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a b s t r a c t 

The Slacks-Based Measure was introduced by Tone (2001) in order to estimate technical efficiency in 

the input-output space by taking into account all sources of technical inefficiency and satisfying, at 

the same time, many interesting properties. Since then, the Slacks-Based Measure has attracted the 

interest of numerous researchers and practitioners. The Slacks-Based Measure has been applied to 

technical efficiency determination, productivity change measurement, the analysis of production process 

performance consisting of networks, and so on. However, so far, the Slacks-Based Measure has not been 

directly related to profit inefficiency as a component of the overall economic performance of firms. In 

this note, we show how a specific normalized measure of profit inefficiency may be decomposed through 

the Slacks-Based Measure. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the context of Data Envelopment Analysis (DEA), a Decision

Making Unit (DMU) is considered to be technically inefficient if

it is possible to expand its output bundle without requiring any

increase in its inputs and/or to contract its input bundle without

requiring a reduction in its outputs. The potential for augment-

ing the output bundle reflects output-oriented inefficiency, while

potential reduction in inputs means input-oriented inefficiency. In

most empirical applications, technical efficiency is measured ei-

ther in input- or in output-orientation. The selection between one

or the other depends on the situation being considered. Addition-

ally, when there is no particular reason to select either the in-

put or output orientation, it is desirable to resort to a techni-

cal efficiency measure that includes both input-saving and output-

expanding components. The latter are usually known as graph or

non-oriented in contrast to the oriented ones. 

DEA measures may also be categorized into two groups. The

first one yields projection points on the frontier of the technology

without considering whether these are dominated in the sense of

Pareto or not. In contrast, the second group ensures that the pro-

jection points will be non-dominated, following Koopmans’ defini-

tion of efficiency ( Koopmans, 1951 ) and that all sources of techni-

cal inefficiency are incorporated into the measure. 

The first measures to be introduced in DEA were the

well-known CCR ( Charnes, Cooper, & Rhodes, 1978 ) and BCC
∗ Corresponding author. 
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 Banker, Charnes, & Cooper, 1984 ), both being based upon ori-

nted and radial models. Seeking Pareto-efficiency in the oriented

ramework, the Russell input and output measures of technical ef-

ciency were defined ( Färe, Grosskopf, & Lovell, 1985 ). Regarding

he non-oriented context, when the aim is to include both input-

aving and output-expanding components in the efficiency mea-

ure, DEA endows practitioners with a toolbox full of possibilities.

n the one hand, we may find measures that do not follow the

oopmans definition of technical efficiency, such as the hyperbolic

easure ( Färe et al., 1985 ), the directional distance functions (DDF)

 Chambers, Chung, & Färe, 1996, 1998 ) and the Hölder distance

unctions ( Briec, 1998 ). On the other hand, and in contrast to the

rst group of approaches, there is a list of measures that generate

rojection points on the frontier that are always non-dominated.

n this sense, we highlight the family of weighted additive models

 Lovell & Pastor, 1995 ), which includes, among others, the Measure

f Inefficiency Proportions (MIP) and the Range-Adjusted Measure

RAM) (see Cooper, Park, & Pastor, 1999 ); the Geometric Distance

unction (GDF) by Portela and Thanassoulis (2007) and the Slacks-

ased Measure (SBM) ( Tone, 2001 ) 1 . 

In particular, the Slacks-Based Measure has been applied to

any different contexts: technical efficiency determination (e.g.,

hoi, Zhang, & Zhou, 2012 ), productivity change measurement

e.g., Tone, 2004 ), the analysis of production process performance
1 The Slacks-Based Measure is mathematically equivalent to the Enhanced Russell 

raph by applying a simple change of variables (see Pastor et al., 1999 ). However, 

etween the two approaches, the most cited model in the literature has been the 

lacks-Based Measure. 

http://dx.doi.org/10.1016/j.ejor.2016.12.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.12.038&domain=pdf
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onsisting of networks (e.g., Tone & Tsutsui, 2009 ), the measure-

ent of input-specific inefficiency and productivity change (e.g.,

apelko, Horta, Camanho, & Oude Lansink, 2015 ), among others. 

When information on market prices is available in addition to

nput and output variables for a set of DMUs, the determination

nd decomposition of overall economic efficiency may be one of

he objectives of the problem. It is worth mentioning that all the

forementioned measures have been related in the literature to

verall efficiency except the Slacks-Based Measure. In this respect,

ome theoretical results are very recent, while others can be dated

ack to the nineteen-fifties. Farrell (1957) showed how cost effi-

iency can be decomposed into technical efficiency, the value of

he radial measure in the context of DEA, and allocative (price)

fficiency. Later, Chambers, Chung, and Färe (1998) proved that a

ormalized profit inefficiency measure may be associated with the

DF. Briec and Lesourd (1999) proved the same for the Hölder dis-

ance functions, while the hyperbolic measure was related to the

otion of return to the dollar in Färe, Grosskopf, and Zaim (2002) .

dditionally, Portela and Thanassoulis (2007) showed that the GDF

s linked to a measure of profitability. More recently, Cooper, Pas-

or, Aparicio, and Borras (2011) and Aparicio, Pastor, and Vidal

2016) related profit inefficiency to the weighted additive models,

paricio, Pastor, and Ray (2013) showed the existing relationship

etween a modification of the DDF and the concept of lost profit

n outlay, Aparicio, Borras, Pastor, and Vidal (2015) proved that

ost (revenue) inefficiency may be decomposed by using the Rus-

ell input (output) measure and, finally, Färe, Fukuyama, Grosskopf,

nd Zelenyuk (2015) used the Directional Slacks-Based Measure to

ecompose overall inefficiency. 

In this note, in order to cover a gap in the DEA literature, we

how which measure of overall inefficiency is associated with the

BM and how it can be decomposed into technical and allocative

nefficiencies. 

. Results 

First of all, let us introduce some notation and models. 

Working in the usual DEA framework, let us consider n DMUs

o be evaluated. DMU j consumes x j = ( x 1 j , . . . , x m j ) ∈ R m ++ amounts

f input for the production of y j = ( y 1 j , . . . , y s j ) ∈ R s ++ amounts of

utput. The relative efficiency of each unit in the sample is as-

essed with reference to the so-called production possibility set,

hich can be empirically constructed in DEA from the observa-

ions by assuming several postulates (see Banker et al., 1984 ). In

articular, under Variable Returns to Scale (VRS), the production

ossibility set in DEA, T, can be characterized as follows: 

 = 

{ 

( x, y ) ∈ R 

m 

+ × R 

s 
+ : x i ≥

n ∑ 

j=1 

λ j x i j , y r ≤
n ∑ 

j=1 

λ j y r j , 

n ∑ 

j=1 

λ j = 1 , λ j ≥ 0 , ∀ i, r, j 

} 

. (1) 

To evaluate the level of technical efficiency of DMU 0 with data

 x 0 , y 0 ), one can solve the following model, corresponding to the

lacks-Based Measure ( Tone, 2001 ). 

BM ( x 0 , y 0 ) = 

min 

(
1 − 1 

m 

m ∑ 

i =1 

s −
i 0 

x i 0 

)/(
1 + 

1 
s 

s ∑ 

r=1 

s + 
r0 

y r0 

)
(2 . 0)

s.t. 
n ∑ 

j=1 

λ j0 x i j = x i 0 − s −
i 0 
, i = 1 , . . . , m (2 . 1)

n ∑ 

j=1 

λ j0 y r j = y r0 + s + 
r0 

, r = 1 , . . . , s (2 . 2)
n ∑ 

j=1 

λ j0 = 1 , (2 . 3) 

λ0 ≥ 0 n , s 
−
0 

≥ 0 m 

, s + 
0 

≥ 0 s (2 . 4) 

. 

(2)

Tone (2001) showed that model ( 2 ) measures technical effi-

iency taking into account all sources of technical inefficiency (in-

ut and output slacks) and that 0 ≤ SBM ( x 0 , y 0 ) ≤ 1, being equal to

ne if and only if the assessed unit is Pareto −Koopmans efficient.

n this way, 1 −SBM ( x 0 , y 0 ) measures technical inefficiency. Addi-

ionally, Tone (2001) proved that model ( 2 ) can be transformed

nto a linear program using the Charnes −Cooper transformation in

 similar way to the CCR model ( Charnes et al., 1978 ). 

Pastor, Lovell, and Aparicio (2012, p. 116) proved that, under

RS, the following result holds. 

 − SBM ( x 0 , y 0 ) = 

min −
s ∑ 

r=1 

p r y r0 + 

m ∑ 

i =1 

c i x i 0 + α (3 . 0) 

s.t. 
s ∑ 

r=1 

p r y r j −
m ∑ 

i =1 

c i x i j − α ≤ 0 , j = 1 , . . . , n (3 . 1) 

c i ≥ 1 
m x i 0 

, i = 1 , . . . , m (3 . 2) 

p r ≥ 1 
s y r0 

(
1 + 

s ∑ 

r=1 

p r y r0 −
m ∑ 

i =1 

c i x i 0 − α

)
, r = 1 , . . . , s (3 . 3) 

c ≥ 0 m 

, p ≥ 0 s (3 . 4) 

. 

(3) 

Eq. (3) implies that the technical inefficiency associated with

he Slacks-Based Measure can be equivalently computed through

 linear program based on shadow prices, c ≥ 0 m 

, p ≥ 0 s , and

hadow profit, α ∈ R . 

We now turn to profit inefficiency measurement. We will ex-

loit the structure of model ( 3 ) and some results recently pub-

ished in Cooper et al. (2011) in order to derive a first upper bound

or the term 1 −SBM ( x 0 , y 0 ). This upper bound will take the form

f optimal profit minus actual profit, normalized by some specific

eflator. 

In the context of measuring technical inefficiency by means of

he weighted additive model, one should solve the following Linear

rogramming program. 

A 

(
x 0 , y 0 , w 

−, w 

+ ) = 

Max 
m ∑ 

i =1 

w 

−
i 

s −
i 0 

+ 

s ∑ 

r=1 

w 

+ 
r s 

+ 
r0 

(4 . 0) 

s.t. 
n ∑ 

j=1 

λ j0 x i j = x i 0 − s −
i 0 
, i = 1 , . . . , m (4 . 1) 

n ∑ 

j=1 

λ j0 y r j = y r0 + s + 
r0 

, r = 1 , . . . , s (4 . 2) 

n ∑ 

j=1 

λ j0 = 1 , (4 . 3) 

s −
i 0 

≥ 0 , i = 1 , . . . , m (4 . 4) 
s + 

r0 
≥ 0 , r = 1 , . . . , s (4 . 5) 

λ j0 ≥ 0 , j = 1 , . . . , n (4 . 6) 

, (4) 

here w 

− = ( w 

−
1 
, . . . , w 

−
m 

) ∈ R m ++ and w 

+ = ( w 

+ 
1 
, . . . , w 

+ 
s ) ∈ R s ++ are

eights representing the relative importance of unit inputs and

nit outputs. Different paths can be followed in choosing such

eights. The most usual possibility selects them based on data and

nformation. In this way, it is possible to achieve a dimensionless

ptimal value in ( 4 ), in the terminology followed by Lovell and Pas-

or (1995) . This line has been followed, for instance, by the Mea-

ure of Inefficiency Proportions (MIP) ( Cooper et al., 1999 ) con-

idering ( w 

−, w 

+ ) = ( 1 / x 0 , 1 / y 0 ) , where 1 / x 0 = ( 1 / x 10 , . . . , 1 / x m 0 )

nd 1 / y 0 = ( 1 / y 10 , . . . , 1 / y s 0 ) ; the Range Adjusted Measure of In-

fficiency (RAM) ( Cooper et al., 1999 ) considering ( w 

−, w 

+ ) =
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( 1 / ( m + s ) R −, 1 / ( m + s ) R + ) where R − = ( R −
1 
, . . . , R −m 

) with R −
i 

=
max 
1 ≤ j≤n 

{ x i j } − min 

1 ≤ j≤n 
{ x i j } , i = 1, …, m , and R + = ( R + 

1 
, . . . , R + s ) with R + r =

max 
1 ≤ j≤n 

{ y r j } − min 

1 ≤ j≤n 
{ y r j } , r = 1, …, s ; and the Bounded Adjusted Mea-

sure (BAM) of inefficiency (see Pastor, Aparicio, Alcaraz, Vidal,

& Pastor, 2015 ) considering w 

− = 1 / [ ( m + s )( x 0 − x min ) ] , where

x min = ( x min 
1 

, . . . , x min 
m 

) with x min 
i 

= min 

1 ≤ j≤n 
{ x i j } , i = 1, …, m , and w 

+ =
1 / [ ( m + s )( y max − y 0 ) ] , where y max = ( y max 

1 
, . . . , y max 

m 

) with y max 
r =

max 
1 ≤ j≤n 

{ y r j } , r = 1, …, s . Definitely, input and output weights are usu-

ally dependent on data and are homogeneous of degree zero in

prices. 

Regarding the relationship between profit inefficiency and the

weighted additive models, Cooper et al. (2011) proved that: 

�( c, p ) −
(

s ∑ 

r=1 

p r y r0 −
m ∑ 

i =1 

c i x i 0 

)
min 

{ 

c 1 
w 

−
1 

, . . . , c m 
w 

−
m 
, 

p 1 
w 

+ 
1 

, . . . , 
p s 

w 

+ 
s 

} ≥ WA 

(
x 0 , y 0 , w 

−, w 

+ ), (5)

where �( c, p ) = max { ∑ s 
r=1 p r y r −

∑ m 

i =1 c i x i : ( x, y ) ∈ T } represents

the maximum profit given input and output market prices c =
( c 1 , . . . , c m 

) ∈ R m ++ and p = ( p 1 , . . . , p s ) ∈ R s ++ . In particular, �( c , p )

can be calculated in Data Envelopment Analysis under Variable Re-

turns to Scale through ( 6 ) (see Ray, 2007 ). 

�( c, p ) = max 
j=1 , ... ,n 

{ 

s ∑ 

r=1 

p r y r j −
m ∑ 

i =1 

c i x i j 

} 

. (6)

The left hand side of ( 5 ) is interpreted in Cooper et al. (2011) ,

in the framework of the additive models, as a profit inefficiency

measure: a normalized deviation between optimal profit and ob-

served profit for DMU 0 at market prices. Specifically, the normal-

ization represents the minimum among the ratios of market prices

to weights. Thanks to the normalization, the left hand side in ( 5 )

satisfies a desirable index number property ( Nerlove, 1965 ): it is

homogeneous of degree zero in prices, which makes the measure

invariant to the currency units for the input and output prices. 

Now we are ready to derive the first upper bound for

1 −SBM ( x 0 , y 0 ). 

Proposition 1. The next relationship holds. 

�( c, p ) −
(

s ∑ 

r=1 

p r y r0 −
m ∑ 

i =1 

c i x i 0 

)
min { m c 1 x 10 , . . . , m c m 

x m 0 , s p 1 y 10 , . . . , s p s y s 0 } ︸ ︷︷ ︸ 
Upperbound −I(UBI) 

≥ 1 − SBM ( x 0 , y 0 ) . 

(7)

Proof. Let w 

−
i 

= 1 / m x i 0 , i = 1, …, m , and w 

+ 
r = 1 /s y r0 , r = 1, …, s .

Pastor et al. (2012) , pp. 114-115) showed that WA ( x 0 , y 0 , 1/ mx 0 ,

1/ sy 0 ) can be equivalently calculated by the following linear pro-

gram: 

min −
s ∑ 

r=1 

p r y r0 + 

m ∑ 

i =1 

c i x i 0 + α (8 . 0) 

s.t. 
s ∑ 

r=1 

p r y r j −
m ∑ 

i =1 

c i x i j − α ≤ 0 , j = 1 , . . . , n (8 . 1) 

c i ≥ 1 
m x i 0 

, i = 1 , . . . , m (8 . 2) 

p r ≥ 1 
s y r0 

, r = 1 , . . . , s (8 . 3) 

c ≥ 0 m 

, p ≥ 0 s (8 . 4) 

(8)

In this way, any ( c , p , α) feasible solution of ( 8 )

is also a feasible solution of ( 3 ) since p r ≥ 1 
s y r0 

≥

1 
s y r0 

( 1 + 

∑ s 
r=1 p r y r0 −

∑ m 

i =1 c i x i 0 − α) because the objective func-

ion in ( 3 ) satisfies 0 ≤ − ∑ s 
r=1 p r y r0 + 

∑ m 

i =1 c i x i 0 + α ≤ 1 . This

easoning implies that WA ( x 0 , y 0 , 1/ mx 0 , 1/ sy 0 ) ≥ 1 −SBM ( x 0 , y 0 ).

inally, by ( 5 ), we get ( 7 ). �

UB I is our first upper bound for the technical inefficiency of

he Slacks-Based Measure. This is in the sense of profit inefficiency,

s mentioned before. However, it is possible, as we will go on to

how, to establish a better upper bound, in the sense that it will

e closer to 1 −SBM ( x 0 , y 0 ) than UB I. 

In order to derive our second upper bound, let us con-

ider DMU 0 with input-output vector ( x 0 , y 0 ) ∈ T and the pro-

ection point ( x ∗
0 
, y ∗

0 
) derived from the application of model

 2 ). It is well-known that ( x ∗
0 
, y ∗

0 
) = ( x 0 − s −∗

0 
, y 0 + s + ∗

0 
) ∈ T , where

( s −∗
0 

, s + ∗
0 

) comes from an optimal solution of ( 2 ). Then, by the defi-

ition of �( c , p ), we have that �( c , p ) − ( 
∑ s 

r=1 p r y r0 −
∑ m 

i =1 c i x i 0 ) ≥
( 
∑ s 

r=1 p r y 
∗
r0 

− ∑ m 

i =1 c i x 
∗
i 0 
) −( 

∑ s 
r=1 p r y r0 −

∑ m 

i =1 c i x i 0 )= 

∑ s 
r=1 p r s 

+ ∗
r0 

+
 m 

i =1 c i s 
−∗
i 0 

= 

1 
s 

∑ s 
r=1 s p r y r0 

s + ∗
r0 

y r0 
+ 

1 
m 

∑ m 

i =1 m c i x i 0 
s −∗
i 0 

x i 0 
≥ δ( 1 s 

∑ s 
r=1 

s + ∗
r0 

y r0 
+

1 
m 

∑ m 

i =1 

s −∗
i 0 

x i 0 
) , where δ=min { mc 1 x 10 , …, mc m 

x m 0 , sp 1 y 10 , …, sp s y s 0 }.

ow, dividing and multiplying the right hand side by the term

( 1 + 

1 
s 

∑ s 
r=1 

s + ∗
r0 

y r0 
) and, finally, moving δ( 1 + 

1 
s 

∑ s 
r=1 

s + ∗
r0 

y r0 
) to the left

and side, we get: 

�( c, p ) −
(

s ∑ 

r=1 

p r y r0 −
m ∑ 

i =1 

c i x i 0 

)
δ

(
1 + 

1 
s 

s ∑ 

r=1 

s + ∗
r0 

y r0 

) ≥

(
1 
s 

s ∑ 

r=1 

s + ∗
r0 

y r0 
+ 

1 
m 

m ∑ 

i =1 

s −∗
i 0 

x i 0 

)
(

1 + 

1 
s 

s ∑ 

r=1 

s + ∗
r0 

y r0 

) . (9)

Thanks to expression ( 9 ), we may derive the second upper

ound for 1 −SBM ( x 0 , y 0 ). 

roposition 2. Let ( λ∗
0 , s 

−∗
0 

, s + ∗
0 

) be an optimal solution of model ( 2 ).

he next relationship holds. 

�( c, p ) −
(

s ∑ 

r=1 

p r y r0 −
m ∑ 

i =1 

c i x i 0 

)
min { m c 1 x 10 , . . . , m c m 

x m 0 , s p 1 y 10 , . . . , s p s y s 0 } 
(

1 + 

1 
s 

s ∑ 

r=1 

s + ∗
r0 

y r0 

)
 ︷︷ ︸ 

Upperbound −II(UBII) 

≥ 1 − SBM ( x 0 , y 0 ) . (10)

roof. 1 − SBM( x 0 , y 0 ) = 1 − ( 1 − 1 
m 

∑ m 

i =1 

s −
i 0 

x i 0 
) / ( 1 + 

1 
s 

∑ s 
r=1 

s + 
r0 

y r0 
) =

( 1 s 

∑ s 
r=1 

s + ∗
r0 

y r0 
+ 

1 
m 

∑ m 

i =1 

s −∗
i 0 

x i 0 
) / ( 1 + 

1 
s 

∑ s 
r=1 

s + 
r0 

y r0 
) . And applying ( 9 ) we

et ( 10 ). �

It is apparent that UB I is greater than or equal to UB II since

he term ( 1 + 

1 
s 

∑ s 
r=1 

s + ∗
r0 

y r0 
) ≥ 1 by (2.4). Nevertheless, the value of

B II is not independent of the existence of alternative optima for

odel ( 2 ). For this reason, we suggest determining the best upper

ound for the technical inefficiency of the Slacks-Based Measure by

aximizing ( 1 + 

1 
s 

∑ s 
r=1 

s + ∗
r0 

y r0 
) over the alternative optimal solutions

f model ( 2 ). This can be computed by solving the following linear

rogram. 
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 ∑
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T  
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h

1

1

1

 

a  

 

b  

t  

(  

1  

n  
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t  
 

∗ = max 1 + 

1 
s 

s ∑ 

r=1 

s + 
r0 

y r0 
(11 . 0) 

s.t. 
n ∑ 

j=1 

λ j0 x i j = x i 0 − s −
i 0 
, i = 1 , . . . , m (11 . 1) 

n ∑ 

j=1 

λ j0 y r j = y r0 + s + 
r0 

, r = 1 , . . . , s (11 . 2) 

n ∑ 

j=1 

λ j0 = 1 , (11 . 3) 

1 − 1 
m 

m ∑ 

i =1 

s −
i 0 

x i 0 
= SBM ( x 0 , y 0 ) 

·
(

1 + 

1 
s 

s ∑ 

r=1 

s + 
r0 

y r0 

)
, (11 . 4) 

λ0 ≥ 0 n , s 
−
0 

≥ 0 m 

, s + 
0 

≥ 0 s (11 . 5) 

. 

(11) 

Finally, profit, technical and allocative inefficiency linked to

he Slacks-Based Measure can be calculated through the following

xpression: 

�( c, p ) −
(

s ∑ 

r=1 

p r y r0 −
m ∑ 

i =1 

c i x i 0 

)
min { m c 1 x 10 , . . . , m c m 

x m 0 , s p 1 y 10 , . . . , s p s y s 0 } v ∗
 ︷︷ ︸ 

ProfitInefficiency(PI) 

= 1 − SBM ( x 0 , y 0 ) ︸ ︷︷ ︸ 
TechnicalInefficiency(TI) 

+ AI, (12) 

here AI is residually derived as PI – TI . 

PI can, therefore, be decomposed into technical and allocative

omponents. PI is non-negative with nil profit inefficiency signaled

hen it takes on the value of zero. Indeed, PI satisfies the condi-

ion that it is zero if and only if the unit being assessed achieves

aximum profit. In addition, we use a deflator (the denomina-

or in PI) to get a profit inefficiency measure homogeneous of de-

ree zero in prices, satisfying the Nerlove (1965) requirements. This

eans that the value of the profit inefficiency measure is indepen-

ent of working in euros or dollars, for example. Moreover, PI is

lso invariant with respect to changes in the measurement units

f the quantities (inputs and outputs). We formally establish these

wo last statements in Proposition 3 . 

roposition 3. (i) PI is homogeneous of degree zero in prices. (ii) PI

s independent of the units in which the inputs and outputs are mea-

ured. 

roof. (i) First, SBM ( x 0 , y 0 ), which appears in ( 11.4 ), and v ∗ are

omogeneous of degree zero in prices since both values come

rom models ( 2 ) and ( 11 ), respectively, which are not price-

ependent. Second, �( c , p ) is homogeneous of degree + 1 in

rices (see Färe & Primont, 1995 ). In the same way, the terms

( 
∑ s 

r=1 p r y r0 −
∑ m 

i =1 c i x i 0 ) and min { mc 1 x 10 , …, mc m 

x m 0 , sp 1 y 10 , …,

p s y s 0 } are also homogeneous of degree + 1 in prices. Consequently,
�( c,p ) −( 

∑ s 
r=1 p r y r0 −

∑ m 
i =1 c i x i 0 ) 

min { m c 1 x 10 , ... ,m c m x m 0 ,s p 1 y 10 , ... ,s p s y s 0 } v ∗ is homogeneous of degree zero 

n prices. (ii) In order to prove that PI is independent of the units

n which the inputs and outputs are measured, note that a change

n the measurement units of quantities also affects the value of

he original market input and output prices and their correspond-

ng measurement units. For instance, let us suppose that originally

nput 1 (labor), denoted as x 1 , is measured in hours and its as-

ociated market price, denoted as c 1 , is measured in euros per

our. If we change input 1 to be measured in minutes, then x new 

1 
=

0 · x 1 and, necessarily, the change also implies a transformation in

he measurement units of the corresponding market price: c new 

1 
=

 1 / 60 [For example, if the firm consumed one hour of labor at 120

uros per hour, then, after the data transformation, it consumes 60

 = 60 •1) minutes at 2 ( = 120/60) euros per minute]. In this way, let
s suppose that the original data is transformed through x new 

i j 
= k i ·

 i j , k i > 0, i = 1, …, m , j = 1, …, n , and y new 

r j 
= t r · y r j , t r > 0, r = 1, …,

 , j = 1, …, n . This implies that the term ( 
∑ s 

r=1 p r y r0 −
∑ m 

i =1 c i x i 0 )

n ( 12 ) is units invariant since ( 
∑ s 

r=1 p 
new 

r y new 

r0 
− ∑ m 

i =1 c 
new 

i 
x new 

i 0 
) =

( 
∑ s 

r=1 
p r 
t r 

t r y r0 −
∑ m 

i =1 
c i 
k i 

k i x i 0 ) = ( 
∑ s 

r=1 p r y r0 −
∑ m 

i =1 c i x i 0 ) . Using the

ame arguments and ( 6 ), we conclude that min { mc 1 x 10 , …,

c m 

x m 0 , sp 1 y 10 , …, sp s y s 0 } and �( c , p ) are also units invariant.

n this way, we only need to show that model ( 11 ) is units in-

ariant. Let ( λ∗
0 
, s −∗

0 
, s + ∗

0 
) be an optimal solution of ( 11 ). Then we

ant to prove that ( λ∗
0 , ks −∗

0 
, ts + ∗

0 
) , with ks −∗

0 
= ( k 1 s 

−∗
10 

, . . . , k m 

s −∗
m 0 

)

nd ts + ∗
0 

= ( t 1 s 
+ ∗
10 

, . . . , t s s 
+ ∗
s 0 

) , is also an optimal solution of model

 11 ′ ), where ( 11 ′ ) is identical to ( 11 ) after the data transformation:

ax 1 + 

1 
s 

s ∑ 

r=1 

s + 
r0 

y new 
r0 

(11 . 0 

′ ) 

.t. 
n ∑ 

j=1 

λ j0 x 
new 

i j 
= x new 

i 0 
− s −

i 0 
, i = 1 , . . . , m (11 . 1 

′ ) 
n ∑ 

j=1 

λ j0 y 
new 

i j 
= y new 

r0 + s + 
r0 

, r = 1 , . . . , s (11 . 2 

′ ) 
n ∑ 

j=1 

λ j0 = 1 , (11 . 3 

′ ) 

1 − 1 
m 

m ∑ 

i =1 

s −
i 0 

x new 
i 0 

= SBM 

(
x new 

i 0 
, y new 

r0 

)
·
(

1 + 

1 
s 

s ∑ 

r=1 

s + 
r0 

y new 
r0 

)
, (11 . 4 

′ ) 

λ0 ≥ 0 n , s 
−
0 

≥ 0 m 

, s + 
0 

≥ 0 s (11 . 5 

′ ) 

(11 

′ ) 

Regarding the constraints of ( 11 ′ ), it is trivial that

( λ∗
0 , ks −∗

0 
, ts + ∗

0 
) satisfies ( 11.3 ′ ). As for ( 11.1 ′ ), we have that

 n 
j=1 λ

∗
j0 

x new 

i j 
= x new 

i 0 
− k i s 

−∗
i 0 

⇔ 

∑ n 
j=1 λ

∗
j0 

k i x i j 
= k i x i 0 − k i s 

−∗
i 0 

⇔ 

∑ n 
j=1 

∗
j0 

x 
i j 

= x 
i 0 

− s −∗
i 0 

. Therefore, ( 11.1 ′ ) is satisfied for all i = 1, …, m .

he same arguments can be used for ( 11.2 ′ ). As for ( 11.4 ′ ), note

hat the Slacks-Based Measure is units invariant (see Tone, 2001 )

nd, consequently, SBM( x 0 , y 0 ) = SBM( x new 

0 
, y new 

0 
) . In this way, we

ave that 

 − 1 

m 

m ∑ 

i =1 

k i s 
−∗
i 0 

x new 

i 0 

= SBM ( x new 

0 , y new 

0 ) ·
( 

1 + 

1 

s 

s ∑ 

r=1 

t r s 
+ ∗
r0 

y new 

r0 

) 

⇔ 

 − 1 

m 

m ∑ 

i =1 

k i s 
−∗
i 0 

k i x i 0 
= SBM ( x 0 , y 0 ) ·

( 

1 + 

1 

s 

s ∑ 

r=1 

t r s 
+ ∗
r0 

t r y r0 

) 

⇔ 

 − 1 

m 

m ∑ 

i =1 

s −∗
i 0 

x i 0 
= SBM ( x 0 , y 0 ) ·

( 

1 + 

1 

s 

s ∑ 

r=1 

s + ∗
r0 

y r0 

) 

. 

Therefore, ( λ∗
0 , ks −∗

0 
, ts + ∗

0 
) is a feasible solution of ( 11 ′ )

nd yields an objective value equal to 1 + 

1 
s 

∑ s 
r=1 

t r s 
+ ∗
r0 

y new 
r0 

= 1 +
1 
s 

∑ s 
r=1 

t r s 
+ ∗
r0 

t r y r0 
= 1 + 

1 
s 

∑ s 
r=1 

s + ∗
r0 

y 
r0 

= v ∗. If there exists ( ̂ λ
0 
, ̂  s −

0 
, ̂  s + 

0 
) feasi-

le solution of ( 11 ′ ) such that 1 + 

1 
s 

∑ s 
r=1 

ˆ s + 
r0 

y new 
r0 

> v ∗, then it is easy

o show that ( ̂ λ0 , ̂  s −
0 
/ k i , ̂  s + 

0 
/ t r ) is a feasible solution of the original

 11 ). But then it produces an objective function value that equals

 + 

1 
s 

∑ s 
r=1 

ˆ s + 
r0 

/ t r 
y r0 

= 1 + 

1 
s 

∑ s 
r=1 

ˆ s + 
r0 

t r y r0 
= 1 + 

1 
s 

∑ s 
r=1 

ˆ s + 
r0 

y new 
r0 

> v ∗, which is

ot possible. Accordingly, ( λ∗
0 , ks −∗

0 
, ts + ∗

0 
) is an optimal solution of

 11 ′ ) and the optimal value of ( 11 ′ ) coincides with v ∗. In this way,

e have that no terms that appear in PI depend on the units in

hich the variables are measured. Consequently, PI is independent

f the units in which the inputs and outputs are measured, as we

ere seeking to prove. �

Finally, it is worth mentioning that all these results derived for

he Slacks-Based Measure can be equivalently developed for the
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Enhanced Russell Graph (ERG) (see Pastor, Ruiz, & Sirvent, 1999 ),

simply by substituting SBM by ERG in ( 12 ). 

3. Conclusions 

In this note, we have shown how the well-known Slacks-Based

Measure can be related to profit inefficiency. We have also derived

a decomposition of overall inefficiency into technical and alloca-

tive inefficiencies, thus endowing practitioners interested in using

the Slacks-Based Measure, with a tool to measure and decompose

profit inefficiency when market prices are available. 

Future research efforts should focus on the development of new

decompositions of profit inefficiency related to the Slacks-Based

Measure. In particular, we are referring to the traditional and non-

linear Russell ‘Graph’ Measure (see Färe et al., 1985 ), which con-

tinues without decomposition in the literature. Furthermore, the

application of the approach developed in this note to real-life

datasets is clearly another interesting line of future research. Fi-

nally, a comparison of all the existing alternative decompositions of

profit inefficiency (those based upon the directional distance func-

tions, the weighted additive models and the Slacks-Based Measure)

should be carried out resorting to a battery of simulated databases

in order to check the benefits of each approach. 
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