, Martínez-López A, Medina-Gali R, Pérez L, Mackenzie S, et al. Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules. Autophagy. 2014;10(9):1666-80.

233. Wang Y, Chen N, Hegazy AM, Liu X, Wu Z, Liu X, et al. Autophagy induced by snakehead fish vesiculovirus inhibited its replication in SSN-1 cell line. Fish & shellfish immunology. 2016;55:415-22.

234. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema K-J, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435-55.

235. Espín-Palazón R, Martínez-López A, Roca FJ, López-Muñoz A, Tyrkalska SD, Candel S, et al. TNF α impairs rhabdoviral clearance by inhibiting the host autophagic antiviral response. PLoS pathogens. 2016;12(6):e1005699.

236. Vinod V, Padmakrishnan C, Vijayan B, Gopala S. 'How can I halt thee?' The puzzles involved in autophagic inhibition. Pharmacological research. 2014;82:1-8.

237. Murphy TM, Baum LL, Beaman KD. Extrahepatic transcription of human C-reactive protein. Journal of Experimental Medicine. 1991;173(2):495-8.

238. Wang T, Sun L. CsSAP, a teleost serum amyloid P component, interacts with bacteria, promotes phagocytosis, and enhances host resistance against bacterial and viral infection. Developmental & Comparative Immunology. 2016;55:12-20.

239. Li M-f, Chen C, Li J, Sun L. The C-reactive protein of tongue sole Cynoglossus semilaevis is an acute phase protein that interacts with bacterial pathogens and stimulates the antibacterial activity of peripheral blood leukocytes. Fish & shellfish immunology. 2013;34(2):623-31.

240. Zapata A, Diez B, Cejalvo T, Gutierrez-de Frias C, Cortes A. Ontogeny of the immune system of fish. Fish & shellfish immunology. 2006;20(2):126-36.

241. Salinas I. The mucosal immune system of teleost fish. Biology. 2015;4(3):525-39.

242. Tarnawska M, Augustyniak M, Łaszczyca P, Migula P, Irnazarow I, Krzyżowski M, et al. Immune response of juvenile common carp (Cyprinus carpio L.) exposed to a mixture of sewage chemicals. Fish & shellfish immunology. 2019.

243. Valdenegro-Vega VA, Crosbie P, Bridle A, Leef M, Wilson R, Nowak BF. Differentially expressed proteins in gill and skin mucus of Atlantic salmon (Salmo salar) affected by amoebic gill disease. Fish & shellfish immunology. 2014;40(1):69-77.

244. Bierne H, Hamon M, Cossart P. Epigenetics and bacterial infections. Cold Spring Harbor perspectives in medicine. 2012;2(12):a010272.

245. Gong X-Y, Zhang Q-M, Gui J-F, Zhang Y-B. SVCV infection triggers fish IFN response through RLR signaling pathway. Fish & shellfish immunology. 2019;86:1058-63.

246. Wang Y, Li Z, Lu Y, Hu G, Lin L, Zeng L, et al. Molecular characterization, tissue distribution and expression, and potential antiviral effects of TRIM32 in the Common Carp (Cyprinus carpio). International journal of molecular sciences. 2016;17(10):1693.

247. Raida MK, Buchmann K. Innate immune response in rainbow trout (Oncorhynchus mykiss) against primary and secondary infections with Yersinia ruckeri O1. Developmental & Comparative Immunology. 2009;33(1):35-45.

248. Braden LM, Barker DE, Koop BF, Jones SR. Comparative defense-associated responses in salmon skin elicited by the ectoparasite Lepeophtheirus salmonis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 2012;7(2):100-9.

249. Wei X, Li XZ, Zheng X, Jia P, Wang J, Yang X, et al. Toll-like receptors and interferon associated immune factors responses to spring viraemia of carp virus infection in common carp (Cyprinus carpio). Fish & shellfish immunology. 2016;55:568-76.

250. Nam B-H. Molecular cloning and characterisation of the flounder (Paralichthys olivaceus) interleukin-6 gene. Fish Shellfish Immunol. 2007;23:231-6.

251. Carballo C, Castro D, Borrego JJ, Manchado M. Gene expression profiles associated with lymphocystis disease virus (LCDV) in experimentally infected Senegalese sole (Solea senegalensis). Fish & shellfish immunology. 2017;66:129-39.

252. Iliev DB, Castellana B, MacKenzie S, Planas JV, Goetz FW. Cloning and expression analysis of an IL-6 homolog in rainbow trout (Oncorhynchus mykiss). Molecular immunology. 2007;44(7):1803-7.

253. Braden LM, Barker DE, Koop BF, Jones SR. Differential modulation of resistance biomarkers in skin of juvenile and mature pink salmon, Oncorhynchus gorbuscha by the salmon louse, Lepeophtheirus salmonis. Fish & shellfish immunology. 2015;47(1):7-14.

254. Karsten A, Rice C. c-Reactive protein levels as a biomarker of inflammation and stress in the Atlantic sharpnose shark (Rhizoprionodon terraenovae) from three southeastern USA estuaries. Marine environmental research. 2004;58(2-5):747-51.

255. Giang DTH, Van Driessche E, Vandenberghe I, Devreese B, Beeckmans S. Isolation and characterization of SAP and CRP, two pentraxins from Pangasianodon (Pangasius) hypophthalmus. Fish & shellfish immunology. 2010;28(5-6):743-53.

256. Winkelhake JL, Vodicnik MJ, Taylor JL. Induction in rainbow trout of an acute phase (C-reactive) protein by chemicals of environmental concern. Comparative biochemistry and physiology C, Comparative pharmacology and toxicology. 1983;74(1):55-8.

257. Roy S, Kumar V, Kumar V, Behera B. Acute Phase Proteins and their Potential Role as an Indicator for Fish Health and in Diagnosis of Fish Diseases. Protein and peptide letters. 2017;24(1):78-89.

258. Job ER, Bottazzi B, Gilbertson B, Edenborough KM, Brown LE, Mantovani A, et al. Serum amyloid P is a sialylated glycoprotein inhibitor of influenza A viruses. PLoS One. 2013;8(3):e59623.

259. Reading PC, Bozza S, Gilbertson B, Tate M, Moretti S, Job ER, et al. Antiviral activity of the long chain pentraxin PTX3 against influenza viruses. The Journal of Immunology. 2008;180(5):3391-8.

260. Wang F, Jiao H, Liu W, Chen B, Wang Y, Chen B, et al. The antiviral mechanism of viperin and its splice variant in spring viremia of carp virus infected fathead minnow cells. Fish & shellfish immunology. 2018.

261. Chang M-X, Zou J, Nie P, Huang B, Yu Z, Collet B, et al. Intracellular interferons in fish: a unique means to combat viral infection. PLoS pathogens. 2013;9(11):e1003736.

262. Jungblut PR, Holzhütter HG, Apweiler R, Schlüter H. The speciation of the proteome. Chemistry Central Journal. 2008;2(1):16.

263. Werner RG, Kopp K, Schlueter M. Glycosylation of therapeutic proteins in different production systems. Acta Paediatrica. 2007;96:17-22.

264. Robey F, Ohura K, Futaki S, Fujii N, Yajima H, Goldman N, et al. Proteolysis of human C-reactive protein produces peptides with potent immunomodulating activity. Journal of Biological Chemistry. 1987;262(15):7053-7.

265. Song Z, Cai L, Guo L, Tsukamoto Y, Yutani C, Li X-A. Accumulation and expression of serum amyloid P component in human atherosclerotic lesions. Atherosclerosis. 2010;211(1):90-5.

266. Leser GP, Lamb RA. Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology. 2005;342(2):215-27.

267. Scheiffele P, Rietveld A, Wilk T, Simons K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. Journal of Biological Chemistry. 1999;274(4):2038-44.

268. Takeda M, Leser GP, Russell CJ, Lamb RA. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proceedings of the National Academy of Sciences. 2003;100(25):14610-7.

269. Ali A, Nayak DP. Assembly of Sendai virus: M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein. Virology. 2000;276(2):289-303.

270. Manié SN, Debreyne S, Vincent S, Gerlier D. Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. Journal of virology. 2000;74(1):305-11.

271. Vincent S, Gerlier D, Manié SN. Measles virus assembly within membrane rafts. Journal of virology. 2000;74(21):9911-5.

272. Dolganiuc V, McGinnes L, Luna EJ, Morrison TG. Role of the cytoplasmic domain of the Newcastle disease virus fusion protein in association with lipid rafts. Journal of virology. 2003;77(24):12968-79.

273. Laliberte JP, McGinnes LW, Peeples ME, Morrison TG. Integrity of membrane lipid rafts is necessary for the ordered assembly and release of infectious Newcastle disease virus particles. Journal of virology. 2006;80(21):10652-62.

274. Laliberte JP, McGinnes LW, Morrison TG. Incorporation of functional HN-F glycoprotein-containing complexes into newcastle disease virus is dependent on cholesterol and membrane lipid raft integrity. Journal of virology. 2007;81(19):10636-48.

275. Ji S-R, Ma L, Bai C-J, Shi J-M, Li H-Y, Potempa LA, et al. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. The FASEB Journal. 2009;23(6):1806-16.

276. Langevin C, Levraud J-P, Boudinot P. Fish antiviral tripartite motif (TRIM) proteins. Fish & shellfish immunology. 2019;86:724-33.

277. Hambleton S, Steinberg S, Gershon M, Gershon A. Cholesterol dependence of varicella-zoster virion entry into target cells. Journal of virology. 2007;81(14):7548-58.

278. Niyogi K, Hildreth JE. Characterization of new syncytium-inhibiting monoclonal antibodies implicates lipid rafts in human T-cell leukemia virus type 1 syncytium formation. Journal of virology. 2001;75(16):7351-61.

279. Ke F, Zhang Q-Y. Aquatic animal viruses mediated immune evasion in their host. Fish & shellfish immunology. 2018.

280. Poynter SJ, DeWitte-Orr SJ. Fish interferon-stimulated genes: the antiviral effectors. Developmental & Comparative Immunology. 2016;65:218-25.

281. Zou J, Secombes CJ. Teleost fish interferons and their role in immunity. Developmental & Comparative Immunology. 2011;35(12):1376-87.

282. Jurado MT, García-Valtanen P, Estepa A, Perez L. Antiviral activity produced by an IPNV-carrier EPC cell culture confers resistance to VHSV infection. Veterinary microbiology. 2013;166(3):412-8.

283. Nombela I, Puente-Marin S, Chico V, Villena AJ, Carracedo B, Ciordia S, et al. Identification of diverse defense mechanisms in rainbow trout red blood cells in response to halted replication of VHS virus. F1000Research. 2017;6.

284. Parreño R, Torres S, Almagro L, Belló-Pérez M, Estepa A, Perez L. Induction of viral interference by IPNV-carrier cells on target cells: A cell co-culture study. Fish & shellfish immunology. 2016;58:483-9.

285. She S, Xiang Y, Yang M, Ding X, Liu X, Ma L, et al. C-reactive protein is a biomarker of AFP-negative HBV-related hepatocellular carcinoma. International journal of oncology. 2015;47(2):543-54.

286. Berryman S, Brooks E, Burman A, Hawes P, Roberts R, Netherton C, et al. FMDV induces autophagosomes during cell entry via a class III PI3K-independent pathway. Journal of virology. 2012:JVI. 00846-12.

287. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. The EMBO journal. 2008;27(7):1110-21.

288. Shoji-Kawata S, Levine B. Autophagy, antiviral immunity, and viral countermeasures. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2009;1793(9):1478-84.

289. Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Military Medical Research. 2015;2(1):12.

290. Li M, Li J, Zeng R, Yang J, Liu J, Zhang Z, et al. Respiratory syncytial virus replication is promoted by autophagy-mediated inhibition of apoptosis. Journal of virology. 2018;92(8):e02193-17.

291. Kim JY, Wang L, Lee J, Ou J-hJ. Hepatitis C virus induces the localization of lipid rafts to autophagosomes for its RNA replication. Journal of virology. 2017;91(20):e00541-17.

292. Peng J, Zhu S, Hu L, Ye P, Wang Y, Tian Q, et al. Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines. Autophagy. 2016;12(10):1704-20. doi: 10.1080/15548627.2016.1196315. PubMed PMID: 27463027; PubMed Central PMCID: PMCPMC5079669.

293. Tu Z, Gong W, Zhang Y, Feng Y, Liu Y, Tu C. Inhibition of Rabies Virus by 1, 2, 3, 4,
6-Penta-O-galloyl-β-d-Glucose Involves mTOR-Dependent Autophagy. Viruses.
2018;10(4):201.

294. Khakpoor A, Panyasrivanit M, Wikan N, Smith DR. A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. Journal of General Virology. 2009;90(5):1093-103.

295. Hurwitz SN, Cheerathodi MR, Nkosi D, York SB, Meckes DG. Tetraspanin CD63 bridges autophagic and endosomal processes to regulate exosomal secretion and intracellular signaling of Epstein-Barr virus LMP1. Journal of virology. 2018;92(5):e01969-17.

296. Panyasrivanit M, Khakpoor A, Wikan N, Smith DR. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. Journal of General Virology. 2009;90(2):448-56.

297. Zheng K, Li Y, Wang S, Wang X, Liao C, Hu X, et al. Inhibition of autophagosomelysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint. Autophagy. 2016;12(9):1593-613.

298. Redmann M, Benavides GA, Berryhill TF, Wani WY, Ouyang X, Johnson MS, et al. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox biology. 2017;11:73-81.

299. Terman A, Kurz T, Gustafsson B, Brunk U. Lysosomal labilization. IUBMB life. 2006;58(9):531-9.

300. Le Blanc I, Luyet P-P, Pons V, Ferguson C, Emans N, Petiot A, et al. Endosome-tocytosol transport of viral nucleocapsids. Nature cell biology. 2005;7(7):653.

301. Chelbi-Alix M, Thang MN. Chloroquine impairs the interferon-induced antiviral state without affecting the 2', 5'-oligoadenylate synthetase. Journal of Biological Chemistry. 1985;260(13):7960-4.

302. Cui J, Sim TH-F, Gong Z, Shen H-M. Generation of transgenic zebrafish with liverspecific expression of EGFP-Lc3: a new in vivo model for investigation of liver autophagy. Biochemical and biophysical research communications. 2012;422(2):268-73.

303. Buffen K, Oosting M, Quintin J, Ng A, Kleinnijenhuis J, Kumar V, et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS pathogens. 2014;10(10):e1004485.

304. Lee S-J, Jung YH, Kim JS, Lee HJ, Lee SH, Lee K-H, et al. A Vibrio vulnificus VvpM induces IL-1 β production coupled with necrotic macrophage death via distinct spatial targeting by ANXA2. Frontiers in cellular and infection microbiology. 2017;7:352.

305. Hsu SP, Kuo JS, Chiang H-C, Wang H-E, Wang Y-S, Huang C-C, et al. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells. Oncotarget. 2018;9(6):6883.

306. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131.

307. Lembo D, Cagno V, Civra A, Poli G. Oxysterols: an emerging class of broad spectrum antiviral effectors. Molecular aspects of medicine. 2016;49:23-30.

308. Li C, Deng Y-Q, Wang S, Ma F, Aliyari R, Huang X-Y, et al. 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity. 2017;46(3):446-56.

309. Li C, Sun L, Lin H, Qin Z, Tu J, Li J, et al. Glutamine starvation inhibits snakehead vesiculovirus replication via inducing autophagy associated with the disturbance of endogenous glutathione pool. Fish & shellfish immunology. 2019;86:1044-52.

310. Shawli GT, Adeyemi OO, Stonehouse NJ, Herod MR. The Oxysterol 25-Hydroxycholesterol Inhibits Replication of Murine Norovirus. Viruses. 2019;11(2):97.

311. Shrivastava-Ranjan P, Bergeron É, Chakrabarti AK, Albariño CG, Flint M, Nichol ST, et al. 25-Hydroxycholesterol inhibition of Lassa virus infection through aberrant GP1 glycosylation. MBio. 2016;7(6):e01808-16.

312. Liu S-Y, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK, et al. Interferoninducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25hydroxycholesterol. Immunity. 2013;38(1):92-105.

313. Civra A, Francese R, Gamba P, Testa G, Cagno V, Poli G, et al. 25-Hydroxycholesterol and 27-hydroxycholesterol inhibit human rotavirus infection by sequestering viral particles into late endosomes. Redox biology. 2018;19:318-30.

314. Noguchi N, Urano Y, Takabe W, Saito Y. New aspects of 24 (S)-hydroxycholesterol in modulating neuronal cell death. Free Radical Biology and Medicine. 2015;87:366-72.

315. Nury T, Zarrouk A, Mackrill JJ, Samadi M, Durand P, Riedinger J-M, et al. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β -hydroxycholesterol-, or 24 (S)-hydroxycholesterol: Protective effects of α -tocopherol and docosahexaenoic acid (DHA; C22: 6 n-3). Steroids. 2015;99:194-203.

316. Vurusaner B, Gargiulo S, Testa G, Gamba P, Leonarduzzi G, Poli G, et al. The role of autophagy in survival response induced by 27-hydroxycholesterol in human promonocytic cells. Redox biology. 2018.

UNIVERSITAS Miguel Hernánde

						Public	aciones
Introducción	Obj., ant., s. modelo	Mat. y métodos	Resultados	Discusión	Conclusiones	Bibliografía) (Anexos

COMPENDIO DE PUBLICACIONES

PUBLICACIÓN 1

TÍTULO: Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins

COAUTORES: Melissa Belló Pérez, Alberto Falcó Graciá, Regla María Medina Gali, Jose Antonio Encinar Hidalgo, Beatriz Novoa García, Luis Perez García-Estañ, Amparo Estepa Pérez, Julio Coll Morales.

REVISTA: Developmental and Comparative Immunology

doi: 10.1016/j.dci.2016.12.001

Volumen 69, Abril 2017, Páginas 33-40

Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins short title: Comparative zebrafish CRP-like proteins
Melissa Bello-Perez ² , Alberto Falco ² , Regla Medina ² , Jose Antonio Encinar ² , Beatriz Novoa ³ , Luis Perez ² ,
Amparo Estepa, Julio Coll ^{1*} .
¹ Instituto Nacional Investigación y Tecnología Agrarias y Alimentarias, Dpto. Biotecnología. INIA. Madrid, Spain.
² Universidad Miguel Hernández, UMH-IBMC, 03202 Elche, Spain
³ Instituto de Investigaciones Marinas, CSIC, Vigo, España
Keywords: multi-gene family; pentraxins; c-reactive protein; zebrafish; structure; function
* Corresponding author
Email addresses: MB, <u>melissa.bello@goumh.umh.es</u> AF, <u>alber.falco@umh.es</u> RM, <u>reglita2000@yahoo.com</u> JA, jant.encinar@goumh.umh.es BN, <u>beatriznovoa@iim.csic.es</u> LP, <u>huis.perez@umh.es</u> JC, juliocoll@inia.es

34 Abstract

35 Because of the recent discovery of multiple c-reactive protein (crp)-like genes in zebrafish (Danio rerio) with 36 predicted heterogeneous phospholipid-binding amino acid sequences and heterogeneous transcript expression 37 levels in viral survivors and adaptive-deficient mutants, zebrafish constitute an attractive new model for 38 exploring the evolution of these protein's functions, including their possible participation in fish trained 39 immunity. Circulating human CRP belongs to the short pentraxin family of oligomeric proteins that are 40 characteristic of early acute-phase innate responses and is widely used as a clinical inflammation marker. In 41 contrast to pentameric human CRP (pCRP), zebrafish CRPs are trimeric (tCRP); however monomeric CRP 42 (mCRP) conformations may also be generated when associated with cellular membranes as occurs in 43 humans. Compared to human CRP, zebrafish CRP-like proteins show homologous amino acid sequence 44 stretches that are consistent with, although not yet demonstrated, cysteine-dependent redox switches, 45 calcium-binding spots, phosphocholine-binding pockets, C1q-binding domains, regions interacting with 46 immunoglobulin Fc receptors (FcR), unique mCRP epitopes, mCRP binding peptides to cholesterol-enriched 47 rafts, protease target sites, and/or binding sites to monocyte, macrophage, neutrophils, platelets and/or 48 endothelial cells. Amino acid variations among the zebrafish CRP-like multiprotein family and derived 49 isoforms in these stretches suggest that functional heterogeneity best fits the wide variety of aquatic 50 pathogens. As occurs in humans, phospholipid-tagged tCRP-like multiproteins might also influence local 51 inflammation and induce innate immune responses; however, in addition, different zebrafish tCRP-like 52 proteins and/or isoforms might fine tune new still unknown functions. The information reviewed here could 53 be of value for future studies not only to comparative but also medical immunologists and/or fisheries sectors. This review also introduces some novel speculations for future studies. 54

55

56

58 1. The human CRP short-pentraxin family

59 Human c-reactive protein (CRP) belongs to a family of short-chain pentraxins that share > 50 % 60 amino acid identity and some structural/functional features with the serum amyloid P component (SAP) (Woo et al., 1985). Blood circulating human CRP shows a pentameric (pCRP) cyclic symmetry which is 61 formed by monomers of ~ 200 amino acids (~ 23 KDa) (Shrive et al., 1996). Other minority conformations 62 63 such as mild-acidic-pH pentamers (Hammond et al., 2010) or decamers and tissue-associated monomers 64 (mCRP), have also been described (Wu et al., 2015). 65 CRP is a part of the innate response and is released mainly from the liver into the blood, triggered by 66 any cellular damage produced by an injury and/or disease to affect systemic/local inflammation and help in 67 pathogen neutralization (Zhang et al., 2010). CRP as a part of the acute-phase response increases its basal 68 plasma level 2-3 orders of magnitude (i.e., from 1-5 to 500-1000 µg per ml) hours after the inflammatory 69 signals are generated (Bottazzi et al., 2016; Du Clos, 2013; Vilahur and Badimon, 2015). Therefore it has been widely used as a biomarker for inflammation (Pepys et al., 2006). 70 71 Human pCRP is arranged in flat pentamers with one face showing Ca++-dependent phospholipid-head recognition and the other face being responsible for most of their biological effects. After binding ~1 mM 72 73 Ca⁺⁺, pCRP recognizes membrane exposed phospholipid-head ligands primarly containing 74 phosphorylcholine heads with µM affinities, while pSAP preferentially binds phosphorylethanolamine heads (Du Clos and Mold, 2011). The Ca++-dependent binding of pCRP to phospholipid heads, triggers binding to 75 76 Clq (activating the classical complement pathway) and immunoglobulin Fc receptors (FcR) (activating 77 phagocytosis) (Bang et al., 2005; Du Clos and Mold, 2011; Inforzato et al., 2013; Vilahur and Badimon, 78 2015). After the discovery of different monomeric CRP (mCRP) conformations, the list of ligands has 79 expanded (Li et al., 2016; Wu et al., 2015), as conformational changes control not only local inflammation 80 but also many different innate immune responses (Wang et al., 2011; Wu et al., 2015) (further details are 81 discussed later in section 5). 82 CRP-like proteins are found from arthropods to mammalians (Bottazzi et al., 2016; Vilahur and

83 Badimon, 2015), including lower vertebrates such as teleost fish (MacCarthy et al., 2008, Pionnier et al.,

2014, Pionnier et al., 2013). However, CRP proteins have been mostly studied in humans because of their
clinical implications. In this work, we will compare the unique properties of the human *crp* gene /CRP
protein with those of the zebrafish *crp*/CRP multi-gene/multi-protein family with respect to their sequences,
protein structure and biological functionalities.

88 2. The CRP-like multi-gene family in zebrafish

89 One of the zebrafish CRP-like recombinant protein members (similar to CRP5) has a similar 90 backbone structure to human CRP but crystallizes as a trimer with only 32 % amino acid identity (Chen et 91 al., 2015). In sharp contrast to human and other fish CRP-like proteins, 7 different crp loci (coding for 92 CRP1-7) were detected in chromosome 24 of the zebrafish (Danio rerio) genome (Falco et al., 93 2012). Furthermore, zebrafish crp5 expresses 79 different transcript variants suggesting the existence 94 of at least 5 different isoforms of this particular gene (GenBank UniGene accession numbers 95 Dr.124528-Dr.162306)(Chen et al., 2015). In addition, mRNA transcripts identified as 4 sap-like 96 genes in earlier home-designed microarrays (Encinas et al., 2013; Encinas et al., 2010; Estepa and Coll, 97 2015) have now been confirmed to be isoforms of crp2 and crp5 in most recent genome releases (not 98 shown). Caution is necessary when assigning *crp/sap* identities based only on their sequences, especially 99 when searching for orthologous sequences from other species such as human CRP, because of their high 100 similarity. Classification is best based on affinity or ligand-binding functionality rather than sequence (i.e., 101 human CRP preferentially binds phosphocholine while SAP binds phosphoethanolamine, and other 102 molecules could have other preferences) (Du Clos and Mold, 2011). Although it is likely that there might be 103 more crp-like genes and/or isoforms in zebrafish, carp and/or other fish (Fujiki et al., 2001), their complete 104 identification must wait for further sequencing advances of their corresponding genomes and/or transcripts. 105 The existence of a *crp*-like multi-gene family rather than a unique gene could offer an alternative 106 repertoire of anti-pathogen responses for primitive vertebrates such as fish that have a limited 107 adaptive immune response (i.e., lack of IgG). However, the corresponding zebrafish CRP-like multi-108 protein function(s) and regulation(s) remain largely unexplored.

109 Zebrafish is a suitable model for studying evolutionary immunology since it has been 110 used not only for modelling other vertebrates due to its important resources for genetic and developmental studies but also for modelling many infectious diseases affecting fish 111 112 (Chinchilla et al., 2015; Lopez-Munoz et al., 2010; Novoa et al., 2006; Rowe et al., 2014; 113 Sanders et al., 2003) and humans (Goody et al., 2014). In addition, transcriptomic data showing differentially modulated crp1-7 multi-gene has been reported in zebrafish surviving rhabdoviral 114 infections such as VHSV (Estepa and Coll, 2015), or SVCV (Encinas et al., 2013), bacterial 115 116 infections (Estepa and Coll, 2015) and/or adaptive-immune deficient zebrafish (Garcia-Valtanen et al., 117 2016). Some of these results will be discussed in more detail in section 6. 3. Comparative amino acid sequences of human CRP and zebrafish CRP-like proteins 118 119 A sequence alignment of the known CRP proteins from various species revealed CRP-like protein 120 sequences from fish clustered together in a phylogenetic tree, while those from mammalians formed a distinct clade and Limulus was out grouped (Falco et al., 2012). Both ³⁶Cys and ⁹⁷Cys and the cholesterol-121 122 binding sequence (residues 35 to 47) were well conserved throughout evolution (Table 1), suggesting that at 123 least some of their functions (to be discussed in section 5), such as redox switching or interactions with 124 cholesterol-enriched rafts, might be similar (Chen et al., 2015; Wang et al., 2011). A high degree of 125 conservation was also observed when comparing the protein hydrophobicity profiles between human CRP 126 and zebrafish CRP-like proteins (see Figure 1A for CRP5 and not shown). In addition to the two cysteine 127 residues, the locations of Ca⁺⁺-binding and putative phospholipid-binding pockets were highly conserved 128 (Figure 1B, Table 1). Variation of amino acid residues among zebrafish CRP1-7 showed a conserved 26-39 129 amino acid stretch around ³⁶Cys suggesting a common structural/functional requirement (possibly a 130 cholesterol-binding sequence). The highest variations were found around the putative phospholipid-binding 131 pocket (residues 70-86) and the C-terminal region (residues 180-206), suggesting different possible 132 specificities for ligand binding (Figure 1B, Table 1). 133 4. Tridimensional structures of human CRP and zebrafish CRP-like proteins

134	The X-ray derived structures of crystalized human CRP are pentameric (Shrive et al., 1996).
135	Circular dichroism, infrared spectroscopy and/or immunochemistry suggest Ca++-dependent reversible small
136	conformational changes (Ramadan et al., 2002; Wu et al., 2015). Furthermore, in the presence of Ca++ the
137	pCRP structures become resistant to heat or urea denaturation, mercaptoethanol and/or proteolysis (Black et
138	al., 2003; Coll, 1988). In sharp contrast, the X-ray structures of zebrafish CRP-like proteins were trimeric
139	(tCRP), with a small central pore of ~ 16.8 Å compared to human pCRP, which is ~ 47 Å. Small Ca ⁺⁺ -
140	dependent conformational changes were also shown for one of the zebrafish tCRP-like proteins (Chen et al.,
141	2015) but no Ca++-dependent or any other cation-dependent binding specificities have been reported to date.
142	Each human CRP monomer binds 2 molecules of Ca ⁺⁺ at a binding site for the negatively charged
143	phosphate moiety of phospholipid ligand heads. The loss of Ca++ results in a highly charged negative surface
144	of the Ca++-binding loop (Figure 1A, green squares) activating binding to ligands such as polycations (i.e.,
145	polyLys). The major significant change between Ca ⁺⁺ -depleted and Ca ⁺⁺ -bound human CRP occurs in the
146	Ca ⁺⁺ -binding loop (amino acids 138-150) (Figure 1A, blue squares), which are disordered and mobile in the
147	absence of Ca^{++} , and refold in the presence of Ca^{++} to protect the ¹⁴⁵ Asn- ¹⁴⁷ Glu site (Figure 1A red triangles)
148	from proteolytic attack (Kinoshita et al., 1992).
149	The location of the highest amino acid sequence variations (Figure 1B, Table 1) and homology
150	docking-modelling (Chen et al., 2015) of the phospholipid pockets of different zebrafish CRP-like proteins,
151	suggest that different specificities for phospholipid head binding might exist for each of them. However, to
152	date there is no experimental evidence that could confirm these indirect observations.
153	Accumulating evidence, however, confirms that human CRP has two forms, pentameric serum-
154	circulating CRP (pCRP) and monomeric tissue-associated CRP (mCRP)(Wu et al., 2015). The mCRP might
155	be induced in vivo by interactions between pCRP and cholesterol-enriched lipid rafts in the membranes of
156	damaged cells (Wang et al., 2011) (further discussed in section 5) or direct biosynthesis from macrophages
157	(Ciubotaru et al., 2005). In vitro the pCRP to mCRP has been induced in the absence of Ca ⁺⁺ (presence of
158	EDTA) with urea, low-pH or low-salt buffers (Potempa et al., 1983; Taylor and van den Berg, 2007).

159	The conversion of human pCRP to mCRP is required for an additional conformational change, due
160	to reduction of the intra-monomer ³⁶ Cys- ⁹⁷ Cys disulfide bond as detected by its slower migration in SDS-
161	denaturing gel electrophoresis and/or specific monoclonal antibodies (Wang et al., 2011). Reducing agents
162	such as DTT, GSH, Cys or mercaptoethanol can reduce mCRP but not pCRP, since the disulfide bond is
163	protected inside the pentameric structure (Shrive et al., 1996). Once reduced, spontaneous re-oxidation of
164	mCRP that could complicate the interpretation of the results, can be prevented by treatment with N-
165	ethylmaleimide or, alternatively, by substituting the two Cys for Ala in recombinant CRP (Ji et al., 2007;
166	Potempa et al., 2015). The reduction affects some of the human mCRP biological functions (Wang et al.,
167	2011; Wu et al., 2015), but no X-ray structures have been yet reported for non-reduced or reduced
168	conformations to date.
169	Therefore, the participation of every possible conformation of CRP (pCRP, mCRP and/or reduced
170	mCRP) should be correctly determined before drawing any valid experimental conclusions. In addition, the
171	fact that most commercially available anti-CRP antibodies recognize both pCRP and mCRP (Schwedler et

al., 2006), complicates the interpretation of previous and/or future studies. Similar concerns will apply to
research on zebrafish CRP-like proteins although there is no evidence that the tCRP to mCRP conversion
also occurs in any zebrafish CRPs.

175 **5. Biological functions of CRP**

The presence and some functions of CRP-like (Bayne and Gerwick, 2001; Bayne et al., 2001) and SAP-like (Hwang et al., 2015; Wang and Sun, 2016) proteins have been described in several fish but not in the zebrafish CRP multi-protein family. Several biological functions which might be expected to be found in the zebrafish CRP multi-proteins will be briefly discussed here.

5.1. Inflammation biomarker of CRP circulating levels. Human local tissue injuries cause (even
 hours later) the release of pro-inflammatory signals such as IL6, IL1β and TNFα, which distribute throughout
 the body and induce the liver to synthesize and release pCRP to the blood. The participation of these earliest
 signals has raised some possibilities for the clinical control of pCRP blood levels to reduce excessive tissue
 damage using antibodies directed against pro-inflammatory signaling molecules. Three examples of such

antibodies are Tocilizumab (anti-human IL6R), Rilonacept (anti-human IL1R), and Certolizumab (antiTNF-alpha) (www.drugbank.ca accession numbers DB06372, DB06273 and DB08904, respectively). In
contrast, similar fish studies are very scarce (Bayne and Gerwick, 2001; Bayne et al., 2001). Nevertheless,
the analysis of differential expression data of transcription factors present in previous zebrafish microarray
studies (Estepa and Coll, 2015), might help to identify some of the regulation of the *crp1-7* promoters in
zebrafish surviving viral diseases.

191 5.2. Ca++-dependent recognition of exposed phospholipid heads. The similar relative locations 192 and partial amino acid identities between the amino acid streches in human and zebrafish CRP involved 193 binding Ca++ (residues 60-61, 138-140, and 147-150 in human CRP) and phosphocholine (17-mer peptide 194 47-63 and residues 68, 76, 138, 140, and 150 in human CRP) (Table 1) strongly suggested that similar 195 functionalities exist in both human and zebrafish monomers. However, Ca⁺⁺-dependent binding to exposed 196 membrane phosphocholine in silico modelled with different zebrafish CRP-like monomers identified 197 different binding pocket geometries for the different CRPs (Chen et al., 2015). Preliminary extension of 198 similar in silico binding energy data to different phospholipid heads has also shown heterogeneity among 199 the different zebrafish CRP-like proteins (not shown) and requires further refinement studies. Validation of 200 such in silico data can be performed by ELISA using solid-phases coated with different phospholipid-heads 201 (Martinez and Coll, 1987; Martinez and Coll, 1988) or CRP pepscans (Garcia-Valtanen et al., 2014) aas 202 presently being attempted (results not shown). In addition, interactions of zebrafish CRP-like conformations 203 (tCRP, mCRP, reduced-mCRP) could not only be studied by ELISA/pepscan methods but also with fish 204 cells and/or model membranes. Infected fish cells might offer a new exciting exploration subject for PCR-205 like bindings because VHSV infection induced translocation/exposure of cellular phosphatidylserine heads 206 (Estepa et al., 2001). 207 5.3. Binding to C1q and complement components. Once human pCRP binds phospholipid-head exposed 208 targets, it binds C1q to activate the classical complement pathway (Agrawal et al., 2001; Agrawal and 209 Volanakis, 1994; Gaboriaud et al., 2003; Thompson et al., 1999). The binding of human CRP to apoptotic

210 cells in damaged tissues in a Ca++-dependent manner affects not only complement but also innate immune

211 responses. Thus, CRP-"marking" of apoptotic cells increased the classical pathway of complement 212 activation but protected the cells from assembly of the terminal complement components avoiding excessive 213 tissue damage. Furthermore, apoptotic cells "marked" with CRP enhanced their opsonisation and 214 phagocytosis by anti-inflammatory TGFB- activated macrophages. The anti-inflammatory effects of CRP 215 required C1q and factor H. However, reduction of the disulfide bridge enhanced the interaction of mCRP with C1q (Wu et al., 2015), a novel interaction which is much less studied. All the above observations 216 217 demonstrate that CRP and some complement components act in concert to promote non-inflammatory 218 clearance of apoptotic cells (Gershov et al., 2000). The similar relative locations and partial amino acid 219 identities in 5 different stretches involved in human CRP binding to C1q (residues 38, 88, 112-114, 158, 220 175-176) strongly suggest similar functionalities might exist in pCRP and tCRP (Table 1). C1q and other 221 complement components have been identified in zebrafish (Boshra et al., 2006), and most recently the 222 crystal structure of one of the globular domains of zebrafish C1q which might be implicated in CRP-binding 223 was elucidated (Yuan et al., 2016). However, how the different tCRP-like proteins from zebrafish might 224 recognize and interact with C1q could only be modelled until more experimental data will be available. 225 5.4. Binding to immunoglobulin Fc. Once human CRP binds phospholipid-head exposed targets, binds to 226 Fc transmembrane immunoglobulin receptors (FcR) present in most human haematopoietic cells, enhancing 227 FcR⁺ leukocyte phagocytosis of bacteria (Kindmark, 1971). Each pCRP bound one specific FcR molecule (Lu et al., 2012), two monomers participating in the binding (Lu et al., 2008) (PDB entries 1F2Q and 1QVZ 228 229 for FceRI and Fc α RI, respectively). For instance, human pCRP binds to Fc α RIIa (*cd32*) and Fc α RI (*cd64*) 230 while mCRP binds to FcRIIIb (Wu et al., 2015). Internalization of CRP-FcR caused immunosuppression in 231 macrophages, suggesting that CRP/FcR complexes might also protect against excessive inflammation 232 (Marjon et al., 2009). However, none of those described human Fc receptors were IgM-specific, while IgM is the primary fish immunoglobulin. In addition, only polymeric immunoglobulin (pig) receptor (pigr) genes 233 234 have been identified in zebrafish (Zhang et al., 2010). Transcript levels of pig genes were down-regulated 235 after infection with Snakehead rhabdovirus, suggesting that viral infection may suppress them (Kortum et al., 236 2014), but there are few other reports on interactions of fish tCRP-like proteins with FcRs (Bayne and

Gerwick, 2001; Bayne et al., 2001; Lu et al., 2012) and none with mCRP conformations (Li et al., 2016).

238 In this context, it will be of interest to study CRP-like/FcR interactions in zebrafish rag1-/- mutants lacking

239 IgM and expression of transcripts of *pig/pigr* in microarray studies.

240 **5.5. Changing conformations after binding to cholesterol-enriched lipid rafts**. The most important

human CRP peptide implicated in cholesterol-enriched lipid raft binding (residues 35-47) is found in a

similar relative location with 38.4 % partial amino acid identity in zebrafish CRP-like molecules (Table 1

- shows correspondences between human and zebrafish CRP5). Similarly, the main stretches participating in
- human mCRP interactions to form pCRP could also be found in CRP5 (Table 1, residues 40-45, 91-94, 109-
- 245 119, 167-175 in human CRP). Both findings suggest that human and zebrafish CRPs may use similar

246 mechanisms for CRP cholesterol-induced conformations. The Ca++-dependent binding of human CRP to

247 damaged cell membranes enhances the pCRP dissociation to mCRP (Ji et al., 2007). The pCRP dissociation

248 could be due to interactions with hydrophobic cholesterol-enriched lipid rafts as shown by mimicking with

249 model membranes made with cholesterol, phosphatidylcholine and sphingomyelin (Potempa et al., 2015;

250 Wang et al., 2011). Furthermore, evidence is accumulating that the changes in the pCRP conformation

251 further alter its biological effects (Wu et al., 2015). In human CRP, this generates an expanded list of not

252 only those well-known interactions such as C1q/Fc but also with new ligands such as LDL, fibronectin,

collagen (Li et al., 2016) and/or many other possibilities which have not yet been identified.

254 5.6. In vivo reduction of the ³⁶Cys switch. The relative locations of the two Cys residues present in each of

the CRP monomers were highly conserved in human and all zebrafish CRP-like molecules (residues 36 and

256 97 or 36 and 98). After losing the pentameric symmetry, the human mCRP intra-monomer disulfide bridge

acts as a redox-sensitive switch whose reduction might be required for the expression of further pro-

inflammatory effects (Wang et al., 2011). In vivo interactions of pCRP with cholesterol-enriched lipid rafts

not only activates the conversion to mCRP but also the reduction of the ³⁶Cys (Li et al., 2016; Wang et al.,

- 260 2011). Since human mCRP promotes recruitment of thioredoxin (Trx)-rich monocytes/macrophages
- 261 (Eisenhardt et al., 2009a), Trx might be responsible for the ~1000-fold enhancement of the disulfide
- 262 reduction rate compared to chemical reagents (Wang et al., 2011). In this respect, immunohistochemical

263 studies with specific MAbs detected mCRP rather than pCRP in human atherosclerotic plaques (Eisenhardt 264 et al., 2009a; Eisenhardt et al., 2009b; Eisenhardt et al., 2009c). Reduced mCRP has also been associated with enhanced binding to LDL (Ji et al., 2006b), further activation of complement (Ji et al., 2006a; Wang et 265 al., 2011) and stimulation of innate immune responses of endothelial cells (Heuertz et al., 2005; Ji et al., 266 267 2009). While there are no similar confirmatory studies made yet on this recently described phenomenon on any zebrafish tCRP-like molecules, it is probable that their Cys behave in similarly despite being in a trimer. 268 269 5.7. Cellular interactions. Little is known about how the changes in the recently described human pCRP 270 conformations may affect cellular responses. Furthermore, while there are many studies on the effects of 271 human CRP on different cells and cellular lines, the results are sometimes contradictory and in any case 272 difficult to interpret. Very often, the CRP preparations used for the experimentation could not be completely 273 characterized (i.e., composition of pCRP, mCRP, reduced-mCRP) at the time the experiments were made. 274 Nevertheless, recent evidence suggests that the effects of human mCRP are mostly pro-inflammatory, through the interaction with monocyte/macrophages, neutrophils, platelets, and/or endothelial cells (Khreiss 275 276 et al., 2004, 2005; Wu et al., 2015). No studies have been yet made with any zebrafish tCRP-like molecules but if the corresponding recombinant proteins can be purified and their preparations characterized, protease 277 digestion (Coll, 1988), pepscan mapping (Chico et al., 2010; Li et al., 2016) and specific cellular assays 278 279 (Garcia-Valtanen et al., 2014) could be then applied to map possible heterogeneous cellular functionalities. 280 6. Do zebrafish CRP-like genes belong to some of the molecules recently implicated in "Trained Immunity"? 281

Recent evidence reveals that vertebrate innate immunity has a stronger and more rapid response to a second pathogen exposure, two characteristic properties of classical adaptive immune memory responses (Netea et al., 2016), constituting the so-called trained immunity (Netea et al., 2011). Because of their primitive immunological system among vertebrates (i.e., immunological memories showing only shorter lagtime rather than higher level responses, no IgG switch, no IgM maturation, mucosal IgT, phagocytic B-cells, etc.), fish offers a suitable model in which to study immune evolution (Bengten and Wilson, 2015; Sunyer, 2013). A first observation suggesting different functions for the fish *crp*-like genes and/or isoforms, was

289 their tissue expression heterogeneity in carp (Falco et al., 2012). Confirming this possibility, 290 transcriptional microarray and RTqPCR profiles of zebrafish lymphoid organs, showed that crp1-6-291 transcripts (except crp7), were down-regulated in survivors to viral haemorrhagic septicemia virus (VHSV) 292 before and after VHSV re-infection, while they remain mostly un-modulated shortly after the first VHSV 293 infection (except crp7) (Figure 2). Furthermore, only crp2, crp5 and crp6 transcript levels increased when 294 survivors were re-infected (compare the corresponding open and hatched yellow bars with * in Figure 2). 295 Down-regulation of most crp-like genes in VHSV survivors before and after re-infection was a surprising 296 finding that might reflect a rapid cell migration to the viral entry sites. Nevertheless, these observations 297 were the first description of *crp*-like transcript bacterial responses in viral-infected fish (Estepa and Coll, 298 2015). The expression heterogeneity of *crp*-like genes was confirmed in zebrafish $rag I^{-/-}$ mutants 299 defective in V(D)J recombination in IgM and T-cell receptor genes (Garcia-Valtanen et al., 2016). 300 Transcript upregulation of a unique trout crp-like gene was also induced by oral DNA-vaccination to virus 301 (Ballesteros et al., 2012), confirming the importance of CRP-like proteins in fish immunization to viruses. 302 Because, some of the mammalian orthologous to fish multi-gene families (i.e., nitr) were linked to long-term 303 NK-cells in mammalian trained immune memory (Martin-Fontecha et al., 2004), the analogous crp-like 304 family might also be responsible for similar purposes. As further discussed in previously published (Estepa 305 and Coll, 2015) and submitted work (Garcia-Valtanen et al., 2016), because of its heterologous expression 306 within microarray data and the existence of multiple genes and/or transcript isoforms similar to in the nitr 307 family, zebrafish tCRP-like molecules might be one of the novel actors of trained immunity in fish.

308

7. Conclusions

310 None of the novel aspects of the functionality of human mCRP molecules have been studied in

311 zebrafish. It is unknown whether zebrafish tCRP-like molecules behave as serum acute-phase proteins,

although this has been observed in other fish (Bayne and Gerwick, 2001; Bayne et al., 2001) and preliminary

- 313 experiments using viral-infected zebrafish (unpublished). In addition to the different binding specificities of
- 314 the different CRP1-7 and its transcript variants, because of the possible co-existence of different CRPs in the

315 same cell, the generation of heterologous tCRP may further increase its potential functionalities. The 316 sequence diversity of the crp-like genes combined with their possible different phospholipid-binding 317 affinities and the possibility of heterologous tCRP, suggests this gene family could mimic a limited antibody 318 repertoire. The heterogeneous transcript expression demonstrated after a viral infection, in viral survivors and 319 in the absence of any adaptive immunological system confirms this idea. Human *crp/sap* might be coded by 320 unique genes as a minimal remnant of phylogenetically earlier crp-like gene families which were more 321 important when antibodies were not fully developed given their capacity to recognize a wide variety of 322 ligands. Therefore, crp-like gene families might constitute an ancient link between innate and adaptive 323 immune responses. 324 Further studies on how the zebrafish tCRP-like molecules and any of their transcript variants and/or

protein conformations affect binding specificities and/or functionalities could help the understanding of immune evolution and improve prevention methods against diseases, including vaccines, adjuvants and other biotechnological tools. However, since most functional studies will have to use recombinant fish CRPlike proteins, caution with both LPS contamination (Pepys et al., 2005) and conformation composition should be carefully taken for a correct interpretation of future results.

330

331 Acknowledgements

332 Special thanks are due to the co-author Dr. Amparo Estepa, who recently passed away, who

333 contributed to the initial ideas and financing behind this work. Thanks are also due to Paula Perez Gonzalez

- 334 for her analysis of zebrafish CRP-like protein alignements. This work was supported by INIA project
- 335 RTA2013-00008-00-00, CICYT project AGL2014-51773-C3, and AGL2014-53190 REDC of the Ministerio de
- 336 Economía y Competitividad of Spain.

337

338 339

- 341 342
- 343

346 Table 1

347 Some reported activities of amino acid sequences and/or peptides from human and zebrafish CRP
 348

Activity	human amino acid sequence zebrafish amino acid sequence
Redox switch	$^{36}C + ^{97}C$ $^{36}C + ^{98}C$
pCRP Ca ⁺⁺ main contacts	${}^{60}\mathbf{D}N^{61} + {}^{138}\mathbf{E}Q\mathbf{D}^{140} + {}^{147}\mathbf{E}GS\mathbf{Q}^{150}$ ${}^{60}\mathbf{D}\mathbf{E}^{61} + {}^{139}\underline{\mathbf{D}}\mathbf{P}\mathbf{D}^{141} + {}^{148}\underline{\mathbf{D}}\mathbf{V}\mathbf{D}\mathbf{Q}^{151}$
pCRP phosphocholine binding peptide & sites	${}^{47}\mathbf{R}GYSI\mathbf{F}S\mathbf{Y}A\mathbf{T}KRQ\mathbf{D}NEI^{63} + {}^{68}S + {}^{76}T + {}^{138}E + {}^{140}\mathbf{D} + {}^{149}\mathbf{S}$ ${}^{47}\mathbf{R}\underline{EV}IL\mathbf{F}A\mathbf{Y}\underline{Y}\underline{T}\underline{P}\underline{D}\underline{V}\mathbf{D}ELN^{63} + {}^{67}\underline{E} + {}^{75}\underline{Y} + {}^{139}\underline{D} + {}^{141}\mathbf{D} + {}^{152}\mathbf{S}$
C1q binding	${}^{38}\text{H} + {}^{88}\text{E} + {}^{112}\text{DG}\text{K}{}^{114} + {}^{158}\text{N} + {}^{175}\text{Y}\text{L}{}^{176}$ ${}^{38}\text{R} + {}^{89}\text{P} + {}^{113}\underline{\text{D}}\text{G}\underline{\text{R}}{}^{115} + {}^{159}\underline{\text{N}} + {}^{176}\text{Y}\underline{\text{Y}}{}^{177}$
mCRP binding to Ch, C1q, LDL, fibronectin, collagen	³⁵ V C LHFY TEL SST R ⁴⁷ ³⁵ L C MRV <u>ATELPLD</u> R ⁴⁷
Implicated in mCRP-mCRP interactions	${}^{40}YTELSS^{45} + {}^{91}VAPV^{94} + {}^{109}FWVDGKPRVRK^{119} + {}^{167}SPDEINTIY^{175} + {}^{40}ATELPL^{45} + {}^{91}STLQ^{94} + {}^{110}FWMDGRRSLHQ^{120} + {}^{168}SSAQIKAVY^{176} + {}^{168}SYAQIKAVY^{176} + {}^{168}SYAQIY^{176} + {}^{168}SYAQV$
Unique mCRP epitope	²⁰¹ GEVFTKP ²⁰⁷ ²⁰⁵ GNVLVVP ²¹¹
Protease sensitive sequence	¹⁴⁵ N F E ¹⁴⁷ ¹⁴⁶ S F D ¹⁴⁸
Highest amino acid variations on zebrafish CRP-like sequences	⁷⁰ D IGY S FTVGGSEIL F EV ⁸⁶ ⁶⁹ D GRV S LYIQSSKDAAF F RL ⁸⁷
Lowest amino acid variations on zebrafish CRP-like sequences	¹⁸ SYV S L KAPLTKP L K AFT V C LHF ³⁹ ¹⁸ SYV<u>K</u>LY P <u>E</u> K <u>P</u> LS L S AFT L C MRV ³⁹

Human CRP sequence 1GNH.pdb and zebrafish CRP5 sequence from Protein Bank accession number
4PBP.pdb (GenBank accession number JF772178.1) were aligned and numerated without the signal peptides
as reported before (Chen et al., 2015; Shrive et al., 1996). Compiled from several published data (Chen et al.,
2015; Li et al., 2016; Shrive et al., 1996; Wang et al., 2011; Wu et al., 2015; Ying et al., 1989) and this work.
Bold, identical amino acids between human CRP and zebrafish CRP5. Underlined, location of amino acid
variations among different zebrafish CRP-like 1-7 molecules.

359 Figure 1. Hydrophobicity map (A) and variability (B) of human and zebrafish CRP amino acid sequences. A) The hydrophobicity map of human and zebrafish CRP (accession numbers 1GNH and 4PBP 360 361 from the RCSB PDB Protein Data Bank at http://www.rcsb.org/pdb/home/home.do, respectively) were derived using Clone Manager vs9 software. The crystalized zebrafish CRP 4PBP (GenBank accession 362 363 number JF772178.1)(Chen et al., 2011) is highly similar to CRP5 (Falco et al., 2012). The numbering correspond to the amino acid sequences without their signal peptide. Black line, human CRP. Red line, 364 zebrafish CRP. Black circles. location of cysteines (³⁶Cys and ⁹⁷Cys). Green squares, amino acids involved 365 in human pCRP-Ca⁺⁺ binding. Open squares, amino acids involved in the intermolecular monomer (mCRP) 366 to mCRP interactions to form pCRP. Red triangles, protease sensitive sequence. Blue squares, amino acids 367 368 involved in ligand (PC)-CRP-binding. Blue circles, predominant epitope (197-202) expressed only in mCRP 369 but imbedded in the inter-monomer regions in pCRP (Wu et al., 2015). Black squares, amino acids involved 370 in C1q-binding (Chen et al., 2015; Shrive et al., 1996). Open triangles, sequence implicated in the binding to 371 cholesterol-enriched lipid rafts (residues 35-47) mediating mCRP insertion and signalling (Wu et al., 2015). 372 B) Number of different amino acids per position in zebrafish CRP1-7 gene derived proteins (accesion numbers XM 693995, BC097160, BC154042, BC115188, BC121777, BC162745, BC150371, 373 374 respectively)(Falco et al., 2012).

375

376 Figure 2. Example of heterogenous differential expression profiles of individual crp gene transcripts 377 from zebrafish surviving VHSV infections. Adult zebrafish were infected by VHSV and some of them analysed 2 days later. Survivors were maintained during 6 months and analysed before and after being re-378 379 infected with VHSV 2 days later. For the analysis, zebrafish lymphoid organs (head kidney + spleens) were 380 harvested, their RNA extracted, fluorescently labelled and hybridized to zebrafish crp1-7 probes in a home-381 designed microarray. The transcript differential expression was calculated for each crp gene using the 382 following formula: fluorescence of each VHSV-infected replicate / mean fluorescences from non-infected 383 replicates (n=4 zebrafish pools of 5 fish per pool). Means and standard deviations were then obtained for each gene to remove outliers and calculate final folds.. Open bars, 2-days after VHSV infection. Yellow 384 385 open bars, 6 month survivors after 2 consecutive VHSV infections. Yellow hatched bars, 6 month survivors, 2 days after being re-infected. Red horizontal hatched line, 1- fold thresholds. Folds>1, up-386 regulated. Folds<1, down-regulated *, significantly different from non-re-infected VHSV survivors (yellow 387 388 open bars) at the p<0.05 level (Student T). Re-drawn from previously published data using unique 60-mer 389 probes from zebrafish CRP1-7 mRNA (accession numbers XM 693995, BC097160, BC154042, BC115188, BC121777, BC162745, BC150371, respectively)(Estepa and Coll, 2015). 390

- 391
- 392

393 **References**

- 395 Agrawal, A., Shrive, A.K., Greenhough, T.J., Volanakis, J.E., 2001. Topology and structure of the C1q-
- binding site on C-reactive protein. J Immunol 166, 3998-4004.
- 397 Agrawal, A., Volanakis, J.E., 1994. Probing the C1q-binding site on human C-reactive protein by site-
- directed mutagenesis. J Immunol 152, 5404-5410.
- 399 Ballesteros, N.A., Rodríguez Saint-Jean, S.S., Perez-Prieto, S.I., Coll, J.M., 2012. Trout oral VP2 DNA
- vaccination mimics transcriptional responses occurring after infection with infectious pancreatic necrosis
 virus (IPNV). Fish & Shellfish Immunology 33, 1249-1257.
- 402 Bang, R., Marnell, L., Mold, C., Stein, M.P., Clos, K.T., Chivington-Buck, C., Clos, T.W., 2005. Analysis of

binding sites in human C-reactive protein for Fc {gamma}RI, Fc {gamma}RIIA, and C1q by site-directed
 mutagenesis. J Biol Chem 280, 25095-25102.

- Bayne, C.J., Gerwick, L., 2001. The acute phase response and innate immunity of fish. Dev Comp Immunol25, 725-743.
- Bayne, C.J., Gerwick, L., Fujiki, K., Nakao, M., Yano, T., 2001. Immune-relevant (including acute phase)
 genes identified in the livers of rainbow trout, Oncorhynchus mykiss, by means of suppression subtractive
- 409 hybridization. Dev Comp Immunol 25, 205-217.
- 410 Bengten, E., Wilson, M., 2015. Antibody Repertoires in Fish. Results Probl Cell Differ 57, 193-234.
- 411 Black, S., Agrawal, A., Samols, D., 2003. The phosphocholine and the polycation-binding sites on rabbit C-
- 412 reactive protein are structurally and functionally distinct. Mol Immunol 39, 1045-1054.
- Boshra, H., Li, J., Sunyer, J.O., 2006. Recent advances on the complement system of teleost fish. Fish
 Shellfish Immunol 20, 239-262.
- 415 Bottazzi, B., Inforzato, A., Messa, M., Barbagallo, M., Magrini, E., Garlanda, C., Mantovani, A., 2016. The
- 416 pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol417 64, 1416-1427.
- 418 Ciubotaru, I., Potempa, L.A., Wander, R.C., 2005. Production of modified C-reactive protein in U937-
- 419 derived macrophages. Exp Biol Med (Maywood) 230, 762-770.
- 420 Coll, J.M., 1988. Immunochemical recognition of the binding of C-reactive protein to solid-phase
- 421 phosphorylethanolamide. Revista Española Fisiología 44, 45-55.
- 422 Chen, R., Qi, J., Yao, S., Pan, X., Gao, F., Xia, C., 2011. Expression, crystallization and preliminary
- 423 crystallographic analysis of C-reactive protein from zebrafish. Acta Crystallogr Sect F Struct Biol Cryst
 424 Commun 67, 1633-1636.
- 425 Chen, R., Qi, J., Yuan, H., Wu, Y., Hu, W., Xia, C., 2015. Crystal structures for short-chain pentraxin from
- 426 zebrafish demonstrate a cyclic trimer with new recognition and effector faces. J Struct Biol 189, 259-268.
- 427 Chico, V., Martinez-Lopez, A., Ortega-Villaizan, M., Falco, A., Perez, L., Coll, J.M., Estepa, A., 2010.
- 428 Pepscan Mapping of Viral Hemorrhagic Septicemia Virus Glycoprotein G Major Lineal Determinants
- Implicated in Triggering Host Cell Antiviral Responses Mediated by Type I nterferon. Journal Virology 84,7140-7150.
- 431 Chinchilla, B., Encinas, P., Estepa, A., Coll, J.M., Gomez-Casado, E., 2015. Transcriptome analysis of
- rainbow trout in response to non-virion (NV) protein of viral haemorrhagic septicaemia virus (VHSV). Appl
 Microbiol Biotechnol 99, 1827-1843.
- 434 Du Clos, T.W., 2013. Pentraxins: structure, function, and role in inflammation. ISRN Inflamm 2013, 379040.
- 435 Du Clos, T.W., Mold, C., 2011. Pentraxins (CRP, SAP) in the process of complement activation and
- 436 clearance of apoptotic bodies through Fcgamma receptors. Curr Opin Organ Transplant 16, 15-20.
- 437 Eisenhardt, S.U., Habersberger, J., Murphy, A., Chen, Y.C., Woollard, K.J., Bassler, N., Qian, H., von Zur
- 438 Muhlen, C., Hagemeyer, C.E., Ahrens, I., Chin-Dusting, J., Bobik, A., Peter, K., 2009a. Dissociation of
- 439 pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic
- 440 plaques. Circ Res 105, 128-137.
- Eisenhardt, S.U., Habersberger, J., Peter, K., 2009b. Monomeric C-reactive protein generation on activated
- 442 platelets: the missing link between inflammation and atherothrombotic risk. Trends Cardiovasc Med 19, 232-443 237.

- 444 Eisenhardt, S.U., Thiele, J.R., Bannasch, H., Stark, G.B., Peter, K., 2009c. C-reactive protein: how
- 445 conformational changes influence inflammatory properties. Cell Cycle 8, 3885-3892.
- 446 Encinas, P., Garcia-Valtanen, P., Chinchilla, B., Gomez-Casado, E., Estepa, A., Coll, J., 2013. Identification
- 447 of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and
- 448 surviving spring viremia carp virus (SVCV) suggest preventive drug candidates. PLoS One 8, e73553.
- 449 Encinas, P., Rodriguez-Milla, M.A., Novoa, B., Estepa, A., Figueras, A., Coll, J.M., 2010. Zebrafish fin
- 450 immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A 451 proteomic and transcriptomic approach. BMC Genomics 11, 518-534.
- 452 Estepa, A., Coll, J.M., 2015. Innate multigene family memories are implicated in the viral-survivor zebrafish 453 phenotype. Plos One 10, e0135483.
- Estepa, A.M., Rocha, A.I., Mas, V., Perez, L., Encinar, J.A., Nunez, E., Fernandez, A., Ros, J.M.G., 454
- 455 Gavilanes, F., Coll, J.M., 2001. A protein G fragment from the Salmonid viral hemorrhagic septicemia
- 456 rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH. Journal of
- Biological Chemistry 276, 46268-46275. 457
- Falco, A., Cartwright, J.R., Wiegertjes, G.F., Hoole, D., 2012. Molecular characterization and expression 458
- 459 analysis of two new C-reactive protein genes from common carp (Cyprinus carpio). Dev Comp Immunol 37, 460 127-138.
- 461 Fujiki, K., Bayne, C.J., Shin, D.H., Nakao, M., Yano, T., 2001. Molecular cloning of carp (Cyprinus carpio)
- 462 C-type lectin and pentraxin by use of suppression subtractive hybridisation. Fish Shellfish Immunol 11, 275-463 279.
- 464 Gaboriaud, C., Juanhuix, J., Gruez, A., Lacroix, M., Darnault, C., Pignol, D., Verger, D., Fontecilla-Camps,
- 465 J.C., Arlaud, G.J., 2003. The crystal structure of the globular head of complement protein C1q provides a 466 basis for its versatile recognition properties. J Biol Chem 278, 46974-46982.
- 467 Garcia-Valtanen, P., Martínez-Lopez, A., Lopez-Muñoz, A., Bello-Perez, M., Medina-Gali, R.M., Ortega-
- Villaizan, M., Figueras, A., Mulero, V., Novoa, B., Estepa, A., Coll, J., 2016. Zebrafish lacking adaptive 468
- 469 responses adquire an alert state characterized by trained immunity-like memories in interferons, apoptosis 470 and multi-gene families submitted.
- 471 Garcia-Valtanen, P., Ortega-Villaizan Mdel, M., Martinez-Lopez, A., Medina-Gali, R., Perez, L., Mackenzie,
- 472 S., Figueras, A., Coll, J.M., Estepa, A., 2014. Autophagy-inducing peptides from mammalian VSV and fish
- 473 VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules. 474 Autophagy 10, 1666-1680.
- Gershov, D., Kim, S., Brot, N., Elkon, K.B., 2000. C-Reactive protein binds to apoptotic cells, protects the 475
- 476 cells from assembly of the terminal complement components, and sustains an antiinflammatory innate 477
- immune response: implications for systemic autoimmunity. J Exp Med 192, 1353-1364.
- 478 Goody, M.F., Sullivan, C., Kim, C.H., 2014. Studying the immune response to human viral infections using 479 zebrafish. Dev Comp Immunol 46, 84-95.
- 480
- Hammond, D.J., Jr., Singh, S.K., Thompson, J.A., Beeler, B.W., Rusinol, A.E., Pangburn, M.K., Potempa,
- 481 L.A., Agrawal, A., 2010. Identification of acidic pH-dependent ligands of pentameric C-reactive protein. J 482 Biol Chem 285, 36235-36244.
- 483 Heuertz, R.M., Schneider, G.P., Potempa, L.A., Webster, R.O., 2005. Native and modified C-reactive protein
- 484 bind different receptors on human neutrophils. Int J Biochem Cell Biol 37, 320-335.
- Hwang, S.D., Bae, J.S., Jo, D.H., Kim, K.I., Cho, M.Y., Jee, B.Y., Park, M.A., Park, C.I., 2015. Gene 485
- expression and functional characterization of serum amyloid P component 2 in rock bream, Oplegnathus 486 487 fasciatus. Fish Shellfish Immunol 47, 521-527.
- 488 Inforzato, A., Doni, A., Barajon, I., Leone, R., Garlanda, C., Bottazzi, B., Mantovani, A., 2013. PTX3 as a
- 489 paradigm for the interaction of pentraxins with the complement system. Semin Immunol 25, 79-85.
- 490 Ji, S.R., Ma, L., Bai, C.J., Shi, J.M., Li, H.Y., Potempa, L.A., Filep, J.G., Zhao, J., Wu, Y., 2009. Monomeric 491 C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. FASEB J 23, 1806-
- 492 1816

- 493 Ji, S.R., Wu, Y., Potempa, L.A., Liang, Y.H., Zhao, J., 2006a. Effect of modified C-reactive protein on
- 494 complement activation: a possible complement regulatory role of modified or monomeric C-reactive protein 495 in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 26, 935-941.
- 496 Ji, S.R., Wu, Y., Potempa, L.A., Qiu, Q., Zhao, J., 2006b. Interactions of C-reactive protein with low-density
- lipoproteins: implications for an active role of modified C-reactive protein in atherosclerosis. Int J Biochem 497 498 Cell Biol 38, 648-661.
- 499 Ji, S.R., Wu, Y., Zhu, L., Potempa, L.A., Sheng, F.L., Lu, W., Zhao, J., 2007. Cell membranes and liposomes
- 500 dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). 501 FASEB J 21, 284-294.
- 502 Khreiss, T., Jozsef, L., Potempa, L.A., Filep, J.G., 2004. Conformational rearrangement in C-reactive protein 503 is required for proinflammatory actions on human endothelial cells. Circulation 109, 2016-2022.
- 504 Khreiss, T., Jozsef, L., Potempa, L.A., Filep, J.G., 2005. Loss of pentameric symmetry in C-reactive protein
- 505 induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ Res 97, 690-697.
- 506 Kindmark, C.O., 1971. Stimulating effect of C-reactive protein on phagocytosis of various species of pathogenic bacteria. Clin Exp Immunol 8, 941-948. 507
- 508
- Kinoshita, C.M., Gewurz, A.T., Siegel, J.N., Ying, S.C., Hugli, T.E., Coe, J.E., Gupta, R.K., Huckman, R., 509
- Gewurz, H., 1992. A protease-sensitive site in the proposed Ca(2+)-binding region of human serum amyloid 510 P component and other pentraxins. Protein Sci 1, 700-709.
- 511 Kortum, A.N., IRodriguez-Nunez, I., Yang, J., Shim, J., Runft, D., O'Driscoll, M.L., Haire, R.N., Cannon,
- 512 J.P., Turner, P.M., Litman, R.T., Kim, C.H., Neely, M.N., Litman, G.W., Yoder, J.A., 2014. Differential
- 513 expression and ligand binding indicate alternative functions for zebrafish polymeric immunoglobulin 514 receptor (pIgR) and a family of pIgR-like (PIGRL) proteins. Immunogenetics 66, 267-279.
- 515
- Li, H.Y., Wang, J., Meng, F., Jia, Z.K., Su, Y., Bai, Q.F., Lv, L.L., Ma, F.R., Potempa, L.A., Yan, Y.B., Ji, S.R., Wu, Y., 2016. An Intrinsically Disordered Motif Mediates Diverse Actions of Monomeric C-reactive 516
- 517 Protein. J Biol Chem 291, 8795-8804.
- 518 Lopez-Munoz, A., Roca, F.J., Sepulcre, M.P., Meseguer, J., Mulero, V., 2010. Zebrafish larvae are unable to
- 519 mount a protective antiviral response against waterborne infection by spring viremia of carp virus.
- 520 Developmental Comparative Immunology 34, 546-552.
- 521 Lu, J., Marjon, K.D., Mold, C., Du Clos, T.W., Sun, P.D., 2012. Pentraxins and Fc receptors. Immunol Rev 522 250, 230-238.
- 523 Lu, J., Marnell, L.L., Marjon, K.D., Mold, C., Du Clos, T.W., Sun, P.D., 2008. Structural recognition and
- 524 functional activation of FcgammaR by innate pentraxins. Nature 456, 989-992.
- 525 Marjon, K.D., Marnell, L.L., Mold, C., Du Clos, T.W., 2009. Macrophages activated by C-reactive protein
- 526 through Fc gamma RI transfer suppression of immune thrombocytopenia. J Immunol 182, 1397-1403.
- 527 Martinez, J., Coll, J.M., 1987. Preliminary clinical studies of C-reactive protein quantified by enzyme-528 immunoassay. Clinical Chemistry 33, 2185-2190.
- 529 Martinez, J.A., Coll, J.M., 1988. Selection and performance of monoclonal anti-C-reactive protein in ELISA
- 530 quantitative assay. Clinica chimica acta; international journal of clinical chemistry 176, 123-132.
- 531 Netea, M.G., 2013. Training innate immunity: the changing concept of immunological memory in innate host 532 defence. Eur J Clin Invest 43, 881-884.
- 533 Netea, M.G., Joosten, L.A., Latz, E., Mills, K.H., Natoli, G., Stunnenberg, H.G., O'Neill, L.A., Xavier, R.J.,
- 2016. Trained immunity: A program of innate immune memory in health and disease. Science 352, aaf1098. 534
- 535 Netea, M.G., Quintin, J., van der Meer, J.W., 2011. Trained immunity: a memory for innate host defense.
- 536 Cell Host Microbe 9, 355-361.
- 537 Novoa, B., Romero, A., Mulero, V., Rodriguez, I., Fernandez, I., Figueras, A., 2006. Zebrafish (Danio rerio)
- 538 as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine 24, 539 5806-5816.
- 540 Pepys, M.B., Hawkins, P.N., Kahan, M.C., Tennent, G.A., Gallimore, J.R., Graham, D., Sabin, C.A.,
- 541 Zychlinsky, A., de Diego, J., 2005. Proinflammatory effects of bacterial recombinant human C-reactive
- protein are caused by contamination with bacterial products, not by C-reactive protein itself. Circ Res 97, 542
- 543 e97-103.
- 544 Pepys, M.B., Hirschfield, G.M., Tennent, G.A., Gallimore, J.R., Kahan, M.C., Bellotti, V., Hawkins, P.N.,
- 545 Myers, R.M., Smith, M.D., Polara, A., Cobb, A.J., Ley, S.V., Aquilina, J.A., Robinson, C.V., Sharif, I., Gray,
- 546 G.A., Sabin, C.A., Jenvey, M.C., Kolstoe, S.E., Thompson, D., Wood, S.P., 2006. Targeting C-reactive
- 547 protein for the treatment of cardiovascular disease. Nature 440, 1217-1221.
- 548 Potempa, L.A., Maldonado, B.A., Laurent, P., Zemel, E.S., Gewurz, H., 1983. Antigenic, electrophoretic and
- 549 binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol Immunol 550 20, 1165-1175.
- 551 Potempa, L.A., Yao, Z.Y., Ji, S.R., Filep, J.G., Wu, Y., 2015. Solubilization and purification of recombinant
- 552 modified C-reactive protein from inclusion bodies using reversible anhydride modification. Biophys Rep 1, 553 18-33.
- 554 Ramadan, M.A., Shrive, A.K., Holden, D., Myles, D.A., Volanakis, J.E., DeLucas, L.J., Greenhough, T.J.,
- 555 2002. The three-dimensional structure of calcium-depleted human C-reactive protein from perfectly twinned 556 crystals. Acta Crystallogr D Biol Crystallogr 58, 992-1001.
- Rowe, H.M., Withey, J.H., Neely, M.N., 2014. Zebrafish as a model for zoonotic aquatic pathogens. Dev 557 Comp Immunol 46, 96-107. 558
- 559
- Sanders, G.E., Batts, W.N., Winton, J.R., 2003. Susceptibility of zebrafish (Danio rerio) to a model pathogen,
- 560 spring viremia of carp virus. Comp Med 53, 514-521.
- 561 Schwedler, S.B., Filep, J.G., Galle, J., Wanner, C., Potempa, L.A., 2006. C-reactive protein: a family of
- 562 proteins to regulate cardiovascular function. Am J Kidney Dis 47, 212-222.
- 563 Shrive, A.K., Cheetham, G.M., Holden, D., Myles, D.A., Turnell, W.G., Volanakis, J.E., Pepys, M.B.,
- 564 Bloomer, A.C., Greenhough, T.J., 1996. Three dimensional structure of human C-reactive protein. Nat Struct 565 Biol 3, 346-354.
- 566 Sunyer, J.O., 2013. Fishing for mammalian paradigms in the teleost immune system. Nat Immunol 14, 320-567 326.
- Taylor, K.E., van den Berg, C.W., 2007. Structural and functional comparison of native pentameric, 568
- 569 denatured monomeric and biotinylated C-reactive protein. Immunology 120, 404-411.
- Thompson, D., Pepys, M.B., Wood, S.P., 1999. The physiological structure of human C-reactive protein and 570 its complex with phosphocholine. Structure 7, 169-177. 571
- Vilahur, G., Badimon, L., 2015. Biological actions of pentraxins. Vascul Pharmacol 73, 38-44. 572
- 573 Wang, M.Y., Ji, S.R., Bai, C.J., El Kebir, D., Li, H.Y., Shi, J.M., Zhu, W., Costantino, S., Zhou, H.H.,
- 574 Potempa, L.A., Zhao, J., Filep, J.G., Wu, Y., 2011. A redox switch in C-reactive protein modulates activation
- 575 of endothelial cells. FASEB J 25, 3186-3196.
- 576 Wang, T., Sun, L., 2016. CsSAP, a teleost serum amyloid P component, interacts with bacteria, promotes
- 577 phagocytosis, and enhances host resistance against bacterial and viral infection. Dev Comp Immunol 55, 12-578 20.
- 579 Woo, P., Korenberg, J.R., Whitehead, A.S., 1985. Characterization of genomic and complementary DNA
- 580 sequence of human C-reactive protein, and comparison with the complementary DNA sequence of serum 581 amyloid P component. J Biol Chem 260, 13384-13388.
- 582 Wu, Y., Potempa, L.A., El Kebir, D., Filep, J.G., 2015. C-reactive protein and inflammation: conformational 583 changes affect function. Biol Chem 396, 1181-1197.
- 584 Ying, S.C., Gewurz, H., Kinoshita, C.M., Potempa, L.A., Siegel, J.N., 1989. Identification and partial
- 585 characterization of multiple native and neoantigenic epitopes of human C-reactive protein by using
- 586 monoclonal antibodies. J Immunol 143, 221-228.
- Yuan, H., Chen, R., Tariq, M., Liu, Y., Sun, Y., Xia, C., 2016. Crystal structure of zebrafish complement 587
- 588 1qA globular domain. Protein Sci 25, 1883-1889.
- 589 Zhang, Y.A., Salinas, I., Li, J., Parra, D., Bjork, S., Xu, Z., LaPatra, S.E., Bartholomew, J., Sunyer, J.O.,
- 590 2010. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol 11, 827-835. 591

Figure 2.

PUBLICACIÓN 2

TÍTULO: Neutralization of viral infectivity by zebrafish c-reactive protein isoforms

COAUTORES: Melissa Belló Pérez, Alberto Falcó Graciá, Regla María Medina Gali, Patricia Pereiro González, Jose Antonio Encinar Hidalgo, Beatriz Novoa García, Luis Perez García-Estañ, Julio Coll Morales.

REVISTA: Molecular immunology

doi: 10.1016/j.molimm.2017.09.005

Volumen 91, Noviembre 2017, Páginas 145-155

1	1
2 3 4 5 6	NEUTRALIZATION OF VIRAL INFECTIVITY BY ZEBRAFISH C-REACTIVE PROTEIN ISOFORMS short title: zebrafish anti-viral c-reactive proteins
7	
8	
9	Melissa Bello-Perez ² , Alberto Falco ² , Regla Medina-Gali ² , Patricia Pereiro ³ , Jose Antonio Encinar ² , Beatriz
10	Novoa ³ , Luis Perez ² , Julio Coll ^{1*} .
11	
12 13 14	 ¹ Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias, Dpto. Biotecnología. INIA. Madrid, Spain. ² Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain .
15	³ Investigaciones Marinas.CSIC. Vigo, Spain
16	
17	Keywords: c-reactive protein; zebrafish; CRP; microarrays; anti-viral neutralizing activity; VHSV; SVCV
18	
19	
20	* Corresponding author
21	
22 23 24 25 26 27 28 29 30 31 32	Email addresses: MB, melissa.bello@goumh.umh.es AF, alber.falco@umh.es RM, reglita2000@yahoo.com PP, patriciapereiro@iim.csic.es JA, jant.encinar@goumh.umh.es BN, beatriznovoa@iim.csic.es LP, luis.perez@umh.es JC, juliocoll@inia.es

34 Abstract

This work explores the unexpected in vivo and in vitro anti-viral functions of the seven c-reactive protein (crp1-7) genes of zebrafish (Danio rerio). First results showed heterogeneous crp1-7 transcript levels in healthy wild-type zebrafish tissues and organs and how those levels heterogeneously changed not only after bacterial but also after viral infections, including those in adaptive immunity-deficient rag1^{-/-} mutants. As shown by microarray hybridization and proteomic techniques, crp2/CRP2 and crp5/CRP5 transcripts/proteins were among the most modulated during in vivo viral infection situations including the highest responses in the absence of adaptive immunity. In contrast crp1/CRP1/ and crp7/CRP7 very often remained unmodulated. All evidences suggested that zebrafish crp2-6/CRP2-6 may have in vivo anti-viral activities in addition to their well known anti-bacterial and/or physiological functions in mammalians. Confirming those expectations, in vitro neutralization and in vivo protection against spring viremia carp virus (SVCV) infections were demonstrated by crp2-6/CRP2-6 using crp1-7 transfected and/or CRP1-7-enriched supernatant-treated fish cells and crp2-5-injected one-cell stage embryo eggs, respectively. All these findings discovered a crp1-7/CRP1-7 primitive anti-viral functional diversity. These findings may help to study similar functions on the one-gene-coded human CRP, which is widely used as a clinical biomarker for bacterial infections, tissue inflammation and coronary heart diseases.

60 1. Introduction

61 Widely used as a general biomarker for bacterial infection and inflammation during many decades, 62 circulating human pentameric CRP (pCRP) has been found recently within atherosclerotic lesions and might 63 be used as a new biomarker for cardiovascular diseases (Shrivastava et al., 2015). Correlation between 64 infections and cardiovascular heart diseases has been demonstrated not only for bacteria but also for several 65 viral infections (Adinolfi et al., 2014; McKibben et al., 2016; Voulgaris and Sevastianos, 2016; Wu et al., 66 2016). Furthermore, although pCRP was initially discovered during acute-phase responses to bacterial 67 infections increasing their circulating levels from <10 to >500 mg/l, intermediate concentrations of 10-50 68 mg/l were also detected during viral infections (Shah et al., 2015), suggesting that pCRP may have also anti-69 viral function(s). At this respect, viral infections induce human interferon alpha that represses the crp 70 promoter, suggesting also pCRP antiviral effects (Enocsson et al., 2009). Nevertheless and despite pCRP 71 being one of the most investigated risk biomarker molecule in the human cardiovascular field, and an 72 important component of the anti-bacterial innate responses (Vilahur and Badimon, 2015), to our knowledge, 73 there is no evidence yet that pCRP has any antiviral function. 74 In contrast to the one-gene crp of humans, zebrafish (Danio rerio) has 7 crp genes, from crp1 to crp7 75 (here simplified as crp1-7 or CRP1-7 for their derived proteins). Amino acid variations among CRP1-7 76 proteins were mostly found in both their Ca⁺⁺-dependent phospholipid-binding pocket and conformational-77 domain sequences (Bello et al., 2017; Chen et al., 2015; Falco et al., 2012). By offering an easy-to-screen in 78 vivo system for novel therapeutic molecules, zebrafish supplies a suitable model to explore CRP lipid-79 binding properties and conformation-dependent functionalities related to cardiovascular heart diseases 80 including viral infections. Zebrafish is a well known model for heart development and function (Genge et al., 81 2016; Lu et al., 2016; Pitto et al., 2011) and a well known target for several fish rhabdoviruses (Encinas et 82 al., 2013; Estepa and Coll, 2015a; Garcia-Valtanen et al., 2017; Varela et al., 2016). In this context, we have 83 first explored crp1-7/CRP1-7 transcript/protein levels during several zebrafish viral infection situations and 84 then designed several in vitro/in vivo strategies to explore crp1-7/CRP1-7 implication on viral infections.

Zebrafish CRP1-7 are made of protein monomers of ~ 200 amino acids (~23 kDa)(Chen et al., 85 2015; Falco et al., 2012). According to its proposed 3D structure, CRP5 is a trimeric Ca⁺⁺-dependent 86 87 phospholipid-binding protein (tCRP) rather than a pentameric molecule (pCRP) as in humans (Chen et al., 88 2015). It is not yet known whether all the rest of zebrafish CRP isoforms are also trimeric (Bello et al., 2017) 89 and/or whether they all have similar functionalities than human pCRP. For instance, although C1q (a known 90 ligand of pCRP) have been identified in zebrafish (Boshra et al., 2006), fish have only IgM and one class of 91 polymeric immunoglobulin receptor (PIGR)(Zhang et al., 2010) (other IgG receptors bind C1q-pCRP 92 complexes). There have been no reports on interactions between CRP1-7 and zebrafish C1q or PIGR (Lu et 93 al., 2012). Therefore, the possible human analogous functions of the CRP1-7 isoforms remain 94 unknown. 95 Human and zebrafish CRPs showed a high degree of conservation, including the location of their two cysteine residues, and similarities between the amino acid sequences involved in their Ca⁺⁺-dependent 96 97 ligand-binding pockets. Such conservation suggested similar functions in human pCRP and zebrafish tCRPs 98 (Bello et al., 2017; Chen et al., 2015). On the other hand, the variations of amino acids around the ligandbinding pockets of zebrafish CRPs, suggested different ligand-binding specificities, which may be 99 100 hypothetically explained by the need to target a wide pathogen diversity such as that found in aquatic 101 environments (Bello et al., 2017). Previous preliminary data showing modulation of zebrafish crp-pathways 102 during viral infections (Estepa and Coll, 2015a; Garcia-Valtanen et al., 2017) or trout crp upregulation 103 during oral vaccination against virus (Ballesteros et al., 2012), suggested that zebrafish crp1-7/CRP1-7 may 104 have some anti-viral activities. Because all the above mentioned reasons, we have further studied possible 105 relations between zebrafish individual crp1-7/CRP1-7 and viral infections. 106 As zebrafish viral infection models we mainly chose two rhabdoviruses to which zebrafish is 107 susceptible, the Spring Viremia Carp Virus (SVCV) (Lopez-Munoz et al., 2010; Sanders et al., 2003), and 108 the Viral Haemorrhagic Septicemia Virus (VHSV) (Novoa et al., 2006). Rhabdoviruses penetrate into the 109 fish body via their fins (Harmache et al., 2006). The progress of infection becomes externally associated with 110 exophthalmia, abdominal distension, and petechial haemorrhages in fins and gills 3 to 6 days after

penetration. A few days later, the most important fish internal lymphoid organs such as head kidney and 111 112 spleen become also affected (Ahne et al., 2002; Ashraf et al., 2016). Mortalities are highest ~ 15 days after 113 the beginning of infection (Encinas et al., 2013; Encinas et al., 2010). 114 To detect possible variations on crp1-7/CRP1-7 expression, we have explored several zebrafish infection situations. Thus, among the viral infection situations chosen, short-term (infection) and long-term 115 116 responses (survival) were studied after infection with VHSV (Encinas et al., 2010; Estepa and Coll, 117 2015b) and SVCV (Encinas et al., 2013). Bacterial infections were also studied because of the 118 well known anti-bacterial pCRP responses on humans (Kindmark, 1971). Since resistance to viral 119 infections in both fish and mammalians depends both on innate and adaptive responses (i.e., neutralizing IgM 120 antibodies in fish and both IgM/IgG antibodies in mammalians), fish rely more heavily in innate than in 121 adaptive responses to fight viral infections (Sunyer, 2013; Sunyer et al., 1998). To explore the importance of crp1-7 innate responses in the presence and absence of adaptive immunity, we studied 122 adaptive immunity-deficient zebrafish rag1^{-/-} mutants, which have no antibodies nor T-cell receptors and 123 124 whose responses to viral infections have been studied recently (Garcia-Valtanen et al., 2017). Results showed heterogeneous crp1-7 transcriptional profiles in all the above mentioned infection situations including higher 125 126 responses in the absence of adaptive immunity, all results suggesting heterogeneous crp1-7 anti-viral 127 responses. Confirming those expectations, in vitro neutralization and in vivo protection of SVCV infection 128 were found for the first time to be induced by the different zebrafish crp1-7/CRP1-7 isoforms. In addition to 129 its possible implications to prevent and/or to treat human cardiovascular/viral diseases, this knowledge and 130 future studies on their mechanism(s) of action may help to understand primitive vertebrate CRP diversity and 131 how it may have evolved to humans. It also could be applied to improve prevention methods for viral 132 infection in farmed fish.

133

134

136 **2. Material and methods**

137 2.1. Zebrafish (Danio rerio)

138 Adult XL wild type zebrafish of 700-900 mg of body weight (3-4 cm in length) were obtained 139 from a local pet shop (Aquarium Madrid, Madrid, Spain). Zebrafish of 6 months of age (~ 500 mg of body 140 weight) with truncated-inactivated recombinant activation gene (rag1^{-/-}) and their corresponding wild-type 141 rag1^{+/+} counterparts were originally obtained from David Raible's fish facility at the University of 142 Washington (USA) and raised, maintained, and characterized as described before (Garcia-Valtanen et al., 143 2017). Zebrafish were maintained at 24-28 °C in 30 l aquaria with tap-dechlorinated carbon-filtered 144 water with 1 g of CaCl₂, 1 g of NaHCO₃ and 0.5 g of Instant Ocean sea salts added to water resulting in a 145 conductivity of 200-300 µS and pH of 7.8-8.2. The aquaria were provided with biological filters and fish 146 fed daily with a commercial feed diet (Vipan Bio-Vip, Sera, Heisenberg, Germany). Previously to the 147 viral infection challenge, fish were acclimatized for 2 weeks to the corresponding optimal viral replication 148 temperatures. 149 2.2. Fish cell culture 150 The epithelioma papulosum cyprinid (EPC) cells from the fathead minnow fish (Pimephales promelas)

151 were obtained from the American Type Culture Collection (ATCC, Manassas, Vi, USA, code number CRL-

152 2872). EPC cell monolayers were grown at 28 °C in a 5 % CO₂ atmosphere in RPMI-1640 Dutch modified

153 culture medium (Gibco, UK) supplemented with 20 mM HEPES, 10 % fetal bovine serum, FBS (Sigma, St.

Louis, USA), 1 mM piruvate, 2 mM glutamine, 50 µg/ml of gentamicin (Gibco) and 2 µg/ml of fungizone.

155 2.3. In vitro infections with viral haemorrhagic septicemia virus (VHSV) and spring viremia carp
 156 virus (SVCV)

157 The fish *novirhabdovirus* viral haemorrhagic septicemia virus (VHSV) strain 07.71 (accession number

158 AJ233396) isolated from rainbow trout Oncorhynchus mykiss (LeBerre et al., 1977) and the rhabdovirus Spring

- 159 Viremia Carp Virus (SVCV) isolate 56/70 from carp Cyprinus carpio (Fijan et al., 1971), recently renamed
- 160 Carp Sprivivirus (ICTV, 2015), were used for in vitro and in vivo infections. VHSV or SVCV were
- 161 replicated in EPC cell monolayers at 14 °C (Estepa and Coll, 2015a) or at 22 °C (Garcia-Valtanen et al.,

162 2017), respectively, in the cell culture media described above except for 2 % FBS (infection media) and 163 absence of the CO₂ atmosphere. Supernatants from VHSV or SVCV-infected EPC cell monolayers were 164 clarified by centrifugation at 4000 g for 30 min and kept at -80 °C. *In vitro* viral infections were performed by 2 165 h adsorption of the viral supernatants to the EPC cell monolayers, followed by washing the unbound viruses 166 with infection media and incubation at their respective optimal replication temperatures during 24 h. The 167 infected EPC cell monolayers were fixed and viral titers assayed by the *in vitro* by the focus forming units 168 (ffu) assay as described before (Chinchilla et al., 2013b).

169

2.4. In vivo infections of adult zebrafish with VHSV, SVCV and bacteria

170 The procedures used for infecting zebrafish with VHSV or SVCV viruses were described before. 171 Briefly, zebrafish were acclimatized to 14 °C for VHSV infection or to 22 °C for SVCV infection during 2 weeks and infected for 2 h by bath immersion in cell culture supernatants containing 10^7 ffu/ml 172 of VHSV (Estepa and Coll, 2015a) or 10⁴ ffu/ml of SVCV(Garcia-Valtanen et al., 2017), respectively. 173 174 Parallel, non-infected zebrafish were mock-infected with cell culture medium to calculate 175 differential expression folds. Zebrafish infected at short times with rhabdoviruses were 176 euthanized 2-days after infection. Zebrafish surviving rhabdovirus infections were euthanized 2 months 177 after last infection of 2 consecutive VHSV infections, (Estepa and Coll, 2015a) or 1 month after SVCV 178 infection (Encinas et al., 2013). Zebrafish surviving a chronic infection with Aeromonas hydrophila and 179 Vibrio fluvialis as identified by the Microbiological Service of the Fundación Hospital Alarcon (Madrid 180 Spain), were euthanized \sim 5 months after the first deaths were detected (Estepa and Coll, 2015a).

2.5. Harvest of lymphoid organs, fin tissues, and blood plasma from virally infected zebrafish. For
microarray and RTqPCR studies, head kidney and spleen (lymphoid organs) and/or fin tissues were
harvested and pooled from 3 zebrafish for each biological replica. Harvested samples for
microarray/RTqPCR analysis were kept in RNAlater (Qiagen) at -70 °C until used. For the proteomic
studies, anesthetized zebrafish were bled by cutting the final end of their tails. Blood was collected
in 100 µl of sterilized anticoagulant media (0.64 g sodium citrate, 0.15 g EDTA, 0.9 g sodium
chloride per 100 ml of water containing 50 mg per ml of gentamicin) at 4 °C. Diluted blood was

immediately centrifuged at 1000 g for 3 min to obtain plasma. Plasma were kept frozen at -70 °C until
used.

190

2.6. Ethic statement on zebrafish handling

191 Zebrafish were handled following National and European guidelines. In addition, specific zebrafish protocols were locally approved by the Ethics Committee (authorization CEEA 2011/022) following the 192 193 National Guidelines for type III experimentation (Annex X, permission RD53/2013). All personnel 194 implicated in the handling of zebrafish obtained the special C National permission for training in animal 195 experimentation. To record for health and behavior, the VHSV- or SVCV-infected fish were daily monitored 2-196 4 times. To minimize suffering (Huang et al., 2010), fish showing external haemorrhages and/or abnormal 197 swimming behavior (endpoint criteria) were immediately euthanized by immersion in iced water (5 parts ice/1 198 part water, 0-4° C) for 10 min and then exposed to an overdose of methanesulfonate 3-aminobenzoic acid ethyl 199 ester (MS222, 300 mg/l) for > 10 min after cessation of opercular movement ("Guidelines for Use of Zebrafish 200 in the NIH Intramural Research Program", http://oacu.od.nih.gov/ARAC/documents/Zebrafish.pdf). No fish 201 died before meeting the endpoint criteria. MS222 at 90 mg/l was used to anesthetized the fish while obtaining 202 blood. The fish were then euthanized by an overdose of MS222 to extract lymphoid organs and/or fin tissues. 203 2.7. RNA isolation from zebrafish tissues/organs and EPC cell monolayers 204 For RTqPCR tissues/organs analysis, RNA from different external tissues (fin, gill, gut) and internal 205 organs (muscle, head kidney, spleen, liver) of healthy adult zebrafish were extracted and pooled from 4 206 individual zebrafish to obtain enough RNA. All tissues/organs were carefully dissected under a binocular 207 loupe for each individual zebrafish by trained personnel. Tissues were excised and pooled from dorsal, 208 ventral and caudal fins, while muscle was obtained from the tail part of the body and washed in PBS to avoid 209 possible contamination with internal organs. For microarray analysis, pooled head kidney and spleen 210 lymphoid organs or fins were pooled from 3-4 individual zebrafish for each biological replica to obtain 211 enough RNA for hybridization. The pooled tissues/organs were immediately immersed in RNAlater (Ambion, Austin, USA) and maintained at 4 °C for 24 h before being frozen at -70 °C. RNA was extracted 212 213 from sonicated samples (1 min x 3 times at 40 W in ice) using a commercial RNA isolation kit (RNeasy kit,

Qiagen, Hilden, Germany) following manufacturer's instructions. For RTqPCR of EPC cell cultures, RNA
from the cell monolayers were similarly extracted by the same RNeasy kit used above without the sonication
step. Once purified, RNA concentrations were estimated by Nanodrop absorbances at 260 nm. The presence of
18 and 28 S RNA bands was confirmed by denatured RNA agar electrophoresis (Sigma, Che.Co, MS, USA).
Purified RNAs were stored at -70 °C until used.

219

2.8. Estimation of relative expression of crp1-7 transcripts by RTqPCR

220 The 7 crp loci coding for 7 CRP isoform proteins, first identified in the CH211-234P6 linkage group 221 24 of the zebrafish (Danio rerio) genome (Falco et al., 2012), were used to define the 7 crp1/CRP1 to 222 crp7/CRP1 (crp1-7/CRP1-7) transcript/protein isoform sequences and their corresponding specific probes 223 and primers (Table S1). Reverse transcriptase quantitative polymerase chain reactions (RTqPCR) were 224 performed to estimate crp1-7 transcript levels. For that, one microgram of purified RNA from each sample 225 was converted to its corresponding cDNA using RT from Moloney murine leukemia virus (Invitrogen) as 226 previously described (Falco et al., 2008). Quantitative PCR (qPCR) was then performed using the ABI 227 PRISM 7300 (Applied Biosystems, NJ, USA) with SYBR Green PCR master mix (Life Technologies, 228 United Kingdom). Reactions were prepared in 20 µl volume with 2 µl of cDNA, 900 nM of each forward and 229 reverse primers (Table S1) and 10 µL of SYBR Green PCR master mix. Non-template controls were included for each isoform analysis. The cycling conditions were 95 °C for 10 min, followed by 40 cycles at 65 °C 1 230 min, 95 °C for 1 min. The relative gene expression values were obtained using the $2^{-\Delta\Delta Ct}$ method (Livak and 231 232 Schmittgen T.D., 2001), by normalizing each crp gene expression value by the formula, expression of each 233 gene / expression of efla.

234

2.9. Microarray hybridization and differential expression data analysis

Oligo probes of 60-mer and 80 ± 3 °C of melting temperature, specific for each of the zebrafish *crp1-7* sequences were designed (Array Designer 4.3, Premier Biosoft Palo Alto CA, USA) from the mRNA GenBank data base accession number sequences listed in Table S1 (accessed in 2013) as previously described (Estepa and Coll, 2015a). The *crp1-7* oligo probes were included in the ID41401 and ID47562 home-designed immune-

239 focused zebrafish microarray Agilent's versions which were validated by RTqPCR in previous studies

240	(Encinas et al., 2013; Estepa and Coll, 2015a). Both microarray designs were deposited also in the Gene						
241	Expression Omnibus (GEO) numbers GPL15747 and GPL17670, respectively. Extracted RNA samples						
242	from zebrafish tissues/organs were amplified and fluorescently labeled from 2 μ g of high quality RNA (50						
243	μ g/ml) and hybridized to the above described microarrays by Nimgenetics (Cantoblanco, Madrid, Spain) as						
244	previously described (Encinas et al., 2013; Estepa and Coll, 2015a). Because genes previously classified as						
245	saps (Encinas et al., 2013) were recently identified as isoform variants of crp2 (sap1/sap2) or crp5						
246	(sap/sapp) (Bello et al., 2017), their similar microarray expression data were included into the corresponding						
247	crp calculations. Raw data were normalized by the sum of all microarray fluorescences and outliers removed						
248	as described before in detail (Encinas et al., 2013; Estepa and Coll, 2015a). Raw and normalized data were						
249	deposited at GEO's GSE57952 (VHSV-infected and VHSV- / bacterial-survivor zebrafish), GSE58205						
250	(SVCV-infected wild type zebrafish) and GSE54096 (rag1-/- mutant zebrafish) (Encinas et al., 2013; Estepa						
251	and Coll, 2015a; Garcia-Valtanen et al., 2017). Results were expressed in differential expression folds						
252	calculated by the formula detailed in each of the corresponding Figure legends (Figures 1, 2 and 3).						
253	2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma						
253 254	2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5-						
253 254 255	2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5- days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total						
253 254 255 256	 2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5-days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 						
 253 254 255 256 257 	 2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5-days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 °C. The resulting plasma samples were treated with 9 M urea, 2 M thiourea, 5% CHAPS (Dimethyl[3-(
 253 254 255 256 257 258 	 2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5- days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 °C. The resulting plasma samples were treated with 9 M urea, 2 M thiourea, 5% CHAPS (Dimethyl[3-(propyl]. azaniumyl] propane-1-sulfonate), 2 mM TCEP (Tris(2-carboxyethyl)phosphine) and anti-protease 						
 253 254 255 256 257 258 259 	 2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5- days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 °C. The resulting plasma samples were treated with 9 M urea, 2 M thiourea, 5% CHAPS (Dimethyl[3-(propyl]. azaniumyl] propane-1-sulfonate), 2 mM TCEP (Tris(2-carboxyethyl)phosphine) and anti-protease cocktail (Sigma-Aldrich, St.Louis, Mi, USA). The samples were then precipitated with methanol/chloroform, 						
 253 254 255 256 257 258 259 260 	 2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5- days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 °C. The resulting plasma samples were treated with 9 M urea, 2 M thiourea, 5% CHAPS (Dimethyl[3-(propyl]. azaniumyl] propane-1-sulfonate), 2 mM TCEP (Tris(2-carboxyethyl)phosphine) and anti-protease cocktail (Sigma-Aldrich, St.Louis, Mi, USA). The samples were then precipitated with methanol/chloroform, quantified by the BCA assay (Pierce Protein Assay kit, Rockford, Il, USA) and digested with trypsin. The 						
253 254 255 256 257 258 259 260 261	 2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5- days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 °C. The resulting plasma samples were treated with 9 M urea, 2 M thiourea, 5% CHAPS (Dimethyl[3-(propyl]. azaniumyl] propane-1-sulfonate), 2 mM TCEP (Tris(2-carboxyethyl)phosphine) and anti-protease cocktail (Sigma-Aldrich, St.Louis, Mi, USA). The samples were then precipitated with methanol/chloroform, quantified by the BCA assay (Pierce Protein Assay kit, Rockford, II, USA) and digested with trypsin. The resulting peptides were cleaned using a StageTip-C18 column and 1 μg of each cleaned sample separated by 						
253 254 255 256 257 258 259 260 261 262	2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5- days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 °C. The resulting plasma samples were treated with 9 M urea, 2 M thiourea, 5% CHAPS (Dimethyl[3-(propyl]. azaniumyl] propane-1-sulfonate), 2 mM TCEP (Tris(2-carboxyethyl)phosphine) and anti-protease cocktail (Sigma-Aldrich, St.Louis, Mi, USA). The samples were then precipitated with methanol/chloroform, quantified by the BCA assay (Pierce Protein Assay kit, Rockford, Il, USA) and digested with trypsin. The resulting peptides were cleaned using a StageTip-C18 column and 1 μg of each cleaned sample separated by liquid chromatography (LC) in a C-18 column employing a long gradient for elution to reduce hemoglobin-						
253 254 255 256 257 258 259 260 261 262 263	2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5- days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 °C. The resulting plasma samples were treated with 9 M urea, 2 M thiourea, 5% CHAPS (Dimethyl[3-(propyl]. azaniumyl] propane-1-sulfonate), 2 mM TCEP (Tris(2-carboxyethyl)phosphine) and anti-protease cocktail (Sigma-Aldrich, St.Louis, Mi, USA). The samples were then precipitated with methanol/chloroform, quantified by the BCA assay (Pierce Protein Assay kit, Rockford, Il, USA) and digested with trypsin. The resulting peptides were cleaned using a StageTip-C18 column and 1 μg of each cleaned sample separated by liquid chromatography (LC) in a C-18 column employing a long gradient for elution to reduce hemoglobin- derived peptides. Mass spectrophotometry (MS) was performed in a Triple-TOF 6600 (LC/LC-MS/MS)						
253 254 255 256 257 258 259 260 261 262 263 264	2.10. Proteomic analysis of CRP1-7 induced by SVCV infection in zebrafish plasma Adult zebrafish were infected with SVCV and their blood harvested after 0, 24, 48 and 120 h (5- days). Blood was obtained from 3 biological replicas for each time point, 3 fish pooled per replica (total amount of fish = 36). Red blood cells were immediately removed by centrifugation at 3000 g for 10 min at 4 °C. The resulting plasma samples were treated with 9 M urea, 2 M thiourea, 5% CHAPS (Dimethyl[3-(propyl]. azaniumyl] propane-1-sulfonate), 2 mM TCEP (Tris(2-carboxyethyl)phosphine) and anti-protease cocktail (Sigma-Aldrich, St.Louis, Mi, USA). The samples were then precipitated with methanol/chloroform, quantified by the BCA assay (Pierce Protein Assay kit, Rockford, II, USA) and digested with trypsin. The resulting peptides were cleaned using a StageTip-C18 column and 1 µg of each cleaned sample separated by liquid chromatography (LC) in a C-18 column employing a long gradient for elution to reduce hemoglobin- derived peptides. Mass spectrophotometry (MS) was performed in a Triple-TOF 6600 (LC/LC-MS/MS) Sciex apparatus (Framingham, MA, USA) at the Proteomic Facilities at the "Centro Nacional de						

to the peptide sequences obtained were identified using the MASCOT search engine against the UNIPROT

267 protein data base of zebrafish (Danio rerio). Only those CRP identified with more than 2 different peptides

268 were considered for further analysis. Automatic CRP1-7 identifications were confirmed by manual

269 comparison with sequences derived from mRNA accession numbers and/or blast against mRNA-derived

270 protein sequence data banks. There were 1 to 5 UNIPROT accession numbers identified for each CRP

271 isoform (Table S2) except for CRP6. The number of peptides, spectra counts, and peptide probability scores

272 were used for quantitation of each of the CRP accession numbers identified. The results were finally

273 normalized by the number of expected peptides per CRP1-7 using the emPAI method (Ishihama et al., 2005).

274 Folds were then calculated by the formula, emPAI values of each CRP accession number at different times /

emPAI mean value of each CRP accession number at time 0 (n=3).

276 2.11. Preparation of pMCV1.4 plasmids coding for crp1-7

277 The pMCV1.4 plasmid was used for subcloning each of the *crp1-7* genes (accession numbers in Table

278 S1). The MCV1.4 promoter is a large immediate early cytomegalovirus promoter which includes a synthetic

279 intron to increase expression efficiency (Rocha et al., 2005). To obtain the plasmid constructs, the

280 corresponding mRNA-derived crp1-7 sequences were flanked by HindIII and XhoI nucleotide sequences,

281 chemically synthesized, subcloned into pMCV1.4 and their resulting sequences confirmed by sequencing both

282 strands (Genscript, NJ, USA). The resulting pMCV1.4-crp1-7 plasmid constructs were used to transform

283 E.coli DH5alpha by electroporation, amplified and isolated with the Endofree Plasmid Midi purification Kit

284 (Qiagen, Germany) according to the manufacturer's instructions. Maximal concentrations of contaminating

285 *E.coli* lipopolysaccharide (LPS) were estimated to be < 0.52 ng per 100 ng of purified plasmid according to

- the manufacturer. Purified plasmid solutions were adjusted to 1 mg/ml of total DNA (260 nm absorbances)
- 287 which contained 80-100 % of plasmid DNA, as shown by agarose gel electrophoresis. Purified plasmids were
- 288 stored at -20 °C.

289 2.12. Transfection of EPC cell monolayers with pMCV1.4-*crp1*-7 and infection with Spring 290 Viremia Carp Virus (SVCV)

291

EPC cell monolayers in 96-well plates (50000 EPC cells per well) in 100 µl of cell culture medium

were transfected with 100 ng of each of the pMCV1.4-crp1-7 plasmids complexed with 0.3 µl of FuGENE 292 293 HD (Promega, Madison, WI, USA) for 24 h at 22 °C. Under these conditions, the transfection efficiency as 294 determined by the percentage of fluorescent cells after transfection with pMCV1.4-gfp varied between 15 to 30 % (n=3 experiments). After transfection, the cell culture medium was removed, fresh medium added and 48 h 295 296 later transcript expression estimated by RTqPCR as described above. When appropriated, the transfected 297 EPC cell monolayers were infected with 50 focus forming units (ffu) of SVCV per well in 100 μ l (multiplicity of infection of 10^{-3}) and incubated for viral adsorption for 2 h. Then the virus remaining in the 298 299 supernatants were removed, fresh medium added and infected cell monolayers incubated for 24 h. 300 2.13. SVCV neutralization of pMCV1.4-crp1-7 plasmid transfected EPC cells or of CRP1-7-301 enriched supernatant-treated EPC cells. To study possible interference of CRP1-7 with SVCV replication 302 in EPC cell monolayers, 2 types of *in vitro* micro-neutralization assays were performed. In the first type of 303 assays, the EPC cell monolayers were transfected with pMCV1.4-crp1-7 plasmids and 3-days later infected with SVCV as described above. The transcript expression levels relative to the efla gen expression after 304 305 transfection and before infection were similar for crp1-7 (Figure S1 A). In the second type of assays, large 306 amounts of cell-free supernatants were obtained by transfecting EPC cell monolayers in multiple 96-wells 307 with pMCV1.4-crp1-7 and harvesting them 3-days later. Because Western blotting was not sensitive enough 308 to detect the CRP presence in the supernatants, to concentrate CRP, 500 µl of supernatants had to be spotted 309 onto each spot of the nitrocellulose filters. The CRP content of the concentrated CRP1-7 were estimated with 310 anti-CRP rabbit antibodies raised against one of the most conserved carboxy-terminal amino acid stretches among zebrafish CRP1-7 (189DWDTIEYDVTGN) (GenScript, Piscataway, NJ, USA). To reduce 311 312 background, the anti-CRP antibodies contained in the rabbit sera were purified by affinity chromatography on a mixture of DWDTIEYDVTGNGGGGGGGKK / KKGGGGGGDWDTIEYDVTGN peptides coupled to 313 CNBr-activated Sepharose. Affinity-purified anti-CRP antibodies bound to the CRP-enriched supernatant 314 315 samples were detected with horseradish peroxidase labeled goat anti-rabbit immunoglobulins and ECL (BioRad) (Figure S1 B). Further details of the method are given in the Figure S1 legend. To study the effects 316

317 of CRP1-7-enriched supernatants, 100 μ l were added to EPC cell monolayers for 24 h, washed, and

318 monolayers infected with SVCV as indicated above.

319 In both types of assays, the number of infected EPC cells was determined by micro focus forming 320 units (ffu) (n=2 experiments) and flow cytometry (n=2 experiments). The number of ffu were estimated by immunofluorescence of the fixed cell monolayers and staining with polyclonal anti-SVCV (BioX Diagnostics 321 322 SA, Jemelle, Belgium) and rhodamine labeled goat anti mouse immunoglobulins (GAM-TRITC). The results 323 were then expressed as percentage of neutralization calculated by the formula, 100 - (number of infected cells 324 in transfected or treated EPC cells / number of infected cells in non-transfected or non-treated EPC cells). 325 Flow cytometry was performed by the high throughput micro method (Chinchilla et al., 2013a). Briefly, SVCV-326 infected cell monolayers were fixed with formaldehyde, permeabilized with digitonine and stained with anti-327 SVCV (BioX Diagnostics SA, Jemelle, Belgium) and GAM-FITC. EPC cell suspensions were then obtained by trypsin digestion to be analyzed in a BD FACS Canto II apparatus (Beckton Dickinson, San Agustin de 328 329 Guadalix, Madrid, Spain) provided with a high throughput sampler. The number of fluorescent cells (SVCV-330 infected cells) over a threshold containing 95 % (mean + 2 standard deviations) of non-infected EPC cells was first determined. SVCV-infected cell monolayer controls in the absence of any treatment showed 25-40 331 332 % of the EPC cells were infected depending on the experiment. The percentage of infected EPC cells was then 333 calculated using the formula: 100 x number of cells with fluorescences above the threshold / total number of 334 cells gated per well. The final results were expressed in % of neutralization by the formula: 100 - 100 x 335 percentage of transfected or supernatant-treated and infected cells / percentage of infected cells in control 336 cells. Because no significant differences were found between ffu and flow cytometry assays, their results 337 were pooled and means and standard deviations calculated (n=4). 338 To study possible interferences in the neutralization assays caused by *E.coli* LPS which could be 339 contaminating the plasmids purified by the Endofree Plasmid Midi purification Kit (Qiagen, Germany), LPS 340 from E.coli O55B5 and 0111:B4 strains (Sigma Che Co, St.Louis MS, USA) were added at different

- 341 concentrations (20-500 ng per well) to non-transfected EPC cell monolayers. Those concentrations were
- 342 higher than the estimated amounts which may be present when transfecting EPC cell monolayers with 100 ng

of plasmids per well (< 0.52 ng per 100 ng of plasmid). The LPS-treated EPC cell monolayers were then 343 344 infected with SVCV and finally assayed for neutralization by ffu (Figure S2).

345 2.14. Injection of one-cell stage embryos with pMCV1.4-crp2-5 or pMCV1.4-il6 plasmids and

346 resistance of zebrafish larvae to SVCV infection or induction of crp1-7 transcripts, respectively

- To test for CRP1-7 induced resistance to SVCV, one-cell stage of zebrafish embryos were 347 348 microinjected with 2 nl of phosphate buffered saline (PBS) containing 150 pg of pMCV1.4 plasmids coding for green fluorescent protein (GFP) and CRP2-5, by following the methodology described before (Pereiro et 349 350 al., 2017). The microinjections were performed with pulled glass microcapillary pipettes (WPI, USA) and a 351 Narishige IM-30 micromanipulator under an stereo microscope SMZ800 (Nikon). To study the effects of 352 SVCV challenge, the resulting 3-day hatched larvae were anesthetized and 12 larvae per group were microinjected into the duct of Cuvier to induce a systemic infection with 2 nl of PBS containing 10⁴ pfu of 353 354 SVCV or only PBS per larvae. Results at each of the different times after infection were expressed in 355 cumulative survival calculated by the formula 100 - (100 x number of dead fish injected with pMCV1.4-gfp 356 or crps). A 64.5 % mortality was obtained in fish injected with the pMCV1.4-gfp control 7 days after 357 infection. Kaplan-Meier cumulative survival curves were analyzed for statistical significance with the log-358 Rank (Mantel-Cox) test (Mantel, 1966) by comparing the survival of fish injected with pMCV1.4-crps to 359 those of pMCV1.4-gfp. 360 To test for the effects of IL6 on crp1-7 expression, one-cell stage embryos were microinjected with 2 361 nl of PBS containing 150 pg of pMCV1.4 or pMCV1.4-*il6* plasmids as described above. Three-days later the
- 362 larvae were pooled (n = 4 groups of 3 pooled fish per group, total number of larvae per group = 12), RNA
- 363 extracted and crp1-7 transcript levels evaluated by RTqPCR using the primers described in Table S1. Results
- 364 were expressed relative to efla expression as calculated by the formula, 100 x crp1-7 expression per group /
- efla expression per group. Means and standard deviations were represented. 365
- 2.15. Statistical analysis 366
- 367

- Survival results represented by Kaplan-Meier survival curves were analyzed for statistically
- 368 significance by the log-Rank (Mantel-Cox) test (Mantel, 1966) using the corresponding survival analysis

390 3. RESULTS

391 3.1. Levels of crp1-7 transcripts were specific of tissues and organs in healthy adult zebrafish 392 RNA from different external tissues (fin, gill, gut) and internal organs (muscle, head kidney, spleen, 393 liver) of healthy adult zebrafish was extracted to investigate by RTqPCR the distribution of crp1-7 transcript 394 expression relative to the efla gene using specific primers (Table S1). Results showed amplified products 395 corresponding to an average of 45.2 relative expression units for the 7 tissues and crp1-7 isoforms. The crp4 396 / crp6 in gills (Table 1A) and crp3 / crp5 in spleen (Table 1B) showed relative expressions ~3-6-fold higher 397 (range from 124 to 293 relative expression units) than the average, while the expression of crp3 / crp5 in 398 gills, crp6 in gut, crp4 in spleen and crp2 / crp3 / crp4 in kidney were > 60 relative expression units (Table 399 1A, B in gray). On the contrary, crp7 in all and crp1 in some (fin, gut, spleen, liver) tissues/organs showed 400 10-50 lower expression levels than crp2-6. Each tissue/organ had a different distribution of constitutive crp1-401 7 expression levels when expressed in percentage of their total expression (Table 1C). For instance, crp5 was 402 the most abundant in percentage in spleen and was present at relatively high levels in most tissues/organs 403 while crp2 was most abundant in muscle / head kidney and crp6 in gut / gill / liver (Table 1C). A similar 404 tissue/organ specificity was already described in common carp for its crp1-2 isoforms (Falco et al., 2012). 405 The existence of tissue-specific distribution of crp1-7 transcript levels suggested different functionalities 406 among the 7 zebrafish CRP isoforms. Therefore, to study whether or not the constitutive levels of crp1-7 407 transcripts in healthy zebrafish tissues/organs may change after infection, head kidney plus spleen (the most 408 important lymphoid internal organs) and fins (the easiest-to-obtain external tissue) were selected for further 409 experimentation. 410 3.2. Zebrafish infected with VHSV or surviving VHSV/bacterial infections showed heterogeneous changes in the differential expression of their crp1-7 transcripts in lymphoid organs 411 412 Hybridization values (fluorescent arbitrary units) and differential expression folds (infected versus

- 413 non-infected zebrafish) of crp1-7 transcripts from lymphoid organs were explored by microarray
- 414 hybridization using a unique home-designed platform which included 7 *crp* (*crp1-7*) specific probes (Table

415 S1, Figure 1).

In all the infection/survival situations studied, the hybridization values varied from 1 to 30000
fluorescent arbitrary units. However, while the *crp2-6* values ranged from 1000 to 30000 units, all *crp1*values ranged from 1 to 50 and those of *crp7* from 10 to 200 units (not shown). Therefore, the constitutive
expression levels of *crp1 / crp7* found in healthy zebrafish tissues/organs (Table 1) remained low after viral
or bacterial infections when compared to the rest of *crp2-6*.
When expressed as differential expression folds, the results showed that after VHSV-infection *crp2 / crp3 / crp4 / crp6* were upregulated (2-5-fold), while *crp1 / crp5 / crp7* remained unmodulated (Figure 1,

- 423 positive red hatched bars). Similar results were obtained for bacterial survival, although their corresponding
- 424 upregulation levels were higher (Figure 1, positive blue bars). However, in bacterial survival, crp5 was also
- 425 upregulated (Figure 1, positive crp5 blue bar), suggesting that crp5 responses may differentiate bacterial
- 426 from viral infections. The upregulation of zebrafish *crp2-6* isoforms resembled that of human pCRP after
- bacterial infection/survival (Kindmark, 1971). In conclusion, the profile of zebrafish *crp1-7* modulation was
 comparable between bacterial survival and viral infections, except for *crp5*.
- In contrast to viral infection and bacterial survival, fish surviving VHSV infection (VHSV-survivors) resulted in downregulated levels of *crp2-6* (Figure 1, negative yellow bars). The levels of *crp1 /crp* 7 remained unmodulated. After VHSV re-infection of the VHSV- survivors, the levels of *crp2 / crp3 / crp6* increased but still remained downregulated (compare negative yellow empty with yellow hatched bars in Figure 1).
- 3.3. Fins showed higher differential expression levels of *crp2-6* than lymphoid organs after
 SVCV-infection and in SVCV-survivors
- The *crp1-7* transcriptional profiles were comparatively studied in internal lymphoid organs and external fin tissues. Differential expression folds showed that after SVCV-infection, only *crp4* /*crp7* in
- 438 internal lymphoid organs were slightly upregulated (Figure 2A, white hatched bars), while in external fins,
- 439 *crp2 / crp4 / crp5* were upregulated, specially *crp5* (~ 7-fold) (Figure 2A, gray hatched bars). Similarly, in
- 440 SVCV-survivors, crp2 /crp4 / crp5 in lymphoid organs were slightly upregulated (Figure 2B, white hatched

bars), while in fins, *crp2-6* increased their upregulation, specially *crp5* (>15-fold) (Figure 2B, gray
hatched bars).

3.4. Lymphoid organs from adaptive-deficient *rag1^{-/-}* zebrafish mutants showed high levels of differential expression of *crp1-6* when infected with SVCV

To explore any possible relation between crp and adaptive immunity responses, the crp1-7 responses 445 to viral infection (innate responses) were studied in the absence of adaptive immunity ($rag1^{-/-}$ mutants) and 446 compared to wild type $ragl^{+/+}$ mutants. In addition, crp1-7 transcripts were analysed in lymphoid organs 447 448 from zebrafish rag1^{-/-} mutants without (mock infected) and after infection with SVCV. Results showed that compared to wild type $rag l^{+/+}$, the crp1-6 were 5-20-fold downregulated in $rag l^{-/-}$ mutants (Figure 3, 449 450 negative empty bars). In sharp contrast, highly upregulated levels of crp1-6 appeared 2-days after the rag1^{-/-} mutants were infected with SVCV compared to mock-infected rag1^{-/-} mutants (Figure 3, positive hatched 451 452 bars), except for crp4 which remained similarly downregulated in both cases (Figure 3, negative hatched 453 bar). The crp2/crp5 showed the highest upregulated levels (~10 and 17-fold, respectively) in the absence of 454 adaptive immunity. 455 3.5. Time course of CRP1-7 protein differential expression in zebrafish plasma after SVCV infection 456 457 To compare crp1-7 transcript levels in lymphoid organs with CRP1-7 protein levels in blood after SVCV infection, we followed the time course of different CRP UNIPROT accession numbers by double 458 459 liquid chromatography/mass spectrophotometry (LC/LC/MS/MS) in plasma samples from SVCV-infected 460 zebrafish. Because of the similarity of amino acid sequences among zebrafish CRP1-7 isoforms (Bello et 461 al., 2017), the CRP1-7 identifications derived from the tryptic peptide analysis should be taken with caution. 462 For instance, some of the peptides could not differentiate between CRP2 / CRP3, some peptides were

463 common to CRP2 and CRP6, and no unique CRP6 peptides could be detected. Despite those limitations,

- 464 after 24 h, the number of accession numbers and the differential expression folds were higher in several of
- 465 the CRP2 / CRP5 than in CRP3 / CRP4. After 48 h, only CRP2 showed one higher fold than all the rest of
- 466 CRPs which were similar or lower than their levels at time 0 (fold = 1). After 120 h, all identified CRPs

467 were lower than their levels at time 0 (Figure 4). The evolution of all CRP plasma levels in zebrafish after

468 SVCV infection were similar to those reported in carp CRP after infection with herpesvirus (Pionnier et al.,

469 2014).

In conclusion, the *crp2*/CRP2 and *crp5*/CRP5 were among the most important isoforms participating
in zebrafish viral responses, as suggested by most of the results obtained from the tissue/organ-specificity of *crp1-7* levels on healthy zebrafish (Table 1), the *crp1-7* expression in lymphoid organs of fish

473 infected/surviving VHSV/bacterial infections (Figure 1), the comparative studies of crp1-7 transcripts from

474 organs/fins after SVCV infection (Figure 2), the crp1-7 highest expression on adaptive-deficient mutants

475 infected with SVCV (Figure 3) and the plasma levels of CRP1-7 proteins after SVCV infection (Figure 4).

476 In contrast, crp1/CRP1 and crp7/CRP7 remained unmodulated in most of the infection situations mentioned

477 above. On the other hand, since all those *in vivo crp1-7*/CRP1-7 responses could be due to some interference

478 with viral replication, we next undertook a series of experiments focusing on neutralization assays.

479 3.6. Fish cells transfected with pMCV1.4-*crp1-7* or treated with CRP1-7-enriched supernatants
 480 neutralized SVCV

481 To investigate possible interferences of zebrafish *crp1-7*/CRP1-7 with SVCV replication, *crp1-7*

482 mRNA sequences were cloned into the pMCV1.4 eukaryotic expression plasmid. Micro-neutralization assays

483 for SVCV infection were then performed after using two complementary strategies to deliver crp1-7/CRP1-7

484 to fish cells in vitro, i) transfection of EPC cell monolayers with pMCV1.4-crp1-7 or ii) treatment of EPC

485 cell monolayers with CRP1-7-enriched supernatants obtained from pMCV1.4-crp1-7-transfected EPC cells.

486 To interpret possible differences of expression among the CRP isoforms, the efficiency of

487 transfection of each of the pMCV1.4-*crp1*-7 plasmid constructs and the presence of each of the

488 corresponding CRP1-7 proteins in the supernatants were first studied by RTqPCR and dot-blot, respectively.

489 Results showed that no significative differences could be demonstrated between relative expression levels of

- 490 crp1-7 transcripts in pMCV1.4-crp1-7 transfected cells (Figure S1, A). On the other hand, despite their low
- 491 level of protein expression (i.e., when compared to CRP levels in zebrafish intraperitoneal ascites), prevented
- 492 any quantitative analysis, CRP1-7 were present in enriched supernatants from pMCV1.4-crp1-7 transfected

	20
493	cells (Figure S1, B). In contrast no stained spot could be obtained in supernatants from pMCV1.4-gfp
494	transfected cells (Figure S1, B, lane 8). On the other hand, since bacterial LPS traces contaminating the
495	pMCV1.4-crp1-7 plasmid preparations could be causing also neutralization, LPS from E.coli were added to
496	the cells and neutralization measured. No neutralization effects on SVCV infectivity could be demonstrated
497	even at the highest LPS concentrations tested (~1000-fold higher than those expected to be present in the
498	plasmids) with any of the two different sources of LPS (Figure S2). In contrast, parallel assays with cells
499	transfected with pMCV1.4-crp2 / crp5, confirmed, once more, the neutralization of SVCV (Figure S2).
500	Therefore, only sequence and/or conformational differences among the CRP1-7 isoforms could be
501	responsible for inducing neutralization of SVCV.
502	Results showed that the SVCV neutralization profiles obtained by transfecting EPC cells with the
503	pMCV1.4-crp1-7 plasmids were similar to those obtained by treating the cells with the CRP1-7-enriched
504	supernatants (Figure 5A and B, respectively). Thus, crp2/CRP2, crp3 and crp5/CRP5 obtained maximal
505	neutralization values of \sim 65-75 % in both transfected and treated cells, respectively (Figure 5A and B).
506	Lower but significant neutralization percentages (~ 35-65 %) were obtained for CRP3, crp4/CRP4,
507	<i>crp6</i> /CRP6 and <i>crp7</i> /CRP7. In contrast, no neutralization was obtained when using <i>crp1</i> /CRP1 (< 7 %).
508	Co-transfections were used to study possible neutralization synergies among <i>crp1-7/</i> CRP1-7. Synergy
509	was defined as the increase in neutralization levels when co-transfecting two (pMCV1.4- crp^{a} + pMCV1.4-
510	crp^{b}) rather than one pMCV1.4- $crp1$ -7 plasmid. To carry out co-transfections, the concentration of each
511	plasmid was reduced from 100 to 50 ng per well. When required, 50 ng per well of the pMCV1.4-gfp
512	plasmid were added to obtain the same final concentration of 100 ng of DNA per well (pMCV1.4- crp +
513	pMCV1.4-gfp). Results of several co-transfections with different combinations between two pMCV1.4-
514	crp1-7 plasmids showed that the neutralization levels were always lower (Figure S3, hatched bars) than the
515	theoretical sum obtained when the plasmids were separately transfected (Figure S3, black horizontal bars).
516	These results suggested some kind of interferences rather than synergies at the transcript or at the protein
517	levels between crp1-7/CRP1-7 isoforms. Interferences could be due to the formation of neutralization-

518 inactive CRP heteropolymers, to *crp* transcriptional controls or to changes in viral specificity (since they

519 could still neutralize other viruses). Further work needs to be done to explore such possibilities.

- 520 In conclusion, all the above mentioned results suggested that zebrafish *crp2-7*/CRP2-7 (all except
- 521 *crp1*/CRP1) neutralized SVCV *in vitro*.

3.7. Microinjection of zebrafish embryos with pMCV1.4-*crp2-5* induced protection to SVCV infection and injection of pMCV1.4-*il6* induced *crp4-5* transcripts

- 524 To investigate whether or not the *in vitro* neutralization of SVCV by *crp1-7*/CRP1-7 could be also 525 observed *in vivo*, selected pMCV1.4-*crp2-5* plasmids were microinjected into one-cell stage zebrafish
- 526 embryos. Three days later, the hatched larvae were challenged by microinjection of 10^4 pfu of SVCV per
- 527 larvae. The cumulative survivals obtained after 7 days of SVCV challenge for the fish injected with the
- 528 pMCV1.4-*crp2*-5 plasmids were \sim 18, 12, 24 and 32 %, respectively (Figure 6A) in contrast to 0 % of those
- 529 injected with pMCV1.4-gfp.
- 530Because mammalian *il6* is one of the major physiological inducers of CRP synthesis (Du Clos and531Mold, 2011), and IL6 was upregulated after mammalian viral infections (Paludan, 2001; Wang et al., 2015;
- 532 Xia et al., 2015), we tested also whether the microinjection of pMCV1.4-*il6* into zebrafish egg embryos
- 533 modulated crp1-7 expression in the resulting larvae. Results showed that only crp4-5 were upregulated in
- 534 larvae after injection of pMCV1.4-*il6* in zebrafish egg embryos (Figure 6B).
- 535
- 536
- 537
- 538
- 539
- 540
- 541

542 4. DISCUSSION

543 Several correlations and evidences for in vitro and in vivo viral neutralizing heterogeneous activities 544 of zebrafish CRP1-7 isoforms were presented here. Previous observations included correlations between 545 zebrafish CRP-related pathways and viral infections with either SVCV (Encinas et al., 2013) or VHSV (Estepa and Coll, 2015a). On the other hand, the Ca⁺⁺-dependent phospholipid-binding pocket structures of 546 547 in silico-modelled CRP1-7 using the CRP5 3D X-ray structure as template, suggested the existence of a 548 functional heterogeneity (Chen et al., 2015). The present work characterized and extended those previous 549 observations to the different distributions of crp1-7 transcripts in healthy tissues/organs and the 550 heterogeneous crp1-7/CRP1-7 responses during several in vivo viral infections. Unexpected evidences for 551 both in vitro neutralization and in vivo protection against viral infection of some but not all crp1-7/CRP1-7 552 isoforms were then demonstrated. To our knowledge, this work is the first to report both in vitro neutralization and in vivo protection of 553 554 viral infection by any CRP. However, the corresponding mechanism(s) underlying these effects are not yet 555 known. Different CRP1-7 conformations (Braig et al., 2017; Eisenhardt et al., 2009a; Eisenhardt et al., 556 2009b; Li et al., 2016; Wang et al., 2011; Wu et al., 2015), heterologous trimers (Bello et al., 2017), 557 interferences with low-pH induced rhabdoviral fusion (Estepa and Coll, 1996; Estepa et al., 2001), and/or interactions of CRP1-7 carboxy-terminal domains (Potempa et al., 2015; Wang et al., 2011)(Li et al., 2016; 558 559 Wu et al., 2015) or derived peptides (El Kebir et al., 2011; Shephard et al., 1989; Yavin and Fridkin, 1998) 560 with lipid membranes including cholesterol-enriched lipid rafts, may offer possible mechanisms for the viral 561 neutralization by CRP1-7. Alternatively or simultaneously, crp1-7/CRP1-7 molecules could also 562 differentially interact with infected or uninfected cells to induce other yet unknown isoform-specific innate immunity defenses. Future work should be focused on some of the above mentioned possibilities to find a 563 suitable explanation for the heterogeneous anti-viral activities induced by zebrafish crp1-7/CRP1-7. 564 565 The physiological mechanism through which the injection of pMCV1.4-crp2-5 to egg embryos induced protection of larvae against SVCV challenge is also unknown. Once translated into proteins and after 566

reaching the blood, it is supposed that the tested circulating CRP2-5 would be transported by the blood to

target SVCV and/or SVCV-infected cells. After binding to exposed phospholipid heads in SVCV-568 569 damaged cells, CRP could induce inflammatory stimulus (i.e., il6, il1b). At this respect, it seems to be 570 confirmatory that crp5 was induced by injection of *il6*, a cytokine that upregulates circulating pCRP in 571 humans (Du Clos and Mold, 2011) and is itself upregulated by viral infections (Paludan, 2001; Wang et al., 2015; Xia et al., 2015). Although nothing is known about zebrafish CRP1-7-ligand functionality, these 572 573 isoforms may behave like in humans which bind C1q (increasing complement-aided cell lysis) and/or 574 immunoglobulin FcR (increasing phagocytosis of tagged cells). On the other hand, cell migration from 575 lymphoid organs to external tissues may explain downregulation of most crp2-6 levels in survivors of viral 576 infection and in rag1^{-/-} mutants. The higher upregulation of crp2/crp3/crp5 in fins compared to that in 577 lymphoid organs (crp2-6) after SVCV infection and in SVCV survivors may confirm that hypothesis. While these results correlate with the elevated numbers of leukocytes in $rag 1^{-/-}$ zebrafish external tissues (Garcia-578 579 Valtanen et al., 2017), the depletion of lymphoid organ IgM⁺ cells despite the presence of neutralizing 580 antibodies in plasma from VHSV-survivor zebrafish (Estepa and Coll, 2015a), the trans endothelial leukocyte 581 migration visually observed on zebrafish transparent larvae during viral infection (Varela et al., 2014) and/or 582 the leukocyte cell migration during other zebrafish diseases (Deng and Huttenlocher, 2012), additional 583 evidence should be provided to confirm cell migration when specific cellular reagents will become available 584 for zebrafish. All these possible in vivo mechanisms remain to be investigated. 585 Despite the different experimental approaches, crp2/CRP2 and crp5/CRP5 were among the major 586 actors in most anti-viral responses, while very often crp1/CRP1 and crp7/CRP7 remained unmodulated, and 587 crp3/CRP3, crp4/CRP4, crp6/CRP6 were only modulated in some cases. On the other hand, in vitro assays 588 demonstrated that crp2/CRP2 and crp5/CRP5 neutralized SVCV infectivity to the highest extent. In addition, 589 in vivo injection of pMCV1.4-crp2-5 confirmed that crp5/CRP5 was the most important contributor to 590 survival of zebrafish larvae to SVCV challenge and one of the unique crp/CRP that together with crp4/CRP4 591 could be induced by injection of *il6* (a well known inducer of pCRP synthesis in humans). The low participation of CRP1 (the only zebrafish CRP lacking signal peptide) in viral responses and neutralization, 592 593 suggested the idea that CRP2-7 should be secreted to be efficient. However, since CRP1 levels were detected

594	also in CRP1-enriched supernatants, other explanation(s) may be possible. The lack of generation of CRP1					
595	anti-viral peptides may offer an alternative explanation. Thus, because of the presence in CRP2-7 of a					
596	protease-sensitive site (146 SFN or SFD) which is not totally conserved in CRP1 (146 DFE) (Bello et al.,					
597	2017), such hypothetically neutralizing peptides may be derived from all CRPs except from CRP1. The lack					
598	of differential expression of crp7/CRP7 has no similar possible explanations, since it has signal peptide,					
599	identical protease site sequence than other CRPs and some anti-viral neutralization capacity. One possible					
600	explanation for the absence of differential expression may be that crp7/CRP7 could be induced in response to					
601	other pathogen infections (i.e., parasites?) and/or physiological conditions (i.e., other kind of tissue damage					
602	or internal stimulus, etc). The different experimental approaches, different fish used for the experiments, and					
603	confirmation of some results at 3 different laboratories, argue in favour of the existence of functional					
604	heterogeneity among <i>crp1-7/</i> CRP1-7 isoforms.					
605	Zebrafish might provide a suitable model for further crp1-7/CRP1-7 studies. For instance, ligand-					
606	CRP1-7-binding specificities could be explored to define whether isoform heterogeneity may be related to a					
607	wider anti-viral functionality in the aquatic environment.					
608						
609						
610						
611						
611 612						
611612613						
611612613614						
 611 612 613 614 615 						
 611 612 613 614 615 616 						
 611 612 613 614 615 616 617 						
 611 612 613 614 615 616 617 618 						

Table 1

621	Levels of crp1-7 transcripts in external tissues (A) and internal organs (B) of healthy adult zebrafish					
622	and their distribution in percentages (C)					
623	Each of the total RNA from individual external tissues (A) or internal organs (B) from 4 adult zebrafish was					
624	RTqPCR amplified using the crp1-7 specific primers listed in Table S1. The relative gene expression values					
625	were obtained using the $2^{-\Delta\Delta Ct}$ method. Each <i>crp1-7</i> gene expression value was normalized by the					
626	corresponding <i>efla</i> value by the formula, expression of each gene / expression of <i>efla</i> . Means (bold) and					
627	standard deviations (sd) were represented in the Tables A and B (n=4). Gray boxes, crp relative expression					
628	levels > 60. *, <i>crp</i> relative expression levels > 120. C, Pie <i>crp1</i> -7 distribution in percentages of the total <i>crp</i>					
629	expression in each tissue/organ. White pie, crp1. Green pie, crp2. Yellow pie, crp3. Dark-yellow pie, crp4.					
630	Red pie, crp5. Blue pie, crp6. Gray pie, crp7.					
631						
632	Figure 1. Upregulated (positive bars) and downregulated (negative bars) crp1-7 transcript profiles					
633	from lymphoid organs from zebrafish infected with VHSV (red) and surviving VHSV- (yellow) or					
634	bacterial-(blue) infections					
635	Fluorescence was assayed after hybridization of transcript samples from zebrafish organs to microarray <i>crp1</i> -					
636	7 probes. Raw and normalized data were deposited in GEO's bank at GSE57952 (Estepa and Coll, 2015a).					
637	Differential expression folds (upregulated genes) were calculated by the formula, fluorescence of each gene					
638	from infected fish / mean fluorescence of each gene from non (mock)-infected fish. The same fold data were					
639	represented as the inverse folds and arbitrarily given a negative value (-1/folds) to best visualize the					
640	downregulated genes (duplicated representation). Using this type of duplicated representation, both positive					
641	(>1.5 fold) and negative $(< 0.66 fold = 1/1.5 fold)$ bars appeared in the positive and negative Y axes in the					
642	Figure. Outliers were removed and means and standard deviations represented (n=4 replicas, 3 fish pooled per					
643	replica, total number of fish = 36). Only one of the \pm standard deviations were represented to increase clarity.					
644	*, folds significatively > 1.5 (+, positive upregulated values) or < 0.66 (-, negative downregulated values)					
645	thresholds at p < 0.05 (Student t-test). Red dashed horizontal lines, 1.5- and 0.66-fold thresholds. Red					

hatched bars, 2-days after VHSV infection (VHSV+). Open yellow bars, 2-month VHSV-survivors

647 (VHSVS). Hatched yellow bars, 2- days after VHSV re-infected 2-month VHSV-survivors (VHSVS+). Blue

648 **bars**, 5-month *A. hydrophila-* and *V. fluvialis-*survivors (BACS).

650	Figure 2. Upregulated (> 1 bars) and downregulated (< 1 bars) <i>crp1-7</i> transcript profiles from						
651	lymphoid organs and fins from zebrafish infected with SVCV (A) or surviving SVCV infection (B)						
652	Mean differential expression folds and standard deviations were calculated as described in the legend of						
653	Figure 1 and represented only in positive folds. Only one of the \pm standard deviations were represented to						
654	increase clarity. Raw and normalized data were deposited in GEO's bank at GSE58205 (Encinas et al., 2013).						
655	*, folds significatively > 1 or <1 at p < 0.05 (Student t-test). A) 2-days after SVCV-infection (n=3 replicas, 3 \times 1 or <1 at p < 0.05 (Student t-test).						
656	fish pooled per replica). B) 1-month SVCV-survivors (n=2 replicas, 3 fish pooled per replica). The total						
657	number of fish was 15. Red dashed horizontal line, fold = 1. Hatched white bars, lymphoid organs.						
658	Hatched gray bars, fin tissues.						
659							
660	Figure 3. Upregulated (positive bars) and downregulated (negative bars) <i>crp1-7</i> transcript profiles						
661	from lymphoid organs from <i>rag1^{-/-}</i> mutants before and after SVCV infection						
662	Differential expression folds and standard deviations were calculated by the formula, fluorescence of each						
663	gene from $rag l^{-/-}$ mutant fish / mean fluorescence of each gene from $rag l + /+$ fish (white bars) and						
664	fluorescence of each gene from SVCV-infected rag1 ^{-/-} mutants / mean fluorescence of each gene from rag1 ^{-/-}						
665	mutant fish (hatched gray bars). The upregulated and downregulated results were represented as the						
666	duplicated representation explained in Figure 1. Raw and normalized data were deposited in GEO's bank at						
667	GEO's GSE54096 (Garcia-Valtanen et al., 2017). *, folds significatively > 1.5 (+, positive upregulated values)						
668	and < 0.66 (-, negative downregulated values) at p < 0.05 (Student t-test). Red dashed horizontal lines, 1.5-						
669	and 0.66-fold thresholds. White bars, $rag1^{-/-} versus rag1^{+/+}$ genotypes, n=2 replicas each, 3 fish pooled per						
670	replica (<i>rag1</i> ^{-/-} <i>vs rag1</i> ^{+/+}). Hatched gray bars, 2-day SVCV-infected <i>rag1</i> ^{-/-} phenotype <i>versus</i> 2-day mock-						
671	infected $rag1^{-/-}$ genotype, n=2 replicas each, 3 fish pooled per replica (+ $rag1^{-/-} vs rag1^{-/-}$).						

672

Figure 4. Differential expression of CRP1-7 UNIPROT accession numbers in blood plasma from 673 674 SVCV-infected zebrafish. Plasma was harvested from zebrafish infected with SVCV at different time points 675 (0, 24, 48 and 120 h). For the calculations, 3 biological replicas were analyzed per time point. Each replica consisted in pools of 3 plasma (total number of fish = 36). Pooled plasma proteins for each replica were 676 677 digested with trypsin, the resulting peptides separated by LC and analysed in a Triple-TOF (LC-MS/MS) 678 apparatus. Table S2 shows that there were 1-5 UNIPROT accession numbers identified for each of the CRP1-679 7 isoforms. After emPAI normalization, differential expression folds were calculated by the formula, emPAI 680 values of each UNIPROT accession number / emPAI mean value of the corresponding UNIPROT accession 681 number at time 0. Open circles, folds of each of the UNIPROT accession numbers detected in the 3 replicas 682 per time point. *, folds significatively > 1 at p < 0.05 (Student t-test). Red dashed horizontal line, 1-fold 683 threshold. CRP6 was not identified by any of the peptides obtained. 684 Figure 5. Neutralization of SVCV in pMCV1.4-crp1-7 plasmid-transfected EPC cells (A) or in CRP1-685 686 7-enriched supernatant-treated EPC cells (B). 687 A) EPC cell monolayers transfected with pMCV1.4-crp1-7 plasmids. Cells were transfected with pMCV1.4-crp1-7 plasmids and incubated for 3 days before SVCV infection (3-day exposure to crp1-7). B) 688 689 EPC cell monolayers treated with CRP1-7-enriched supernatants. Cells were treated with CRP1-7-

- 690 enriched supernatants (obtained from pMCV1.4-crp1-7 transfected EPC cells) during 24 h before SVCV
- 691 infection (1-day exposure to CRP1-7). To infect with SVCV, the transfected/treated cell monolayers were
- 692 incubated during 2 h with SVCV, washed and incubated during 24 h. The number of SVCV infected EPC
- cells were then determined by ffu assays (n=2 experiments) or flow cytometry (n=2). Results from the 2
- 694 methods were pooled to calculate means and standard deviations (n=4). The results were expressed as
- 695 neutralization percentages calculated by the formula, 100 (number of SVCV infected cells in transfected or
- 696 treated cells / number of SVCV infected cells in non-transfected or non-treated cells). *, statistically higher

- 697 than neutralization levels obtained from cells transfected with pMCV1.4 (no CRP-coding plasmid, nccp) or
- treated with the corresponding supernatants (NCCP) at p < 0.05 (Student t-test).
- 699

700	Figure 6. Study	of the larvae fro	m injected one	-cell stage zebrafish	embryos:	injection of	of pMCV	1.4
					-			

- 701 crp2-5 and survival after infection with SVCV (A), and injection of pMCV1.4-il6 and induction of
- 702 crp1-7 transcripts (B)
- 703 A) Five groups of 30 one-cell stage embryo per group (total number =150) were intraperitoneally
- 704 microinjected with 2 nl of phosphate buffered saline (PBS) containing 150 pg of pMCV1.4 plasmids coding
- for green fluorescent protein (GFP) or CRP2-5. Three days later, 12 hatched larvae per group were
- microinjected into the duct of Cuvier to induce a systemic infection with 10^4 pfu of SVCV resulting in 64.5
- 707 % mortality for pMCV1.4-gfp injection after 7 days. Kaplan-Meier cumulative survival curves were
- 708 analyzed for statistical significance with a log-Rank (Mantel-Cox) test (Mantel, 1966) as described before
- 709 (Pereiro et al., 2017). *, Significative differences between survival of fish injected with pMCV1.4-crps and
- those injected with pMCV1.4-gfp at the p<0.05 level. Black dotted line, pMCV1.4-gfp. Red line, pMCV1.4-
- 711 *crp5*. Black line, pMCV1.4-*crp2*. Blue line, pMCV1.4-*crp3*. Green line, pMCV1.4-*crp4*. B) One-cell
- 712 stage embryos were intraperitoneally microinjected with 2 nl of PBS containing 150 pg of pMCV1.4 or
- pMCV1.4-*il6* plasmids. Three-days later the corresponding larvae were pooled (n = 4 groups of 3 pooled fish
- per group, total number of larvae per group = 12), RNA extracted and *crp1-7* transcript levels estimated by
- 715 RTqPCR using the primers described in Table S1. Results were expressed relative to *ef1a* as calculated by
- the formula, 100 x (crp1-7 expression per group / efla expression per group). Means and standard deviations
- 717 were represented. *, statistically higher than the mortality levels obtained after transfection with the
- pMCV1.4 plasmid at p < 0.05 (Student t-test). Open bars, injected with pMCV1.4. Hatched bars, injected
- 719 with pMCV1.4-*il6*.
- 720
- 721
- 722

861 **5. References**

- Adinolfi L. E., Zampino R., Restivo L., Lonardo A., Guerrera B., Marrone A., Nascimbeni F., Florio A. and Loria P. (2014) Chronic hepatitis C virus infection and atherosclerosis: clinical impact and mechanisms. World J Gastroenterol 20, 3410-7.
- Ahne W., Bjorklund H. V., Essbauer S., Fijan N., Kurath G. and Winton J. R. (2002) Spring viremia of carp (SVC). *Diseases of Aquatic Organisms* **52**, 261-272.
- Ashraf U., Lu Y., Lin L., Yuan J., Wang M. and Liu X. (2016) The spring viremia of carp virus: recent advances. *J Gen Virol*.
- Ballesteros N. A., Saint-Jean S. S., Encinas P. A., Perez-Prieto S. I. and Coll J. M. (2012) Oral immunization of rainbow trout to infectious pancreatic necrosis virus (Ipnv) induces different immune gene expression profiles in head kidney and pyloric ceca. *Fish Shellfish Immunol* 33, 174-85.
- Bello M., Falco A., Medina R., Encinar J. A., Novoa B., Perez L., Estepa A. and Coll J. (2017) Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of creactive-like proteins. *Developmental & Comparative Immunology* 69, 33-40.
- Boshra H., Li J. and Sunyer J. O. (2006) Recent advances on the complement system of teleost fish. *Fish Shellfish Immunol* **20**, 239-62.
- Braig D., Nero T. L., Koch H. G., Kaiser B., Wang X., Thiele J. R., Morton C. J., Zeller J., Kiefer J., Potempa L. A., Mellett N. A., Miles L. A., Du X. J., Meikle P. J., Huber-Lang M., Stark G. B., Parker M. W., Peter K. and Eisenhardt S. U. (2017) Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. *Nat Commun* 8, 14188.
- Chen R., Qi J., Yuan H., Wu Y., Hu W. and Xia C. (2015) Crystal structures for short-chain pentraxin from zebrafish demonstrate a cyclic trimer with new recognition and effector faces. *J Struct Biol* **189**, 259-68.
- Chinchilla B., Encinas P., Estepa A., Coll J. M. and Gomez-Casado E. (2013a) Optimization of fixedpermeabilized cell monolayers for high throughput micro-neutralizing antibody assays: Application to the zebrafish / viral haemorragic septicemia virus (VHSV) model. *Journal Virological Methods* **193**, 627-632.
- Chinchilla B., Gomez-Casado E., Encinas P., Falco A., Estepa A. and Coll J. (2013b) In vitro neutralization of viral haemorrhagic septicemia virus (VHSV) by plasma from immunized zebrafish *Zebrafish* **10**, 43-51.
- Deng Q. and Huttenlocher A. (2012) Leukocyte migration from a fish eye's view. J Cell Sci 125, 3949-56.
- Du Clos T. W. and Mold C. (2011) Pentraxins (CRP, SAP) in the process of complement activation and clearance of apoptotic bodies through Fcgamma receptors. *Curr Opin Organ Transplant* **16**, 15-20.
- Eisenhardt S. U., Habersberger J., Murphy A., Chen Y. C., Woollard K. J., Bassler N., Qian H., von Zur Muhlen C., Hagemeyer C. E., Ahrens I., Chin-Dusting J., Bobik A. and Peter K. (2009a) Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. *Circ Res* 105, 128-37.
- Eisenhardt S. U., Habersberger J. and Peter K. (2009b) Monomeric C-reactive protein generation on activated platelets: the missing link between inflammation and atherothrombotic risk. *Trends Cardiovasc Med* **19**, 232-7.
- El Kebir D., Zhang Y., Potempa L. A., Wu Y., Fournier A. and Filep J. G. (2011) C-reactive proteinderived peptide 201-206 inhibits neutrophil adhesion to endothelial cells and platelets through CD32. *J Leukoc Biol* **90**, 1167-75.
- Encinas P., Garcia-Valtanen P., Chinchilla B., Gomez-Casado E., Estepa A. and Coll J. (2013) Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV) suggest preventive drug candidates. *PLoS One* 8, e73553.

- Encinas P., Rodriguez-Milla M. A., Novoa B., Estepa A., Figueras A. and Coll J. M. (2010) Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. *BMC Genomics* 11, 518-534.
- Enocsson H., Sjowall C., Skogh T., Eloranta M. L., Ronnblom L. and Wettero J. (2009) Interferon-alpha mediates suppression of C-reactive protein: explanation for muted C-reactive protein response in lupus flares? *Arthritis Rheum* 60, 3755-60.
- Estepa A. and Coll J. (2015a) Innate Multigene Family Memories Are Implicated in the Viral-Survivor Zebrafish Phenotype. *PLoS One* **10**, e0135483.
- Estepa A. and Coll J. M. (1996) Pepscan mapping and fusion related properties of the major phosphatidylserine-binding domain of the glycoprotein of viral hemorrhagic septicemia virus, a salmonid rhabdovirus. *Virology* 216, 60-70.
- Estepa A. and Coll J. M. (2015b) Innate multigene family memories are implicated in the viral-survivor zebrafish phenotype. *Plos One* **10**, e0135483.
- Estepa A. M., Rocha A. I., Mas V., Perez L., Encinar J. A., Nunez E., Fernandez A., Ros J. M. G., Gavilanes F. and Coll J. M. (2001) A protein G fragment from the Salmonid viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH. *Journal of Biological Chemistry* 276, 46268-46275.
- Falco A., Cartwright J. R., Wiegertjes G. F. and Hoole D. (2012) Molecular characterization and expression analysis of two new C-reactive protein genes from common carp (Cyprinus carpio). *Dev Comp Immunol* 37, 127-38.
- Falco A., Chico V., Marroqui L., Perez L., Coll J. M. and Estepa A. (2008) Expression and antiviral activity of a beta-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. *Mol Immunol* 45, 757-65.
- Fijan N., Petrinec Z., Sulimanovic D. and Zwillenberg L. O. (1971) Isolation of the viral causative agent from the acute form of infectious dropsy of carp. *Veterinary Archives* **41**, 125-138.
- Garcia-Valtanen P., Martinez-Lopez A., Lopez-Munoz A., Bello-Perez M., Medina-Gali R. M., Ortega-Villaizan M. D., Varela M., Figueras A., Mulero V., Novoa B., Estepa A. and Coll J. (2017) Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes. *Front Immunol* 8, 121.
- Genge C. E., Lin E., Lee L., Sheng X., Rayani K., Gunawan M., Stevens C. M., Li A. Y., Talab S. S., Claydon T. W., Hove-Madsen L. and Tibbits G. F. (2016) The Zebrafish Heart as a Model of Mammalian Cardiac Function. *Rev Physiol Biochem Pharmacol* 171, 99-136.
- Harmache A., Leberre M., Droineau S., Giovannini M. and Bremont M. (2006) Bioluminescence Imaging of Live Infected Salmonids Reveals that the Fin Bases Are the Major Portal of Entry for Novirhabdovirus. *Journal Virology* 103, 3655-3659.
- Huang W. C., Hsieh Y. S., Chen I. H., Wang C. H., Chang H. W., Yang C. C., Ku T. H., Yeh S. R. and Chuang Y. J. (2010) Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. *Zebrafish* 7, 297-304.
- ICTV. (2015) Implementation of taxon-wide non-Latinized binomial species names in the family *Rhabdoviridae*. *Rhabdoviridae* Study Group, 9.
- Ishihama Y., Oda Y., Tabata T., Sato T., Nagasu T., Rappsilber J. and Mann M. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. *Mol Cell Proteomics* 4, 1265-72.
- Kindmark C. O. (1971) Stimulating effect of C-reactive protein on phagocytosis of various species of pathogenic bacteria. *Clin Exp Immunol* **8**, 941-8.
- LeBerre M., De Kinkelin P. and Metzger A. (1977) Identification sérologique des rhabdovirus des salmonidés. *Bulletin Office International Epizooties* **87**, 391-393.
- Li H. Y., Wang J., Meng F., Jia Z. K., Su Y., Bai Q. F., Lv L. L., Ma F. R., Potempa L. A., Yan Y. B., Ji S. R. and Wu Y. (2016) An Intrinsically Disordered Motif Mediates Diverse Actions of Monomeric Creactive Protein. *J Biol Chem* 291, 8795-804.

- Livak K. L. and Schmittgen.T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 DDCT Method. *Methods* **25**, 402-408.
- Lopez-Munoz A., Roca F. J., Sepulcre M. P., Meseguer J. and Mulero V. (2010) Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus. *Developmental Comparative Immunology* 34, 546-52.
- Lu F., Langenbacher A. D. and Chen J. N. (2016) Transcriptional Regulation of Heart Development in Zebrafish. *J Cardiovasc Dev Dis* **3**.
- Lu J., Marjon K. D., Mold C., Du Clos T. W. and Sun P. D. (2012) Pentraxins and Fc receptors. *Immunol Rev* 250, 230-8.
- Mantel N. (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. *Cancer Chemother Rep* **50**, 163-70.
- McKibben R. A., Haberlen S. A., Post W. S., Brown T. T., Budoff M., Witt M. D., Kingsley L. A., Palella F. J., Jr., Thio C. L. and Seaberg E. C. (2016) A Cross-sectional Study of the Association Between Chronic Hepatitis C Virus Infection and Subclinical Coronary Atherosclerosis Among Participants in the Multicenter AIDS Cohort Study. J Infect Dis 213, 257-65.
- Novoa B., Romero A., Mulero V., Rodriguez I., Fernandez I. and Figueras A. (2006) Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). *Vaccine* **24**, 5806-5816.
- Paludan S. R. (2001) Requirements for the induction of interleukin-6 by herpes simplex virus-infected leukocytes. J Virol 75, 8008-15.
- Pereiro P., Forn-Cuni G., Dios S., Coll J., Figueras A. and Novoa B. (2017) Interferon-independent antiviral activity of 25-hydroxycholesterol in a teleost fish. *Antiviral Res* **145**, 146-159.
- Pionnier N., Adamek M., Miest J. J., Harris S. J., Matras M., Rakus K. L., Irnazarow I. and Hoole D. (2014) C-reactive protein and complement as acute phase reactants in common carp Cyprinus carpio during CyHV-3 infection. *Dis Aquat Organ* 109, 187-99.
- Pitto L., Chiavacci E., Burchielli S., Dolfi L., Zozzini E. T., Priami C., Cellerino A. and Cremisi F. (2011) Zebrafish as Model System for Studying the Transcription Factor/miRNA Regulative Network in Brain and Heart Development. *Journal of the American Association for Laboratory Animal Science* 50, 743-743.
- Potempa L. A., Yao Z. Y., Ji S. R., Filep J. G. and Wu Y. (2015) Solubilization and purification of recombinant modified C-reactive protein from inclusion bodies using reversible anhydride modification. *Biophys Rep* 1, 18-33.
- Rocha A., Ruiz S. and Coll J. M. (2005) Improvement of transfection efficiency of epithelioma papulosum cyprini carp cells by modification of their cell cycle and using an optimal promoter. *Marine Biotechnology* 6, 401-410.
- Sanders G. E., Batts W. N. and Winton J. R. (2003) Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. *Comp Med* 53, 514-521.
- Shah S., Ma Y., Scherzer R., Huhn G., French A. L., Plankey M., Peters M. G., Grunfeld C. and Tien P. C. (2015) Association of HIV, hepatitis C virus and liver fibrosis severity with interleukin-6 and Creactive protein levels. *AIDS* 29, 1325-33.
- Shephard E. G., Beer S. M., Anderson R., Strachan A. F., Nel A. E. and de Beer F. C. (1989) Generation of biologically active C-reactive protein peptides by a neutral protease on the membrane of phorbol myristate acetate-stimulated neutrophils. *J Immunol* 143, 2974-81.
- Shrivastava A. K., Singh H. V., Raizada A. and Singh S. K. (2015) C-reactive protein, inflammation and coronary heart disease. *The Egyptian Heart Journal* 67, 89-97.
- Sunyer J. O. (2013) Fishing for mammalian paradigms in the teleost immune system. *Nat Immunol* 14, 320-6.
- Sunyer J. O., Zarkadis I. K. and Lambris J. D. (1998) Complement diversity: a mechanism for generating immune diversity? *Immunol Today* 19, 519-23.
- Varela M., Figueras A. and Novoa B. (2016) Modelling viral infections using zebrafish: Innate immune response and antiviral research. *Antiviral Res* 139, 59-68.

Varela M., Romero A., Dios S., van der Vaart M., Figueras A., Meijer A. H. and Novoa B. (2014) Cellular visualization of macrophage pyroptosis and interleukin-1beta release in a viral hemorrhagic infection in zebrafish larvae. J Virol 88, 12026-40.

Vilahur G. and Badimon L. (2015) Biological actions of pentraxins. Vascul Pharmacol 73, 38-44.

- Voulgaris T. and Sevastianos V. A. (2016) Atherosclerosis as Extrahepatic Manifestation of Chronic Infection with Hepatitis C Virus. Hepat Res Treat 2016, 7629318.
- Wang J., Wang Q., Han T., Li Y. K., Zhu S. L., Ao F., Feng J., Jing M. Z., Wang L., Ye L. B. and Zhu Y. (2015) Soluble interleukin-6 receptor is elevated during influenza A virus infection and mediates the IL-6 and IL-32 inflammatory cytokine burst. Cell Mol Immunol 12, 633-44.
- Wang M. Y., Ji S. R., Bai C. J., El Kebir D., Li H. Y., Shi J. M., Zhu W., Costantino S., Zhou H. H., Potempa L. A., Zhao J., Filep J. G. and Wu Y. (2011) A redox switch in C-reactive protein modulates activation of endothelial cells. FASEB J 25, 3186-96.
- Wu Y., Potempa L. A., El Kebir D. and Filep J. G. (2015) C-reactive protein and inflammation: conformational changes affect function. Biol Chem 396, 1181-97.
- Wu Y. P., Sun D. D., Wang Y., Liu W. and Yang J. (2016) Herpes Simplex Virus Type 1 and Type 2 Infection Increases Atherosclerosis Risk: Evidence Based on a Meta-Analysis. Biomed Res Int 2016, 2630865.
- Xia C., Liu Y., Chen Z. and Zheng M. (2015) Involvement of Interleukin 6 in Hepatitis B Viral Infection. Cell Physiol Biochem 37, 677-86.
- Yavin E. J. and Fridkin M. (1998) Peptides derived from human C-reactive protein inhibit the enzymatic activities of human leukocyte elastase and cathepsin G: use of overlapping peptide sequences to identify a unique inhibitor. J Pept Res 51, 282-9.
- Zhang Y. A., Salinas I., Li J., Parra D., Bjork S., Xu Z., LaPatra S. E., Bartholomew J. and Sunyer J. O. (2010) IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol 11, 827-35.

Figure 3.

Figure 6.

A) Transcript levels of *crp1-7* in external tissues of healthy adult zebrafish

B)

Transcript levels of crp1-7 in internal organs of healthy adult zebrafish

			Head					
crp	Musele	±sd	kidney	±sd	Spleen	±sd	Liver	±sd
crp1	17.8	10.2	32.0	20.4	5.6	4.3	4.22	3.0
crp2	56.2	20.6	63.4	26.5	50.3	14.3	34.06	7.3
crp3	26.3	18.4	66.3	31.4	*191.8	109.0	42.74	7.4
crp4	42.2	21.9	95.1	16.9	65.9	12.4	50.01	21.0
crp5	55.3	57,4	57.4	46.7	*293.2	89.8	29.88	5.9
crp6	30.5	2.9	30.1	18.1	34.4	22.1	44.68	1.5
crp7	2.3	1.3	1.7	1.5	0,6	0.5	1.04	0.7

Table 1.

PUBLICACIÓN 3

TÍTULO: Hydroxycholesterol binds and enhances the anti-viral activities of zebrafish monomeric c-reactive protein isoforms.

COAUTORES: Melissa Belló Pérez, Alberto Falcó Graciá, Beatriz Novoa García, Luis Perez García-Estañ, Julio Coll Morales.

REVISTA: PLoS ONE

doi: 10.1371/journal.pone.0201509

G OPEN ACCESS

Citation: Bello-Perez M, Falco A, Novoa B, Perez L, Coll J (2019) Hydroxycholesterol binds and enhances the anti-viral activities of zebrafish monomeric c-reactive protein isoforms. PLoS ONE 14(1): e0201509. <u>https://doi.org/10.1371/journal.</u> pone.0201509

Editor: Keivan Zandi, Emory University, UNITED STATES

Received: July 13, 2018

Accepted: December 28, 2018

Published: January 17, 2019

Copyright: © 2019 Bello-Perez et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files.

Funding: Melissa Bello-Perez was financed by the Generalidad Valenciana, fellowship ACIF/2016. This work was supported by CICYT projects AGL2014-51773-C3-R and BIO2017-82851 of the Ministerio de Economía, Industria y Competitividad of Spain. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

RESEARCH ARTICLE

Hydroxycholesterol binds and enhances the anti-viral activities of zebrafish monomeric creactive protein isoforms

Melissa Bello-Perez¹, Alberto Falco¹, Beatriz Novoa², Luis Perez^{1®}, Julio Coll₁₀^{3®}*

 Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain,
Institute of Marine Research (IIM), CSIC, Vigo, Spain, 3 Department of Biotechnology, Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias, INIA, Madrid, Spain

These authors contributed equally to this work.
* juliocoll@inia.es

Abstract

C-reactive proteins (CRPs) are among the faster acute-phase inflammation-responses proteins encoded by one gene (*hcrp*) in humans and seven genes (*crp1-7*) in zebrafish (*Danio rerio*) with importance in bacterial and viral infections. In this study, we described novel preferential bindings of 25-hydroxycholesterol (25HOCh) to CRP1-7 compared with other lipids and explored the antiviral effects of both 25HOCh and CRP1-7 against spring viremia carp virus (SVCV) infection in zebrafish. Both *in silico* and *in vitro* results confirmed the antiviral effect of 25HOCh and CRP1-7 interactions, thereby showing that the crosstalk between them differed among the zebrafish isoforms. The presence of oxidized cholesterols in human atherosclerotic plaques amplifies the importance that similar interactions may occur for vascular and/or neurodegenerative diseases during viral infections. In this context, the zebrafish model offers a genetic tool to further investigate these interactions.

Introduction

Previous studies have shown that, in contrast to a single gene-encoding human c-reactive protein (hCRP) [1], seven genes encode zebrafish (*Danio rerio*) CRP1-7 isoforms [2]. CRP molecules are present from invertebrates to vertebrates. In particular, hCRP is a crucial clinical biomarker for inflammation and most recently has been associated with relevant diseases such as those caused by cardiovascular and neurodegenerative disorders [3–5]. All circulating CRP molecules are planar oligomers of ~ 25 kDa monomers. While hCRP is pentameric (p-hCRP), zebrafish CRP5 crystallizes as trimers [6]. However, it is not yet known whether other CRP1-7 isoforms are trimeric and what are their prevalent physiological conformation(s), although some CRP1-7 isoform-dependent heterogeneous biological properties have been most recently described [6,7].

Planar p-hCRP molecules show opposite lipid-recognition and functional-effector faces [5]. It is well known that the recognition face mainly binds phosphocholine heads exposed at the surface of prokaryotic/eukaryotic membranes in a Ca^{++} [8,9]- and phospholipase A_2 [10]-

Competing interests: The authors have declared that no competing interests exist.

Abbreviations: BSA, bovine serum albumin; CRP, C-reactive protein; Ig, immunoglobulin; kDa, kilo Daltons; MW, molecular weight; PAGE, polyacrylamide gel electrophoresis; PBS, phosphate-buffered saline; pfu, plaque forming units; SDS, sodium dodecyl sulfate; SVCV, spring viremia carp virus; VHSV, Viral haemorrhagic septicemia virus; EPC, *Epithelioma papulosum cyprinid* cell line.

dependent manner when generated in damaged tissues [5]. Triggered by CRP-Ca⁺⁺-phosphocholine complexes, the functional-effector face binds C1q to activate the classical complement pathway, immunoglobulin Fc receptors to activate phagocytosis [11,12] and other ligands to activate multiple cellular functions [10]. To accomplish these various functions, hCRP shows at least 4 different conformations [5,13]: i) inactive serum-circulating p-hCRP, which is present in low concentrations in healthy humans, increasing 100- to 1000-fold after inflammation; ii) proinflammatory tissue-associated p-hCRP* [4]; iii) pro-inflammatory tissue-associated monomeric hCRP (m-hCRP) with wider ligand capacities which include cholesterol (Ch) [14-16] and iv) disulfide-reduced m-hCRP that activates lymphoid and many other cellular types [5,16-18]. Despite the different oligomeric structures of p-hCRP and t-CRP5 [6], their protein hydrophobic profiles, two cysteine residues per monomer, Ca⁺⁺-binding amino acid sequences and location of phosphocholine (PC)-binding pockets are highly conserved [19]. On the other hand, previous transcriptomic studies on crp1-7 genes have demonstrated differential transcript expression in zebrafish tissues [2], in survivors of viral infection [20] and in mutants defective in adaptive immunity [21]. Additionally, unexpected crp1-7/CRP1-7 isoform-dependent antiviral in vitro and in vivo activities have been described. In most of the above mentioned situations, crp2/CRP2 and crp5/CRP5 transcripts/proteins were the most modulated compared with crp1/CRP1/ and crp7/CRP7. These recent findings revealed novel anti-viral CRP1-7 direct or indirect activities in zebrafish that, to our knowledge, have not been described yet for any CRP, including hCRP. Some of the similar properties mentioned above suggest analogous biological functions for p-hCRP and CRP1-7 [7]; however, whether the CRP1-7 isoforms physiologically exist as different oligomeric structures, conformations and/or become specialized in different ligand-binding or biological functions remains largely unexplored.

Widely used as a general biomarker for bacterial infection and inflammation during decades, circulating p-hCRP has been found recently within atherosclerotic lesions and was proposed as a biomarker for cardiovascular diseases [22]. Additionally, the correlation between infections and cardiovascular heart diseases in humans has been demonstrated not only for bacteria but also for several viral infections [23–26]. Thus, although circulating levels of p-hCRP were initially discovered as increasing from ~10 to >500 mg/l during acute-phase responses to bacterial infections, intermediate concentrations of 10–50 mg/l were detected also during viral infections [27], suggesting possible anti-viral function(s). Nevertheless and despite p-hCRP being one of the most investigated risk biomarker molecules in the human cardiovascular field, and an important component of the anti-bacterial innate response [9], to our knowledge, there is no evidence that p-hCRP or m-hCRP possesses antiviral function. The functional significance of the CRP oligomer-monomer conversion (and *viceversa*?) need to be further clarified to evaluate new chemotherapeutic targets [10,28]. Zebrafish may offer a good genetic model to explore such physiological phenomena.

Using *in silico* and *in vitro* studies, we focused on the lipid-docking/binding, anti-viral activities and oligomeric forms of the zebrafish CRP1-7 isoforms and some of their transcript variants. We found that **i**) Ca⁺⁺-independent docking/binding of CRP1-7 to Ch was higher than that to other lipids, **ii**) HOChs were a preferential target for CRP1-7, **iii**) HOChs enhanced the anti-viral direct or indirect effects by zebrafish CRP1-7 in an isoform-dependent manner, and **iv**) CRP2/CRP5 and numerous CRP5 transcript variants have a stronger tendency to fold as trimers than other CRP-7 molecules.

Materials and methods

In silico docking predictions between zebrafish CRP1-7 and lipids

AutoDock Vina [29] included in the PyRx program package [30] was used to predict the Gibbs free-energy of docking (Δ G) of 60 × 60 × 60 × 60 Å grids surrounding the CRP1-7 molecules.

Zebrafish hvdroxvcholesterol-CRP

When required for comparison with the experimental data, the output ΔG energies were converted to constant inhibition (Ki) values in molar concentrations (M), using the formula Ki = exp([$\Delta G \times 1000$] / [R × T]) (R = 1.98 cal/mol, and T = 298°C)[<u>31</u>]. The predicted structures were visualized in PyRx and/or PyMOL (<u>https://www.pymol.org/</u>).

Cell culture in EPC cell monolayers

Epithelioma papulosum cyprinid (EPC) cells from fathead minnow fish (*Pimephales promelas*) were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA; code number CRL-2872). EPC cell monolayers were grown at 26°C in a 5% CO₂ atmosphere in RPMI-1640 Dutch modified cell culture medium supplemented with 20 mM HEPES, 10% fetal bovine serum, FBS (Sigma, St. Louis, USA), 1 mM pyruvate, 2 mM glutamine, 50 μ g/ml of gentamicin (Gibco) and 2 μ g/ml of fungizone [21].

Preparation of spring viremia of carp virus (SVCV)

The isolate 56/70 of spring viremia carp virus (SVCV) from carp *C. carpio* [<u>32</u>], recently renamed *Carp sprivivirus* [<u>33</u>], was replicated in EPC cell monolayers at 26°C, in the cell culture media described above except for 2% FBS and the absence of the CO₂ atmosphere. Supernatants from SVCV-infected EPC cell monolayers were clarified by centrifugation at 4000 g for 30 min and kept at -80°C [<u>21</u>].

Estimation of the effects of methyl-betacyclodextrin (MBCD) on SVCV infectivity

EPC cell monolayers treated for 2 h with different concentrations (0–8 mM) of MBCD were incubated with SVCV for 24 h and then were assayed for fluorescent focus-forming units (ffu) (see later). The results were expressed as the percentage of SVCV infectivity calculated by the following formula: $100 \times$ (ffu treated with MBCD / ffu nontreated with MBCD). To assay for viability, EPC cell monolayers treated with MBCD as above were incubated with 0.5 mg/ml of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in a Krebs–Hensleit–HEPES buffer (115 mM NaCl, 5 mM KCl, 1 mM KH₂PO₄, 1.2 mM MgSO₄, 2 mM CaCl₂, and 25 mM HEPES at pH 7.4) for 3 h, the absorbance at 570 nm was measured, and the percentage of viability was calculated by the following formula: absorbance of MBCD treated cells / absorbance of untreated cells. Means and standard deviations (n = 2) were interpolated and smoothed using the cubic B-spline method in Origin Pro 2017 (Northampton, MA, USA).

Construction of recombinant pRSET-CRP1-7 for E.coli expression

The corresponding mRNA sequences of the CRP1-7 proteins [7] were used for the design, construction and expression in *E.coli*. All the corresponding synthetic DNA sequences were cloned into the pRSET adding poly-histidine tails (polyH) at their C-terminal ends (GeneArt, Regensburg, Germany). The purified plasmids were then transfected into *E.coli* BL21(DE3) and grown at 37°C. The resulting recombinant bacteria from the pRSET-*crp1-7* constructs were induced with IPTG at 25°C. Gradient 4–20% polyacrylamide gel electrophoresis (PAGE) and Western blotting were used to detect CRP1-7 expression.

Construction of recombinant rCRP1, rCRP2, rCRP5, rCRP7 for insect expression

The mRNA sequences of CRP1, CRP2, CRP5 and CRP7 described previously [7], were used for the design, construction and expression in insect cells (GenScript, Piscataway, NJ, USA).

Briefly, target DNA containing the gp67 signal peptide + CRP1-7 + Flag (DYKDDDK) + 6 x polyHis sequences (construct size of ~ 3 Kbp) were synthesized and subcloned into the pFast-Bac1TM baculovirus transfer vector (Invitrogen). The pFastBac1 recombinants were transfected into DH10 BacTM-competent *E. coli* cells and bacmids prepared from selected *E. coli* clones. Next, recombinant baculoviruses were generated in *Spodoptera frugiperda* (Sf9) insect cells. For that, Sf9 cells cultured in Grace's insect media (Gibco BRL) with 10% foetal bovine serum, 3% nonessential amino acids and 20 µg/ml gentamicin at 28°C [34] were cotransfected with bacmids and baculovirus using Cellfectin II. The supernatants containing the recombinant baculoviruses were obtained 72 h posttransfection with titers of ~ 10⁷ pfu/ml.

For rCRP expression and purification, 500 ml of Sf9 cell supernatants were harvested 72 h postinfection and were dialyzed against 50 mM Tris, pH 8.0, 500 mM NaCl. The rCRP-containing medium was incubated with Flag or Ni⁺⁺ columns equilibrated with 50 mM Tris, 500 mM NaCl, 5% glycerol, pH 8.0, eluted with 200 μ g/ml of the Flag peptide or 150 mM imidazole, dialyzed against equilibration buffer and kept at -20°C until ready for use. Purified rCRPs were loaded onto 8–20% SDS-polyacrylamide gels (BioRad), electrophoresed, and transferred to nitrocellulose membranes (Schleicher & Schuell) to detect specific tag epitopes. The membranes were blocked with phosphate buffered saline containing 0.05% Tween 20 and 4% skim milk, and then were incubated with anti-poly-H monoclonal antibody MAb (Sigma) for 1 h, followed by incubation with anti-mouse horseradish peroxidase-conjugated immunoglobulins (Sigma) and visualization with diaminobenzidine (DAB). The protein concentrations were determined using the bicinchoninic acid (BCA) method [35] and were confirmed by PAGE with BSA as the standard.

Production of rabbit antibodies to recognize zebrafish CRP1-7 isoforms

To detect CRP1-7 isoforms in lipid-binding assays and after PAGE by Western blotting, anti-CRP1-7 rabbit antibodies (GenScript, Piscataway, NJ, USA) were raised against 3 of the longest more conserved amino acid stretches such as peptide p1 (18 SYVKLSPEKPLSLSAFTLC), peptide p2 (189 DWDTIEYDVTGN) and peptide p3 (129 RPGGTVLLGQDPDSYVGSFC). All p1, p2 and p3 were located at the CRP1-7 surface, as shown by PyMOL modelling of trimeric CRP5 ± Ca⁺⁺ (4PBP.pdb and 4PBO.pdb, respectively) [6] (data not shown). To reduce assay backgrounds, the anti-peptide antibodies were purified by affinity chromatography against the corresponding synthetic peptides coupled to CNBr-activated Sepharose. Only the affinitypurified anti-p3 antibodies bound purified insect-made rCRP2, rCRP5 and rCRP7 on Western blots under denaturing and nondenaturing conditions and recognized EPC cells transfected with pMCV1.4-*crp2-7* by immunofluorescence (data not shown).

Binding of CRP1-7 to solid-phase lipids

The binding of CRP1-7 to lipids was assayed in solid-phase 96-well plates (Nunc, Maxisorb) by modifying previously described methods [36]. The wells were coated to dryness with several concentrations of ethanol-dissolved lipids and were kept dried until ready for use. To assay for CRP1-7 binding, the plates were first washed with 0.1 M sodium borate, 1 mM CaCl₂ buffer, pH 8, and then 0.5 µg/well of rCRPs or 10-fold diluted ssCRP1-7 added in 50 µl of the same buffer and incubated for 60 min. After washing, bound CRP1-7 were detected with rabbit anti-p3 and peroxidase-labelled goat anti-rabbit IgG. Peroxidase was finally assayed with OPD as described previously [37,38]. The resulting data were interpolated and smoothed by the cubic B-spline method using Origin Pro 2017 (Northampton, MA, USA).

Binding of CRP5 pepscan peptides to solid-phase 25HOCh and docking predictions

A series of 15-mer peptides overlapping 5 amino acids of the CRP5 sequence was chemically synthesized by adding an amino-terminal biotin molecule (Chiron Mimotopes, Victoria, Australia). The synthetic pepscan peptides were diluted in distilled water to 4 mg/ml and were kept frozen until use.

To perform the binding experiments, 2 μ g of 25HOCh was dissolved in 50 μ l of ethanol and was dried into polystyrene wells of 96-well Nunc Maxisorb plates. After washing the plates with 0.1 M borate buffer pH 8, 1 mM CaCl₂, pepscan peptides (0.05 μ g in 50 μ l) were added to each of the wells and were incubated for 60 min. After washing, 1000-fold diluted peroxidase-labelled streptavidin were added and incubated for 30 min. After the last wash, OPD was used to detect the amount of peroxidase as described previously [38].

To perform the *in silico* docking predictions, the best modelled CRP5 pepscan peptide sequences predicted in solution by the Mobyle program <u>http://mobyle.rpbs.univ-paris-</u>diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD [39] were docked to all possible predicted conformations of 25HOCh. All the resulting docking data were interpolated and smoothed using the cubic B-spline method in Origin Pro 2017 (Northampton, MA, USA) and the data that best fitted pepscan binding were selected for representation. Validation of such strategy was confirmed by the high correlation obtained among similarly modeled VHSV G protein pepscan 15-mer peptides and previously published binding data to labeled phosphatidylserine [40] and phosphatidylinositol-bisphosphate [41] (data not shown).

Preparation of pMCV1.4 plasmids encoding crp1-7

Each of the chemically synthesized *crp1-7* and green fluorescent protein (*gfp*) genes was subcloned into the pMCV1.4 plasmid as described previously [7]. The resulting pMCV1.4-*crp1-7* and pMCV1.4-*gfp* plasmid constructs were used to transform *E.coli* DH5alpha, amplified and isolated using the Endofree Plasmid Midi purification Kit (Qiagen, Germany). Purified plasmid solutions containing 80–100% of plasmid DNA, as shown by agarose gel electrophoresis were stored at -20°C.

Preparation of CRP1-7-enriched supernatants

To produce ml amounts of CRP1-7-enriched supernatants (ssCRP1-7), 60% confluent EPC cell monolayers in 25 cm² bottles in 5 ml of cell culture medium were transfected with 5 µg of each of the pMCV1.4-*crp1-7* plasmids complexed with 15 µl of FuGENE HD (Promega, Madison, WI, USA) for 24 h at 22° C (transfection efficiency of 15.2–30.4%, n = 3 as estimated by transfection with pMCV1.4-*gfp*). After washing with fresh cell culture medium, the ssCRP1-7 were harvested 3-days later, the cell debris was eliminated by centrifugation, and the supernatants were sterilized by filtration through 0.2 µ filters and stored in aliquots at -80°C until ready for use [7].

SVCV infection of preincubated EPC cell monolayers with 25HOCh and ssCRP1-7

To detect the effects of 25HOCh and ssCRP1-7 (25HOCh + ssCRP1-7) on SVCV infection, the concentrations of 25HOCh, and ssCRP1-7, as well as the multiplicity of infection (m.o.i.) of SVCV were first optimized (data not shown). Optimal conditions were obtained when the EPC cell monolayers were pre-incubated with 100 μ l of 4-fold diluted ssCRP1-7 or ssGFP in RPMI with 2% FBS in the absence or presence of 10 μ M 25HOCh for 20 h at 26°C, the

monolayers were washed twice, and SVCV was added at 10^{-2} m.o.i. To estimate the extent of SVCV infection, the monolayers were incubated with SVCV for 2 h, washed, and incubated for 24 h at 26°C. The number of infected EPC cells was estimated by flow cytometry after staining with monoclonal anti-SVCV (BioX Diagnostics SA, Jemelle, Belgium) and fluoresceinlabelled goat anti-mouse immunoglobulins as described previously [7]. The number of EPC infected cells varied from 29.6–39.7% or 9.9–20.1% (n = 3) after preincubation of the EPC cell monolayers with either 25HOCh or ssCRP1-7 alone, respectively. The results of preincubation with 25HOCh + ssCRP1-7 were expressed as relative percentages of infection \pm 25HOCh calculated by the following formula, 100 × (percentage of infected EPC cells preincubated with 25HOCh + CRP1-7/ percentage of infected EPC cells preincubated in absence of 25HOCh and presence of CRP1-7).

In silico modeling of CRP1-7 tridimensional structures

To explore the CRP1-7 tridimensional structures, their protein sequences were automatically modelled (RMSD<0.3 Å) using the SWISS-MODEL homology server (https://swissmodel.expasy.org/interactive) [42-44]. The tridimensional structures of the target CRP1-7 sequences were predicted after pairwise comparison of the interfaces between the target and best template selected by the program. For each possible interface with > 10 residue-residue interactions, the QscoreOligomer score was calculated and averaged from all predicted interfaces [42,45]. The templates that resulted selected by automatic modeling corresponded to zebrafish CRP5 ± Ca++ (4PBP.pdb and 4PBO.pdb) [6] (RCSB data bank at http://www.rcsb.org/pdb/home/home.do).

Results

Preferential docking predictions of zebrafish CRP1-7 to Ch

To predict their docking ΔG energies to CRP1-7, the phosphocholine head (PC), other phospholipid heads [46–48] and cholesterol (Ch) [16] were selected because of their hCRP ligand properties. Interestingly, the results predicted the lowest ΔG (stronger binding) for Ch (ΔG ranges from -7.5 to -9 Kcal/mol) compared with phospholipid-heads (ΔG ranges from -4 to -5.5 Kcal/mol). The addition of a glycerol molecule to the phospholipid-heads did not change their predicted ΔG (S1 Table). The results also predicted that Ch docking energies were more Ca⁺⁺-independent than most other lipid-heads (Fig 1A) and predicted alternative docking locations for Ch and other lipid-heads (data not shown). These results were in contrast to the traditionally described phosphatidylcholine-binding preferences of hCRP [46–49]. Thus, although the Ch-binding properties of hCRP were described previously, their stronger binding energies were not [16]. Similar Ch-binding preferences were obtained by docking predictions made in parallel for hCRP and CRP1-7 (S1 Table).

Membrane Ch sequestration by methyl-betacyclodextrin reduces SVCV infection

To explore whether Ch could be implicated in SVCV infections, EPC cell monolayers were pretreated with methyl-betacyclodextrin (MBCD), a sequestering agent for membrane Ch [50]. Treatment with MBCD from 0.5 to 8 mM lowered the SVCV infectivity to ~ 20% (Fig 1B, black line), while those concentrations exerted no significative effects on cell survival (Fig 1B, blue dashed line). These results confirmed that the presence of Ch in the cell membranes was required for SVCV infectivity. Similar anti-viral activities of MBCD have been described, for instance, for poliovirus [51], pseudorabies [52], hepatitis [53], Sendai [54] and influenza

Zebrafish hydroxycholesterol-CRP

Fig 1. CRP1-7 preferential docking to Ch (A) and inhibition of SVCV infectivity by methyl-betacyclodextrin (**MBCD**) (**B**). **A**) Docking predictions to selected lipid-heads and Ch. CRP1-7 were SWISS-modeled using as templates CRP5 (GenBank accession number JF772178.1), 4PBP.pdb (+Ca⁺⁺) and 4PBO.pdb (-Ca⁺⁺) 3D-structures [6]. The structures were extracted from *.sdf from PubChem (<u>https://pubChem.ncbi.nlm.nih.gov/search/search.gci</u>) and converted to *.pdbqt using the Babel program from the PyRx package [30]. **PC**, phosphocholine. **PE**, phosphoethanolamine. **PS**, phosphoserine. **SPG**, palmitoyl sphingomyelin. **Ch**, cholesterol. **Numbers before the names**_. PubMed ID numbers. **Blue open circles**, consecutive CRP1-7 isoforms from left to right in the presence of Ca⁺⁺. **Red circles**, CRP5. **Black lines**, +Ca⁺⁺. **Do lines**, -Ca⁺⁺. **B**] Effect of methyl-betacyclodextrin (MBCD) on SVCV infectivity. MBCD-treated EPC cell monolayers were incubated with SVCV for 24 h and were assayed for ffu. The results were expressed as infectivity percentages calculated by the following formula, 100 × (ffu treated with MBCD / ffu nontreated with MBCD). To assay for viability, MBCD-treated EPC cell monolayers were incubated with MBCD / ffu on the absorbance at 570 nm was measured and the percentage of viability calculated using the following formula; absorbance of treated cells / absorbance of untreated cells. **Open blue or black circles and their vertical lines**, means and standard deviations (n = 2), respectively. The data were then interpolated and smoothed using the cubic B-spline method in Origin Pro 2017 (Northampton, MA, USA). **Black line**, SVCV infectivity.

https://doi.org/10.1371/journal.pone.0201509.g001

[50,55] viruses. Therefore, these results suggest that the Ch-CRP1-7 interaction may interfere with SVCV infectivity.

Because Ch-containing lipid rafts participate in interactions with hCRP [56], Ch is a key molecule involved in coronary diseases and Ch-related physiological compounds are highly diverse, an screening for other physiological Ch-related compounds was performed before studying any possible interactions among CRP1-7, Ch and viral infections.

Preferential predicted docking of zebrafish rCRPs to hydroxycholesterols (HOChs)

When 26 Ch-related physiological compounds were docked *in silico* to the modeled tridimensional structures of CRP1-7, stronger binding predictions (Δ G ranges between -7.5 to -9.3 Kcal/mol) were obtained for most of the hydroxy derivatives studied for CRP1-7 (Fig 2 and S2 Table). The Δ G values obtained in the absence or in the presence of Ca⁺⁺ were not significantly different (S2 Table). Most of the lowest Δ G values were obtained for CRP1, while CRP5 showed ~ 0.5–1 Kcal/mol higher Δ G than CRP1, depending on the Ch-related molecule. The most relevant results of these Ch-related docking predictions could be summarized as follows: i) water-soluble hydroxy Ch derivatives (HOChs) interacted with CRP1-7 within the lower Δ G ranges from -8.0 to -9 Kcal/mol; ii) among the HOChs, most of the lower Δ G values

https://doi.org/10.1371/journal.pone.0201509.g002

corresponded to CRP1, while most of the highest ΔG values corresponded to CRP5; and iii) 25-hydroxycholesterol (25HOCh) was unique among all the studied HOChs because of their lowest ΔG values (~ -9 Kcal/mol). No previous reports on 25HOCh-CRP interactions could be found in the literature.

To explore the existence of other possible Ch-related compounds with still lower ΔG values that could be used as anti-inflammatory chemotherapeutic drugs, a library of 1093 Ch-related synthetic molecules was docked to modeled CRP1-7 tridimensional structures. The frequency distribution of the predicted ΔG s showed a distribution with a mean \pm 3 standard deviations = -12 Kcal/mol (<u>S3 Table</u>). Twenty-one Ch-related nonphysiological or synthetic compounds showed the lowest ΔG values from -13.3 to -12 Kcal/mol (<u>Table 1</u>). Most of the new molecules identified contained deuterium, fluorine, bromine or chlorine atoms and 66.6% contained at least one hydroxy group per molecule. Therefore, some of these newly identified Ch-related derivatives could be further employed for drug applications and/or mechanistic studies in the

Zebrafish hydroxycholesterol-CRP

Table 1. Ch-related honorysiological combounds with the best docking breaking breaking to CKF1-	Table 1.	Ch-related nonphysiologica	l compounds with the best d	locking predictions to CRP1-7.
---	----------	----------------------------	-----------------------------	--------------------------------

ID	Name	CRP	ΔG, Kcal/mol
71749935	M Progesterone-d3 Glucuronide	CRP5	-13.3
70626502	25-F-1α-HOCh	CRP1	-13.3
71749934	M Progesterone Glucuronide	CRP5	-13.3
70626891	diF-methyl-dodecahydro-cyclopentaphenanthrene	CRP1	-13.0
493972	F-11-HO-Methyl-DioxoPregnadien-Acetate	CRP5	-12.6
192154	triFlumedroxone Acetate	CRP5	-12.6
240767	Fmetholone 17 Acetate	CRP5	-12.5
95574	F-16a,17-(isopropylidenedioxy) Corticosterone	CRP5	-12.5
71748935	20-HOCh-d7	CRP5	-12.4
21122966	6-HO-M Progesterone 17-Acetate	CRP5	-12.3
102276261	3-[(2-B-ethyl)Carbamoyl]Ch	CRP5	-12.3
71749110	HO-M Progesterone 17-Acetate	CRP5	-12.2
71748841	4–7 HOcholestenone-d7	CRP1	-12.1
57357615	17-(Acetyloxy)-C-(C-methyl)Pregnadienedione	CRP5	-12.1
126456352	24-HOCh-d4	CRP1	-12.1
71748930	4-HOCh-d7 4-Acetate	CRP5	-12.1
71315435	Cortexone M-d9	CRP1	-12.1
10476437	Flugestone 17-Acetate	CRP5	-12
71315435	Cortexone M-d9	CRP5	-12
71315434	Cortexone M-d8	CRP1	-12
71315434	Cortexone M-d8	CRP5	-12

Ch-related nonphysiological compound structures were retrieved from several libraries obtained from PubChem in a *.sdf format. To construct the library, 550 Chs, 314 colestens, 73 corticosterones, 41 dehydroepiandrosterones (DHEAs), 107 estriols, 99 pregnenolones, 196 progesterones and 107 HOChs were retrieved. Duplicated and extremely long molecules were eliminated from the total of 1487 *.sdf, resulting in a downsized library of 1093 *.pdbqt archives. After docking, the frequency distribution of ΔG showed two peaks with means at -11 and -7 Kcal/mol, respectively (S3 Table). Only Ch-related compounds with $\Delta G < -12$ Kcal/mol (mean + 3 standard deviations) are shown. **ID**, PubMed number. **HO**, hydroxy. **d**, deuterium. **F**, fluoro-. **C**, chloro-. **B**, bromo. **M**, 17-acetyl-6,10,13-trimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodeca **HO**cyclopenta[a]phenanthren-16-yl) acetate (medroxy).

https://doi.org/10.1371/journal.pone.0201509.t001

future. Next we tried to confirm some of the docking predictions mentioned above by solid-phase binding assays.

Binding of zebrafish rCRPs to hydroxycholesterols (HOChs), Ch and PC

Because of the recently described anti-viral activities of 25HOCh [57,58] and its highest predicted docking to CRP1-7, its binding was compared with Ch/PC (the former because it is the traditional ligand for hCRP). For the binding assays, we used polystyrene wells coated with the lipids [36]. Using 25HOCh to coat the solid-phase, the binding results confirmed the higher docking of rCRP5/rCRP7 to Ch/25HOCh than to PC (Fig 3A). The binding of rCRP7 to Ch/ 25HOCh was slightly higher than to rCRP2 or rCRP5 (Fig 3, rCRP7) whereas rCRP2/rCRP5 binding to Ch or PC were relatively low (Fig 3, rCRP2 and rCRP5). To complete the study, we explored all isoforms for binding to 25HOCh using supernatants from EPC cells transfected with pMCV.4-*crp1-7* (ssCRP1-7) as a source for CRP1-7. The results of these experiments showed different concentration-dependent profiles for different CRP1-7, with CRP1 being the most active at the lower 25HOCh concentrations assayed (<10 μ M) (Fig 3B and S4 Table) confirming the docking predictions. On the other hand, although CRP7 showed slightly higher binding at >100 μ M 25HOCh, similar values were obtained for all ssCRP1-7 at those higher concentrations. The binding of ssCRP1-7 to solid-phase 25HOCh showed relatively lower

Zebrafish hydroxycholesterol-CRP

Fig 3. rCRP (A) and ssCRP1-7 (B) binding to solid-phase lipids. The binding of purified rCRPs and ssCRP1-7 to selected lipids was assayed by using 96-well plates coated to dryness with several lipid concentrations dissolved in ethanol. The lipid-coated plates were washed and were incubated with rCRP2 or ssCRP1-7 in borate buffer for 1 h in a 50 µl volume. To detect bound rCRP or ssCRP1-7, tabbit anti-CRP p3 peptide, peroxidase-labeled goat anti-rabbit IgG and OPD were used as described previously [37,38]. The means and standard deviation from 2 independent experiments were represented. A) rCRP at 0.5 µg/well in borate buffer. **Open triangles**, solid-phase phosphatidylcholine (PC). **Open circles**, solid-phase Ch. **Black circles**, solid-phase 25HOCh. **B**) ssCRP1-7 were 10-fold diluted in borate buffer. Results from one experiment out of three were interpolated and smoothed using the cubic B-spline method in Origin Pro 2017 (Northampton, MA, USA) (see data in 54 Table). **Black points**, supernatant from pMCV1.4-*crp1* transfected cells. **Blue line**, supernatant from pMCV1.4-*crp3* transfected cells. **Gray line**, supernatant from pMCV1.4-*crp4* transfected cells. **Red line**, supernatant from pMCV1.4-*crp5* transfected cells. **Carega line**, supernatant from pMCV1.4-*crp5* transfected cells.

https://doi.org/10.1371/journal.pone.0201509.g003

values than that to rCRPs, most probably due to the lower CRP concentrations in the ssCRP1-7 (compare the ordinate values of Fig 3A and 3B).

Mapping of both binding and docking energies of CRP5 to 25HOCh

To further clarify 25HOCh binding to CRP1-7, we performed a pepscan approximation to map the interaction. Because m-hCRP, but not p-hCRP is the conformation that preferentially

binds Ch [16,17,59], some nonconformational motifs may conserve Ch-/25HOCh-binding activity and thus a pepscan may be used to map at least some conformation-independent binding. Therefore, we selected a pepscan to explore for possible non-conformational interactions of CRP5 with 25HOCh using both solid-phase binding assays and docking predictions.

For the peptide binding assays, each of the synthetically biotinylated 15-mer peptides derived from the CRP5 amino acid sequence was incubated with 25HOCh-coated solid-phases. The results showed maximal binding peaks at the ~ 30–50, 70–90, 110–150 and 170–190 amino acid positions (Fig 4A, black line). Similar peaks docked with minimal ΔG to 25HOCh (Fig 4A, blue line). Of the 25HOCh binding/docking peaks identified, only the 30–50 was in a similar region to that of the 35–47 peptide previously identified in hCRP as the main Ch-binding domain [16]. To locate the predicted interaction of 25HOCh with the CRP1-7 tridimensional structures we used PyMol. The 25HOCh docked at the CRP5 interface side with ΔG between -7.5 and -8.4 Kcal/mol (some of the contact positions at T41, E48, R71, F84, F85, S117) (Fig 4A, CRP5). By contrast, the 25HOCh docked at other CRP1-7 effector faces under the α -helix with ΔG between -8.6 and -9.1 Kcal/mol (some of the contact positions for CRP1 at R113, S115, G153, E154, Y161, and E206) (Fig 4B, CRP1). Similar ΔG values (S5 Table) and docking locations were predicted for m- or t-CRP5. Similar docking locations were predicted for 25HOCh and Ch for most CRP1-7 within $\pm \Delta G > -0.5$ Kcal /mol (S5 Table).

Therefore, both the pepscan binding and docking predictions, confirmed the existence of an interaction between 25HOCh and CRP5, which most likely can be extended to all CRP1-7.

In vitro anti-SVCV effects caused by CRP1-7 in the presence of 25HOCh

Hydroxylated Chs (HOChs) are Ch oxidized derivatives with diverse biological activities, most of them correlating with inflammatory responses [60] similar to CRP. Among the HOChs, 25HOCh showed minimal Δ G docking predictions for CRP1-7 (-8 to -9 Kcal/mol, corresponding to concentrations between 1.35 and 0.35 μ M) (Fig.3). Among their biological activities, 25HOCh has been related to viral infections [58,61], including the reduction of spring viremia carp virus (SVCV) infection in zebrafish [57]. Because of the Ch-dependence of SVCV infection (Fig.1B), the reduction of SVCV infection by zebrafish ssCRP1-7 [7] was chosen as an example of possible CRP1-7- HOChs interactions affecting the same biological function.

Because both 25HOCh [57] and CRP1-7 [7] have demonstrated their independent anti-SVCV activities, their concentrations were first independently titrated at different multiplicities of infection (m.o.i.) of SVCV to maximize the limits of detection when they were to be used together. Under those optimal conditions, the extent of SVCV infections obtained using ssCRP1-7 + 25HOCh (ssCRP1-7 + 25HOCh/ssCRP1-7 ratios) compared with 25HOCh (GFP + 25HOCh) were further reduced by 1.5 to 3-fold depending on the CRP1-7 isoform (Fig 5A). Similar results were obtained with rCRP5 and rCRP7 but not with rCRP2 (data not shown). The above results suggested that 25HOCh in the presence of CRP1-7 further enhanced the anti-viral effects caused by either 25HOCh or CRP1-7 alone. It is still too early to know the mechanisms implicated, because the interaction of 25HOCh with the L polymerase of SVCV [57], or inhibition of glycosylation by 25HOCh in other rhabdoviruses [62], may suggest that the binding of 25HOCh to some viral proteins cannot be excluded. Furthermore, other possible interactions among 25HOCh, CRP (direct effect) and/or other CRP-induced molecules (indirect effects) present in ssCRP1-7, may still explain the above mentioned antiviral effects.

To further explore any possible correlations among CRP1-7 tridimensional structures and 25HOCh binding or antiviral effects, we next studied whether different oligomeric forms were present in ssCRP1-7.

Zebrafish hydroxycholesterol-CRP

Fig 4. Solid-phase binding and docking predictions to 25HOCh of CRP5 pepscan peptides (A) and predicted best docking location (B). A) For the peptide-binding assays, a series of 15-mer peptides overlapping 5 amino acids from CRP5 was chemically synthesized by adding an amino-terminal biotin molecule. Solid-phases were coated with 2 μg per well of 25HOCh into polystyrene 96-well plates. The binding of 0.05 μg of

Zebrafish hydroxycholesterol-CRP

biotinylated pepscan peptides, detection with peroxidase-labeled streptavidin and staining with OPD were then performed. The means from 3 independent experiments were represented and standard deviations omitted for clarity (<u>55 Table</u>). For the *in silico* docking predictions, the modeled pepscan peptides with the lowest energies were docked to several possible conformations of 25HOCh as described in the methods section. The docking energies that best fitted the binding data were then represented (<u>55 Table</u>). **Black line**, peptide binding to 25HOCh. **Blue line**, predicted ΔG energy of peptide docking to 25HOCh. **B**) PyMOL representation of the lowest energy structures of CRP5 and CRP1 complexed to 25HOCh (the remaining CRP1-7 were similar). **Green**, CRP amino acid chains. **Red**, 25HOCh. **Blue circles**, Ca⁺⁺ atoms located at the PC-binding pocket [<u>6</u>].

https://doi.org/10.1371/journal.pone.0201509.g004

Insect-made rCRPs suggest their different oligomerization states

The *E.coli*-made zebrafish c-reactive protein CRP5 isoform (rCRP5) was crystallized as trimers (t-CRP5), as shown by X-ray studies [6]. However, it is not yet known whether trimers are the physiological form for the remaining CRP1-7 isoforms.

Our first attempts to characterize CRP1-7 isoforms included expression in *E.coli*. However, numerous experiments met with irreproducibility, expression failure, high CRP denaturation

Fig 5. Anti-SVCV infectivity after treatment of EPC cell monolayers with 25HOCh and CRP1-7. A) EPC cell monolayers were incubated with 100 µl of ssGFP or ssCRP1-7 4-fold diluted in RPMI with 2% FBS ± 10 µM 25HOCh for 20 h at 26°C. After washing, 10^{-2} m.o.i of SVCV were added and incubated for 24 h. After staining with anti-SVCV and fluorescein-labeled goat anti-mouse immunoglobulins [2], the number of fluorescent cells were estimated by flow cytometry. B) Representative aspects of histograms from nonfluorescent cells. The number of SVCV-infected EPC cells were drowed from 12.7 to 50.6% (n = 5), depending on the experiment. The results were expressed as relative infection percentages calculated by the following formula, 100 × (number of infected cells+25HOCh / number of infected cells+25HOCh). The means and standard deviations of a representative experiment were represented (n = 3). *, statistically < than cells transfected with ssGFP at p < 0.05 (Student's t-test).

https://doi.org/10.1371/journal.pone.0201509.g005

Zebrafish hydroxycholesterol-CRP

or low yields, despite the reduction of autoinduction and temperature, and/or recloning of the best-producing clones (data not shown). Most probably some of those results could be explained by the toxicity of the rCRPs to *E.coli*.

Alternatively, we explored the production of rCRP1/rCRP2/rCRP5/CRP7 in insect cells. The results showed that while insect-made rCRP2/rCRP5/rCRP5 could be expressed and purified by nondenaturing affinity chromatography, all attempts to purify rCRP1 were unsuccessful. Western blot analysis using anti-polyH antibodies indicated that although small amounts of rCRP1 were present, they were not retained by the affinity columns (data not shown), most likely due to polyH tail inaccessibility, perhaps because of a different conformation of rCRP1 compared with that of the other rCRPs.

Polyacrylamide gel electrophoresis (PAGE) in the absence of SDS in the buffers, treating the samples under nondenaturing conditions (no heat, no SDS, no β -mercaptoethanol and 1 mM CaCl₂), and Western blotting with anti-p3 antibodies, showed that rCRP2 (calculated isoelectric point IP of 6.35) banded at an apparent molecular weight > 100 kDa, while rCRP5 (IP 4.6) and rCRP7 (IP 4.6) banded at ~ 75 kDa (Fig 6A left). A brief (2 min) treatment of the rCRP samples under denaturing conditions, increased the migration of all rCRP, especially that of rCRP7 (Fig 6A right). Although, in the absence of SDS, the estimation of the molecular weights is not accurate, the results suggested larger sizes for rCRP2/rCRP5 than for rCRP7, according to previous electrophoretic data described for p-hCRP and m-hCRP [63].

By contrast, by applying PAGE in the presence of SDS in the buffers, samples under nondenaturing conditions and Western blotting, all the rCRP displayed similar bands that could be interpreted as residual amounts of trimers (~75 kDa), dimers (~50 kDa) and monomers (~25 kDa) (Fig 6B, left). The number of monomers increased when the samples were briefly treated (2 min) under denaturing conditions; especially for rCRP7, only monomers were detected (Fig 6B, middle). All rCRP became homogeneously monomeric (~25 kDa) when the samples were treated for longer (5 min) under denaturing conditions (Fig 6B, right). The slightly different positions of the monomeric forms could be due to differences in their glycosylation, although posttranscriptional deimidation has also been described in cod CRPs to cause electrophoretic heterogeneity [64].

The most likely explanation for all the above commented data suggest that, while insectmade rCRP2/rCRP5 may exist as an equilibrium among trimers, dimers and monomers, rCRP7 has a stronger tendency to form monomers.

Only monomeric CRP1-7 could be detected from enriched supernatants

Western blotting of ssCRP1-7 using anti-p3 antibodies, only detected CRP2-7 monomers of ~ 25 kDa with slightly different positions for each ssCRP2-7, with similar profiles under denaturing (Fig 6C, down), 20-fold lower SDS concentration (not shown)[65] and nondenaturing (data not shown) sample and buffer conditions. Similar CRP2-7 levels were present in ssCRP2-7 as shown using actin as an internal control marker (Fig 6C, up). In these experiments, it was not possible to detect the presence of any CRP1 band, most likely because of its lower concentration, because previous results have demonstrated its presence by dot-blot analysis when using concentrated ssCRP1 [7]. Therefore, most likely, all ssCRP1-7 were secreted from EPC transfected cells mainly as monomers. Tridimensional structure predictions were used to further explore these possibilities.

In silico predictions of CRP1-7 tridimensional structures

To obtain more data on the possible tridimensional structures of CRP1-7, their amino acid sequences were modeled using the SWISS-MODEL web program. Automatic modeling showed that only CRP2/CRP5 rendered trimers, while the remaining of the CRP1-7 only

Zebrafish hydroxycholesterol-CRP

Fig 6. Polyacrylamide gel electrophoresis and Western blotting of rCRPs (A,B,C) and ssCRP1-7 (D). The insect-made affinity purified samples were electrophoresed in 4–20% gradient polyacrylamide gels. A) Samples of rCRPs prepared and electrophoresed in the absence of SDS in the buffers and stained

with Coomassie (nondenaturing conditions). **B**) Samples of rCRPs heated at 100°C in the presence of ß-mercaptoethanol and SDS, electrophoresed in the presence of SDS in the buffers (denaturing conditions) and stained with Coomassie. **C**) Western blotting of the gel B transferred to nitrocellulose membranes, stained with anti-p3 antibody, peroxidase-labeled anti-rabbit and overexposed to diaminobenzidine (DAB) [<u>37</u>]. The ssCRP1-7 were electrophoresed in 15% polyacrylamide gels. **D**) Samples of ssCRP1-7 treated at 100°C in the presence of ß-mercaptoethanol and SDS, electrophoresed in the presence of SDS in the buffers, transferred to nitrocellulose membranes, stained with anti-actin (up) or anti-p3 (down) antibody, peroxidase-labeled anti-rabbit IgG and developed by chemiluminescence [<u>7</u>]. Similar results were obtained with samples electrophoresed under nondenaturing conditions (data not shown). **Numbers around the gels**, molecular weight markers in kDa. **Up left arrow**, position recognized by anti-actin antibodies. **Down left arrow**, position of purified rCRP5 recognized by anti-p3 antibodies. The results are representative of at least 3 experiments.

https://doi.org/10.1371/journal.pone.0201509.g006

modeled as monomers (<u>Table 2</u>). These results could be explained because CRP2/CRP5 have differences in most of their modeling parameters, specially in their torsion-angle potentials, compared with the other CRP1-7 (<u>Table 2</u>). Because the existence of EST from zebrafish in the UniGene Bank classified as CRP5 transcript variants [<u>6</u>] offered another opportunity to test the reliability of the trimer/monomer predictions mentioned above, we explored these sequences by automatic modeling. The corresponding modeling results predicted that 97.8% of the 47 CRP5 longest variant sequences modelled as trimers such as CRP2/CRP5. The comparison of the CRP5 variant amino acid sequences demonstrated 2-3-times more variations downstream of position 200 than in the rest of the molecule (Fig 7, red). On the other hand, most amino acid variations among the CRP1-7 isoforms were in the PC-binding pockets or hCRP-homologous Ch-binding domain (Fig 7, blue or green rectangles, respectively). Therefore, these results predicted the tendency of CRP2, CRP5 and CRP5-transcript variants to oligomerize as trimers and prompted further studies about the biological significance of both CRP isoforms and variants.

Discussion

The PAGE/Western data and *in silico* predictions, together with the results of 25HOCh binding and enhancement of anti-SVCV effects by ssCRP1-7, may implicate more m-CRP1-7 rather than t-CRP1-7 in those biological functions. However, CRP1-7 may also physiologically exist as an equilibrium of trimers, dimers and monomers, as shown in the cases of CRP2/

isoform	Acc.number	Automatic SWISS prediction	QMEAN	Cß	AA	so	то
CRP1	XM_693995.4	monomer	-0.55	-1.36	-1.03	-1.03	0.01
CRP2	BC097160	homotrimer	0.77	-1.64	-1.08	-0.92	1.19
CRP3	BC154042	monomer	0.01	-1.15	-1.15	-1.03	0.51
CRP4	BC115188	monomer	-1.81	-1.65	-1.95	-1.33	-1.07
CRP5	BC121777	homotrimer	1.42	-0.71	-0.89	-0.60	1.62
CRP5-	Dr.124528-	97.8%	1.12	-0.90	-0.99	-0.68	1.30
47 variants	Dr.162306	homotrimers	±0.31	±0.5	±0.2	±0.4	±0.5
CRP6	BC162745	monomer	-0.45	-1.20	-1.17	-1.34	0.15
CRP7	BC150371	monomer	-0.42	-1.04	-1.22	-1.28	0.15

Table 2. Parameter values of in silico-predicted CRP1-7 oligomeric structures.

The CRP1-7 amino acid sequences [2] were modeled as tridimensional structures using the SWISS-MODEL server with automatic template selection. Additionally, 47 full-length CRP5 amino acid sequences were modeled from 73 zebrafish *crp5* EST variants (UniGene Dr.124528-Dr.162306) [6]. **QMEAN**, estimation of the total similarity to the template, comprising 4 individual Z-score parameters (Cß, all-atom, solvation and torsion). The individual Z-scores compare the predicted tridimensional structures with the template as follows: **i**) Cß atoms of three consecutive amino acids (**C**B), **ii**) all-atoms (**AA**), **iii**) solvation burial status of the residues (**SO**) and **iv**) torsion angle potentials (**TO**). Low QMEAN score values indicate low similarity to the template. High QMEAN score values indicate high similarity to the template. **Bold**, highest and/or lowest score values. **Gray**, CRP2/CRP5. The mean ± standard deviation (n = 47) of the calculated score values of the CRP5-transcript variants were represented.

https://doi.org/10.1371/journal.pone.0201509.t002

Zebrafish hydroxycholesterol-CRP

https://doi.org/10.1371/journal.pone.0201509.g007

CRP5 and, to a lower extent CRP7. On the other hand, because m-hCRP can also be produced during *in vitro* manipulations, for instance, by treatments in the absence of Ca⁺⁺ with urea, low-pH or low-salt buffers [65,66], the m-CRP1-7 detected in this work may have been produced by other *in vitro* manipulations (e.g., purification by affinity chromatography in the absence of Ca⁺⁺ or transfection of EPC cells). We may also speculate that t-CRP1-7 or at least CRP2/CRP5 could preferentially exist in fish until an unknown stimulus triggers their conversion to m-CRP1-7 and/or *viceversa*. Similarly, circulating hCRP is pentameric (p-hCRP) [13] and converts to the monomeric form (m-hCRP) after interaction with any exposed phosphocholine heads and/or Ch-enriched lipid rafts of cellular membranes in damaged tissues [16,17,59,63]. It is tempting to speculate that t-CRP2/CRP5 may be functionally analogous to the circulating p-hCRP and m-CRP1-7 could be analogous to the converted m-hCRP. Alternatively, all zebrafish m-CRP1-7 may be synthesized *de novo* as monomers. We may also think of the possibility of heterologous CRP1-7 oligomers. However, any of these possibilities remains speculative until specific reagents could be developed to differentiate each of those isoforms.

Zebrafish hydroxycholesterol-CRP

Together, the above commented evidence shows that the oligomeric state of CRP1-7 isoforms fine tunes their lipid binding and, at least, some of their resulting heterogeneity of biological functionalities, as suggested previously [2,6,7]. Thus, previous transcriptomic studies on zebrafish *crp1-7* genes have demonstrated differential transcript expression throughout tissues [67], in survivors of VHSV infection [20] and in *rag1^{-/-}* mutants defective in adaptive immunity [21]. Additionally, unexpected isoform-dependent *in vitro* and *in vivo* anti-viral activities were recently described for zebrafish CRP1-7 [7], while similar activities have never been reported for hCRP, or for any other CRP. In all those studies, *crp2/*CRP2 and *crp5/*CRP5 transcripts/proteins were the most modulated during either bacterial and viral infections, correlating with the higher trimeric propensity of CRP2/CRP5 and in sharp contrast to *crp1/* CRP1 and *crp7/*CRP7 which had remained mostly unmodulated. These findings together with the preference of CRP1-7 for hydroxycholesterol derivatives shown in this work, revealed fish primitive anti-viral functional CRP1-7 diversity that may also be relevant to the single-geneencoded hCRP.

The relevance of these explorations in the CRP1-7 lipid interactions with viral infection diseases may have important implications for human diseases. For instance, the abundance of oxidized Chs in human atherosclerotic plaques amplifies the impact that hCRP-Ch interactions may have for vascular diseases and neurodegenerative disorders during viral infections [58,68,69].

Supporting information

S1 Table. Docking predictions to selected lipid-heads and Ch. The CRP1-7 were SWISSmodeled using the 3D structures CRP5 (GenBank accession number JF772178.1), 4PBP.pdb (+Ca⁺⁺) and 4PBO.pdb (-Ca⁺⁺) as templates. The structures of the lipid heads and cholesterol were extracted from *.sdf from PubChem (<u>https://pubchem.ncbi.nlm.nih.gov/search/search.</u> cgi) and converted to *.pdbqt using the Babel program from the PyRx package. Dockings were performed with a grid of 50x50x50 Angstrom. **Yellow background**, data used to derive <u>Fig 1A</u>. (XLSX)

S2 Table. CRP1-7 docking predictions to several Ch-related physiological molecules in the absence and presence of Ca⁺⁺. CRP1-7 models, Ch-related physiological molecules and ΔG predictions were obtained as described in the legend of Fig 2. Numbers before the names_, PubMed ID numbers. HO, hydroxy. Ch, cholesterol. (XLSX)

S3 Table. Docking predictions of binding of Ch-related nonphysiological compounds to CRP1-7. Ch-related nonphysiological compound structures were retrieved from several libraries obtained from PubChem in a *.sdf format. To construct the library, 550 Chs, 314 colestens, 73 corticosterones, 41 dehydroepiandrosterones (DHEAs), 107 estriols, 99 pregnenolones, 196 progesterones and 107 HOChs were retrieved. Duplicated and extremely long molecules were eliminated from a total of 1487 *.sdf, resulting in a downsized library of 1093 *.pdbqt archives. The docking were performed to CRP1-7 modelled in the absence or in the presence of Ca⁺⁺ (crp ±Ca++). A) Table of Ch-related compounds ordered from the lowest to the highest ΔG (free-binding energies) in Kcal/mol after docking to CRP1-7. Yellow background, data used to derive Table 1. B) Distribution of ΔG in relative frequencies. Black arrow, cut-off ΔG value chosen to derive Table 1. C) Correlation between the ΔG s from the dockings using CRP +Ca⁺⁺ and CRP-Ca⁺⁺.

(XLSX)

S4 Table. ssCRP1-7 binding to solid-phase 25HOCh. The binding of ssCRP1-7 to 25HOCh was assayed using plates of 96-wells coated to dryness with 0.15 to 500 μ M 25HOCh dissolved in ethanol. The 25HOCh-coated plates were washed with borate buffer and incubated with ssCRP1-7 in borate buffer for 1 h in a 50 μ l volume. Bound ssCRP1-7 were detected using rabbit anti-CRP p3 peptide, peroxidase labeled goat anti-rabbit IgG and OPD. Raw absorbances were measured at 492–620 nm. Absorbance obtained with empty wells were subtracted to all data. Yellow background, data used to derive Fig 3B. (XLSX)

S5 Table. Solid-phase binding and docking prediction raw data with their calculations of 25HOCh and the CRP5 pepscan interactions. For the 25HOCh-binding, a series of 15-mer peptides overlapping 5 amino acids from the CRP5 sequence were chemically synthesized adding an amino-terminal biotin molecule. Solid-phases were coated with 2 µg per well of 25HOCh into polystyrene 96-well plates. Binding of 0.05 µg biotinylated pepscan peptides, detection with peroxidase-labelled streptavidin and staining with OPD were then performed. For the *in silico* docking predictions, the modeled pepscan peptides with the lowest ΔG energies in solution were docked to all possible conformations of 25HOCh. n° peptide, position of the middle amino acid of each 15-mer peptide of the pepscan. 1,2,3,4..., number of replicas of 25HOCh-binding or predicted 25HOCh-CRP5 conformations of 25HOCh in the 25HOCh-CRP5 complexes. \pm sd, standard deviations. Poses, list of Δ G of the predicted complexes for the different conformations of 25HOCh when docked to the CRP5 peptides. docking best pose, the pose which resulted in the best fitting to the 25HOCh-binding data. Bold gray background, 25HOCh-binding data which was represented in Fig 4A which was represented in Fig <u>4A</u>. Bold yellow background, predicted Kcal/mol Δ G of peptide docking to 25HOCh which best fitted the binding data. *, non-significant highest ΔG energies > -1.1 were adjusted to -2.5 Kcal/mol for best fitting the binding data. (XLSX)

S6 Table. Number of amino acids per position after alignement among EST-derived amino acid sequences of CRP5 and CRP5 transcript variants. Transcript variants corresponding to the zebrafish *crp5* gene were retrieved from UniGene Dr.124528-Dr.162306. ORFs > 100 amino acids were translated by the Virtual Ribosome software (<u>http://www.cbs.dtu.dk/services/VirtualRibosome/</u>), numbered without their signal peptides (¹FKNL...in CRP5) and aligned to the sequence of CRP5 (BC121777). **Amino acid**, amino acids written in the three or single letter code. **Number**, different amino acids per position in CRP5 and CRP5 EST-derived variants.

(XLSX)

Acknowledgments

We are grateful to Paula Perez Gonzalez who helped with the experimentation. Dr.Jose Antonio Encinar and Dra. Marcela Giudici from the IBMC-UMH, revised the docking prediction data and helped to perform gel electrophoresis experiments under native conditions, respectively. Melissa Bello-Perez was supported by the Generalidad Valenciana, fellowship ACIF/ 2016.

Author Contributions

Conceptualization: Luis Perez, Julio Coll. Formal analysis: Julio Coll.

Funding acquisition: Beatriz Novoa, Luis Perez.

Investigation: Melissa Bello-Perez, Alberto Falco, Julio Coll.

Methodology: Melissa Bello-Perez, Alberto Falco.

Resources: Beatriz Novoa, Luis Perez.

Supervision: Beatriz Novoa, Luis Perez, Julio Coll.

Writing - original draft: Luis Perez, Julio Coll.

Writing - review & editing: Luis Perez, Julio Coll.

References

- Bottazzi B, Inforzato A, Messa M, Barbagallo M, Magrini E, et al. (2016) The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol 64: 1416–1427. <u>https://doi.org/10.1016/j.jhep.2016.02.029</u> PMID: <u>26921689</u>
- Falco A, Cartwright JR, Wiegertjes GF, Hoole D (2012) Molecular characterization and expression analysis of two new C-reactive protein genes from common carp (Cyprinus carpio). Dev Comp Immunol 37: 127–138. <u>https://doi.org/10.1016/j.dci.2011.10.005</u> PMID: <u>22079493</u>
- Wang J, Tang B, Liu X, Wu X, Wang H, et al. (2015) Increased monomeric CRP levels in acute myocardial infarction: a possible new and specific biomarker for diagnosis and severity assessment of disease. Atherosclerosis 239: 343–349. <u>https://doi.org/10.1016/j.atherosclerosis.2015.01.024</u> PMID: <u>25682033</u>
- Braig D, Nero TL, Koch HG, Kaiser B, Wang X, et al. (2017) Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat Commun 8: 14188. <u>https://doi.org/10.1038/ ncomms14188</u> PMID: <u>28112148</u>
- McFadyen JD, Kiefer J, Braig D, Loseff-Silver J, Potempa LA, et al. (2018) Dissociation of C-Reactive Protein Localizes and Amplifies Inflammation: Evidence for a Direct Biological Role of C-Reactive Protein and Its Conformational Changes. Front Immunol 9: 1351. <u>https://doi.org/10.3389/fimmu.2018.</u> 01351 PMID: 29946323
- Chen R, Qi J, Yuan H, Wu Y, Hu W, et al. (2015) Crystal structures for short-chain pentraxin from zebrafish demonstrate a cyclic trimer with new recognition and effector faces. J Struct Biol 189: 259–268. https://doi.org/10.1016/j.jsb.2015.01.001
 PMID: 25592778
- Bello-Perez M, Falco A, Medina-Gali R, Pereiro P, Encinar JA, et al. (2017) Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Mol Immunol 91: 145–155. <u>https://doi.org/10.1016/j.molimm.2017.09.005</u> PMID: <u>28915434</u>
- Inforzato A, Doni A, Barajon I, Leone R, Garlanda C, et al. (2013) PTX3 as a paradigm for the interaction of pentraxins with the complement system. Semin Immunol 25: 79–85. <u>https://doi.org/10.1016/j.smim.</u> 2013.05.002 PMID: <u>23747040</u>
- Vilahur G, Badimon L (2015) Biological actions of pentraxins. Vascul Pharmacol 73: 38–44. <u>https://doi.org/10.1016/j.vph.2015.05.001</u> PMID: <u>25962566</u>
- Caprio V, Badimon L, Di Napoli M, Fang WH, Ferris GR, et al. (2018) pCRP-mCRP Dissociation Mechanisms as Potential Targets for the Development of Small-Molecule Anti-Inflammatory Chemotherapeutics. Front Immunol 9: 1089. <u>https://doi.org/10.3389/fimmu.2018.01089</u> PMID: <u>29892284</u>
- Bang R, Marnell L, Mold C, Stein MP, Clos KT, et al. (2005) Analysis of binding sites in human C-reactive protein for Fc{gamma}RI, Fc{gamma}RIIA, and C1q by site-directed mutagenesis. J Biol Chem 280: 25095–25102. <u>https://doi.org/10.1074/jbc.M504782200</u> PMID: <u>15878871</u>
- Lu J, Marjon KD, Mold C, Du Clos TW, Sun PD (2012) Pentraxins and Fc receptors. Immunol Rev 250: 230–238. https://doi.org/10.1111/j.1600-065X.2012.01162.x PMID: 23046133
- Wu Y, Potempa LA, El Kebir D, Filep JG (2015) C-reactive protein and inflammation: conformational changes affect function. Biol Chem 396: 1181–1197. <u>https://doi.org/10.1515/hsz-2015-0149</u> PMID: <u>26040008</u>
- Eisenhardt SU, Habersberger J, Peter K (2009) Monomeric C-reactive protein generation on activated platelets: the missing link between inflammation and atherothrombotic risk. Trends Cardiovasc Med 19: 232–237. <u>https://doi.org/10.1016/j.tcm.2010.02.002</u> PMID: 20382347
- Eisenhardt SU, Thiele JR, Bannasch H, Stark GB, Peter K (2009) C-reactive protein: how conformational changes influence inflammatory properties. Cell Cycle 8: 3885–3892. <u>https://doi.org/10.4161/cc. 8.23.10068</u> PMID: <u>19887916</u>

- Li HY, Wang J, Meng F, Jia ZK, Su Y, et al. (2016) An Intrinsically Disordered Motif Mediates Diverse Actions of Monomeric C-reactive Protein. J Biol Chem 291: 8795–8804. <u>https://doi.org/10.1074/jbc.</u> M115.695023 PMID: 26907682
- Wang MY, Ji SR, Bai CJ, El Kebir D, Li HY, et al. (2011) A redox switch in C-reactive protein modulates activation of endothelial cells. FASEB J 25: 3186–3196. <u>https://doi.org/10.1096/fj.11-182741</u> PMID: 21670067
- Lv JM, Lu SQ, Liu ZP, Zhang J, Gao BX, et al. (2018) Conformational folding and disulfide bonding drive distinct stages of protein structure formation. Sci Rep 8: 1494. <u>https://doi.org/10.1038/s41598-018-20014-y</u> PMID: <u>29367639</u>
- Bello M, Falco A, Medina R, Encinar JA, Novoa B, et al. (2017) Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. Developmental & Comparative Immunology 69: 33–40.
- Estepa A, Coll JM (2015) Innate multigene family memories are implicated in the viral-survivor zebrafish phenotype. Plos One 10: e0135483. https://doi.org/10.1371/journal.pone.0135483 PMID: 26270536
- Garcia-Valtanen P, Martinez-Lopez A, Lopez-Munoz A, Bello-Perez M, Medina-Gali RM, et al. (2017) Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes. Front Immunol 8: 121. <u>https://doi.org/10.3389/fimmu.2017.00121</u> PMID: <u>28243233</u>
- 22. Shrivastava AK, Singh HV, Raizada A, Singh SK (2015) C-reactive protein, inflammation and coronary heart disease. The Egyptian Heart Journal 67: 89–97.
- Wu YP, Sun DD, Wang Y, Liu W, Yang J (2016) Herpes Simplex Virus Type 1 and Type 2 Infection Increases Atherosclerosis Risk: Evidence Based on a Meta-Analysis. Biomed Res Int 2016: 2630865. <u>https://doi.org/10.1155/2016/2630865</u> PMID: 27195284
- Voulgaris T, Sevastianos VA (2016) Atherosclerosis as Extrahepatic Manifestation of Chronic Infection with Hepatitis C Virus. Hepat Res Treat 2016: 7629318. <u>https://doi.org/10.1155/2016/7629318</u> PMID: 26885388
- Adinolfi LE, Zampino R, Restivo L, Lonardo A, Guerrera B, et al. (2014) Chronic hepatitis C virus infection and atherosclerosis: clinical impact and mechanisms. World J Gastroenterol 20: 3410–3417. https://doi.org/10.3748/wjg.v20.i13.3410 PMID: <u>24707124</u>
- McKibben RA, Haberlen SA, Post WS, Brown TT, Budoff M, et al. (2016) A Cross-sectional Study of the Association Between Chronic Hepatitis C Virus Infection and Subclinical Coronary Atherosclerosis Among Participants in the Multicenter AIDS Cohort Study. J Infect Dis 213: 257–265. <u>https://doi.org/10. 1093/infdis/jiv396</u> PMID: 26216904
- Shah S, Ma Y, Scherzer R, Huhn G, French AL, et al. (2015) Association of HIV, hepatitis C virus and liver fibrosis severity with interleukin-6 and C-reactive protein levels. AIDS 29: 1325–1333. <u>https://doi.org/10.1097/QAD.0000000000654</u> PMID: <u>25870985</u>
- Yang J, Gustavsson AL, Haraldsson M, Karlsson G, Norberg T, et al. (2017) High-affinity recognition of the human C-reactive protein independent of phosphocholine. Org Biomol Chem 15: 4644–4654. <u>https://doi.org/10.1039/c7ob00684e</u> PMID: <u>28513744</u>
- Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31: 455–461. <u>https://doi.org/10.1002/jcc.21334</u> PMID: <u>19499576</u>
- Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263: 243–250. <u>https://doi.org/10.1007/978-1-4939-2269-7_19</u> PMID: <u>25618350</u>
- Shityakov S, Forster C (2014) In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv Appl Bioinform Chem 7: 23–36. <u>https://doi.org/ 10.2147/AABC.S63749</u> PMID: <u>25214795</u>
- Fijan N, Petrinec Z, Sulimanovic D, Zwillenberg LO (1971) Isolation of the viral causative agent from the acute form of infectious dropsy of carp. Veterinary Archives 41: 125–138.
- ICTV (2015) Implementation of taxon-wide non-Latinized binomial species names in the family Rhabdoviridae. Rhabdoviridae Study Group: 9.
- Perez-Filgueira DM, Resino-Talavan P, Cubillos C, Angulo I, Barderas MG, et al. (2007) Development of a low-cost, insect larvae-derived recombinant subunit vaccine against RHDV. Virology 364: 422– 430. <u>https://doi.org/10.1016/j.virol.2007.03.016</u> PMID: <u>17434554</u>
- Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, et al. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85. PMID: <u>3843705</u>
- Biro A, Cervenak L, Balogh A, Lorincz A, Uray K, et al. (2007) Novel anti-cholesterol monoclonal immunoglobulin G antibodies as probes and potential modulators of membrane raft-dependent immune functions. J Lipid Res 48: 19–29. https://doi.org/10.1194/jlr.M600158-JLR200 PMID: 17023738

- Torrent F, Villena A, Lee PA, Fuchs W, Bergmann SM, et al. (2016) The amino-terminal domain of ORF149 of koi herpesvirus is preferentially targeted by IgM from carp populations surviving infection. Arch Virol 161: 2653–2665. <u>https://doi.org/10.1007/s00705-016-2934-4</u> PMID: <u>27383208</u>
- Coll JM (2018) Herpesvirus infection induces both specific and hetrologous anti-viral antibodies in carp. Frontiers in Immunology 9.
- Neron B, Menager H, Maufrais C, Joly N, Maupetit J, et al. (2009) Mobyle: a new full web bioinformatics framework. Bioinformatics 25: 3005–3011. <u>https://doi.org/10.1093/bioinformatics/btp493</u> PMID: 19689959
- 40. Estepa A, Coll JM (1996) Pepscan mapping and fusion related properties of the major phosphatidylserine-binding domain of the glycoprotein of viral hemorrhagic septicemia virus, a salmonid rhabdovirus. Virology 216: 60–70. https://doi.org/10.1006/viro.1996.0034 PMID: 8615007
- Estepa AM, Rocha AI, Mas V, Perez L, Encinar JA, et al. (2001) A protein G fragment from the Salmonid viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH. Journal of Biological Chemistry 276: 46268–46275. <u>https://doi.org/10.1074/jbc. M108682200 PMID: 11590161</u>
- Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, et al. (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42: W252–258. <u>https://doi.org/10.1093/nar/gku340</u> PMID: 24782522
- Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201. <u>https://doi.org/10.1093/bioinformatics/bti770</u> PMID: 16301204
- Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723. <u>https://doi.org/10.1002/elps.1150181505</u> PMID: <u>9504803</u>
- Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T (2011) Assessment of template based protein structure predictions in CASP9. Proteins 79 Suppl 10: 37–58.
- Tanaka T, Robey FA (1983) A new sensitive assay for the calcium-dependent binding of C-reactive protein to phosphorylcholine. J Immunol Methods 65: 333–341. PMID: 6361145
- 47. Pepys MB (1981) C-reactive protein fifty years on. Lancet 1: 653-657. PMID: 6110874
- Agrawal A, Xu Y, Ansardi D, Macon KJ, Volanakis JE (1992) Probing the phosphocholine-binding site of human C-reactive protein by site-directed mutagenesis. J Biol Chem 267: 25353–25358. PMID: 1460031
- Volanakis JE (2001) Human C-reactive protein: expression, structure, and function. Mol Immunol 38: 189–197. PMID: 11532280
- 50. Zhu X, Xiao S, Zhou D, Sollogoub M, Zhang Y (2018) Design, synthesis and biological evaluation of water-soluble per-O-methylated cyclodextrin-C60 conjugates as anti-influenza virus agents. Eur J Med Chem 146: 194–205. <u>https://doi.org/10.1016/j.ejmech.2018.01.040</u> PMID: <u>29407950</u>
- Danthi P, Chow M (2004) Cholesterol removal by methyl-beta-cyclodextrin inhibits poliovirus entry. J Virol 78: 33–41. <u>https://doi.org/10.1128/JVI.78.1.33-41.2004</u> PMID: <u>14671085</u>
- Desplanques AS, Nauwynck HJ, Vercauteren D, Geens T, Favoreel HW (2008) Plasma membrane cholesterol is required for efficient pseudorabies virus entry. Virology 376: 339–345. <u>https://doi.org/10. 1016/j.virol.2008.03.039</u> PMID: <u>18471850</u>
- Glisoni RJ, Castro EF, Cavallaro LV, Moglioni AG, Sosnik A (2015) Complexation of a 1-Indanone Thiosemicarbazone with Hydroxypropyl-beta-Cyclodextrin Enhances Its Activity Against a Hepatitis C Virus Surrogate Model. J Nanosci Nanotechnol 15: 4224–4228. PMID: <u>26369033</u>
- Fujita H, Tamai K, Kawachi M, Saga K, Shimbo T, et al. (2011) Methyl-beta cyclodextrin alters the production and infectivity of Sendai virus. Arch Virol 156: 995–1005. <u>https://doi.org/10.1007/s00705-011-0938-7</u> PMID: 21311919
- Tian Z, Si L, Meng K, Zhou X, Zhang Y, et al. (2017) Inhibition of influenza virus infection by multivalent pentacyclic triterpene-functionalized per-O-methylated cyclodextrin conjugates. Eur J Med Chem 134: 133–139. <u>https://doi.org/10.1016/j.ejmech.2017.03.087</u> PMID: 28411453
- Yang Q, Zhang Q, Tang J, Feng WH (2015) Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection. Virology 484: 170–180. <u>https://doi.org/10.1016/j.virol.2015.06.005</u> PMID: <u>26115164</u>
- Pereiro P, Forn-Cuni G, Dios S, Coll J, Figueras A, et al. (2017) Interferon-independent antiviral activity of 25-hydroxycholesterol in a teleost fish. Antiviral Res 145: 146–159. <u>https://doi.org/10.1016/j.antiviral.</u> 2017.08.003 PMID: 28789986
- 58. Dong H, Zhou L, Ge X, Guo X, Han J, et al. (2018) Antiviral effect of 25-hydroxycholesterol against porcine reproductive and respiratory syndrome virus in vitro. Antivir Ther.

Zebrafish hydroxycholesterol-CRP

- 59. Ji SR, Wu Y, Zhu L, Potempa LA, Sheng FL, et al. (2007) Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). FASEB J 21: 284–294. <u>https://doi.org/10.1096/fj.06-6722com</u> PMID: <u>17116742</u>
- Gold ES, Diercks AH, Podolsky I, Podyminogin RL, Askovich PS, et al. (2014) 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc Natl Acad Sci U S A 111: 10666–10671. <u>https://doi. org/10.1073/pnas.1404271111</u> PMID: 24994901
- Civra A, Cagno V, Donalisio M, Biasi F, Leonarduzzi G, et al. (2014) Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Sci Rep 4: 7487. <u>https://doi.org/10. 1038/srep07487</u> PMID: <u>25501851</u>
- Shrivastava-Ranjan P, Bergeron E, Chakrabarti AK, Albarino CG, Flint M, et al. (2016) 25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation. MBio 7.
- Potempa LA, Yao ZY, Ji SR, Filep JG, Wu Y (2015) Solubilization and purification of recombinant modified C-reactive protein from inclusion bodies using reversible anhydride modification. Biophys Rep 1: 18–33. <u>https://doi.org/10.1007/s41048-015-0003-2</u> PMID: <u>26942216</u>
- Magnadottir B, Hayes P, Gisladottir B, Bragason B, Hristova M, et al. (2018) Pentraxins CRP-I and CRP-II are post-translationally deiminated and differ in tissue specificity in cod (Gadus morhua L.) ontogeny. Dev Comp Immunol 87: 1–11. <u>https://doi.org/10.1016/j.dci.2018.05.014</u> PMID: <u>29777721</u>
- Taylor KE, van den Berg CW (2007) Structural and functional comparison of native pentameric, denatured monomeric and biotinylated C-reactive protein. Immunology 120: 404–411. <u>https://doi.org/10. 1111/j.1365-2567.2006.02516.x</u> PMID: <u>17163961</u>
- Potempa LA, Maldonado BA, Laurent P, Zemel ES, Gewurz H (1983) Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol Immunol 20: 1165–1175. PMID: <u>6656768</u>
- 67. Falco A, Cartwright JR, Wiegertjes GF, Hoole D (2012) Molecular characterization and expression analysis of two new C-reactive protein genes from common carp (Cyprinus carpio). Developmental and Comparative Immunology 37: 127–138. https://doi.org/10.1016/j.dci.2011.10.005 PMID: 22079493
- Widziolek M, Prajsnar TK, Tazzyman S, Stafford GP, Potempa J, et al. (2016) Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases. Sci Rep 6: 36023. <u>https:// doi.org/10.1038/srep36023</u> PMID: <u>27777406</u>
- **69.** Zieden B, Kaminskas A, Kristenson M, Kucinskiene Z, Vessby B, et al. (1999) Increased plasma 7 betahydroxycholesterol concentrations in a population with a high risk for cardiovascular disease. Arterioscler Thromb Vasc Biol 19: 967–971. PMID: <u>10195924</u>

PUBLICACIÓN 4

TÍTULO: Zebrafish C-reactive protein isoforms inhibit SVCV replication by

blocking autophagy through the interaction with cell membrane cholesterol

COAUTORES: Melissa Belló Pérez, Patricia Pereiro González, Julio Coll Morales, Beatriz Novoa García, Luis Perez García-Estañ, Alberto Falcó Graciá.

REVISTA: Autophagy (enviada a fecha 15/05/19)

Zebrafish C-reactive protein isoforms inhibit SVCV replication by blocking autophagy through the interaction with cell membrane cholesterol

Melissa Bello-Perez¹, Patricia Pereiro², Julio Coll³, Beatriz Novoa², Luis Perez^{1,*}and Alberto Falco^{1,*}

¹Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.

²Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), 36208 Vigo, Spain.

³Instituto Nacional de Investigaciones y Tecnologías Agrarias y Alimentarias (INIA), Dpto. Biotecnología, 28040 Madrid, Spain.

To whom correspondence should be addressed:

* Dr. Alberto Falco, Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), Edificio Torregaitán. Avenida de la Universidad. 03202 Elche (Alicante, Spain). Tel.: +34-96 65 89 53; Fax +34- 96 665 87 58; E-mail: <u>alber.falco@umh.es</u>

* Dr. Luis Perez, Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), EdificioTorregaitán. Avenida de la Universidad. 03202 Elche (Alicante, Spain). Tel.: +34-96 65 84 35; Fax +34-96 665 87 58; E-mail: <u>luis.perez@umh.es</u>

E-mail addresses:

- M.B.-P., melissa.bello@goumh.es
- P.P., patriciapereiro@iim.csic.es
- J.C., juliocoll@inia.es
- B.N., beatriznovoa@iim.csic.es
- L.P., luis.perez@umh.es
- A.F., alber.falco@umh.es

Abstract

In the present work, the mechanisms involved in the recently reported antiviral activity against fish spring viremia of carp rhabdovirus (SVCV) are explored for the isoforms of zebrafish C-reactive like-protein (CRP1-7), confirming them to induce an antiviral state in the host. Experimental evidence ruled out the blocking of the attachment/binding step of the viral replication cycle as well as the direct inhibition of the G protein fusion activity or the stimulation of the host's interferon system. Further results showed that the antiviral protection conferred by CRP1-7 was mainly due to the inhibition of autophagic processes, and then adding extra and unexpected properties to the extensive list of activities reported for CRPs. In this sense, given the high affinity of CRPs for cholesterol and the described influence of the cholesterol balance in lipid rafts on autophagy, both methyl-β-cyclodextrin (a cholesterolcomplexing agent) and 25-hydroxycholesterol (with reported antiviral properties) were used to further explore such activity from CRPs. In this way, all these compounds revealed to exert antiviral activity by affecting autophagy in a similar manner. Thus, in this work we propose that CRP reduces autophagy activity by initially disturbing cholesterol ratios in the host cellular membranes, what in turn affects the intracellular regulation of reactive oxygen species, as suggested from the abrogation of the anti-SVCV activity from these cholesterol-mediated modulators with antioxidant N-acetyl cysteine treatments. Altogether, this knowledge on the autophagy reducing activity of primitive vertebrate CRPs sheds light on their antiviral mechanisms, opening a new research field with potential medical implications.

Keywords

CRP, zebrafish, rhabdovirus, SVCV, antiviral, autophagy, 25-HOC, MBCD, cholesterol, endocytosis

PUBLICACIÓN 4

Introduction

The fine-tuned response of the human plasma C-reactive protein (CRP) levels to infection, inflammation or trauma, makes this predominant acute phase protein (APP) one of the most studied health biomarkers, which has been associated with predictive significance to cardiovascular risks and diseases.¹⁻³ In humans, CRP is the prototypic APP². Thus, in response to an acute phase response (APR) inducing stimulus, the pro-inflammatory mediator interleukin 6 (IL6) mediates the production and release into the blood of CRP from primarily the liver⁴. As a consequence, circulating CRP levels may increase by as much as 10³-fold from barely detectable basal concentrations².

Human CRP is the canonical member of the pentraxin protein family^{3,5}. Pentraxins have an annular pentameric structural symmetry of its circulating form, as described for human ones,⁶ and their monomers are characterized by the presence of a C-terminal domain of about 200 amino acid residues containing the so-called "pentraxin signature", an 8 amino acid residue-long conserved sequence (HxCxS/TWxS).^{7,9} Those pentraxins consisting in just this basic domain are termed "classical" or short pentraxins and entail CRP and serum-amyloid P component (SAP),³ while the presence of an additional N-terminal unrelated region classifies them into "fusion" or long pentraxins, which prototypic representative is the pentraxin 3 (PTX3).¹⁰ Human CRP and SAP show high degree of sequence identity (51%)⁹, analogous molecular structures and functions^{6,11,12} and overlapping ligand specificities.^{8,13} Then, it is not surprising that short pentraxins show species-, as well as strain- and gender- (i.e. hormonal-), interchangeable acute phase reactivity.^{2,14-18}

The polarized planar structure of circulating CRP molecules with opposite ligandrecognition and multifunctional-effector faces defines them as soluble pattern-recognition receptors endowed with crucial innate immune activities.^{1,13} It is extensively reported the ability of human pentameric CRP to recognize and bind, in a Ca²⁺-dependent manner, surface-exposed phospholipid heads, preferentially phosphorylcholine.¹⁹ Phosphorylcholine works not only as pathogen-associated molecular pattern (PAMP) since it is present in the lipoteichoic acid and LPS of some gram-positive and -negative bacteria, respectively,^{13,20-22} but also as dangerassociated molecular pattern (DAMP) due to its phospholipase A2-mediated exposition^{23,24} in altered lipid bilayers of damaged, apoptotic and necrotic cells.^{20,25,26} The Ca²⁺-dependent phosphorylcholine-binding site of soluble CRP is also involved in interactions with oxidized LDL,²³ nuclear materials such as chromatin, histones, small nuclear ribonucleoproteins,^{27,28} as well as with polysaccharides, galactans and other compounds, which may not contain phosphorylcholine but are abundant in bacteria,²⁹ fungi^{30,31} and parasites.^{32,33}

Due to its clinical implications, CRPs have been mostly studied in humans. Thus, it is not surprising that existing comparative studies would reasonably question not only the denomination "pentraxin" in itself to this family of molecules because of the occurrence of several different oligomerization forms between species,^{34,35} but also the current classification of short pentraxins into CRPs and SAPs, whose differential properties found in humans have been shown to overlap and even be the opposite in other species.^{13,15,36,37} However, in general terms, these studies have shown that the aforementioned fundamental activities associated with short pentraxins in humans are evolutionarily conserved, what is certainly due to the sharing of both homologous sequences that correspond to functionally important motifs and analogous molecular structures.^{12,13,3740}

In mammals, CRPs are usually overexpressed during both viral and bacterial infections;⁴¹ however, despite high serum levels of CRP level are more characteristic of bacterial infections, going up to 3 logs, those originated by viruses induce lower but significative 10¹ levels.^{2,41,42} Furthermore, the few existing studies analyzing C-reactive-like protein (CRP) levels in fish show moderate serum levels in response to both bacterial and viral infections, suggesting an antiviral effect for CRPs.^{43,45} Thus, in common carp (*Cyprinus carpio*), serum CRP level increases up to 2-, 6-and 10-fold in response to *Aeromonas salmonicida*,⁴⁶ *Aeromonas hydrophila*⁴³ and cyprinid herpesvirus-3 (CyHV-3)⁴⁴ infections, respectively.

Further positive correlations between fish CRP levels and viral infections have been stablished in this context by transcriptional analysis. For instance, significant upregulations of fish *crp* gene expression in several immune- and non-immune-related tissues of diverse species have been revealed in response to viruses such as CyHV-3,⁴⁴ red seabream iridovirus (RSIV),^{47,49} viral hemorrhagic septicemia virus (VHSV)^{50,51} and spring viremia of carp virus (SVCV).^{51,52} Similarly, higher transcriptional expression for *crp* genes were observed in common carp treated with polyinosinic:polycytidylic acid (polyI:C, a compound mimicking viral dsRNA),⁴⁵ in orally DNA-vaccinated rainbow trout (*Oncorhynchus mykiss*)⁵³ and zebrafish (*Danio rerio*) embryos microinjected with an expression plasmid encoding the *il6* gene,⁵¹ a cytokine also shown to be upregulated in response to virul infections in human.⁵⁴

In this sense, our recent findings show that all previously-identified zebrafish CRP1-7 isoforms⁵⁵ confer *in vitro* and *in vivo* isoform-dependent anti-SVCVprotection⁵⁶ and exert unexpected anti-SVCV synergistic effects⁵⁶ with 25-hydroxycholesterol (25-HOC).⁵⁷
Recombinant tongue sole (*Cynoglossus semilaevis*) CRP has been also reported to enhance host resistance to RSIV infection when intraperitoneally (i.p.) co-injected with the virus inoculum.⁴⁹ However, despite their great relevance for evolutionary immunology and therapeutic potential, the corresponding mechanisms that underlie any of these CRP anti-viral effects are not yet known. The present work has been focused on these mechanistic aspects.

Results

CRP1-7 anti-SVCV activity targets host cells rather than virus

Our previous studies had shown that pre-incubation of supernatants from epithelioma papulosum cyprinid (EPC) cells transfected with zebrafish CRP1-7 (CRP1-7) with EPC cells inhibited SVCV infection;^{51,56} however, whether such anti-viral activity might be due to the interaction of CRP1-7 with viral particles remains to be demonstrated. In order to determine the stage of the viral cycle at which CRP1-7 might act, CRP1-7 treatments were added at different time-points within an SVCV infection (see diagram insets in Fig. 1 for further details). Thus, when either EPC cells (Fig. 1A) or SVCV (Fig. 1B) were treated with CRP1-7 prior to the viral adsorption stage, similar inhibitory activity on SVCV replication was observed for all CRPs (CRP2-6 inhibition range of 47.1-76.2%) except for CRP1 and CRP7. In these assays, nonsignificant differences among different exposure times (i.e., 2h and 20 h) were obtained and 2 h pre-treatments were enough to achieve maximum inhibitions within these experimental settings (Fig. 1A, B). Also, moderate SVCV replication inhibitions were found when treatments were restricted to the adsorption stage (Fig. 1C), what it can be considered as a 0 h pretreatment with SVCV as in Fig. 1B. Actually, significant inhibitory effects were found for CRP2, 4 and 5 (55.6 \pm 11.8%, 54.2 \pm 6.2% and 46.6 \pm 16.3%, respectively) in comparison to the control treatment (supernatants from EPC cells transfected with green fluorescent protein (GFP)) (Fig. 1C). Taken together these results suggest that CRP antiviral activity may be due to a protective effect on the EPC cells. On the contrary, the duration of the treatment when added just after the adsorption stage did significantly affect the inhibitory activity (P<0.001). Particularly, the inhibitory effect of CRP2-7 on SVCV replication significantly increased when these treatments lasted 20 h (52.3-84.2%) in comparison to the 2 h ones (12.1-27.7%), which were not significantly higher than their corresponding GFP controls (Fig. 1D).

It should be noted that, using this same methodology, we also proceeded to determine that the antiviral activity induced by CRP1-7 is actually due to their content on the corresponding CRPs. For this purpose, the ligand binding capacity of the CRPs for 25-HOC that is described in our previous work⁵⁶ was used to deplete each CRP1-7. As observed in Supplementary Fig. S1, such depletion contributed significantly (*P*< 0.001) to decrease the inhibitory infection capacity of the CRP treatments. At an individual level, CRP2-6 depleted formulations significantly reduced their antiviral capacity with respect to their corresponding full supernatant. Since a direct correlation between anti-SVCV activity and CRP content could be established for CRP2-6, those were pooled to be tested in subsequent experiments (CRP-mix).

Anti-SVCV protection conferred by CRP is neither by hindering viral entry nor IFN-mediated

The time-dependent inhibitory activity observed in post-adsorption treatments with CRP (Fig. 1D) indicates that late stages of the viral replication cycle could be affected. However, this might also be a consequence of the prolonged treatment that inducing a continued protective state in the cells during viral infection and/or hindering the entry steps of the virus during several consecutive replication cycles. Since the results obtained in the pre-treatment assays (Fig. 1A-C) pointed to the latter mechanisms, subsequent efforts were focused on these possibilities.

The initial steps of the rhabdoviral replication cycle comprise the attachment of the virions to the cell surface, the binding of the rhabdoviral surface protein G to host's specific receptor/s, the endocytosis process and, finally, the fusion of viral and host endosomal membranes that allows the release of the viral genome and associated proteins into the cytosol.58 Therefore, to study the influence of CRP1-7 on the attachment/binding of the viral particles to host cell membranes, EPC cells were inoculated with SVCV at multiplicity of infection (MOI) 1 together with CRP1-7 and incubated for 2 h at 4°C. After removing the nonattached viral particles, cell-bound SVCV were quantified by analyzing the abundance of viral ngene copies by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) (Fig. 2A). Results showed that the amount of n gene copies remained invariable regardless of the CRP1-7 treatment used. The effect of each of the CRP1-7 on the pH-dependent fusion ability of the protein G of SVCV was studied by performing a fusion assay in which, by lowering the pH of cell media to 6, the fusion conformation of the SVCV G protein located at the membrane of previously infected cells was triggered to generate cell-to-cell fusion with its surrounding cellular membranes resulting in quantifiable syncytia. Results showed that CRP1-7 did not exhibit any direct inhibitory effect on SVCV G protein-mediated membrane fusion, perhaps with the exception of CRP7 (fusion reduction of about 20% with P<0.05) (Fig. 2B).

However, despite the fact that the above-mentioned assays had demonstrated that CRP1-7 did not alter the virus entry step directly (Fig. 2A, B), the analysis of viral RNA synthesis at early stages post-adsorption (Fig. 2C) by determining the levels of the viral *g* and *n* transcripts, showed that the treatment with CRP-mix decreased the expression levels of those viral genes as early as 4-5 h post-adsorption and suggests the implication of another inhibitory mechanism. For this reason, the ability of CRP1-7 to trigger the IFN system, the host's typical and evolutionary-conserved response to viral infections,⁵⁹ was examined. However, CRP1-7 did not significantly change the transcript levels of the IFN-stimulated *mx* gene (Fig. 2D). Similarly, conditioned supernatants from EPC cells treated with CRP1-7 for 2 h and collected 20 h later, potentially containing IFN if inducible by CRP1-7, did not protect EPC cells from SVCV infection (Fig. 2E).

CRP1-7 modulate the transcription of autophagy-related genes in vitro and in vivo

So far it seemed that CRP1-7 cause their anti-SVCV neutralizing activity by promoting an IFN-independent antiviral state in the treated cells. Thus we proceeded to explore such observation in an homologous experimental system constituted by the zebrafish-derived ZF4 cell line, since the EPC cell line comes from fat-head minnow (*Pimephales promelas*), another fish species within the same family (*Cyprinidae*).⁶⁰ Thus, the pre-treatment of ZF4 cells with CRP1-7 and CRP-mixfor 2 h also protected from the infection with SVCV (Fig. 3A) like in EPC cells (Fig. 1A). Likewise, the analysis of the progression of the viral replication *in vitro* at early stages postadsorption in ZF4 (Fig. 3B) exhibited also an analogous profile to that observed in EPC cells (Fig. 2C). For instance, the CRP-mix induced similar inhibition levels of SVCV replication in ZF4 and EPC cells (\geq 2-fold at 4 h post-adsorption).

In agreement with the data obtained using EPC cells, the CRP-mix did not positively regulate the IFN-response in ZF4 (Fig. 3C). On the contrary, the analysis of the transcriptional response of both zebrafish *mxa* and *mxe* revealed to be significantly reduced over time by CRP-mix (P< 0.001 for both *mxa* and *mxe*). Remarkably, *mxa* lowest levels (2.5 folds at 2 h post-treatment) were already restored to basal levels at 4 h post-treatment, while *mxe* ones did not fully stabilize from their lowest levels (over 5 folds at 4 h post-treatment), at even the latest post-treatment time-point checked, which in this set of experiments with ZF4 cells extended to 20 h. Additionally, the transcript levels of the genes coding for zebrafish IFN φ 1 and 2 (*ifnphi1* and *ifnphi2*, respectively) showed similar profiles than *mxa*, reaching upregulations at 5 (*ifnphi1*, 1.7 ±0.04 folds, P< 0.01) and 20 h (*ifnphi1*, 1.8 ±0.2, P< 0.01; *ifnphi2*, 2.1 ± 0.1, P< 0.01) from their

corresponding lower levels at 0 h (*ifnphi1*, 0.6 ± 0.1 , *P*< 0.01; *ifnphi2*, 0.4 ± 0.04 , *P*< 0.05) (Supplementary Fig. S2). However, such small up-regulation of IFN-related genes could not explain observed antiviral protection rates.⁵⁹

We proceeded to investigate whether autophagy, recently associated with an evolutionarily-conserved antiviral response,⁶¹⁻⁶³ was involved in the neutralization of SVCV by CRP1-7. For this purpose, the transcript levels of some relevant genes related to the autophagic route were determined: *beclin1*, *wipi1*, *lc3a*, *atg5*, *gabarap* and *ambra1*. The results revealed that some of them were stimulated by CRP-mix in ZF4 cells (Fig. 3D). Particularly, *wipi1*, *ambra1* and *lc3a* transcript levels were moderately elevated (1.5 to 3.5 folds; P < 0.05-0.001) during the initial stages after treatment with CRP-mix compared to control treatments (GFP). These transcriptional levels started to stabilize 5 h post-treatment and were fully restored after 20 h, except for *lc3a*, which was reduced (~2 folds, P < 0.05). Similarly, the analysis of the transcriptional levels of the above mentioned autophagy-related genes in immune-related tissues such as spleen, liver and head kidney, after zebrafish were i.p. injected with the CRP-mix 2 days before, revealed not only that autophagy was transcriptionally modulated *in vivo* by CRPs, but also that such response was tissue-dependent. The highest levels were found in spleen for *beclin1* and *wipi1*and kidney for *wipi1* (Fig. 3E).

VERSITAS Miguel Hernández

CRPs increase autophagosomes and modify their tissue distribution

Autophagy levels were further studied by analyzing the distribution of LC3 (a well described autophagy marker)^{64,65} in ZF4 cells treated with CRP-mix and GFP. Microscopic quantification of cytosolic LC3-positive fluorescent green-labelled puncta (a visible indicator of LC3 recruitment) showed increased autophagosome numbers afterCRP-mix treatments (2.3 \pm 0.6 folds, *P*< 0.05) (see representative microscopic images and the resulting quantification graph in Fig. 4A).

To determine the influence of selected CRPs on the modulation of the autophagy *in vivo*, the fluorescence of GFP-LC3 was visualized at low magnification in GFP-LC3 transgenic zebrafish larvae. For this, one-cell embryo stage zebrafish were microinjected 3 days before observation with the pMCV1.4 plasmid coding for zebrafish *crp1*, 4 and 5, as well as *il6*. The recombinant overexpression of CRPs resulted in increased fluorescence specially in the yolk, indicating augmented basal autophagy levels in this organ compared to empty plasmid-injected larvae (Fig. 4B). Among the *crp* genes tested, *crp5* was the most active in inducing such effect; however, *il6* caused not only higher, but also wider-distributed fluorescence (Fig 4B). Only LC3

fluorescence induced by *crp5* and *il6* was detected on the dorsal root ganglia. In this context, the analysis of LC3 induction of CRPs by IL6 revealed that, after i.p.injection of IL6 in EPC-transfected supernatants, the levels of transcripts of *crp3* (1.8 ± 0.1 folds, *P*< 0.001) and *crp5* (5.1 ± 0.8 folds, *P*< 0.01) significantly increased in zebrafish liver tissues, while the transcription of the other *crp* gene isoforms remained unchanged (Fig. S3).

Inhibition of autophagy with CRPs inhibits SVCV infection

The *in vitro* LC3 recruitment was also analyzed in response to SVCV in the presence/absence of CRP-mix (Fig. 5A). Thus, after infecting ZF4 cells with SVCV (MOI 1) for 4 h, no modulation of autophagosomes was apparent $(0.7 \pm 0.1 \text{ folds})$ in comparison to uninfected (GFP) control cells (1.0 ± 0.3) . Further results showed that when SVCV infection was carried out in combination with the CRP-mix, autophagosomes significantly increased respect to SVCV infection alone $(2.6 \pm 1.1 \text{ folds})$ but remained similar to the CRP-mix treatment alone $(2.3 \pm 0.6, \text{Fig. 4A})$.

In line with these findings, the analysis of transcript expression of autophagy-related genes *in vitro* at early stages (0-5 h) after SVCV infection in the presence of the CRP-mix (Fig. 5B) revealed that the presence of SVCV caused a 2 h delay in the transcriptional modulation induced by CRP-mix treatments (Fig. 3D). In contrast, SVCV infection did not reduce the transcription levels of any of the autophagy-related genes, leading instead to increased transcription levels of *wipi1* (3.5 ± 1.1 folds at 4 h, P < 0.01; 4.9 ± 1.1 folds at 5 h, P < 0.001) and *atg5* (4.0 ± 0.6 folds at 5 h, P < 0.001). Regarding *lc3a*, significant increased levels were already detected at 3 h (1.9 ± 0.6 folds, P < 0.05) and remained high until the endpoint of the time-course (2.0 ± 0.3 folds at 4 h, P < 0.05; 2.4 ± 0.2 folds at 5 h, P < 0.01). These results also contrasted with the almost negligible transcript levels found for these genes in an identical time-course experiment but in the absence of CRPs (Supplementary Fig. S4). In this latter case, only significant reductions were observed for *wipi1* and *lc3a* at 0 h (~2 folds in both cases in comparison to non-infected cells).

Although the above commented results suggest that CRPs might be inducing autophagy, this is yet a controversial issue in rhabdovirus infections.^{63,66-69} In this context, Fig. 5C shows that the pre-treatment of ZF4 cells with 3-methyladenine (3-MA), an inhibitor of pI3K-III and therefore an autophagy inhibitor,⁷⁰ neutralizes SVCV replication in a concentration-dependent manner, reaching neutralization levels of 87.4 ± 1.6% at the maximum concentration used (1 mM for 20 h), and thus confirming the requirement of the autophagic

process for SVCV replication. In turn, this result also suggests, at least in the present case, that the true effect of CRPs on autophagy is inhibitory. To check this hypothesis, the ability to neutralize the infection of SVCV was used as a functional assay in combination with some autophagy modulators comprising the inhibitors 3-MA and chloroquine (CQ, inhibitor of lysosome/endosome fusion)⁷¹ and the enhancer rapamycin (acting on mTOR)⁶⁴. Thus, Fig. 5D shows that while the treatment with the autophagy inhibitors neutralized the infectivity of SVCV (as it had already been shown for 3-MA in Fig. 5C), their antiviral effect was higher in combination with the CRP-mix. On the other hand, the treatment with 25 μ M of rapamycin during 4 h favored the replication of SVCV (neutralization levels dropped to -78.9 ± 30.9%), but this enhancing effect was reversed by adding the CRP-mix (50.8 ± 1.4%) (Fig. 5C).

25-HOC and methyl-β-cyclodextrin (MBCD) interfere with the autophagocytic process

By using the experimental approach described above to study the involvement of autophagy in the antiviral effect of CRPs, we proceeded to test whether this mechanism was also associated with the antiviral activity of 25-HOC,^{57,72} a compound previously reported to act synergistically with CRPs.⁵⁶ Additionally, since the regulation of cholesterol had been already linked to the modulation of autophagy,⁷³ the effect of MBCD, a molecule with cholesterol-binding properties,^{74,75} was also tested.

First, this methodology was validated by comparing GFP (1.0 \pm 0.3 folds) to CQ treatments (11.3 \pm 0.4 folds, *P*< 0.001) (Fig. 6A), an aforementioned autophagy inhibitor of the last steps of the autophagic process with an autophagosome cumulative effect⁷¹. In this regard, autophagosome levels for CQ solvent control, i.e. 2.5% ethanol, were 0.5 \pm 0.1 folds (Supplementary Fig. S5A). Then, the ability to modulate the recruitment of LC3 was analyzed in ZF4 cells in response to 25-HOC and MBCD in the presence/absence of CRP-mix. As Fig. 6B shows, after treating ZF4 cells with 25-HOC (10 µg/mL) or MBCD (4 mM) for 4 h, no modulation of the autophagosome was observed in any case (0.9 \pm 0.2 folds for 25-HOC and 1.2 \pm 0.2 folds for MBCD); whilst in combination with the CRP-mix, upregulations were found for both compounds, 16.1 \pm 2.8 folds for 25-HOC and 7.3 \pm 1.4 folds for MBCD, in comparison to the corresponding treatments without theCRP-mix (*P*< 0.05).

SVCV neutralizing assays performed by combining either 25-HOC or MBCD with the autophagy modulators (Fig. 6C) showed that the combinations of any of the cholesterol-targeting compounds with the autophagy inhibitors 3-MA or CQ increased the SVCV neutralizing activity of 25-HOC and MBCD when added alone. In contrast, the autophagy

enhancer rapamycin, which increased SVCV infectivity when added alone (neutralization levels of -78.7 ± 30.9%), reverted the SVCV neutralization induced by both 25-HOC (from $48.2 \pm 10.3\%$ to $-0.3 \pm 6.9\%$, *P*< 0.001) and MBCD(from $31.7 \pm 2.0\%$ to $-24.3 \pm 3.9\%$, *P*< 0.001). Similarly, the treatment with N-acetyl cysteine (NAC) (Fig. 6D), a hijacker of reactive oxygen species (ROS) with the ability to block/inhibit autophagy,⁷⁶ did not affect the replication of SVCV when used alone, but it did revert inhibitory effect induced by the CRP-mix, 25-HOC and/or MBCD by ~50% (Fig.6C).

Discussion

The present work provides evidence on the antiviral activity mediated by CRP1-7, which is mainly due to the induction of a protective state in the host fish cells, rather than to a hampering effect on the viral particles. Evidence showed that the pre-incubation of the host cells with CRP1-7 before the inoculation of the virus is sufficient to inhibit virali nfectivity (Fig. 1A and 3A). In this line, the time-independent nature observed in the neutralization properties of most CRP1-7 when co-incubated with the virus also supports this hypothesis and suggests that such antiviral activity is mainly due to the coexistence of CRPs and cells during the adsorption step (Fig. 1B, C); however, an isoform-specific action on viral replication with milder effects cannot be excluded yet. In addition, the inability of CRP1-7 to alter virus binding (Fig. 2A) together with their inhibitory effect on viral transcription at 4 h post-adsorption (Fig. 2C and 3B) suggests an early blockade of SVCV replication. In this context, only a few cases have been reported in which pentraxins directly interact with the virus particles or viral proteins, such as human SAP⁷⁷ and PTX3⁷⁸ against influenza A virus, but there are numerous studies describing different immunomodulatory properties of pentraxins on different cell types, although never related to antiviral protection.^{79.81}

The IFN system is an immune strategy widely used by lower vertebrates that is characterized by a very rapid response to a viral threat.⁵⁹ The activation of this system confers an antiviral state to the cells⁸² through the induction of effector molecules capable of limiting viral replication.⁸³ In this work, evidence showed that CRP1-7do not trigger the IFN response since the incubation of both EPC and ZF4 cells with CRPs not only did not induce the expression of relevant *mx* nor *ifn* isoforms, but they were even repressed in some cases (Fig. 2D and 3C), what it is in accordance with other studies in humans.⁸⁴ Those results were also consistent with the lack of activity observed for conditioned media from EPC cells treated with CRP1-7 (Fig. 2E).

On the contrary, this work demonstrated for the first time that CRPs modulate the autophagic process at several levels, i.e., transcription (Fig. 3D, E), autophagic flux (Fig. 4A) and tissue distribution (Fig. 3E and 4B). Furthermore, such effect was not affected by the presence of SVCV (Fig. 5A, B). So far, such activity of CRPs had been only tangentially addressed by associating high levels of circulating mammalian CRPs with autophagic processes in the context of different dysfunctions/diseases. In this regard, a recent study using a transgenic approach describes significantly-reduced autophagy fluxes in the kidney from autophagy reporter mouse lines over-expressing rabbit CRP, and that such effect was rescued with rapamycin, what in turn it also reduced collateral renal injury.⁸⁵

The interaction of autophagy with the immune response to infections has been known for a long time.⁶¹ In the specific case of diseases of viral origin, it has been described that many viruses, including those of fish, activate/need autophagy for their replication.^{68,69,76,86-88} In this regard, there are some previous studies that have analyzed the influence of the autophagy on SVCV infection;^{63,67,68} however, the conclusions of these studies are contradictory when interpreting the activation of autophagy, as either a negative regulatory mechanism,^{63,67} or, more recently, a mechanism required by the virus for its replication.⁶⁸ In view of this controversy, before checking whether the antiviral activity of the CRP1-7 is due to their ability to modulate autophagy, we first needed to clarify their effect on SVCV replication. Thus, in this work we showed that the autophagic process is required for SVCV replication, since infectivity is neutralized by the autophagy blockers CQ (Fig. 5D) and 3-MA (Fig. 5C, D). In any case, autophagy in fish has been under study only recently and therefore there is the possibility of data misinterpretations in the pioneering studies.

Additionally, autophagy blocking assays carried out by using CQ support the results observed with 3-MA. Inhibition of SVCVreplication was potentiated when the autophagy blockers were used in combination with CRPs, MBCD or 25-HOC. Therefore, together with the decrease in the neutralization of the infection when combining each of these three compounds with the autophagy-enhancer rapamycin,⁶⁴ these results indicate that the inhibition of SVCV infection observed when cells were treated with CRPs, MBCD or 25-HOC is due to blockade of either autophagy or an element common to autophagy and viral endocytosis pathways, as it has been also reported previously for the rabies virus.⁶⁶ For instance, in this sense there has been already described that autophagosomes may fuse with intermediate endosomes within a viral infection to form amphisomes.⁸⁹⁻⁹¹ Since CRP treatment of the cells resulted in an accumulation of autophagosomes, we suggest that the inhibitory effect on autophagy occurs at a late stage such as the fusion of autophagosomes and lysosomes, in a similar fashion as CQ^{71,92,93}.

Considering that lysosomes are vulnerable to oxidative stress,⁹⁴ in order to understand the mechanism by which CRPs, 25-HOC and MBCD might block the fusion of the autophagosome/intermediate endosome/amphisome with the lysosome, the possible involvement of ROS in this process was analyzed. The results showed a significant reduction of the antiviral effect of the three compounds after treatment with the oxidative stress inhibitor NAC,⁷⁶ suggesting that all three may cause their blocking effect on autophagy by increasing ROS levels. Such mechanism has been described for other autophagy inhibitors.⁹² Briefly, an increase of the ROS concentration induces an increase of the lysosomal pH that inhibits both the fusion of the lysosome with the autophagosome⁹² and the fusion conformation of the SVCV G protein that allows the viral particles to enter host's cytosol.^{58,95} Furthermore, these results would also be supported by the observed downregulation of the IFN system observed in response to CRP1-7, since it has also been described that the induction of the antiviral activity of the IFN system is sensitive to changes in the pH of lysosomes/endosomes produced by the CQ treatment.⁹⁶

In this work, we propose that CRPs, MBCD and 25-HOC increase the levels of intracellular ROS because of the sequestration/imbalance of membrane cholesterol, as it has been already described to induce the formation of ROS.97,98 In fact, the induction of ROS generation as a consequence of the interaction of the monomeric form of human CRP with lipid rafts in human and rat peripheral blood mononuclear cells has been also observed.99 Thus, the high affinity for cholesterol described for MBCD^{74,75} and CRPs^{56,100,101} suggests they may display a cholesterol-sequestering activity with blocking effects on ROS-dependent autophagy. In the case of 25-HOC, when added to cells, would also impair lipid rafts composition with similar inhibitory consequences for autophagy. In contrast, other oxysterols, for instance 24Shydroxycholesterol (24S-HOC),^{102,103} 7-ketocholesterol (7KC), 7β -hydroxycholesterol (7 β -HOC)¹⁰³ and 27-HOC,¹⁰⁴ have been shown to activate autophagy. In this line, the modulation of autophagy in response to an exogenous lipid load both in vitro and in vivo has been already demonstrated. For instance: the treatment of hepatocytes with some lipids reduced the colocalization of lipid droplets with lysosomal-associated membrane protein 1 and the increase of fats in the diet of mice markedly decreased the number of autophagosomes that contain lipid droplets.¹⁰⁵ In fact, the treatment of ZF4 cells with cholesterol significantly increased the amount of intracellular autophagosomes and inhibited SVCV infectivity the same way as 25-HOC (Fig. S5A, B). Moreover, such inhibition was reverted by its use in combination with the cholesterolsequestering MBCD (Fig. S5B). Therefore, we hypothesize that any imbalance in the cholesterol content of host's cellular membrane affects the ROS generation and consequently disturbs both

the autophagic and SVCV replication processes (Fig. 7). In line with this hypothesis, there are studies that correlate the integrity of the lipid rafts with the upregulation of autophagy, mainly from the observation of the accumulation of autophagosomes and the increase of LC3B-II levels.^{74,75} However, considering our results and some recent advances on the study of autophagy, an inhibition of a late autophagic step cannot be entirely ruled out.⁷¹

Among the multiple physiological properties of some oxysterols, the ability to inhibit viral infections of 25-HOC^{72,106-109} and 27-HOC¹¹⁰ are some of the best described. According to our results, 25-HOC, as well as CRP2-6 and MBCD, inhibits the replication of SVCV *in vitro* by a mechanism related to ROS generation and autophagy. Nevertheless, treatment of cells with 25-HOC prior to infection with enveloped viruses blocks the fusion of the viral and cell membranes.^{72,111} This fact would fit in our proposed model sincethe ROS generation both increases the lysosomal pH and reduces the lysosomal fusion capacity with autophagosomes and endosomes, thus limiting the pH-dependent fusogenicability of the G protein of SVCV.

To conclude, this work proposes (Fig. 7) that SVCV requires some of the autophagic machinery to complete its entry steps into the host. Additionally, the treatment with either CRP2-6, 25-HOC, MBCD or any of their combinations induces the generation of ROS via the disruption of the cholesterol-rich membrane domains in the host cell membranes, increasing lysosomal pHas a consequence. SVCV replication would be then reduced not only by altering the low pH-dependent fusogenic capacity of the SVCV G protein, but mostly because an inefficient fusion of lysosomes with autophagosomes/intermediate endosomes/amphisomes. Since, there are evidences of the conservation of these mechanisms in higher vertebrates; this study may be pioneering in redirecting a research field with potential for a wide range of therapeutic applications.

Materials and Methods

Cell lines and virus

EPC cells from fat-head minnow, the most widely used cell line for research on fish viruses and the diagnosis of fish viral diseases, were purchased from the American Type Culture Collection (ATCC, Manassas, Vi, USA, Ref. No. CRL-2872).⁶⁰ EPC cell monolayers were grown in Dutch-modified Roswell Park Memorial Institute (RPMI)-1640 culture medium (Sigma, St. Louis, USA), supplemented with 10% fetal bovine serum (FBS) (Sigma), 2 mM glutamine, 1 mM sodium pyruvate, 50 µg/mL gentamicin and 2 µg/mL of fungizone (Gibco BRL-Invitrogen, Carlsbad, CA, USA). The zebrafish embryonic fibroblast ZF4 cell line was

purchased from the ATCC (Ref. No. CRL-2050). ZF4 cells were cultured in Dulbecco's modified Eagle's medium (DMEM, Gibco BRL-Invitrogen) supplemented with 10% FBS and 100 μ g/mL of primocin (InvivoGen, San Diego, CA, USA). Both cell lines were maintained at 28°C in a 5% CO₂ atmosphere.

The SVCV isolate 56/70 from common carp was replicated in EPC cells at 22°C in an atmosphere without CO₂ supply and by using previously described culture media for cell growth except for 2% FBS (infection media). After 7 days post-infection, infective supernatants were harvested, clarified by centrifugation at 4,000 g and 4°C for 30 min, aliquoted and stored at -80°C until use. Virus titers were determined by the focus forming assay as it is described below.

Animals

The adult XL wild type zebrafish of 700–900 mg of body weight (3–4 cm long) and embryos from transgenic GFP-Lc3 zebrafish that were used in this study were obtained by natural spawning from mating adults at one of the host institution facilities (Instituto de Investigaciones Marinas-CSIC, Vigo, Spain). Fish were maintained at 28°C in 30 L re-circulating water tanks by following established protocols.¹¹² Prior to handling, fish were anaesthetized by immersion in 100 mg/L tricaine methanesulfonate (MS-222) (Sigma). End-point fish euthanasia was performed by overdosing at 500 mg/L.

All experimental procedures with live zebrafish were performed in accordance with the Spanish Law for Animal Experimentation (Royal Executive Order, 53/2013) and the European Union directive 2010/63/UE. Animal trials procedures were approved by the local government ethics committee on animal experimentation (Dirección General de Agricultura, Ganadería y Pesca, Generalitat Valenciana) and the Project Evaluation Board of Miguel Hernández University (permit no. UMH.IBM.JFG.01.14), as well as the CSIC National Committee on Bioethics under approval number ES360570202001/16/FUN01/PAT.05/tipoE/BNG.

Production of CRP1-7-enriched, -depleted and -conditioned supernatants

The pMCV1.4 plasmids coding for each CRP1-7 from our previous studies^{51,56} were used as described therein to obtain cell-free supernatants enriched in CRP1-7 isoforms from 4-day transfected EPC cells. Likewise, their CRP content was characterized by ELISA, western blot and cholesterol-binding affinity.^{51,56} Similarly, the pMCV1.4 constructs with the genes coding for

either GFP or zebrafish IL6 were used to obtain control supernatants without CRPs and supernatants enriched in IL6. For some particular experiments, a CRP2-6 equally mixed solution of supernatants (CRP-mix) was employed for different experiments. All supernatants were stored at -80°C until use.

To demonstrate that the antiviral activity of the CRP1-7 supernatants were due to the CRP1-7 proteins rather than to other possible CRP-induced EPC-derived compounds, the supernatants were CRP depleted by incubating them with solid-phase immobilized 25-HOC (Sigma), a lipid for which most CRP1-7 showed the highest affinity in our previous work.⁵⁶ Briefly, wells from Maxisorb 96-well plates (Nunc, Roskilde, Denmark) were coated to dryness with 100 μ M of ethanol-dissolved 25-HOC and were kept dried until use. Then, after washing them 3 times with phosphate buffered saline (PBS), 100 μ L of 4-fold-diluted CRP1-7 supernatants were added per well and incubated for 2 h. Finally, depleted supernatants were collected and stored at -80°C until use.

To produce CRP-conditioned supernatants, EPC cell monolayers were incubated for 2h at 22°C with CRP1-7 and, after 3 washes with EPC growth media, replaced with fresh EPC growth media and further incubated for 24 h at 22°C. Finally, these supernatants were collected, clarified as described before, aliquoted and stored at -80°C until use.

UNIVERSITAS Miguel Hermänder

In vitro SVCV infectivity assays

To explore the effects of the experimental treatments on the replication of SVCV, several different infection assays on EPC and ZF4 cells were performed. In general, cells grown on 96-well plates were inoculated with SVCV supernatants in infection media at a MOI of 10⁻² SVCV per cell (unless stated otherwise) and incubated together for 2 h at a temperature of 4°C (the low temperature chosen to delay viral replication during the initial adsorption/binding step and synchronize viral replication). Then, the viral inoculants were removed, and the EPC cell monolayers washed 3 times with infection media in order to eliminate unattached SVCV particles. Subsequently, fresh infection media was added, and plates further incubated for 20h at 22°C.

Variations on this common procedure were used to investigate potential interactions of CRPs with either cells or SVCV. Thus, such variations were made by incubating i) CRP1-7 with SVCV or EPC before viral adsorption (pre-adsorption treatments), ii) CRP1-7 and cells together during the SVCV adsorption step (adsorption treatment) and iii) adding CRP1-7 after the SVCV

adsorption step (post-adsorption treatment). Diagrams describing such experimental designs are shown in Fig. 1A. After every incubation step, cell monolayers were washed 3 times with infection media.

SVCV focus forming assay

To assess the effect of the treatments on viral infectivity *in vitro*, SVCV-infection foci of 5-20 cells were immune-labelled to be quantified as previously described.¹¹³ Briefly, at 20h postadsorption, cell monolayers were fixed with 4% formalin (Sigma) in PBS for 20 min and incubated for 24 h at 4°C with a 1:300 dilution of polyclonal anti-SVCV (BioX Diagnostics SA, Jemelle, Belgium) in antibody (Ab)-dilution buffer made of PBS containing 1% bovine serum albumin (BSA), 1% goat serum and 0.5% Triton X-100 (Sigma). After 3 washes with PBS, there was another incubation period with a FITC-labeled goat anti-mouse antibody (Sigma) diluted 1:300 in Ab-dilution buffer for 45 min at room temperature and protected from light. Finally, cell monolayers were washed 3 times with PBS again and immunofluorescence-labeled foci counted or photographed by means of a fluorescence DMI 3000B inverted microscope with an EL6000 compact light source and a DFC3000G digital camera (Leica, Bensheim, Germany). Data were expressed as percentages of neutralization, calculated by the formula: 100 - (number of foci in the treatment samples / number of foci in the control samples) × 100.

G protein-mediated fusion assays in SVCV-infected EPC cell monolayers

To assess the effect of the treatments on the ability of the SVCV surface G protein to fuse membranes, the G-dependent fusion activity was induced by lowering the pH of infected EPC cell monolayers and quantified by counting syncytia as previously described.¹¹³ Briefly, at 20 h post-adsorption, cell media was removed from SVCV infected EPC cell monolayers, which were washed 3times with infection media and then treated with CRP1-7 for 2 h at 22°C. After another 3 washes, G-dependent fusion was triggered by incubating the EPC cell monolayers with infection media at pH 6 (fusion media) for 30 min, washed 3 times again and subsequently incubated with infection media at pH 7.5 for 2h at 22°C. Finally, cell monolayers were fixed with cold methanol (-20°C) for 15 min, air dried, stained with Giemsa (5 mg/mL in PBS), washed 3 times with PBS and air dried. Syncytia resulting from the fusion of adjacent cells were then counted and photographed with mentioned-above microscope. Percentage of G protein-mediated syncytia was calculated by the formula: 100 × number of syncytia in treated EPC cell

monolayers / number of syncytia in control (GFP-treated) EPC cell monolayers. Three different assays each by triplicate were performed per experiment. Results were shown as mean and standard deviations (s.d.).

Virus-cell binding assay

To study whether CRP1-7 inhibited the binding of SVCV to EPC cells SVCV supernatants (MOI 1) in the absence (GFP) or presence of CRP1-7 were incubated with EPC cell monolayers during the adsorption step (2 h at 4°C) and then washed 3 times with infection media to remove unattached SVCV. Thereafter, cell-bound SVCV was estimated by measuring the number of viral genomes derived from the detection copies of the SVCV *n* gene (primer sequences are shown in Supplementary Table S1), by RT-qPCR as described later.

Determination of SVCV replication levels in EPC cells at early stages post-adsorption

To determine whether CRPs affect SVCV replication at early stages post-adsorption, both EPC and ZF4 cell monolayers were incubated with CRP-mix for 2 h at 22°C. Then, cells were washed 3 times with infection media and inoculated with SVCV at MOI of 10^{-2} for a further 2-h incubation at 4°C. After another 3 washes, fresh infection media was added and plates further incubated at 22°C. Infected cells were collected at 0, 1, 2, 3, 4 and 5 h post-adsorption for the subsequent analysis of their viral replication levels by performing RT-qPCR on SVCV *n* and *g* gene transcripts (primer sequences are shown in Supplementary Table S1).

Analysis of the transcriptional modulation of the interferon (IFN) system and autophagy

To assess whether CRPs were affecting the IFN system and/or autophagy at a transcriptional level, EPC cells were treated with CRP1-7 for 2 h at 22°C, washed 3 times with infection media and further incubated at 22°C. Samples were collected at 20 h post-treatment for the subsequent RT-qPCR analysis of the transcripts of *mx*, an IFN-stimulated gene commonly used as one of the best reporters of the IFN system response.⁵⁹ A similar procedure was followed with ZF4 cells except by using the CRP-mixand collecting samples at 1, 2, 3, 4, 5 and 20 h post-treatment. The genes analyzed in this latter case were the *mx* paralogs *mxa* and *mxe*, the IFNφ coding genes *ifnphi1* and *ifnphi2*, and the autophagy-related *beclin1*, *lc3a*, *wipi1*, *atg5*, *gabarap*, *ambra1* genes (primer sequences are shown in Supplementary Table S1).

Injection of CRP-mix and IL6 into adult zebrafish

Four adult zebrafish were i.p. injected with 5 µL of GFP, CRP-mix or IL6 supernatants. Two days post-injection, spleen, liver and head kidney tissues were individually dissected, immersed in RNAlater (Ambion, Austin, TX, USA) and stored at -80°C until they were analyzed by RT-qPCR (primer sequences are shown in Supplementary Table S1) as described below.

RNA isolation, cDNA synthesis and qPCR

Total RNA was extracted from cultured cells and tissue organs using the E.Z.N.A. HP Total RNA and E.Z.N.A. HP Tissue RNA kits (Omega Bio-tek, Norcross, GA, USA), respectively. The samples were then treated with DNase (Turbo DNA-free[™] Kit, Ambion Inc., Austin, TX, USA), to eliminate residual genomic DNA, by following manufacturer's instructions. Each cultured cell sample was obtained by pooling four wells from 96-well plates. RNA concentrations were estimated with a Nanodrop 1000 spectrophotometer (Thermo-fisher Scientific, Waltham, MA, USA). Isolated RNA samples were stored at -80°C until use.

For the synthesis of cDNA, 0.5µg of isolated RNA from each sample were used. The Moloney murine leukemia virus (M-MuLV) reverse transcriptase (Gibco BRL-Invitrogen) was used as previously described.⁴⁵

The qPCR was performed by using an ABI PRISM 7300 thermocycler (Applied Biosystems, NJ, USA). Reactions were conducted in 20 µL reaction volumes, including 2 µL of cDNA, 900 nM of each corresponding forward and reverse primer (Sigma) (primer sequences are shown in Supplementary Table S1) and 10 µL of with SYBR Green PCR master mix (Life Technologies, Paisley, UK). Non-template controls were added for each gene analysis. All reactions were performed using technical duplicates. Cycling conditions were an initial denaturing step (10 min at 95°C), followed by 40 cycles of 1 min at 65°C and 1 min at 95°C, and finally an extension step of 10 min at 65°C. Melting curves were checked for inconstancies in each reaction. Results were obtained by normalizing the number transcripts of each target gene respective to corresponding endogenous reference's ones (transcripts of the *ef1a* gene for EPC cells and 18S ribosomal RNA for zebrafish tissues) from the same sample. A variation of Livak and Schmittgen's method¹¹⁴ by the formula 2^{Ct ref. - Ct target} was used. Results were normalized to the expression of the corresponding housekeeping gene transcription and, when stated, also relative to control samples calculated by the formula: transcript levels in treated samples / transcript levels in control samples.

Immunofluorescence assays and confocal microscopy

For these experiments, there were selected several compounds because of their anti-SVCV activity (25-HOC (C₂₇H₄₆O₂)), their interaction with membrane cholesterol balance (MBCD, 25-HOC and cholesterol (C₂₇H₄₆O)) or their autophagy modulating properties (CQ, 3-MA, NAC and, rapamycin), all of them provided by Sigma. Stock solutions (40 mM MBCD in PBS; 0.4 mg/mL 25-HOC and cholesterol in ethanol; 0.1 M CQ in H₂O; 0.6 M NAC in H₂O and 0.2 M 3-MA in H₂O) were stored at -20°C until use.

ZF4 monolayers grown at 80% of confluence onto 24-well plates with 12-mm glass coverslips were treated with the following compounds in 500 µL of ZF4 infection media for 4 h at 22°C: CQ(25 µM), 3-MA (10 µM), 25-HOC (10 µg/mL, including 2.5% ethanol), MBCD (4 mM), cholesterol (10 µg/mL, including 2.5% ethanol), SVCV (MOI 1), GFP and CRP-mix, and the combinations CRP-mix (or GFP) with either SVCV, 25-HOC or MBCD. Non-treated cells were also included as a control. After the treatment, cells were washed 3 times with infection media and fixed with 2% formalin for 15 min at 4°C. After 3 washes with PBS, cells were blocked with 1% BSA and 0.5% Triton X-100 (Sigma) (blocking buffer) in PBS for 1 h, washed again and then incubated overnight at 4°C with a 1:200 dilution in blocking buffer of mouse anti-LC3B monoclonal antibody (NanoToolsAntikörpertechnik GmbH & Co., Teningen, Germany). After washing, cells were incubated with the secondary antibody Alexa Fluor®488 goat anti-mouse IgG (1:500 dilution in blocking buffer) for 1h at room temperature, as well as stained with a DNA-specific dye 4,6-diamido-2-phenylindole (DAPI) solution (0.1 µg/mL) (Molecular Probes-Life Technologies, Paisley, UK) for nuclear localization. Finally, cell samples were washed 3 times and mounted using ProLong Antifade Reagents (Life Technologies). Confocal images were captured by using a TSC SPE confocal microscope and LAS AF software (all Leica).

Determination of intracellular autophagosomes

The quantification of autophagosomes was carried out by means of the analysis of the immunofluorescence images with the software ImageJ v1.52a (US National Institutes of Health, Bethesda, MD, USA). For this, the FITC-derived fluorescence from each image was measured by applying a threshold of 25 brightness in the green spectra, which excluded the background and selected fluorescence-labelled puncta. DAPI-stained nuclei were counted manually. Data is represented as the normalization of the selected fluorescent area per cell for each treatment compared to control by the formula: average fluorescent area for each cell from treated

monolayers / average fluorescent area for each cell from control (GFP-treated) monolayers. For each treatment three images were analyzed from two different experiments (about 100 cells were analyzed per treatment).

Visualization of GFP-Lc3-recombinant zebrafish embryos injected with CRPs and il6 coding plasmids

To test the effects of CRPs and IL6 in the process of autophagy *in vivo*, groups of 30 onecell stage embryos of GFP-Lc3 zebrafish¹¹⁵ were microinjected with 2nL of PBS containing 150 pg of either pMCV1.4, pMCV1.4-*crp1*, 4 or 5 orpMCV1.4-*il6*. The microinjections were performed with glass microcapillary pipettes (WPI, Sarasota, FL, USA) incorporated into a MN-151 micromanipulator and an IM-30 microinjector (Narishige, Tokyo, Japan). The resulting 3day hatched larvae were anesthetized (by adding 200 μ L of 0.05% MS-222 solution to a Petri plate with 10 mL of water), photographed using a Multi-Zoom AZ100 microscope equipped with a DS-Ri1 digital camera (Nikon, Melville, NY), and images processed with the LAS AF software (Leica).

Determination of the effect of autophagy inhibitors and cholesterol-interacting compounds on SVCV replication

The anti-SVCV activity of CRP, 25-HOC and MBCD was compared in the presence and absence of some relevant autophagy modulators (in particular, 3-MA, CQ, rapamycin and NAC). Briefly, EPC monolayers at 22°C were first incubated with either 3-MA (1 mM and a 0-1 mM gradient, 20 h), CQ (25 μ M, 30 min), rapamycin (25 μ M, 4 h) or NAC (1 mM, 20 h), washed 3 times with infection media and then treated for 2 h with either GFP, CRP-mix, 10 μ g/mL of 25-HOC or 1 mM MBCD. Similarly, the effect of cholesterol on SVCV infectivity was assessed with and without the presence of MBCD. Thus, EPC cell monolayers were treated with MBCD (1 mM), cholesterol (0.5 and 1 mM) or MBCD (1 mM) with cholesterol (either 0.5 or 1 mM) for 2 h at 22°C. Treated EPC cell monolayers were then washed with RPMI 2% FBS medium 3 times and infected with SVCV (MOI 10⁻²) for the subsequent determination of the number of foci of infection as described above.

Statistical analysis

Data are shown as means and s.d. Resulting data sets were subjected to the most appropriate statistical analysis depending on each particular experimental design. Differences between two samples within a dataset were analyzed by Student's t-test or multiple Student's t-

test corrected by using the Holm-Sidak method, whilst one- and two-way ANOVA and Sidak's multiple comparison tests to determine differences between groups. Prism v7 (Graphpad software, La Jolla, CA) was used for creating the graphs and statistical analysis. The *P*< 0.05, *P*< 0.01 and *P*< 0.001 statistical differences were indicated as a, b and c, respectively, when compared to the corresponding control groups.

Graphics

Image processing and diagram drawing were performed with Adobe Photoshop CC 2017 (Adobe Systems Inc, San Jose, CA, USA).

Supplementary Materials: Table S1 and Figures S1-5.

Funding: This work was supported by the Spanish Ministry of Science and Innovation under Grant AGL2014-51773-C3-1-R; Xunta de Galicia (GAIN) under Grant IN607B 2016/12; and Generalitat Valenciana and Fondo Social Europeo (FSE) 2014-2020 under Grant ACIF/2016/207.

Acknowledgments: We thank Ms. Paula Pérez and Dr.Ángeles Gómez for technical assistance, Drs Judit Castro and Lucía Sanchez for their methodological support in confocal observations, Drs. José Antonio Encinar and Victoriano Mulero for their valuable comments and Mr. Diego Sanz for graphical support. The authors gratefully acknowledge deceased Dr. Amparo Estepa for original ideas and inspiration.

Disclosure statement: The authors declare no potential conflict of interest.

References

- [1] Vilahur G, Badimon L. Biological actions of pentraxins. Vascul Pharmacol 2015; 73:38-44.
- [2] Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111(12):1805-12.
- [3] Pepys MB, Baltz ML. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol 1983; 34:141-212.
- [4] Hurlimann J, Thorbecke GJ, Hochwald GM. The liver as the site of C-reactive protein formation. The Journal of Experimental Medicine 1966; 123(2):365.
- [5] Tillett WS, Francis T. Serological Reactions in Pneumonia with a Non-Protein Somatic Fraction of Pneumococcus. J Exp Med 1930; 52(4):561-71.
- [6] Shrive AK, Cheetham GM, Holden D, Myles DA, Turnell WG, Volanakis JE, Pepys MB, Bloomer AC, *et al.* Three dimensional structure of human C-reactive protein. Nat Struct Biol 1996; 3(4):346-54.
- [7] Nguyen NY, Suzuki A, Boykins RA, Liu TY. The amino acid sequence of Limulus Creactive protein. Evidence of polymorphism. J Biol Chem 1986; 261(22):10456-65.
- [8] Garlanda C, Bottazzi B, Bastone A, Mantovani A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 2005; 23:337-66.
- [9] Tharia HA, Shrive AK, Mills JD, Arme C, Williams GT, Greenhough TJ. Complete cDNA sequence of SAP-like pentraxin from Limulus polyphemus: implications for pentraxin evolution. J Mol Biol 2002; 316(3):583-97.
- [10] Introna M, Breviario F, d'Aniello EM, Golay J, Dejana E, Mantovani A. IL-1 inducible genes in human umbilical vein endothelial cells. Eur Heart J 1993; 14 Suppl K:78-81.
- [11] Emsley J, White HE, O'Hara BP, Oliva G, Srinivasan N, Tickle IJ, Blundell TL, Pepys MB, et al. Structure of pentameric human serum amyloid P component. Nature 1994; 367(6461):338-45.
- [12] Srinivasan N, White HE, Emsley J, Wood SP, Pepys MB, Blundell TL. Comparative analyses of pentraxins: implications for protomer assembly and ligand binding. Structure 1994; 2(11):1017-27.
- [13] Armstrong PB. Comparative biology of the pentraxin protein family: evolutionarily conserved component of innate immune system. Int Rev Cell Mol Biol 2015; 316:1-47.
- [14] de Beer FC, Baltz ML, Munn EA, Feinstein A, Taylor J, Bruton C, Clamp JR, Pepys MB. Isolation and characterization of C-reactive protein and serum amyloid P component in the rat. Immunology 1982; 45(1):55-70.
- [15] Pepys MB, Baltz M, Gomer K, Davies AJ, Doenhoff M. Serum amyloid P-component is an acute-phase reactant in the mouse. Nature 1979; 278(5701):259-61.
- [16] Rudnick CM, Dowton SB. Serum amyloid P (female protein) of the Syrian hamster. Gene structure and expression. J Biol Chem 1993; 268(29):21760-9.
- [17] Mortensen RF, Beisel K, Zeleznik NJ, Le PT. Acute-phase reactants of mice. II. Strain dependence of serum amyloid P-component (SAP) levels and response to inflammation. J Immunol 1983; 130(2):885-9.
- [18] Rubio N, Sharp PM, Rits M, Zahedi K, Whitehead AS. Structure, expression, and evolution of guinea pig serum amyloid P component and C-reactive protein. J Biochem 1993; 113(3):277-84.
- [19] Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999; 7(2):169-77.
- [20] Agrawal A, Singh PP, Bottazzi B, Garlanda C, Mantovani A. Pattern recognition by pentraxins. Adv Exp Med Biol 2009; 653:98-116.

- [21] Serino L, Virji M. Phosphorylcholine decoration of lipopolysaccharide differentiates commensal Neisseriae from pathogenic strains: identification of licA-type genes in commensal Neisseriae. Mol Microbiol 2000; 35(6):1550-9.
- [22] Volanakis JE, Kaplan MH. Specificity of C-Reactive Protein for Choline Phosphate Residues of Pneumococcal C-Polysaccharide. Proceedings of the Society for Experimental Biology and Medicine 1971; 136(2):612-14.
- [23] Chang M-K, Binder CJ, Torzewski M, Witztum JL. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand:
 Phosphorylcholine of oxidized phospholipids. Proceedings of the National Academy of Sciences of the United States of America 2002; 99(20):13043-48.
- [24] Hack CE, Wolbink G-J, Schalkwijk C, Speijer H, Hermens WT, van den Bosch H. A role for secretory phospholipase A2 and C-reactive protein in the removal of injured cells. Immunology Today 1997; 18(3):111-15.
- [25] Ciurana CL, Hack CE. Competitive binding of pentraxins and IgM to newly exposed epitopes on late apoptotic cells. Cell Immunol 2006; 239(1):14-21.
- [26] Poon IK, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2010; 17(3):381-97.
- [27] Du Clos TW. The interaction of C-reactive protein and serum amyloid P component with nuclear antigens. Mol Biol Rep 1996; 23(3-4):253-60.
- [28] Robey FA, Jones KD, Tanaka T, Liu TY. Binding of C-reactive protein to chromatin and nucleosome core particles. A possible physiological role of C-reactive protein. J Biol Chem 1984; 259(11):7311-6.
- [29] Higginbotham JD, Heidelberger M, Gotschlich EC. Degradation of a pneumococcal type-specific polysaccharide with exposure of group-specificity. Proc Natl Acad Sci U S A 1970; 67(1):138-42.
- [30] Baldo BA, Fletcher TC, Pepys J. Isolation of a peptido-polysaccharide from the dermatophyte Epidermophyton floccosum and a study of its reaction with human C-reactive protein and a mouse anti-phosphorylcholine myeloma serum. Immunology 1977; 32(6):831-42.
- [31] Jensen TD, Schonheyder H, Andersen P, Stenderup A. Binding of C-reactive protein to Aspergillus fumigatus fractions. J Med Microbiol 1986; 21(2):173-7.
- [32] Pied S, Nussler A, Pontent M, Miltgen F, Matile H, Lambert PH, Mazier D. C-reactive protein protects against preerythrocytic stages of malaria. Infect Immun 1989; 57(1):278-82.
- [33] Culley FJ, Harris RA, Kaye PM, McAdam KP, Raynes JG. C-reactive protein binds to a novel ligand on Leishmania donovani and increases uptake into human macrophages. J Immunol 1996; 156(12):4691-6.
- [34] Shrive AK, Metcalfe AM, Cartwright JR, Greenhough TJ. C-reactive protein and SAP-like pentraxin are both present in Limulus polyphemus haemolymph: crystal structure of Limulus SAP. J Mol Biol 1999; 290(5):997-1008.
- [35] Chen R, Qi J, Yuan H, Wu Y, Hu W, Xia C. Crystal structures for short-chain pentraxin from zebrafish demonstrate a cyclic trimer with new recognition and effector faces. J Struct Biol 2015; 189(3):259-68.
- [36] Amatayakul-Chantler S, Dwek RA, Tennent GA, Pepys MB, Rademacher TW. Molecular characterization of Limulus polyphemus C-reactive protein. II. Asparagine-linked oligosaccharides. Eur J Biochem 1993; 214(1):99-110.
- [37] Schwalbe RA, Dahlback B, Coe JE, Nelsestuen GL. Pentraxin family of proteins interact specifically with phosphorylcholine and/or phosphorylethanolamine. Biochemistry 1992; 31(20):4907-15.
- [38] Coe JE, Ross MJ. Hamster female protein, a sex-limited pentraxin, is a constituent of Syrian hamster amyloid. J Clin Invest 1985; 76(1):66-74.

- [39] Bello-Perez M, Falco A, Medina R, Encinar JA, Novoa B, Perez L, Estepa A, Coll J. Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. Dev Comp Immunol 2017; 69:33-40.
- [40] Pathak A, Agrawal A. Evolution of C-Reactive Protein. Frontiers in Immunology 2019; 10(943).
- [41] Cray C. Acute phase proteins in animals. Prog Mol Biol Transl Sci 2012; 105:113-50.
- [42] Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res 2013; 56(1):131-42.
- [43] MacCarthy EM, Burns I, Irnazarow I, Polwart A, Greenhough TJ, Shrive AK, Hoole D. Serum CRP-like protein profile in common carp Cyprinus carpio challenged with Aeromonas hydrophila and Escherichia coli lipopolysaccharide. Dev Comp Immunol 2008; 32(11):1281-9.
- [44] Pionnier N, Adamek M, Miest JJ, Harris SJ, Matras M, Rakus KL, Irnazarow I, Hoole D. Creactive protein and complement as acute phase reactants in common carp Cyprinus carpio during CyHV-3 infection. Dis Aquat Organ 2014; 109(3):187-99.
- [45] Pionnier N, Falco A, Miest JJ, Shrive AK, Hoole D. Feeding common carp Cyprinus carpio with beta-glucan supplemented diet stimulates C-reactive protein and complement immune acute phase responses following PAMPs injection. Fish Shellfish Immunol 2014; 39(2):285-95.
- [46] Pionnier N, Falco A, Miest J, Frost P, Irnazarow I, Shrive A, Hoole D. Dietary beta-glucan stimulate complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio) during an Aeromonas salmonicida infection. Fish Shellfish Immunol 2013; 34(3):819-31.
- [47] Choi KM, Shim SH, An CM, Nam BH, Jeong JM, Kim JW, Park CI. Functional characterisation and expression analysis of recombinant serum amyloid P isoform 1 (RbSAP1) from rock bream (Oplegnathus fasciatus). Fish Shellfish Immunol 2015; 45(2):277-85.
- [48] Hwang SD, Bae JS, Jo DH, Kim KI, Cho MY, Jee BY, Park MA, Park CI. Gene expression and functional characterization of serum amyloid P component 2 in rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol 2015; 47(1):521-7.
- [49] Wang T, Zhang J. CsPTX1, a pentraxin of Cynoglossus semilaevis, is an innate immunity factor with antibacterial effects. Fish Shellfish Immunol 2016; 56:12-20.
- [50] Estepa A, Coll J. Innate Multigene Family Memories Are Implicated in the Viral-Survivor Zebrafish Phenotype. PLoS One 2015; 10(8):e0135483.
- [51] Bello-Perez M, Falco A, Medina-Gali R, Pereiro P, Encinar JA, Novoa B, Perez L, Coll J. Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Mol Immunol 2017; 91:145-55.
- [52] Medina-Gali R, Bello-Perez M, Martinez-Lopez A, Falco A, Ortega-Villaizan MM, Encinar JA, Novoa B, Coll J, *et al.* Chromatin immunoprecipitation and high throughput sequencing of SVCV-infected zebrafish reveals novel epigenetic histone methylation patterns involved in antiviral immune response. Fish Shellfish Immunol 2018; 82:514-21.
- [53] Ballesteros NA, Saint-Jean SS, Encinas PA, Perez-Prieto SI, Coll JM. Oral immunization of rainbow trout to infectious pancreatic necrosis virus (Ipnv) induces different immune gene expression profiles in head kidney and pyloric ceca. Fish Shellfish Immunol 2012; 33(2):174-85.
- [54] Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 2001; 65(1):131-50.
- [55] Falco A, Cartwright JR, Wiegertjes GF, Hoole D. Molecular characterization and expression analysis of two new C-reactive protein genes from common carp (Cyprinus carpio). Dev Comp Immunol 2012; 37(1):127-38.

- [56] Bello-Perez M, Falco A, Novoa B, Perez L, Coll J. Hydroxycholesterol binds and enhances the anti-viral activities of zebrafish monomeric c-reactive protein isoforms. PLOS ONE 2019; 14(1):e0201509.
- [57] Pereiro P, Forn-Cuní G, Dios S, Coll J, Figueras A, Novoa B. Interferon-independent antiviral activity of 25-hydroxycholesterol in a teleost fish. Antiviral research 2017; 145:146-59.
- [58] Pöhlmann S, Simmons G. Viral entry into host cells. Springer; 2013.
- [59] Winton J, Batts W, deKinkelin P, LeBerre M, Bremont M, Fijan N. Current lineages of the epithelioma papulosum cyprini (EPC) cell line are contaminated with fathead minnow, Pimephales promelas, cells. J Fish Dis 2010; 33(8):701-4.
- [60] Langevin C, Aleksejeva E, Passoni G, Palha N, Levraud JP, Boudinot P. The antiviral innate immune response in fish: evolution and conservation of the IFN system. J Mol Biol 2013; 425(24):4904-20.
- [61] Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2004; 2(4):301-14.
- [62] Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 2009; 30(4):588-98.
- [63] Garcia-Valtanen P, Ortega-Villaizan Mdel M, Martinez-Lopez A, Medina-Gali R, Perez L, Mackenzie S, Figueras A, Coll JM, et al. Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules. Autophagy 2014; 10(9):1666-80.
- [64] Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, *et al.* Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4(2):151-75.
- [65] Mizushima N. Methods for monitoring autophagy. The international journal of biochemistry & cell biology 2004; 36(12):2491-502.
- [66] Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, Xu Y, Yan Y, *et al.* BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy 2017; 13(4):739-53.
- [67] Espin-Palazon R, Martinez-Lopez A, Roca FJ, Lopez-Munoz A, Tyrkalska SD, Candel S, Garcia-Moreno D, Falco A, *et al.* TNFalpha Impairs Rhabdoviral Clearance by Inhibiting the Host Autophagic Antiviral Response. PLoS Pathog 2016; 12(6):e1005699.
- [68] Liu L, Zhu B, Wu S, Lin L, Liu G, Zhou Y, Wang W, Asim M, *et al.* Spring viraemia of carp virus induces autophagy for necessary viral replication. Cell Microbiol 2015; 17(4):595-605.
- [69] Peng J, Zhu S, Hu L, Ye P, Wang Y, Tian Q, Mei M, Chen H, *et al.* Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines. Autophagy 2016; 12(10):1704-20.
- [70] Vinod V, Padmakrishnan CJ, Vijayan B, Gopala S. 'How can I halt thee?' The puzzles involved in autophagic inhibition. Pharmacol Res 2014; 82:1-8.
- [71] Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, *et al.* Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018; 14(8):1435-55.
- [72] Liu S-Y, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK, Pernet O, Guo H, *et al.* Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 2013; 38(1):92-105.
- [73] Piscianz E, Vecchi Brumatti L, Tommasini A, Marcuzzi A. Is autophagy an elective strategy to protect neurons from dysregulated cholesterol metabolism? Neural Regen Res 2019; 14(4):582-87.

- [74] Shi Y, Tan SH, Ng S, Zhou J, Yang ND, Koo GB, McMahon KA, Parton RG, *et al.* Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy 2015; 11(5):769-84.
- [75] Huang FC. The critical role of membrane cholesterol in salmonella-induced autophagy in intestinal epithelial cells. Int J Mol Sci 2014; 15(7):12558-72.
- [76] Li M, Li J, Zeng R, Yang J, Liu J, Zhang Z, Song X, Yao Z, *et al.* Respiratory syncytial virus replication is promoted by autophagy-mediated inhibition of apoptosis. Journal of virology 2018; 92(8):e02193-17.
- [77] Job ER, Bottazzi B, Gilbertson B, Edenborough KM, Brown LE, Mantovani A, Brooks AG, Reading PC. Serum amyloid P is a sialylated glycoprotein inhibitor of influenza A viruses. PLoS One 2013; 8(3):e59623.
- [78] Reading PC, Bozza S, Gilbertson B, Tate M, Moretti S, Job ER, Crouch EC, Brooks AG, *et al.* Antiviral activity of the long chain pentraxin PTX3 against influenza viruses. The Journal of Immunology 2008; 180(5):3391-98.
- [79] Kim Y, Ryu J, Ryu MS, Lim S, Han KO, Lim IK, Han KH. C-reactive protein induces G2/M phase cell cycle arrest and apoptosis in monocytes through the upregulation of B-cell translocation gene 2 expression. FEBS Lett 2014; 588(4):625-31.
- [80] Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102(18):2165-8.
- [81] Torzewski M, Rist C, Mortensen RF, Zwaka TP, Bienek M, Waltenberger J, Koenig W, Schmitz G, et al. C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 2000; 20(9):2094-9.
- [82] Ke F, Zhang Q-Y. Aquatic animal viruses mediated immune evasion in their host. Fish & shellfish immunology 2018.
- [83] Poynter SJ, DeWitte-Orr SJ. Fish interferon-stimulated genes: the antiviral effectors. Developmental & Comparative Immunology 2016; 65:218-25.
- [84] She S, Xiang Y, Yang M, Ding X, Liu X, Ma L, Liu Q, Liu B, *et al.* C-reactive protein is a biomarker of AFP-negative HBV-related hepatocellular carcinoma. International journal of oncology 2015; 47(2):543-54.
- [85] Bian A, Shi M, Flores B, Gillings N, Li P, Yan SX, Levine B, Xing C, *et al.* Downregulation of autophagy is associated with severe ischemia-reperfusion-induced acute kidney injury in overexpressing C-reactive protein mice. PloS one 2017; 12(9):e0181848.
- [86] Kim JY, Wang L, Lee J, Ou J-hJ. Hepatitis C virus induces the localization of lipid rafts to autophagosomes for its RNA replication. Journal of virology 2017; 91(20):e00541-17.
- [87] Tu Z, Gong W, Zhang Y, Feng Y, Liu Y, Tu C. Inhibition of Rabies Virus by 1, 2, 3, 4, 6-Penta-O-galloyl-β-d-Glucose Involves mTOR-Dependent Autophagy. Viruses 2018; 10(4):201.
- [88] Li C, Liu J, Zhang X, Wei S, Huang Y, Huang X, Wei J, Qin Q. Fish autophagy protein 5 exerts negative regulation on antiviral immune response against iridovirus and nodavirus. Frontiers in Immunology 2019; 10:517.
- [89] Hurwitz SN, Cheerathodi MR, Nkosi D, York SB, Meckes DG. Tetraspanin CD63 bridges autophagic and endosomal processes to regulate exosomal secretion and intracellular signaling of Epstein-Barr virus LMP1. Journal of virology 2018; 92(5):e01969-17.
- [90] Panyasrivanit M, Khakpoor A, Wikan N, Smith DR. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. Journal of General Virology 2009; 90(2):448-56.
- [91] Khakpoor A, Panyasrivanit M, Wikan N, Smith DR. A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. Journal of General Virology 2009; 90(5):1093-103.
- [92] Zheng K, Li Y, Wang S, Wang X, Liao C, Hu X, Fan L, Kang Q, *et al.* Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway

sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1mediated DNA damage checkpoint. Autophagy 2016; 12(9):1593-613.

- [93] Redmann M, Benavides GA, Berryhill TF, Wani WY, Ouyang X, Johnson MS, Ravi S, Barnes S, *et al.* Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox biology 2017; 11:73-81.
- [94] Terman A, Kurz T, Gustafsson B, Brunk U. Lysosomal labilization. IUBMB life 2006; 58(9):531-39.
- [95] Le Blanc I, Luyet P-P, Pons V, Ferguson C, Emans N, Petiot A, Mayran N, Demaurex N, et al. Endosome-to-cytosol transport of viral nucleocapsids. Nature cell biology 2005; 7(7):653.
- [96] Chelbi-Alix M, Thang MN. Chloroquine impairs the interferon-induced antiviral state without affecting the 2', 5'-oligoadenylate synthetase. Journal of Biological Chemistry 1985; 260(13):7960-64.
- [97] Hsu SP, Kuo JS, Chiang H-C, Wang H-E, Wang Y-S, Huang C-C, Huang Y-C, Chi M-S, et al. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells. Oncotarget 2018; 9(6):6883.
- [98] Lee S-J, Jung YH, Kim JS, Lee HJ, Lee SH, Lee K-H, Jang KK, Choi SH, et al. A Vibrio vulnificus VvpM induces IL-1β production coupled with necrotic macrophage death via distinct spatial targeting by ANXA2. Frontiers in cellular and infection microbiology 2017; 7:352.
- [99] Thiele JR, Zeller J, Kiefer J, Braig D, Kreuzaler S, Lenz Y, Potempa LA, Grahammer F, *et al.* A conformational change in C-reactive protein enhances leukocyte recruitment and reactive oxygen species generation in ischemia/reperfusion injury. Frontiers in immunology 2018; 9:675.
- [100] Pilely K, Fumagalli S, Rosbjerg A, Genster N, Skjoedt M-O, Perego C, Ferrante AM, De Simoni M-G, et al. c-reactive Protein Binds to cholesterol crystals and co-localizes with the Terminal complement complex in human atherosclerotic Plaques. Frontiers in immunology 2017; 8:1040.
- [101] Taskinen S, Hyvönen M, Kovanen PT, Meri S, Pentikäinen MO. C-reactive protein binds to the 3β-OH group of cholesterol in LDL particles. Biochemical and biophysical research communications 2005; 329(4):1208-16.
- [102] Noguchi N, Urano Y, Takabe W, Saito Y. New aspects of 24 (S)-hydroxycholesterol in modulating neuronal cell death. Free Radical Biology and Medicine 2015; 87:366-72.
- [103] Nury T, Zarrouk A, Mackrill JJ, Samadi M, Durand P, Riedinger J-M, Doria M, Vejux A, et al. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24 (S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22: 6 n-3). Steroids 2015; 99:194-203.
- [104] Vurusaner B, Gargiulo S, Testa G, Gamba P, Leonarduzzi G, Poli G, Basaga H. The role of autophagy in survival response induced by 27-hydroxycholesterol in human promonocytic cells. Redox biology 2018.
- [105] Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, *et al.* Autophagy regulates lipid metabolism. Nature 2009; 458(7242):1131.
- [106] Li C, Deng Y-Q, Wang S, Ma F, Aliyari R, Huang X-Y, Zhang N-N, Watanabe M, *et al.* 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity 2017; 46(3):446-56.
- [107] Li C, Sun L, Lin H, Qin Z, Tu J, Li J, Chen K, Lin L. Glutamine starvation inhibits snakehead vesiculovirus replication via inducing autophagy associated with the disturbance of endogenous glutathione pool. Fish & shellfish immunology 2019; 86:1044-52.

- [108] Shawli GT, Adeyemi OO, Stonehouse NJ, Herod MR. The Oxysterol 25-Hydroxycholesterol Inhibits Replication of Murine Norovirus. Viruses 2019; 11(2):97.
- [109] Shrivastava-Ranjan P, Bergeron É, Chakrabarti AK, Albariño CG, Flint M, Nichol ST, Spiropoulou CF. 25-Hydroxycholesterol inhibition of Lassa virus infection through aberrant GP1 glycosylation. MBio 2016; 7(6):e01808-16.
- [110] Civra A, Francese R, Gamba P, Testa G, Cagno V, Poli G, Lembo D. 25-Hydroxycholesterol and 27-hydroxycholesterol inhibit human rotavirus infection by sequestering viral particles into late endosomes. Redox biology 2018; 19:318-30.
- [111] Zhang Y, Wang L, Huang X, Wang S, Huang Y, Qin Q. Fish Cholesterol 25-hydroxylase inhibits virus replication via regulating interferon immune response or affecting virus entry. Frontiers in immunology 2019; 10.
- [112] Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon press; 1995.
- [113] Falco A, Medina-Gali RM, Poveda JA, Bello-Perez M, Novoa B, Encinar JA. Antiviral Activity of a Turbot (Scophthalmus maximus) NK-Lysin Peptide by Inhibition of Low-pH Virus-Induced Membrane Fusion. Mar Drugs 2019; 17(2).
- [114] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4):402-8.
- [115] He C, Bartholomew CR, Zhou W, Klionsky DJ. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 2009; 5(4):520-6.

Biblioteca

Tables

Organism	Gene	Sequence (5' - 3')	Accession. no.
P. promelas	ef1a	Fw: CTGGAGGCCAGCTCAAACAT	AY643400
		Rv: CATTTCCCTCCTTACGCTCAAC	
	mx	Fw: GGAGAAGAGGTTAAATGTGGATCAG	KM099175
		Rv: TGAAGTGCCTTTTTATCTTAATCT	
D. rerio	18S	Fw: ACCACCCACAGAATCGAGAAA	NR_145818
		Rv: GCCTGCGGCTTAATTTGACT	
	ef1a	Fw: CCACGTCGACTCCGGAAA	AY422992.1
		Rv: CGATTCCACCGCATTTGTAGA	
	ambra1	Fw: TCTTTCGAGAAATGGCACCT	XM_002667669
		RV: CTCTCTGCGTTAGGGACAGG	
	atg5	Fw: AGAGAGGCAGAACCCTACTATC	NM_205618
		Rv: CCTCGTGTTCAAACCACATTTC	
	beclin1	Fw: GATCATGCGCAATGGTGGCTTTC	AB266448
		Rv: CCTCCTGTGTCCTCAATCTTT	
	gabarap	Fw: GTCTGACCTCACAGTTGGGC	NM_001013260
		Rv: TCCTGGTAGAGCAGTCCCAT	
	lc3a	Fw: CAATCAGCACAGCATGG	NM_214739
		Rv: GTAAAGGAAGCCGTCTTC	
	wipi1	Fw: GTGAGAGGGTAGAGAACAG	XM_005164002
		Rv: GTAACAACGACCCAACATC	
	mxa	Fw: CACAGACAATCATGCCACCT	NM_182942
		Rv: TTTGCAGCTCCAAAGCAGCT	
	mxe	Fw: AGTCACCCAATGTCAGTGCA	BC095587
		Rv: GCTGAGAGATGTACTGGTTC	
	ifnphi1	Fw: GAGCACATGAACTCGGTGAA	BC162493.1
		Rv: TGCGTATCTTGCCACACATT	
	ifnphi2	Fw: CCTCTTTGCCAACGACAGTT	BX005440.4
		Rv: CGGTTCCTTGAGCTCTCATC	
SVCV	n-SVCV	Fw: GCATTATGCCGCTCCAAGAG	U18101
		Rv: AGCTTGCATTTGAGATCGA	
	g-SVCV	Fw: TACAGATTCGGGGGGATCTTG	NC_002803
		Rv: ACCAACGTTCCATCAACACA	

Table S1. Primer sequences used for qPCR.

Figures

Figure 1

Figure 2

Autophagy-related genes

Figure 3

50 µm

100 µm

Figure 4

Figure 5

Figure 6

Figure 7

Supplementary figures

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

PUBLICACIÓN 4

Figure captions

Figure 1. Effect of the treatment of CRP on the replication of SVCV in EPC cells. The neutralization activity of CRP1-7 was analyzed by adding the CRP at different points of the replication of SVCV. Each of the CRP was incubated with (A) EPC cells before virus adsorption, (B) SVCV before and during virus adsoption, (C) both EPC cells and SVCV only during virus adsoption and (D) infected EPC cells (i.e., after adsorption). The duration of co-incubations was either 2 h (white bars) or 20 h (black bars). Describing experimental timeline charts are included as insets in the top of each corresponding graph. SVCV infection was determined by the focus forming assay. Data were expressed as percentages of neutralization, which were calculated by the formula: 100 - (number of fluorescent foci in the treatment group / number of fluorescent foci in the control GFP group) × 100. Graphs represent the mean and s.d. of three independent experiments, each one performed in triplicate. •, indicates no significant differences between the treatment and the control (GFP treatment). The $P \le 0.05$, $P \le 0.01$ and $P \le 0.001$ statistical differences were indicated as either a, b or c, respectively. Inside-bar symbols from graph (B) indicate significant differences in comparison to corresponding CRP treatments in (C). Statistically significant differences between different times within the same CRP treatment are shown with symbols over the keys connecting both groups.

Figure 2. Interaction of CRP1-7 on SVCV replication in EPC cells. (A) SVCV binding levels to EPC cell surfaces in the presence of CRP1-7.EPC cell-bound SVCV particles in the presence of CRP were quantified by the *ef1a*-relative amounts of SVCV n gene copies by RT-qPCR and expressed as folds of change by the formula: n gene copies in CRP1-7-treated monolayers / ngene copies in GFP-treated monolayers. (B) CRP1-7 inhibition of the fusogenic activity of SVCV G protein in the surface of SVCV-infected EPC cells. The levels of G protein-mediated syncytia of 5 or more cells in SVCV-infected EPC cell monolayers were determined by triggering cell fusion at pH 6 in the presence of CRP and expressed as percentage of counted syncytia by the formula: 100 × number of syncytia in CRP1-7-treated monolayers / number of syncytia in GFPtreated monolayers. (C) Time course of SVCV replication *in vitro* at early stages post-adsorption. EPC cell monolayers were incubated for 2 h with CRP-mix before viral adsorption and SVCV replication estimated by measuring the expression of SVCV n and g gene transcripts by RTqPCR and expressed as folds of change by the formula: SVCV n or g transcriptsat each time point in treated or control monolayers / efla transcripts in corresponding monolayers. (D) Modulation of the IFN system by CRP1-7. The transcript levels of the IFN-response reporter mx gene were quantified by RT-qPCR in EPC cells 20 h after their treatment with CRP for 2 h and normalized to corresponding *ef1a* levels. Data were expressed as folds of change by the formula: mx expression in CRP1-7-treated monolayers / mx expression in GFP-treated monolayers. (E) Presence of antiviral factors in supernatants from CRP1-7-treated EPC cell monolayers. The SVCV neutralization induced by supernatants collected from EPC cells previously treated for 2 h with CRP1-7 was determined by the focus forming assay. The results are expressed relative to GFP treatments by the formula: 100 - (number of fluorescent foci in the treatment group / number of fluorescent foci in the control GFP group) × 100. All experiments were performed 3 times each by triplicates, except for (C) and (D) that were performed twice each by tetraplicates. Data were represented as the mean and s.d. The statistically significant different levels between them indicated with symbols as indicated in Fig. 1 and methods.

Figure 3. Effect of CRP1-7 on SVCV replication in ZF4 zebrafish cells. (**A**) SVCV neutralization of CRP1-7 and CRP-mix when incubated with ZF4 cells for 2 h before virus adsorption. SVCV infection was determined by the focus forming assay. The results are represented as percentages of neutralization by the formula: 100 - (number of fluorescent foci in the treatment group / number of fluorescent foci in the control GFP group) × 100. These experiments were performed 3 times each by triplicates. (**B**) Time course of SVCV replication at early stages postadsorption. SVCV replication levels in ZF4 cells, incubated for 2 h with CRP-mix before viral

adsorption, were determined at 0-5 h by measuring the expression of SVCV n and g gene transcripts by RT-qPCR and expressed as folds of change by the formula: SVCV n or gtranscripts at each time point in treated or control monolayers / 18S ribosomal transcripts in corresponding monolayers. (C) Induction of the IFN system by the CRP-mix. The transcript levels of two IFN-response reporter gene isoforms of Mx (mxa and mxe) were quantified by RTqPCR in ZF4 cells treated with the CRP-mix for 2 h before viral infection at different times postadsorption (0-5 and 20 h). Data were normalized to corresponding 18S ribosomal levels and expressed as in Fig. 2D. (D) Capacity of the CRP-mix to modulate autophagy-related transcripts in vitro. The transcript levels of relevant autophagy genes (beclin1, wipi1, lc3a, atg5, gabarap and ambra1) were quantified as described in (C). All in vitro gene expression studies were performed twice in tetraplicates. (E) Capacity of the CRP-mix to modulate autophagy-related gene transcripts in vivo. Four adult zebrafish were i.p. injected with CRP-mix. Two days postinjection, the transcript levels of the autophagy-related genes previously analyzed in vitro were quantified by RT-qPCR in spleen, liver and kidney tissues. Data are normalized to corresponding 18S ribosomal levels and expressed as folds of change by the formula: gene expression in fish injected with CRP-mix / gene expression in fish injected with GFP. All data are represented as the mean and s.d. The statistically significant level differences between them are indicated with symbols as indicated in Fig. 1 and in methods.

Figure 4. LC3 recruitment by selected CRPs *in vitro* in ZF4 cells and *in vivo* in zebrafish larvae. (A) Representative confocal images of FITC immune-labeled LC3B in ZF4 cells treated with either GFP or CRP-mix for 4 h. Nuclei were stained with DAPI. Autophagosome levels were quantified as the area (per cell) of over-threshold green fluorescence corresponding to intracellular puncta and represented as folds of change in comparison to the GFP treatment by the formula: over-threshold fluorescence per cell in CRP-mix-treated monolayers / over-threshold fluorescence per cell in GFP-treated monolayers. This experiment was performed 3 times, each of them by triplicates. Symbol "a" indicates statistically significant differences between CRP-mix and GFP treatments at the P < 0.05 level. (B) Representative images of GFP-LC3 transgenic zebrafish larvae at 3 days post-injection with 150 pg of pMCV1.4 or pMCV1.4-*crp1/crp5/il6* plasmid constructs. Corresponding scale bars of 50 and 100 µm are included.

Figure 5. Autophagy induced by CRP-mix on SVCV replication in ZF4 cells. (A) Representative confocal images of FITC immune-labeled LC3B in ZF4 cells treated with either GFP or CRP-mix together with SVCV for 4 h. Nuclei were stained with DAPI. Autophagosome levels were quantified as described in Fig. 4 and in methods. Scale bar of 50 µm is included. (B) Ability of the CRP-mix to modulate autophagy-related gene transcription in vitro during an SVCV infection. The transcript levels of the genes of relevant autophagy elements (beclin1, wipi1, lc3a, atg5, gabarap and ambra1) were quantified by RT-qPCR in ZF4 cells treated with CRP-mix for 2 h before to viral inoculum (MOI 1) at different times post-adsorption (0-5 and 20 h). This experiment was performed twice in tetraplicates. Data are expressed as indicated in Fig. 3. (C) Effect of the autophagy inducer 3-MA on SVCV replication. The SVCV neutralization activity of a gradient of 3-MA (0-1mM) when incubated with EPC cells for 20 h prior to virus adsorption was assessed. SVCV infection was determined by the focus forming assay. The results are represented as percentages of neutralization relative to untreated group by the formula: 100 -(number of fluorescent foci in the 3-MA-treated group / number of fluorescent foci in the nontreated group) × 100. (D) Effects of the CRP-mix on the SVCV neutralizing activity of autophagy modulators in vitro. SVCV infectivity was assessed on EPC cells treated with 3-MA (1 mM, 20 h), CQ (25 μ M, 30 min) and rapamycin (Rapa, 25 μ M, 4 h), and then incubated for 2 h with the CRP-mix before infection. SVCV infection was determined by the focus forming assay and data represented as in (C) and relative to the GFP-treated group. Statistically significant differences in comparison to corresponding untreated groups and GFP are shown inside and on top of bars, respectively. Neutralization experiments were performed 3 times each by triplicates. The

statistically significant level differences are indicated with symbols as indicated in Fig. 1 and in methods.

Figure 6. Autophagy and ROS generation during the SVCV neutralizing activity induced by 25-HOC and MBCD together with CRP-mix. Representative confocal images of FITC immunelabeled LC3B in ZF4 cells treated with (A) either GFP or CQ (25 μ M) and (B) 25-HOC (10 µg/mL) or MBCD (4 mM) alone or in combination with CRP-mix for 4 h. Nuclei were stained with DAPI. Autophagosome levels were quantified as described in Fig. 4 and in methods. Scale bar of 50 µm is included. (C) Effect of 25-HOC and MBCD on the SVCV neutralizing activity of autophagy modulators in vitro. SVCV infectivity was assessed on EPC cells treated with 3-MA (1 mM, 20 h), CQ (25 μ M, 30 min) and rapamycin (Rapa, 25 μ M, 4 h), and then incubated for 2 h with 10 µg/mL of 25-HOC or 1 mM MBCD before infection. SVCV infection was determined by the focus forming assay. Statistically significant differences in comparison to corresponding GFP and untreated groups are shown inside and on top of bars, respectively. (D) Effect of NAC on the SVCV neutralizing activity of CRP-mix, 25-HOC and MBCD in vitro. SVCV infectivity was assessed on EPC cells treated with NAC (1 mM, 20 h) and then incubated for 2 h with either GFP, CRP-mix, 10 µg/mL 25-HOC or 1 mM MBCD before infection. SVCV infection was determined by the focus forming assay. The results from neutralization assays are represented as in Fig. 5. These experiments were performed 3 times by triplicates. All statistically significant level differences between treatment and corresponding control groups are indicated with symbols as in Fig 1 and in methods.

Figure 7. Proposed model for the mechanism by which CRPs, 25-HOC and MBCD interact with autophagy and SVCV entry. It is suggested that these three compounds (their proposed effects are indicated in blue) produce an imbalance in membrane cholesterol in the lipid rafts, what induces the increase of intracellular ROS. In turn, ROS stimulates the increment of lysosomal pH that reduces the fusion of lysosomes and intermediate endosomes (indicated with blue stoppers) and thus the formation of late endosomes/endolysosomes. Since SVCV requires the formation of endolysosomes because of their low pH to trigger the fusion conformation of the SVCV G protein for viral entry, this blockade impairs SVCV release into host's cytosol. The scheme shows that SVCV endocytic and autophagy pathways share common elements allowing the action of particular autophagy modulators on both of them. The potential convergence of pathways resulting in the formation of the amphisome, described for other viruses, is also indicated. The positive regulators of both routes are drawn in green and the negative ones in red.

Supplementary figure captions

Figure S1. Antiviral activity of CRP1-7-depleted supernatants. Each CRP1-7-containing supernatant was CRP depleted by incubation with immobilized 25-HOC in ELISA plates for 2 h. Whole CRP1-7 (white bars) and depleted CRP1-7 (black bars) were incubated with EPC cells for 2 h prior to SVCV adsorption (MOI 10⁻²). SVCV infection was determined by the focus forming assay. Data are expressed as percentages of neutralization by the formula: 100 - (number of fluorescent foci in the treatment group / number of fluorescent foci in the control GFP group) × 100. Data represent the mean and s.d. of two independent experiments, each performed in triplicate. •, indicates no significant differences between the treatment and the GFP control. Statistically significant differences are indicated as in Fig. 1 and in methods.

Figure S2. Assessment of the ability of CRP-mix to induce the transcription of *ifnphi1 and 2 in vitro*. The transcript levels of *ifnphi1* and *ifnphi2*were quantified by RT-qPCR in ZF4 cells treated with CRP-mix for 2 h prior to SVCV inoculum at different times post-adsorption. Data are expressed as folds of change relative to GFP treatments by the formula: *ifn* expression in CRP-mix-treated monolayers / *ifn* expression in GFP-treated monolayers. This experiment was performed twice in tetraplicate, the results were represented as the mean and s.d. and the statistically significant differences in comparison to GFP-treatment group were indicated as in Fig. 1 and methods.

Figure S3. Assessment of the ability of IL6 to induce the expression of *crp1-7* transcripts *in vivo*. Four adult zebrafish were i.p. injected with supernatants enriched in IL6. Two days post-injection, the transcript levels of each *crp1-7* isoform from liver were quantified by RT-qPCR and normalized to 18S ribosomal levels in corresponding samples. Data were expressed as folds of change relative to GFP treatments by the formula: *crp1-7* expression in liver of zebrafish injected with IL6 /*crp1-7* expression in liver of zebrafish injected with GFP. The results are represented as the mean and s.d. and the statistically significant differences in comparison to the GFP-treated group were indicated as in Fig. 1 and methods.

Figure S4. Transcriptional modulation of autophagy by SVCV in ZF4 cells. The transcript levels of the genes of relevant autophagy elements (*beclin1, wipi1, lc3a, atg5,gabarap* and *ambra1*) were quantified at different times post-adsorption (0-5 h) by RT-qPCR in ZF4 cells treated with GFP for 2 h prior to viral inoculum (MOI 1). This experiment was performed twice in tetraplicates. Data are expressed as indicated in Fig. 3 (relative to the uninfected group). The statistically significant differences in comparison to the control group were indicated as in Fig. 1 and methods.

Figure S5. Effect of the addition of exogenous cholesterol on intracellular autophagosome levels and SVCV infection *in vitro*. (**A**) Representative confocal images of FITC immune-labeled LC3B in ZF4 cellstreated with GFP, cholesterol, as well as ethanol (solvent control of both 25-HOC and cholesterol), for 4 h. Nuclei were stained with DAPI. Autophagosome levels were quantified as described in Fig. 4 and in methods. Scale bar of 50 µm is included. (**B**) Effect of cholesterol in the absence and presence of MBCD on SVCV replication *in vitro*. SVCV infectivity was assessed on EPC cells treated with cholesterol (0.5 and 1 mM) together with MBCD at either 0.5 mM (white bars) or 1 mM (black bars) for 2 h before infection. SVCV infection was determined by the focus forming assay. The results are represented as percentages of neutralization relative to the untreated group. This experiment was performed 3 times by triplicate. Statistically significant differences between cholesterol treatments with and without MBCD are indicated as in Fig.1 and methods.

PUBLICACIÓN 5

TÍTULO: Discovery of nonnucleoside inhibitors of polymerase from infectious pancreatic necrosis virus (IPNV)

COAUTORES: Melissa Belló Pérez, Alberto Falcó Graciá, Vicente Galiano Ibarra, Julio Coll Morales, Luis Perez García-Estañ, Jose Antonio Encinar Hidalgo

REVISTA: Drug Design, Development and Therapy

doi: 10.2147/DDDT.S171087

Drug Design, Development and Therapy

8 Open Access Full Text Article

ORIGINAL RESEARCH

Discovery of nonnucleoside inhibitors of polymerase from infectious pancreatic necrosis virus (IPNV)

Melissa Bello-Pérez¹ Alberto Falcó¹ Vicente Galiano² Julio Coll³ Luis Perez¹ José Antonio Encinar¹

¹Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain; ²Department of Physics and Computer Architecture, Miguel Hernández University (UMH), Elche, Spain; ³Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain **Introduction:** Infectious pancreatic necrosis virus (IPNV) causes serious losses in several fish species of commercial interest. IPNV is a non-enveloped double-stranded RNA virus with a genome consisting of two segments A and B. Segment B codes for the VP1 protein, a non-canonical RNA-dependent RNA polymerase that can be found both in its free form and linked to the end of genomic RNA, an essential enzyme for IPNV replication.

Materials and methods: We take advantage of the knowledge over the allosteric binding site described on the surface of the thumb domain of Hepatitis C virus (HCV) polymerase to design new non-nucleoside inhibitors against the IPNV VP1 polymerase.

Results: Molecular docking techniques have been used to screen a chemical library of 23,760 compounds over a defined cavity in the surface of the thumb domain. Additional ADMET (absorption, distribution, metabolism, excretion, and toxicity) filter criteria has been applied.

Conclusion: We select two sets of 9 and 50 inhibitor candidates against the polymerases of HCV and IPNV, respectively. Two non-toxic compounds have been tested in vitro with antiviral capacity against IPNV Sp and LWVRT60 strains in the low μ M range with different activity depending on the IPNV strain used.

Keywords: IPNV, HCV, antiviral drugs, non-nucleoside inhibitors, RdRp, molecular docking

Introduction

Since the discovery of the first vaccine against smallpox in 1796 by Edward Jenner, society has relied almost entirely on the development of new vaccines to battle viral diseases. However, the world's capacity for vaccine development is currently already falling behind the rate of emergence and reemergence of dangerous viral diseases. Indeed, viral diseases are particularly troublesome, because effective treatments against most of them are lacking. For instance, approximately half the short list of US Food and Drug Administration-approved antiviral drugs are aimed at HIV1 and those remaining target only six more viruses.1 Furthermore, resistance to existing antimicrobials is emerging, along with new viral pathogens.² Consequently, urgent efforts are necessary to accelerate novel antiviral drug discovery. One such technology that has allowed for the in silico screening of large amounts of compounds for targeting specific sites within functionally significant proteins is the use of bioinformatic tools. Through the use of increasingly potent computational hardware systems combined with the ever-increasing availability of detailed information on the molecular structure of relevant proteins and extensive chemical libraries, significant advances have been made in both clinical and veterinary fields.3,4

Correspondence: José Antonio Encinar; Alberto Falcó Molecular and Cell Biology Institute, Edificio Torregaitán, Miguel Hernández University, Avenida de la Universidad, Elx 03202, Alicante, Spain Tel +34 9 665 8453 Fax +34 96 665 8758 Email jant.encinar@umh.es; alber.falco@umh.es

Drug Design, Development and Therapy 2018:12 2337-2359

Competition of the set of the set

2337

Infectious pancreatic necrosis virus (IPNV) was the first virus to be isolated from fish, and is now recognized as the known causative agent of IPN disease, which mainly affects cultured salmonids.⁵ IPNV belongs to the family Birnaviridae and is a member of the genus *Aquabirnavirus*. IPNV is the prototype member of the genus *Aquabirnavirus* of the family Birnaviridae. The most characteristic macro- and histopathological symptoms of this disease are exophthalmia, skin hyperpigmentation, abdominal and pyloric petechial hemorrhages, erratic swimming, and necrosis of both the kidney and pancreas.^{5,6}

Infection outbreaks by IPNV can cause high mortality in first-feeding fry and postsmolts,7,8 consequently incurring high economic losses to the aquaculture industry.6,9,10 The mortality rate is very variable (10%-90%) and affects youngest fish to a greater extent, reaching 45%, 35%, and 7% in 1-, 2-, and 4-month-old fish, respectively.¹¹ Interestingly, while currently unlisted in the Model Aquatic Health Code of the World Organization for Animal Health, the presence of IPNV is continuously being detected worldwide in both aquacultured¹²⁻¹⁷ and wild fish, including several nonsalmonid species.^{15,17–19} Apart from the fact that this virus is transmitted both vertically and horizontally,^{20,21} fish that recover or are asymptomatically infected often become carriers of the virus throughout their lives,^{11,22} contributing to its broad spread. Unfortunately, there is no therapy for this disease, so current protective measures are aimed at avoiding and alleviating its incidence. Such approaches have included less stressful handling of animals, use of IPN-resistant fish lines, improved management procedures, and the use of vaccination programs. In any case, the spread of the virus has been shown to be unpredictable, and there is still room to improve the protection conferred by existing vaccines, such as reducing their cost and making them more suitable to all life stages.9

IPNV is an unenveloped virus with an icosahedral and single-shelled capsid (T=13 symmetry) of about 60 nm in diameter, which consists of two proteins (VP2 and VP3). Its linear dsRNA genome is bisegmented (segment A 3,097 nucleotide [nt], segment B, 2,784 nt), uncapped, and unpolyadenylated.¹⁰ Segment A is bicistronic. Among its two open reading frames (ORFs), the largest one, ORF L, codes for the proteins VP2-4 as a 106-kDa polyprotein (NH2-pVP2-VP4-VP3-COOH) which is co-translationally cleaved by the viral protease VP4. The precursor pVP2 belongs to the major capsid protein VP2 (being most abundant overall),²³ of which VP3 is a minor capsid protein that complexes with the dsRNA genome.¹⁰ In turn, the other segment-A ORF (ORF S) is not present in all isolates. ORF S overlaps the amino-terminal end of ORF L Dovepress

and encodes VP5. VP5 is variable in size (3.3–17 kDa) and a nonstructural protein that is not essential for viral infectivity, but may contribute to the virulence of the strain by presumably triggering an antiapoptotic mechanism.²⁴ Segment B contains a single ORF that encodes the VP1 protein, which is a noncanonical RNA-dependent RNA polymerase (RdRp; 94 kDa). This protein, which can be found in its free form or indistinctively linked to the end of the genomic RNA (VPg),²⁵ lacks the hallmark catalytic GDD signature in the region corresponding to the presumptive motif VI of infectious bursal disease virus.²⁶ However, it presents a spatially rearranged LDD motif (residues 653–655 from Protein Data Bank [PDB] 2Y18).²⁷ VP1 also has enzymatic activity, such as that possessed by guanylyl and methyl transferase.²⁸

Taking advantage of the knowledge obtained from previous studies on the allosteric binding site described on the surface of the thumb domain of hepatitis C virus (HCV) polymerase,²⁹ we herein explored a similar site in IPNV VP1 polymerase, allowing for the discovery of new antiviral drugs. This work describes the molecular docking results for a chemical library selected against a cavity site in the thumb domain of the RdRp of different IPNV strains, the successive filters applied for candidate compounds, and preliminary biological assays aimed at assessing antiviral capacity and specificity against two different IPNV strains for two of the selected candidates.

Materials and methods

Chemical compounds for antiviral assays

The compounds with the PubChem IDs 3274414 and 39834288 were purchased from the chemical supplier Ambinter (supplier references Amb10836885 and Amb674545, respectively) (Ambinter c/o Greenpharma Orléans, France).

Protein structure for IPNV RNAdependent RNA-polymerase VPI and chemical libraries

To date, five resolved structures have been deposited in the PDB for the VP1 protein of the Jasper strain of IPNV (UniProt code P22173): 2YI8, 2YI9, 2YIA, 2YIB, and 3ZED.^{30,31} However, no structures of this protein are yet deposited for the Sp (UniProt code P22174) or LWVRT60 (UniProt code A0A1B2AQF1) strains. Therefore, three-dimensional (3-D) structural models of the VP1 protein from both strains were generated by homology modeling in automated mode, using the 2YIB structure as a template.³² Briefly, a template search with BLAST and HHblits was performed against the Swiss-Model Template Library (SMTL; last update

Dovepress

December 6, 2017, last included PDB release December 1, 2017). The target sequence was searched with BLAST³³ against the primary amino-acid sequence contained in the SMTL. A total of 28-30 templates were found in each case. An initial HHblits profile was built using the procedure outlined in Remmert et al,34 followed by one iteration of HHblits against NR20. The profile obtained was then searched against all profiles of the SMTL. A total of 140-163 templates were found in each case. For each template identified, its quality was predicted from features of the target-template alignment. Templates of the highest quality were then selected for model building. Models were built based on the target-template alignment using ProMod II. Coordinates conserved between the target and the template were copied from the template to the model. Insertions and deletions were remodeled using a fragment library. Side chains were then rebuilt. Finally, the geometry of the resulting model was regularized using a force field. In cases where loop modeling with ProMod II35 did not yield satisfactory results, an alternative model was built with Modeller.36 For these molecular docking studies, amino-acid sequences 31-36 and 122-157 were electronically removed in both models and template. Structures 2BRK and 2BRL of HCV NS5 RdRp from Di Marco et al²⁹ were used additionally, thereby employing nine structures for overall structural refinement. Visualization of the structures and preparation of the figures were carried out with PyMol 2.0 software.

For these experiments, a chemical library of 23,764 compounds was built using the option available at the PubChem site (https://pubchem.ncbi.nlm.nih.gov/search/search.cgi; in the "Identity/similarity" section) for searching structurally similar compounds to a given template. In our case, the structures of compounds 1 (PubChem ID 4369534) and 2 (PubChem ID 4369535), which were described to interact with the polymerase of HCV and to inhibit its activity,²⁹ were used as query templates. Compounds were subsequently searched with at least 70% structural identity, thus generating a chemical library to be tested in molecular docking experiments. The PubChem web application used herein to allowed for the 3-D chemical structure of all compounds retrieved to be downloaded as spatial data files.

Molecular docking procedures

Before carrying out molecular docking experiments, PDBQT files of both the protein (receptor) and the ligands of our chemical library were calculated.^{37,38} Next, the five structures and two models of VP1 proteins were subjected to a geometric optimization process using the repair function of the FoldX algorithm.³⁹ Molecular docking experiments were

performed using AutoDock Vina software version $1.1.2^{40}$ and targeted to a grid with dimensions of $24 \times 24 \times 24$ points centered around the cavity generated by the amino acids Glu557, Asn580, Ans624, Pro625, and Pro550 of HCV NS5 RdRp and likewise around the amino acids Trp500, Arg503, Pro495, Val494, Leu492, Leu392, Ala396, and His428 of the VP1 protein of IPNV. AutoDock Vina was set up on a lusitania2.cenits.es Linux cluster (Research, Technological Innovation, and Supercomputing Center of Extremadura, Cáceres, Spain). AutoDock Vina generates for each tested ligand a conformer docked to the binding site in the protein and calculates the Gibbs free-energy variation of the binding process. Compounds with lower ΔG (kcal/mol) outperform a first-screening filter as potential candidates for inhibitors.

Calculation of pharmacokinetic parameters and potential toxicity of inhibitor candidates

Physicochemical parameters for the best-docked compounds were calculated as described previously^{37,38} using DataWarrior version 4.7.2.⁴¹ ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties were calculated with the AdmetSAR web application⁴² and Data-Warrior.⁴¹ The same applications were used to calculate these parameters for the drugs included in the DrugBank database,⁴³ and they are available at the website <u>http://dockingfiles.umh.</u> es/drugbank/DrugBanklist.asp.

Cell culture and viral strains

The Chinook salmon-embryo cell line CHSE214 was purchased from the (European Collection of Authenticated Cell Cultures, Public Health England, Salisbury, UK) (91041114). It was maintained at 20°C in a 5% CO_2 atmosphere in Roswell Park Memorial Institute (RPMI) 1640 (Dutch modification) medium containing 10% FBS (Sigma-Aldrich, St Louis, MO, USA), 2 mM glutamine (Thermo Fisher Scientific, Waltham, MA, USA) and 50 µg/mL gentamicin (Thermo Fisher Scientific). Both Sp and LWVRT60 strains of IPNV were grown in CHSE214 cells at 14°C. When cytopathic effects were widespread, supernatants from infected cell cultures were clarified by centrifugation, filtered (0.22 μ m), and stored in aliquots at -80°C. Virus titers were determined by end-point dilution in confluent CHSE214-cell monolayers grown in 96-well plates at 14°C in infection medium (ie, growth medium supplemented with 2% instead of 10% FBS). The Reed-Muench method⁴⁴ was used to calculate 50% tissue-culture infective dose (TCID₅₀)/mL. Average TCID₅₀/mL (and SD) for each batch was obtained from three different titrations.

Cytotoxicity assays

The potential toxicity of selected compounds on CHSE cells was analyzed by measuring changes in cell viability with MTT (Sigma-Aldrich) assays. Briefly, confluent cell monolayers in 96-well plates were treated with different concentrations of each type of compound in infection media for 24 hours (100 µL/well). Then, 0.5 mg/mL MTT from tenfoldconcentrated stocks in PBS (stored at -20°C) in fresh media (100 µL/well) was used to replace treatments. MTT solutions were incubated with cells under the same conditions for an additional 4 hours. Finally, media were carefully removed and the colored formazan product dissolved in 100 µL dimethyl sulfoxide (DMSO; Merck, Kenilworth, NJ, USA) and measured at 570 nm vs reference absorbance at 620 nm with a SpectroStar Omega absorbance microplate reader (BMG LabTech, Ortenberg, Germany). OD is expressed in percentages relative to the control group consisting of untreated cells. Additional controls included corresponding compounds and solvents (DMSO for the PubChem 3274414 compound and DMSO:acetone 1:1 for the PubChem 39834288 compound up to a maximum final concentration of 0.5% v:v) at an equivalent concentration to that used at each compound concentration tested at 1, 5, 10, 20, and 50 µM. Cell viability was calculated by the formula: 100×(treated-cell absorbance/ control-cell absorbance). All experiments were performed in triplicate, and results are shown as mean with SD calculated from three different experiments.

Antiviral assays

Drug Design, Development and Therapy downloaded from https://www.dovepress.com/ by 185.163.166.88 on 30-Jul-2018 For personal use only.

To test the influence of the selected compounds on IPNV infectivity, IPNV was added at a 0.01 multiplicity of infection in 100 µL RPMI 1640 (Dutch modification) medium supplemented with 2% FBS (infection medium) to confluent CHSE-cell monolayers grown in 96-well plates and incubated for 2 hours at 4°C (adsorption period). Then, infected cell monolayers were washed twice with PBS and compounds (PubChem ID 3274414 was dissolved in DMSO and Pub-Chem ID 39834288 in DMSO: acetone 1:1) were added to corresponding wells in 100 µL infection medium at different concentrations of 1, 5, 10, 20, and 50 µM. The final concentration of organic solvent never exceeded 0.5% (v:v). Infected cells were further incubated with the treatments for 24 hours at 14°C. After incubation, cells were collected for quantification of the virus by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). In parallel and as a control for each concentration of compound used, infected cells were also treated with the corresponding solvents at a concentration equivalent to each concentration of compound used. Positive and negative infection controls were also included.

All conditions were performed in tetraplicate (RT-qPCR was performed by pooling the cells of all replicates).

RNA isolation, cDNA synthesis, and RT-qPCR assays

Levels of each IPNV strain replicating in infected CHSE cells were evaluated by determining their content in viral transcripts. Therefore, RT-qPCR was performed on cDNA from CHSE-cell RNA previously used in the antiviral assays. Therein, RNA from the aforementioned collected cells was isolated using an E.Z.N.A.® Total RNA kit (Omega Biotek, Norcross, GA, USA) following the manufacturer's guidelines. RNA concentration was assessed using a Nano-Drop 1,000 spectrophotometer (Thermo Fisher Scientific) by measuring absorbance at 260 nm. Samples were stored at -80°C until use.

In order to obtain cDNA reverse transcriptase (Moloney murine leukemia virus; Thermo Fisher Scientific), 1 µg RNA from each sample was used, as previously described.⁴⁵ RTqPCR reactions were carried out using the ABI 7300 Real-Time PCR System (Thermo Fisher Scientific) with SYBR® Green Master Mix PowerUp SYBR Green Master Mix (Thermo Fisher Scientific). The total volume of each reaction was 20 µL and included 2 µL cDNA, 900 nM each primer, and 10 µL SYBR green PCR master mix. Nontemplate controls were performed for each gene analysis. Cycling conditions were 95°C for 10 minutes, followed by 40 cycles of 1 minute at 65°C, 15 seconds at 95°C, and finally an extension of 1 minute at 60°C and 15 seconds at 95°C. Results were obtained by normalizing the expression of the target gene respective to that of the endogenous reference using a variation of Livak and Schmittgen's method⁴⁶ by the formula $2^{Ct_{ref}-Ct_{target}}$. The endogenous gene used in this study was elongation efla. Primers used are shown in Table 1. All reactions were performed in duplicate. Results are presented as percentages of inhibition of IPNV infectivity relative to values obtained by an equivalent amount of corresponding solvent, and correspond to means with SD calculated from four different experiments.

Results and discussion Exploring allosteric binding-site cavity from IPNVVP1 protein

Di Marco et al²⁹ reported the crystal structure of HCV RdRp (genotype 1b, strain BK) in a complex with two nonnucleoside inhibitors occupying a cavity (Figure 1A) that appeared in the thumb domain for deletion mutants lacking the 55 amino acids at the C-terminus ($\Delta C55$). Both compounds inhibited not only the purified full-length and truncated C-terminal Δ C55 enzyme in a low-nanomolar range but also the replicon

Table I Primers used in this study

Organism ^a	Gene/segment ^b	Sequence (5′–3′)	Accession ^c	Reference(s) ^d
Salmo salar	ef l a	Fw: GCCCCTCCAGGATGTCTAC	BG933897	47
		Rv: CACGGCCCACAGGTACTG		
IPNV Sp	segA	Fw: TCTCCCGGGCAGTTCAAGT	AJ622822	48, 49
		Rv: CGGTTTCACGATGGGTTGTT		
IPNV LVVVRT60	segB	Fw: TCGAGAACAAGACCCTTGCC	KU609619	This study
		Rv: GACATGTGTTTTGCTGCGGT		

Notes: ²Organism (scientific name) or IPNV strain; ^btarget-organism gene or IPNV-strain genome segment; ^cGenBank accession number of target sequences; ^dstudies in which these primers have been used previously.

Abbreviations: IPNV, infectious pancreatic necrosis virus; Fw, forward; Rv, reverse.

system, although with minor affinity (15–30 times lower). This cavity is not accessible in the crystal structure of the fulllength protein, and arises after displacement of the α -helix, which implies that the interaction between thumb and fingers is weak enough to allow for a slightly open structure of the polymerase.²⁹ This observation suggests that a priori this domain in IPNV VP1 polymerase might also be displaced similarly by the interaction of molecules with its corresponding

 $\label{eq:Figure I} \mbox{ Figure I Cavity for the allosteric binding site in the thumb domain of viral RdRp.}$

Notes: (A) Allosteric binding site around the amino-acid side chains of Leu392, Ala395, Thr399, Ile424, Leu425, His428, and Phe429 of crystal structure with the PDB number 2BRK, also including the cocrystallized PubChem ID inhibitor 4369534³⁹ in yellow, the same compound docked in light green, and the best-docked PubChem ID 23515664 compound in pink. (B) Structural features of IPNV VPI RdRp (2YI8) as ribbon representation (1), as electrostatic surface potential with the amino acid sequence 122–157 and 31–36 as ribbon (2), detail of the cavity near the Arg551 (3), and electrostatic surface potential of the deletion mutant Δ 122–157 and Δ 1–36 used for molecular docking purposes (4). (C) Chemical structure of compounds experimentally tested in this work. PubChem ID numbers included. (D) Secondary structure of the protein region that forms the cavity explored in molecular docking experiments. The right side shows the sequence alignment for this region of the protein in IPNV Jasper, Sp, and LWVRT60 strains. Blue and orange boxes indicate the amino-acid sequences for the left side.

Abbreviations: RdRp, RNA-dependent RNA polymerase; PDB, Protein Data Bank; HCV, hepatitis C virus; IPNV, infectious pancreatic necrosis virus

Drug Design, Development and Therapy 2018:12

submit your manuscript | www.dovepress.com 2341 Dovepress homologous cavity. Therefore, potential antiviral drugs against IPNV could be designed against that cavity without generating deletion mutants.

Five high-resolution structures are known for the VP1 polymerase of the Jasper strain of IPNV. It can be observed that unlike HCV polymerase, there is a partially accessible cavity even if residues 122-157 of the thumb domain in HCV polymerase are present (Figure 1B). This cavity becomes more evident for the same structure when amino acids 122-157 are electronically removed (Figure 1B). Although no highresolution structures of the VP1 protein are available for the Sp and LWVRT60 IPNV strains, those available in our laboratory show high sequence identity (88.7%-99.5%) with Jasper VP1. This is especially true for the three domains involved in the definition of the cavity (Figure 1D). For this reason, homology modeling of the VP1 protein using the structures of the Jasper strain as a template was carried out.³⁸ In both the available structures and resulting models, the amino-acid sequences 122-157 and 31-36 were electronically deleted and molecular docking experiments carried out on the resulting structures.

Analysis of compounds docked to cavity on surface of thumb domain

Initially, an in silico screening of our chemical library was carried out on HCV polymerase, in order to check the predictive capacity of AutoDock Vina with the compound cocrystallized by Di Marco et al, define thresholds for the variation of Gibbs free energy (Δ G, kcal/mol) in the screening process, and find compounds with smaller Δ G values, and then potentially higher affinity, than those tested by Di Marco et al.²⁹ Collectively, such data would allow for a targeted approach in the design of potential inhibitors of the IPNV VP1 protein, as was the main objective of this study.

Figure 1A depicts compound one in yellow (PubChem 4369534), present in the crystal structure with the PDB number 2BRK.29 The same compound highlighted in light green is shown superimposed after molecular docking calculations ($\Delta G = -8.75$ kcal/mol). Docked and experimental conformation of 4369534 compound had an root-mean-square deviation of 5.141 Å. Finally, one of the optimal compounds with respect to binding was calculated from our chemical library (PubChem 23515664), and is depicted in pink. Docking calculations for compound 2 (PubChem 4369535) also predicted a conformer interacting in such a cavity, in agreement with that obtained through cocrystallization-derived structures²⁹ (not shown) and with a similar ΔG value (-8.60 kcal/mol). After analysis of the docking data for our chemical library against HCV structures (2BRKA31-36, A122-157 and 2BRLA31-36, A122-157) we found 200 compounds (not shown) with ΔG values ≤ -9.0 kcal/mol (the ΔG value chosen as threshold based on previous calculated results for Di Marco et al's active compounds; Figure 2), and among

Figure 2 (Continued)

2342 submit your manuscript | www.dovepre Dovepress **Dove**press

Figure 2 Comparison of Gibbs free energy (ΔG) variation for selected compounds based on molecular docking. Notes: (A) Optimal compounds selected (minor ΔG) against HCV NSSB RdRp and their ΔG against IPNV VPI polymerase of Sp. Jasper, and LWVRT60 strains. (B, C) Optimal compounds selected against each of the three strains of IPNV and their ΔG values with respect to the remaining strains and HCV. PubChem ID number is indicated in black below each value, except for the inhibitors described by Di Marco et al⁵⁹ (red) and the two compounds experimentally tested in this study (blue). Abbreviations: HCV, hepatitis C virus; RdRp, RNA-dependent RNA polymerase; IPNV, infectious pancreatic necrosis virus.

these 26 compounds with ΔG values ≤ -9.5 kcal/mol. Calculated ΔG values for compounds that primarily bind to hydrophobic sites are greater than expected when the binding site is more hydrophilic. As a consequence, in these cases the K^i calculated from the value of ΔG ($K^i = \exp^{\Delta G RT}$)³⁸ did not correspond to the experimental values in the subnanomolar range for compounds 1 and 2.

Of those 26 compounds with the lowest ΔG values, 17 were discarded, as their ADMET profiles were not optimal. In this sense, the range of optimal values was slightly

varied for different parameters with respect to other research by our group.^{37,38} Briefly, different parameters of the ADMET profile were analyzed (Figure 3) for both approved and experimental drugs included in the DrugBank

database⁴³ (these data are available at the website <u>http://</u><u>dockingfiles.umh.es/drugbank/DrugBanklist.asp</u>). Eight of the nine parameters analyzed in Figure 3 show a Gaussian distribution in a frequency where 80%–90% of the

Figure 3 Analysis of physicochemical parameters of drugs included in the DrugBank database.

Notes: Distribution of molecular weight (A), calculated LogP (B), drug score (C), drug likeness (D), HBD (E), HBA (F), topological polar surface area (G), and violations of Lipinski et al's⁵⁰ rule of five (H) drugs included in the DrugBank database.⁴³ Each panel includes a curve indicating Gaussian distribution of frequency of parameter analyzed.

Abbreviations: LogP, logarithm of partition coefficient; HBD, hydrogen-bond donor; HBA, hydrogen-bond acceptor; TPSA, topological polar surface area; Ro5, rule of five.

values of these parameters varied by molecular weight, calculated logarithm of partition coefficient, drug score, drug likeness, H-bond acceptor, hydrogen (H)-bond donor, and topological polar surface area. In this manner, it can be observed that a high percentage of these drugs showed values in several parameters that are far from standard as was especially evident for drug score, drug likeness, and topological polar surface area. Moreover, up to 21% of these drugs present more than one violation of Lipinski's rules.⁵⁰ According to these data, the extreme values of these Gaussian distributions will be taken into account to be used as a screening filter for potential antiviral drugs

against IPNV. Even up to 3 violations of Lipinski's rules were admitted (See Tables 2, 4 and 6).

In Figure 2A, calculated ΔG values for selected compounds are compared to compounds 1 (4369534) and 2 (4369535)²⁹ for not only HCV but also all three IPNV strains. As expected, both compounds showed an ΔG value of almost 2 kcal/mol higher for all the IPNV strains, as they were not designed for targeting their polymerases. This occurred similarly with the nine compounds selected against HCV (Figure 2A). These data reflect the differences in the volume of the cavity and in the sequence of amino acids that define it between HCV and IPNV.

Table 2 Calculated physicochemical	parameters for selected co	ompounds against HCV NS5	5B RdRp based on molecula	r docking analysis

Compounds	Clusters	TPSA (Å ²)	cLog S	MW	cLogP	HBA	HBD	Ro5 violations	Drug likeness	Drug score
4369534	I	71.77	-4.539	446.545	4.3728	6	I	0	-0.91217	0.212791182
4369535	I	65.78	-4.711	501.669	4.1731	6	I	I	2.8068	0.290325582
23152308	2	61.08	-6.189	532.686	7.695	6	I	2	1.9041	0.129071139
23515664	3	84.22	-5.904	467.567	5.5929	6	2	I	-1.0435	0.219641626
23515666	3	70.14	-7.345	465.474	5.868	5	I	I	-8.1071	0.141128842
23515667	3	64.35	-7.269	466.458	6.0954	5	L	L	-8.6848	0.136743667
23515710	3	84.22	-5.634	453.54	5.1385	6	2	I	0.17978	0.311684528
23515871	3	127.31	-5.795	468.512	4.0863	8	3	0	-0.002769	0.335480502
23515908	3	84.22	-5.522	439.514	4.7084	6	2	0	-0.0094093	0.338105422
78298451	4	156.22	-6.052	605.649	2.8246	11	2	2	1.045	0.316872425
78400566	5	115.46	-6.249	538.602	4.52	9	2	I	-8.1363	0.102868689

Notes: Compounds in bold are inhibitors of the HCV polymerase experimentally tested.²⁹ Compound names obtained from PubChem. Each cluster groups compounds with structures with up to 80% structural similarity.⁵⁰

Abbreviations: HCV, hepatitis C virus; RdRp, RNA-dependent RNA polymerase; TPSA, topological polar surface area; cLogS, calculated logarithm of solubility; MW, molecular weight; cLogP, calculated logarithm of partition coefficient; HBA, hydrogen-bond acceptor; HBD, hydrogen-bond donor; Ro5, rule of five.

Drug Design, Development and Therapy downloaded from https://www.dovepress.com/ by 185.163.166.88 on 30-Jul-2018 For personal use only.

Abbreviations: HCV, hepatitis C virus; RdRp, RNA-dependent RNA polymerase; ADME, absorption, distribution, metabolism, elimination; BBB, blood-brain barrier; HIA, human intestinal absorption; Pay, apparent permeability coefficient; Notes: Toxicity data was expressed as the negative logarithm of 50% growth inhibitory concentration (pIGC50). The value of LD50 for a substance is the dose required to kill half the members of a tested population after a specified test Not required ROCT High, 0.4499 High, I.174 78400566 2.4479 Weak None None None СХР High Š NO_ Нi Нi High Нi High Low High N0 80 _0 duration. Compound names from PubChem. "Calculated using DataWarrior^{d1} version 4.7.2; ^bcalculated using <u>http://limmd.ecust.edu.cn.8000/predict/site</u>.⁴² Abbreviations: HCV, hepatitis C virus; RdRp, RNA-dependent RNA polymerase; RE, reproductive effectivenes; FT, fish toxicity; LC₂₉, lethal concentration at 50%; TPT, Tetrahymena pyriformis toxicity; RAT, rat acute toxicity. ₽ CYP450 CYP450 CYP450 Not required inhibitor inhibitor inhibitor High, 1.1014 High, 0.4889 78298451 3a4 2.7072 Weak None None None None Š 2c19 Not required High, 1.4462 High, 0.3439 23515908 Weak 2.3824 None None None None ۲ov ≡ 2d6 Not required High, 1.3289 CYP450 CYP450 substrate substrate substrate inhibitor inhibitor Low, 0.3363 23515871 Weak 2.5033 2c9 None None None None Lov ≡ Notes: Compounds in bold are inhibitors of the HCV polymerase experimentally tested.²⁸ All parameters calculated using http://lmmd.ecust.edu.cn.8000/predicd/site.⁴² Not required High, 1.4738 High, 0.3714 la2 23515710 2.3196 Weak None None None None CYP450 ۲o ≡ 3a4 Not required High, 0.9935 High, 0.6405 23515667 **CYP450** Weak 2.6911 Table 3 Predicted molecular pharmacokinetic properties of selected compounds against HCV NS5B RdRp None None None None ۲o 2d6 ≡ Not required CYP450 High, 0.6917 23515666 High, 1.037 2c9 2.8229 None Weak None None None Low Pgp Pgp Pgp substrate inhibitor I inhibitor II Table 4 Predicted toxicity assessment of selected compounds against HCV NS5B RdRp ≡ Not required High, 1.5414 High, 0.3794 23515664 Weak 2.2834 None None None None § _0 ≡ Not required High, 1.0762 High, 0.4226 23152308 None Weak None None 2.701 High §_ ≡ Not required (LogP_{app}, cm/s) High, 1.2745 High, 0.5375 permeability 4369535 IP, inhibitory promiscuity; ROCT, renal organic cation transporter. Weak None 2.696 None None High Š Caco2 0.5784 0.8928 1.4709 0.9467 0.9213 0.4514 0.3009 0.0684 0.2807 0.4909 0.468 ≡ Not required High, 1.3334 High, 0.388 permeability 4369534 2.2189 None Weak None None High Š **BBB HIA Caco2** ≡ Carcinogenicity (three-class)^b Compounds ADME TPT (pIGC_{50}, $\mu\text{g/L})^b$ RAT (LD₅₀, mol/kg)^b Acute oral toxicity^b HERG inhibition II^b Honeybee toxicity^t HERG inhibition Ib **Toxicity profile** FT (pLC₅₀, mg/L)^b **Biodegradation**^b Ames toxicity^b Carcinogens^b Tumorigenic^a Mutagenic^a 23515710 23515666 23515908 4369534 4369535 23152308 23515664 23515667 23515871 78298451 78400566 Irritant^a ц

Bello-Pérez et al

Dovepress

2346

submit your manuscript

Dovepress

Table 5 Calculated physicochemical parameters for selected compounds against IPNV VPI RdRp based on molecular docking analysis

Compounds	Clusters	TPSA (Å ²)	cLogS	MW	cLogP	HBA	HBD	Ro5 violations	Drug likeness	Drug score
10280893	I	163.14	-3.464	552.641	2.285	12	4	2	-1.0971	0.371867727
18537979	I	166.38	-2.435	553.629	1.2329	13	4	2	1.4422	0.579621051
20739933	2	96.11	-7.217	480.566	4.8776	7	3	0	1.5843	0.239607744
58953872	2	96.11	-7.487	494.593	5.2196	7	3	I	1.5843	0.269858554
23152686	3	109.24	-6.054	534.614	6.0037	8	3	2	-0.32674	0.118698802
23152929	3	71.94	-6.041	490.605	6.689	6	2	I	-0.27206	0.119642868
23152934	3	61.08	-5.704	504.632	6.8218	6	I.	2	0.72092	0.141347709
66795702	3	71.94	-6.112	504.632	6.9757	6	2	2	0.98293	0.134739208
24054864	4	86.21	-7.442	489.53	5.8066	7	I.	I	1.7705	0.120414447
24163747	5	86.21	-6.787	479.535	5.2461	7	I.	I	-1.2712	0.117405963
24967621	6	80.15	-6.17	481.594	4.6727	6	2	0	2.0585	0.358603377
71452538	6	58.22	-5.759	469.627	5.4654	5	I.	I	1.9467	0.340567283
71456057	6	67.01	-6.488	491.633	5.484	5	2	I	1.6836	0.287416263
71457852	6	58.22	-5.489	455.6	5.1234	5	I.	I	3.955	0.40928884
71457853	6	80.15	-6.514	495.621	5.0166	6	2	I	2.1942	0.317209639
71461490	6	79.9	-5.717	492.621	4.5371	6	2	0	1.6836	0.375823294
71463215	6	80.15	-6.538	495.621	5.0706	6	2	I	1.1437	0.290088161
24999215	7	93.45	-4.726	495.577	4.3431	7	2	0	3.6601	0.485783392
25204841	8	47.09	-6.513	448.568	5.4178	5	0	I	1.453	0.307833286
25358606	9	76.9	-5.43	482.538	3.7813	8	0	0	7.4652	0.479134432
3012662	10	131.39	-7.516	669.78	6.2485	10	3	2	1.3775	0.164791551
3012705	10	131.39	-7.055	617.704	4.7679	10	3	1	1.4271	0.2342033
5743088	10	115.46	-6.249	538.602	4.52	9	2	1	-8.1363	0.102868689
3274414	11	98.74	-6.306	472.539	5.3692	5	1	1	-1.5436	0.158941452
39834288	12	86.69	-3.251	320.375	1.8408	5	0	0	4.6379	0.855850841
42170436	13	126.05	-6.307	469.5	3.6969	9	3	0	0.35709	0.273696271
42228107	14	119.34	-5.288	477.483	3.0042	10	2	0	4.5258	0.523365319
44815258	15	120.35	- <mark>3.385</mark>	588.666	4.4852	10	2	L	0.49074	0.379468126
44816797	15	124.26	-3.804	584.634	5.1162	10	2	2	0.94695	0.353975046
490824	16	109.47	-7.253	551.645	5.2766	9	2	2	-1.7804	0.151308017
5273375	17	143	-5.987	605.697	4.7129	11	4	2	-0.3175	0.216436088
5276097	18	77.24	-7.315	489.573	6.4855	6	I.	I	-4.5325	0.124874159
5276122	19	97.55	-7.057	574.679	6.3309	8	I.	2	-0.29605	0.123835809
59237129	20	94.56	-4.486	438.533	3.7911	7	4	0	-0.55945	0.411185665
59604390	21	63.15	-5.468	462.551	4.6925	6	I.	0	6.4596	0.15810365
59605198	21	63.15	-5.782	480.542	4.7933	6	I.	0	5.1196	0.142503799
59784249	22	121.03	-6.033	518.575	3.0633	9	4	I	4.9822	0.425742108
59785406	22	121.03	-5.618	490.522	2.4327	9	4	0	3.8764	0.492489568
59784414	23	110.17	-7.855	530.586	2.7996	9	3	I	4.7368	0.351433623
59785246	24	110.17	-5.611	504.549	2.6026	9	3	I	6.019	0.480801976
9959508	25	139.29	-5.4	561.527	3.4903	11	3	2	-2.4649	0.227350159
69978228	25	189.61	-4.132	582.619	2.1062	13	5	2	3.1151	0.515992208
70114340	26	162.36	-2.901	504.553	2.1538	10	5	I	3.9231	0.676691765
71194466	27	109	-7.502	489.534	4.1577	8	3	0	3.3098	0.343673151
71452539	28	76.24	-5.85	485.626	4.3657	6	2	0	0.56667	0.339399549
72561223	29	110.17	-4.503	510.596	2.0128	9	3	1	5.1802	0.579372462
74318036	30	112.47	-6.421	572.751	4.478	9	5	1	2.2466	0.14379847
76259895	31	96.76	-6.713	483.57	3.1192	8	3	0	4.4867	0.414597223
77236156	32	141.84	-4.624	584.634	3.3632	10	4	1	-0.75495	0.305553124

Notes: Compound names obtained from PubChem. Each cluster groups compounds with structures with up to 80% structural similarity.⁵⁰ Abbreviations: IPNV, infectious pancreatic necrosis virus; RdRp, RNA-dependent RNA polymerase; TPSA, topological polar surface area; cLogS, calculated logarithm of solubility; MW, molecular weight; cLogP, calculated logarithm of partition coefficient; HBA, hydrogen-bond acceptor; HBD, hydrogen-bond donor; RoS, rule of five.

Drug Design, Development and Therapy downloaded from https://www.dovepress.com/ by 185.163.166.88 on 30-Jul-2018 For personal use only.
--

Table 6 Predicted molecular pharmacokinetic properties of selected compounds against IPNV VPI RdRp

	l															
	BBI	3 HIA	Caco2 permeability	Caco2 permeability	Pgp substrat	Pgp e inhibitor l	Pgp inhibitor	CYP450 II 2c9	CYP450 2d6	CYP450 3a4	CYP450 La2	CYP450 2c9	CYP450 2d6	CYP450 2c19	CYP450 3a4	L A
				(LogP _{app} , cm/s)				substrate	substrate	substrate	inhibitor	inhibitor	inhibitor	inhibitor	inhibitor	
490824	+	+	I	0.5656	+	I	I	I	I	I	I	I	I	I	I	Low
3012662	I	+	I	0.0447	+	I	+	I	I	I	I	I	I	+	+	Low
3012705	T	+	I	0.0648	+	I	+	1	1	I	I	I	I	+	+	Low
3274414	+	+	I	1.5102	Ι	+	+	ı	1	+	I	+	I	+	I	High
5273375	T	+	I	0.2038	+	I	I	I	1	+	T	T	I	T	T	Low
5276097	+	+	I	1.0397	I	I	I	I	I	I	I	I	I	I	+	High
5276122	+	+	I	0.2336	+	+	+	I	I	+	I	+	I	I	I	, High
5743088	+	+	I	0.2807	+	I	I	I	I	+	Ι	Ι	I	+	Ι	- vo
9959508	+	+	I	0.619	+	ı	+	1	1	+	+	+	I	+	+	High -
10280893	+	+	I	0.3982	+	+	+	1	I	+	I	+	I	+	+	High
18537979	+	+	I	0.427	+	+	+	1	I	+	I	I	I	I	+	High -
20739933	+	+	I	0.8745	+	I	+	1	I	+	I	+	I	+	I	High -
23152686	I	+	I	-0.073	+	I	I	1	1	Ι	I	I	I	I	+	Low
23152929	+	+	I	0.7433	+	I	I	1	1	Ι	+	+	I	+	+	High -
23152934	+	+	+	1.2391	+	I	+	6	I	+	+	+	I	+	+	High
24054864	+	+	I	0.6356	I	I	+	1	1	+	I	+	I	+	+	High -
24163747	+	+	I	0.4231	+	I	+	1	I	+	I	+	I	+	+	High -
24967621	+	+	I	0.4959	+	I	I	ł	I	I	+	+	I	+	+	High -
24999215	I	I	I	-0.0142	+	I	+	1	I	+	I	I	I	I	I	High -
25204841	+	+	+	0.7521	+	+	+	1	1	+	+	+	I	+	T	High -
25358606	+	+	+	1.2873	+	+	I	1	I	+	I	I	I	I	I	High
39834288	+	+	+	1.4452	I	I	+	1	1	+	+	+	I	+	+	High
42170436	+	+	I	0.9813	+	I	+	1	1	+	+	I	I	I	I	High
42228107	+	+	I	0.851	+	+	+	1	1	+	I	+	I	I	I	Low
44815258	+	+	I	0.4878	+	I	I	1	1	+	I	I	I	+	I	High
44816797	+	+	I	0.5363	+	I	I	1	1	I	I	I	I	+	I	High -
58953872	+	+	I	0.8745	+	I	+	1	1	+	I	+	I	+	I	High -
58953877	+	+	I	0.8745	+	I	+	1	1	+	I	+	I	+	Ι	High -
59237129	+	+	I	0.5357	+	I	I	1	1	I	+	I	+	I	I	Low
59604390	+	+	+	1.4041	+	I	+	1	1	+	+	I	I	+	+	High -
59605198	+	+	+	1.2794	+	I	+	1	1	+	+	+	I	+	T	High -
59784249	I	+	I	1.2234	+	+	I	I	I	+	+	+	I	+	+	High
59784414	+	+	I	0.7756	+	+	+	I	I	+	I	+	I	I	I	High
59785246	I	+	I	0.4222	+	I	I	I	I	+	I	+	I	I	+	High
59785406	I	+	Ι	0.6464	+	Ι	I	Ι	I	+	+	+	I	+	+	High -
		+														

Bello-Pérez et al

Dovepress

Dovepress

Drug Design, Development and Therapy downloaded from https://www.dovepress.com/ by 185.163.166.88 on 30-Jul-2018 For personal use only.

3228		-	1	10/00-	ł											
1340	+	+	I	-0.28	+	I	I	I	I	I	+	I	I	I	I	High –
466	+	+	I	0.8852	+	I	I	I	I	+	+	I	I	I	+	High –
538	+	+	I	0.7012	+	+	+	I	I	+	+	+	I	I	+	High +
539	+	+	I	0.478	+	I	I	I	I	+	+	+	I	+	+	High –
057	+	+	I	0.7204	+	I	+	I	I	I	+	+	+	+	+	High –
852	+	+	I	0.765	+	+	+	I	I.	+	+	+	I	+	+	High +
853	+	+	I	0.9	+	I	I	I	I	+	+	+	I	+	+	High –
490	+	+	I	0.6399	+	I	+	I	I	I	+	+	+	+	+	High –
215	+	+	I	0.4869	+	I	I	I	I	+	+	+	I	+	+	High –
223	I	+	I	0.409	+	+	1	I	I	+	I	+	I	I	+	High –
036	+	+	I	0.5223	+	I	I	I	I	+	I	I	I	I	I	Low –
895	+	+	I	0.2484	+	+	I	1	1	+	I	I	I	I	I	High –
156	+	+	I	0.2189	+	I	I	1	I	I	+	I	I	I	I	Low –

In Figure 2B and C, the ΔG values of the selected compounds docked against the IPNV VP1 of all three strains are compared. For each strain, compounds with ΔG values ≤ -9 kcal/mol were selected. The ΔG values of these compounds are also shown against HCV. All these compounds were also within the range of values of the ADMET profile (see Tables 3, physicochemical parameters; 5 ADME; 7 toxicity). Although the chemical library used in molecular docking experiments was obtained from the PubChem database, not all deposited compounds are commercially available, and thus only some can be tested experimentally. In fact, this is the third (and very relevant) filter that joins the two previous filters for a final proposal of candidates for antiviral compounds. A total of 50 compounds were proposed as potential antiviral compounds (Figure S1) for the three strains of IPNV. Careful observation of the ΔG values of these 50 compounds for all IPNV strains (Figure 2B and C) reveals that for some the ΔG values can vary up to more than 1 kcal/mol between the Sp and LWVRT60 strains. This was especially true for compounds 3012662, 39834288, 44815258, and 58953872. However, for many others, the differences were negligible. Taking this observation into consideration, in order to assess if different ΔG values between the IPNV strains reflected different rates of inhibition of compounds against the Sp and LWVRT60 strains, two compounds with two different ΔG patterns were selected for testing in vitro. The compounds selected for further in vitro assays were 3274414 and 39834288 (Figure 1C).

Determination of cell viability of CHSE cells after treatment with compounds 3274414 and 39834288

Cellular cytotoxicity induced by the selected experimental compounds was evaluated by an MTT cell-viability assay (Figure 4). For these assays, CHSE cells were treated with a range of concentrations of each compound (0-50 µM). In parallel, treatments with equivalent amounts of the corresponding compound solvents were performed. After 24 hours, cell viability was determined by MTT as described in the "Materials and methods" section. As shown in Figure 5, CHSE cells were more sensitive to 3274414 than 39834288. For treatments with 3274414, no significant toxic effect was observed in the concentration range tested of 0-20 µM (95.4%±4.6% at 20 µM). Cell viability slightly decreased to 74.9%±2.9% for 3274414 at 50 µM. In contrast, at this concentration (the highest tested), cell viability was 88.3%±3.9% for 39834288. In turn, both solvents at any concentration showed cell-viability percentages close to 100%.

dovepress.com/ by 185.163.166.88 on 30-Jul-2	
https://www.o	vino esu lenc
downloaded from	For pers
and Therapy	
Development	
Drug Design,	

018

Bello-Pérez et al

Not required Not required High, 0.4871 High, I.3447 Low, I.4985 High, 0.5004 59604390 0280893 25204841 2.7713 2.5284 Weak None None None None None None Weak None None None Weak None High High Low Š ≡ ≡ Not required High, 0.5237 Not required High, 1.2936 Low, 1.3529 High, 0.4765 24999215 59237129 9959508 2.5923 2.6327 None None Weak None None None None Weak None None None Weak None None None Lov N N ≡ ≡ Not required Not required High, 0.4499 Low, 1.4958 High, 0.2529 High, I.174 24967621 58953877 5743088 2.4479 2.4844 None None High None None Weak None None Weak None None Weak None None Low Lov ۲o ≡ ≡ . Not required Not required High, I.0083 High, 1.2322 High, 0.3967 High, 0.4754 24163747 58953872 5276122 2.2312 2.2662 None None None Weak None None None Weak None None None None Weak ۸o Low High Lov ≡ ≡ Not required Not required High, 0.6038 High, 0.8885 High, 0.5479 High, 1.1508 24054864 44816797 5276097 2.4488 2.2269 Weak Weak None Weak High _0 ٨O _0 ≡ ≡ Not required Not required High, 0.5388 High, 1.2124 High, 1.2677 High, 0.3721 23152934 44815258 5273375 2.4041 2.4794 Weak None None Weak None None None None None None None None None Weak Low High Low = = Not required Not required High, 0.9135 High, 0.7454 High, 1.4518 High, 0.3264
 Cable 7 Predicted toxicity assessment of selected compounds against IPNV VPI RdRp
 23152929 42228107 3274414 2.4636 2.3865 Weak None None None None None None None Weak None None None Weak Low Low High Lov Ξ = Not required Not required High, 0.4114 High, I.4335 High, 0.3475 High, 1.289 23152686 42170436 3012705 2.4206 2.2743 None Weak None None None None None None None Weak None None Weak High Low Low Lov ≡ ≡ 1 1 Not required Not required High, I.3364 High, 0.4142 High, I.4731 High, 0.4749 20739933 39834288 3012662 2.3915 2.2733 Weak None Weak None Weak None None None None None None None None None Low Lov Lov ≡ I ≡ Not required Not required High, 0.5062 High, 1.3752 High, 0.4549 High, I.4493 18537979 25358606 490824 2.8529 1.8935 Weak None Weak None None None None None None None Weak None None None None Low Lov ≡ ≡ Carcinogenicity (three-class)^b Carcinogenicity (three-class)^b RAT (LD₅₀, mol/kg)^b RAT (LD₅₀, mol/kg)^b TPT (pIGC₅₀, μg/L)^b PT (pIGC₅₀, µg/L)^b Acute oral toxicity^b Acute oral toxicity^b Honeybee toxicity^b Honeybee toxicity^b HERG inhibition l^b **Foxicity profile** HERG inhibition l^b HERG inhibition II^b **Foxicity profile** HERG inhibition II^b HERG inhibition l^b HERG inhibition II^b FT (pLC₅₀, mg/L)^b FT (pLC₅₀, mg/L)^b **Toxicity profile Biodegradation**^b **Biodegradation**^b Ames toxicity^b Ames toxicity^b Ames toxicity^b Carcinogens^b Carcinogens^b **Fumorigenic**^a **Fumorigenic**^a **Fumorigenic**^a Carcinogens^b Mutagenic^a Mutagenic^a Mutagenic^a lrritant^a Irritant^a lrritant^a Б ш ц

2350

submit your manuscript | www.dovepr Dovepress Drug Design, Development and Therapy 2018:12

Dovepress

Drug Design, Development and Therapy downloaded from https://www.dovepress.com/ by 185.163.166.88 on 30-Jul-2018 For personal use only.

Dovepress

High, I.2676 High, 0.3239 Not required **Notes:** Toxicity data was expressed as the negative logarithm of 50% growth inhibitory concentration (pIGC50). The value of LD50 for a substance is the dose required to kill half the members of a tested population after a specified test duration. Compound names from PubChem. "Calculated using DataWarrior"¹ version 4.7.2, ^bcalculated using <u>http://lmmd.ecust.edu.cn.8000/predictSite</u>.⁴² **Abbreviations:** IPNV, infectious pancreatic necrosis virus; RdRp, RNA-dependent RNA polymerase; RE, reproductive effectiveness; FT, fish toxicity; LC₅₀ lethal concentration at 50%. TPT, *Tetrahymen pyriformis* toxicity; RAT, rat acute Not required Not required Low, 1.4317 High, 0.3877 High, I.4949 High, 0.5486 71452538 77236156 2.7741 2.5247 None 2.4325 None None None Weak None None None None Weak _0 ×0 N N ≡ = ≡ Not required Not required Not required High, 0.6335 High, 0.3216 High, 1.3351 High, 1.5963 High, 0.4232 Low, 1.9838 76259895 71194466 2.3759 2.4571 2.4322 None None None None Weak None None None None Weak ٨ ۲o N N ≡ ≡ ≡ Not required Not required Not required High, 0.4749 Low, 2.0819 High, 0.2969 High, 0.5396 High, I.4731 High, 1.329 74318036 70114340 2.2733 2.5428 Weak None None None None None Weak 2.4561 None High ۲o ۲o Lov ۲o ≡ ≡ ≡ Not required Not required Not required High, 0.4749 High, 1.1057 High, 0.4834 High, 1.4731 Low, 1.3099 High, 0.5002 69978228 72561223 2.2733 2.5076 None 2.6378 None None None None Weak None None None Weak Lov Low Low ≡ ≡ Not required Not required Not required High, 0.5532 High, 1.4583 High, 1.3925 High, 0.3263 -ow, I.5449 71463215 High, 0.234 66795702 2.4875 2.5176 Weak None None None Weak 2.321 None None None None High _0 _0 Lov ≡ ≡ = Not required Not required Not required High, 0.3785 High, 1.1335 Low, 1.7366 High, I.4499 High, 0.4223 High, 0.2401 71461490 59785406 2.2836 2.6564 None 2.6534 None None None None None None None Weak Weak ٥V Lov Low ≡ Not required Not required Not required High, 0.4559 High, 1.1446 High, 0.4416 High, 0.3028 High, I.4331 71457853 High, 1.246 59785246 2.6682 2.3296 None None None 2.5399 None None None None None Weak Weak Lov Nov Lov ≡ ≡ Not required Not required Not required High, 0.6336 High, 1.3639 High, I.1606 High, 0.4835 High, 0.4052 High, 0.965 59784414 71457852 2.6756 2.3668 Weak None None None None Weak None None None None 2.686 Low Lov Low ≡ ≡ ≡ Not required Not required Not required High, 0.2518 High, 1.4429 High, 0.5824 High, 0.9868 Low, 1.6589 High, 0.622 59784249 71456057 2.2023 2.6679 None None None Weak None Weak None None None None 2.601 Lov Low ۲o ≡ ≡ ≡ Not required Not required High, I.1439 High, 0.4812 Not required High, I.1918 High, 0.5055 High, 0.3166 Low, 1.6115 59605198 71452539 2.2596 2.6089 2.4763 Weak None Weak None None None None None ۲o High High Low Lov ≡ = Carcinogenicity (three-class)^b Carcinogenicity (three-class)^b Carcinogenicity (three-class)^b RAT (LD₅₀, mol/kg)^b RAT (LD₅₀, mol/kg)^b RAT (LD₅₀, mol/kg)^b FPT (pIGC₅₀, μg/L)^b PT (pIGC₅₀, ug/L)^b TPT (pIGC₅₀, μg/L)^b Acute oral toxicity^b Acute oral toxicity^b Honeybee toxicity^b Honeybee toxicity^b Acute oral toxicity^b Honeybee toxicity^t HERG inhibition ^b HERG inhibition II^b HERG inhibition $l^{
ho}$ HERG inhibition II^b **Foxicity profile** FT (pLC₅₀, mg/L)^b **Foxicity profile** FT (pLC₅₀, mg/L)^b FT (pLC₅₀, mg/L)^b **Biodegradation**^b **Biodegradation**^b **Biodegradation**^b Ames toxicity^b Ames toxicity^b Carcinogens^b **Fumorigenic**^a ⁻umorigenic^a Carcinogens^b Mutagenic^a Mutagenic^a lrritant^a lrritant^a oxicity. ц шК

Drug Design, Development and Therapy 2018:12

submit your manuscript | v 2351

Dovepress

Figure 4 Viability of CHSE cells after treatment with PubChem 3274414 and 39834288 compounds.

Abbreviation: DMSO, dimethyl sulfoxide.

Determination of anti-IPNV activity induced by selected compounds

Infected CHSE cells were further incubated with different concentrations of selected compounds (3274414 or 39834288) for 24 hours. Viral loads were subsequently measured as the total abundance of viral transcripts quantified by RT-qPCR. As shown in Figure 5, different inhibition patterns were observed dependent on the compound and IPNV strain used. When the compounds induced antiviral activity, this occurred in a dose-dependent manner.

For the 3274414 compound, both IPNV strains were inhibited following a similar pattern. At the maximum concentration tested (50 μ M), the infectivity of both viral strains was reduced by approximately 50% (Figure 5A). The potency of this compound was lower than that induced by mycophenolic acid or ribavirin,⁴⁸ which at 1 μ M both inhibited the infectivity of IPNV Sp up to 90%. Our docking data showed that 3274414–polymerase interactions were only hydrophobic and involved residues Lys554, Ala555, Glu557, and Asn580. The compound showed the same orientation in its binding to the polymerase in all three IPNV strains.

For the 39834288 compound, its antiviral capacity was markedly different (Figure 5B), exhibiting no effect upon the Sp strain. In contrast, its potency was found to be greater than that of compound 3274414 against the LWVRT60 strain, reducing its infectivity by 80% at 20 μ M. By adjusting

Figure 5 Percentage of inhibition of infectivity of both IPNV Sp and LWVRT60 strains after treatment with PubChem 3274414 or 39834288 compound. **Notes:** CHSE monolayers infected with 0.01 TCID_{s0}/mL of either IPNV Sp or IPNV LWVRT60 were treated after viral adsorption with increasing concentrations (I,

5, 10, 20, and 50 μ M) of either PubChem 3274414 or 39834288 compounds. After 24 hours, the amount of replicating virus was determined by RT-qPCR. Results are presented as percentage inhibition of infection produced by compounds (inhibitor) in comparison to corresponding organic solvent controls (vehicle), shown as the average (±SD) from four independent experiments. Dashed lines are the fit to a dose-response curve % IPNV inhibition = Bottom + (Top-Bottom)/(1 + (IC_{syl} [inhibitor])^Hill_{stop}) with a Hill slope of 1. **Abbreviations:** IPNV, infectious pancreatic necrosis virus; TCID_{syl} 50% tissue-

Abbreviations: IPNV, infectious pancreatic necrosis virus; TCID_{s0}, 50% tissueculture infective dose; RT-qPCR, reverse-transcription quantitative polymerase chain reaction.

the parameters to a Hill equation, an IC₅₀ of 3.1 μ M was calculated. The estimated IC₅₀ value for compound 3274414 was about 15 μ M for both Sp and LWVRT60 strains. These IC₅₀ values are comparable with those of other nonnucleoside inhibitors designed to block the RNA-template tunnel of RdRp dengue virus 2.⁵¹ The compounds (NITD1, -2, and -29) analyzed therein showed no toxicity up to 50 μ M and presented IC₅₀ values of 7.2, 0.7, and 1.5 μ M, respectively. In spite of showing inhibitory activity against the recombinant viral polymerase, the antiviral activity of NTD1 and NTD2 compounds in cell cultures could not be

Notes: CHSE monolayers were treated with increasing concentrations of 3274414 and 39834288 compounds dissolved in DMSO and DMSO.acetone (1:1), respectively; and equivalent amounts of the corresponding solvents (0.5 μ L/well), for 24 hours at 14°C before performing the MTT assay. Cell viability is shown as the percentage relative to non-treated cells, taken as an average (± SD) from three independent experiments performed in triplicate.

Dovepress

demonstrated.⁵¹ Selective inhibition of one virus subtype over other subtypes has been previously for small-molecule inhibitors of influenza A virus, although the molecular basis of such specificity remained obscure.⁵²

The interactions of 39834288-polymerase (H-bonds between the compound and the residues Pro552, Glu557, and, Asn623) predicted by molecular docking were similar for the three IPNV strains (Figure 6A). Therefore, the question remained as to how compound 39834288 showed no activity against the Sp strain. The calculation of position for the compounds docked to the cavity in the surface of the thumb was made in the absence of residues 31-36 and 122-157. Therefore, it is understandable that they did not show differences in 39834288-polymerase interactions. However, cell-culture assays for antiviral activity were carried out with the full enzyme. Binding of the inhibitor in the cavity is only possible if the loop 122-157 is displaced, especially for the compound 39834288, which would have large clashes (Figure 6B), as it is located in the full protein (2YI8). As would be expected, based upon 3274414-polymerase docking-calculated interactions, a much smaller rearrangement of loop 122-157 would be required to accommodate compound 39834288. In this sense, the binding energy of loop 122-157 to the domain that forms the cavity (residues Asp523 to Asp691) was calculated using FoldX software.³⁹ These data showed that although there were neither differences between the three strains for the numbers of hydrogen-bonds (Asp124-Ala588, Thr146-Asn624, Tyr159-Glu594, Asp124-Arg612, Asp124-Tyr613, Thr146-Asn624, Gln149-Asn580, and Ile154-Tyr589), saline bridges (Asp124-Arg612) nor the interface area (about 1,060 Å²), there were appreciable differences in the global calculation of binding free-energy variation. The calculated ΔG for the binding of both domains was -36.9 kcal/mol for the LWVRT60 strain and -38.1 kcal/mol for the Sp strain. In other words, the rearrangement of loop 122-155 was more energy-expensive for the polymerase of the Sp strain than for LWVRT60. Such may also explain the observed inability of compound 39834288 to displace this loop in the Sp strain, resulting in negligible activity of its polymerase and in turn its infectivity.

Conclusion

The results presented herein are compatible with the existence of an allosteric regulation site in the IPNV VP1 polymerase. From a library of 23,760 compounds, nine and 50 were predicted as antiviral drug candidates against HCV and IPNV polymerases, respectively (Figure 7). Two nontoxic

Figure 6 Structural details of docked compounds on cavity.

Notes: (A) Electrostatic surface potential without (empty cavity) and with the best-docked PubChem 3274414 and 39834288 compounds in IPNV Jasper (2Y18), Sp (homology model), and LWVRT60 (homology model) strains. (B) Clashes of docked 3274414 (upper) and 39834288 (lower) compounds with the IPNV VPI Sp strain with the amino-acid sequence 122–157 depicted in red. Abbreviation: IPNV, infectious pancreatic necrosis virus.

Figure 7 Schematic workflow for the hit-compound selection

Notes: Virtual screening workflow and procedure used for selecting hits whose bioactivity was experimentally tested. The number of compounds that passed each step are shown. From an initial set of 23,764 compounds, 50 compounds were identified as putative VPI IPNV RdRp inhibitors (first and second filters). Two of the 50 compounds were selected for proof-of-concept assessment by in vitro testing.

Abbreviations: IPNV, infectious pancreatic necrosis virus; RdRp, RNA-dependent RNA polymerase; HCV, hepatitis C virus; ADMET, absorption, distribution, metabolism, excretion, and toxicity; LogP, logarithm of partition coefficient; LogS, logarithm of solubility; Ro5, rule of five; HBA, hydrogen-bond acceptor; HBD, hydrogen-bond donor.

compounds were tested in vitro, and showed antiviral activity against IPNV in the low-micromolar range.

Acknowledgments

Special thanks are due to Dr Amparo Estepa Perez, who has passed away, but contributed to financing this work. MBP is financed by the Generalidad Valenciana, fellowship ACIF/2016. We are grateful to Research, Technological Innovation, and the Supercomputing Center of Extremadura (CénitS) for allowing us to use their supercomputing facilities (Lusitania II). This work was supported by the Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad project AGL2014-51773-C3-1-R of the Ministerio de Economía y Competitividad of Spain. We thank Dr Beatriz Novoa (Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain) for providing the IPNV LWVRT60 strain. Technical support from Angeles Gómez is also acknowledged.

Drug Design, Development and Therapy downloaded from https://www.dovepress.com/ by 185.163.166.88 on 30-Jul-2018 For personal use only. Dr Matthew Mold (Keele University, Newcastle, UK) provided some assistance with the English. We thank the anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Author contributions

JAE, LP, and AF conceived and designed the experiments and wrote the paper, MBP, JC, and AF conducted the in vitro experiments, JAE and VG conducted the in silico molecular docking experiments and the DrugBank analysis, and LP and JAE were responsible for funding acquisition. All authors contributed to the general discussion of the manuscript. All authors contributed toward data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

- de Clercq E. Antivirals: current state of the art. *Future Virol*. 2008; 3(4):393–405.
- Griffiths PD. A perspective on antiviral resistance. J Clin Virol. 2009; 46(1):3–8.
- Awoonor-Williams E, Walsh AG, Rowley CN. Modeling covalentmodifier drugs. *Biochim Biophys Acta*. 2017;1865(11 Pt B): 1664–1675.
- Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad S. Dual or multitargeting inhibitors: the next generation anticancer agents. *Eur J Med Chem.* 2018;143:1277–1300.
- Wolf K, Snieszko SF, Dunbar CE, Pyle E. Virus nature of infectious pancreatic necrosis in trout. Proc Soc Exp Biol Med. 1960;104:105–108.
- Munro ES, Midtlyng PJ. Infectious pancreatic necrosis and associated aquatic birnaviruses. In: Woo P, Bruno D, editors. *Fish Diseases and Disorders*. 2nd ed. Wallingford, UK: CABI; 2011:1–65.
- Guy DR, Bishop SC, Brotherstone S, et al. Analysis of the incidence of infectious pancreatic necrosis mortality in pedigreed Atlantic salmon, *Salmo salar L.*, populations. *J Fish Dis*. 2006;29(11):637–647.
- Rønneseth A, Wergeland HI, Devik M, Evensen O, Pettersen EF. Mortality after IPNV challenge of Atlantic salmon (*Salmo salar* L.) differs based on developmental stage of fish or challenge route. *Aquaculture*. 2007;271(1–4):100–111.
- Dhar A, LaPatra S, Orry A, Allnutt F. Infectious pancreatic necrosis virus. In: Woo P, Cipriano R, editors. *Fish Viruses and Bacteria: Pathobiology and Protection*. Wallingford, UK: CABI; 2017:1–12.
- Delmas B, Mundt E, Vakharia VN, Wu JL. Family Birnaviridae. In: King AM, Carstens EB, editors. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. London: Academic Press; 2012:499–507.
- Lvov DK, Shchelkanov MY, Alkhovsky SV, Deryabin PG. Doublestranded RNA viruses. In: Lvov DK, Shchelkanov MY, Vladimirovich S, Alkhovsky SV, Deryabin PG, editors. *Zoonotic Viruses in Northern Eurasia: Taxonomy and Ecology*. Boston: Academic Press; 2015: 113–133.
- Büyükekiz AG, Altun S, Hansen EF, et al. Infectious pancreatic necrosis virus (IPNV) serotype Sp is prevalent in Turkish rainbow trout farms. *J Fish Dis.* 2018;41(1):95–104.
- Holopainen R, Eriksson-Kallio AM, Gadd T. Molecular characterisation of infectious pancreatic necrosis viruses isolated from farmed fish in Finland. *Arch Virol.* 2017;162(11):3459–3471.

- Manríquez RA, Vera T, Villalba MV, et al. Molecular characterization of infectious pancreatic necrosis virus strains isolated from the three types of salmonids farmed in Chile. *Virol J*. 2017;14(1):17.
- Ogut H, Altuntas C, Parlak R. Viral surveillance of cultured rainbow trout in the eastern Black Sea, Turkey. *J Aquat Anim Health*. 2013;25(1): 27–35.
- Ruane NM, McCarthy LJ, Swords D, Henshilwood K. Molecular differentiation of infectious pancreatic necrosis virus isolates from farmed and wild salmonids in Ireland. *J Fish Dis*. 2009;32(12):979–987.
- Wallace IS, Mckay P, Murray AG. A historical review of the key bacterial and viral pathogens of Scottish wild fish. *J Fish Dis*. 2017;40(12): 1741–1756.
- Crane MS, Hardy-Smith P, Williams LM, et al. First isolation of an aquatic birnavirus from farmed and wild fish species in Australia. *Dis Aquat Organ.* 2000;43(1):1–14.
- Moreno P, Olveira JG, Labella A, et al. Surveillance of viruses in wild fish populations in areas around the Gulf of Cadiz (South Atlantic Iberian Peninsula). *Appl Environ Microbiol*. 2014;80(20):6560–6571.
- Delmas B, Mundt E, Vakharia V, Wu J. Family Birnaviridae. In: King AM, Carstens EB, editors. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. London: Academic Press; 2012:499–507.
- Molloy SD, Pietrak MR, Bricknell I, Bouchard DA. Experimental transmission of infectious pancreatic necrosis virus from the blue mussel, *Mytilus edulis*, to cohabitating Atlantic salmon (*Salmo salar*) smolts. *Appl Environ Microbiol*. 2013;79(19):5882–5890.
- Munro ES, Gahlawat SK, Acosta F, Ellis AE. In infectious pancreatic necrosis virus carrier Atlantic salmon, *Salmo salar L.*, post-smolts, almost all kidney macrophages ex vivo contain a low level of nonreplicating virus. *J Fish Dis*. 2006;29(1):43–48.
- Chevalier C, Lepault J, Erk I, da Costa B, Delmas B. The maturation process of pVP2 requires assembly of infectious bursal disease virus capsids. *J Virol.* 2002;76(5):2384–2392.
- Santi N, Song H, Vakharia VN, Evensen O. Infectious pancreatic necrosis virus VP5 is dispensable for virulence and persistence. *J Virol.* 2005;79(14):9206–9216.
- Magyar G, Chung HK, Dobos P. Conversion of VP1 to VPg in cells infected by infectious pancreatic necrosis virus. *Virology*. 1998;245(1): 142–150.
- 26. Duncan R, Mason CL, Nagy E, Leong JA, Dobos P. Sequence analysis of infectious pancreatic necrosis virus genome segment B and its encoded VP1 protein: a putative RNA-dependent RNA polymerase lacking the Gly-Asp-Asp motif. *Virology*. 1991;181(2):541–552.
- Koonin EV, Wolf YI, Nagasaki K, Dolja VV. The Big Bang of picornalike virus evolution antedates the radiation of eukaryotic supergroups. *Nat Rev Microbiol.* 2008;6(12):925–939.
- Dobos P. In vitro guanylylation of infectious pancreatic necrosis virus polypeptide VP1. *Virology*. 1993;193(1):403–413.
- Di Marco S, Volpari C, Tomei L, et al. Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. *J Biol Chem.* 2005;280(33): 29765–29770.
- Graham SC, Sarin LP, Bahar MW, et al. The N-terminus of the RNA polymerase from infectious pancreatic necrosis virus is the determinant of genome attachment. *PLoS Pathog.* 2011;7(6):e1002085.
- Bahar MW, Sarin LP, Graham SC, et al. Structure of a VP1-VP3 complex suggests how birnaviruses package the VP1 polymerase. *J Virol.* 2013;87(6):3229–3236.
- Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. *Nucleic Acids Res.* 2014;42:W252–W258.
- Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 1997;25(17):3389–3402.
- Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. *Nat Methods*. 2011;9(2):173–175.

- Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. *Electrophoresis*. 1997; 18(15):2714–2723.
- Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815.
- Encinar JA, Fernández-Ballester G, Galiano-Ibarra V, Micol V. In silico approach for the discovery of new PPARγ modulators among plantderived polyphenols. *Drug Des Devel Ther.* 2015;9:5877–5895.
- Galiano V, Garcia-Valtanen P, Micol V, Encinar JA. Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach. *Drug Des Devel Ther*. 2016;10: 3163–3181.
- Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. *Nucleic Acids Res.* 2005;33: W382–W388.
- Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461.
- Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: an opensource program for chemistry aware data visualization and analysis. *J Chem Inf Model*. 2015;55(2):460–473.
- Cheng F, Li W, Zhou Y, et al. AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. *J Chem Inf Model*. 2012;52(11):3099–3105.
- Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. *Nucleic Acids Res.* 2014;42:D1091–D1097.
- Reed LJ, Muench H. A Simple method of estimating fifty per cent endpoints. *Am J Epidemiol.* 1938;27(3):493–497.

- Falco A, Chico V, Marroquí L, Perez L, Coll JM, Estepa A. Expression and antiviral activity of a beta-defensin-like peptide identified in the rainbow trout (*Oncorhynchus mykiss*) EST sequences. *Mol Immunol.* 2008;45(3): 757–765.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-ΔΔC_T} method. *Methods*. 2001; 25(4):402–408.
- Sobhkhez M, Joensen LL, Tollersrud LG, Strandskog G, Thim HL, Jørgensen JB. A conserved inhibitory role of suppressor of cytokine signaling 1 (SOCS1) in salmon antiviral immunity. *Dev Comp Immunol.* 2017;67:66–76.
- Marroquí L, Estepa A, Perez L. Inhibitory effect of mycophenolic acid on the replication of infectious pancreatic necrosis virus and viral hemorrhagic septicemia virus. *Antiviral Res.* 2008;80(3):332–338.
- García I, Galiana A, Falcó A, Estepa A, Perez L. Characterization of an infectious pancreatic necrosis (IPN) virus carrier cell culture with resistance to superinfection with heterologous viruses. *Vet Microbiol*. 2011; 149(1–2):48–55.
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv Drug Deliv Rev.* 2001;46(1–3):3–26.
- Niyomrattanakit P, Chen YL, Dong H, et al. Inhibition of dengue virus polymerase by blocking of the RNA tunnel. *J Virol.* 2010;84(11): 5678–5686.
- Yuan S, Chu H, Ye J, et al. Identification of a novel small-molecule compound targeting the influenza A virus polymerase PB1-PB2 interface. *Antiviral Res.* 2017;137:58–66.

2356 submit your manuscript | www.dovepress.com Dovepress

PUBLICACIÓN 6

TÍTULO: Viral interference between infectious pancreatic necrosis virus and spring viremia of carp virus in zebrafish

COAUTORES: Melissa Belló Pérez, Regla María Medina Gali, Julio Coll Morales, Luis Perez García-Estañ.

REVISTA: Aquaculture

doi: https://doi.org/10.1016/j.aquaculture.2018.10.039

Volumen 500, Febrero 2019, Páginas 370-377.

1	Title: Viral interference between infectious pancreatic necrosis virus and spring viremia of
2	carp virus in zebrafish
3	
4	Authors: Melissa Bello-Perez ^{a(1)} , Regla Medina-Gali ^{a(1)} , Julio Coll ^b , Luis Perez ^{*a}
5	
6	
7 8	^a Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, 03202 Elche, Spain
9	^b Instituto Nacional de Investigaciones Agrarias, 28040 Madrid, Spain
10	
11	
12	(1) Both authors contributed equally to this work.
13	(*) Corresponding author
14	
15	
16	E-mail addresses
17	reglita2000@yahoo.com
18	melissa.bello@goumh.umh.es
19	juliocollm@gmail.com
20	luis.perez@umh.es

21 Abstract

22	Fish birnaviruses and rhabdoviruses are major causes of diseases that pose a threat to
23	the fish farming industry. In this work we investigated the interaction between IPNV
24	(birnavirus) and SVCV (rhabdovirus) in a zebrafish model where SVCV is lethal while IPNV
25	causes asymptomatic infection. Two situations were analyzed: 1) A primary IPNV infection
26	followed by a second challenge with SVCV; 2) SVCV as the first infection and a second
27	challenge with IPNV. Irrespective of the order of infections, IPNV increased survival of SVCV-
28	infected fish, reflecting viral interference that correlated with the inhibition of SVCV RNA
29	synthesis. In contrast, in some instances a synergistic effect occurred between SVCV and IPNV:
30	IPNV replication was enhanced in mixed infections with SVCV compared to the single IPNV
31	infection. Expression of host immune response genes <i>il1b</i> , <i>mx</i> and <i>gig2</i> was modulated
32	differently depending on the order of virus infections: while higher levels of expression of <i>il1b</i> ,
33	mx and gig2 were found in fish infected first with IPNV, those three genes were down-regulated
34	in fish infected with SVCV and then challenged with IPNV.
35	This first report of mixed birnavirus/rhabdovirus infections in zebrafish may help to
36	identify those factors associated to disease resistance and cross-protection in fish, with practical
37	implications for the development of new strategies for virus control in aquaculture.
38	
39	
40	
44	Kannandar - charfeth, IDNIV. SVCV charfeth wind interformer

41 *Keywords: zebrafish; IPNV; SVCV; zebrafish; viral interference*
48

1. Introduction

Double or even multiple viral infections have been reported in several species of fish
(Alonso, 2003; Kotob, 2016; Lin, 2017; Tafalla, 2006; Wiik-Nielsen, 2016). The study of the
interplay between two viruses and its impact on the severity of disease and development of
mortality in fish has shed some practical information on the host responses to viral challenge
that correlate to disease resistance and vaccine efficacy (Emmenegger, 2017).

54 Spring viremia of carp virus (SVCV) is the causative agent of spring viremia of carp 55 disease. It belongs to the Rhabdoviridae family of viruses with negative sense single stranded RNA genome (Ashraf, 2016). Natural outbreaks of spring viremia of carp have been recorded in 56 57 common carp and other cyprinid species (OIE, 2017). Infectious pancreatic necrosis virus (IPNV) causes disease in salmon and rainbow trout and has the ability to establish persistent 58 infections in a number of fish species (Julin, 2014). IPNV is a member of the family 59 Birnaviridae, viruses with double-stranded RNA genome. Both IPNV and SVCV are present 60 61 endemic in continental Europe (OIE, 2017). Thus, there is a possibility of IPNV and SVCV 62 coexistence in fish, although dual IPNV/SVCV infections have not been encountered so far, it is 63 perfectly possible due to the overlapping temperature range of both viruses and the ability of 64 IPNV to infect a wide range of species. SVCV infection of zebrafish by bath immersion has 65 been extensively studied before (Encinas, 2013; Medina-Gali, 2018b; Sanders, 2003). 66 Experimental infection of IPNV on zebrafish has also been reported (LaPatra, 2000). Thus, from 67 a practical point of view double IPNV/SVCV challenge of zebrafish can be a suitable 68 experimental model to study potential viral interference and host immune response in fish. When two viruses coincide in a host they often compete for the cellular machinery 69 70 resulting in what is called viral interference. In fish, there is a body of evidence on IPNV-71 induced interference over other viruses both in vitro and in vivo. In cell culture, primary IPNV 72 persistent infection blocks the replication of VHSV rhabdovirus in a subsequent infection 73 (García, 2011; Parreño, 2017). In vivo, IPNV infection often leads to the suppression of the secondary virus challenge (Byrne, 2008; Johansen and Sommer, 2001; Lopez-Vazquez, 2017). 74 75 In mixed infections the final outcome depends on the interaction of the two pathogens, their

76 relative optimal temperatures and how they alter the host immune response. Heterologous 77 interference is often associated to the activation of the non-specific protection exerted by the 78 innate immune system (Lopez-Vazquez, 2017; Pakingking, 2004; Rosaeg, 2017; Vendramin, 79 2018). While it is widely accepted that SVCV is an inducer of the interferon pathway and other cytokines (Aggad, 2009; Encinas, 2013; Feng, 2016; Medina-Gali, 2018b), contradictory results 80 have shown both stimulation as well as down-regulation of innate immune response key genes 81 82 (i.e. *ifn, mx*) by IPNV infection (Collet, 2007; Ingerslev, 2009; Lockhart, 2007; Lopez-Vazquez, 83 2017; Nombela, 2017; Skjesol, 2009). Therefore, it would be interesting to assess the potential for viral interference between 84 two unrelated viruses (IPNV and SVCV) within the host. In this study we show that a first 85 IPNV infection of zebrafish induces a blockade over a subsequent SVCV infection. 86 Furthermore, it is also described for the first time the IPNV infection at an early time after 87 SVCV infection stops SVCV-induced disease and mortality in zebrafish. 88 89 90 2. Materials and methods 91 2.1. Cell and virus culture. 92 EPC cells were purchased from the American Type Culture Collection (ATCC number 93 CRL-2872). The cell line was maintained at 28 °C in a 5% CO₂ atmosphere in RPMI Dutch 94 modified (Gibco, Invitrogen corporation, UK) cell culture medium buffered with 20 mM 95 HEPES and supplemented with 10% fetal calf serum (FCS, Sigma, St. Louis, USA), 1 mM 96 piruvate, 2 mM glutamine (Sigma), 50 µg/ml gentamicin (Sigma) and 2.5 µg/ml fungizone (Gibco). 97 Rainbow trout gonad cells (RTG-2) were purchased from SIGMA Aldrich (Sigma). The 98 99 cell line was maintained at 28 °C in a 5% CO2 atmosphere in minimum essential medium 100 (MEM) supplemented with 10% FCS (Sigma), 1 mM piruvate, 2 mM glutamine (Sigma), 50 µg/ml gentamicin (Sigma) and 2.5 µg/ml fungizone (Gibco). 101 The spring viremia of carp virus SVCV isolate 56/70 was grown in the EPC cell line at 102 22 °C by using RPMI medium supplemented with 2% FCS. Supernatants from SVCV infected 103

104 EPC cell monolayers were harvested at 7 days p.i. and clarified by centrifugation at 4000 r.p.m. for 30 min and kept in aliquots at -70 °C. SVCV titers were measured by a methylcellulose 105 106 plaque assay (Encinas, 2013, García-Valtanen, 2017). 107 The infectious pancreatic necrosis virus (IPNV Sp strain) was grown in the RTG-2 cell 108 line at 14 °C in MEM + 2% FCS. Supernatants from IPNV infected RTG-2 cell monolayers were harvested at 7 days p.i. and clarified by centrifugation at 4000 r.p.m. for 30 min and kept 109 110 in aliquots at -70 °C. Virus titration (TCID50/ml) was performed by the end-point dilution. 111 2.2. Virus infection and sampling. 112 Zebrafish (with average body weight 0.35-0.4 g) was used in two consecutive infection 113 114 trials IPNV + SVCV and SVCV + IPNV, in order to evaluate the effect of the viral interference. 115 The experiments were conducted following the established procedures approved by the ethics 116 committee on animal experimentation of the local government (Dirección General de Agricultura, Ganadería y Pesca, Generalitat Valenciana) and registered under permit number 117 118 2016 / VSC / PEA / 00182. Fish were acclimatized for two weeks at 21°C prior to virus challenge. 119 **IPNV + SVCV.** Zebrafish (80 fish) were intraperitoneally (i.p.) injected with 2×10^6 TCID50 120 of IPNV per fish, and after 2 or 30 days infected by bath immersion in 2×10^4 pfu/ml of SVCV 121 122 (Fig.1, IPNV + SVCV). A single SVCV-infected and a non-infected control group were treated in parallel. Five days post SVCV infection head kidney, liver and spleen of 5 fish/treatment 123 were collected and pooled. Mortality was monitored for 19 days. Fish were kept at 21°C along 124 125 the challenge period. **SVCV** + **IPNV**. Zebrafish (80 fish) were infected by bath immersion in 2×10^4 pfu/ml of 126 SVCV for 90 minutes. After 2 or 30 days fish were intraperitoneally injected with 2×10^6 127 TCID50 of IPNV per fish (Fig.1, SVCV + IPNV). Head kidney, liver and spleen were collected 128 and pooled at 3 days post-infection (dpi) for analysis. Mortality was monitored for 15 days. Fish 129 130 were kept at 21°C along the challenge period. 131

132 2.3. RNA extraction, cDNA synthesis and qPCR assays.

To evaluate transcript expression in adult zebrafish by reverse transcriptase and quantitative polymerase chain reaction (RT-qPCR), the internal organs from 5 fish per group were excised and pooled. RNA extraction was performed using the E.Z.N.A HP Tissue RNA kit (Omega Bio-tek, Norcross, GA, USA) according to the manufacturer's instructions and stored at -80 °C until use. Then, the cDNA was obtained using the reverse transcriptase (Moloney murine leukemia virus, Invitrogen) as previously described (Chico, 2006).

Quantitative PCR was carried out in real time using the ABI PRISM 7300 system

140 (Applied Biosystems, NJ, USA) and SYBR Green PCR master mix (Life Technologies, United 141 Kingdom). Reactions were performed in a final volume of 20 μ L containing 2 μ L of cDNA, 900 142 nM of each primer and 10 μ L of SYBR Green PCR master mix. The conditions of the 143 polymerase chain reaction were: 95°C for 10 min, 40 cycles at 65°C 1 min, 95°C for 1 min, and 144 extension for 10 min. The analysis of gene expression was performed by the 2^{- Δ Ct} method (Livak 145 and Schmittgen, 2001), where Δ Ct is determined by the formula target gene Ct value - ef1a gene

146 Ct value from the target Ct value. The sequences of the primers used in the assays are shown in

147 Table S1. Differential folds were calculated by the formula, normalized mean expression of

148 infected fish/normalized mean expression of control fish.

149

139

150 2.4. Data analysis and statistics

Statistical analysis was performed using the Graph Pad Prism v5.0 software. Survival
plots were generated using the Kaplan-Meier method. To compare the datasets of the different
treatments with their respective untreated controls, Tukey tests were performed. When
applicable, significant differences were represented as asterisks (*, **, ***) indicating p <0.05,
p<0.01 and p<0.001 values, respectively.

156

157 **3. Results**

158 3.1. IPNV and SVCV single infections.

159	Adult zebrafish infected with IPNV by intraperitoneal injection (2 x 10^6 TCID50 per
160	fish) did not show any clinical signs. The small percent of mortality (5%) that was observed
161	could be attributed to stress and handling of fish (Fig.2A). After 30 days of IPNV infection,
162	when the apparently healthy fish were tested for IPNV RNA they yielded positive results,
163	indicating that they had become IPNV carriers (not shown). In contrast, fish infected with
164	SVCV by bath immersion (2 x 10^4 pfu/ml) experienced great mortality rates (Fig.2B).
165	
166	3.2. IPNV infection protects against subsequent SVCV infection (IPNV+SVCV).
167	The first experimental trial consisted of infection of zebrafish with IPNV by i.p.
168	injection (2 x 10^6 TCID50 per fish) followed by bath immersion in 2 x 10^4 pfu/ml SVCV 2 or
169	30 days later (Fig.1, IPNV + SVCV). Our results show that the survival rates in the
170	IPNV+SVCV groups was higher (73% survival in the IPNV2d+SVCV group and 56% survival
171	in the IPNV30d+SVCV group) than those infected with SVCV only (20% survival, Fig.2B).
172	Thus, the results in the IPNV2d+SVCV and IPNV30d+IPNV conditions suggest that IPNV
173	protects zebrafish from SVCV lethal effects, delaying mortality and increasing survival.
174	
175	3.3. IPNV and SVCV replication in IPNV+SVCV infections.
176	To further analyze the interference phenomenon the replication of IPNV and SVCV was
177	examined by measuring IPNV A segment and SVCV N gene levels in samples from a pool of
178	internal organs by RT-qPCR. SVCV RNA in fish previously infected with IPNV either 2 days
179	or 30 days earlier showed significantly lower levels at 5 days post SVCV infection compared to
180	fish infected only with SVCV (Fig.3B), suggesting that the presence of IPNV inhibited
181	subsequent SVCV replication. Unexpectedly, IPNV replication increased after SVCV
182	superinfection (Fig.3A), although great variability in IPNV RNA levels among individuals was
183	observed in the IPNV+SVCV groups.
184	

185 3.4. Transcription of interleukin 1 β (*il1b*), *mx* and *gig2* genes in IPNV + SVCV infections.

186	To evaluate if the innate immune response could be involved in the observed cross-
187	protection of IPNV against SVCV three genes characteristically associated to fish response to
188	virus infection were analyzed: <i>illb, mx</i> and <i>gig2</i> (Fig.4). SVCV infection of zebrafish led to
189	enhanced expression of the three genes. In the IPNV+SVCV groups, modulation of <i>il1b</i> , <i>mx</i> and
190	gig2 transcription by the first virus (IPNV) was observed, with all three genes showing higher
191	expression levels compared to single SVCV infection. However, none of the selected genes
192	were overexpressed in response to IPNV alone.
193	
194	3.5. IPNV infection protects against previous SVCV infection (SVCV+IPNV).
195	We set a new trial intended to check if the viral interference phenomenon would still
196	occur if the order on viral infections was reversed. Thus, one SVCV bath infection was followed
197	by i.p. injection of IPNV 2 days or 30 days later (Fig.1, SVCV + IPNV). Fish challenged with
198	SVCV had a \approx 33% survival, while the SVCV+IPNV2d group had a greater survival rate (\approx 78%,
199	Fig.5). This result suggests that IPNV injection at an early time (2dpi SVCV) prevented SVCV
200	disease progression. At later times (30 dpi SVCV) fish were not experienced SVCV disease or
201	mortality any longer and therefore survival was not affected by IPNV.
202	
203	3.6. Viral replication in SVCV + IPNV-infected fish.
204	Replication of SVCV and IPNV was measured in the experimental groups by RT-
205	qPCR. Samples were harvested at 3 dpi with IPNV. SVCV transcript expression was
206	significantly lower in fish that were superinfected with IPNV 30 days after SVCV infection
207	compared to the SVCV infected group (Fig.6A). In fish superinfected with IPNV 2 days after
208	SVCV, SVCV RNA levels were also lower but not statistically significant.
209	IPNV replication was significantly enhanced in survivors of SVCV challenge
210	(SVCV30d + IPNV) but not in fish infected with SVCV for only 2 days (SVCV2d + IPNV,
211	Fig.6B).
212	

213 3.7. Changes in selected genes transcription in SVCV + IPNV infected fish.

To investigate the impact of the second IPNV infection on host innate response, samples from internal organs of zebrafish were collected to measure expression levels of *il1b*, *mx* and *gig2* genes. Transcription of all three genes was maximal in the SVCV30d group (Fig.7). When IPNV was administered to the SVCV-infected fish at 30 days post SVCV infection a significantly lower expression of the antiviral transcripts was observed. Again, IPNV failed to stimulate the expression of any of the three selected genes.

220

221 **4. Discussion**

222 Viral interference is defined as the suppression of one virus replication by a subsequent infection with the same (homologous) or different (heterologous) virus. In this study we have 223 224 demonstrated in vivo interference between IPNV and SVCV when IPNV was administered 225 either before or after SVCV. We had observed previously a characteristic interference of IPNV 226 over heterologous viruses in IPNV-carrier cell cultures (García, 2011; Parreño, 2017). Since that interference phenomenon was observed on a cyprinid cell line (EPC), we aimed to replicate this 227 228 situation in vivo on a cyprinid fish species. Zebrafish is susceptible to SVCV infection 229 displaying clinical signs and experiencing high mortalities (Encinas, 2013; García-Valtanen, 230 2017). In contrast, IPNV was capable of replicating in zebrafish but without clinical signs and 231 no mortality (LaPatra, 2000). To the best of our knowledge IPNV + SVCV coinfections of fish 232 under natural conditions have not been found so far. There are however a number of reports that 233 examined experimental IPNV coinfections with other rhabdoviruses (Alonso, 1999; Byrne, 234 2008; Rodriguez, 2005).

Protection against a second viral infection has been observed in survivors of dsRNA virus infections which usually had turned into asymptomatic carriers (Kotob, 2016; LaPatra, 1995). This protective effect seems to last as long as the fish carries the virus from the first infection (Lund, 2016). However, that is not always the case since in some instances crossprotection declines over time (Pakingking, 2004). Therefore, we decided to perform a second infection at 2 (early) and 30 (late) days after the first virus infection. Our results indicate that infection of zebrafish with IPNV suppresses the replication of SVCV irrespective of the order and time of viral infection. Our findings are in agreement with previous reports showing the
protective effect of a first IPNV infection of trout against the IHNV rhabdovirus (Alonso, 2003;
Byrne, 2008; López-Vazquez, 2017) or the ISAV orthomyxovirus (Johansen and Sommer,
2001). Although salmonid fish are the primary targets of IPNV, birnavirus infection protected
against subsequent VHSV infection in flounder (Pakingking, 2004), suggesting that the IPNVmediated viral interference is not restricted to salmonids.

248 Although viral interference is characteristic of dsRNA viruses such as birnaviruses and 249 reoviruses (Vendramin, 2018) is also possible to find interference phenomena between ssRNA 250 and dsRNA viruses in fish (Wiik-Nielsen, 2016). Herein, interference of SVCV over IPNV was not observed. On the contrary, our results suggest a synergistic effect of SVCV over IPNV 251 252 replication. Although this was not expected, we were not the first to find stimulation of one 253 virus by co-infection with another virus (Lin, 2017). The synergistic effect may be attributed to 254 immunosuppression of the host by one of the pathogens, facilitating the replication of the second virus. Such situation does not appear to be the case here since SVCV did activate mx and 255 256 gig2 gene expression. The synergistic effect may also be related to a negative effect of the 257 primary SVCV infection on the host ability to produce neutralizing antibodies. This would be consistent with the stimulation of IPNV replication found in the fish infected with IPNV 30 258 259 days after SVCV, but not in fish infected with IPNV only 2 days after SVCV (too early for the 260 antibody response to play any part). Finally, one likely explanation for the interference 261 phenomenon is the induction of antiviral genes of the innate immune response by the first virus 262 that inhibits the replication of the second invading virus. We selected mx and gig2 genes for further analysis since they are amongst the most important antiviral genes induced by dsRNA 263 264 viruses in fish (He, 2017; López-Vázquez, 2016; Nombela, 2017; Vendramin, 2018; Xiao, 265 2016). Furthermore, recent findings highlighted the role of gig2 gene in zebrafish upon SVCV 266 infection (Medina-Gali, 2018a). We also tested interleukin 1 β (*il1b*) as it is a widely accepted 267 marker of stimulation by pathogen associated molecular patterns or PAMPS (Carballo, 2017; Tafalla, 2006; Varela, 2017; Zou, 2016). In some cases up-regulation of interferon and mx genes 268 by the first infection has been linked to the antiviral effect on the second pathogen (Rosaeg, 269

270 2017). In our hands, infection of zebrafish with IPNV before SVCV resulted in enhanced *illb*, mx and gig2 transcription levels. In contrast, in zebrafish infected with IPNV 30 days after 271 272 SVCV *illb*, *mx* and *gig2* transcription was reduced compared to the single SVCV in correlation 273 to a diminished SVCV replication. Thus, we may conclude that by interfering with SVCV 274 replication, IPNV would prevent the upregulation of host response genes. Nevertheless, an explanation for the heterologous viral interference may not be always straightforward. For 275 276 instance, the piscine reovirus (PRV) protection against salmonid alphavirus (SAV) infection in 277 Atlantic salmon did not seem to be related to activation of typical antiviral genes (Lund, 2016). 278 On this regard, we have found a lack of correlation between in vitro and in vivo results. IPNV activates mx expression in EPC cells (García, 2011; Jurado, 2013) but down-regulates mx 279 280 expression in vivo zebrafish. This discrepancy may be due to the fact that the EPC cell line is not derived from Danio rerio (zebrafish) but instead is originated from Pimephales promelas 281 282 (fathead minnow). Moreover, a second IPNV infection is not capable of blocking SVCV replication in EPC cells (unpublished results). Thus, the EPC cell line may not be a perfect 283 284 model for the in vivo zebrafish situation.

285

286 **5.** Conclusions

287 Altogether, the results presented here show the protective effect of both a preceding and 288 a subsequent infection with the birnavirus IPNV against the rhabdovirus SVCV. We present 289 evidence that the host immune response depended on the order of viral infections. In zebrafish 290 infected with IPNV a second infection with SVCV enhanced some host innate responses, 291 whereas in zebrafish infected with SVCV, a second infection with IPNV inhibited those 292 responses. The cause of such inhibition is not clear but our data point to the conclusion that 293 IPNV interference over a primary SVCV infection is a consequence of the suppression of 294 SVCV replication, while the interference of IPNV over a subsequent SVCV infection is likely related to the establishment of an antiviral state by IPNV that make the fish better responders to 295 the second infection. 296

297	The study of the causes of the induction of an antiviral state after the first virus opens
298	new avenues of research in fish immunology that may ultimately lead to the identification of the
299	key factors underlying disease resistance in fish.
300	
301	Acknowledgements
302	Technical assistance from Angeles Gómez (IBMC) is acknowledged. We would like to
303	thank José Antonio Perez de Gracia, Yolanda Miralles and all the personnel in the Animal
304	Research Facility at UMH for their work and dedication.
305	
306	Authors' contribution
307	M. Bello-Perez and R. Medina-Gali contributed equally to this work.
308	
309	Funding
310	This research was supported by Program "I+D+I Orientada a los Retos de la Sociedad"
311	funded by Ministerio de Economía y Competitividad of Spain (Grant AGL2014-51773-C3) and
312	Grant BIO2017-82851. Melissa Bello's contract is funded by Generalitat Valenciana fellowship
313	ACIF/2016/207.
314	
315	References
316 317 318 319	Aggad, D., M. Mazel, P. Boudinot, K. E. Mogensen, O. J. Hamming, R. Hartmann, S. Kotenko, P. Herbomel, G. Luftfalla, and JP. Levraud. 2009. The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains. J. Immunol. 183:3924-3931.
320 321 322	Alonso, M., I. Rodríguez, and S. S. Perez-Prieto. 1999. Viral coinfection in salmonids: infectious pancreatic necrosis virus interferes with infectious hematopoietic necrosis virus. Arch. Virol. 144:657-673.
323 324 325 326	Alonso, M., S. Rodriguez, and S. I. Perez-Prieto. 2003. Virulence of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus coinfection in rainbow trout (<i>Oncorhynchus mykiss</i>) and nucleotide sequence analysis of the IHNV glycoprotein gene. Arch. Virol. 148:1507-1521.
327 328	Ashraf, U., Y. Lu, L. Lin, J. Yuan, M. Wang, and X. Liu. 2016. Spring viremia of carp virus: recent advances. J. Gen. Virol. 97:1037-1051.

- Byrne, N., J. Castric, J. Cabon, and C. Quentel. 2008. Study of the viral interference between 329
- 330 infectious pancreatic necrosis virus (IPNV) and infectious haematopoietic necrosis virus
- (IHNV) in rainbow trout (Oncorrhynchus mykiss). Fish Shellfish Immunol. 24:489-497. 331
- 332 Carballo, C., E. Garcia-Rosado, J. J. Borrego, and C. Alonso. 2016. SJNNV down-regulates
- RGNNV replication in European sea bass by the induction of the type I interferon system. Vet. 333 334 Res. 47:6-16.
- Chico, V., N. Gomez, A. Estepa, and L. Perez. 2006. Rapid detection and quantitation of viral 335 hemorrhagic septicemia virus in experimentally challenged rainbow trout by real-time RT-PCR. 336 337 J. Virol. Methods 132:154-159.
- Collet, B., E. S. Munro, S. Gahlawat, F. Acosta, J. Garcia, C. Roemelt, J. Zou, C. J. Secombes, 338 339 and A. E. Ellis. 2007. Infectious pancreatic necrosis virus suppresses type I interferon signalling 340 in rainbow trout gonad cell line but not in Atlantic salmon macrophages. Fish Shellfish 341 Immunol. 22:44-56.
- 342 Emmenegger, E., S. Biacchesi, E. Mérour, J. Glenn, A. D. Palmer, M. Bremont, and G. Kurath.
- 343 2017. Virulence of a chimeric recombinant infectious haematopoietic necrosis virus expressing 344 the spring viraemia of carp virus glycoprotein in salmonid and cyprinid fish. J. Fish Diseases 345 doi.org/10.1111/jfd.12678.
- 346 Encinas, P., P. Garcia-Valtanen, B. Chinchilla, E. Gomez-Casado, A. Estepa, and J. Coll. 2013. 347 Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV) suggest preventive drug 348 candidates. PLoS ONE 8:e73553. 349
- 350 Feng, H., Q.-M. Zhang, Y. Zhang, Z. Li, J. Zhang, Y.-W. Xiong, M. Wu, and J.-F. Gui. 2016. 351 Zebrafish IRF1, IRF3 and IRF7 differentially regulate IFN Φ 1 and IFN Φ 3 expression through 352 assembly of homo- or heteroprotein complexes. J. Immunol. 197:1893-1904.
- 353 Garcia, I., A. Galiana, A. Falco, A. Estepa, and L. Perez. 2011. Characterization of an infectious 354 pancreatic necrosis (IPN) virus carrier cell culture with resistance to superinfection with heterologous viruses. Vet. Microbiol. 149:48-55. 355
- Garcia-Valtanen, P., A. Martinez-Lopez, A. Lopez-Muñoz, M. Bello-Perez, R. M. Medina-Gali, 356
- 357 M. Ortega-Villaizan, M. Varela, A. Figueras, V. Mulero, B. Novoa, A. Estepa, and J. Coll.
- 358 2017. Zebra fish lacking adaptive immunity acquire an antiviral alert state characterized by
- upregulated gene expression of apoptosis, multigene families, and interferon-related genes. 359
- Front. Immunol. 8:121-doi:10.3389/fimmu.2017.00121. 360
- He, L., A. Zhang, Y. Pei, P. Chu, Y. Li, R. Huang, L. Liao, Z. Zhu, and Y. Wang. 2017. 361
- 362 Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the
- 363 mechanism of hemorrhage revealed by transcriptome sequencing. BMC Genomics 18:452.
- 364 Ingerslev, H. C., A. Ronneseth, E. F. Pettersen, and H. I. Wergeland. 2009. Differential
- 365 expression of immune genes in Atlantic salmon (Salmo salar L.) challenged intraperitoneally or
- by cohabitation with IPNV. Basic Immunol. 69:90-98. 366

- 367 Johansen, L. H. and A.-I. Sommer. 2001. Infectious pancreatic necrosis virus infection in
- 368 Atlantic salmon Salmo salar post-smolts affects the outcome of secondary infections with
- infectious salmon anaemia virus or Vibrio salmonicida. Dis. Aquat. Org. 47:109-117. 369
- 370 Julin, K., L. H. Johansen, A.-I. Sommer, and J. B. Jorgensen. 2014. Persistent infections with
- 371 infectious pancreatic necrosis virus (IPNV) of different virulence in Atlantic salmon, Salmo
- salar L. J. Fish Diseases 38:1005-1019. 372
- Jurado, M. T., P. Garcia-Valtanen, A. Estepa, and L. Perez. 2013. Antiviral activity produced by 373 374 an IPNV-carrier EPC cell culture confers resistance to VHSV infection. Vet. Microbiol. 375 166:412-418.
- 376 Kotob, M. H., S. Menanteau-Ledouble, G. Kumar, M. Abdelzaher, and M. El-Matbouli. 2016. The impact of co-infections on fish: a review. Vet. Res. 47:98. 377
- 378 LaPatra, S. E., L. Barone, G. R. Jones, and L. I. Zon. 2000. Effects of infectious hematopoietic 379 necrosis virus and infectious pancreatic necrosis virus infection on hematopoietic precursors of
- 380 the zebrafish. Blood Cells Mol. Dis. 26:445-452.
- LaPatra, S. E., K. A. Lauda, and G. R. Jones. 1995. Aquareovirus interference mediated 381 382 resistance to infectious hematopoietic necrosis virus. Vet. Res. 26:455-459.
- Lin, Q., X. Fu, N. Li, Q. Wan, W. Chen, Y. Huang, Z. Huang, J. Li, L. Zhao, and L. Lin. 2017. 383
- Co-infections of infectious spleen and kidney necrosis virus and Siniperca chuatsi rhabdovirus 384 385 in Chinese perch (Siniperca chuatsi). Microb. Pathog. 11:422-430.
- 386 Livak, K. L. and T. D. Schmittgen . 2001. Analysis of relative gene expression data using real-387 time quantitative PCR and the 2-DDT method. Methods 25:402-408.
- Lockhart, K., A. J. A. McBeath, B. Collet, M. Snow, and A. E. Ellis. 2007. Expression of Mx 388 389 mRNA following infection with IPNV is greater in IPN-susceptible Atlantic salmon post-smolts than in IPN-resistant Atlantic salmon parr. Fish Shellfish Immunol. 22:151-156. 390
- Lopez-Vazquez, C., M. C. Alonso, C. P. Dopazo, and I. Bandín. 2017. In vivo study of viral 391 392 haemorrhagic septicaemia virus and infectious pancreatic necrosis virus coexistence in
- Senegalese sole (Solea senegalensis). J. Fish Diseases 40:1129-1139. 393
- 394 Lund, M., M. V. Rosaeg, A. Krasnov, G. Timmerhaus, I. B. Nyman, V. Asperhaug, E. Rimstad, 395 and M. K. Dahle. 2016. Experimental Piscine orthoreovirus infection mediates protection
- 396 against pancreas disease in Atlantic salmon (Salmo salar). Vet. Res. 47:107.
- Medina-Gali, R., M. Bello-Perez, A. Martinez-Lopez, A. Falco, M. Ortega-Villaizan, J. A. 397
- 398 Encinar, B. Novoa, J. Coll, and L. Perez. 2018a. Chromatin immunoprecipitation and high
- 399 throughput sequencing of SVCV-infected zebrafish reveals novel epigenetic histone
- 400 methylation patterns involved in antiviral immune response. Fish Shellfish Immunol. 82:514-
- 401 521.
- 402 Medina-Gali, R., M. Ortega-Villaizan, L. Mercado, B. Novoa, J. Coll, and L. Perez. 2018b.
- Beta-glucan enhances the response to SVCV infection in zebrafish. Dev. Comp. Immunol. 403
- 84:307-314. 404

- 405 Nombela, I., A. Carrion, S. Puente-Marin, V. Chico, L. Mercado, L. Perez, J. Coll, and M.
- 406 Ortega-Villaizan. 2017. Infectious pancreatic necrosis virus triggers antiviral immune response
- 407 in rainbow trout red blood cells, despite not being infective. F1000 Res. 6:1968.
- 408 OIE. 2017. Manual of Diagnostic Test for Aquatic Animals. http://www. oie.
- 409 int/fileadmin/Home/eng/Health_standards/aahm/current/chapitre_svc. pdf.
- 410 Pakingking, R., Y. Okinaka, K. Mori, M. Arimoto, K. Muroga, and T. Nakai. 2004. In vivo and
- 411 in vitro analysis of the resistance against viral haemorrhagic septicaemia virus in Japanese
- 412 flounder (*Paralichtys olivaceus*) precedingly infected with aquabirnavirus. Fish Shellfish
- 413 Immunol. 17:1-11.
- 414 Parreño, R., L. Almagro, M. Bello-Perez, R. Medina-Gali, A. Estepa, and L. Perez. 2017.
- 415 Restricted replication of viral hemorrhagic septcemia virus (VHSV) in a birnavirus-carrier cell
 416 culture. Arch. Virol. 162:1037-1041.
- 417 Rodriguez, S., M. Alonso, and S. S. Perez-Prieto. 2005. Comparison of two birnavirus-
- rhabdovirus coinfections in cell lines. Dis. Aquat. Org. 67:183-190.
- 419 Rosaeg, M. V., M. Lund, I. B. Nyman, T. Markussen, V. Asperhaug, H. Sindre, M. K. Dahle,
- 420 and E. Rimstad. 2017. Immunological interactions between Piscine orthoreovirus and Salmonid
- 421 alphavirus infections in Atlantic salmon. Fish Shellfish Immunol. 64:308-319.
- 422 Sanders, G. E., W. N. Batts, and J. R. Winton. 2003. Susceptibility of zebrafish (*Danio rerio*) to
 423 a model pathogen, spring viremia of carp virus. Comp. Med. 53:514-521.
- 424 Skjesol, A., T. Aamo, M. N. Hegseth, B. Robertsen, and J. B. Jorgensen. 2009. The interplay
- between infectious pancreatic necrosis virus (IPNV) and the IFN system: IFN signaling isinhibited by IPNV infection. Virus Res. 143:53-60.
- 427 Tafalla, C., S. Rodriguez, and S. I. Perez-Prieto. 2006. Immunological consequences of the
- 428 coinfection of brown trout (*Salmo trutta*) with infectious hematopoietic necrosis virus (IHNV)
- 429 and infectious pancreatic necrosis virus (IPNV). Aquaculture 256:15-22.
- Varela, M., A. Figueras, and B. Novoa. 2017. Modelling viral infections using zebrafish: innate
 immune response and antiviral research. Antiviral Res. 139:59-68.
- 432 Vendramin, N., A. L. Farias Alencar, T. M. Iburg, M. K. Dahle, O. Wessel, A. B. Olsen, and N.
- 433 J. Olesen. 2018. Piscine orthoreovirus infection in Atlantic salmon (*Salmo salar*) protects
- against subsequent challenge with infectious hematopietic necrosis virus (IHNV). Vet. Res.
- 435 49:30-doi: 10.1186/s13567-018-0524-z.
- Wiik-Nielsen, J., M. Alarcón, B. B. Jensen, O. Haugland, and A. B. Mikalsen. 2016. Viral coinfections in farmed Atlantic salmon, *Salmo salar* L., displaying myocarditis. J. Fish Diseases
 39:1495-1507.
- Xiao, J., J. Yan, H. Chen, J. Li, Y. Tian, L. Tang, and H. Feng. 2016. Mx1 of black carp
 functions importantly in the antiviral innate immune response. Fish Shellfish Immunol. 58:584592.
- Zou, J. and C. J. Secombes. 2016. The function of fish cytokines. Biology 5:doi:
- 443 10.3390/biology5020023.

444 Figure captions

445 Fig.1. Experimental design of zebrafish infections and sample collection timelines.

446

- 447 Fig.2. IPNV + SVCV infections of zebrafish. Kaplan-Meier survival plots of zebrafish infected
- 448 first with IPNV and secondly with SVCV. (A) Zebrafish (25 fish/group) were intraperitoneally
- injected with IPNV (2×10^6 TCID50/fish). (B) At 2 days or 30 days after IPNV infection fish
- 450 were infected with SVCV by bath immersion (2 x 10^4 pfu /ml) and mortality was recorded for 451 19 days.

452

- 453 Fig.3. Viral loads of IPNV and SVCV based on RT-qPCR evaluation. Data represent relative
- 454 values respect to $efl\alpha$ expression. Five individuals were sampled for each group. (*) Asterisks
- 455 indicate (p<0.05) differences in IPNV-A segment (A) or SVCV N gene RNA levels (B).

456 Internal organs from SVCV-infected fish were harvested at 5 days post infection.

457

Fig.4. Relative expression of *mxab*, *gig2l* and *il1b* gene transcripts in internal organs of fish (n = 5) infected with IPNV and SVCV as indicated. Data are referred to uninfected controls (value = 1, dotted line). Time of sampling for SVCV-infected fish was 5 dpi. Results are expressed as the mean±SD. Statistical significance in immune gene expression between two groups is indicated (*, p < 0.05; ** p<0.01; ***, p< 0.001).

463

464Fig.5. SVCV + IPNV infections of zebrafish. Kaplan-Meier survival plots of zebrafish infected465first with IPNV and secondly with SVCV. (A) Zebrafish (25 fish/group) were infected with466SVCV by bath immersion (2 x 10^4 pfu/ml). (B) Fish were intraperitoneally injected with IPNV4672 x 10^6 TCID50/fish at 2 or 30 days after SVCV infection. Mortalities were recorded for 15468days.

469

470 Fig.6. Viral loads of SVCV and IPNV based on RT-qPCR evaluation. Five individuals were

471 sampled for each experimental group. *, ** indicate significant (p<0.05, p<0.01) differences in

472 SVCV N gene (A) or IPNV-A segment RNA levels (B). Fish infected with IPNV were

473 harvested at 3 dpi.

- 474
- 475 Fig.7. Relative expression of mxab, gig2l and illb gene transcripts in internal organs of fish (n =
- 476 5) infected with SVCV and IPNV as indicated. Data are referred to uninfected controls (value =
- 477 1, dotted line). Time of sampling for IPNV-infected fish was 3 dpi. Results are expressed as the
- 478 mean±SD. Statistical significance in immune gene expression between two groups is indicated
- 479 (**, p<0.01; ***, p<0.001).

Figure 1.

Figure 2.

Figure 3.

Figure 5.

Figure 6.

Figure 7.