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Summary

Polyhydroxyalkanoates (PHAs) are natural polye-
sters of increasing biotechnological importance that
are synthesized by many prokaryotic organisms as
carbon and energy storage compounds in limiting
growth conditions. PHAs accumulate intracellularly
in form of inclusion bodies that are covered with a
proteinaceous surface layer (granule-associated pro-
teins or GAPs) conforming a network-like surface of
structural, metabolic and regulatory polypeptides,
and configuring the PHA granules as complex and
well-organized subcellular structures that have been
designated as ‘carbonosomes’. GAPs include sev-
eral enzymes related to PHA metabolism (synthases,
depolymerases and hydroxylases) together with the
so-called phasins, an heterogeneous group of small-
size proteins that cover most of the PHA granule
and that are devoid of catalytic functions but never-
theless play an essential role in granule structure
and PHA metabolism. Structurally, phasins are
amphiphilic proteins that shield the hydrophobic
polymer from the cytoplasm. Here, we summarize
the characteristics of the different phasins identified
so far from PHA producer organisms and highlight
the diverse opportunities that they offer in the
Biotechnology field.

Introduction

Polyhydroxyalkanoates (PHAs) are natural polyesters
produced and accumulated by diverse organisms from

the Bacteria and Archaea kingdoms as energy and car-
bon storage compounds under nutrient limitation condi-
tions (i.e. nitrogen, oxygen or phosphorous) but in the
presence of an excess of carbon sources (Anderson and
Dawes, 1990; Lee, 1996). These polymers have
acquired notoriety in recent years because they display
plastic properties similar to their oil-derived counterparts,
but show biodegradability and biocompatibility features
which results in a versatile and eco-friendly alternative
(Madison and Huisman, 1999; Potter and Steinbuchel,
2006; Keshavarz and Roy, 2010). PHAs were first
described by M. Lemoigne in France, who in the 1920s
reported the presence of poly(3-hydroxybutyrate) [P
(3HB)], in the cytoplasm of Bacillus megaterium
(Lemoigne, 1926). Since then, over 300 species, includ-
ing both Gram-positive and Gram-negative bacteria,
have been described with the metabolic ability to synthe-
size PHAs (Steinbuchel and Fuchtenbusch, 1998; Zinn
et al., 2001; Suriyamongkol et al., 2007; Chanprateep,
2010; Keshavarz and Roy, 2010).
Chemically, PHAs are polyoxoesters of R-hydroxyalka-

noic acid monomers. They are usually classified depend-
ing on the number of carbon atoms of the alkyl groups:
small chain length PHAs (scl-PHAs) contain 3–5 carbon
atoms [as poly(3-hydroxybutyrate) -P(3HB)- or poly(4-
hydroxybutyrate) -P(4HB)], whereas medium chain length
PHAs (mcl-PHAs) possess 6–14 carbon atoms [e.g. poly
(3-hydroxyhexanoate), -P(3HHx) or poly(3-hydroxyoc-
tanoate) – P(3HO)]. Long-chain-length PHAs (lcl-PHAs)
consisting of hydroxyacids with more than 14 carbon
atoms are more scarcely found (Rutherford et al., 1995;
Singh and Mallick, 2009). These differences are mainly
due to the substrate specificity of the PHA synthases from
the particular microorganism (Park et al., 2012). More-
over, the incorporation of different monomer units in the
same chain gives rise to heteropolymers with new proper-
ties. The properties and functionalities of the PHAs
depend on their monomer composition: whereas scl-
PHAs show thermoplastic properties similar to polypropy-
lene, mcl-PHAs display elastic features similar to rubber
or elastomer (Keshavarz and Roy, 2010; Park et al.,
2012). Applications of PHAs in the industry are wide-
spread, ranging from the manufacturing of packages and
covers to the generation of enantiomeric pure chemicals
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(Philip et al., 2007) or as protein immobilization supports
(Draper and Rehm, 2012; Dinjaski and Prieto, 2015; Hay
et al., 2015). Of significant relevance is the implementa-
tion of PHAs in the biomedical discipline, especially sup-
ported by the recent FDA approval for P(4HB) to be used
as suture material (Tepha Inc., MA, USA). The utility of
PHAs in this field arises from their biocompatibility char-
acteristics and has found its application in a variety of
processes such as drug delivery, development of medical
devices and construction of tissue engineering scaffolds
(Misra et al., 2006; Wu et al., 2009; Wang et al., 2010;
Xiong et al., 2010; Brigham and Sinskey, 2012; Martinez-
Donato et al., 2016; Rubio Reyes et al., 2016).
The PHA polymer accumulates in the cytoplasm in the

form of water-insoluble granules (Fig. 1), the number per
cell and size of which depend on the different species
and the culture conditions (Jendrossek and Pfeiffer,
2014). Early studies carried out by Merrick0s group
showed that these inclusions were constituted by
approximately 98% (w/w) PHA, 2% granule-associated
proteins (GAPs) and 0.5% phospholipids (Griebel et al.,
1968). Since then, several studies have confirmed the
presence of a phospholipid layer in PHA preparations
(Parlane et al., 2016) and references therein). However,
some data have put into question the actual presence of
the lipid coat in vivo (Potter and Steinbuchel, 2006;
Beeby et al., 2012; Jendrossek and Pfeiffer, 2014),
especially from electron cryotomography (Wahl et al.,
2012) and fluorescence microscopy (Bresan et al., 2016)
results, according to which the presence of the lipid layer
might arise from an experimental artefact on PHA extrac-
tion and preparation.
Four different types of GAPs have been identified so

far, namely PHA synthases, PHA depolymerases, pha-
sins and other proteins (Steinbuchel et al., 1995), the lat-
ter including transcriptional regulators as well as

hydrolases, reductases and other enzymes involved in
the synthesis of PHA monomers (Jendrossek and Pfeif-
fer, 2014; Sznajder et al., 2015). Among them, phasins,
which received their name in analogy to oleosins [pro-
teins on the surface of oil globules found in oleaceous
plants (Steinbuchel et al., 1995)], are the most abundant
polypeptides in the PHA carbonosome (Mayer et al.,
1996). These low molecular weight proteins normally
contain a hydrophobic domain, associated with the PHA,
and a hydrophilic/amphiphilic domain exposed to the
cytoplasm (Potter and Steinbuchel, 2005). On the basis
of their sequence, phasins are distributed in four families
according to the Pfam database (http://pfam.xfam.org/ 4),
namely PF05597, PF09602, PF09650 and PF09361. A
recent survey showed that a high percentage of phasins
and phasin-like proteins contains a leucine-zipper motif
in their amino acid sequences, suggesting that oligomer-
ization is a common organization mechanism in theses
polypeptides (Maestro et al., 2013). In the recent years,
a large number of phasins have been identified, consti-
tuting a phylogenetically heterogeneous group of pro-
teins. We will review the current knowledge on the most
representative phasins participating in important biologi-
cal functions (summarized in Table 1) such as the for-
mation of network-like covers on the PHA granule
surface (Dennis et al., 2003, 2008; Pfeiffer and Jen-
drossek, 2011) or the regulation of the synthesis, mor-
phology, distribution during cell division and degradation
of the storage granules (Mezzina and Pettinari, 2016).
Finally, the biotechnological potential of this group of
proteins will be discussed.

Phasins from Ralstonia eutropha

Ralstonia eutropha (formerly Alcaligenes eutrophus, and
also currently known as Cupriavidus necator H16)
(Yabuuchi et al., 1995) is a Gram-negative bacterium
that produces scl-PHA and represents the model organ-
ism in which biosynthesis and accumulation of poly(3-
hydroxybutyrate) [poly(3HB) or PHB in short], the most
commercially successful PHA, has been more thoroughly
studied (Sudesh et al., 2000; Steinbuchel and Hein,
2001; Stubbe et al., 2005; Potter and Steinbuchel,
2006). Ralstonia eutropha synthesizes PHB from acetyl-
CoA, catalysed by a b-ketothiolase (PhaA), an ace-
toacetyl-CoA reductase (PhaB) and the key enzyme
PHA synthase (PhaC), all three proteins encoded by the
phaCAB operon (Oeding and Schlegel, 1973; Haywood
et al., 1988; Schubert et al., 1988; Slater et al., 1988;
Peoples and Sinskey, 1989). The final PHB granules
may represent up to 85% of the cell biomass (Van-
damme and Coenye, 2004) and are coated with up to
seven types of phasins (Potter et al., 2004; Pfeiffer and
Jendrossek, 2012). Among these, PhaP1Reu is the mostFig. 1. Scheme of the structure of PHA granules.
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abundant one (Sznajder et al., 2015) covering an esti-
mated 27–54% of surface of the PHA granules (Tian
et al., 2005a), and representing around 5% of the total
cell protein fraction (Wieczorek et al., 1995). PhaP1Reu
is only synthesized in PHA-producing cells in levels cor-
relating well with the PHA accumulation, and it is never
found in soluble form but only attached to the granules
(Wieczorek et al., 1995; York et al., 2001a,b, 2002; Tian
et al., 2005a). Besides8 PhaP1Reu, other six additional
and minoritaire phasins have been identified in R. eu-
tropha (PhaP2Reu-PhaP7Reu). Phasins PhaP2Reu-Pha-
P4Reu are homologous to PhaP1 and are only
synthesized under permissive conditions for PHB accu-
mulation, although in much lower amounts (Potter et al.,
2004; Pfeiffer and Jendrossek, 2012). On the other
hand, the PhaP5Reu-PhaP7Reu proteins are not homolo-
gous to PhaP1Reu and probably represent an indepen-
dent subgroup of phasin-like proteins. Despite much
effort dedicated to this task, the elucidation of the exact
role of R. eutropha phasins other than PhaP1Reu in PHB
homoeostasis remains elusive (Pfeiffer and Jendrossek,
2011, 2012).
Regarding the major phasin PhaP1Reu, this polypeptide

appears strongly bound to the hydrophobic surface of the
PHB polymer as soon as its accumulation starts (York
et al., 2001b; Cho et al., 2012), ensuring the dispersion of
the granules and preventing the non-specific binding of
other proteins. PhaP1Reu plays a crucial role in the
amount (York et al., 2001a,b), size and number of gran-
ules (Steinbuchel et al., 1995; Wieczorek et al., 1995;
Kuchta et al., 2007) and probably prevents PHB crystal-
lization (Horowitz and Sanders, 1994). It has been
demonstrated that PhaP1Reu deletion mutants exhibit less
PHB production as compared to the wild-type strain
(Wieczorek et al., 1995; York et al., 2001b; Kuchta et al.,
2007), indicating that it is important but not crucial for
PHB synthesis, and suggesting that other minor phasins
may also contribute to its accumulation. In fact, the
expression level of PhaP3Reu significantly increases in
PhaP1-negative mutants (Potter et al., 2004). Neverthe-
less, in the presence of PhaP1 the relative importance of
the other phasins must be lower, as the individual deletion
of any of them does not induce any appreciable effect on
polymer synthesis (Kuchta et al., 2007). Moreover, Pha-
P1Reu deletion mutants only produce a large, single gran-
ule per cell unlike wild-type cells, which usually contain
between 6 and 15 disperse, medium-size granules (Wiec-
zorek et al., 1995; Kuchta et al., 2007). In contrast, Pha-
P1Reu overexpression leads to the generation of a high
number of small granules (Potter et al., 2002).
Ralstonia eutropha phasins also play a role in the sta-

bility and mobilization of PHB inclusions. Lack of Pha-
P1Reu in a single deletion mutant causes a certain
degree of PHB autodegradation in vivo, an event that is

dramatically augmented when combined with the multi-
ple deletion of other phasins (Kuchta et al., 2007), sug-
gesting that phasins are essential to stabilize the
granule. Paradoxically, phasins are also critical for the
mobilization of PHB induced by CoA thiolysis as catal-
ysed by the PhaZ depolymerase. While PHB devoid of
phasins is unable to be degraded by PhaZ, PhaP1Reu
alone is sufficient to assist the depolymerase in PHB
degradation (Uchino et al., 2007; Eggers and Stein-
buchel, 2013). On the other hand, in the absence of
PhaP1Reu, the other minor phasins may also participate
in PHB mobilization to a variable extent (Kuchta et al.,
2007; Uchino et al., 2007; Eggers and Steinbuchel,
2013).
Expression of PhaP1Reu is strictly regulated at the

transcription level by PhaR (Potter et al., 2002; York
et al., 2002), thus ensuring that the phasin is produced
only when conditions are permissive for PHB accumula-
tion and PhaC is present (York et al., 2001a), and in
enough quantity to cover all the biopolymer surface, but
without inducing a protein stock in the cytoplasm (Wiec-
zorek et al., 1995).
It has been proposed that PhaP1Reu possesses a

modulatory action on PHB synthesis in vitro on a PhaC-
dependent manner. Addition of pure recombinant Pha-
P1Reu increases the lag phase in the polymer formation
for the R. eutropha PhaC1 synthase (Cho et al., 2012).
A two-hybrid assay did not detect any interaction
between the two proteins (Pfeiffer and Jendrossek,
2011). A similar decrease in activity has also been
detected for the synthase from Delftia acidovorans
(PhaCDa) (Ushimaru et al., 2014) although no mecha-
nism was proposed in this case. On the contrary, Pha-
P1Reu increases the activity of the synthases from
Aeromonas caviae (Ushimaru et al., 2014) and Pseu-
domonas aeruginosa (Qi et al., 2000), this time by
reducing the enzymatic lag phase, while it does not
affect the activity of PhaC from Chromatium vinosum
(Jossek et al., 1998).
Secondary structure analysis of the PhaP1Reu

sequence predicts a highly a-helical conformation that is
characteristic of phasins (Neumann et al., 2008). The
phasin has been shown to acquire a planar, triangular-
shaped homotrimeric conformation as revealed by small-
angle X-ray scattering analysis (Neumann et al., 2008).
First sequence analyses did not unveil a clear, predicted
PHA-binding motif such as long hydrophobic patches
(Neumann et al., 2008).

Pseudomonas species

Most members of the Pseudomonas species are able to
accumulate only mcl-PHA granules based on a well-con-
served gene cluster containing two operons that are
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transcribed in opposite direction: (i) the phaC1ZC2D
operon, encoding two type-II polymerases (PhaC1 and
PhaC2), a depolymerase (PhaZ) and the PhaD protein
described as a putative transcriptional regulator (Huis-
man et al., 1991; Klinke et al., 2000; Steinbuchel and
Hein, 2001); and (ii) the phaFI operon, located down-
stream and coding for the PhaF and PhaI phasins (Pri-
eto et al., 1999; Sandoval et al., 2007).
The mcl-PHA granules in Pseudomonas are covered

by a protein layer that contains the PhaF and PhaI pha-
sins, together with PhaC, PhaZ and the acyl-CoA syn-
thetase ACS1 (Prieto et al., 1999; Moldes et al., 2004;
Peters and Rehm, 2005; de Eugenio et al., 2007; San-
doval et al., 2007; Ruth et al., 2008).
PhaF is the major phasin in Pseudomonas species,

and it is structurally organized in two well-defined
domains (Prieto et al., 1999; Moldes et al., 2004), (i) the
N-terminal, PHA-binding domain, (referred to as BioF in
the case of P. putida GPo1), which shares sequence
similarity with PhaI, and (ii) the C-terminal moiety, a
highly positively charged, histone-like domain, containing
eight AAKP-like tandem repeats, and responsible for
non-specific binding to DNA (Prieto et al., 1999; Moldes
et al., 2004; Galan et al., 2011). Biophysical studies car-
ried out on PhaF, supported by a three-dimensional
structural model, suggest an elongated disposition in
which the PHA-binding domain acquires an amphipathic
helix conformation suitable to recognize the surface of
the polymer granule and that is separated from the
DNA-binding domain by a short leucine zipper presum-
ably involved in the protein tetramerization (Maestro
et al., 2013) (Fig. 2). Remarkably, similar coiled-coil
sequences were found in the majority of phasins
included in the UniProtKB database, suggesting that
oligomerization might constitute a common feature of
these proteins (Maestro et al., 2013). Moreover, the pro-
tein might be intrinsically disordered in its majority unless
bound to its ligands (PHA and DNA), a trait that is also
probably shared by many other phasins (Maestro et al.,
2013).
The functionality of PhaF is not only ascribed to a

mere role in PHA intracellular stabilization, but it also
plays a critical role in the localization of the granule in
the cell centre, ensuring an equal distribution between

daughter cells during cell division by a simultaneous
attachment to the PHA polymer and to nucleoid DNA
(Galan et al., 2011; Maestro et al., 2013). In this sense,
lack of PhaF induces in vivo a considerable reduction in
total PHA content as the defects caused in granule seg-
regation gives rise to population heterogeneity (Galan
et al., 2011; Dinjaski and Prieto, 2013). Interestingly, a
similar function has been detected for the PhaM protein
in R. eutropha, a phasin-like polypeptide responsible for
attachment of PHB granules to the bacterial nucleoid,
ensuring an almost equal number of PHB granules to
that both daughter cells after cell division (Pfeiffer et al.,
2011; Wahl et al., 2012). Finally, it has been demon-
strated that PhaF is also involved in the in the control of
expression of the phaC1 synthase and phaI phasin
genes (Prieto et al., 1999; Galan et al., 2011).
The PhaI phasin displays a high sequence similarity

with the PHA-binding domain of PhaF, including the
probable Leu-zipper sequence. Together with PhaF, it
has been demonstrated to be essential for optimal PHA
biosynthesis and accumulation in P. putida KT2442 and
P. putida U (Ren et al., 2010; Dinjaski and Prieto, 2013)
although it can be replaced by the homologous PHA-
binding domain of PhaF (Dinjaski and Prieto, 2013).
While most Pseudomonas spp accumulate only mcl-

PHA, some strains such as Pseudomonas sp.61-3,
Pseudomonas sp14-3 and P. pseudoalcaligenes are
also able to accumulate scl-PHA such as PHB. In these
cases, an additional phb cluster has been identified, con-
taining genes coding for the proteins PHB synthase
(PhbC), b-ketothiolase (PhbA), NADPH-dependent ace-
toacetyl coenzyme A reductase (PhbB) and the PhbP
phasin involved in scl-PHA metabolism (Matsusaki et al.,
1998; Ayub et al., 2007; Manso Cobos et al., 2015).
Interestingly, in Pseudomonas sp.61-3 it has been
demonstrated a certain degree of PHA specificity by the
phasins, as PhaF and PhaI appear bound to P(3HB-co-
3HA) copolymers only when the 3HA (C6–C12) compo-
sition is present in more than 13 mol %, whereas PhbP
is solely found in 3HB enriched granules in more than
87 mol% (Hokamura et al., 2015).

Paracoccus denitrificans

Paracoccus denitrificans is a facultative methylotrophic
bacterium capable of synthesizing scl-PHAs from several
alcohols (Yamane et al., 1996). The major phasin asso-
ciated with PHA granules in P. denitrificans is PhaPPde

(GA-16) (Maehara et al., 1999). The expression of the
phaP gene is negatively controlled by the auto-regulated
repressor PhaR (Maehara et al., 2002), and a positive
correlation between the accumulation of PhaPPde protein
and production of PHA has been demonstrated (Mae-
hara et al., 1999). PhaPPde plays a structural role in the

Fig. 2. Predicted structure of a monomer of the PhaF phasin from
Pseudomonas putida KT2440 complexed to DNA (Maestro et al.,
2013).
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PHA granule formation, constituting an amphipathic
layer, preventing the coalescence of the granules and
ensuring the correct number and size of granules.
Besides, it is also involved in the distribution of the gran-
ules throughout the cytoplasm (Maehara et al., 1999).

Rhodococcus ruber

The coryneform bacterium Rhodococcus ruber NCIMB
40126 accumulates a copolyester of 3-hydroxybutyric
acid and 3-hydroxyvaleric acid from single, unrelated
carbon sources (Haywood et al., 1991). The GA14 pro-
tein has been identified as the major phasin bound to
the surface of the PHA granules, showing a direct corre-
lation between the amount of protein and the level of
PHA synthesis in the cells (Pieper and Steinbuchel,
1992; Pieper-Furst et al., 1994). The C-terminal region
of the protein, containing two hydrophobic patches, has
been demonstrated as responsible for the granule
anchoring (Pieper-Furst et al., 1995). This protein has
also been isolated from lipid inclusions in this bacterium
(Kalscheuer et al., 2001).

Azotobacter genus

PhaPAz is the most abundant PHB granule-associated
protein observed in Azotobacter sp. FA-8 (Pettinari et al.,
2003; Mezzina et al., 2015). This protein displays a
growth-promoting effect, also enhancing the polymer pro-
duction in recombinant PHB-producing Escherichia coli
(de Almeida et al., 2007, 2011). Moreover, it exerts a
stress-reduction action, both in PHB and non-PHB syn-
thesizing bacteria, decreasing the induction of heat
shock-related genes in E. coli (de Almeida et al., 2011)
and promoting protein folding through a chaperone-like
mechanism, which suggests an in vivo general protective
role of this phasin (Mezzina et al., 2015).
PhaPAz has been suggested to confirm a coiled-coil

tetramer when it is not bound to any target. Secondary
structure analysis predicts the existence of a-helices and
disordered regions, with two amphipathic helices proba-
bly responsible for protein-protein or PHB interactions.
Spectroscopical studies suggest that hydrophobic envi-
ronments, such as those provided by PHB, can induce
phasin structuration (Mezzina et al., 2014).

Aeromonas genus

Aeromonas caviae FA440 is a Gram-negative bacterium
isolated from soil that is capable of producing copolye-
sters consisting of scl- and mcl-PHA from alkanoates or
oils (Doi et al., 1995). This organism possesses a
biotechnological potential as the films made of the ran-
dom copolymer of (R)-3-hydroxybutyrate and (R)-3-

hydroxyhexanoate [P(3HB-co-3HHx)] produced by this
bacteria have demonstrated very good soft and flexible
properties, and better biocompatibility when compared to
a P(3HB) homo-polymer, making them suitable for more
practical applications (Doi et al., 1995; Yang et al.,
2002). The PHA biosynthetic operon in A. caviae con-
sists on phaP-phaC-phaJ genes, which encode the PHA
granule-associated protein phasin (PhaPAc) (Fukui et al.,
2001), as well as the PhaCAc synthase (Fukui and Doi,
1997), and the R-specific enoyl-CoA hydratase (PhaJAc)
(Fukui et al., 1998).
The PHA granules isolated from A. caviae are rela-

tively simple in terms of its GAPs composition, as their
protein cover only comprises the PHA synthase and the
PhaPAc phasin (Fukui et al., 2001). PhaPAc (also
referred to as GA13) is a 13-kDa protein, which shows
an appreciable similarity with the PhaP phasin from
Acinetobacter sp. (Fukui et al., 2001). Moreover, no
hydrophobic or amphiphilic regions are evident in the pri-
mary structure of this protein (Fukui et al., 2001).
PhaPAc plays an important role in the biosynthesis

and metabolism of PHAs. A high level activity of PHA
synthase has been documented when overexpression of
phaCAc takes place together with phaPAc, and the PHA
copolymer composition is enriched in the 3HHx fraction
when compared to overexpression of phaCAc alone,
although the substrate specificity of PhaCAc is not
affected in this conditions (Fukui et al., 2001). Besides,
in a recombinant strain of R. eutropha which is capable
of synthesizing P(3HB-co-3HHx), the replacement of the
PhaP1Reu phasin by PhaPAc resulted in an increase in
3HHx proportion in the copolymer (Kawashima et al.,
2015). Moreover, the activity of PhaCAc synthase in vitro
is activated by the presence of PhaPAc both in the pre-
polymerization and the polymer-elongation states, and
the in vivo P(3HB) accumulation in a recombinant E. coli
strain expressing PhaPAc increased 2.3-fold when com-
pared with the corresponding PhaPAc-free strain (Ushi-
maru et al., 2014). This effect is not due to a mere
increase in the amount of soluble PhaCAc, but probably
arises from the phasin assisting the withdrawal of the
growing PHA polymer chain from PhaCAc (Ushimaru
et al., 2014). In contrast, the prepolymerization activities
of PhaCRe and PhaCDa synthases decrease by the pres-
ence of PhaPAc, whereas the activity of polymer-elongat-
ing PhaCRe is not affected. Interestingly, the in vivo
accumulation of P(3HB) increases 1.2-fold in a recombi-
nant E. coli strain when PhaPAc is expressed together
with PhaCRe, compared to the phasin-free strain. As the
amount of PhaCRe in the soluble fraction increases
approximately threefold by PhaPAc coexpression, this
has led to postulate that this enhanced PHA accumula-
tion could be attributed to a chaperone-like role of Pha-
PAc in the folding of PhaCRe (Ushimaru et al., 2014).
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Finally, an enhancement in the in vivo PHA accumula-
tion has been observed in E. coli harbouring the phaPCJ
operon from A. caviae when a single nucleotide mutation
is present in the phaPAc gene (PhaPAcD4N) (Saika
et al., 2014). The mutation does not induce an increase
in the activity of the PHA synthase, but a higher expres-
sion level of phaPAc gene was demonstrated, suggesting
that this effect could be attributed to the enhanced
expression of the whole phaPCJ operon (Ushimaru
et al., 2015).
Another Aeromonas species, A. hydrophila 4AK4, is a

Gram-negative bacterium initially isolated from raw sew-
age samples that is able to accumulate 35–50 wt. %
copolymer [P(3HB-co-3HHx)] (Lee et al., 2000) reaching
70 wt. % in a metabolic engineered strain (Qiu et al.,
2006; Liu et al., 2011), so this microorganism has been
used for the industrial-scale production of this PHA
(Chen et al., 2001). A pha operon similar to A. caviae
has been found in this species (Qiu et al., 2006). The
phasin produced by this microorganism (PhaPAh) is a
13-kDa protein whose overexpression leads to a higher
number and a decrease in size of P(3HB-co-3HHx) gran-
ules, as well as to an increase in phaCAh gene transcrip-
tion and to an increment of 3HHx fraction on the P(3HB-
co-3HHx) accumulated copolymer, concomitantly with a
reduced molecular weight of the polyester (Tian et al.,
2005b). The 3-D structure of PhaPAc has been recently
elucidated by X-ray crystallography (Zhao et al., 2016).
The protein folds in solution into a brick-like tetramer
built from the packing of four amphipathic a-helical
monomers through their corresponding hydrophobic
faces. On the basis of several biophysical and muta-
tional studies, it has been suggested that in the pres-
ence of hydrophobic entities such as PHB surfaces, the
tetramer dissociates and individual monomers are able
then to interact with the non-polar compound (Zhao
et al., 2016).

Rhodospirillum rubrum

Rhodospirillum rubrum is a Gram-negative, phototrophic,
purple, non-sulfur bacterium with a huge metabolic flexibil-
ity that allows it to produce many different types of storage
polyesters, such as PHB, the poly-(3-hydroxybutyrate-co-
3-hydroxyvalerate) [P(3HB-co-3HHx)] copolymer, or even
more polymers including b-hydroxyhexanoate or b-hydro-
xyheptanoate monomers, depending on the carbon
source (Brandl et al., 1989). This organism appears well
suited for fermenting synthesis gas raw materials, making
it especially attractive for the bioconversion of syngas
feedstocks into [P(3HB-co-3HHx)] copolyester (Do et al.,
2007; Revelles et al., 2016).
ApdA (activator of polymer degradation) is a 17.5-kDa

phasin that is bound to the PHB granules in vivo in

R. rubrum (Handrick et al., 2004a). It is absolutely
required for the efficient hydrolysis in vitro of the native
PHB (nPHB) granules by the PhaZ1 depolymerase, a
role that is not affected by several physical and chemical
stresses, such as high temperatures, extreme pH’s or
5 M guanidinium, but that can be mimicked by the pre-
treatment of the granules with trypsin or other proteases,
although no protease activity has been found for this
phasin (Handrick et al., 2004a,b). On the other hand,
ApdA presents a 55% identity with Mms16, a magneto-
some-associated protein in Magnetospirillum that has
also been shown, in turn, to act as a phasin-like protein
bound to the PHB granules produced by this bacteria
(Handrick et al., 2004a; Schultheiss et al., 2005). In fact,
it has been shown that Mms16 is able to functionally
replace the activating role of ApdA in R. rubrum (Han-
drick et al., 2004a).

Bradyrhizobium diazoefficiens

Bradyrhizobium diazoefficiens is a Gram-negative soil
bacterium that accumulates a large amount of PHB, a
process that competes with the fixation of atmospheric
N2 in symbiosis with soybean plants (Romanov et al.,
1980). Four phasins have been identified in PHA gran-
ules from B. diazoefficiens, namely PhaP1Bd-PhaP4Bd
(Yoshida et al., 2013). None of them are involved in the
bacterial growth kinetics (Quelas et al., 2016), but they
are all expressed in levels that correlate with the accu-
mulated PHA (Yoshida et al., 2013). In any case,
expression of PhaP4Bd is favoured when using yeast
extract-mannitol (YM) medium, and it presents the high-
est affinity to PHA granules in vitro (Yoshida et al.,
2013). Transcription of phaP3 seems to be low and con-
stant during growth, suggesting that this phasin does not
have a relevant role in PHA metabolism (Yoshida et al.,
2013). On the other hand, the study of single and double
mutants has revealed that the combined role of PhaP1Bd
and PhaP4Bd must be crucial in determining the number
and size of the granules (Quelas et al., 2016).
Structurally, PhaP1Bd-PhaP4Bd are predicted to be

predominantly alpha-helical but only PhaP4Bd contains
additionally a C-terminal region very rich in alanine resi-
dues (13 out of 34 amino acids) (Yoshida et al., 2013).
Besides, they are all proposed to oligomerize (Quelas
et al., 2016).

Other phasins

Several other phasin proteins have been identified in
other organisms such as Sinorhizobium meliloti, Halo-
ferax mediterranii or Herbaspirillum seropedicae, but
there is little information about them other than their
involvement in PHA accumulation (Wang et al., 2007;

ª 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
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Cai et al., 2012; Tirapelle et al., 2013; Alves et al.,
2016).

Binding of phasins to PHA

Little is known about the molecular details of phasin-
PHA interaction. In the absence of deeper biophysical
analyses, some speculations can be made on the basis
of the scarce protein structural data and secondary
structure predictions. As described above, it has been
suggested for the P. putida KT2442 PhaF phasin a non-
specific interaction through an amphipathic a-helix, so
that the hydrophobic side of the helix faces the polymer
whereas the hydrophilic side is exposed to the solvent.
Such statement is based on the fact that the granule-
binding sequence also interacts strongly with hydropho-
bic compounds (oleic acid) and chromatographic resins
(phenyl-sepharose) (Maestro et al., 2013). This idea
receives considerable support after the elucidation of the
PhaPAc three-dimensional structure (Zhao et al., 2016),
which confirms the widespread presence of amphipathic
sequences along this protein. In addition, selected
mutants of PhaPAc designed to increase the amphipathic
character of the helices concomitantly led to a stronger
binding to P(3HB-co-3HHx) films (Zhao et al., 2016).
With the aim of checking whether this proposed mecha-
nism might represent a common procedure used by pha-
sins to interact with the PHB granule, we have carried
out a theoretical study of secondary structure and
amphipathicity prediction for each of the four Pfam pha-
sin families. Due to the high number of phasin
sequences to be analysed, we generated a consensus
sequence for each family using the Jalview utility (Water-
house et al., 2009). Then, a secondary structure predic-
tion was carried out for each consensus sequence using
Jpred4 (Drozdetskiy et al., 2015), and finally, all pre-
dicted a-helical sequences were analysed for their
amphipathicity with HeliQuest (Gautier et al., 2008). The
results show phasins (belonging to the four Pfam fami-
lies) as generally predicted highly helical proteins with
appreciable amphipathic stretches (See Fig. S1 and
Fig. 3 for the specific case of PhaP1Reu from R. eu-
tropha). This simple theoretical model, in the absence of
more experimental confirmation, would explain experi-
mental observations such as the lack of a defined PHA-
binding region in PhaP1Reu, as the PHA-binding ability
seems distributed throughout the protein (Neumann
et al., 2008).

Biotechnological application of phasins

The amphiphilic character of phasins makes them suit-
able to be used as natural biosurfactants. In this sense,
pure recombinant PhaPAh from A. hydrophila 4AK4

shows a strong effect to form emulsions with lubricating
oil, diesel and soybean oil when compared with bovine
serum albumin, sodium dodecylsulfate, Tween 20 or

Fig. 3. HeliQuest prediction of amphipathic a-helices in the
sequence of PhaP1Reu from R. eutropha, belonging to Pfam family
PF05597.
A. residues 13–42 (Mean hydrophobic moment -arrow-)
<lH> = 0.39);
B. residues 81–103 (<lH> = 0.40);
C. residues 131–161 (<lH> = 0.34). See Fig. S1 for details.
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sodium oleate, even retaining its activity after heat-treat-
ment of the protein or the emulsions themselves (Wei
et al., 2011).
In any case, the most widely studied application of

phasins arises from their PHA-binding capacity. In this
regard, the N-terminal, PHA-binding domain of PhaF
from Pseudomonas putida GPo1 (referred to as BioF
sequence) has shown to be very effective as an affinity
tag to immobilize in vivo fusion proteins using mcl-PHA
as support (Moldes et al., 2004, 2006). Polyester gran-
ules carrying BioF-tagged fusion proteins can be easily
isolated by centrifugation and used directly or, if
required, the purification of the adsorbed protein can be
achieved by gentle elution with detergents, keeping their
full activity in both cases (Moldes et al., 2004). This sys-
tem has been demonstrated to be an eco-friendly way to
deliver active proteins to the environment such as the
Cry1Ab toxin with insecticidal activity (Moldes et al.,
2006).
Similar in vivo immobilization procedures have also

been developed for PhaP1Reu using E. coli as heterolo-
gous host for the PHA synthesis (Chen et al., 2014). In
this case, the gene coding for the D-hydantoinase (D-
HDT) (enzyme involved in the generation of D-amino
acids of commercial values such as one of the precur-
sors required for the synthesis of semi-synthetic antibi-
otics) was fused to phaP1. The recombinant fusion
protein, PhaP1Reu-HDT, resulted to be effectively
attached to the granules, and the enzyme showed to be
active and stable (Chen et al., 2014). In a further devel-
opment, Wood0s group also used the PhaP1Reu phasin
and E. coli or R. eutropha as expression and immobiliza-
tion hosts, but in this case they incorporated a self-
cleaving intein sequence between the affinity tag and
the protein of interest, allowing the easy removal of the
tag and the subsequent purification of the native product
by a simple pH change (Banki et al., 2005; Barnard
et al., 2005). The advantage of these procedures comes
from the fact that both protein and support are easily
and effectively produced by the same bacterial host,
leading to cost reduction in the downstream process. In
any case, binding and purification can also be carried
out in vitro, allowing protein production in a continuous
way as demonstrated by Wang and coworkers for Pha-
PAc (Wang et al., 2008).
The specific immobilization of fusion proteins to PHA

via phasins is starting to be employed in medicine, both
in diagnostic and drug delivery applications. In the first
case, two hybrid genes encoding either the mouse inter-
leukin-2 (IL2) or the myelinoligodendrocyte glycoprotein
(MOG) fused to PhaP1Reu were constructed and
expressed in a recombinant, PHA-accumulating E. coli
strain. The PHA beads obtained from this system dis-
played the eukaryotic proteins correctly folded, and they

were subsequently implemented for specific and sensi-
tive antibody detection using the fluorescence-activated
cell sorting (FACS) technology (Backstrom et al., 2007).
In another example, two recombinant fusion proteins with
PhaP1Reu were generated to achieve specific delivery:
mannosylated human a1-acid glycoprotein (hAGP), that
is able to bind to the mannose receptor of macrophages,
and a human epidermal growth factor (hEGF), able to
recognize EGF receptors on carcinoma cells. The result-
ing proteins (rhAGP–PhaP1Reu and rhEGF–PhaP1Reu)
were self-assembled on P(3HB-co-3HHx) nanoparticles,
achieving the specific delivery of the payload both
in vitro and in vivo (Yao et al., 2008). On the other hand,
the sequence coding for a peptide containing the amino
acids Arg-Gly-Asp, the most effective peptide sequence
used to improve cell adhesion on artificial surfaces, was
fused to PhaPAc (Dong et al., 2010). Different polyesters,
such as P(3HB-co-3HHx) or P(3HB-co-3HV), were
coated with purified PhaP-RGD hybrid protein, and the
complex proved effective in adhesion and improvement
of cell growth on two different fibroblast cellular lines,
suggesting viable applications on implant biomaterials
(Dong et al., 2010).

Concluding remarks

The generic name of ‘phasin’ denotes a set of proteins
which indeed share the ability to recognize and adsorb
to PHA polyesters. They play an essential contribution in
the physical stabilization of the PHA granule within the
cell, ensure the correct distribution of the polyester upon
cell division and assist other proteins (synthases and
depolymerases) on PHA metabolism. Nevertheless, their
specific role is highly dependent both on the microbial
strain and on the metabolic state of the cell. Their versa-
tility is such that they may even participate in opposite
events (e.g. synthesis and degradation of the PHA poly-
mer). Besides, their strong affinity to PHA allows their
use as protein affinity tags for polymer functionalization
and therefore constitutes an opportunity to develop valu-
able applications in biotechnology and biomedicine.
Although little structural data are still available, phasins
are predicted to acquire relatively simple, amphipathic,
three-dimensional structures and to bind to PHA via non-
specific hydrophobic interactions. This makes them
amenable to be easily engineered to produce recombi-
nant variants that display a modulated affinity to PHA,
that may be useful both for in vivo PHA production and
in vitro biotechnological and biomedical applications.
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Phasins are widespread proteins associated to the surface of polyhydroxyalkanoate (PHA) granules synthetized by pro-
karyotic organisms. They play essential roles in PHA stability and metabolism, but they also possess remarkable prop-
erties that make them suitable for biotechnological applications.3 .


