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a b s t r a c t 

Cost or revenue efficiency measurement based on the approach initiated by Farrell has received great at- 

tention from academics and practitioners since the fifties. Farrell’s approach decomposes cost efficiency 

into two different sources, viz. technical efficiency and allocative efficiency. Technical efficiency is esti- 

mated by means of the Shephard input or output distance functions, while allocative efficiency is derived 

as a residual between cost or revenue efficiency and its corresponding technical efficiency component. 

The directional distance function ( DDF ) was introduced later in the literature to complete duality theory 

with respect to the profit function and as a generalization of the Shephard input and output distance 

functions. Considering the case of cost efficiency we show that, although the DDF correctly encompasses 

the technical efficiency component of the Farrell approach, this is not true for the allocative component. 

We show that both approaches yield different allocative (in)efficiency terms – unless technical efficiency 

is assumed, and how these terms are related. The practical implications of the multiplicative and additive 

approaches are discussed and illustrated. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Cost or revenue efficiency measurement based on the ap-

roach initiated by Farrell (1957) has received great attention

rom academics and practitioners. Since Farrell, researchers have

nalytically decomposed cost and revenue efficiency into technical

fficiency and allocative efficiency. In the spirit of this decomposi-

ion, technical efficiency is first of all estimated resorting to radial

ovements, relating this particular component to both Debreu ́s

1951) coefficient of resource utilization and the inverse of Shep-

ard’s input or output distance functions ( Shephard, 1953 ). Sec-

ndly, in accordance with Farrell’s approach, allocative efficiency

s derived as a residual between cost or revenue efficiency and its

orresponding technical efficiency component. As a result of this

esidual nature, the mathematical formulation of the estimator of

he allocative efficiency component has received much less atten-

ion in the literature than that associated with technical efficiency.

While Farrell resorted to Shephard’s distance function for his

ecomposition, nowadays there are alternative ways of estimat-

ng technical efficiency, e.g., the generalized distance function by
∗ Corresponding author. Fax: + 34 966658715. 
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havas and Cox (1999) , the Hölder distance function by Briec

1998) and the directional distance function ( DDF ) by Chambers,

hung, and Färe (1996a, 1998) . In particular, the precursor of the

atter is the benefit function, a notion introduced by Luenberger

1992) in consumer theory as a generalization of the willingness-

o-pay concept, measured with respect to an arbitrary bundle of

oods. Luenberger (1992) also introduced the shortage function,

hich is the analog for production theory of the benefit func-

ion defined for consumer theory. Later, Chambers et al. (1996a,

998) renamed the shortage function as the directional distance

unction, DDF , highlighting its properties as distance function and

ts geometrical interpretation. 

In recent times, overall inefficiency has been recurrently de-

omposed by using duality theory ( Zalinescu, 2010 ). Examples of

his are Färe, Grosskopf, and Zaim (2002) , where the hyperbolic

easure was used to decompose the Georgescu-Roegen return to

he dollar measure, Cooper, Pastor, Aparicio, and Borras (2011) and

paricio, Borras, Pastor, and Vidal (2013a) , who determined the ex-

sting relationship between the profit function and the weighted

dditive measure, Aparicio, Pastor, and Ray (2013b) , who proved

hat the lost profit on outlay may be decomposed through a mod-

fied directional distance function, Aparicio, Borras, Pastor, and

idal (2015a) , where it is shown that cost (revenue) inefficiency

an be decomposed resorting to the input (output) Russell mea-

ure and, finally, Färe, Fukuyama, Grosskopf, and Zelenyuk (2015) ,

http://dx.doi.org/10.1016/j.ejor.2016.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.08.007&domain=pdf
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who showed how profit inefficiency is related to the slack-based

directional distance function. 

Focusing on the input side, Chambers et al. (1996a) intro-

duced the directional input distance function, which measures the

amount that one can translate an ‘observed’ input vector from

itself to the frontier of the technology in a pre-assigned reference

direction vector. Additionally, when the reference direction is

considered equivalent to the assessed input vector, the directional

input distance function encompasses the Shephard input distance

function. In this way, the directional input distance function

constitutes the analytical tool that allows breaking the straight

jacket represented by the classical and restrictive framework of the

radial based decomposition of cost efficiency ( Farrell, 1957 ) and

extends it to the case of considering any possible direction in the

input space. Specifically, Färe and Grosskopf (20 0 0, 20 03) show

that cost inefficiency may be additively decomposed into technical

inefficiency plus allocative inefficiency by using the directional in-

put distance function. These features, among others, have yielded

an increasing interest of researchers in the DDF in the last two

decades. 

In this paper we show that, in contrast to what is commonly

assumed, Farrell’s classical decomposition of cost efficiency is not

completely encompassed by the approach based on the directional

input distance function, except for the set of technically efficient

observations, which is trivial. We also show that the Farrell and

DDF represent alternative approaches that yield different cost

(in)efficiency decompositions. Therefore, practitioners must be

aware that their choice of modeling framework is not neutral,

neither in relation to the relative values of the technical and al-

locative terms nor the reference benchmarks, which may result in

wrong interpretations and lead to faulty managerial prescriptions. 

In Section 2 we present some preliminary notions and well-

known results regarding the decomposition of cost efficiency into

its technical and allocative components, for both the Farrell and

DDF approaches. Section 3 shows that, contrary to current belief,

the DDF approach does not generalize the Farrell approach when

the directional vector corresponds to the observed input vector;

particularly when both approaches yield alternative definitions of

the allocative inefficiency term. Here, we show the existing rela-

tionship between both approaches and highlight their differences

and alternative interpretations. Conclusions are drawn in Section 4 .

2. Preliminary notions, results and notation 

In this section, we formalize some key notions about the tech-

nology and distance functions and recall how cost efficiency may

be decomposed. 

A technology is a set T ⊂ R m + × R s + satisfying several axioms; the

most usual are the following ( Färe & Primont, 1995 ): (A1) T is

closed, (A2) inputs and outputs are freely disposable, i.e. ( x , y ) ∈ T ,

( x ′ , y ′ ) ∈ R m + × R s + and x ′ ≥ x , y ′ ≤ y imply ( x ′ , y ′ ) ∈ T , (A3) there is

no free lunch, i.e., ( 0 , y ) ∈ T implies y = 0 , (A4) doing nothing is

feasible, i.e. ( 0 , 0 ) ∈ T and (A5) T is convex. 

For the sake of brevity, we state our discussion in the input

space, defining the input requirement set L (y ) as the set of non-

negative inputs x ∈ R m + that can produce non-negative output y ∈
R s + , formally L (y ) = { x ∈ R m + : ( x , y ) ∈ T } , and the isoquant of L (y ) :

IsoqL (y ) = { x ∈ L (y ) : ε < 1 ⇒ εx / ∈ L (y ) } . 
Let us also denote by C( y , w ) the minimum cost of produc-

ing the output level y given the input market price vector w =
( w 1 , . . . , w m 

) ∈ R m ++ : C( y , w ) = min 

{∑ m 

i =1 w i x i : x ∈ L (y ) 
}

. 

The standard (multiplicative) Farrell approach ( Farrell, 1957 )

views cost efficiency ( CE ) as originating from technical efficiency

( TE ) and allocative efficiency ( AE ). Specifically, Farrell quantified,
nd therefore defined each of these terms as follows: 

C ( y , w ) 

C ( x ) 
 ︷︷ ︸ 

C E 

= 

1 

D i ( y , x ) ︸ ︷︷ ︸ 
T E 

·AE, (1)

here C(x ) = 

∑ m 

i =1 w i x i is the cost at x , D i ( y , x ) =
up { δ > 0 : x /δ ∈ L (y ) } is the Shephard input distance function

 Shephard, 1953 ) and AE is defined residually as AE = CE / TE . 

After Farrell’s work, and particularly over the last two decades,

art of the literature has focused on duality theory and distance

unctions so as to provide a consistent theoretical framework for

he cost efficiency decomposition (see Chambers et al., 1996a ;

riec, 1997 ; Briec & Lesourd, 1999 ). In particular, regarding the

irectional input distance function, let g = ( g 1 , . . . , g m 

) ∈ R m + be

 vector such that g 	 = 0 , then the directional input distance

unction is defined as � D i ( x , y ;g ) = sup { β : x − βg ∈ L (y ) } . Färe and

rosskopf (20 0 0, 20 03 , p. 25, expression 1.44) showed that the

irectional cost inefficiency ( DCI ) may be additively decomposed

nto technical inefficiency ( DTI ) plus allocative inefficiency ( DAI )

elying on the directional input distance function and duality

esults: ∑ m 

i =1 w i x i − C ( y , w ) ∑ m 

i =1 w i g i 
 ︷︷ ︸ 

DCI ( g ) 

= 

�
 D i ( x , y ; g ) ︸ ︷︷ ︸ 

DT I ( g ) 

+ DAI ( g ) , (2)

here DAI( g ) is defined residually as DAI( g ) = DCI( g ) – DTI( g ) . 

. The results 

Since Färe and Grosskopf (1997) , it is commonly accepted that

he directional distance function encompasses the Farrell approach

or decomposing cost efficiency. Indeed, if g = x then 

�
 D i ( x , y ;x ) =

 − 1 / D i ( x , y ) , and from this relationship the directional input

istance function, which measures technical inefficiency, encom-

asses the Shephard input distance function in the input space.

herefore, DTI( x ) = 1 −TE , and it is natural to extrapolate this re-

ationship to the cost and allocative measures: DCI ( x ) = 1 −CE and

AI ( x ) = 1 −AE . 

However, the directional and Farrell approaches are not com-

letely equivalent since the allocative components in ( 1 ) and

 2 ) do not verify the appropriate mathematical relationship,

omething that does hold in the case of cost and technical

erms. To show that, let us explicitly rewrite DTI ( g ) in ( 2 ) as
�
 

 i ( x , y ; g ) = ( 
∑ m 

i =1 w i 
�
 D i ( x , y ; g ) g i ) / 

∑ m 

i =1 w i g i . Then, from the re-

ationship DAI ( g ) = DCI ( g ) – DTI ( g ), DAI ( g ) can be expressed as

 

∑ m 

i =1 w i ( x i − �
 D i ( x , y ; g ) g i ) − C( y , w ) ] / 

∑ m 

i =1 w i g i . Now, considering

 = x we have that: 

C I ( x ) = 

∑ m 

i =1 w i x i − C ( y , w ) ∑ m 

i =1 w i x i 
= 1 − C ( y , w ) 

C ( x ) 
= 1 − CE, (3)

nd 

T I ( x ) = 

�
 D i ( x , y ; x ) = 1 − 1 / D i ( x , y ) = 1 − T E. (4)

However, if g = x , regarding the allocative inefficiency

erm in ( 2 ), we have that DAI(x ) = 

∑ m 
i =1 w i ( x i −�

 D i ( x , y ;x ) x i ) −C( y , w ) ∑ m 
i =1 w i x i 

=∑ m 
i =1 w i ( x i −( 1 −1 / D i ( x , y ) ) x i ) −C( y , w ) ∑ m 

i =1 w i x i 
= 

1 
D i ( y , x ) 

−C( y , w ) 
C(x ) 

= 

1 
D i ( y , x ) 

( 1 −AE ) , since

y ( 1 ) 1 −AE = 1 −D i ( y , x )( 
C( y , w ) 

C(x ) 
) . Therefore, DAI (x ) 	 = AI = 1 −AE

xcept for the case in which D i ( y , x ) = 1 . In other words, the

llocative inefficiency estimated from ( 2 ) does not present the

esired relationship: one minus the allocative efficiency estimated

rom ( 1 ). This fact has important implications when cost efficiency

r inefficiency must be decomposed for technically inefficient

rms by resorting to the traditional Farrell approach or to the
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Fig. 1. Graphical example. 
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irectional input distance function approach, even in the case of

electing g = x . We illustrate this situation through Fig. 1 . 

Let us assume that L (y ) = { x ∈ R 2 + : y = x 1 
1 / 2 x 2 

1 / 2 } with y ≥ 0 .

e also suppose that we evaluate the cost efficiency and its

ources corresponding to points A = (0.5,2;1) and B = (4,1;1).

dditionally, we assume that w 1 = w 2 = 1 . In this context, the

hephard input distance functions for A and B are D i (A ) = 1

nd D i (B ) = 2 , respectively. Furthermore, by applying ( 1 ) we have

hat A E A = A E B = 2 / 2 . 5 = 0 . 8 in the Farrell approach, i.e., A and B

resent the same allocative efficiency level. In contrast, if we re-

ort to the directional input distance function, we have that DA I A 
(x ) = 

0 . 5 
2 . 5 = (1 − 0 . 8) = 0 . 2 > 

0 . 5 
5 = 

1 
2 (1 − 0 . 8) = 0 . 1 = DA I B . In this

ay, we show that the Farrell and directional input distance func-

ions do not always coincide in the magnitude and order relation-

hip for the allocative (in)efficiency component. For firm B , multi-

licative (Farrell) cost efficiency decomposes as follows: 0.4 = 0.5

0.8, while the additive ( DDF ) cost inefficiency is 0.6 = 0.5 + 0.1.

herefore, in the situation described in Fig. 1 , Farrell’s approach in-

icates that A and B have the same allocative efficiency. However,

he DDF approach does not yield the same result. 

The attractiveness of the Farrell approach in defining cost effi-

iency as the ratio of minimum cost to observed cost, is that the

echnical efficiency corresponding to the inverse of Shephard’s dis-

ance function, measures proportional cost savings in the quantity

I = 1 −TE = 1 −1/ D i ( y , x ) , resulting from the reduction in input us-

ge – graphically corresponding the projection of the observed firm

o the technical efficient benchmark; e.g., B to B ′ in Fig. 1 . This pro-

ection along the ray-vector passing through the origin constitutes

 natural direction that keeps input proportions – input-mix – con-

tant, and yields allocative efficiency as a residual that corresponds

o the ratio of minimum cost to the cost at the technical efficient

rojection. Therefore all firms situated along the ray vector exhibit

he same allocative efficiency value, i.e., that corresponding to their

rojection B ′ . 
For the DDF approach, its additive nature prevents the com-

lete generalization of the Farrell decomposition to the allocative

erm when setting g = x . In this case, the technical efficiency term
�
 

 i ( x , y ; x ) measures the projection to the same reference bench-

ark B ′ , and while cost and technical inefficiency can be related to

he multiplicative Farrell terms, these transformations result in an
llocative efficiency residual that embeds the technical efficiency

alue TE . This implies that the directional allocative inefficiency

alue numerically depends on the specific technical efficiency of

he firm under evaluation, i.e. DAI (x ) = T E (1 − AE) . Therefore, the

rms situated along the ray vector stop exhibiting the allocative

nefficiency value corresponding to the technically efficient projec-

ion, as allocative inefficiency, defined as the complement to the

arrell’s term, AI = (1 − AE) , needs to be rescaled by the technical

fficiency value TE so as to close the additive relationship. 

However, as the following proposition shows, the DDF decom-

osition exhibits other properties that are attractive in the addi-

ive framework. While in the Farrell approach, two firms present

he same allocative efficiency if they belong to the same ray vec-

or passing through the origin – regardless of their technical effi-

iency and observed cost, the flexibility of the directional distance

unction renders the technical inefficiency term dependent on g ,

assing on to the residual allocative inefficiency term that closes

p the decomposition. For example, in Fig. 1 it would be possible

o project B to a point different from B ′ , i.e., g 	 = x , with associated

echnical efficiency and residual allocative efficiency values com-

letely unrelated to the Farrell decomposition. However, for g = x ,

wo firms present the same allocative inefficiency if they belong

o the same isocost line – regardless, once again of their technical

nefficiency. This result is summarized in the next proposition es-

ablishing the conditions for which allocative inefficiency is equal

cross firms, as in the case of the Farrell approach. 

roposition 1. Let x A , x B ∈ L (y ) and A E A = A E B . Then, DA I A ( x A ) =
A I B ( x B ) is equivalent to C( x A ) = C( x B ) . 

roof. By DAI(x ) = 

1 
D i ( y , x ) 

( 1 − AE ) = T E · ( 1 − AE ) and the hypoth-

sis of the proposition, we have that DA I A ( x A ) = DA I B ( x B ) ⇔
 E A = T E B ⇔ C E A = C E B ⇔ C ( x A ) = C ( x B ) . �

It is worth mentioning that in the numerical example illus-

rated in Fig. 1 , points A and B do not belong to the same isocost

ine and exhibit different technical efficiencies, and therefore by

roposition 1 the allocative inefficiencies estimated by the DDF

pproach cannot be the same, even in the case of A E A = A E B . 

Therefore, the multiplicative (Farrell) and additive ( DDF )

pproaches to decompose cost (in)efficiency represent two alter-

ative mathematical definitions, which can be related through

roposition 1 , but offer different decomposition results. As the

arrell approach is well established among practitioners and

ven implemented in software packages, it could be considered

s criterion for a preferred approach – particularly since most

pplications using the directional input distance functions set

 = x – and therefore the directional allocative component in ( 2 )

ould underestimate allocative inefficiency for technically ineffi-

ient firms, since DAI(x ) = 

1 
D i ( y , x ) 

( 1 − AE ) and 

1 
D i ( y , x ) 

∈ ( 0 , 1 ] for

 	 = 0 . However, the opposite could also be argued if the reference

enchmark were the directional approach, with the Farrell decom-

osition overstating allocative efficiency. In the end, it all depends

n the choice of the directional vector, as both decompositions

an only be related if g = x . 

To show the magnitude of the relative over and under estima-

ions under the alternative multiplicative and additive approaches;

.e., the numerical divergence between the allocative efficiency

erm a la Farrell ( AE ) and directional allocative inefficiency DAI(x ) ,

e define and systematically study the difference between these

wo terms. Knowing that a firm is allocatively efficient in the

ense of Farrell when AE = 1, and therefore its directional allocative

nefficiency is DAI(x )= 0, we recall once again Farrell’s allocative

nefficiency: AI = (1 − AE) . This simple transformation makes both

easures comparable in value, i.e., both approaches measure

nefficiency. 
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Table 1 

Divergence between allocative (in)efficiencies: f ( AE , TE ) = AI – DAI ( x ). 

TE 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

AE 0 1.0 0 0 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.0 0 0 

0.1 0.900 0.810 0.720 0.630 0.540 0.450 0.360 0.270 0.180 0.090 0.0 0 0 

0.2 0.800 0.720 0.640 0.560 0.480 0.400 0.320 0.240 0.160 0.080 0.0 0 0 

0.3 0.700 0.630 0.560 0.490 0.420 0.350 0.280 0.210 0.140 0.070 0.0 0 0 

0.4 0.600 0.540 0.480 0.420 0.360 0.300 0.240 0.180 0.120 0.060 0.0 0 0 

0.5 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.0 0 0 

0.6 0.400 0.360 0.320 0.280 0.240 0.200 0.160 0.120 0.080 0.040 0.0 0 0 

0.7 0.300 0.270 0.240 0.210 0.180 0.150 0.120 0.090 0.060 0.030 0.0 0 0 

0.8 0.200 0.180 0.160 0.140 0.120 0.100 0.080 0.060 0.040 0.020 0.0 0 0 

0.9 0.100 0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.020 0.010 0.0 0 0 

1 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 
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Let us define the difference between Farrell’s allocative

(in)efficiency AI and the directional allocative inefficiency, DAI(x ) ,

as follows: f ( AE , TE ) = AI – DAI(x ) = (1 – AE ) – TE (1 – AE ) = (1 –

AE )(1 – TE ), since DAI(x )= TE (1 – AE ). Consequently, when f ( AE ,

TE ) = 0, allocative (in)efficiency is the same in both approaches and

there is no divergence between the two; e.g., AE = 1 and DAI(x ) = 0.

The image of f is [0, 1) since AE and TE take values in the range

(0, 1]. This facilitates the comparison between the two in terms of

the familiar Farrell efficiencies and allows us to discuss key values,

which are summarized in Table 1 presenting the divergence be-

tween the (in)efficiency measures for alternative values of AE and

TE . 

Therefore, both approaches yield equivalent categorization of a

firm as allocatively efficient: f ( AE , TE ) = AI – DAI(x ) = 0, in the case

that AE = 1, regardless of its technical efficiency (and vice versa for

TE = 1), or both as completely efficient in allocative and technical

terms ( AE = 1 and TE = 1). For any other pair of efficiency values

(0 < AE < 1, 0 < TE < 1), both diverge numerically, with their

difference increasing as the firm is more inefficient, and approx-

imating the maximum value (one) in the limit case that the firm

is completely inefficient in technical and allocative terms ( AE → 0

and TE → 0). 1 Figs. 2 and 3 allow us to visualize the values pre-

sented in Table 1 through a set of contour (level) curves, and the

three dimensional plot of the function, respectively. The proper-

ties of the function can be explored through its partial derivatives:

df/dAE = T E − 1 and df/dT E = AE − 1 . These linear functions show

that the discrepancy between both measures is linearly decreasing

in the technical and allocative efficiency values. 

The same discussion between the two worlds (multiplicative

vs additive, and their eventual divergence) can be found in the

literature regarding the comparison of the traditional Malmquist

productivity index, which is based on Shephard’s distance function

( Caves, Christensen, & Diewert, 1982 ) and is multiplicative in na-

ture, with the more recent Luenberger productivity indicator based

on the directional distance function ( Chambers, Färe, & Grosskopf,

1996b ), and which is additive in nature. In fact, studying the gap

between Malmquist indexes and Luenberger indicators has been

the focus of recent research. Boussemart, Briec, Kerstens, and

Poutineau (2003) , under the constant returns to scale assump-

tion, relate the Luenberger indicator, based on the proportional

directional distance function, with the Malmquist index, based

on Shephard’s input distance function, and report, by means of

an example, that the Malmquist index measures twice as much

productivity change as the Luenberger indicator. They further re-
1 It is also possible to express the difference between both allocative inef- 

ficiencies in relative (percentage) terms. Let us define g (AE, TE ) = 100 • ([ AI –

DAI ( x )]/ AI )% = 100 • (1 – TE )%. When TE = 1, DAI ( x ) = (1 – AE) with g (AE, TE ) = 0%, 

while if TE < 1 then the difference increases in TE and approximates its maximum 

value as TE → 0. 

t  

s  

t

v

ate certain Malmquist indexes with certain Luenberger indicators

y means of first and second order approximations. Balk, Färe,

rosskopf, and Margaritis (2008) , assuming strong disposability

f outputs and efficiency at each time period, establish an exact

elationship between the Malmquist index and the Luenberger

ndicator both based on output distance functions. Finally, Briec,

erstens, and Peypoch (2012) revise the last mentioned paper and

oint out that the relation proposed is not between Malmquist

nd Luenberger but between Malmquist and the two components

f Luenberger. They also provide a new exact relationship under

he same assumptions of Balk et al. (2008) , and prove a specific

quality between the logarithm of the output-oriented Malmquist

roductivity index and the output-oriented Luenberger indicator,

esorting to the unit directional vector on the output side and

efined on the logarithm of the data. 2 

As happens in this paper, Boussemart et al. (2003), Balk et al.

2008) and Briec et al. (2012) did not side with any of the two

pproaches against the other one (Malmquist index vs Luenberger

ndicator), but these works did serve to point out to practitioners

he non-equivalence and the existence of a certain relationship be-

ween the two methodologies. 

Although both methods, the Farrell and DDF approaches, for

easuring and decomposing cost inefficiency are valid, we would

ike to highlight some interesting features of each in order to pro-

ide practitioners with different criteria for selecting one or the

ther. In this way, one remarkable property of the Farrell approach

s that allocative efficiency always coincides with the allocative ef-

ciency of the projection point on the corresponding isoquant. Let

s formally establish this statement as follows. 

roposition 2. Let x A ∈ L (y ) and x B ∈ IsoqL (y ) such that x B = ρx A 
nd D i ( y , x B ) = 1 . Then, A E A = A E B . 

roof. Under these hypotheses, ρ = ( D i ( y , x A ) ) 
−1 . By ( 1 ) and

 i ( y , x B ) = 1 , we have that A E B = 

C( y , w ) 
C( x B ) 

= 

C( y , w ) 
C( ρx A ) 

= 

1 
ρ

C( y , w ) 
C( x A ) 

=
 i ( y , x A ) 

C( y , w ) 
C( x A ) 

= A E A . �

Proposition 2 means that Farrell’s approach preserves the value

f allocative efficiency along the contracting path given by the in-

ut mix. As Aparicio, Pastor, and Zofio (2015b) remark, this is a

esirable property for a suitable decomposition of economic ef-

ciency since the allocative efficiency of the firm remains un-

hanged in the process of gaining technical efficiency by reducing

he observed input vector. Only in this way it is possible to be sure

hat the distance function measures ‘pure’ technical efficiency in-

tead of a mix of technical and allocative efficiency. However, the
2 Unfortunately, we were not able to establish an exact relationship in our con- 

ext between both decompositions following the same mathematical structure de- 

eloped by Briec et al. (2012) . 
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f(AE, TE) = 0

f(AE, TE) = 0.1

f(AE, TE) = 0.3

f(AE, TE) = 0.5

f(AE, TE) = 0.7

f(AE, TE) = 0.9

f(AE, TE) = 1

Fig. 2. Contour curves of f ( AE , TE ) = AI – DAI ( x ). 

Fig. 3. Three-dimensional plot of f ( AE , TE ) = AI – DAI ( x ). 
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m  
irectional distance function approach does not meet this property

n general. In this case, for example, the result is satisfied under

he assumption of working with a fixed reference vector g for all

 ∈ L (y ) . 

roposition 3. Let g = ( g 1 , . . . , g m 

) ∈ R m + , g 	 = 0 , be a vector non-

ependent on x . Let x A ∈ L (y ) and x B ∈ IsoqL (y ) such that x B =
 A − βg with β = 

�
 D i ( x A , y ;g ) and � D i ( x B , y ;g ) = 0 . Then, DA I A (g ) =

A I B (g ) . 

roof. DA I A (g ) = 

∑ m 
i =1 w i ( x A i −�

 D i ( x A , y ;g ) g i ) −C( y , w ) ∑ m 
i =1 w i g i 

= 

∑ m 
i =1 w i x Bi −C( y , w ) ∑ m 

i =1 w i g i 
, 

hereas DA I B (g ) = 

∑ m 
i =1 w i ( x B i −�

 D i ( x B , y ;g ) g i ) −C( y , w ) ∑ m 
i =1 w i g i 

= 

∑ m 
i =1 w i x Bi −C( y , w ) ∑ m 

i =1 w i g i 
,

here the last equality is true because � D i ( x B , y ; g ) = 0 . In this

ay, DA I (g ) = DA I (g ) . �
A B 
However, when g = x , we have that DA I A ( x A ) =∑ m 
i =1 w i ( x A i −�

 D i ( x A , y ;x A ) x Ai ) −C( y , w ) ∑ m 
i =1 w i x Ai 

= 

∑ m 
i =1 w i x Bi −C( y , w ) ∑ m 

i =1 w i x Ai 
and DA I B ( x B ) =∑ m 

i =1 w i ( x B i −�
 D i ( x B , y ;x B ) x Bi ) −C( y , w ) ∑ m 
i =1 w i x Bi 

= 

∑ m 
i =1 w i x Bi −C( y , w ) ∑ m 

i =1 w i x Bi 
. Therefore, numer- 

tors match but denominators are not equal, normalizing the

ifference between optimal cost and observed cost at x B , the pro-

ection point, by a different numeraire. Of course, if the numeraire

ere the observed cost at x B even when the point x A is evaluated,

hen the allocative inefficiency based on the directional distance

unction would coincide with the allocative inefficiency related

o the Farrell’s approach, i.e. DA I A = A I A , since, by Proposition 2 ,

A I A = 

∑ m 
i =1 w i x Bi −C( y , w ) ∑ m 

i =1 w i x Bi 
= 1 − C( y , w ) ∑ m 

i =1 w i x Bi 
= 1 − A E B = 1 − A E A = A I A .

nfortunately, this is not the case. 

By duality theory ( Färe & Primont, 1995 ), both approaches are

ell-grounded. Nevertheless, one might ask whether the existing

ultiplicative or additive approaches support the above results
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D  
regarding allocative efficiency of technically inefficient firms. In

the case of Farrell, as far as we are aware, there is no alternative

approach for decomposing cost efficiency that, at the same time,

encompasses the Shephard input distance function. In contrast,

Briec and Lesourd (1999) introduced the family of Hölder distance

functions that has, at least, one element in common with the

directional distance functions. In particular, both distances match

when the Hölder distance function is linked to the � ∞ 

metric and

the directional distance function is associated with g = 1 . Going

into detail, Proposition 4.1 in Briec and Lesourd (1999) establishes

the following relationship. 

D 

p 
i ( x , y ) = inf 

{ 

m ∑ 

i =1 

w 

′ 
i x i − C 

(
y , w 

′ ) : 
∥∥w 

′ ∥∥
q 

≥ 1 

} 

, (5)

where D 

p 
i 
( x , y ) := inf { ‖ x − x ′ ‖ p : x ′ ∈ IsoqL (y ) } and 

1 
p + 

1 
q = 1 . 

From ( 5 ), and invoking that the cost function is homoge-

neous of degree + 1, we have that D 

p 
i 
( x , y ) ≤ ∑ m 

i =1 ( 
w i ‖ w ‖ q ) x i −

( y , w / ‖ w ‖ q ) = 

∑ m 
i =1 w i x i −C( y , w ) 

‖ w ‖ q . In this way, we get the following

decomposition of cost inefficiency related to the Hölder distance

functions: 

m ∑ 

i =1 

w i x i − C ( y , w ) 

‖ 

w ‖ q ︸ ︷︷ ︸ 
HCI ( p ) 

= D 

p 
i ( x , y ) ︸ ︷︷ ︸ 
HT I ( p ) 

+ HAI ( p ) , (6)

where the component HAI(p) measures allocative inefficiency in

an additive way. 

As we mentioned before, the Hölder distance functions and

the directional distance functions are related for the specific

case p = ∞ . In this context, D 

∞ 

i 
( x , y ) = 

�
 D i ( x , y ; g ) for g = 1 . So,

HAI(∞ ) = 

∑ m 
i =1 w i x i −C( y , w ) ∑ m 

i =1 w i 
− D 

1 
i 
( x , y ) = DAI(1 ) since q = 1 . Hence,

the allocative inefficiency term associated with the Hölder distance

functions and that derived from the directional distance functions

coincide, both obtained from an additive decomposition. This re-

sult endows the additive decomposition of cost inefficiency based

on the DDF and duality with greater consistency, if at all possible. 

Regarding the properties of the input directional distance func-

tion, one of great interest is the flexibility of the reference vector

when assessing cost inefficiency, departing from the usual direc-

tion g = x . The choice of a different directional vector can provide

some guidance on alternative options: Setting the normalization

constraint to 
∑ m 

i =1 w i g i = 1 ensures that cost inefficiency is mea-

sured in monetary values, which is an attractive feature, while the

flexibility of g can accommodate any orientation. For example, it is

possible to choose a directional vector that rescales the observed

input vector x so that the previous constraint is satisfied (as in

the Farrell approach), or a vector that is neutral with respect to

the orientation, by weighting all inputs equally – see Zofío, Pas-

tor, and Aparicio (2013) . In the former case, the cost inefficiency

of firm B in Fig. 1 is 3 monetary units, with technical and alloca-

tive inefficiencies equal to 2.5 and 0.5 monetary units, respectively.

As a result, and depending on their choice of analytical model, re-

searchers face alternative measures for the allocative (in)efficiency

terms AE and DAI and, by extension, the complete measurement

and decomposition of cost (in)efficiency. 

4. Conclusions 

It can be concluded from our analysis that practitioners must

keep in mind that, in contrast to what has been commonly ac-

cepted, the choice between the traditional Farrell approach or the

directional input distance function approach for decomposing cost
fficiency with g = x is quite relevant, since they are not equiva-

ent, yielding alternative decompositions unless the evaluated firm

s technically efficient. Indeed, one may believe that the DDF ap-

roach underestimates allocative inefficiency, or that the Farrell

pproach overestimates it, depending on the reference framework. 

However, by systematically exploring the difference between

oth approaches, it is relatively easy to gauge the discrepancy that

xists between them, depending on the specific values that are ob-

ained for the allocative and efficiency terms. For example, using

he average values for all firms included in an empirical study, it

s possible to determine the disparity between the multiplicative

nd additive approaches, knowing that the higher these values, the

ower the allocative inefficiency discrepancy between the two. 

In this respect, the only way to address the choice for a specific

pproach hinges upon the information that each one provides, as

t must be acknowledged that both decompositions cannot be rec-

nciled given their multiplicative and additive nature, representing

wo alternative ways to measure allocative efficiency. In this way,

ractitioners must weigh the trade-offs between both approaches

nd the different, but complementary information, which they pro-

ide, depending on their choice of analytical framework for eco-

omic efficiency analysis. 
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