

FACULTAD DE MEDICINA

UNIVERSIDAD MIGUEL HERNÁNDEZ

DEPARTAMENTO DE PATOLOGÍA Y CIRUGÍA

TESIS DOCTORAL

ELABORACIÓN Y PUESTA EN MARCHA DE UNA GUÍA DE TERAPIA EMPÍRICA ANTIMICROBIANA GUIADA POR LA EPIDEMIOLOGÍA LOCAL

FRANCISCO LAJARA MARCO

FACULTAD DE MEDICINA

UNIVERSIDAD MIGUEL HERNÁNDEZ

DEPARTAMENTO DE PATOLOGÍA Y CIRUGÍA

TESIS DOCTORAL

ELABORACIÓN Y PUESTA EN MARCHA DE UNA GUÍA DE TERAPIA EMPÍRICA ANTIMICROBIANA GUIADA POR LA EPIDEMIOLOGÍA LOCAL

Memoria que presenta D. FRANCISCO LAJARA MARCO, para optar al grado de Doctor en Medicina y Cirugía.

Directores

DR. JOSÉ M. LÓPEZ LOZANO, DR. JUAN A. LOZANO REQUENA, PROF. JAMES D. HUTCHINSON

Alicante, España

La definición de locura es hacer lo mismo una y otro vez, esperando resultados diferentes.

Pascal, atribuida a Albert Einstein.

"Escribir una tesis tiene sobre todo una finalidad de aprendizaje.

El primer fruto de una tesis es el crecimiento de su autor o autora

y su aprendizaje al escribirla,

al mantener un discurso coherente y bien argumentado"

Cfr. J. Nubiola, El taller de la filosofía, Eunsa, Pamplona, 1999, 162-163.

DEDICATORIA

A mi esposa impulso durante mi carrera, que con su apoyo constante y su amor incondicional ha sido amiga y compañera inseparable, fuente de sabiduría y consejo en todo momento.

A mis hijos, a quienes un día explicaré por qué esta Tesis, que es su hermana pequeña, debía haber sido su hermana mayor.

A mis padres por su ejemplo de constancia, capacidad de trabajo y sacrificio.

AGRADECIMIENTOS

A Javier Espinosa e Isabel Carpena, clínicos del Hospital Morales Meseguer, mis primeros mentores en el mundo de las enfermedades infecciosas.

A José Maria López, codirector de esta Tesis por escucharme siempre, por todas sus enseñanzas, por su dedicación para dirigir esta tesis, y lo más importante los momentos compartidos.

A Juan Antonio Lozano, codirector de esta Tesis y Jefe de Servicio, que desde el primer día me dejó hacer y realizarme como: residente, adjunto, docente e investigador.

A James D Hutchinson, codirector de esta Tesis, por mostrarme que nuestra especialidad cambia con el paso del tiempo pero no lo hace tanto de un lugar a otro. Gracias a las herramientas que puso a mi disposición: Tanzeel-Ur, Chris y Adeline.

A César Nebot, brillante económetra. Muchas gracias por tu paciencia y esfuerzo.

A mis compañeros de fatigas hace algún tiempo residentes, ahora muchos de ellos ya adjuntos; que han colaborado en los trabajos que conforman esta Tesis y sin cuya participación, dedicación y esfuerzo no hubiera sido posible realizarla. Muchas gracias: Mari Luz, Albertos, Fran, Laura, Miguel, Pablo, Bea, Elena...

A todos aquellos compañeros que, de una manera u otra, me han ayudado, apoyado o motivado a la realización de este trabajo. Muchas gracias: Eva, Tim, Cery, Ramón y Rosa.

A todos los que me ayudaron a que no faltara madera en la hogera: Mariola, Heri, Pilar, Asun, Chus...

Y a mi hermano, Isidro, contrario a mí en ocasiones, pero eminentemente práctico: "cuando haces algo repetitivo, siempre hay alguién que ha pensado como hacerlo más fácil".

INDICE GENERAL

ABREVIATURAS	I
ÍNDICE DE TABLAS	V
ÍNDICE DE FIGURAS	VII
RESUMEN DE LA TESIS DOCTORAL	1
DOCTORAL DISSERTATION SUMARY	3
ANTECEDENTES Y ESTADO ACTUAL DEL TEMA	1
Relevancia de la infección en Cirugía Ortopédica y Traumatología	1
Característica de las infecciones sobre implante	1
Relevancia de la resistencia a antibióticos en infecciones en Cirugía Ortopédio	•
Justificación de un tratamiento antibiótico empírico guiado por la sensibilidad local	3
Estrategias para aumentar el uso apropiado de antibióticos.	5
Guías terapéuticas en formato papel	
Guías terapéuticas en formato electrónico	5
WebResist	11
Justificación	11
Datos necesarios para participar en el proyecto	14
Funcionamiento del programa	
HIPÓTESIS	19
OBJETIVOS	21
Objetivo general	21
Objetivos específicos	21
MATERIAL Y MÉTODO	23
Definición de conceptos.	23
Ámbito de Estudio	24
Población a estudio.	25
Diseño para cada uno de los objetivos	25
Período a estudio para cada uno de los objetivos.	30
Diagrama de flujo	31
Análisis de los datos en cada Objetivo	33
Objetivo 1. Cambios en la epidemiología local con el paso del tiempo	33

Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrob	
Objetivo 3. Cambios en la epidemiología local según la localización geográfica	
Objetivo 4. Cambios en el nivel de resistencia según la localización geográfica	35
Objetivo 5. Elaboración y eficacia de una terapia empírica	36
Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación	ı 36
Objetivo 7. Factores predisponentes de resolución de la infección	36
RESULTADOS	
Objetivo 1. Cambios en la epidemiología local con el paso del tiempo	39
Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrobiana	
Objetivo 3. Cambios en la epidemiología local según la localización geográfica	48
Objetivo 4. Cambios en el nivel de resistencia	58
ALGUNOS EJEMPLOS.	60
Objetivo 5. Elaboración y eficacia de una recomendación	68
Elaboración de la recomendación de terapia empírica	
Plan de trabajo.	72
Resultados pasos 1, 2 y 3.	72
Resultados pasos 4 y 5.	
Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación	79
Plan de Trabajo	79
Efectividad de la recomendación	
Grado de adhesión de los facultativos	81
Objetivo 7. Factores predisponentes de resolución de la infección	82
DISCUSIÓN	83
Interpretación, contraste y aplicabilidad de los resultados	83
Objetivo 1. Cambios en la epidemiología local con el paso del tiempo	83
Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrol	oianas
	83
Objetivo 3. Cambios en la epidemiología local según la localización geográfica	84
Objetivo 4. Cambios en el nivel de resistencia	86
Objetivo 5. Elaboración de una recomendación de terapia empírica	87
Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación	89
Objetivo 7. Factores que pueden influir en la resolución del cuadro clínico	91
Limitaciones del estudio	92
Presente-Futuro	95

Limitaciones del estudio	92
Presente-Futuro	95
CONCLUSIONES	97
Objetivo 1. Cambios en la epidemiología local con el paso del tiempo	97
Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrob	ianas 97
Objetivo 3. Cambios en la epidemiología local según la localización geográfica	97
Objetivo 4. Cambios en el nivel de resistencia	97
Objetivo 5. Elaboración de una recomendación de terapia empírica	98
Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendació	ón 98
Objetivo 7. Factores que pueden influir en la resolución del cuadro clínico	98
CONCLUSIONS	99
Objective 1. Local epidemiology changes over time	99
Objective 2. Risk factors for gram-negative bacilli (GNB) and polymicrobial infecti	ions (PM).
	99
Objective 3. Local epidemiology changes by geographical location	
Objective 4. Resistance level Changes.	99
Objective 5. Development and effectiveness of a recommendation of empirical the	rapy 99
Objective 6. Implementation, effectiveness and degree of adherence to a recomm	nendation.
Objective 7. Find predisposing factors of resolution of infection	100
BIBLIOGRAFÍA	1
PRODUCCIÓN CIENTÍFICA RELACIONADA CON LA TESIS	1
Congresos Nacionales	1

ABREVIATURAS

POR ORDEN ALFABÉTICO

A Artroplastia

aba Acinetobacter baumanii ac- Acinetobacter iwoffi

ACF Función de Autocorrelación simple ACF parcial Función de Autocorrelación parcial

aeh Aeromonas caviae

Album Albumina

AMC Amoxicilina-Ácido Clavulánico

AMK Amikacina
AMP Ampicilina
AMX Amoxicilina
ane Mixed Anaerobes
AR Autoregresivo

COT-ARI Aberdeen Royal Infirmary

ARMA Autoregresivo y de Medias Móviles

AST Análisis de Series Temporales

ATM Aztreonam

ATS American Thoracic Society

AZM Azitromicina

bfr Bacteroides fragilis
BGN Bacilos Gram Negativos

bgp Bifidobacterium

BLEAS Betalactamasas de espectro ampliado

can Candida albicans
CAZ Ceftazidima

cca Micro-aerophilic streptococcus

cfr Citrobacter freundii CGP Cocos Gram Positivos

CIP Ciprofloxacino
CLI Clindamicina

CLSI National Commitee for Clinical Laboratory Standards

COL Coliforme cor Diphtheroids

COT Cirugía Ortopédica y Traumatología

CPD Cefpodoxima
CRO Ceftriaxona
CTR Cotrimoxazol
CTX Cefotaxima
CXA Cefuroxima
CZO Cefazolina

DM Diabetes Mellitus

E Experto

eae Enterobacter aerogenes

EARSS European Antimicrobial Resistence Surveillance System

ecl Enterobacter cloacae

eco Echerichia coli

efa Enterococcus faecalis efm Enterococcus faecium

EL Experto Local

en- Enterobacter aerógenes

ERY Eritromicina

FA Fibrilación Auricular

FEP Cefepime
FOS Fosfomicina
FOX Fosfomicina
FUS Ac Fusídico
GEN Gentamicina

HELP Health Evaluation Through Logical Processing

COT-HVB Hospital Vega Baja

IHQ Infección de Herida Quirúrgica

IHQ-I-COT Infección de Herida Quirúrgica sobre implante en COT

IMC Índice de Masa Corporal

infec infección

Inmunosupr Inmunosupresores

IPM Imipenem

IRC Insuficiencia Renal Crónica

kpl Raoultella planticola kpn Klebsiella pneumoniae

Linf Linfocitos
LNZ Linezolid
LVX Levofloxacino

m.o. microorganismo/os
MA Medias Móviles
MEM Meropenem

mmo Morganella morganii

MTR Metronidazol NET Netilmicina NIT Nitrofurantoína NOR Norfloxacino 0 Osteosíntesis OFX Ofloxacino OR Odds ratio OXA Oxacilina

pae Pseudomona aeruginosa

PEN Bencil Penicilina

pep Peptoniphilus asaccharolyticus

PIP Piperacilina

PM Polimicrobianas
pr- Proteus species
pre Pseudomona stutzeri

PROA Programas para la optimización del uso de antibióticos

prop Propionibacterium

RedMIVA Red de Vigilancia Microbiológica de la Comunidad Valenciana

RR Riesgo Relativo SAM Ampic-Sulbactam

SARM Staphylococcus aureus Resistente a Meticilina

sau Staphylococcus aureus

SAUCE Sensibilidad de los Antibióticos Usados en la Comunidad en España

SCAP Sistemas Computerizados de Ayuda a la Prescripción

SCN Staphylococcus coagulasa negativos

SCN-RM SCN resistente meticilina sep Staphylococcus epidermidis SERM sep Resistente a Meticilina

sgc Streptococcus agalactiae (Streptococcus Grupo B)

sma Serratia marcescens spn Streptococo pneumoniae

svi Streptococcus viridans (Streptococcus Grupo G)

SXT Cotrimoxazol
TCY Tetraciclina
TMP Trimetoprim
TOB Trobramicina
Tqx Tiempo Quirúgico

Trasfus Post Trasfusión Postquirúrgica

Trasfus Prev Trasfusión Previa

TZP Piper-Tazo

UCI Unidad de cuidados intensivos.

VAN Vancomicina

ViResiST Vigilancia de la Resistencia por medio del Análisis de Series Temporales

WebResist Nueva versión de ViResiST

>2d hosp

prev Más de dos días de hospitalización previa

ÍNDICE DE TABLAS

Tabla I. Diseño metodológico para cada uno de los objetivos	38
Tabla II. Distribución de frecuencias absolutas y relativas de los m.o. más frecuentementos	ente
aislados en el Hospital Vega Baja (2003-2012).	39
Tabla III. Cirugía índice	43
Tabla IV. Fracturas cerradas	43
Tabla V. Fracturas abiertas	44
Tabla VI. Artroplastias	44
Tabla VII. Factores de riesgo de infección en infecciones por BGN	45
Tabla VIII. Factor de riesgo independiente de infección por BGN	45
Tabla IX. Factores de riesgo de infección en infecciones PM	46
Tabla X. Factor de riesgo independiente de infección PM	47
Tabla XI. Microorganismos más frecuentes en COT-ARI para cada uno de los años. Est	udio
comparativo del espectro microbiológico de la muestra a estudio, respecto del total de cult	tivos
en COT-ARI, para cada uno de los años.	49
Tabla XII. Características de las muestra de COT-ARI y COT-HVB.	49
Tabla XIII. Distribución de frecuencias absolutas y relativas de los m.o. más frecuentementos	ente
aislados en el Hospital Vega Baja y COT-ARI (2007-2012).	50
Tabla XIV. Análisis comparativo por grupos entre COT-ARI y COT-HVB	54
Tabla XV. Análisis comparativo entre COT-ARI y COT-HVB de las especies más frecuente	s de
CGP	54
Tabla XVI. Análisis comparativo entre COT-ARI y COT-HVB de las especies más frecuente	
BGN	56
Tabla XVII. Hoja de Excel en la que ViResiST vuelca las Resistencias estimadas para pri	imer
trimestre siguiente.	59
Tabla XVIII. Predicción resistencia S.aureus (sau) a ATB más frecuentes Primer Trimestre 2	007-
2012	59
Tabla XIX. Recomendaciones de terapia empírica para COT-ARI	73
Tabla XX. Recomendaciones de terapia empírica para COT-HVB.	73
Tabla XXI. Efectividad de la terapia empírica pautada en cada centro	74
Tabla XXII. Tablas de Contingencia resultantes de las recomendaciones de E, EL, E+W y E	L+W
para COT-ARI.	76
Tabla XXIII. Tablas de Contingencia resultantes de las recomendaciones de E, EL, E+W y E	L+W
para COT-HVB	77
Tabla XXIV. Efectividad de la terapia empírica pautada en COT-HVB 2010-2014	80
Tabla XXV. Tablas de Contingencia para COT-HVB	80
Tabla XXVI. Relación número de casos/seguimiento de la recomendación	81
Tabla XXVII. Factores que pueden influir en la resolución del cuadro clínico	82

ÍNDICE DE FIGURAS

Figura 1. MYCIN. Esquema procesamiento Información 6
Figura 2. MYCIN II. Pantalla de introducción de datos
Figura 3. MYCIN II. Pantalla de resultado/recomendación para el ejemplo anterior
Figura 4. Ejemplo de pantalla inicial del Sistema HELP8
Figura 5. Sistema Experto TREAT. Recomendación de tratamiento antimicrobiano9
Figura 6. Esquema de los elementos necesarios para la generación de una recomendación de
terapia empírica
Figura 7. Modelo dinámico. La relación entre el uso de antibióticos y la resistencia es
retardada12
Figura 8. Esquema de funcionamiento de ViResiST15
Figura 9. WebResist: Pantalla de consulta de los datos de resistencia, uso de antibióticos y
resistencia esperada16
Figura 10. Resistencia esperada de S. aureus a Ciprofloxacino COT-HVB16
Figura 11. WebResist: Evolución gráfica de la resistencia de Staphylococcus aureus (sau) a
Ciprofloxacino
Figura 12. Esquema sobre el concepto aplicado en esta tesis Doctoral para otorgar el apelativo
de infección polimicrobiana
Figura 13. Esquema para el diseño de un estudio
Figura 14. Diagrama de Flujo de esta Tesis Doctoral
Figura 15. Factores de riesgos de infección recogidos en la base de datos35
Figura 16. Factores recogidos que pueden influir en la resolución del cuadro clínico37
Figura 17. Gráfica de frecuencia relativa de los m.o. más frecuentes por Grupos. A lo largo de
esos 10 años
Figura 18. Gráfica de la frecuencia relativa de los m.o. más frecuentes por Especie. A lo largo
de esos 10 años
Figura 19. Artroplastias y osteosíntesis realizadas en COT-HVB 2003-201242
Figura 20. Correlación Ratio O/A, proporción de infecciones por BGN42
Figura 21. Distribución de los casos perdidos en COT-ARI para cada uno de los años 48
Figura 22: Evolución cocos gram positivos COT-ARI 2007-201251
Figura 23. Evolución cocos gram positivos COT-HVB 2007-201251
Figura 24. Evolución Bacilos Gram negativos COT-ARI 2007-2012
Figura 25. Evolución Bacilos Gram negativos COT-HVB 2007-201252
Figura 26. Evolución de las infecciones por Cocos Gram positivos en COT-HVB (%CGP_b) vs
COT-ARI (%CGP_a)53
Figura 27. Evolución de los Bacilos Gram Negativos en COT-HVB (%BGN_b) vs COT-ARI
(%BGN_a)53
Figura 28. Evolución de las infecciones Polimicrobianas en COT-HVB (%PM_b) vs COT-ARI
(%PM_a)53
Figura 29. Evolución proporción de infecciones por sau COT-HVB (%sau_b) vs sau COT-ARI
(%sau_a)55
Figura 30. Evolución proporción de infecciones por SCN incluido sep COT-HVB (%scn+sep_b) vs
sau COT-ARI (%scn+sep_a)55

Figura 31. Evolución proporción de infecciones por pae COT-HVB (%pae_b) vs COT-ARI
(%paec_a)
Figura 32. Evolución proporción de infecciones por COL COT-HVB (%COL_b) vs COT-ARI (%COL_a)56
Figura 33. Origen de los aislamientos positivos en COT-ARI vs COT-HVB57
Figura 34. Esquema microorganismos a tener en cuenta cara a una terapia empírica en COT en
COT-ARI (rojo), COT-ARI y COT-HVB (verde), COT-HVB (azul)58
Figura 35. ViResiST. Resistencia Estimada de sau resistente a meticilina (Oxacilin) en COT-ARI
(rojo) vs COT-HVB (azul)60
Figura 36. WebResist. Resistencia observada de S.aureus a meticilina (Oxacilin) en COT-ARI
(rojo) vs COT-HVB (azul)61
Figura 38. WebResiST. Resistencia Observada de sau resistente a Ciprofloxacino (CIP) en COT-
ARI (rojo) vs COT-HVB (azul)62
Figura 37. ViResist. Resistencia estimada de S.aureus a Ciprofloxacino en COT-ARI (rojo) vs
COT-HVB (azul)62
Figura 39. ViResiST. Resistencia Estimada de SCN resistente a meticilina (Oxacilin) en COT-ARI
(rojo) vs COT-HVB (azul)63
Figura 40. WebResist. Resistencia observada de SCN a meticilina (Oxacilin) en COT-ARI (rojo) vs
COT-HVB (azul)64
Figura 41. ViResiST. Resistencia Estimada de SCN resistente a Ciprofloxacino (CIP) en COT-ARI
(rojo) vs COT-HVB (azul)
Figura 42. WebResist. Resistencia observada de SCN a Ciprofloxacino en COT-ARI (rojo) vs COT-
HVB (azul)65
Figura 43. Viresist. Resistencia Estimada de Pae a Ceftazidima (CAZ) en COT-ARI (rojo) vs COT- HVB (azul)
Figura 44. WebResist. Resistencia observada de Pae a Ceztazidima (CAZ) en COT-ARI (rojo) vs COT-HVB (azul)
Figura 45. Hipótesis de aumento de la eficacia de la recomendación de terapia empírica 68
Figura 46. Esquema para la elaboración de una recomendación de terapia empírica 69
Figura 47. Frecuencias relativas de los m.o. aislados más frecuentemente enero-dic 2007 70
Figura 48. Probabilidad de acierto/eficacia de cada antibiótico frente a cada uno de esos m.o.
Figura 49. Resultante aplicar la fórmula a la probabilidad de acierto de las combinaciones de
ATB propuestas para cubrir el espectro microbiológico más frecuente
Figura 50. Si ordenamos las combinaciones de mayor a menor probabilidad de acierto
obtenemos una lista de combinaciones de ATB
Figura 51. Eficacia de las propuestas de tratamiento empírico en COT-ARI
Figura 51. Eficacia de la propuesta de tratamiento empírico en COT-ANI
Figura 53. Evolución del Grado de adhesión de los facultativos prescriptores a la
recomendación de terapia empírica

RESUMEN DE LA TESIS DOCTORAL

La incidencia de infecciones de prótesis articulares causadas por bacilos gram negativos, polimicrobianas y gérmenes resistentes ha aumentado en los últimos años. Este incremento podría estar relacionado con: un aumento de la edad y la complejidad de los pacientes que se somenten a cirugía con implante, un uso inadecuado de antibióticos o un aumento de la instrumentalización de los cuidados sanitarios. El abordaje que se ha hecho clásicamente del problema de la resistencia, se ha hecho a través de cortes transversales, estos estudios no recogen adecuadamente el carácter dinámico de la evolución de la resistencia. Distintos autores recomiendan que la terapia empírica debe ser guiada por la sensibilidad local a los antimicrobianos. Con frecuencia, las guías de antibioterapia empírica habituales se basan en estudios realizados lejos de nuestro ámbito de trabajo y reflejan situaciones que pueden ser muy diferentes de las nuestras. El proyecto de vigilancia epidemiológica Webresist, que utiliza técnicas de Análisis de Series Temporales para el análisis y predicción de la resistencia bacteriana, ofrece información local que puede ser usada para la elaboración de una recomendación de terapia empírica para el síndrome de infección de herida quirúrgica sobre implante (IHQ-I-COT). Ante el escenario propuesto, los objetivos específicos que componen esta Tesis se centran en: 1) Observar si hay cambios en la epidemiología local que causa el síndrome a estudio, dentro de un miSmo Servicio con el paso del tiempo, 2) Hallar factores de riesgo de infección por bacilos gram negativos (BGN) e infecciones polimicrobianas (PM), 3) Observar si hay cambios en la epidemiología que causa el síndrome según la localización geográfica, 4) Observar si hay cambios en el nivel de resistencia de los microorganismos que más frecuentemente causan el síndrome a estudio entre dos centros europeos, 5) Elaboración y eficacia de una recomendación de terapia empírica, 6) puesta en marcha, efectividad y adhesión a la recomendación y 7) Hallar factores predisponentes de resolución de infección. Asumiendo las limitaciones de las series para cada uno de los objetivos, nuestros datos apoyan que: 1) El espectro microbiológico que causa el síndrome IHQ-I-COT cambia con el paso del tiempo dentro de un mismo servicio; 2) La infección por BGN y PM está asociada a cirugía secundaria a fractura y a clínica aguda de infección como factor de riesgo independiente; 3) Las especies de microorganismos más frecuentes que causan el síndrome a estudio son diferentes dentro de dos centros europeos; 4) Los niveles de resistencia cambian con el paso del tiempo y de un lugar a otro, éstos son estimados de forma fiable mediante técnicas ARIMA de análisis de series temporales; 5) Proporcionando a los expertos el espectro microbiológico que causa el síndrome en una determinada área, la eficacia de la terapia empírica aumenta. Usando una de las recomendaciones elaboradas con la ayuda de WebResist, mantenemos el aumento en la eficacia de la terapia empírica, tratando de usar antimicrobianos que cubriendo el espectro generen menor resistencia; 6) La puesta en marcha de la recomendación aumenta la efectividad de la terapia empírico, y el grado de adhesión de los facultativos aumenta tras la comunicación de resultados y 7) La resolución del cuadro clínico se presenta de forma más frecuente en los casos en los que el microorganismo aislado es sensible al tratamiento empírico prescrito.

DOCTORAL DISSERTATION SUMMARY

Title: DEVELOPMENT AND IMPLEMENTATION OF GUIDELINES ON EMPIRICAL ANTIMICROBIAL
THERAPY IN ORTHOPEDIC SURGERY AND TRAUMATOLOGY INFECTIONS THROUGH THE
ANALYSIS OF THE LOCAL RESISTANCE

The incidence of prosthetic joint infections caused by gram-negative bacilli, polymicrobial and resistant germs has increased in recent years. This increase may be related to: an increase in the age and complexity of patients underwent implant surgery, improper use of antibiotics or an increase in the instrumentalization of health care. The approach that has been classically the problem of resistance, has been through cross sections, these studies did not adequately reflect the dynamic nature of the evolution of resistance. Several authors recommend that empirical therapy should be guided by local antimicrobial susceptibility. Often the usual empirical antibiotic guidelines are based on studies beyond our scope of work and reflect situations that may be very different from ours. The surveillance program WebResist, which uses techniques of Time Series Analysis for the analysis and prediction of bacterial resistance, provides local information that can be used to prepare a recommendation for empirical therapy for the syndrome, surgical site infection in arthroplasty or internal fixation device (IHQ-I-COT). Given the foregoing scenario, the specific objectives of this thesis focus on: 1) the microbiological spectrum syndrome causes changes over time within the same service, 2) find risk factors for gram-negative bacilli (GNB) and polymicrobial infections (PM), 3) and 4) to describe changes of the microbiological spectrum that causes the syndrome and resistance level in two place, 5) development and effectiveness of a recommendation of empirical therapy, 6) implementation, effectiveness and adherence to the recommendation and 7) find predisposing factors of resolution of infection. After assuming the limitations of the studies, our data support 1) there are changes of the microbiological spectrum for some years in a place, 2) BGN infection and PM is associated with surgery after fracture and acute clinical of infection as independent risk factor, 3) there are significant differences between the species most common organisms that cause the syndrome to study in two European centers, 4) resistance levels change over time and from place to place, they are measured reliably using techniques of ARIMA time series analysis, 5) providing microbiological experts the species most frequent organisms that cause the syndrome in a given area, the effectiveness of empiric therapy increases, using one of the recommendations developed using WebResist, maintain the increased efficiency of empiric therapy, trying to use an antimicrobial which generates less resistance; 6) the implementation of the recommendation increases the effectiveness of empiric therapy, and the degree of adherence of physicians increases after disclosure of results, 7) the resolution occurs more frequently in cases where the isolated organism is sensitive to empirical treatment prescribed.

ANTECEDENTES Y ESTADO ACTUAL DEL TEMA

Relevancia de la infección en Cirugía Ortopédica y Traumatología.

La infección es una de las complicaciones más graves en cirugía ortopédica y traumatología (COT), asocia gran morbilidad e impotencia funcional y disminuye la calidad de vida del paciente. Además, prolonga la estancia hospitalaria, elevando el coste económico sobre el sistema sanitario¹. En España, el número aproximado de artroplastias anuales realizadas es de 30.000, con una incidencia de infección de herida quirúrgica (IHQ) del 3,4%². El impacto atribuible a la infección sobre la estancia Hospitalaria ha sido estimado en 31 días sobre artroplastia de cadera³. En países como Inglaterra, el coste adicional atribuible a la infección de herida quirúrgica ha sido calculado en £ 3.342, con una tasa de mortalidad ajustada dos veces mayor en pacientes con infección⁴.

Característica de las infecciones sobre implante.

Las infecciones sobre herida quirúrgica en Cirugía Ortopédica y Traumatología conforman un cuadro clínico que por sus características posee cierta identidad, forma parte de las infecciones sobre un cuerpo extraño⁵, el implante (osteosíntesis o artroplastia):

- Los antibióticos no llegan bien a los implantes: éstos no están vascularizados, por lo que sólo les llegan los antibióticos y componentes del sistema inmune por difusión desde los tejidos próximos⁶.
- Los implantes disminuyen la eficacia del sistema inmune: inhibe la activación del complemento y disminuye la movilidad de los polimorfonucleares, la fagocitosis y la lisis bacteriana intracelular⁷.
- Las bacterias tiene capacidad de crecer en forma de biopelículas ("biofilm")⁸. Las biopelículas son complejas comunidades de grupos de microorganismos autosecretantes de una matriz de polisacáridos. Esta estructura retiene nutrientes de las células constituyentes y las protege contra la respuesta inmune y agentes antimicrobianos⁹. Está compuesta por tres componentes principales: los microorganismos (elemento clave), una superficie (para la adherencia) y un ambiente¹⁰. Puede formarse en cualquier superficie artificial que ha sido introducida en el cuerpo humano, así como en tejidos adyacentes a la superficie de los implantes⁸.
- La dosis crítica de microorganismos contaminantes necesarios para producir una infección es mucho menor en presencia de material foráneo en el sitio quirúrgico¹¹.

Relevancia de la resistencia a antibióticos en infecciones en Cirugía Ortopédica y Traumatología.

La incidencia de infecciones de prótesis articulares causadas por gérmenes resistentes ha aumentado en los últimos diez años. En 1999 Garvin et al¹², en un artículo de revisión advertían del incremento de la resistencia en los gérmenes gram positivos aislados más frecuentemente en infecciones sobre artroplastias. La tasa de resistencia a meticilina fue del 35% para los *Staphylococcus aureus* (*sau*) y del 80% para los *Staphylococcus coagulasa negativos* (*SCN*), por otro lado se observó un 23% de resistencia a vancomicina en los *Enterococcus*. Ip et al¹³ en una revisión retrospectiva llevada a cabo en un Hospital del Este de Hong Kong, hasta 1996 no se habían producido aislamientos de bacterias multiresistentes causantes de infecciones de herida quirúrgica sobre implante en COT (IHQ-I-COT); desde entonces y hasta 2003, el 46% de las IHQ-I-COT fueron causadas por *sau resistentes a meticilina* (*SARM*) y aproximadamente el 50% de los *Staphylococcus epidermidis* (*sep*) y *Escherichia coli* (*eco*) aislados eran multirresistentes.

Para combatir este aumento en la resistencia, Garvin et al¹² recomiendan seguir programas de vigilancia epidemiológica y restringir el uso de glucopéptidos. Ip et al¹³ apuntan hacia la necesidad de revisar periódicamente los m.o. involucrados en este tipo de infección para identificar y analizar cualquier cambio en el perfil epidemiológico: a nivel local, nacional o entre diferentes países.

Rafiq en 2006¹⁴ y Nickinson en 2010¹⁵, realizan una revisión retrospectiva de las bacterias causantes de la infección en la artroplastia de cadera y rodilla respectivamente. Apreciando un cambio en el tipo de infección y, en particular, un cambio en la resistencia antibiótica. La mayoría de los aislamientos positivos en artroplastias de revisión eran SCN, que aunque son considerados m.o. con bajo grado de patogenicidad, son multirresistentes a los antibióticos y por tanto difíciles de erradicar. Bulla et al¹⁶, encuentran entre las bacterias resistentes más frecuentemente implicadas en la infección de una prótesis articular, además de los citados cocos gram positivos (CGP) (SARM, SCN resistentes a la meticilina y Enterococcus resistentes a vancomicina), otros m.o. gram negativos (Pseudomonas aeruginosa (pae) y Acinetobacter baumannii (aba) multirresistente), habituales causantes de infección en ambientes Hospitalarios y unidades de cuidados intensivos (UCI).

Peel et al¹⁷, en un estudio multicéntrico llevado a cabo en 10 hospitales del estado de Victoria (Australia) entre 2006 y 2009 describen la ecología de las IHQ en artroplastia primaria de cadera o rodilla; artroplastia sobre fractura de cadera y artroplastia de revisión sobre

aflojamiento séptico o aséptico en COT. Informan de *SARM y SCN* (45%) como los m.o. más frecuentemente causantes de infección, siendo el 63% de los m.o. causantes de infección resistentes a la profilaxis preoperatoria (cefazolina). Además, describen un aumento de infecciones polimicrobianas (36%), por el aumento de la implicación de los bacilos gram negativos (*BGN*) como gérmenes responsables de la infección.

Malhas et al¹⁸, en un estudio llevado a cabo en la Región de Dundee (Escocia), entre 2001 y 2010, los m.o. más frecuentemente causantes de infección sobre artroplastia primaria y de revisión de cadera y rodilla_fueron sau (36%) y SCN (35%). El 70% de los SCN fueron meticilin resistentes y el 20% de los sau; la resistencia a gentamicina fue del 40% en SCN y el 4% en los sau. Al menos el 32% de los SCN y el 4% de los sau fueron resistentes a su actual régimen de profilaxis preoperatoria.

Benito et al¹⁹ en un estudio llevado a cabo en el Hospital de la Santa Creu i Sant Pau en Barcelona (España), entre 2004 y 2011, informan que también aquí los estafilococos fueron los gérmenes que de forma más frecuente causaron IHQ tras artroplastia primaria de cadera o rodilla (59,6%), siendo en su mayoría monomicrobianas (82,8%). Sin embargo, la proporción de *BGN* pasó de 21,4% en 2004 al 66,7% a finales de 2010 y las infecciones polimicrobianas pasaron del 7,1% en 2004 al 41,7% en 2010. También en Barcelona, pero en el Hospital Clínico, Martínez Pastor et al²⁰, publicaron una serie de casos de IHQ sobre artroplastia de cadera en COT recogidas entre 2000 y 2007; producidas en un 24% por *BGN*, siendo una *Enterobacteriacea* productora de betalacatamasas de espectro ampliado (*BLEAS*) (*eco* o *Klebsiella pneumoniae (kpn*)) el m.o. responsable de la infección en el 5,3% de los casos, siete del total de las infecciones en artroplastia recogidas.

Estos cambios en la epidemiología local deben tener implicaciones en la profilaxis de la cirugía primaria de reemplazo articular y en la terapia empírica a utilizar en caso de infección periprorésica²¹.

Justificación de un tratamiento antibiótico empírico guiado por la sensibilidad local.

La EARSS (European Antimicrobial Resistence Surveillance System) ha realizado diversos estudios con la intención de analizar los fenotipos de sensibilidad-resistencia de varios tipos de bacterias, que pueden servir como indicadores de la evolución de las resistencias en diferentes países de Europa. Estos trabajos permiten establecer mapas de resistencia por países,

observándose variaciones muy sustanciales, que pueden explicarse por los diferentes hábitos de utilización de las distintas clases de antibióticos²².

Las variaciones de sensibilidad bacteriana también pueden observarse en diferentes estudios españoles, como el estudio SAUCE (Sensibilidad de los Antibióticos Usados en la Comunidad en España) ²³. Estos trabajos establecen que existen diferencias muy significativas en los datos de resistencias entre Comunidades Autónomas, provincias e incluso Servicios Clínicos dentro del mismo Hospital, que se corresponden entre otros factores con los diferentes patrones de uso de antibióticos.

En este sentido, en la Comunidad Valenciana se ha avanzado en el análisis epidemiológico de las resistencias, desde que se iniciara el funcionamiento de la RedMIVA (Red de Vigilancia Microbiológica de la Comunidad Valenciana) a comienzos del año 2006. Dicha red dispone de datos de antibiogramas acumulados de todos los microorganismos aislados en los Servicios de Microbiología de los hospitales de esta comunidad autónoma²⁴.

La instauración de tratamientos antibióticos empíricos puede y debe beneficiarse de los análisis epidemiológicos previos a partir de los resultados microbiológicos seleccionados para cada entorno de trabajo. Esto le permite al clínico disponer de los fenotipos de resistencias locales y poder realizar la elección del antibiótico más eficaz.

Soo Hoo et al²⁵, realizaron un estudio en pacientes de UCI afectados de neumonía asociada a ventilación mecánica, observándose que los microorganismos más frecuentemente identificados como agentes etiológicos eran *sau*, *aba y pae*. La elección del tratamiento antibiótico empírico más adecuado se basó en dos guías: una guía local de resistencias bacterianas (basada en un análisis retrospectivo previo), o las recomendaciones expresas de la American Thoracic Society, 2005 (ATS).

Una vez analizados los resultados de este estudio, se llegó a la conclusión de que para el diseño de los antibióticos empíricos más idóneos, fue necesario el análisis epidemiológico de los resultados microbiológicos en su entorno de trabajo, siendo las recomendaciones de la ATS solamente válidas para un grupo concreto de pacientes del total de los analizados. Por tanto, se demostró la utilidad de analizar la microbiología propia de cada centro para diseñar guías de tratamiento empírico; además de ser dinámicas, se actualizarían con las variaciones propias de los agentes etiológicos y sus fenotipos de sensibilidad a los diferentes antibióticos.

Desde 2010, la Guía Sanford de Terapeútica Antimicrobiana²⁶ y otros autores²⁷, recomiendan no pautar terapia antimicrobiana empírica en infección de prótesis articular (IHQ-I-COT) a

menos que la infección amenace la vida del paciente. Moran et al²⁸ concluyen que hay poca evidencia para guiar la terapia con antibióticos en infecciones de prótesis articular. Recomiendan, que si se opta por una terapia sistémica empírica, en espera de los resultados de los cultivos intraoperatorios, ésta debe ser guiada por la sensibilidad a los antimicrobianos de los microorganismos locales, y debe ser activa frente a estafilococos y una amplia gama de *BGN* nosocomiales multiresistentes. Los mismos autores²¹ describen el espectro microbiológico de la infección de prótesis articular, con la intención de orientar la elección de los antibióticos empíricos en este grupo de pacientes.

Sousa et al²⁹, destaca la necesidad de iniciar la terapia con antibióticos cuando se trata de infecciones en prótesis articulares sin haber identificado el patógeno subyacente. Bajo estas circunstancias no hay consenso respecto a qué antibiótico utilizar. El objetivo de su estudio es formular recomendaciones locales para el tratamiento empírico con antibióticos en infecciones de prótesis articulares, al describir el espectro microbiológico involucrado y el perfil de susceptibilidad a los antibióticos correspondientes.

Estrategias para aumentar el uso apropiado de antibióticos.

Guías terapéuticas en formato papel.

Entre las guías más usadas por los profesionales médicos podemos encontrar dos, una de ámbito internacional, "The Sanford guide to Antimicrobial Therapy"²⁶ y otra de ámbito nacional anual, titulada "Guía de Terapeútica Antimicrobiana" publicada por Mensa et al³⁰. Sin embargo, existen algunos inconvenientes para su utilización: pueden existir discrepancias entre ellas sobre las recomendaciones terapeúticas, y a su vez pueden no coincidir con las recomendaciones de otras sociedades científicas. Por otro lado, no siempre se adquieren las nuevas versiones de las guías en formato papel y en éstas no se contempla la epidemiología microbiológica de cada ámbito de trabajo, que puede variar de una zona a otra e incluso de un servicio a otro.

Guías terapéuticas en formato electrónico

Los sistemas computerizados de ayuda a la prescripción (SCAP) se podrían definir como sistemas de acceso a los conocimientos almacenados electrónicamente para ayudar a los pacientes, cuidadores y proveedores de servicios en la toma de decisiones sobre la salud. Los sistemas informáticos tienen el poder de salvar la brecha entre conocimiento y rendimiento mediante la organización y presentación de la información adecuada de modo que sean capaces de tomar decisiones clínicas con mayor precisión.

Hay varios ejemplos del uso de métodos basados en la probabilidad para el diagnóstico y tratamiento de enfermedades infecciosas.

MYCIN

Uno de los primeros sistemas expertos desarrollados en la medicina fue MYCIN (1972-1980), que fue desarrollada en Stanford en la década de 1970. El funcionamiento se basaba principalmente en un **motor de inferencia**, que manejaba una **base de conocimiento** de aproximadamente unas 500 reglas proporcionadas por médicos con gran experiencia (Figura 1).

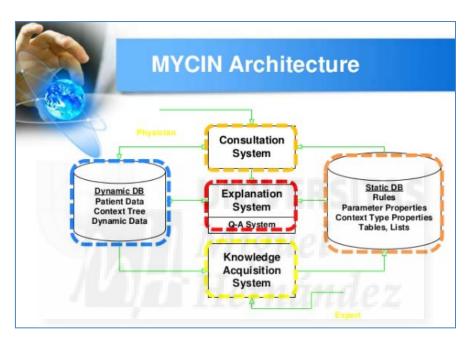


Figura 1. MYCIN. Esquema procesamiento Información.

El programa capturaba los **datos** (hechos) a partir de una serie de preguntas (como por ejemplo, ¿Tiene el paciente molestias en el pecho?, o ¿Ha sido operado el paciente anteriormente?), que usualmente respondía el médico del paciente (Figura 2). Tras este proceso, MYCIN mostraba la salida por pantalla (Figura 3), que consistía en una serie de posibles enfermedades (ordenadas por su probabilidad asociada), la explicación del por qué de cada uno de estos diagnósticos, y una serie de recomendaciones sobre el tratamiento a seguir³¹. Aunque el sistema nunca fue utilizado en la práctica clínica, debido al estado inmaduro de la infraestructura de la información clínica, fue el precursor de muchos sistemas expertos, e incluso tuvo un nuevo prototipo de sistema publicado en 1998, MYCIN II³².

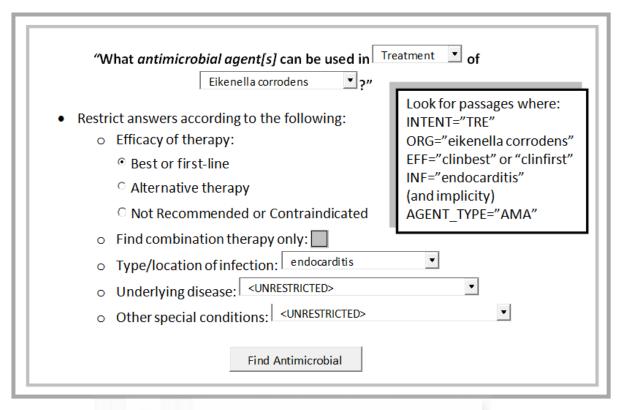


Figura 2. MYCIN II. Pantalla de introducción de datos.

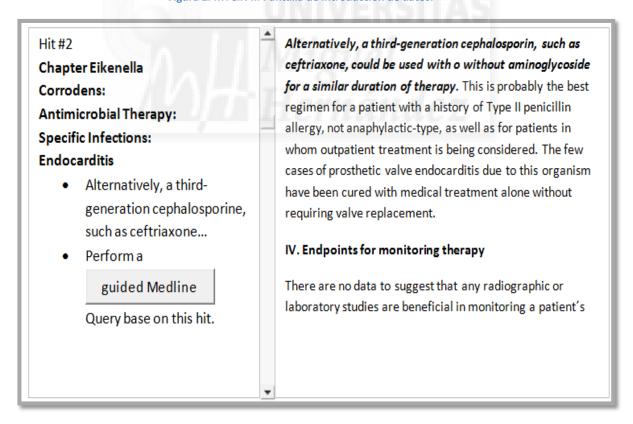


Figura 3. MYCIN II. Pantalla de resultado/recomendación para el ejemplo anterior.

HELP

El Asistente de antibióticos del Hospital LDS en UT, EE.UU, Sistema HELP (Health Evaluation Through Logical Processing) utiliza modelos predictivos desarrollados a partir de regresión logística paso a paso. Se trata de un programa informático específico que contempla parámetros demográficos, bioquímicos y clínicos, calculados para cada tipo de paciente. A partir de estos datos se formulan recomendaciones expresas sobre el tipo de antibiótico a utilizar, teniendo en cuenta la epidemiología local de los últimos seis meses o las variables de los últimos cinco años si se utilizan datos incompletos o no disponibles (Figura 4). Como se demostró en este estudio, se alcanzaron entre un 74% y un 100% de tratamientos empíricos adecuados³³.

Figura 4. Ejemplo de pantalla inicial del Sistema HELP.

El mismo grupo de trabajo demostró que gracias al uso de un sistema de ayuda a la prescripción durante un período de siete años (1988-1994), se produjo una reducción significativa de los gastos de farmacia y de las reacciones adversas a medicamentos, con una reducción general en el uso de antibióticos del 22%. Durante este período, la tasa de resistencia a los antimicrobianos se mantuvo estable, a pesar de un aumento en el uso de antibióticos de amplio espectro, que pasó del 24 al 47%. Las limitaciones de este estudio

fueron su **carácter observacional** y otros factores que pueden haber influido en estos cambios, pero es el único estudio que describe el impacto de un SCAP en el desarrollo de resistencia a antimicrobianos³⁴.

TREAT

Establecen un modelo en función de redes causales probabilísticas, en ellas la magnitud de las relaciones causales se dan como probabilidades condicionadas. El sistema usa datos clínicos y de laboratorio disponibles a las pocas horas de admitir al paciente al hospital. Entonces establece las recomendaciones (Figura 5) a partir de datos introducidos en el sistema experto, que se obtuvieron a través de revisiones sistemáticas de la literatura o a partir de grandes bases de datos locales³⁵.

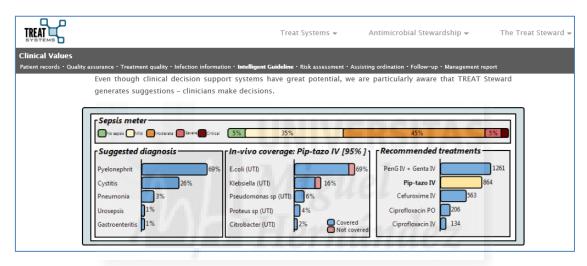


Figura 5. Sistema Experto TREAT. Recomendación de tratamiento antimicrobiano.

Los autores realizaron un ensayo aleatorio de tratamiento en tres hospitales en Alemania, Israel e Italia. Los resultados incluyeron duración de la estancia Hospitalaria y mortalidad a los 30 días. El ensayo fue precedido por un estudio observacional de cohortes que establece el impacto que TREAT podría tener si se utilizaba en la práctica clínica. En las infecciones con patógeno identificado, TREAT recomendó el uso de antibiótico en el 77% de los pacientes, mientras que los médicos prescribieron antibióticos en el 82% de los pacientes; el tratamiento empírico recomendado por TREAT, se consideró apropiado en el 70% de los pacientes, en comparación con el 57% de los tratamientos prescritos por los médicos. En el tratamiento aleatorizado mejoró significativamente la probabilidad de que los pacientes recibieran los antibióticos apropiados [odds ratio (OR) 1,48, IC 95% 1.03-2.11]. El gasto en antibióticos y la duración de la estancia se redujeron significativamente en dos de los tres centros. No hubo diferencias significativas en la mortalidad global a 30 días en pacientes con infección documentada (clínica y/o microbiológica) ³⁶.

Todas estas estrategias informáticas, tras definir un síndrome y una sospecha etiológica (m.o. más frecuente), tratan de ajustar el tratamiento antibiótico empírico, considerando los porcentajes de resistencia a antibióticos de los microorganismos aislados, en las distintas áreas hospitalarias (Figura 6).

Figura 6. Esquema de los elementos necesarios para la generación de una recomendación de terapia empírica.

WebResist.

Justificación

El programa WebResist, nace con su antecesor "ViResiST" en 1996 en la Comisión de Infecciosas del Hospital Vega Baja de Orihuela, a propuesta de Dr López. "ViResiST" es un acrónimo de "Vigilancia de la Resistencia por medio del Análisis de Series Temporales" y hace referencia al enfoque estadístico empleado en nuestra red de vigilancia y estudio de la relación entre uso de antibióticos y resistencia desde una perspectiva local.

Hasta los años noventa, el estudio de los factores que determinan la aparición de microorganismos resistentes, estaba basado en datos obtenidos a partir de modelos transversales, que trataban de relacionar de una manera estática y contemporánea, la variación de factores como: el uso de antibióticos, las prácticas de higiene Hospitalaria y la sobrecarga asistencial, por ejemplo, con la variación de la resistencia.

Este abordaje del problema de la resistencia, no tenía en cuenta el factor tiempo, necesario para que los cambios inducidos por los factores causales, modificaran la microbiota bacteriana y se manifestaran tangiblemente, en forma de pacientes infectados por microorganismos resistentes. Por tanto, este enfoque no recoge de forma adecuada el carácter dinámico de la evolución de la resistencia. Además, con frecuencia, se basan en estudios realizados lejos de nuestro ámbito de trabajo y reflejan situaciones que pueden ser muy diferentes a las nuestras.

Desde principios del año 2000, se inició el estudio longitudinal del problema incorporando el tiempo como dimensión a considerar. López-Lozano et al³⁷ publicaron el primer trabajo para el estudio de la relación dinámica entre uso de antibióticos y resistencia:

- En dicho trabajo se demostraba la relación dinámica entre uso de antimicrobianos y resistencia medidos en forma de series temporales a lo largo de varios años.
- Se pudo observar también que la relación detectada no era contemporánea, sino retardada, es decir, el estudio sugería que los cambios que pudiera originar el uso de antibióticos en un determinado lugar y sobre la población bacteriana local, necesitaba un tiempo, variable, para manifestarse. En aquel estudio se encontraron intervalos de entre uno y dos meses entre una serie y la otra (Figura 7).

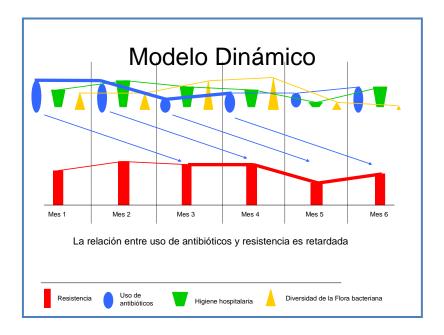


Figura 7. Modelo dinámico. La relación entre el uso de antibióticos y la resistencia es retardada.

Es casi intuitivo entender, que una serie temporal de cepas resistentes detectada en un momento y lugar determinado, tiene algún tipo de relación con ese mismo porcentaje observado meses antes. Esta correlación, si existe, se denomina autocorrelación, y suele detectarse cuando se estudian tanto la resistencia, como sus factores relacionados a lo largo del tiempo. La ausencia de independencia entre observaciones sucesivas de un mismo fenómeno, autocorrelación, impide su estudio por medio de técnicas clásicas de regresión lineal, que requieren de la independencia de los datos.

La complejidad del modelo, la gran cantidad de factores actuantes, la propia variabilidad temporal de los mismos y la interacción entre ellos; hace que el nivel mensual de **resistencia** no se comporte como un proceso determinista (como por ejemplo calcular la trayectoria de un misil), sino más bien como un proceso **estocástico** (como la predicción del tiempo atmosférico). Sin embargo, es posible construir un modelo para calcular la probabilidad de un determinado valor de la resistencia, basando nuestra estimación en los valores pasados y ajustándola a ciertos factores que sabemos que influyen. Un modelo de este tipo se denomina modelo de probabilidades ó modelo estocástico.

El Análisis de Series Temporales (AST), aplicado en dicho artículo³⁷, son un conjunto de herramientas estadísticas que proceden del mundo de la econometría, y están especialmente diseñadas para el estudio de los fenómenos estocásticos. Su objetivo es ajustar un modelo matemático a una serie temporal, con el propósito de describir sus características, estudiar los posibles factores que influyen en ella y predecir su comportamiento futuro, en base a la evolución histórica de sus valores. En este sentido, la sucesión ordenada en el tiempo de los

porcentajes mensuales de resistencia bacteriana a un antimicrobiano, constituye una serie temporal, que puede ser analizada y modelizada mediante técnicas de AST.

A diferencia de los métodos estadísticos usuales que asumen que los datos observados son realizaciones de variables aleatorias independientes, el AST toma en consideración las posibles relaciones existentes entre observaciones consecutivas. Esta metodología es apropiada cuando los datos son medidos repetidamente a intervalos iguales de tiempo. En 1976, Box y Jenkins describen un método práctico para construir modelos Autorregresivos, Integrados y de Medias Móviles (ARIMA); que analiza el comportamiento temporal de una variable como una función de sus valores previos, su tendencia (inercia) y sus cambios abruptos en el pasado próximo (medias móviles). Las técnicas de AST incorporan como variables explicativas el comportamiento pasado de la misma variable dependiente; además, también permiten incorporar otras variables independientes de forma contemporánea o retrasada. Esta es la razón por la que, en su momento, se propuso el uso de las técnicas de AST para el estudio de la resistencia y sus fenómenos relacionados. Desde entonces, más de una decena de artículos publicados en revistas de reconocido prestigio indexadas en PubMed Central® (http://www.ncbi.nlm.nih.gov/pubmed) ³⁸⁻⁴⁸ y al menos dos tesis doctorales ⁴⁹⁻⁵⁰, confirman la utilización de este planteamiento.

La gran cantidad de datos obliga a utilizar una herramienta informática especialmente diseñada para el proyecto. En concreto el programa Webresist:

- Efectúa de manera automática todas las transformaciones necesarias para los datos citados.
- Permite dibujar gráficos de las series temporales, escogiendo entre distintas alternativas: m.o., tipo de muestra, Hospital ó Primaria, Servicios, Zonas de Salud. También hace gráficos comparativos entre distintos hospitales y zonas de salud, tanto de uso de antibióticos como de resistencia.
- Permite guardar los datos de los gráficos anteriores para su posterior análisis estadístico
- Efectúa, de forma automática predicciones sobre la resistencia esperada de cada m.o. frente a cada antibiótico, así como del uso esperado de los antibióticos en cada ámbito; Servicios Hospitalarios ó Áreas de Salud. Estas predicciones automáticas se efectúan por medio de programas específicamente diseñados en el entorno de SCA (paquete estadístico de Análisis de Series Temporales).

Con los modelos obtenidos se estiman predicciones de las series de resistencia y del uso de antibióticos para los siguientes tres meses; obteniendo el nivel de resistencia de los m.o. y el uso esperado de cada tipo de antibiótico, globalmente o desagregado por servicios o unidades.

Esta paricularidad del programa WebResist, la vigilancia de la resistencia desde un punto de vista predictivo, ofrece la posibilidad de guiar a los facultativos clínicos en la elección más acertada del tratamiento antimicrobiano, con **información contemporánea a la prescripción**, y no basada en la observación retrospectiva de los datos.

Datos necesarios para participar en el proyecto

- Datos de Microbiología: El Laboratorio de Microbiología proporciona de cada muestra biológica remitida para análisis: Fecha Muestra, Tipo Muestra, Código del Paciente (respetando su intimidad), Servicio, Localidad, M.o. Identificado, CMI (Concentración Mínima Inhibitoria), Interpretación del Antibiograma (Sensible, Resistente, Intermedio)
- Datos de Uso de Antimicrobianos: Según el ámbito del estudio: La <u>Farmacia Hospitalaria</u>, proporciona el número de envases de cada antibiótico utilizado en el hospital: Fecha, Código Especialidad Farmacéutica, Servicio Receptor, Número de Envases Dispensados. Igualmente las <u>Farmacias de Atención Primaria de Salud</u>, a través del Sistema Público de Seguridad Social proporciona la siguiente información, por cada receta de antibiótico dispensada: Número de Envases Recetados, Fecha, Código Especialidad Farmacéutica, Localidad.
- Cálculo de Tasas de Uso de Antibióticos: Los datos citados arriba sobre uso de antimicrobianos, son transformados automáticamente, para calcular tasas de densidad de uso: Dosis Diaria Definida por 1000 pacientes-día ó habitantes-día dependiendo del ámbito del estudio (DDD/1000 estancias ó hab-día). Para calcular las tasas citadas, nos hemos basado en las DDD definidas por el Nordic Council of Medicine.
- Datos Demográficos: A nivel Hospitalario (el Servicio de Admisión) para cada paciente ofrece información sobre: Código del Paciente (respetando su intimidad), Fecha Ingreso, Alta, Servicio, Diagnóstico al Alta (Código Clasificación Internacional de Enfermedades). Además proporciona información agregada del número de estancias hospitalarias.

Funcionamiento del programa

Los datos procedentes de Microbiología, Farmacia y Admisión de los diversos Centros participantes, son enviados a una base de datos en un servidor central, donde se efectúan todas las transformaciones necesarias para calcular las series temporales, de manera automática. SCA exporta los resultados a una hoja de cálculo a partir de la cual se generan los gráficos (Figura 8).

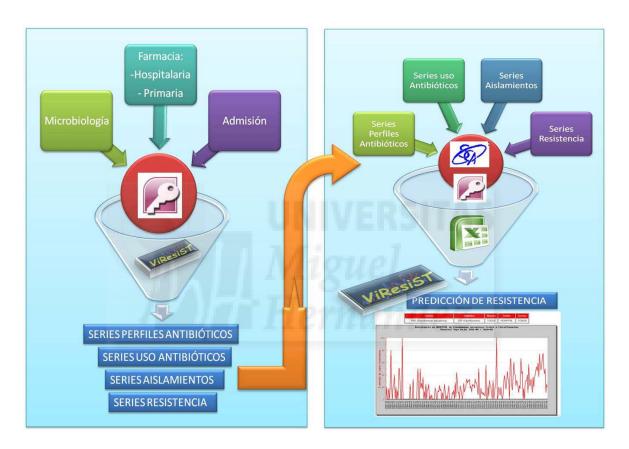


Figura 8. Esquema de funcionamiento de ViResiST.

Para cada una de las series se ajusta un modelo ARIMA, el resultado de dichos modelos es una tabla, que recoge la **predicción de resistencia esperada** para el trimestre corriente en forma de porcentaje (Figura 9 y 10). El programa permite generar gráficos correspondientes a las series temporales de los niveles de resistencia y uso de antibióticos (Figura 11).

Figura 9. WebResist: Pantalla de consulta de los datos de resistencia, uso de antibióticos y resistencia esperada.

Figura 10. Resistencia esperada de S. aureus a Ciprofloxacino COT-HVB.

Figura 11. WebResist: Evolución gráfica de la resistencia de Staphylococcus aureus (sau) a Ciprofloxacino.

También es posible combinar en un mismo gráfico la evolución del porcentaje de resistencia y el uso de un antibiótico, de forma que se puede **comparar la evolución de los porcentajes de resistencia** y uso de antibióticos observados entre distintos hospitales, en un mismo hospital o un área de salud, de forma global o bien desagregada por servicios o unidades. El examen visual permite apreciar la concomitancia de la evolución de estos dos parámetros antes de proceder al análisis estadístico.

En la versión actual de la aplicación (www.WebResist.org), esta información se obtiene a partir de la totalidad de las muestras disponibles. En un futuro próximo pretendemos utilizar datos del diagnóstico clínico de cada paciente. Esta información debe permitir producir series temporales de los microorganismos más frecuentes para cada enfermedad infecciosa. Así, conociendo el porcentaje de resistencia esperado y la distribución de bacterias por tipo de muestra, podremos elaborar guías de terapia antimicrobiana empírica basadas en la ecología local de un hospital o centro de salud determinado.

HIPÓTESIS

Los cambios en la epidemiología local deben tener implicaciones en la terapia empírica a utilizar en caso de infección. El nivel de resistencia de los microorganismos a los antimicrobianos es un fenómeno estocástico, que se presenta de forma diferente entre distintos hospitales y que varía con el paso del tiempo dentro de un mismo hospital.

El **programa WebResist** predice de forma fiable el nivel de resistencia local a través de técnicas ARIMA de análisis de series temporales. Con este trabajo, se pretende **establecer la metodología** para poner a disposición del clínico esta información (informatizada, automatizada y local) extraída a partir del programa, **para la elección del tratamiento antibiótico empírico más activo** en una patología determinada, en este caso relacionada con la especialidad de Cirugía Ortopédica y Traumatología.

La información proporcionada por el programa WebResist, es una herramienta válida para la elaboración de guías terapeúticas antimicrobianas y aumenta la eficacia y efectividad de las recomendaciones de antibioterapia empírica en la práctica clínica Diaria.

OBJETIVOS

Objetivo general.

Establecer la metodología para poner a disposición del clínico información extraída a partir de una herramienta informatizada, automatizada y local (www.WebResist.org), para la elección del tratamiento antibiótico empírico más eficaz en infecciones de herida quirúrgica sobre implante en Cirugía Ortopédica y Traumatología.

Objetivos específicos.

- Observar si hay cambios en la epidemiología local que causa el síndrome a estudio, dentro de un mismo servicio con el paso del tiempo.
- 2. Hallar **factores de riesgo de infección** por bacilos Gram negativos (**BGN**) e infecciones polimicrobianas (**PM**).
- Observar si hay cambios en la epidemiología que causa el síndrome a estudio según la localización geográfica.
- Observar si hay cambios en el nivel de resistencia de los microorganismos más frecuentes que causa el síndrome a estudio entre dos centros europeos.
- 5. Elaboración y eficacia de una recomendación de terapia empírica.
- 6. Puesta en marcha, efectividad y adhesión a la recomendación.
- 7. Hallar **factores predisponentes de resolución** de infección.

MATERIAL Y MÉTODO

Definición de conceptos.

- Infección Polimicrobiana: en la literatura médica hay autores que consideran polimicrobianas, a aquellas infecciones en las que intervienen más de una especie patógena⁵¹. En esta Tesis, consideraremos infección PM aquella en la que estén implicados m.o. Gram negativos y Gram positivos o infecciones en las que estuvieran implicados *Enterococcus y Staphylococcus* o *Enterobacteriaceae* y *No-Enterobacteriaceae* (Figura 12).

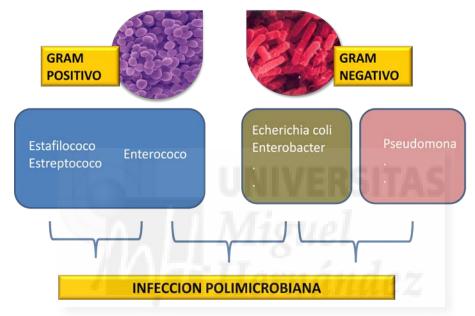


Figura 12. Esquema sobre el concepto aplicado en esta tesis Doctoral para otorgar el apelativo de infección polimicrobiana

- Cirugía índice: La indicación de la cirugía que cursó con complicación de infección, o cirugía origen de la infección. La podemos clasificar:
 - o En función del la patología que originó la indicación:
 - Cirugía Electiva: aquella secundaria a indicaciones de cirugía ortopédica.
 Principalmente patología degenerativa de cadera y rodilla.
 - Cirugía No Electiva: cirugía secundaria a fractura.
 - En función del tipo de implante con que se trató:
 - Artroplastia: primaria, de revisión o secundaria a fractura.
 - Osteosíntesis (placa, tornillo o Agujas): secundaria a fractura cerrada o abierta o secundaria a indicación de cirugía ortopédica (artrodesis, osteotomía...).

- Tipos de Infección según Tsukayama⁵²:
 - Agudas (A) o postquirúrgicas precoces: se manifiestan dentro de las primeras 4 semanas postquirúrgicas. Signos locales de infección aguda: fiebre, calor, rubor y tumefacción.
 - Agudas Hematógenas (AH): implante que comienza con clínica de infección aguda pasadas las primeras 4 semanas postquirúrgicas.
 - Crónicas (C) o tardías: manifestación clínica pasada las primeras 4 semanas.
 Clínica más latente, compatible en ocasiones con clínica de aflojamiento aséptico. Fístula frecuente.
 - Cultivo intraoparatorio positivo (CIOP). En el contexto de una cirugía de recambio protésico por aflojamiento en principio aséptico.
- **Eficacia:** hace referencia al impacto o efecto de una medida, si se hubiera llevado a cabo en condicionas óptimas.
- **Efectividad:** medimos el impacto de la acción llevada a cabo bajo condiciones habituales de práctica médica.
- Resolución del cuadro clínico: la resolución de la infección, con o sin necesidad de recambio, sin recidiva tras al menos 1 año de la última cirugía y que no esté en tratamiento antibiótico supresivo.
- **No Resolución del cuadro clínico:** aquellos pacientes en tratamiento antibiótico supresivo, o en los que no se logró "salvar la articulación" (Girdlestone, espaciador como tratamiento definitivo o artrodesis), o cuyo fallecimiento tuvo relación con la infección.

Ámbito de Estudio.

- Departamento de Salud de Orihuela: con una población de 198.161 habitantes, dividida en 18 Zonas de Salud; en ella se encuentra el Hospital Vega Baja que es un Hospital General de 400 camas (funcionantes 340) con las especialidades médico-quirúrgicas habituales, UCI y Pediatría.
- Región Grampiana, de Escocia: Región sanitCOT-ARIa de Escocia con 550.000 habitantes, en el cual existen 8 Local Health Care Co-operatives (LHCC), estructuras de Atención Primaria, similares a nuestras Zonas y Áreas de Salud. En esta Región está ubicado el Grampian Hospital University Trust que engloba al **Aberdeen Royal Infirmar** (Hospital médico-quirúrgico de 1200 camas), el Royal Aberdeen Children Hospital (Hospital pediátrico), el Aberdeen Maternity Hospital (Hospital maternal), el Woodend Hospital (Hospital Traumatológico y Geriátrico), el Dr Gray's Hospital (Hospital

Comarcal Médico-Quirúrgico) y 17 pequeños hospitales llamados comunitarios (la mayoría de ellos dedicados a geriatría).

Población a estudio.

Criterios de inclusión: Pacientes con:

- Cultivo/s positivo/s (uno si el m.o. es patógeno y tres si el m.o. se considera saprofito),
 correspondiente a tipo de muestra (absceso, exudado o herida).
- Código de diagnóstico de infección de herida quirúrgica sobre implante, siendo los códigos revisados:
 - En el Hospital Vega Baja (COT-HVB), el 996.66-996.67 (infección/inflamación por prótesis interna articular) de la 9ª revisión de la Clasificación Internacional de Enfermedades, también conocida como CIE-9.
 - En la los Hospitales de la Región Grampiana principalmente Aberdeen Royal Infirmary y Wooden Hospital (COT-ARI), los códigos correspondientes a complicación de prótesis articular o fijación interna ósea o articular: T84.5, T84.6, T84.7 y T84.9 de la 10ª revisión de la Clasificación Internacional de Enfermedades, también conocida como CIE-10.
- Intervenidos previamente en los Servicios de Traumatología y Ortopedia del Departamento de salud de Orihuela en España o la Región Grampiana en Escocia.

Criterios de exclusión.

- Pacientes con diagnóstico de Infecciones de herida quirúrgica con implante con cultivo negativo.
 - Las infecciones crónicas conocidas procedentes de otra área de salud.

Definiendo el tipo de muestra y el código diagnóstico, localizamos los pacientes con el síndrome a estudio: infección de herida quirúrgica con implante en COT (IHQ-I-COT).

Diseño para cada uno de los objetivos.

Para cada uno de los objetivos específicos planteados diseñaremos un tipo de estudio atendiendo a: la finalidad del estudio, la secuencia temporal, la influencia del investigador y la relación cronológica de los hechos (Figura 13)

Figura 13. Esquema para el diseño de un estudio.

Así los diseños planteados son los siguientes (Tabla I):

- 1. Observar si hay diferencias en el m.o. más frecuente que causa el síndrome a estudio dentro de un mismo servicio con el paso del tiempo. Para ello diseñamos un estudio observacional descriptivo retrospectivo:
 - a) Observacional: dado que el evento (IHQ-I-COT) ya ha ocurrido y no influimos en él.
 - **b) Descriptivo:** la finalidad de esta parte del estudio es describir el m.o. más frecuente causante de IHQ-I-COT en COT-HVB y su evolución en el tiempo.
 - c) Retrospectivo: porque la recolección de los datos se realiza después de ocurrir el suceso a estudio (IHQ-I-COT).
- 2. Tratamos de localizar los factores de riesgo que puedan explicar la oscilación en las infecciones por BGN y PM en la serie del objetivo 1. Para ello diseñamos un estudio de casos-controles.
 - a) Casos-controles: dividimos el grupo de pacientes con IHQ-I-COT en función del resultado, es decir si está infectado por un BGN o es una infección PM. Después analizamos una serie de factores de riesgo de infección recogidos en la base de datos (entre ellos, tipo de infección según Tsukayama y tipo de cirugía índice (Electiva o no)), para que el análisis estadístico determine si está o no asociado a la variable resultado.

- b) **Retrospectivo:** para los años 2003 a 2012 en Orihuela. Por definición el análisis de los datos se realiza después de ocurrir el suceso a estudio.
- c) **Longitudinal:** dado que existe un tiempo entre variables y por tanto puede establecerse una secuencia temporal.
- d) **Observacional:** dado que el evento, infección por BGN e infección PM, ya ha ocurrido y no influimos en él.
- e) **Analítico:** dado que la finalidad del estudio es establecer una relación causaefecto. (Factor de riesgo-infección por BGN o PM).
- Observar si hay diferencias en el m.o más frecuente que causa el síndrome a estudio entre dos centros europeos con el paso del tiempo. Para ello diseñamos un estudio ecológico observacional descriptivo retrospectivo.
 - a) Ecológico: se analizan los datos de dos grupos poblacionales que se distinguen por pertenecer a diferentes áreas geográficas. (El grupo de pacientes con IHQ-I-COT en COT-HVB y el grupo en Aberdeen). Comparamos el m.o. más frecuente entre las dos poblaciones durante un mismo período de tiempo y dentro de la misma población anualmente.
 - b) **Observacional:** dado que el evento (IHQ-I-COT) ya ha ocurrido y no influimos en él.
 - c) Descriptivo: la finalidad de esta parte del estudio es describir el m.o. más frecuente causante de IHQ-I-COT en cada una de las poblaciones y su evolución.
 - d) Retrospectivo: porque la recolección de los datos se realiza después de ocurrir el suceso a estudio (IHQ-I-COT).
- 4. Observar si hay diferencias en el nivel esperado de resistencia de los m.o. más frecuentes que causa el síndrome a estudio entre dos centros europeos. Para hallar el nivel esperado de resistencia usamos una herramienta informatizada automatizada y local para la extracción de datos y la construcción de las series temporales (WebResist), seguida de un estudio comparativo observacional de las Series Temporales.

- a) Observacional: dado que el evento (nivel esperado de resistencia para el período correspondiente a este punto 2007-2012) ya ha ocurrido y no influimos en él.
- b) Descriptivo: la finalidad de esta parte del estudio es describir y comparar los niveles de resistencia de los m.o. más frecuentes causantes de IHQ-I-COT en cada una de las poblaciones y su evolución; a través del análisis visual de los gráficos correspondientes a las series temporales de los niveles de resistencia.
- 5. Establecer una recomendación de antibioterapia empírica para el síndrome infección de herida quirúrgica con implante en COT (IHQ-I-COT), y comprobamos su sensibilidad según antibiograma frente a la antibioterapia pautada en ese momento. Para ello diseñamos un estudio cohortes retrospectivo (analítico, longitudinal, observacional).
 - a. Cohortes: en ambos hospitales se divide el grupo de pacientes con IHQ-I-COT en función de si hubiera seguido o no la recomendación de terapia empírica, en el caso de que se hubiera puesto en marcha el proyecto y hubiera existido la recomendación. Entendiendo como "seguir la recomendación" al hecho de haber pautado al menos uno de los dos ATB de la combinación propuesta. Después se comprueba la variable resultado: sensibilidad a la antibioterapia empírica pautada según el antibiograma del m.o. aislado.
 - b. Retrospectivo (histórico): para los años 2008 a 2010 en Aberdeen y 2008 a 2010 en Orihuela. Porque la recolección de los datos se realiza después de ocurrir el suceso a estudio, la prescripción de antibioterapia empírica ya se ha realizado.
 - c. Longitudinal: dado que existe un tiempo entre variables (prescripción de tratamiento empírico, acierto según antibiograma) y por tanto puede establecerse una secuencia temporal.
 - d. **Observacional:** dado que el evento, prescripción de antibioterapia, ya ha ocurrido y no influimos en él.
 - e. **Analítico:** dado que la finalidad del estudio es establecer una relación causa-efecto. (Prescripción-acierto).
- 6. Poner en marcha dicha guía y comprobar la efectividad de la recomendación empírica respecto al tratamiento antimicrobiano definitivo según antibiograma y el grado de

adhesión de los facultativos prescriptores. Para ello planteamos un estudio cohortes prospectivo (analítico, longitudinal, observacional).

- a. Cohortes: dividimos el grupo de pacientes del COT-HVB con IHQ-I-COT en función de si siguió o no la recomendación de terapia empírica, puesta en marcha mediante Sesión General Hospitalaria el 30-4-2010, por la Comisión de Infecciosas del Hospital Vega Baja. Entendiendo como "seguir la recomendación" al hecho de haber pautado al menos uno de los dos ATB de la combinación propuesta. Después se comprueba la variable resultado: sensibilidad a la antibioterapia empírica pautada según el antibiograma del m.o. aislado.
- b. Prospectivo: para los años 2010 a 2014 en Orihuela. Porque la recolección de los datos se realiza de forma contemporánea a la prescripción de antibioterapia empírica.
- c. Longitudinal: dado que existe un tiempo entre variables (prescripción de tratamiento empírico, acierto según antibiograma) y por tanto puede establecerse una secuencia temporal.
- d. **Observacional:** dado que el evento, prescripción de antibioterapia es llevada a cabo por los facultativos, y no influimos en ella.
- e. **Analítico:** dado que la finalidad del estudio es establecer una relación causa-efecto. (Prescripción-acierto).
- Tratamos de localizar los factores que puedan estar asociados a resolución del cuadro clínico, en la serie de casos del Objetivo 6. Para ello diseñamos un estudio de casoscontroles.
 - a) Casos-controles: dividimos el grupo de pacientes con IHQ-I-COT en función del resultado, es decir si se ha logrado resolución del cuadro clínico o no. Después analizamos una serie de factores recogidos en la base de datos, entre ellas la sensibilidad a tratamiento antibiótico empírico, para que el análisis estadístico determine si está o no asociado a la variable resultado.
 - b) **Retrospectivo:** para los años 2010 a 2014 en Orihuela. Por definición el análisis de los datos se realiza después de ocurrir el suceso a estudio.
 - c) **Longitudinal:** dado que existe un tiempo entre variables y por tanto puede establecerse una secuencia temporal.

- d) **Observacional:** dado que el evento, resolución o no del cuadro clínico, ya ha ocurrido y no influimos en él.
- e) **Analítico:** dado que la finalidad del estudio es establecer una relación causa-efecto. (Factor de riesgo-Resolución del cuadro clínico).

Período a estudio para cada uno de los objetivos.

El período de estudio es distinto para cada uno de los objetivos específicos planteados:

- Para verificar el objetivo específico 1, es decir, que hay diferencias en el m.o. más frecuente que causa el síndrome a estudio dentro de un mismo servicio con el paso del tiempo. Consideraremos el máximo número de aislamientos posibles que cumplan los criterios de inclusión en el período de 10 años comprendido entre 2003 y 2012 en el Hospital Vega Baja.
- 2. Para el estudio del objetivo 2, es decir, localizar factores de riesgo de infección relacionados con infecciones por BGN o PM. Consideramos los pacientes y el período a estudio del Objetivo 1.
- 3. Para verificar el objetivo 3, es decir, que hay diferencias en el m.o. más frecuente que causa el síndrome a estudio entre dos centros europeos con el paso del tiempo. Consideraremos el máximo número de aislamientos posibles que cumplan los criterios inclusión en el período de 5 años comprendido entre 2007 y 2012 en los ámbitos de estudio citados anteriormente (Hospital Vega Baja en España (COT-HVB) y ARI y Woodend Hospital en Escocia (COT-ARI)).
- 4. Para verificar el objetivo 4, es decir, que hay diferencias entre el nivel esperado de resistencia de los microorganismos (m.o.) más frecuentes que causa el síndrome a estudio entre dos centros europeos. Consideraremos las predicciones de resistencia, realizadas a través del programa WebResist, para los m.o. más frecuentes causantes de IHQ-I-COT en el período de 5 años comprendido entre 2007 y 2012 en los ámbitos de estudio citados anteriormente (COT-HVB y COT-ARI).
- 5. Para establecer una recomendación de antibioterapia empírica para el síndrome infección de herida quirúrgica con implante en COT (IHQ-I-COT), y comprobar su eficacia según antibiograma frente a la antibioterapia pautada en ese momento. Consideramos los m.o. más frecuentes causantes de infección y las predicciones de

resistencia obtenidas en los puntos anteriores para el período comprendido entre **2008 y 2010** en los ámbitos de estudio citados anteriormente (**COT-HVB y COT-ARI**).

- 6. La puesta en marcha de la guía, la comprobación de la efectividad de la recomendación empírica respecto al tratamiento antimicrobiano definitivo según antibiograma y el grado de adhesión de los facultativos prescriptores, se llevó a cabo en el Hospital Vega Baja en el período de 4 años comprendido desde abril de 2010 hasta abril de 2014.
- 7. Para el estudio del objetivo 2, es decir, localizar los factores que puedan estar asociados a resolución del cuadro clínico. Consideramos los pacientes y el período a estudio del Objetivo 6.

Diagrama de flujo.

Las guías más habitualmente usadas^{26, 30} y los programas para optimización racional del uso de antibióticos (PROA) nacionales e internacionales⁵³, recomiendan conocer el espectro microbiológico local que origina un síndrome, para evitar seguir directrices basadas en datos obtenidos fuera de nuestro ámbito y de forma no contemporánea al momento de la prescripción.

Los Objetivos específicos 1 y 3, están orientados hacia la observación de las diferencias entre el m.o. más frecuente que causa un síndrome entre dos áreas determinadas, y el carácter dinámico del mismo dentro de un área determinada y entre dos áreas distintas (Figura 14).

Mediante el Objetivo 4, observamos si hay diferencias entre el patrón de resistencia esperado de los m.o. más frecuentes que causan un síndrome entre dos áreas determinadas. A partir de la información extraída de una herramienta informatizada, automatizada y local (www.WebResist.org).

Figura 14. Diagrama de Flujo de esta Tesis Doctoral.

En el Objetivo 5, describimos el proceso para la elaboración de una **recomendación** de antibioterapia empírica para el síndrome infección de herida quirúrgica con implante en COT (IHQ-I-COT), y comprobamos su sensibilidad según antibiograma frente a la antibioterapia pautada en ese momento. Esto es medir la **eficacia** de la recomendación, es decir, hace referencia al impacto o efecto de esa recomendación, si se hubiera llevado a cabo en condicionas óptimas, esto sería por ejemplo con una grado de adhesión de los facultativos prescriptores del 100%.

Finalmente, en el Objetivo 6, aplicamos la recomendación elaborada, y comprobamos la sensibilidad del microorganismo según antibiograma. Esto es medir la **efectividad** de la recomendación, es decir, medimos el impacto de la acción (puesta en marcha de la recomendación) llevada a cabo bajo condiciones habituales de práctica médica, por lo que también medimos el grado de adhesión de los facultativos prescriptores.

Análisis de los datos en cada Objetivo.

Objetivo 1. Cambios en la epidemiología local con el paso del tiempo.

Elaboramos tablas comparativas de distribución de frecuencias absolutas y relativas para los años 2003-2012 en el Hospital Vega Baja. Además de las distribuciones de frecuencias relativas, se presentan gráficas de distribución de los agentes etiológicos, para facilitar el análisis de la tendencia en el mismo centro con el paso del tiempo.

Calculamos el **coeficiente de correlación de Pearson**, que es una medida de la relación lineal entre dos variables aleatorias cuantitativas: incidencia anual de infecciones por BGN y número de osteosíntesis anual. A diferencia de la covarianza, la correlación de Pearson es independiente de la escala de medida de las variables. El valor del índice de correlación varía en el intervalo [-1,1]:

- i. Si r = 1, existe una correlación positiva perfecta. El índice indica una dependencia total entre las dos variables denominada relación directa: cuando una de ellas aumenta, la otra también lo hace en proporción constante.
- ii. Si 0 < r < 1, existe una correlación positiva.
- iii. Si r = 0, no existe relación lineal. Pero esto no necesariamente implica que las variables son independientes: pueden existir todavía relaciones no lineales entre las dos variables.
- iv. Si -1 < r < 0, existe una correlación negativa.
- v. Si r = -1, existe una correlación negativa perfecta. El índice indica una dependencia total entre las dos variables llamada relación inversa: cuando una de ellas aumenta, la otra disminuye en proporción constante.

Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrobianas.

Tras la revisión de la literatura se procedió a la elaboración de la base de datos, donde se recogieron aquellos factores relacionados con el paciente y con la cirugía que podrían influir en la etiología de la infección (Figura 15).

Primero procedimos a un análisis bivariante, esto es, analizar las relaciones de las variables dependientes (infección por BGN o infección PM) con cada una de las variables independientes (factores de riesgo), modificadoras de efecto y confundentes, tomadas "una a una".

- a. La variable categórica con más de dos categorías, tipo de infección según Tsukayama, antes de introducirlas en el modelo, tomamos la decisión de reducir sus dimensiones, agrupando categorías hasta "dicotomizarla".
- La variable cuantitativa continua, edad, fue dicotomizada en función del valor de la media (<64años y >64 años).
- c. El contraste se llevó a cabo través de una *Chi cuadrado*. Entonces:
 - i. Evaluamos la fuerza de asociación mediante la Odds ratio (OR) ó el Riesgo Relativo (RR).
 - ii. Analizamos la precisión del análisis mediante los intervalos de confianza de las medidas de asociación (OR ó RR)
 - iii. Comprobamos la significación estadística del contraste asociada al estadístico.

Para identificar los factores de riesgo de infección por BGN y PM, realizamos un modelo de Regresión Logística binaria, método adelante-razón de verosimilitudes. Método automático por pasos, hacia delante, que utilizará la prueba de la Razón de Verosimilitud para comprobar las covariables a incluir o excluir.

Por último, el programa nos ofrece las variables que dejará en la ecuación, sus coeficientes de regresión con sus correspondientes errores estándar (ET), el valor del estadístico de Wald para evaluar la hipótesis nula (Pi=0), la significación estadística asociada, y el valor de la OR (exp (B)) con sus intervalos de confianza.

Factores Relacionados con el paciente

>64 a, IMC>30, Linfopenia, Albumina <3,5, FA, IRC, DM, fumador, bebedor...

Factores Relacionados con la Cirugía

PreQx: Electiva o 2ª a Fractura IntraQx: Tipo Trtº, Tiempo Qx, PostQX: Transfusión...

Factores Relacionados con Infección

Aguda: Aguda o Aguda Hematógena Crónica: Crónica o CIOP

Figura 15. Factores de riesgos de infección recogidos en la base de datos.

Objetivo 3. Cambios en la epidemiología local según la localización geográfica.

Elaboramos tablas comparativas de distribución de frecuencias absolutas y relativas para los años 2007-2012 en el Hospital Vega Baja y 2007-2012 en ARI y Wooden, según los m.o. más frecuentemente aislados. Además de las distribuciones de frecuencias relativas, se presentan gráficas de distribución de los agentes etiológicos, para facilitar el análisis de la tendencia en el mismo centro con el paso del tiempo y la comparación de frecuencias entre ambos ámbitos. El contraste se llevó a cabo través del test de la *Chi cuadrado*.

- i. Evaluamos la fuerza de asociación mediante la OR ó el RR
- ii. Analizamos la precisión del análisis mediante los intervalos de confianza de las medidas de asociación (OR ó RR)
- iii. Comprobamos la significación estadística del contraste asociada al estadístico.

Objetivo 4. Cambios en el nivel de resistencia según la localización geográfica.

Se utilizó la representación gráfica del porcentaje estimado mediante técnicas de Análisis de Series Temporales (Tomo Anexos: <u>ANEXO I</u>) de resistencia a los antimicrobianos usados más frecuentemente en COT y se comparó con la representación gráfica del porcentaje observado de resistencia en esos años consultado el programa Webresist.

Objetivo 5. Elaboración y eficacia de una terapia empírica.

En ambos hospitales se divide el grupo de pacientes con IHQ-I-COT en función de si hubiera seguido o no la recomendación y después se comprueba la variable resultado: sensibilidad a la antibioterapia empírica pautada según el antibiograma. El contraste se llevó a cabo través de una Chi cuadrado para cada uno de los casos. Entonces:

- i. Evaluamos la fuerza de asociación mediante la OR ó el RR
- ii. Analizamos la precisión del análisis mediante los intervalos de confianza de las medidas de asociación (OR ó RR)
- iii. Comprobamos la significación estadística del contraste asociada al estadístico.

Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación.

En Orihuela, centro donde se puso el marcha la recomendación, se divide el grupo de pacientes con IHQ-I-COT en función de si siguió o no la recomendación, entendiendo como "seguir la recomendación" al hecho de haber pautado al menos uno de los dos ATB de la combinación propuesta y después se comprueba la variable resultado: sensibilidad a la antibioterapia empírica pautada según el antibiograma. El contraste se llevó a cabo través de una Chi cuadrado para cada uno de los casos. Entonces:

- i. Evaluamos la fuerza de asociación mediante la OR ó el RR
- ii. Analizamos la precisión del análisis mediante los intervalos de confianza de las medidas de asociación (OR ó RR)
- iii. Comprobamos la significación estadística del contraste asociada al estadístico.

Para el análisis descriptivo del grado de adhesión, elaboramos una tabla comparativa de distribución de frecuencias absolutas y relativas para los años 2010-2014 en el Hospital Vega Baja. Finalmente, se realiza la representación gráfica de la adhesión para facilitar el análisis de la tendencia en el mismo centro con el paso del tiempo.

Objetivo 7. Factores predisponentes de resolución de la infección.

Tras la revisión de la literatura se procedió a la elaboración de la base de datos, donde se recogieron aquellos factores relacionados con el paciente y con la cirugía que podrían influir en el resultado final (Figura 16).

Primero procedimos a un análisisbivariante, esto es, analizar las relaciones de la variable dependiente (resolución de la infección) con cada una de las variables independientes.

- d. La variable categórica con más de dos categorías, tipo de infección según Tsukayama, antes de introducirlas en el modelo, tomamos la decisión de reducir sus dimensiones, agrupando categorías hasta "dicotomizarla".
- e. La variable **cuantitativa continua**, edad, fue dicotomizada en función del valor de la media (<60años y >60 años).
- f. El contraste se llevó a cabo través de una *Chi cuadrado*. Entonces:
 - iv. Evaluamos la fuerza de asociación mediante la OR ó el RR
 - v. Analizamos la precisión del análisis mediante los intervalos de confianza de las medidas de asociación (OR ó RR)
 - vi. Comprobamos la significación estadística del contraste asociada al estadístico.

Finalmente, para identificar factores predisponentes a la resolución del cuadro clínico, realizamos un modelo de Regresión Logística binaria, método adelante-razón de verosimilitudes. Método automático por pasos, hacia delante, que utilizará la prueba de la Razón de Verosimilitud para comprobar las covariables a incluir o excluir. Por último, el programa nos ofrece las variables que dejará en la ecuación.

Factores Relacionados con el paciente

>64 a, IMC>30, Linfopenia, Albumina <3,5, FA, IRC, DM, fumador, bebedor...

Factores Relacionados con la Cirugía

PreQx: Electiva o 2ª a Fractura IntraQx: Tipo Trtº, Tiempo Qx, PostQX: Transfusión...

Factores Relacionados con Infección

Tipo de infección, Etiología de la infección (BGN, PM) Sensibilida a terapia empírica Realización de EMO

Figura 16. Factores recogidos que pueden influir en la resolución del cuadro clínico.

Tabla I. Diseño metodológico para cada uno de los objetivos.

Nº	Objetivo	Ámbito	Período	Tipo de Estudio	Diseño	Análisis de los datos
1	Cambios espectro	COT-	2003-	Observacional	Observacional,	Descriptivo.
	m.o. con el paso del	HVB	2012	Descriptivo	Descriptivo,	Correlación de Pearson
	tiempo				Retrospectivo	
2	Facts Riesgo de	COT-	2003-	Casos-Controles	Observacional,	Regresión Logística,
	infección por BGN y	HVB	2012		Longitudinal,	Odds Ratio.
	PM				Analítico,	
					Retrospectivo	
3	Cambios espectro	COT-	2007-	Ecológico	Observacional,	Descriptivo.
	m.o. según la	HVB-	2012		Descriptivo (usa	Tablas de contingencia
	localización	COT-			datos agregados	(Chi Cuadrado).
	geográfica	ARI			de la población),	
					Retrospectivo	
4	Cambios en el nivel	COT-	2007-	Observacional	Observacional	Descriptivo,
	de resistencia con el	HVB-	2012	Descriptivo	Descriptivo	Comparación Gráfica.
	paso del tiempo en	COT-				
	dos localizaciones	ARI				
	geográficas			ANIME.	REJII/A	
5	Elaboración y Eficacia	COT-	2008-	Cohortes	Observacional,	Tablas de contingencia
	de una	HVB-	2010	Retrospectivo	Longitudinal,	Chi Cuadrado. Riesgo
	recomendación de	СОТ-			Analítico,	Relativo.
	terapia empírica	ARI		Herni	Retrospectivo	
6	Puesta en marcha,	COT-	2010-	Cohortes	Observacional,	Tablas de contingencia
	Efectividad y Grado	HVB	2014	Prospectivo	Longitudinal,	Chi Cuadrado. Riesgo
	de adhesión a la				Analítico,	Relativo.
	recomendación.				Prospectivo	
7	Localización de los	COT-	2010-	Casos-Controles	Observacional,	Regresión Logística,
	factores	HVB	2014		Longitudinal,	Odds Ratio
	predisponentes a la				Analítico,	
	resolución del cuadro				Retrospectivo	

RESULTADOS

Objetivo 1. Cambios en la epidemiología local con el paso del tiempo.

Se revisaron retrospectivamente una serie de 144 casos (217 aislamientos), intervenidos en el servicio COT-HVB entre enero de 2003 y diciembre de 2012, por infección de herida quirúrgica sobre artroplastia u osteosíntesis.

Para este objetivo, elaboramos tablas comparativas de distribución de frecuencias absolutas y relativas para los años 2003-2012 en el Hospital Vega Baja, según los m.o. más frecuentemente aislados.

Tabla II. Distribución de frecuencias absolutas y relativas de los m.o. más frecuentemente aislados en el Hospital Vega Baja (2003-2012).

2003	Н١	/B	2004	Н	/B	2005	H\	/B	2006	Н١	/B	2007	Н١	/B
N=13	Fr Ab	85%	N=14	Fr Ab	79%	N=17	Fr Ab	82%	N=41	Fr Ab	82%	N=30	Fr Ab	79%
en-	3	23%	cor	2	14%	scn	4	24%	ecl	10	26%	scn	6	21%
ecl	2	15%	ecl	2	14%	ecl	3	18%	sau	9	23%	sep	6	21%
pae	2	15%	sau	2	14%	efa	2	12%	scn	3	8%	sau	4	14%
sau	2	15%	scn	2	14%	sau	2	12%	eco	2	5%	efa	3	10%
cor	1	8%	sep	2	14%	sep	2	12%	efa	2	5%	can	2	7%
efa	1	8%	eco	1	7%	can	1	6%	kpn	2	5%	pae	2	7%
efm	1	8%	pae	1	7%	cor	1	6%	pae	2	5%	pr-	2	7%
mmo	1	8%	sgc	1	7%	pae	1	6%	pr-	2	5%	aba	1	3%
aba	0	0%	svi	1	7%	sma	1	6%	pre	2	5%	bgp	1	3%
ac-	0	0%	aba	0	0%	aba	0	0%	sep	2	5%	ecl	1	3%
Total	13	100%	Total	14	100%	Total	17	100%	Total	36	92%	Total	28	97%
2008	H۱	/B	2009	HVB		2010	HVB		2011	HVB		2012	HVB	
N=16	Fr Ab	81%	N=16	Fr Ab	81%	N=11	Fr Ab	82%	N=25	Fr Ab	80%	N=34	Fr Ab	79%
sau	4	25%	sep	4	25%	sau	3	27%	sau	7	28%	sep	8	24%
pae	3	19%	sau	3	19%	sep	3	27%	sep	6	24%	sau	7	21%
sep	3	19%	ecl	2	13%	scn	2	18%	scn	3	12%	pae	6	18%
ecl	1	6%	scn	2	13%	cor	1	9%	sma	2	8%	scn	3	9%
pep	1	6%	cor	1	6%	efa	1	9%	ac-	1	4%	prop	3	9%
ppt	1	6%	eco	1	6%	pae	1	9%	cor	1	4%	en-	2	6%
pr-	1	6%	en-	1	6%	aba	0	0%	eco	1	4%	ecl	1	3%
scn	1	6%	pae	1	6%	ac-	0	0%	en-	1	4%	есо	1	3%
sma	1	6%	sma	1	6%	aeh	0	0%	kpn	1	4%	рер	1	3%
aba	0	0%	aba	0	0%	ane	0	0%	pae	1	4%	PMO	1	3%
Total	16	100%	Total	16	100%	Total	11	100%	Total	24	96%	Total	33	97%

Abreviaturas: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep:

Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococco pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G).

Observamos en la tabla de distribución de frecuencias (Tabla II) que aunque los gérmenes del género *Staphylococcus* (*S.aureus* (sau), *S.epidermidis* (sep), *S.Coagulasa negativos* (SCN)) siempre han estado entre los m.o. más frecuentemente implicados en IHQ-I-COT; las bacterias de la familia *Pseudomonas* y *Enterobacteriaceae*, siempre han aparecido entre los m.o. aislados en IHQ-I-COT en COT-HVB, especialmente los del género *Enterobacter* hasta 2006.

Además de en tablas, la distribución de frecuencias relativas se presenta en gráficas de los agentes etiológicos (por grupos y por microorganismos), para facilitar el análisis de la tendencia en el mismo centro con el paso del tiempo.

En el análisis gráfico por Grupos (Figura 17), observamos que los *CGP* están implicados en la IHQ-I-COT en el 67% de los casos a partir 2007, y los *BGN* descienden de valores de en torno al 50% antes de 2006, a valores entre el 25 y el 35% de 2007 a 2012.

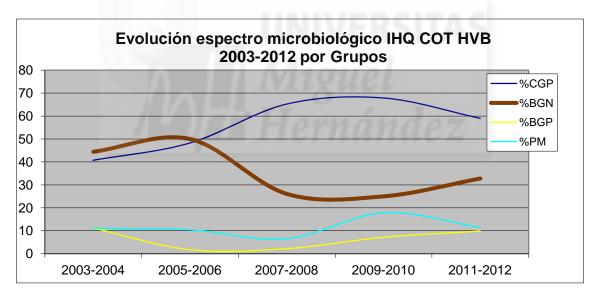


Figura 17. Gráfica de frecuencia relativa de los m.o. más frecuentes por Grupos. A lo largo de esos 10 años.

Abreviaturas: CGP (cocos gram positivos), BGN (bacilos gram negativos), BGP (bacilos gram positivos), PM (Polimicrobiana).

En cuanto a las infecciones polimicrobianas (*PM*), aplicando el concepto definido en el material y métodos de esta Tesis, en 26 de los 35 casos (74%) en los que se consideró la infección como polimicrobiana había implicación de bacilos Gram negativos. Y un *Enterococcus* estuvo implicado en 9 de los 35 casos (25,7%). En nuestra serie el porcentaje de infecciones *PM* se mantuvo entre el 10 y el 20% durante todo este periodo.

Para una observación más detallada de los acontecimientos realizamos la representación gráfica de la frecuencia relativa de las especies de m.o. más frecuentes (Figura 18).

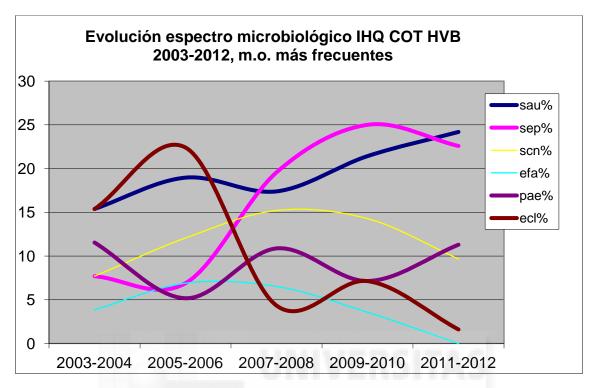


Figura 18. Gráfica de la frecuencia relativa de los m.o. más frecuentes por Especie. A lo largo de esos 10 años.

Abreviaturas: sau (S.aureus), sep (S.epidermidis), SCN (S.Coagulasa Negativos), efa (Enterococo faecalis), pae (P.aeruginosa), ecl (Enterobacter cloacae).

Así comprobamos que el *Staphylococcus aureus* se mantiene entre los m.o. más frecuentes durante todo el periodo a estudio, con valores que oscilan entre el 15 y el 25%. Dentro de los Gram negativos, la *Pseudomona aeruginosa* se mantiene en valores entre el 5 y el 10%. Sin embargo, la proporción de *Enterobacter cloacae* pasó de valores que oscilaban entre el 15-25% entre 2003-2005 al 5% a partir de finales de 2006; en el mismo período apreciamos una evolución inversa del *S.epidermidis*, que pasó de valores en torno al 5-10% a valores en torno al 25% en 2012.

Tratando de hallar los factores que expliquen esta oscilación, observamos el descenso de bacilos gram negativos en las infecciones de herida quirúrgica con implante se produce en 2006. Analizamos la actividad quirúrgica de nuestro Servicio en este período y observamos que se produce un descenso similar en cuanto al número de osteosíntesis realizadas (Figura 19).

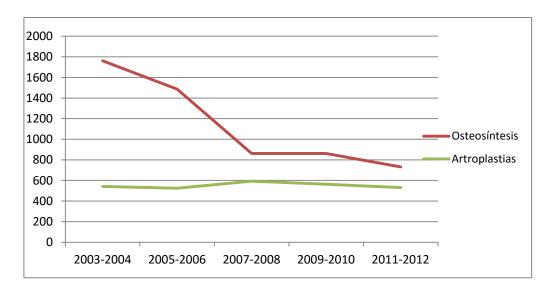


Figura 19. Artroplastias y osteosíntesis realizadas en COT-HVB 2003-2012.

En el análisis gráfico (Figura 20) de los datos se observa una correlación positiva (**Coeficiente de correlación de Pearson= 0,878, p=0,05**) entre la disminución del número de osteosíntesis (Relación osteosíntesis/Artroplastia (Ratio O/A)) con el descenso de bacilos gram negativos en las infecciones de herida quirúrgica con implante; que corresponde con el corte 2 del eje de abscisas de la gráfica. Este punto de inflexión entre 2006 y 2007, además coincide con la división del área de salud por la apertura de otro centro hospitalario.

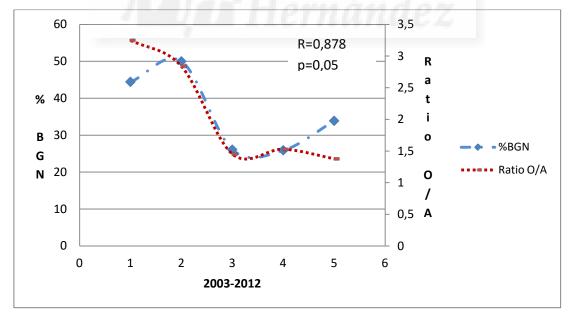


Figura 20. Correlación Ratio O/A, proporción de infecciones por BGN.

Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrobianas.

Se revisaron retrospectivamente una serie de 144 casos (217 aislamientos), con una media de edad de 64 años (rango 7-97), con una mayor proporción de hombres en la serie (78/144). Intervenidos en el servicio COT-HVB entre enero de 2003 y diciembre de 2012, por infección de herida quirúrgica sobre implante; tratándose de artroplastias en 88/144 (61,11%) y de osteosíntesis en 56/144 casos (38,89%).

La indicación de la cirugía previa que cursó con complicación de infección ó "cirugía índice", fue una fractura ("cirugía no electiva") en 61 casos y cirugía ortopédica ("electiva") en 83 casos. Las fracturas fueron tratadas en 44 casos con material de osteosíntesis y en 17 mediante artroplastia. Por otro lado en cirugía ortopédica se recogieron 71 casos de artroplastias y 12 casos material de osteosíntesis que cursó con complicación de infección (Tabla III, IV y V).

Tabla III. Cirugía índice

Cirugía Índice	Fractura (No Electiva)	Ortopedia (Electiva)	Total
Osteosíntesis	44	12	56
Artroplastia	17	71	88
Total	61	83	144

Tabla IV. Fracturas cerradas

FRACTURAS CERRADAS (n=36)			
Pobre cobertura cutánea	Νº	Buena cobertura cutánea	Νº
MMSS	7	MMSS	5
Supracondilea Codo	4	EPH	2
Olécranon	1	Diáfisis Humeral	2
Fr-Lux Perilunar	1	EDR	1
Dedo	1		
MMII	14	MMII	11
RAFI tibia proximal o distal (2PoliCOT)	5	Fractura Pertrocantérea (2PoliCOT)	6
Rótulas	6	Diaf Fémur Periprotésica	1
Fr-lux Tobillo	3	Diaf Fémur	1
Calcáneo	1	Diaf Tibia	1
		Fr Pelvis (PoliCOT)	1

Abreviaturas: MMS: miembros superiores, MMII: miembros inferiores, Fr-Lux: Fractura-luxación, RAFI: Reducción abierta y fijación interna, PoliCOT: Politraumatizado, EPH: Extremidad Proximal de Húmero, EDR: Extremidad distal de radio, Diaf: diafisarias.

Tabla V. Fracturas abiertas

FRACTURAS ABIERTAS (n=8)						
Tibia	3					
Húmero	2					
Supracondilea codo	1					
Olécranon	1					
Dedo	1					

Tabla VI. Artroplastias

Por Fractura	Nº	Primarias	Nº	Revisiones	Nº
PPC	11	PTR	41	Recambio-PTR	1
PPH	3	PTC	23	Recambio-PTC	5
PTC	3	PTCodo	1		
Total	17		65		6

Abreviaturas: PPC: Prótesis Parcial de Cadera, PPH: Prótesis Parcial de Húmero, PTC: Prótesis Total de Cadera, PTR: Prótesis total de rodilla, PTCodo: Prótesis Total de codo.

Los m.o. más frecuentemente aislados fueron los *CGP* en 96/144 casos (66,67%), siendo los del género *Staphyloccocus* los más frecuentes. Los *BGN* estuvieron implicados en 63/144 casos (43,75%), siendo los *Enterobacter* los más frecuentes y en 35/144 casos (24,31%) la infección fue considerada polimicrobiana.

Tratando de hallar los factores asociados a infecciones por *BGN o PM*. Analizamos la presencia de factores relacionados con el paciente, la infección y la cirugía índice (Figura 15).

En el análisisbivariante observamos que las **infecciones por BGN**, en nuestra serie están asociadas a linfopenia, cirugía secundaria a fractura y clínica aguda de infección (Tabla VII). Sin embargo, cuando incluimos dichos factores en el modelo de Regresión Logística (Método = Por pasos hacia adelante (Razón de verosimilitud)), sólo identificamos como factor de riesgo independiente de infección por *BGN*, la clínica aguda de infección según Tsukayama (p=0,006) (Tabla VIII).

Tabla VII. Factores de riesgo de infección en infecciones por BGN.

Factores de riesgo		BGN =81)	ВС (n=		χ²	р
	Fr Ab	%	Fr Ab	%		
>64años	53	65,4%	37	58,7%	0,679	0,410
Mujeres	38	46,9%	28	44,4%	0,870	0,768
Hombres	43	53,1%	35	55,6%		
IMC>30	26	32,1%	19	30,2%	0,062	0,803
Linf<1500	10	12,3%	16	25,4%	4,080	0,043
Album<3,5	1	1,2%	0	0,0%	0,783	0,376
Anemia	11	13,6%	11	17,5%	0,412	0,521
FA	4	4,9%	2	3,2%	0,276	0,599
IRC	2	2,5%	0	0,0%	1,577	0,209
Hepatopatía	2	2,5%	2	3,2%	0,065	0,798
Trasfus Prev	7	8,6%	12	19,0%	3,350	0,067
>2d hosp prev		0,0%		0,0%	0,126	0,723
DM	19	23,5%	11	17,5%	0,773	0,379
Fumador	10	12,3%	10	15,9%	0,369	0,544
Bebedor	13	16,0%	9	14,3%	0,085	0,770
AR	1	1,2%	1	1,6%	0,032	0,858
Neoplasia	2	2,5%	2	3,2%	0,650	0,798
Corticoide	2	2,5%	1	1,6%	0,135	0,713
Inmunosupr	2	2,5%	1	1,6%	0,135	0,713
Otra infec Simultánea	2	2,5%	2	3,2%	0,065	0,798
Qx>120min	28	34,6%	21	33,3%	0,024	0,877
Trasfus PostQx	28	34,6%	23	36,5%	0,580	0,809
Cirugía Electiva	53	65,4%	30	47,6%	<u> </u>	·
Cirugía 2ºFractura	28	34,6%	33	52,4%	2,620	0,032
Artroplastia	54	66,7%	34	54,0%	-	
Osteosíntesis	27	33,3%	29	46,0%	2,404	0,121
Clínica Aguda	42	51,9%	47	74,6%	7,770	0,050
Clínica Crónica	39	48,1%	16	25,4%		· · · · · · · · · · · · · · · · · · ·

Abreviaturas: IMC: Índice de Masa Corporal; Linf: Linfocitos; Album: Albumina; FA: Fibrilación Auricular; IRC: Insuficiencia Renal Crónica; Trasfus Prev: Trasfusión Previa; >2d hosp prev: más de dos días de hospitalización previa; DM: Diabetes Mellitus; AR: Artritis Reumatoidea; Inmunosupr: Inmunosupresores; infec: infección; Tqx: Tiempo quirúrgico; Trasfus Post: Trasfusión Posquirúrgica.

Tabla VIII. Factor de riesgo independiente de infección por BGN.

Variable	riable B ET Wald gl Sig Exp(B)	Exp(B)	I.C. 95%	% EXP(B)				
Variable			, Tura	ъ'	2.6	LAP(D)	Inferior	Superior
Aguda/Crónica	1,003	,365	7,558	1	,006	2,728	1,334	5,578

En el análisis bivariante observamos que las infecciones *PM*, están asociadas a hospitalización previa a la cirugía mayor a dos días, cirugía secundaria a fractura y clínica aguda de infección (Tabla IX). Sin embargo, cuando incluimos dichos factores en el modelo de Regresión Logística (Método = Por pasos hacia adelante (Razón de verosimilitud)), sólo identificamos como factor de riesgo independiente de infección *PM*, la clínica aguda de infección según Tsukayama (p=0,014) (Tabla X).

Tabla IX. Factores de riesgo de infección en infecciones PM.

Factores de riesgo	No PM (n=109)		PM(n	=35)	χ²	р
	Fr Ab	%	Fr Ab	%		
>64años	70	64,2%	20	57,1%	0,566	0,452
Mujeres	50	45,9%	16	45,7%	0,000	0,987
Hombres	59	54,1%	19	54,3%		
IMC>30	37	33,9%	8	22,9%	1,516	0,218
Linf<1500	16	14,7%	10	28,6%	3,456	0,630
Album<3,5	1	0,9%	0	0,0%	0,323	0,570
Anemia	14	12,8%	8	22,9%	2,052	0,152
FA	4	3,7%	2	5,7%	0,277	0,598
IRC	2	1,8%	0	0,0%	0,651	0,420
Hepatopatía	2	1,8%	2	5,7%	1,476	0,224
Trasfus Prev	11	10,1%	8	22,9%	3,769	0,052
>2d hosp prev	24	22,0%	15	42,9%	5,826	0,016
DM	26	23,9%	4	11,4%	2,480	0,115
Fumador	14	12,8%	6	17,1%	0,409	0,522
Bebedor	17	15,6%	5	14,3%	0,350	0,851
AR	1	0,9%	1	2,9%	0,728	0,394
Neoplasia	3	2,8%	1	2,9%	0,001	0,974
Corticoide	2	1,8%	1	2,9%	0,136	0,713
Inmunosupr	2	1,8%	1	2,9%	0,135	0,713
Otra infec Simultánea	2	1,8%	2	5,7%	1,476	0,224
Qx>120min	38	34,9%	11	31,4%	0,139	0,709
Trasfus PostQx	35	32,1%	16	45,7%	2,144	0,143
Cirugía Electiva	69	63,3%	14	40,0%		
Cirugía 2ºFractura	40	36,7%	21	60,0%	5,892	0,015
Artroplastia	69	63,3%	19	54,3%		
Osteosíntesis	40	36,7%	16	45,7%	0,906	0,341
Clínica Aguda	61	56,0%	28	80,0%	6,484	0,011
Clínica Crónica	48	44,0%	7	20,0%		

Abreviaturas: IMC: Índice de Masa Corporal; Linf: Linfocitos; Album: Albumina; FA: Fibrilación Auricular; IRC: Insuficiencia Renal Crónica; Trasfus Prev: Trasfusión Previa; >2d hosp prev: más de dos días de hospitalización previa; DM: Diabetes Mellitus; AR: Artritis Reumatoidea; Inmunosupr: Inmunosupresores; infec: infección; Tqx: Tiempo quirúrgico; Trasfus Post: Trasfusión Posquirúrgica.

Tabla X. Factor de riesgo independiente de infección PM.

Variable	В	ET	Wald	gl	Sig	Exp(B)	I.C. 95%	% EXP(B)
Variable			vvala	5'	J15		Inferior	Superior
Aguda/Crónica	1,147	,465	6,092	1	,014	3,148	1,266	7,823

La razón de que en un análisis bivariante (Tabla de contingencia, Chi cuadrado) hallemos variables explicativas, que no se confirman en el análisis multivariante (Regresión Logística), se debe a que hay **multicolinealidad entre las variables**, es decir, las variables están relacionadas entre sí. Así, la hospitalización previa mayor a 2 días se produce fundamentalmente en fracturas (X^2 =44.001, p=0,0001) y la clínica de infección aguda es más frecuente tras la cirugía secundaria a fractura (X^2 =10.417, p=0,001).

Objetivo 3. Cambios en la epidemiología local según la localización geográfica.

En el período a estudio, entre **enero de 2007 y diciembre de 2012,** se registraron **132 aislamientos** en **87 pacientes** en el servicio COT-HVB y 255 aislamientos en 153 pacientes en el servicio COT-ARI en el mismo periodo de tiempo.

Debido a problemas logísticos no relacionados con los objetivos del estudio, sólo tuvimos acceso a 100 de las 153 historias clínicas de los pacientes procedentes de COT-ARI para su revisión. Comprobamos que la distribución de estos casos perdidos fuera uniforme en cada uno de los años (Figura 21), y lo fue, salvo para los años 2007 y 2011.

Figura 21. Distribución de los casos perdidos en COT-ARI para cada uno de los años.

Se comprobó que los 165 cultivos mantenían proporciones similares, en cuanto a los microorganismos más frecuentes, a los 255 aislamientos analizados inicialmente (Tabla XI).

Tabla XI. Microorganismos más frecuentes en COT-ARI para cada uno de los años. Estudio comparativo del espectro microbiológico de la muestra a estudio, respecto del total de cultivos en COT-ARI, para cada uno de los años.

	2007	Α	RI	2008	Α	RI	2009	Α	RI	2010	AF	રા	2011	AF	RI	2012	AF	રા
က္ခ	33	Fr Ab	82%	37	Fr Ab	78%	67	Fr Ab	81%	38	Fr Ab	81%	33	Fr Ab	81%	41	Fr Ab	82%
Aislamientos	sau	16	47%	sau	14	38%	sau	24	33%	sau	13	31%	sau	12	33%	sau	20	44%
nie	svi	4	12%	COL	5	14%	scn	14	19%	есо	6	14%	eco	5	14%	sep	4	9%
slar	COL	3	9%	svi	4	11%	svi	8	11%	svi	5	12%	scn	4	11%	ecl	3	7%
	pae	3	9%	есо	3	8%	COL	4	6%	pae	3	7%	svi	4	11%	есо	3	7%
255	scn	2		scn	3	8%	eco	4	6%	scn	3		pae	2		scn	3	7%
_	eco	1		sgc	3	8%	efm	4		COL	2		sgc	2		kpn	2	4%
COT-ARI	efa	1	3%		2		sep	3		sep	2		aeh	1		pae	2	4%
<u></u>	pr-	1		ane	1	3%	_	2		sma	2	5%		1		sgc	2	4%
18	sgc	1	3%	_	1	3%	_	2		cca	1	2%		1		can	1	2%
	sma	1		pae	1		sma	2	3%		1		kpn	1	3%		1	2%
	Total	33	97%	Total	37	100%	Total	67	93%	Total	38	90%	Total	33	92%	Total	41	91%
Aislamientos	2007	A	_	2008		RI	2009		RI	2010	AF	_	2011	AF	_	2012	AF	
ien		Fr Ab	79%	19	Fr Ab	79%	31	Fr Ab	81%		Fr Ab	77%	34	Fr Ab	81%	27		
all	sau	7	50%		7	37%		10	32%		11	35%		14	38%		12	39%
\is	svi	3	21%	_	2		COL	4	13%		5	16%		5	14%		3	10%
165 /	COL	1	7%	_	2	11%		4	13%		3	10%		4	11%		3	10%
	eco	1		scn	2	11%		4	13%		3	10%		3		sep	2	6%
tra	pr-	1	7%	_	2	11%		3	10%		2		pae	2		sgc	2	6%
Muestra/	scn	1		ane	1		pae	2		sep	2		sgc	2		can	1	3%
	aba	0	0%	_	1	5%		1		cca	1		aeh	1	3%		1	3%
-ARI	ac-	0		eco	1		eco	1	3%		1	3%		1		eae	1	3%
		0	0%	pae	1	5%	ıeīa	1	3%	IKDI	1	3%	era	1	3%	ecl	ı 1	3%
l 亡	aeh			_								00/	Lorent		00/	- (-	_	00/
COT-	ane Total	0		aba	0	0%	sep	1		kpn	1 30		kpn Total	1 34	3%	efa Total	1 27	3% 87%

Abreviaturas: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococco pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G).

Finalmente, se comprobó que no hubiera diferencias significativas, entre la muestra procedente de COT-ARI (100 pacientes/165 cultivos) y los casos recogidos en COT-HVB (87pacientes/132 cultivos) (Tabla XII). Observamos que la única diferencia relevante entre ambas series es que en COT-HVB se recogieron mayor número de infecciones agudas, lo que podría predisponer a mayor proporción de infecciones por *BGN y PM* en COT-HVB.

Tabla XII. Características de las muestra de COT-ARI y COT-HVB.

	COT-ARI (n=100)	%	COT-HVB (n=87)	%	Estadístico	р
Mujeres	44	44	41	47	$X^2 = 0.183$	p=0,668
Qx Electiva	65	65	56	64	$X^2 = 0.008$	p=0,928
Artroplastias	63	63	55	63	$X^2 = 0.001$	p=0,975
Agudas	27	27	52	60	$X^2 = 20,477$	p=0,0001
Media Edad	59	[4,95]	64	[15,89]	T=-1,568	p=0,119
Mediana	62		68			

Para la comparación de espectros microbiológicos, elaboramos tablas comparativas de distribución de frecuencias absolutas y relativas para los años 2007 a 2012 en el Hospital Vega Baja y en COT-ARI, según los m.o. más frecuentemente aislados en IHQ-I-COT.

Tabla XIII. Distribución de frecuencias absolutas y relativas de los m.o. más frecuentemente aislados en el Hospital Vega Baja y COT-ARI (2007-2012).

2007	HV	/B	2008	H\	/B	2009	H\	√B	2010	H\	/B	2011	H\	/B	2012	ΗV	/B
N=30	Fr Ab	79%	N=16	Fr Ab	81%	N=16	Fr Ab	81%	N=11	Fr Ab	82%	N=25	Fr Ab	80%	N=34	Fr Ab	79%
scn	6	21%	sau	4	25%	sep	4	25%	sau	3	27%	sau	7	28%	sep	8	24%
sep	6	21%	pae	3	19%	sau	3	19%	sep	3	27%	sep	6	24%	sau	7	21%
sau	4	14%	sep	3	19%	ecl	2	13%	scn	2	18%	scn	3	12%	pae	6	18%
efa	3	10%	ecl	1	6%	scn	2	13%	cor	1	9%	sma	2	8%	scn	3	9%
can	2		рер	1	6%	cor	1	6%	efa	1	9%	ac-	1	4%	prop	3	9%
pae	2		ppt	1	6%	eco	1	6%	pae	1	9%	cor	1	4%	en-	2	6%
pr-	2	7%	pr-	1	6%	en-	1	6%	aba	0	0%	eco	1	4%	ecl	1	3%
aba	1	3%	scn	1	6%	pae	1	6%	ac-	0	0%	en-	1		eco	1	3%
bgp	1	3%	sma	1	6%	sma	1	6%	aeh	0		kpn	1	4%	рер	1	3%
ecl	1	3%	aba	0	0%	aba	0	0%	ane	0	0%	pae	1	4%	PMO	1	3%
Total	28	97%	Total	16	100%	Total	16	100%	Total	11	100%	Total	24	96%	Total	33	97%
2007	Al		2008	Α		2009		RI	2010		RI	2011	Al		2012	Al	
	AF Fr Ab	79%	19		RI 79%	2009				A Fr Ab	RI 77%		Al Fr Ab	81%	27	Al Fr Ab	RI 81%
		79% 50%	19 sau		79% 37%	31 sau		81% 32%	30 sau		77% 35%	34 sau		81% 38%	27 sau	Fr Ab 12	81% 39%
14 sau svi	Fr Ab	79% 50%	19	Fr Ab 7 2	79% 37% 11%	31 sau COL	Fr Ab	81% 32% 13%	30 sau eco	Fr Ab 11 5	77% 35% 16%	34 sau eco	Fr Ab	81% 38% 14%	27 sau eco	Fr Ab 12 3	81% 39% 10%
14 sau	Fr Ab	79% 50% 21% 7%	19 sau COL efa	Fr Ab	79% 37%	31 sau COL	Fr Ab 10	81% 32%	30 sau eco	Fr Ab	77% 35%	34 sau eco	Fr Ab 14	81% 38%	27 sau eco	Fr Ab 12	81% 39%
14 sau svi	Fr Ab 7 3	79% 50% 21% 7%	19 sau COL	Fr Ab 7 2 2 2	79% 37% 11% 11% 11%	31 sau COL scn svi	Fr Ab 10 4	81% 32% 13% 13% 13%	sau eco scn svi	Fr Ab 11 5	77% 35% 16% 10%	34 sau eco svi scn	Fr Ab 14 5 4 3	81% 38% 14% 11% 8%	sau eco scn sep	Fr Ab 12 3 3 2	81% 39% 10% 10% 6%
sau svi COL	Fr Ab 7 3 1	79% 50% 21% 7%	sau COL efa scn	Fr Ab 7 2 2	79% 37% 11% 11%	31 sau COL scn svi	Fr Ab 10 4 4	81% 32% 13% 13%	sau eco scn svi	Fr Ab 11 5 3	77% 35% 16% 10% 10% 6%	34 sau eco svi scn pae	Fr Ab 14 5 4 3 2	81% 38% 14% 11% 8%	sau eco scn	Fr Ab 12 3 3	81% 39% 10% 10%
sau svi COL eco	Fr Ab 7 3 1 1	79% 50% 21% 7% 7% 7%	sau COL efa scn	Fr Ab 7 2 2 2	79% 37% 11% 11% 11% 11%	31 sau COL scn svi	Fr Ab 10 4 4 4	81% 32% 13% 13% 13% 10% 6%	sau eco scn svi pae sep	Fr Ab 11 5 3	77% 35% 16% 10% 10% 6%	34 sau eco svi scn	Fr Ab 14 5 4 3	81% 38% 14% 11% 8% 5%	sau eco scn sep	Fr Ab 12 3 3 2	81% 39% 10% 10% 6%
sau svi COL eco pr-	Fr Ab 7 3 1 1	79% 50% 21% 7% 7% 7% 7% 0%	sau COL efa scn svi ane ecl	Fr Ab 7 2 2 2 2 2	79% 37% 11% 11% 11% 11% 5%	31 sau COL scn svi sgc pae ecl	Fr Ab 10 4 4 4 3	81% 32% 13% 13% 13% 10% 6% 3%	sau eco scn svi pae sep cca	Fr Ab 11 5 3 3 2	77% 35% 16% 10% 10% 6% 6% 3%	sau eco svi scn pae sgc aeh	Fr Ab 14 5 4 3 2	81% 38% 14% 11% 8% 5% 5% 3%	sau eco scn sep sgc can	Fr Ab 12 3 3 2	81% 39% 10% 10% 6% 6% 3% 3%
sau svi COL eco pr- scn	Fr Ab 7 3 1 1 1	79% 50% 21% 7% 7% 7% 7% 0%	sau COL efa scn svi ane ecl eco	Fr Ab 7 2 2 2 2 1	79% 37% 11% 11% 11% 11% 5%	31 sau COL scn svi sgc pae	Fr Ab 10 4 4 4 3 2	81% 32% 13% 13% 13% 10% 6% 3%	sau eco scn svi pae sep	Fr Ab 11 5 3 3 2 2	77% 35% 16% 10% 10% 6%	sau eco svi scn pae sgc aeh	Fr Ab 14 5 4 3 2 2	81% 38% 14% 11% 8% 5% 5% 3%	sau eco scn sep sgc can	Fr Ab 12 3 3 2	81% 39% 10% 10% 6% 6% 3%
sau svi COL eco pr- scn aba	Fr Ab 7 3 1 1 1 1 0	79% 50% 21% 7% 7% 7% 7% 0%	sau COL efa scn svi ane ecl	Fr Ab 7 2 2 2 2 1 1	79% 37% 11% 11% 11% 5% 5% 5%	sau COL scn svi sgc pae ecl eco efa	Fr Ab 10 4 4 4 3 2 1	81% 32% 13% 13% 13% 10% 6% 3%	sau eco scn svi pae sep cca cor	Fr Ab 11 5 3 3 2 2 1	77% 35% 16% 10% 10% 6% 6% 3%	sau eco svi scn pae sgc aeh ecl	Fr Ab 14 5 4 3 2 2	81% 38% 14% 11% 8% 5% 5% 3%	sau eco scn sep sgc can cfr eae	Fr Ab 12 3 3 2 2 1 1	81% 39% 10% 10% 6% 6% 3% 3%
sau svi COL eco pr- scn aba ac-	Fr Ab 7 3 1 1 1 1 1 0 0 0 0 0 0	79% 50% 21% 7% 7% 7% 0% 0%	sau COL efa scn svi ane ecl eco pae aba	Fr Ab 7 2 2 2 2 1 1 1	79% 37% 11% 11% 11% 5% 5% 5%	sau COL scn svi sgc pae ecl eco	Fr Ab 10 4 4 4 3 2 11	81% 32% 13% 13% 13% 10% 6% 3% 3% 3%	sau eco scn svi pae sep cca cor	Fr Ab 11 5 3 3 2 2 1 1	77% 35% 16% 10% 10% 6% 6% 3% 3% 3%	sau eco svi scn pae sgc aeh ecl	Fr Ab 14 5 4 3 2 1 1 1	81% 38% 14% 11% 8% 5% 3% 3%	sau eco scn sep sgc can cfr eae	Fr Ab 12 3 3 2 2 1 1	81% 39% 10% 10% 6% 6% 3% 3% 3%

Abreviaturas: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococco pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G).

Observamos en la tabla de distribución de frecuencias (Tabla XIII), que los *Staphylococcus (sau, sep, scn)* son los m.o. más frecuentemente implicados en IHQ-I-COT en ambos centros, siendo el más frecuente el *sau* y los *SCN*.

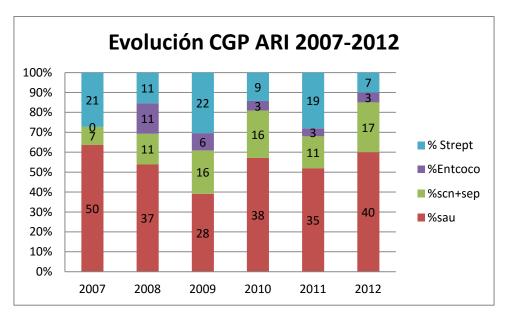


Figura 22: Evolución cocos gram positivos COT-ARI 2007-2012.

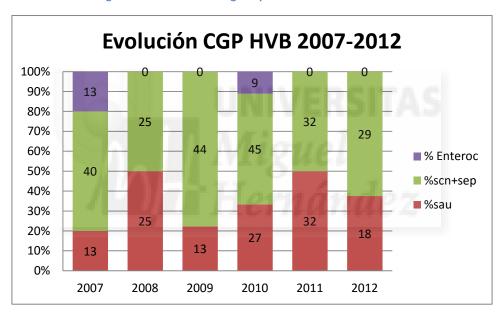


Figura 23. Evolución cocos gram positivos COT-HVB 2007-2012.

En la Figura 22 y 23 observamos que el género *Streptococcus* se aísla de forma relativamente frecuente en infecciones sobre implante en COT-ARI y no forma parte del espectro microbiológico en COT-HVB. Por lo tanto han de ser tenidos en cuenta de cara a una terapia empírica en COT-ARI.

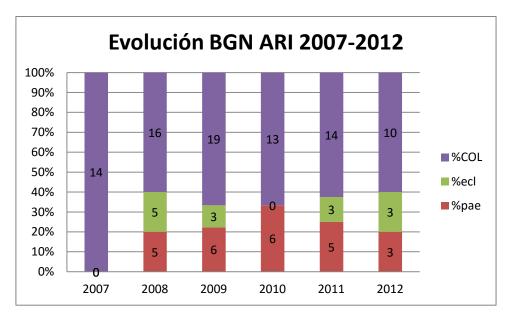


Figura 24. Evolución Bacilos Gram negativos COT-ARI 2007-2012

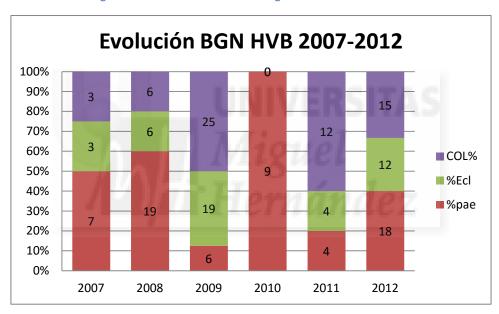


Figura 25. Evolución Bacilos Gram negativos COT-HVB 2007-2012.

En la Figura 24 y 25, observamos que en ambos centros existe implicación de los *BGN*, de *Enterobacter y Pseudomona* en COT-HVB y de los *"Coliformes"* que agrupan *(E.coli, Enterobacter, Klebsiella y Citrobacter)* y la *Pseudomona* en COT-ARI.

Para comparar la distribución de los agentes etiológicos y facilitar el análisis de la tendencia en el mismo centro con el paso del tiempo, representamos la **evolución** de la frecuencia relativa de los m.o. más frecuentes **por grupos**.

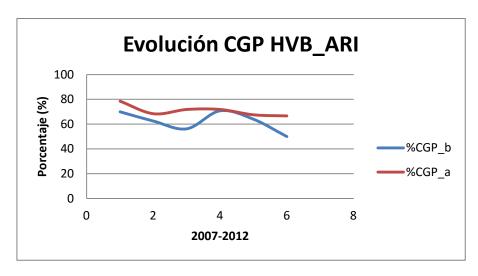


Figura 26. Evolución de las infecciones por Cocos Gram positivos en COT-HVB (%CGP_b) vs COT-ARI (%CGP_a).

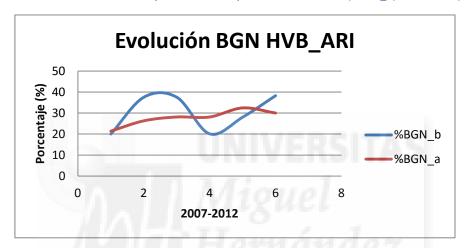


Figura 27. Evolución de los Bacilos Gram Negativos en COT-HVB (%BGN_b) vs COT-ARI (%BGN_a).

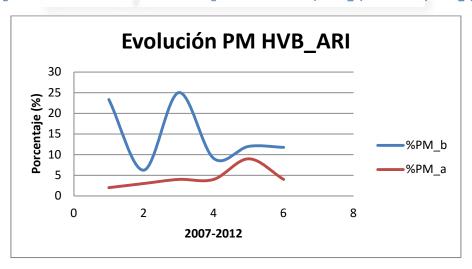


Figura 28. Evolución de las infecciones Polimicrobianas en COT-HVB (%PM_b) vs COT-ARI (%PM_a).

En la Figura 26, 27 y 28, observamos la tasa de aislamientos de *CGP*, *BGN* e infecciones *PM*. Hay mayor oscilación en la serie correspondiente al COT-HVB (en azul); sin embargo, no observamos variaciones significativas interanuales dentro del mismo centro, ni entre ambos centros con el paso del tiempo para infecciones cuando evaluamos la frecuencia relativa de los m.o. por grupos (Tabla XIV).

Tabla XIV. Análisis comparativo por grupos entre COT-ARI y COT-HVB.

2007-2012	СОТ-	%	COT-HVB	%	χ²	р
	ARI(n=100)		(n=87)			
CGP	76	75%	64	65%	0,147	0,702
BGN	43	43%	33	38%	0,496	0,481
PM	27	27%	20	23%	0,398	0,528
BGP	2	2%	8	5%	3,443	0,064*
Anaerobios	0	0%	2	2%	2,324	0,127
	100		87			

^{*}Corrección de Yates se aplica a la prueba Chi-cuadrado cuando al menos el valor de una frecuencia esperada es menor que 5.

Sin embargo, cuando **analizamos** las frecuencias relativas de los **m.o. más frecuentes por especie** (Tabla XV), además de las diferencias señaladas al analizar la tabla de distribución de frecuencias, en la que el *SCN* es más frecuente en COT-HVB, *Streptococo* se aísla sólo en COT-ARI, los *Coliformes* son más frecuentes en COT-ARI y *Pseudomona* en COT-HVB.

Tabla XV. Análisis comparativo entre COT-ARI y COT-HVB de las especies más frecuentes de CGP.

CGP	COT-ARI	%	COT-HVB	%	χ²	р
	(n=100)		(n=87)			•
Sau	54	54%	25	37%	12,171	0,0001
(SARM)	3	6%*	4	16%*	0,035	0,851**
SCN+Sep	13	13%	38	44%	22,075	0,0001
(SCN-RM)	9	70%*	16	42%*	13,176	0,0001
Streptococcus	22	22%	1	1%	18,751	0,0001
Enterococcus	6	6%	5	6%	0,005	0,942

Abreviaturas 1: *% Calculado respecto del total de aislamientos. Salvo para el caso del Sau y los SCN que se ha calculado a partir del total de aislamientos positivos para ese germen. **Corrección de Yates.

Cuando analizamos los *CGP*, como el *sau* (Figura 29), que es el m.o. aislado más frecuentemente en ambos centros, sí existen diferencias significativas entre las proporciones de ambos centros, siendo más frecuente en COT-ARI (p=0,0001) y a la inversa sucede con los *SCN* que es más frecuente en COT-HVB (p=0,0001)(Tabla XV y Figura 30). El número de *SARM*

causantes de infección fue 3/54 (5,5%) en COT-ARI (1 aislado en 2008, otro en 2009 y otro en 2011), siendo de 4/25 (16%) en COT-HVB (1 aislado en 2009 y 3 en 2011).

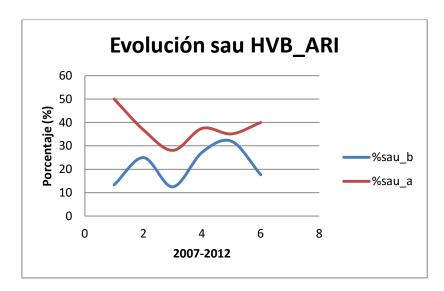


Figura 29. Evolución proporción de infecciones por sau COT-HVB (%sau_b) vs sau COT-ARI (%sau_a)

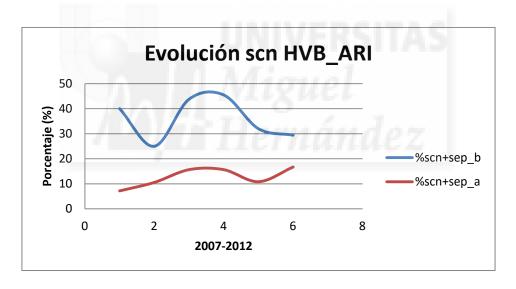


Figura 30. Evolución proporción de infecciones por SCN incluido sep COT-HVB (%scn+sep_b) vs sau COT-ARI (%scn+sep_a).

En cuanto a los BGN, en ambos centros se aíslan de forma relativamente frecuente los *Coliformes (E.coli, Enterobacter, Klebsiella y Citrobacter)*, si bien es cierto que en este subgrupo, en COT-ARI suelen ser *E.coli* y en COT-HVB *E.cloacae*. La proporción de *P.aeruginosa* es más frecuente en COT-HVB (p=0,021) (Figura 31) y la proporción del *COL* en COT-ARI (p=0,018) (Tabla XVI y Figura 32).

Tabla XVI. Análisis comparativo entre COT-ARI y COT-HVB de las especies más frecuentes de BGN.

BGN	COT-ARI	%	COT-HVB	%	χ²	р
	(n=100)		(n=87)			
COL (E.coli, E.cloacae,	25	25%	10	12%	5,578	0,018
Klebsiella, Citrobacter)						
Pseudomonas	5	5%	13	15%	5,287	0,021
Otros (Serratia, Proteus,	1	1%	4	3%		
Acinetobacter)						

Figura 31. Evolución proporción de infecciones por pae COT-HVB (%pae_b) vs COT-ARI (%paec_a)

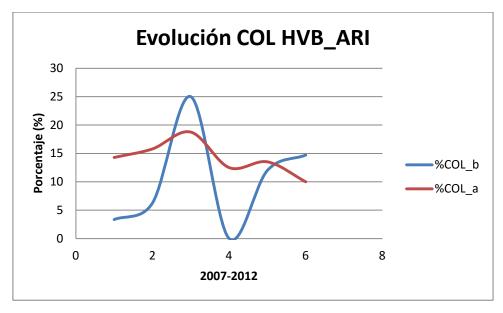


Figura 32. Evolución proporción de infecciones por COL COT-HVB (%COL_b) vs COT-ARI (%COL_a)

Tratando de hallar variables explicativas que justifiquen las diferencias epidemiológicas entre ambos centros, se analizó el origen de las muestras para cultivo. No encontrando diferencias significativas entre el origen de los cultivos en ambos centros, siendo profundos en el 47% de los casos en COT-ARI y del 43% en COT-HVB (Figura 33) (X^2 =0,675, p=0,411).

Figura 33. Origen de los aislamientos positivos en COT-ARI vs COT-HVB.

Objetivo 4. Cambios en el nivel de resistencia

De lo visto anteriormente observamos que los m.o. más prevalentes en COT-ARI y COT-HVB son los *CGP* (*S.aureus* y *SC*). Por otro lado registramos hasta un 30% de *BGN*, de los cuales el más frecuente y virulento fue la *P.aeruginosa*. El género *Streptococcus* y dentro de los *Coliformes* el *E.coli* hemos de tenerlos en cuenta en COT-ARI; no así en COT-HVB que atenderemos más al nivel de resistencia a antimicrobianos de *Enterococcus* y dentro de *los Coliformes*, *el Enterobacter* (Figura 34).

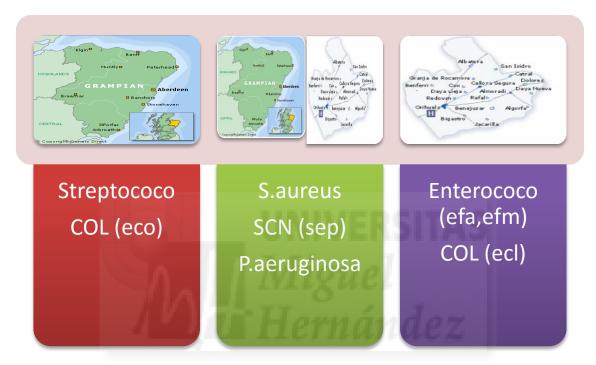


Figura 34. Esquema microorganismos a tener en cuenta cara a una terapia empírica en COT en: COT-ARI (rojo), COT-ARI y COT-HVB (verde), COT-HVB (azul).

Abreviaturas: COL: Coliformes, eco: E.coli, SCN: Staphylococcus coagulasa negativos, efa: Enterococo faecalis, efm: Enterococo faecium, ecl: Enterobacter cloacae.

Si consultamos la web (http://www.WebResist.org/), tenemos acceso a la resistencia observada de esos m.o. a los antibióticos usados de forma más frecuente para cada uno de los años a estudio, e incluso la predicción de resistencia para el próximo trimestre.

microorganism OXA AMP SAM 2 3 4 5 6 7 8 9 45.4 68 0 pae 43 ps-96 kpn aba 100 38 7 sa-8 ° 10 ecl 11 0 pma 12 13 cra 92' 14 88 15 91 93' 16 sep 32 17 18 cca 19 efa 19 20 21 22 23 24 100 100 svi 100 sgc spy spn

Tabla XVII. Hoja de Excel en la que ViResiST vuelca las Resistencias estimadas para primer trimestre siguiente.

Abreviaturas: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococco pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G).

Nos planteamos la fiabilidad de las predicciones realizadas en años anteriores (ViResiST). Analizamos los datos hasta diciembre del año anterior y ejecutamos la predicción para el primer trimestre posterior desde 2007 a 2011; para los m.o. más frecuentes (Figura 34) y para los antibióticos más usados (Cefazolina, Gentamicina, Oxacilina, Ciprofloxacino o Cotrimoxazol) (Tabla XVII y Tabla XVIII).

Tabla XVIII. Predicción r	esistencia S aureus	(caul a ATR mác	frequentes Primer	Trimestre 2007-2012
Tabla AVIII. FIEUICCIOII I	esistentia siaureus	5 (3au <i>)</i> a A D	mecuentes rinner	11111162016 7001-7017

m.o.	OXA	PEN	CZO	GEN	CIP	TCY	CLI	VAN	LNZ
sau_2006	8	88	8	5	8	9	10	0	0
sau_2007	10	88	8	5	7	9	10	0	0
sau_2008	8	88	8	5	12	9	10	0	0
sau_2009	26	88	8	5	14	9	10	0	0
sau_2010	11	88	8	6	18	9	10	0	0
sau_2011	11	88	8	5	18	9	10	0	0

Abreviaturas: OXA: Oxacilina, PEN: Bencil-Penicilina, CZO: Cefazolina, GEN: Gentamicina, CIP: Ciprofloxacino, TCY: Tetraciclina, CLI: Clindamicina, VAN: Vancomicina, LNZ: Linezolid.

Después consultamos en la nueva versión del programa para comprobar de forma gráfica si la evolución de lo predicho (Gráfica elaborada con SCA y ViResiST) se ajustaba a lo observado (Gráfica consultada en WebResist).

ALGUNOS EJEMPLOS.

Resistencia Cocos Gram positivos.

1. **Gráfica comparativa: Resistencia a Oxacilina-***S.aureus* **COT-ARI vs COT-HVB (**Figura 35 y 36).

Al comparar las gráficas la tendencia de resistencia estimada por el sistema ViResiST (Figura 35), observamos que ésta gráfica es similar a la obtenida a partir de los datos de resistencia observada en esos años (Figura 36).

Se estima una aumento del 10 al 20% en COT-HVB, respecto a un notable descenso del 50 al 10% en COT-ARI. Teniendo en cuenta que en Aberdeen se inició una política de restricción del uso de Amoxi-clavulánico (AMC), Cefalosporinas, Quinolonas y clindamicina tras la epidemia de *Clostrium difficile* en 2009, que produjo un descenso más rápido de la resistencia a Cefalosporinas, amoxicilina y quinolonas.

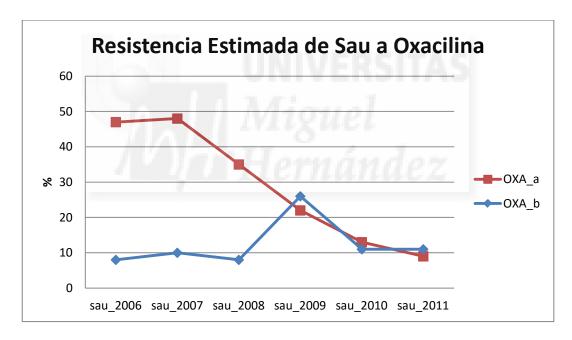


Figura 35. ViResiST. Resistencia Estimada de sau resistente a meticilina (Oxacilin) en COT-ARI (rojo) vs COT-HVB (azul).

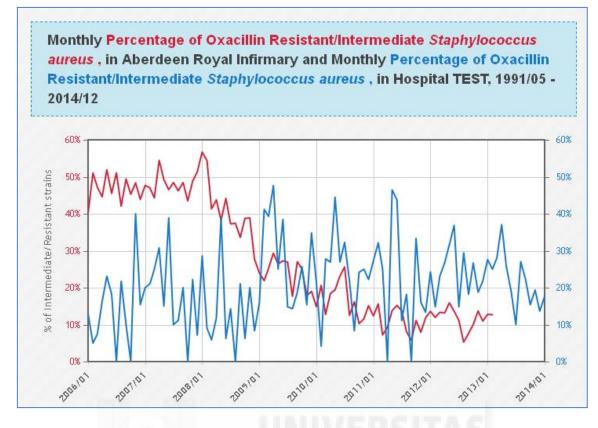


Figura 36. WebResist. Resistencia observada de S.aureus a meticilina (Oxacilin) en COT-ARI (rojo) vs COT-HVB

2. Gráfica comparativa: Resistencia a Ciprofloxacino-*S.aureus* COT-ARI vs COT-HVB (Figura 37 y 38).

Al comparar las gráficas la tendencia de resistencia estimada por el sistema ViResiST (Figura 37), observamos que ésta se reproduce en los datos observados en WebResist (Figura 38).

Entre el 20 y 40% en esos años en COT-HVB, respecto a un notable descenso del 90 al 20% en COT-ARI. Teniendo en cuenta que en Aberdeen se inició una política de restricción del uso de Amoxi-clavulánico (AMC), Cefalosporinas, Quinolonas y clindamicina tras la epidemia de *Clostrium difficile* en 2009, que produjo un descenso más rápido de la resistencia a Cefalosporinas, amoxicilina y quinolonas.

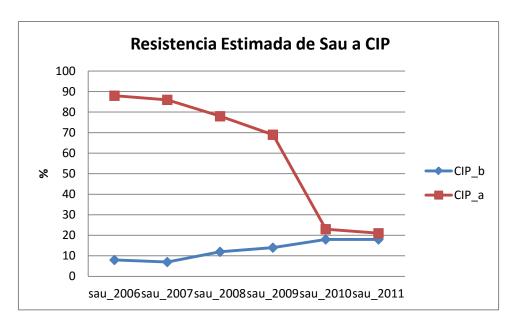


Figura 37. ViResist. Resistencia estimada de S.aureus a Ciprofloxacino en COT-ARI (rojo) vs COT-HVB (azul).

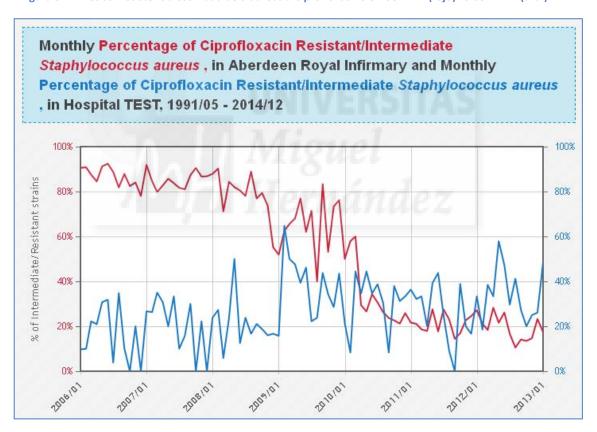


Figura 38. WebResiST. Resistencia Observada de sau resistente a Ciprofloxacino (CIP) en COT-ARI (rojo) vs COT-HVB (azul).

3. **Gráfica comparativa: Resistencia a Ciprofloxacino-SCN COT-ARI vs COT-HVB.** (Figura 39 y 40).

Al comparar las gráficas la tendencia de resistencia estimada por el sistema ViResiST (Figura 39), observamos que ésta se reproduce en los datos observados en WebResist (Figura 40).

En torno a un 50% en COT-HVB, respecto a un 60% en COT-ARI. Que no se ha visto afectada tan claramente por la política de restricción del uso de Amoxi-clavulánico (AMC), Cefalosporinas, Quinolonas y clindamicina que tuvo lugar tras la epidemia de *Clostrium difficile* en 2009 en COT-ARI, que produjo un descenso más rápido de la resistencia a Cefalosporinas, amoxicilina y quinolonas, en los cocos en racimo en general y los *S.aureus* en particular.

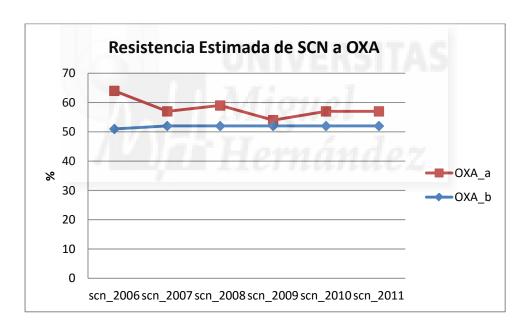


Figura 39. ViResiST. Resistencia Estimada de SCN resistente a meticilina (Oxacilin) en COT-ARI (rojo) vs COT-HVB (azul).

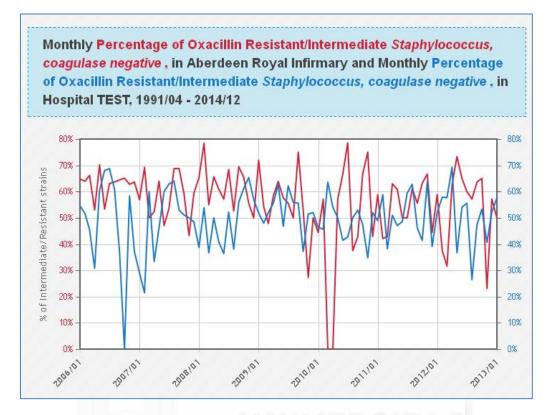


Figura 40. WebResist. Resistencia observada de SCN a meticilina (Oxacilin) en COT-ARI (rojo) vs COT-HVB (azul).

4. **Gráfica comparativa: Resistencia a Ciprofloxacino-SCN COT-ARI vs COT-HVB.** (Figura 41 y 42). Entre el 20 y 60% en esos años en COT-HVB, entre un 40 y 60% en COT-ARI.

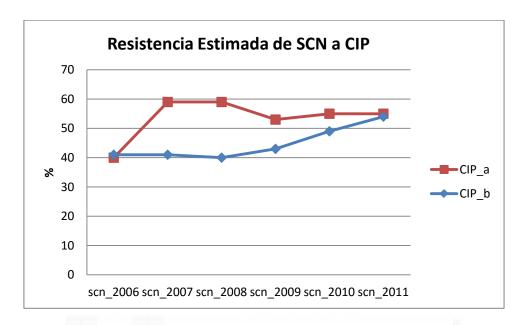


Figura 41. ViResiST. Resistencia Estimada de SCN resistente a Ciprofloxacino (CIP) en COT-ARI (rojo) vs COT-HVB (azul).

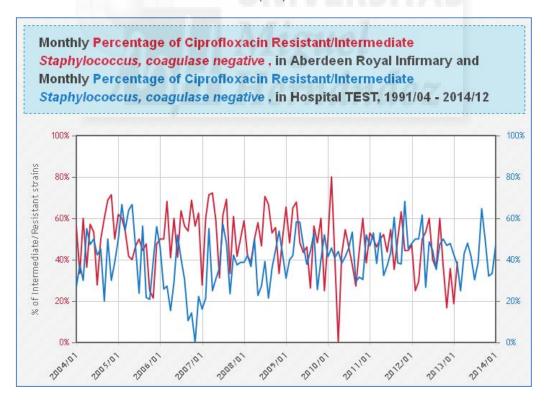


Figura 42. WebResist. Resistencia observada de SCN a Ciprofloxacino en COT-ARI (rojo) vs COT-HVB (azul).

Resistencia Bacilos Gram Negativos.

 Gráfica comparativa: Resistencia a Ceftazidima-Pseudomona aeruginosa COT-ARI vs COT-HVB. (Figura 43 y 44). Oscila en torno a un 20% en COT-HVB y en torno a un 15% en COT-ARI.

Figura 43. Viresist. Resistencia Estimada de Pae a Ceftazidima (CAZ) en COT-ARI (rojo) vs COT-HVB (azul).

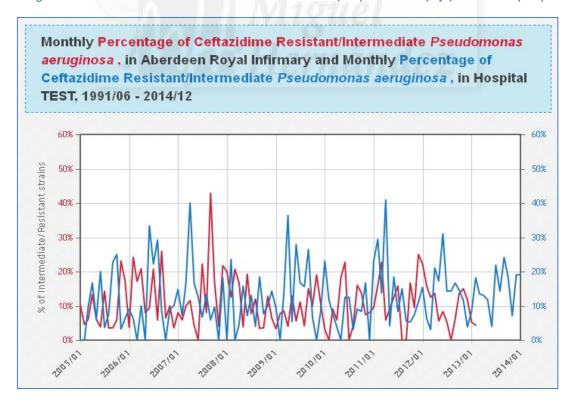


Figura 44. WebResist. Resistencia observada de Pae a Ceztazidima (CAZ) en COT-ARI (rojo) vs COT-HVB (azul).

Tras la consulta de las gráficas de predicción de resistencia para los años 2007 a 2012 para m.o. y ATB más relevantes en cada hospital, comprobamos que la evolución de la resistencia es distinta en cada hospital y que las gráficas de predicción son fiables y estiman la tasa de resistencia adecuadamente. Es decir, hay concordancia entre las gráficas de predicción determinadas con los datos de Viresist y los gráficos de resistencia observada (www.WebResist.org).

Objetivo 5. Elaboración y eficacia de una recomendación.

Una vez hemos determinado el m.o. más frecuente en cada área y en cada síndrome, en este caso IHQ-I-COT y una vez conocemos el nivel de resistencia predicho mediante técnicas ARIMA de análisis de series temporales por "ViResiST" o "WebResist". ¿Podríamos con estos datos establecer una recomendación de antibioterapia empírica para el síndrome a estudio más fiable que la terapia antimicrobiana pautada de forma convencional? Entendiendo "convencional" como la terapia realmente pautada (según la experiencia del facultativo prescriptor, que en muchos casos se trata de especialistas en cirugía ortopédica, no en enfermedades infecciosas o microbiología, o con la ayuda de otras herramientas como guías en formato papel). Nos planteamos que la terapia empírica pautada, podría aumentar su eficacia (Figura 45):

- Si se hubiera consultado con un **experto** en enfermedades infecciosas,
- Si se hubiera consultado con un **experto local** conocedor de la evolución de la resistencia a nivel local.
- Si se hubiera consultado que un **experto** eligiera entre las opciones dadas por el sistema **WebResist**.
- Si se hubiera consultado que un experto local eligiera entre las opciones dadas por el sistema WebResist.

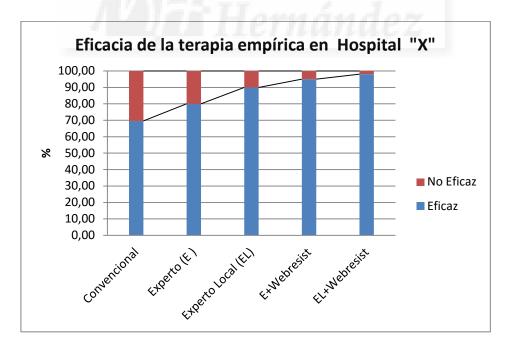


Figura 45. Hipótesis de aumento de la eficacia de la recomendación de terapia empírica.

Elaboración de la recomendación de terapia empírica.

Figura 46. Esquema para la elaboración de una recomendación de terapia empírica.

Por ejemplo, si nos situamos en el tiempo en enero de 2008:

- Tenemos una lista con las **frecuencias relativas de los m.o. aislados más frecuentemente** para el síndrome en cuestión, el año anterior, 2007 en este caso.

	7	-	-
1		2007	
2	M.O./AÑO	HVB	
3		frec absoluta	%
4	scn	6	20,69%
5	sep	6	20,69%
6	sau	4	13,79%
7	efa	3	10,34%
8	can	2	6,90%
9	pae	2	6,90%
10	pr-	2	6,90%
11	aba	1	3,45%
12	bgp	1	3,45%
13	ecl	1	3,45%
14	svi	1	3,45%
15		29	100,00%

Figura 47. Frecuencias relativas de los m.o. aislados más frecuentemente enero-dic 2007.

Abreviaturas: scn: Staphylococcus coagulasa negativos, sep: Staphylococcus epidermidis, sau: Staphylococcus aureus, efa: Enterococcus faecalis, can: Candida albicans, pae: Pseudomona aeruginosa, pr-: Proteus species, aba: Acinetobacter baumannii, bgp: bacilos gram positivos, ecl: Enterobacter cloacae, svi: Streptococcus viridans.

- La **probabilidad de acierto/eficacia** de cada antibiótico frente a cada uno de esos m.o. Esto es: Probabilidad de acierto= 1- probabilidad de resistencia estimada por ViResiST. Mediante técnicas de análisis de series temporales (SCA ARIMA), considerando los datos registrados de resistencia de cada microorganismo a cada antibiótico hasta diciembre del año anterior, esto es diciembre de 2007, WebResist nos da la resistencia estimada para el primer trimestre de 2008.

16							
17		SCA VIRESIST hasta	Dic 2007 . Resista	nce Predicha	2008		
18	microorganism	microorganism		OXA	PEN	AMP	Α
19	Coag Neg Staph	scn	P(Resistance)	52	91	93	1
20	Staph. Epidermidis	sep		65	31	32	2
21	S aureus	sau		10	88	94	4
22	Enterococcus fecalis	efa			0	0)
23	Pseudomonas aerugi	pae				0)
24	Proteus sp	pr-				43	1
25	A.baumannii	aba				0)
26	Enterobacter cloacae	ecl				97	1
27	Str. G Viridans	svi			14	51	
28							
29	S	CA VIRESIST hasta D	ic 2007 . PREDICCI	ÓN de Succes	s 2008		
30	microorganism	microorganism		OXA	PEN	AMP	Α
31	Coag Neg Staph	scn	1-P(Resistance)	0,48	0,09	0,07	1
32	Staph. Epidermidis	sep		0,35	0,69	0,68	3
33	S aureus	sau		0,9	0,12	0,06	j
34	Enterococcus fecalis	efa			1	1	
35	Pseudomonas aerugi	pae				1	
36	Proteus sp	pr-				0,57	,
37	A.baumannii	aba				1	
38	Enterobacter cloacae	ecl				0,03	
39	Str. G Viridans	svi			0,86	0,49	,

Figura 48. Probabilidad de acierto/eficacia de cada antibiótico frente a cada uno de esos m.o.

- Y combinando la probabilidad de acierto estimada de algunas combinaciones de antibióticos usadas frecuentemente mediante el cálculo de la probabilidad de la unión de ambos eventos:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Ecuación: Cálculo de la probabilidad de la unión.

M.o. Más frec 2007	Frec Relat	VAN+AMC	VAN+CTR	GEN+AMC	GEN+CTR	VAN+GEN	AMC+CTR	VAN+CAZ	١
scn	20,69%	1	1	0,844	0,901	1	0,8284		1
sep	20,69%	1	1	0,978	1	1	1		1
sau	13,79%	1	1	0,9965	1	1	1		1
efa	10,34%	1	1	1	1	1	0,0793		1
pae	6,90%	0	0,07	0,81	0,8233	0,81	0,07	0,9	3
pr-	6,90%	0,99	0	0,999	0,9	0,9	0,99		1
aba	3,45%	0,3	0	0,566	0,38	0,38	0,3	0,4	6
ecl	3,45%	0,01	0	0,9901	0,99	0,99	0,01	0,8	1
svi	3,45%	0,96	0,96	0,15	0,15	0,966	0	0,9	6
	89,66%	0,76724138	0,69310345	0,80145172	0,80595172	0,85365517	0,60821724	0,8651724	1

Figura 49. Resultante aplicar la fórmula a la probabilidad de acierto de las combinaciones de ATB propuestas para cubrir el espectro microbiológico más frecuente.

- De esta forma, el "sistema" nos propone una series de combinaciones ordenadas de mayor a menor según su eficacia estimada, de forma que el facultativo pueda elegir ya teniendo en cuenta el espectro m.o. para ese síndrome y su resistencia estimada, es decir, tendríamos una propuesta de **terapia empírica guiada por la sensibilidad local**.

Figura 50. Si ordenamos las combinaciones de mayor a menor probabilidad de acierto obtenemos una lista de combinaciones de ATB.

Abreviaturas: VAN: Vancomicina, CAZ: Ceftazidima, GEN: Gentamicina, CIP: Ciprofloxacino, CTR: Cotrimoxazol, AMC: Amoxi-clavulánico.

Plan de trabajo.

- Remitimos a cada uno de los expertos una lista con los m.o. más frecuentes cada año en cada hospital,
- 2. Un experto (Microbiólogo), efectúa una recomendación para cada año (2008-2009-2010) en ambos hospitales. Siendo así el Experto Local en su hospital y el Experto para el otro hospital.
- **3.** El experto elige una de las recomendaciones "dadas por el sistema" teniendo en cuenta el espectro m.o. acumulado anterior a ese año y su patrón de resistencia esperada para ese año aplicando el programa **WebResist**.
- 4. Recogemos la antibioterapia empírica pautada en cada caso, mediante recopilación de los tratamientos pautados en las historias clínicas de cada uno de los centros.
- 5. Comprobamos la sensibilidad del m.o. a la antibioterapia empírica realmente pautada en ese momento y la proporcionada por el sistema, en el caso de que el sistema estuviera en funcionamiento en ese momento, en los casos en los que se pautó antibioterapia empírica y analizamos cual es más fiable.

Mediante el chequeo manual del antiobiograma del m.o. a estudio en cada caso comprobamos la sensibilidad de mismo: al tratamiento empírico pautado y al recomendado por consenso con la ayuda de WebResist. En los casos en los que el antibiótico prescrito no se encontrara entre los probados en el antibiograma del germen a estudio, se hizo uso de las tablas de la Guía Sanford de Terapia Antimicrobiana (26), para determinar la sensibilidad o no al tratamiento prescrito realmente y el recomendado con ayuda del programa WebResist.

Resultados pasos 1, 2 y 3.

Así tenemos para cada año 4 recomendaciones para cada hospital que pueden coincidir o no:

Para Aberdeen (COT-ARI) Tabla XIX

- Experto (E): realizada por un experto conociendo los m.o. más frecuentemente aislados para ese síndrome el año anterior,
- Experto Local (EL): realizada por un experto local, conociendo los m.o. más frecuentemente aislados para ese síndrome el año anterior y conocedor de la evolución de la resistencia en su área de salud.

- E + WebResist: un experto selecciona una combinación de ATB de las dadas por el sistema.
- EL + WebResist: un experto local selecciona una combinación de ATB de las dadas por el sistema.

Tabla XIX. Recomendaciones de terapia empírica para COT-ARI.

COT-ARI	Experto (E)	Experto Local (EL)	E+WebResist	EL+WebResist
2008	VAN+CAZ	VAN+GEN	VAN+CTR	VAN+CTR
2009	VAN+CAZ	VAN+GEN	GEN+AMC	GEN+AMC
2010	VAN+CAZ	VAN+GEN	VAN+TZP	GEN+CTR

Abreviaturas: VAN: Vancomicina, CAZ: Ceftazidima, GEN: Gentamicina, CIP: Ciprofloxacino, CTR: Cotrimoxazol, AMC: Amoxi-clavulánico, TZP: Piperacilina-Tazobactam.

Para Orihuela (COT-HVB) Tabla XX

- Experto (E): realizada por un experto conociendo los m.o. más frecuentemente aislados para ese síndrome el año anterior,
- Experto Local (EL): realizada por un experto local para COT-HVB, conociendo los m.o. más frecuentemente aislados para ese síndrome el año anterior y conocedor de la evolución de la resistencia en su área de salud.
- E + WebResist: un experto selecciona una combinación de ATB de las dadas por el sistema.
- EL + WebResist: un experto local selecciona una combinación de ATB de las dadas por el sistema.

Tabla XX. Recomendaciones de terapia empírica para COT-HVB.

СОТ-НVВ	Experto (E)	Experto Local (EL)	E+WebResist	EL+WebResist
2008	VAN+AMIK	VAN+CAZ	VAN+GEN	VAN+CAZ
2009	VAN+AMIK	VAN+TZP	VAN+TZP	VAN+TZP
2010	VAN+AMIK	VAN+TZP	VAN+GEN	VAN+TZP

Abreviaturas: VAN: Vancomicina, CAZ: Ceftazidima, GEN: Gentamicina, CIP: Ciprofloxacino, CTR: Cotrimoxazol, AMC: Amoxi-clavulánico, TZP: Piperacilina-Tazobactam.

Resultados pasos 4 y 5.

Comprobamos que en el COT-HVB se había pautado antibioterapia empírica en 24 casos, siendo el microorganismo aislado sensible al antimicrobiano pautado en 16 de los 24 casos. En COT-ARI se pautó antibioterapia empírica en 36 casos, siendo el microorganismo aislado sensible al antimicrobiano pautado en 21 de los 36 casos. En ambos centros el porcentaje de sensibilidad al antimicrobiano empírico pautado está en torno al 60-70%. (Tabla XXI)

Tabla XXI. Efectividad de la terapia empírica pautada en cada centro.

2008-2010	COT-HVB	%	COT-ARI	%
n	26		37	
ATB emp pautada	24		36	
M.O. S ATB emp/pautada	16	67%	21	58%

Sin embargo cuando contrastamos las sensibilidad ("acierto") de los microorganismos aislados en cada caso, a la recomendación realizada por los expertos en Microbiología, para ambos centros con y sin la ayuda de WebResist; el porcentaje de "acierto" aumenta hasta el 94% en COT-ARI y hasta el 100% en COT-HVB (Figura 51 y 52).

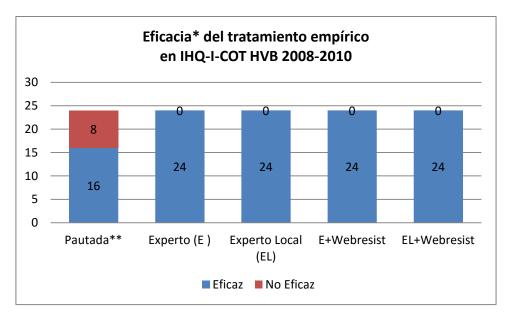


Figura 51. Eficacia de las propuestas de tratamiento empírico en COT-ARI.

Abreviaturas 2: *Eficacia: sensibilidad del m.o. si el ATB se hubiera pautado siguiendo la recomendación.

**Efectividad: sensibilidad del m.o. al ATB realmente pautado.

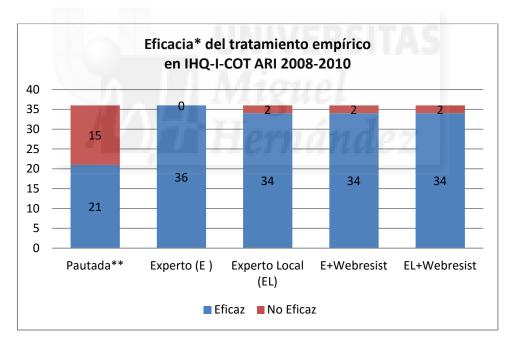


Figura 52. Eficacia de la propuesta de tratamiento empírico en COT-HVB.

Abreviaturas 3: *Eficacia: sensibilidad del m.o. si el ATB se hubiera pautado siguiendo la recomendación.

**Efectividad: sensibilidad del m.o. al ATB realmente pautado.

Dividimos los pacientes en 2 grupos para cada una de las cuatro recomendaciones (E, EL, E+WebResist, EL+WebResist) en función de si hubieran seguido (Seg Rec) o no la pauta recomendada (No Seg Rec). Y evaluamos el porcentaje de acierto de la recomendación proporcionada por el sistema en los casos en los que se pautó antibioterapia empírica.

Para Aberdeen (COT-ARI)

Tabla XXII. Tablas de Contingencia resultantes de las recomendaciones de E, EL, E+W y EL+W para COT-ARI.

COT-ARI (n=36) Experto	Acierto	No Acierto	Total	% Acierto	RR (IC 95%)
Seg Rec	3	0	3	100,00%	1,83 [1,34;2,5]
No Seg Rec	18	15	33	54,54%	E:0,84; p=0,36 (C.Yates)
	21	15	36		
COT-ARI (n=36) Experto Local	Acierto	No Acierto	Total	% Acierto	RR (IC 95%)
• • •	Acierto 3	No Acierto	Total 3	% Acierto 100,00%	RR (IC 95%) 1,83 [1,34;2,5]

COT-ARI (n=36) E+WebResist	Acierto	No Acierto	Total	% Acierto	RR (IC 95%)
Seg Rec	4	0	4	100%	1,88 [1,35; 2,60]
No Seg Rec	17	15	32	53,12%	E:1,57; p=0,20 (C.Yates)
	21	15	36	RCIT	ΔS

15

21

36

COT-ARI (n=36) EL+WebResist	Acierto	No Acierto	Total	% Acierto	RR (IC 95%)
Seg Rec	4	0	4	100%	1,88 [1,35; 2,60]
No Seg Rec	17	15	32	53,12%	E:1,57; p=0,20 (C.Yates)
	21	15	36		

Abreviaturas 4: Seg Rec: Sigue recomendación, No Seg Rec: No sigue recomendación, RR: Riesgo Relativo, C.Yates: Corrección de Yates.

Así, observamos que en COT-ARI, donde se pautó antibioterapia empírica en 36 casos, en: 3 casos hubieran seguido la recomendación del Experto asistido por Webresist o no, en 4 casos hubieran seguido la recomendación del Experto Local asistido por Webresist o no. Posteriormente se comprobó que el m.o. aislado en cada caso, en el que se hubiera seguido la recomendación, era sensible al ATB recomendado. Pasando el porcentaje de "acierto" del 53-54% para los casos en los que se pautó otro ATB, al 100%, aunque no alcanza la significación estadística en ninguno de los cuatro casos. No obstante, supone un riesgo relativo (RR) de 1,8 sin incluir el valor 1 en ninguno de los intervalos de confianza, lo que supone que el factor "seguir la recomendación" está relacionado con mayor ocurrencia de "acierto" (eficacia) en la terapia empírica (Tabla XXII)

Para Orihuela (COT-HVB)

Tabla XXIII. Tablas de Contingencia resultantes de las recomendaciones de E, EL, E+W y EL+W para COT-HVB.

COT-HVB (n=24) Experto	Acierto	No Acierto	Total	% Acierto	RR (IC 95%)
Seg Rec	9	2	11	81,80%	1,51 [0,85;2,7]
No Seg Rec	7	6	13	53,80%	X ² : 1,028; p=0,31 (C.Yates)
	16	8	24		

COT-HVB (n=24) Experto Local	Acierto	No Acierto	Total	% Acierto	RR (IC 95%)
Seg Rec	2	0	2	100%	1,57 [1,14;2,15]
No Seg Rec	14	8	22	63%	X ² : 0,068; p=0,794 (C.Yates)
	16	8	24		

COT-HVB (n=24) E+WebResist	Acierto	No Acierto	Total	% Acierto	RR (IC 95%)
Seg Rec	9	2	11	81,80%	1,51 [0,85;2,7]
No Seg Rec	7	6	13	53,80%	X ² : 1,028; p=0,31 (C.Yates)
	16	8	24		

COT-HVB (n=24) EL+WebResist	Acierto	No Acierto	Total	% Acierto	RR (IC 95%)
Seg Rec	2	0	2	100%	1,57 [1,14;2,15]
No Seg Rec	14	8	22	63%	X ² : 0,068; p=0,794 (C.Yates)
	16	8	24		

Abreviaturas 5: Seg Rec: Sigue recomendación, No Seg Rec: No sigue recomendación, RR: Riesgo Relativo, C.Yates: Corrección de Yates.

De forma análoga, observamos que en COT-HVB, donde se pautó antibioterapia empírica en 24 casos: en 11 casos hubieran seguido la recomendación del Experto o la pauta recomendada por "WebResist" seleccionada por el Experto y en 2 casos hubieran seguido la recomendación del Experto Local o la pauta recomendada por "WebResist" seleccionada por el Experto Local. Posteriormente se comprobó que el m.o. aislado en los casos en los que se hubiera seguido la recomendación era sensible al ATB recomendado, en el 82% en los casos en los que la recomendación la hacía un Experto y en el 100% en los casos en los que la recomendación la hacía un Experto Local asistido por WebResist o no. Pasando el porcentaje de "acierto" del 53-63%, para los casos en los que se pautó otro ATB, al 82-100%, aunque esta diferencia en el porcentaje de "acierto" no alcanza la significación estadística para ninguna de las recomendaciones realizadas.

Finalmente esto supone un RR de 1,5 para las recomendaciones realizadas por el Experto Local con o sin WebResist [IC 95%: 1,14; 2,15], y un RR de 1,5 [IC95%: 0,85; 2,7] para las recomendaciones realizadas por el Experto con o sin WebResist, lo que supone que el factor "seguir la recomendación" está relacionado con mayor ocurrencia de "acierto" (eficacia) en la terapia empírica. (Tabla XXIII).

Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación.

Plan de Trabajo.

- 1. La Comisión de Infecciosas del Hospital Vega Baja, establece una <u>recomendación por consenso</u> de antibioterapia empírica para este síndrome (IHQ-I-COT). Realizada conjuntamente por Microbiología, Preventiva e Infecciosas, para el año 2010, puesta en marcha mediante Sesión General Hospitalaria el 30-4-2010, teniendo en cuenta el microorganismo más frecuente en 2008-2009 y su patrón de resistencia esperada según WebResist.
- 2. Recogemos la antibioterapia empírica pautada en cada caso a partir de ese momento, mediante recopilación de los tratamientos pautados en las historias clínicas.
- 3. Comprobamos la sensibilidad del m.o. a la antibioterapia empírica realmente pautada en ese momento, dividiendo los pacientes en 2 grupos en función de si siguen o no la recomendación de terapia empírica propuesta por consenso con la ayuda de WebResist.
- 4. Evaluamos el porcentaje de acierto de la recomendación proporcionada por el sistema, analizamos cual es más fiable y comprobamos el grado de adhesión de los facultativos. Hasta 30-4-2014, durante 4 años.

Efectividad de la recomendación.

Recordemos que **eficacia** hace referencia al impacto o efecto de una acción llevada a cabo en las mejores condiciones posibles o condiciones experimentales, serían las del Objetivo 4. En este caso tratamos de medir la **efectividad**, que hace referencia al impacto que se alcanza a causa de una acción llevada a cabo en condiciones habituales.

La recomendación de la Comisión de Infecciosas de COT-HVB para el síndrome IHQ-I-COT establecida el 30-4-2010 fue Vancomicina más Tobramicina para cubrir: *S.epidemidis, SCN y P.aeruginosa*. Posteriormente fue modificada dentro del Servicio atendiendo a las características del paciente, añadiendo la opción de Vancomicina más Ceftazidima en diciembre de 2010, ya que tras la puesta en marcha del protocolo se observó que el síndrome a estudio (IHQ-I-COT), era más frecuente en pacientes añosos en los que la función renal podía estar comprometida.

Entre mayo de 2010 y mayo de 2014 se recogieron 68 casos, se pautó ATB empírica en 51, en 27 casos la ATB empírica siguió la recomendación pautada por la Comisión de Infecciosas Hospitalaria en mayo 2010 y ésta fue efectiva en 27 casos (100%), entendiendo efectividad como que el microorganismo que se aisló posteriormente era sensible al ATB pautado de forma empírica. En los 24 casos en los que no se siguió la recomendación el ATB pautado fue efectivo en 15 casos (62,5%). (Tabla XXIV)

Tabla XXIV. Efectividad de la terapia empírica pautada en COT-HVB 2010-2014.

Mayo 2010- Mayo 2014 (n=68)	COT-HVB	Sigue Rec	No Sigue Rec
ATB emp pautada	51	27	24
M.O. S ATB emp/pautada		27	15
% Acierto		100%	62,5%

Tabla XXV. Tablas de Contingencia para COT-HVB.

COT-HVB 2010- 2014	Acierto	No Acierto	Totales	% Acierto	RR [IC: 95%]
Seg Rec	27	0	27	100%	1,6 [1,17;2,18]
No Seg Rec	15	9	24	62,5%	X ² : 9,85; p=0,0017*
	42	9	51		

Abreviaturas 6: Seg Rec: Sigue recomendación, No Seg Rec: No sigue recomendación, RR: Riesgo Relativo,
*Corrección de Yates

Observamos que el porcentaje de "acierto" en los pacientes que siguen la recomendación es del 100%, siendo en los que no la siguen del 62,5%. Esta diferencia alcanza la significación estadística, aún aplicando la corrección de Yates. Y supone un riesgo relativo (RR) de 1,6 (sin que el IC95% incluya el valor 1 [IC 95%: 1,17; 2,18]), lo que supone que el factor "seguir la recomendación" está relacionado con mayor ocurrencia de "acierto" (efectividad) en la terapia empírica. (Tabla XXV).

Grado de adhesión de los facultativos.

Observamos mayor seguimiento por parte de los facultativos desde la comunicación de resultados en el servicio en 2013. De los últimos 10 casos registrados en 9 se pautó ATB empírica, en 8/9 se siguió la recomendación de terapia empírica, lo que representa un grado de adhesión de 88,89%. (Figura 53 y Tabla XXVI).

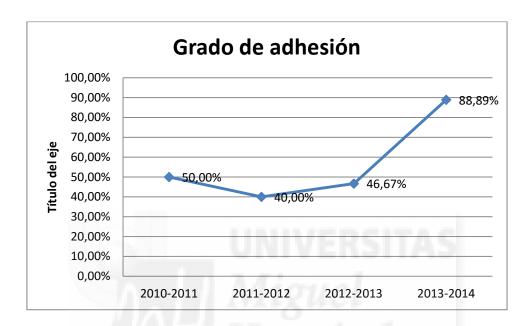


Figura 53. Evolución del Grado de adhesión de los facultativos prescriptores a la recomendación de terapia empírica.

Tabla XXVI. Relación número de casos/seguimiento de la recomendación.

	Sigue Recomendación	Nºcasos	Grado Adhesión
2010-2011	6	12	50,00%
2011-2012	6	15	40,00%
2012-2013	7	15	46,67%
2013-2014	8	9	88,89%

Objetivo 7. Factores predisponentes de resolución de la infección.

Si analizamos los pacientes en los que se pautó terapia empírica (n=51), y entendemos como resolución del cuadro clínico: la resolución de la infección, con o sin necesidad de recambio, sin recidiva tras al menos 1 año de la última cirugía y que no esté en tratamiento antibiótico supresivo.

Observamos que existen ciertos factores predisponentes de resolución del cuadro clínico, en nuestra serie: la edad menor a 60años, el tipo de infección aguda y las infecciones sobre osteosíntesis, se asociaron de forma estadísticamente significativa a resolución del cuadro clínico (p<0,05). (Tabla XXVII). También consideramos relevante, que la resolución del cuadro clínico se presenta de forma más frecuente en los casos en los que el m.o. finalmente aislado es sensible al tratamiento empírico prescrito, aunque este factor pierda su significación estadística al aplicar la corrección por continuidad de Yates (p=0,063).

Tabla XXVII. Factores que pueden influir en la resolución del cuadro clínico.

	Resuelto	%	No Resuelto	%	Total	Estadístico	р
Edad	57		71			T=3,240	0,003
Agudas	25	86,21%	4	13,79%	29	χ^2 =4,843	0,028
Osteosíntesis	21	91,30%	2	8,70%	23	$X^2 = 6,221$	0,013
Sensibilidad a Trtº empírico	34	81%	8	19%	42	X ² =3,457	0,063*

^{*}Corrección de Yates.

Sin embargo, cuando incluimos dichos factores en un modelo de Regresión Logística (Método = Por pasos hacia adelante (Razón de verosimilitud)), ninguna de las variables recogidas permanece en el modelo como factor de riesgo independiente. Probablemente por el limitado número de casos.

DISCUSIÓN

Interpretación, contraste y aplicabilidad de los resultados.

Objetivo 1. Cambios en la epidemiología local con el paso del tiempo.

Peel et al¹⁷ y Benito et al¹⁹, han descrito recientemente un incremento de BGN, infecciones PM y m.o. multirresistentes en las infecciones de herida quirúrgica (IHQ) sobre artroplastias primaria de cadera-rodilla y sobre artroplastia por fractura de cadera. Mittal⁵⁴ y Papagelopoulos⁵⁵ consideran que la mayor implicación de m.o. multirresistentes podrían estar relacionados con: un uso excesivo e inadecuado de antibióticos comunitario y hospitalario, una profilaxis inadecuada, el aumento de la estancia Hospitalaria y el paso por unidades de cuidados intensivos. La artritis reumatoide al estar asociada a inmunosupresión y alteración de la cicatrización, es identificada por Peel et al¹⁷ como variable asociada a mayor tasa de infección por BGN. Benito et al¹⁹ lo plantean como extensión de un cambio del espectro microbiológico que ya se ha producido en otros tipos de infecciones asociadas a cuerpo extraño⁵⁶ y también señalan su posible asociación con el aumento de edad y complejidad de los pacientes que se someten a cirugías de reemplazo articular.

En nuestro centro, no observamos un aumento significativo en la media de edad, que explique la variación del espectro, en pacientes sometidos a artroplastia primaria en patología degenerativa de cadera o rodilla a lo largo de estos 10 años. Lo que sí observamos una estrecha relación entre la disminución del número de osteosíntesis dentro de la actividad quirúrgica de nuestro Servicio (Relación osteosíntesis/Artroplastia (Ratio O/A)) con el descenso de la implicación de los bacilos gram negativos en las infecciones de herida quirúrgica. Esta relación no ha sido señalada por otros autores anteriormente y las tasas recientemente publicadas en la literatura no observan tanta implicación de *BGN* en sus infecciones que justifique una oscilación epidemiológica. No obstante, estas series son estudios retrospectivos basados en cortes transversales que pueden no recoger adecuadamente el carácter evolutivo del espectro microbiológico que causa las infecciones sobre artroplastia y osteosíntesis.

Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrobianas

En nuestra serie, entre los factores relacionados con el paciente la linfopenia, y la estancia preoperatoria mayor a 2 días se asociaron a infecciones por *BGN y PM*, respectivamente. Y entre los factores asociados a la cirugía, fue cirugía secundaria a fractura la que se asoció más

frecuentemente con infecciones por *BGN y PM*. Factores presentes en pacientes pluripatológicos, como por ejemplo las fracturas de cadera.

Además de los factores citados, detectamos como factor de riesgo independiente para infección por *BGN o PM* la clínica aguda de infección según Tsukayama⁵². Y es que, en términos generales, en las infecciones agudas cabe esperar que los m.o. causantes sean patógenos más virulentos (*S. aureus, BGN...*) que en las crónicas (*SCN, Propionibacterium acnes...*)⁵⁷.

En cuanto a la influencia del tipo de cirugía podemos esperar, en las artroplastias de revisión y reintervenciones, una mayor frecuencia de *S.epidermidis y SCN*; si incluimos ingresos prolongados con estancia en UCI, observaremos una mayor incidencia de patógenos multiresistences nosocomiales (*SARM, P. aeruginosa o Acinetobacter sp*). En las fracturas, habrá mayor frecuencia de infecciones polimicrobianas⁵⁸; y si incluimos fracturas abiertas podrán aparecer m.o. inusuales procedentes del suelo. Sin embargo, varios artículos hacen referencia a que independientemente de la colonización que se produce en el momento de la fractura abierta; los m.o. aislados suelen ser patógenos nosocomiales⁵⁹, *BGN* e incluso *SARM*⁶⁰.

La bibliografía reciente de infecciones sobre osteosíntesis tras fractura cerrada⁶¹⁻⁶⁴, establece que el m.o. más frecuente es el *S.aureus* con tasas que oscilan entre el 44 y el 75%, según la serie y localización anatómica del implante. Oscilando la tasa de *SARM* entre el 20 y 58% según la localización geográfica de la serie. La implicación en las infecciones sobre osteosíntesis de los *BGN* oscila entre el 5 y el 32% y las polimicrobianas alcanzaban el 17% en una de las series⁶².

Objetivo 3. Cambios en la epidemiología local según la localización geográfica.

Cuando comparamos el espectro microbiológico en ambos centros, observamos que por Grupo, no hay diferencias significativas, entre las **proporciones de infecciones por** *BGN y PM*, entre ambos centros europeos ni dentro del mismo centro en 5 años estudiados. Observamos una **alta incidencia de gérmenes del grupo** *BGN* **que oscila alrededor del 30% tanto en COT-ARI como en COT-HVB (**Tabla XIV**).** Esta tasa podría no ajustarse a la realidad si fueran aislamientos que se correspondieran con cultivos superficiales en pacientes que estuvieran tomando tratamiento antibiótico (ATB), ya que los *BGN* son resistentes a los ATB usados en primera línea (Flu-Cloxacilina y Ben-penicilina); éstos seleccionan los *BGN* en la superficie y si los cultivos son superficiales podríamos estar atribuyendo a un *BGN* la causa de infección. En ambas series hemos tratado de evitar este sesgo atribuyendo la etiología de la infección, a m.o. aislados en cultivos profundos obtenidos durante la cirugía, muestras de tejido o aspirado

de líquido articular. En Aberdeen, de los 31 casos de infección por *BGN*, 18 (58%) fueron aislados en cultivos profundos, mientras que en Orihuela de los 33 casos de infección por *BGN*, 12 (36%) fueron aislados en cultivos profundos, con lo que ésta variable explicativa sería más plausible en el caso de COT-HVB (Figura 33). Cuando analizamos conjuntamente el grupo de pacientes COT-ARI-COT-HVB (n=187), encontramos que los *BGN* y las *PM* son más frecuentes en infecciones agudas según Tsukayama⁵² (con p=0,048 y p=0,025, respectivamente), observando mayor tendencia a aislar BGN (42% vs 29%, p=0,81) e infecciones *PM* (32% vs 20%, p=0,90) en cirugía secundaria a fracturas, sin alcanzar el nivel de significación estadística.

Sin embargo, cuando analizamos los m.o. por especies, observamos que hay diferencias estadísticamente significativas entre los m.o. más frecuentes en uno u otro centro, estas diferencias ha de tenerse en cuenta de cara a analizar el nivel de resistencia, para posteriormente recomendar una terapia empírica (Tabla XV). En COT-ARI hemos de tener en consideración los gérmenes del grupo de los Streptococcus, se han descrito características que suelen estar asociadas a infección por este gérmen: pacientes mayores de 70 años en el momento de la cirugía de artroplastia primaria⁶⁵, con una o más patologías crónicas, con diagnóstico de infección posterior al tercer mes postquirúrgico; asociadas la mayoría de ellas a sintomatología aguda (lo que le confiere un probable origen hematógeno de la infección) y como parte de infecciones polimicrobianas (31%) donde suelen estar asociadas a infecciones por Staphylococcus 51,66. En el caso de COT-ARI, los gérmenes del género estreptococo fueron aislados como causa de infección en 22/100 pacientes (11/22 en cultivos profundos). En nuestras serie, su aislamiento es más frecuente en infecciones con más de 3 meses de evolución (p=0,032), en infecciones sobre artroplastia (p=0,010) y en infecciones PM (p=0,0001) 9/22 (41%), de las cuales 7/22 (31%) estaba asociada a infecciones por gérmenes del género Staphylococcus.

En ambos centros encontramos *SCN* (incluido *S.epidermidis*), si bien es cierto que la tasa de implicación de estos gérmenes en IHQ-I-COT es más alta en COT-HVB. Los *SCN* junto con el *S.aureus* son los m.o. más frecuentemente implicados en infecciones sobre artroplastia, entre el 50-65% de las infecciones según series^{67, 68}. La presencia de material extraño (osteosíntesis o prótesis) puede reducir el número necesario de m.o. para causar infección. Los *SCN* son m.o. saprófitos que se encuentran en la piel y alcanzan la prótesis por inoculación directa durante la intervención quirúrgica. Una vez en contacto con la prótesis, intentarán adaptarse a su superficie con la formación de biopelículas o biofilms. La mayor parte de los antibióticos que inhiben las bacterias en crecimiento logarítmico se muestran inactivos cuando éstas se

encuentran en las condiciones de crecimiento estacionario que se dan en el biofilm. En el biofilm las bacterias permanecen silentes y pueden no manifestar clínica de infección hasta varios años después de la implantación de la misma, dando clínica de aflojamiento tardío, en muchos casos considerado aséptico⁶. Para evitar atribuir la causa de la infección a m.o. contaminantes, aplicamos los criterios de Atkins et al⁶⁹, por el que se considera causante de la infección al m.o. aislado en al menos 3 cultivos positivos (con aislamiento de un mismo tipo de cepa) de 5 muestras obtenidas en la cirugía de extracción/lavado de la prótesis, ya que permite alcanzar un valor predictivo positivo superior al 90%, siempre en el contexto clínico de sospecha de infección.

En cuanto a los gérmenes del grupo Coliforme (E.coli, E.cloacae, Klebsiella y Citrobacter) (Tabla XVI), en una serie publicada del registro francés de infecciones nosocomiales⁷⁰, mostró como germen más frecuente al S.aures, en un 34% de los casos (7,3% SAMR), en un 13,6% de los gérmenes causantes de infección eran Coliformes y en un 6,3% se trató de P.aeruginosa. Algunos autores⁷¹ señalan que la infección por *Coliformes* puede ser consecuencia de una bacteriemia transitoria durante procesos de endoscopia, cistoscopia o procedimientos urológicos sin profilaxis previa. En cuanto a los procesos endoscópicos, Coelho-Prabhu et al⁷², en un estudio prospectivo de casos-controles, observan una mayor incidencia de infección sobre artroplastias de cadera y rodilla tras esófago-gastro-duodenoscopias con biopsia. Y aíslan Streptoccos, Enterococos, BGN y anaerobios como patógenos responsables de la infección en el 17% de los casos, siendo los SCN (29%) y los S.aureus (28%) los más frecuentemente aislados. Sin embargo Gupta et al⁷³, en un estudio publicado en 2015, no encuentra mayor incidencia de infección sobre artroplastia tras someterse a un procedimiento genitourinario, sin apreciar diferencias significativas entre los m.o. que causaron la infección. Debido al carácter retrospectivo de los datos de nuestra serie, el historial de procedimientos endoscópicos o genitourinarios no ha sido registrado y por lo tanto no podemos establecer su implicación en la incidencia de infecciones por Coliformes tanto en COT-ARI como en COT-HVB.

Objetivo 4. Cambios en el nivel de resistencia.

Estudios previos han demostrado diferencias significativas en el espectro microbiológico y la resistencia a ATB del germen causante de IHQ-I-COT dependiendo de la procedencia de la serie. Holleyman et al⁶⁵, en su serie de artroplastias de rodilla infectadas en Gales e Inglaterra, los gérmenes más frecuentes causantes de infección fueron los *Staphylococos* en más del 70% de los casos. En Reino Unido, Phillips et al⁷⁴ en una serie retrospectiva de infecciones sobre artroplastias de cadera y rodilla, los m.o. más frecuentes causantes de infección fueron los *SCN*

(36%) y S.aureus (25%), con un 4% de *SARM*. Stefánsdóttir et al⁷⁵ publicó en 2009, la epidemiología de las infecciones sobre artroplastia de rodilla recogidas en el Registro Escandinavo de Artroplastias (SKAR) implantadas entre 1986-2000, siendo los *SCN* los m.o. más comúnmente aislados con un 35,1% de los casos, seguidos del S.aureus en un 18,4%. Durante la duración del estudio también observó un aumento significativo de la resistencia a la meticilina, siendo la tasa global del 1% en Sau y del 62% en *SCN*.

Aggarwal et al⁷⁶, en un estudio retrospectivo llevado a cabo en dos centros de referencia para el tratamiento de infecciones sobre artroplastia, el HELIO ENDO-Klink en Hamburgo, y el Rothman Institute en Philadelphia. En el estudio, se analizaron 749 artroplastias de rodilla y 921 artroplastias de cadera, observando una diferencia significativa en la epidemiología de las infecciones en ambos centros. La incidencia de infecciones por *S.aureus* fue mayor en Philadelphia (31%) que en Hamburgo (13%). Del mismo modo, la infección por *SCN* se observó más frecuentemente en Hamburgo (39,3%) en comparación con el Philadelphia (20,2%). Además, la incidencia de *SARM* en Philadelphia vs Hamburgo fue del 48,1% y del 12,8%, respectivamente. Estas diferencias avalan la variabilidad geográfica en la prevalencia del microorganismo, destacando además la necesidad de analizar los datos en cada población.

Tras la consulta de las gráficas de predicción de resistencia para los años 2007 a 2012 para m.o. y ATB más relevantes en cada hospital, comprobamos que el programa WebResist efectúa de manera automática todas las transformaciones necesarias para la predicción de resistencia esperada de forma fiable. El programa predice adecuadamente la tendencia evolutiva de la sensibilidad de muchos de los patógenos más frecuentes. Los niveles de resistencia estimada mediante técnicas ARIMA de análisis de series temporales (ViResiST) son similares a los observados. Mediante la comparación gráfica observamos que los niveles de resistencia cambian de un lugar a otro y dentro del mismo lugar con el paso del tiempo y esto debe tener implicaciones de cara a la terapia empírica a utilizar en cada síndrome.

Objetivo 5. Elaboración de una recomendación de terapia empírica.

Cuando consultamos las guías de terapia empírica observamos, que la guía Sanford²⁶ no recomienda terapia empírica para este síndrome (desde 2006) hasta resultado de cultivo y la guía Mensa³⁰ recomienda desde 2009 hasta 2011 un Glucopéptido (Vancomicina o Teicoplanina) asociado a una cefalosporina anti-Pseudomona (Ceftazidima o Cefepime); en 2012 incluye la **Daptomicina o el Linezolid** como alternativa a la Vancomicina, todos antibióticos de "última generación" y amplio espectro. No obstante, un estudio publicado en 2013⁷⁷ señala la falta de nuevas moléculas antimicrobianas y trata de incentivar el desarrollo

de las mismas. Parvizi et al⁷⁸ recomiendan los programas para la **optimización del uso racional de antimicrobianos (PROA)**, para la preservación de nuestro arsenal terapeútico actual. López-Medrano et al⁵³, en un artículo de revisión en 2013 que analiza los PROA, asegura que, aunque hay directrices nacionales de práctica clínica para muchos tipos de infección, el éxito en la práctica clínica es más probable si además de la clínica y las características del paciente, tomamos en consideración la epidemiología y el uso de antimicrobianos a nivel local. Además, a veces, se deben tomar decisiones clínicas en situaciones en las que no hay directrices nacionales, éstas son ambiguas o no son totalmente aplicables a nivel local.

Dichos programas, recomiendan el desarrollo, la difusión e implementación local de directrices, recomendaciones o guías clínicas que tengan en cuenta los patrones de susceptibilidad locales. Por otra parte, estas guías deben ser actualizadas periódicamente, teniendo en cuenta cualquier cambio significativo en el patrón de resistencia de los microorganismos.

Con la metodología descrita en esta Tesis tratamos de elaborar una recomendación para la orientación en el tratamiento antibiótico empírico en IHQ-I-COT que proporcione mejor información que la disponible habitualmente a la cabecera del paciente ("De la cocina a la mesa" F.A. López Prats). La ventaja que nos ofrece WebResist es que no sólo tenemos una actualización de la susceptibilidad local del m.o. o grupo frente a un antimicrobiano, sino que además tenemos un pronóstico a 3 meses del patrón de susceptibilidad local del microorganismo en cuestión.

¿Por qué mejora tanto el porcentaje de acierto al incluir datos de epidemiología local?

Primero, analicemos lo que ocurrió. Observamos que sin conocer la epidemiología local, es decir, los m.o. que más frecuentes y los datos de resistencia local, el porcentaje de "acierto" en COT-ARI y en COT-HVB fue del 58% y del 67%, respectivamente. Posteriormente proporcionando a los expertos el espectro microbiológico que causa el síndrome en una determinada área, este porcentaje de "acierto" aumenta al 94% en COT-ARI y al 100% en COT-HVB; tanto si el experto conoce la evolución de la resistencia a nivel local como si no. Esto es debido a que al observar que el espectro incluye m.o. con elevada tasa de resistencia a meticilina como son los *SCN* (*sep*), ambos expertos incluyen la Vancomicina como ATB empírica, que apenas tiene fenómenos de resistencia para los m.o. Gram positivos.

En COT-HVB, el menor acierto de la recomendación proporcionada por el Experto con o sin la ayuda de Webresist, es debido a que en su pauta empírica incluye un antibiótico de la familia

de los aminoglucósidos (Genta o Tobra), y éstos presentan más fenómenos de resistencia que la Vancomicina, que aparece en las propuestas de tratamiento del Experto-Local.

Entonces, si al conocer el m.o. más frecuente y añadir Vancomicina ya tenemos unas tasas de acierto del 100%, ¿cuál es la ganancia de poner en marcha el "sistema" (Sistema=espectro local + datos de resistencia WebResist)? Usando una de las recomendaciones dadas por Webresist, observamos que mejora la tasa de "acierto" de los antibióticos pautados empíricamente. Pero a diferencia del resto de pautas, trata de usar ATB que traten de generar menor resistencia cubriendo el espectro de m.o. más frecuentes. Por ejemplo, observamos como en COT-ARI se incluye en la terapia empírica **Cotrimoxazol** en 2008 y 2010, y en 2009-2010 no recomienda Vancomicina. (Tomo Anexos: <u>ANEXO III (103)</u>)

Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación.

Entendemos que la terapia es efectiva si el m.o. es sensible al antibiótico pautado. Sin tener en cuenta para los resultados de efectividad del tratamiento la resolución del cuadro clínico; porque éste resultado depende también de otros factores, tales como: un adecuado desbridamiento quirúrgico, la retirada de material extraño (osteosíntesis, artroplastia), el uso de antibióticos a nivel local (en cemento), el tipo y duración de la pauta antibiótica parenteral y la reimplantación protésica llevada a cabo en uno o dos tiempos⁷⁹.

En el Objetivo 4 estudiamos, la **eficacia** de la recomendación del experto en enfermedades infecciosas o la obtenida con el programa WebResist. En nuestra serie el factor "seguir la recomendación" está relacionado con mayor ocurrencia de "acierto" (efectividad) en la terapia empírica. Sin embargo, cuando ponemos en marcha la recomendación, la **efectividad** de la misma, depende del grado de adhesión de los facultativos prescriptores.

La literatura médica informa de tasas de adherencia a las recomendaciones del 53% al 90%; los principales factores predictores son: un número de pequeño de recomendaciones y detalles específicos sobre la dosis y la duración del tratamiento⁸⁰. En nuestro caso el hecho de haber seleccionado una recomendación de terapia empírica para un síndrome concreto debería predisponer hacia grados de adhesión elevados.

La cuestión del seguimiento de recomendaciones "elaboradas fuera" de los servicios quirúrgicos ha sido estudiada en la literatura, observando que la tasa de adhesión a las recomendaciones era del 43% en servicios quirúrgicos⁸¹. Hosoglu⁸², en una encuesta cumplimentada por 464 cirujanos sobre el diagnóstico y tratamiento de las IHQ, informa que el 87,1% de los cirujanos generales que participaron en el estudio, ajustaron el tratamiento ATB

según cultivo y antibiograma, sin embargo sólo alrededor de un cuarto de ellos (25,8%) consultaron a los especialistas en enfermedades infecciosas para iniciar o ajustar el tratamiento ATB. Este resultado sugiere escasa cooperación entre cirujanos y especialistas de enfermedades infecciosas para el diagnóstico y tratamiento de IHQ.

En el plano institucional, se pueden adoptar varias medidas para mejorar el conocimiento y la comprensión de las enfermedades infecciosas por parte de los cirujanos: la participación de cirujanos en comités de infecciosas y la participación activa de los cirujanos en mini-becas y rotaciones⁸³; en nuestro caso en unidades de referencia de patología Séptica del Aparato Locomotor. Además, los programas para la **optimización del uso racional de antimicrobianos** (PROA) ⁵³, aseguran que las recomendaciones elaboradas a través de equipos multidisciplinares (Comisión de Infecciosas) con especialistas de todas las áreas implicadas en el tratamiento (Trauma, Microbiología, Enfermedades Infecciosas, UCI, Preventiva y Farmacia), aumenta su aceptación, implementación y posterior uso. Así, dichas recomendaciones no son percibidas como exógenas, ya que los facultativos han sido partícipes de su elaboración y conocen en que se basan, y por tanto es más probable que tengan éxito.

En nuestra serie de los 51 casos, en los que se pautó terapia empírica, se obtuvo una tasa global de adhesión del 53% (27/51 casos). Cuando analizamos los casos en los que no se siguió la recomendación: en 13 casos fue porque la terapia empírica que se pautó fue vía oral (Ofloxacino, Cipro+Rifamp o Amoxi-clav) y la recomendación es para terapia intravenosa y en los 11 casos restantes la terapia pautada obedeció a pautas de tratamiento instauradas con anterioridad en el servicio y todavía seguidas durante algún tiempo por algunos cirujanos, por desconocimiento o descuido (Cefazolina-Tobramicina, Casos en 2010 a 2014).

La comunicación de la recomendación se llevó a cabo en la sesión general intraHospitalaria 30/4/2010. Para la difusión e implementación local de la directriz, se realizaron sesiones de implementación en el servicio COT hasta finales de 2010, llevadas a cabo por un facultativo del servicio integrante de la comisión de infecciosas. Tras el análisis de los primeros casos por parte del servicio COT, se ajustó la recomendación para reducir su potencial nefrotoxicidad, cambiando Vanco+Tobra por Vanco+Ceftazidima, dado que la mayoría de los pacientes con IHQ-I-COT eran pacientes añosos con función renal limitada; dicho cambio fue validado en la comisión de infecciosas del año 2011. Se recogieron los casos, al tratarse de infecciones con baja incidencia (10 y 15 anuales) tuvimos que esperar hasta entonces para poder ofrecer resultados consistentes. Éstos fueron presentados al Servicio COT en la sesión de actualización del 28/1/2013 y posteriormente presentados en el Congreso Nacional de la Sociedad Española

de Cirugía Ortopédica y Traumatología (SECOT) ⁸⁴. Como resultado de esta estrategia, observamos una tendencia hacia un mayor seguimiento por parte de los facultativos desde la comunicación de resultados en el servicio en 2013. De los últimos 10 casos registrados en 9 se pautó ATB empírica, en 8/9 se siguió la recomendación de terapia empírica; lo que representa un grado de adhesión de 88,89%.

Objetivo 7. Factores que pueden influir en la resolución del cuadro clínico

En nuestra serie, de 68 casos, sólo encontramos entre los factores predisponentes de resolución del cuadro clínico la edad <60años, que la infección presente clínica aguda y los casos de ostesíntesis, probablemente porque la mayoría de ellas se resuelven tras la extracción del material (p<0,05) (Tabla XXVII). Tornero et al⁸⁵ en 2014, describen como factores que influyen en la resolución del cuadro clínico: factores dependientes del paciente (insuficiencia renal crónica o cirrosis hepática), factores dependientes de la cirugía (tipo de cirugía y prótesis cementada vs no cementada) y factores analíticos y microbiológicos (las cifras de PCR y el porcentaje de cultivos positivos del total tomados durante la cirugía de desbridamiento).

Puhto et al⁸⁶, detecta entre los factores predisponentes de resolución del cuadro clínico la sensibilidad al tratamiento empírico. Éste y otros estudios advierten que el resultado en el tratamiento de la IHQ-I-COT también varía ampliamente dependiendo del microorganismo causante de infección y su nivel de resistencia considerando como variable desenlace la resolución clínica de la infección. Koyonos et al⁸⁷ en su serie de 138 artroplastias infectadas tratadas mediante desbridamiento y retención del implante, obtiene unos resultados limitados con este tratamiento con tasas de fallo del 69% si se trataba de infecciones agudas, del 56% en aguda hematógena y del 72% en las crónicas según Tsukayama⁵². Siendo la infección por Staphylococcus el único factor predictor de fallo de tratamiento, entre los 10 factores recogidos. Mortazavi et al⁸⁸ identifica la infección por m.o. meticilin-resistentes como uno de los factores asociados a fallo en el tratamiento en 2 tiempos de la prótesis de rodilla infectada. Leung et al⁸⁹ en su serie retrospectiva de 50 pacientes con prótesis de cadera infectada obtuvo fallo en el tratamiento en 2 tiempos en el 21% de los casos, con infecciones por Staphylococcus resistentes a la meticilina, bien por S. aureus o por S. epidermidis; estos pacientes también tenían resultados funcionales peores a los publicados en la literatura. Odum et al⁹⁰ en un estudio multicéntrico en el que recogen 200 casos consecutivos de infección sobre artroplastias tratadas mediante desbridamiento y retención del implante, demuestran una tasa de fracaso del 65% en infecciones por Streptococcus, del 72% cuando el m.o. era un Staphylococcus sensible y del 76% cuando el Staphylococcus era meticilin resistente.

Hsieh et al⁹¹ publicó los resultados de 53 infecciones por *BGN* en su serie de 346 artroplastias infectadas de cadera y rodillas; con una tasa de éxito de sólo el 27% mediante desbridamiento y retención del implante. Zmistowsky et al⁹², obtuvo un 70% de resultados satisfactorios con desbridamiento, planteándolo como una opción viable en infecciones agudas; señalando que el tratamiento en 2 tiempos es menos eficaz en infecciones causadas por m.o. resistentes y BGN. Por otro lado, en un estudio multicéntrico llevado a cabo en España⁹³ entre 2003 y 2010, sobre 242 infecciones agudas en artroplastias (cadera, rodilla, hombro y codo), el tratamiento mediante desbridamiento y retención del implante tuvo éxito en el 68%, dicho porcentaje asciende al 79% para las infecciones causada por BGN sensibles a ciprofloxacino. Similares resultados encuentran Tornero et al⁸⁵, con peores resultados en *BGN* no sensibles a quinolonas y *CGP* no sensibles a rifampicina.

Finalmente Betz et al⁹⁴ apoya con su serie los resultados de Odum et al⁹⁰; concluyendo que la influencia del m.o. patógeno que causa la infección debería ser considerada en el desarrollo de futuras guías clínicas, recomendaciones y algoritmos de tratamiento de infección sobre prótesis articular.

Limitaciones del estudio.

La mayor limitación de este estudio es el pequeño número de casos. Una de las limitaciones derivadas de trabajar con tamaños poblacionales pequeños es que es más difícil identificar cambios significativos en los porcentajes de resistencia a lo largo del tiempo. Para realizar el análisis gráfico de la resistencia esperada evitando este sesgo, se han seleccionado los m.o. procedentes de todas las muestras hospitalarias, dado que los aislados de muestras procedentes del servicio COT son un porcentaje pequeño respecto de los procedentes de la población total Hospitalaria. Al igual que Malhas et al¹⁸ creemos que, desde un punto de vista epidemiológico, el *S.aureus* que causa infección en COT no será muy distinto al resto que circula en el ámbito hospitalario. La agrupación de los datos entre distintos hospitales podría atenuar este problema, pero no hubiera permitido el análisis de las peculiaridades locales de cada zona.

El limitado número de casos, es consecuencia de que la tasa de IHQ-I-COT es afortunadamente baja: en cirugía electiva oscila entre el 1 y el 2% para artroplastia primaria y entre el 5-40% para cirugía de revisión. En cirugía secundaria a fractura oscila entre el 0,5 y el 2% en fracturas cerradas y el 30% en fracturas abiertas⁹⁵. Nuestra incidencia estimada de infecciones sobre artroplastia es de 2,8% y sobre fractura cerrada el 0,8%. Para recoger 144 casos en nuestro

centro (90 casos de artroplastia y 54 de osteosíntesis), se han realizado más de 3.200 artroplastias Primarias y más de 6.500 osteosíntesis. En consecuencia, series más grandes deben proceder de centros de referencia para el tratamiento de IHQ-I-COT o estudios multicéntricos. La mayoría de los estudios existentes en IHQ-I-COT se centran en series de casos procedentes de un solo centro⁸⁵ o los de un pequeño número de centros⁷⁶. Las series con mayor número de casos proceden de centros de referencia para el tratamiento de IHQ-I-COT, por lo que las conclusiones en cuanto al espectro epidemiológico o las características demográficas pueden no ser extrapolables a otros centros, a otras zonas o a la población general.

En este sentido, los dos centros que aportan los casos para esta Tesis (COT-ARI y COT-HVB) no son centros de referencia para el tratamiento de IHQ-I-COT; cada cohorte es representativa de las poblaciones de pacientes sometidos a intervención de artroplastia u osteosíntesis en su respectiva ubicación geográfica, sin diferencias en los datos demográficos de los pacientes entre ambos centros. En nuestra Tesis se estudia la distribución y la evolución en el tiempo del espectro microbiológico en cada una de las dos áreas geográficas estudiadas, señalando sus diferencias sin tratar de extrapolar los resultados a otras áreas, debido a la variabilidad microbiológica ya demostrada.

Algunos autores⁶⁵, destacan que la creación de Registros Nacionales de Implantes abre la posibilidad de enlazar datos, ampliando enormemente el número de los casos disponibles para el análisis; representando la plataforma ideal para la elaboración de guía de profilaxis prequirúrgicas y estrategias de tratamiento a nivel nacional.

En España, el Ministerio de Sanidad publicó en el Boletín Oficial del Estado del 26 de diciembre de 2003 una orden ministerial (ORDEN SCO/3603/2003 de 18 de diciembre) por la que se crean los Registros Nacionales de Implantes, que incluyen los de prótesis de cadera y de rodilla, en el que se plantea recoger la información contenida en la tarjeta del implante: identificación del paciente, centro donde se realiza la intervención, empresa que comercializa la prótesis y descripción de los componentes de la prótesis implantada. La gran ventaja de los registros es que en un tiempo relativamente corto consiguen tal cantidad de datos, que se puede disponer de significación estadística que valide sus conclusiones. En poco tiempo se detectan circunstancias y factores que comprometen los resultados del implante, siendo posible trazar y recomendar líneas de acción que eviten efectos indeseables. A pesar de ello, en el Sistema Nacional de Salud no existe un registro de implantes y es la iniciativa de las

sociedades científicas de las diferentes comunidades autónomas lo que estimula a la creación de registros de artroplastias con el apoyo de sus respectivas administraciones sanitarias, aunque con diferentes grados de éxito⁹⁶. Además los Registros Nacionales están orientados al registro de complicaciones relacionadas con las artroplastias, no registrando la osteosíntesis, por otra parte, no recoge los datos procedentes de Microbiología, Farmacia y Admisión de los diversos Centros participantes, necesarios para conocer el espectro microbiológico que causa la infección y su patrón de resistencia.

WebResist se basa en la recopilación de los datos de sensibilidad locales generados por cada laboratorio de Microbiología con su propia metodología habitual. El aprovechamiento de la información de cada hospital al estudiar sus propios cultivos puede tener el inconveniente de que cada laboratorio de Microbiología trabaja con programas informáticos diferentes, lo que exige un esfuerzo para la conversión a bases de datos comunes con las que trabaja el proyecto WebResist. En este proceso se puede perder o alterar información, lo que hace necesaria una supervisión y control de calidad de los datos comunicados por los laboratorios de Microbiología antes y después de la conversión de las bases de datos. Por otra parte, está la variabilidad de los métodos utilizados para la detección de la sensibilidad in vitro. Aunque los laboratorios habitualmente trabajan con métodos recomendados por el CLSI (antes NCCLS, National Commitee for Clinical Laboratory Standards) y realizan sus controles internos, podría ser útil la realización periódica de controles externos que proporcione a los resultados una validez externa que los haga comparables.

WebResist aplicado en cada centro recogería los datos de Microbiología, Farmacia y Admisión en el formato en que se trabaje habitualmente, éstos serían enviados a un servidor central donde se efectuarían todas las transformaciones necesarias para calcular las series temporales de nivel de resistencia, uso de antibióticos y pronto m.o. más frecuente causante de cada diagnóstico agrupados por síndromes, según el CIE-10.

Presente-Futuro

Para la actualización de la recomendación, se realiza una revisión anual de los casos, registrando el m.o. causante de infección, así comprobamos el m.o. aislado más frecuentemente. Observamos el nivel de resistencia esperado con el programa WebResist, que nos ofrece datos sobre la resistencia observada a antibióticos y la esperada hallada mediante técnicas de análisis de series temporales (ARIMA) con pronóstico trimestral, esta parte del proyecto ya está automatizada y facilita enormemente la labor de revisar el nivel de resistencia para recomendar la prescripción. Con estos datos se procede a la revisión de la recomendación en la comisión de infecciosas hospitalarias de forma anual.

Se ha puesto a disposición de los usuarios en la web (<u>www.WebResist.org</u>) una aplicación para dispositivos moviles (Android APP) de la "Guía Dinámica de Terapia Empírica Local ", donde podemos consultar de las recomendaciones para cada síndrome.

Por otro lado, por parte del laboratorio de microbiología, recientemente se ha puesto en marcha el volante electrónico de obligado cumplimiento para la solicitud de cultivos, con dicho volante la disgregación de los cultivos por síndromes permitirá la **determinación automática del microorganismo más frecuente** para cada síndrome, de esta forma con la automatización del m.o. más frecuente y la automatización del nivel de resistencia esperado ya lograda con WebResist se podrá actualizar la recomendación de terapia empírica para cada síndrome de una forma más reproducible y exenta de algunos de los sesgos implícitos en la sistemática del presente trabajo, como la localización de las historias clínicas.

En un futuro, incluso podríamos ajustar un modelo ARIMA para cada una de las especies de m.o. más frecuentes, o para los "grupos" (*CGP*, *BGN*, *PM*), y el resultado de dichos modelos podrá ser plasmado en una tabla que recoja la estimación del m.o. o grupo más frecuente causante de un síndrome para el trimestre corriente en forma de porcentaje. En COT, por ejemplo sería útil para monitorizar la tendencia de implicación de BGN en el síndrome IHQ-I-COT por ejemplo.

Peel et al¹⁷, señala en su artículo que en dos tercios de las IHQ-I-COT estudiadas en su serie la profilaxis antibiótica no era activa contra los patógenos posteriormente aislados. Por tanto, además de la terapia empírica, la profilaxis antibiótica quirúrgica también debe adaptarse a la ecología local. El grupo de trabajo del Hospital Clínico de Barcelona aporta resultados favorables en este sentido en fracturas de cadera⁹⁷, y artroplastia primaria de cadera y rodilla⁹⁸. En nuestro centro por nuestra parte ajustamos las profilaxis en fracturas de cadera en

2013 en función de la epidemiología hallada en el subgrupo de pacientes con infección tras cirugía por fractura de cadera, con buenos resultados⁹⁹.

CONCLUSIONES

Objetivo 1. Cambios en la epidemiología local con el paso del tiempo.

- El espectro microbiológico que causa un Síndrome cambia con el paso del tiempo dentro de un mismo servicio.
- **2.** Hay una estrecha correlación entre la oscilación de *BGN* y la relación Artroplastia/Osteosíntesis en COT-HVB.

Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrobianas.

- **3.** Entre los factores relacionados con el paciente la linfopenia, y la estancia preoperatoria mayor a 2 días se asociaron a infecciones por *BGN y PM*, respectivamente.
- **4.** Entre los factores asociados a la cirugía, fue cirugía secundaria a fractura la que se asoció más frecuentemente con infecciones por *BGN y PM*.
- 5. Además de los factores citados, detectamos como factor de riesgo independiente para infección por BGN o PM la clínica aguda de infección según la clasificación de Tsukayama.

Objetivo 3. Cambios en la epidemiología local según la localización geográfica.

- **6.** No observamos variaciones significativas interanuales dentro del mismo centro, ni entre ambos centros con el paso del tiempo para infecciones cuando evaluamos la frecuencia relativa de los m.o. por grupos (*CGP*, *BGN*, *PM*).
- **7.** Sí hallamos diferencias significativas en las especies de m.o. más frecuentes que causan el síndrome a estudio dentro de dos centros europeos.

Objetivo 4. Cambios en el nivel de resistencia.

- **8.** Los niveles de resistencia cambian con el paso del tiempo en un mismo lugar y de un lugar a otro.
- **9.** Los niveles de resistencia estimados mediante técnicas ARIMA de análisis de series temporales, son similares a los observados a posteriori.

Objetivo 5. Elaboración de una recomendación de terapia empírica

- 10. Podemos elaborar una recomendación de terapia empírica, conociendo el m.o. más frecuente que causa el síndrome a estudio y el nivel de resistencia esperado (Webresist).
- **11.** Proporcionando a los expertos el espectro microbiológico que causa el síndrome en una determinada área, la eficacia de la terapia empírica aumenta.
- **12.** Usando una de las recomendaciones elaboradas con la ayuda de WebResist, mantenemos el aumento en la eficacia de la terapia empírica, tratando de usar ATB que cubriendo el espectro generen menor resistencia.

Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación.

- **13.** En nuestra serie el factor "seguir la recomendación" elaborada por los expertos con la información extraída de Webresist, aumenta la efectividad de la terapia empírica.
- **14.** La adhesión de los facultativos, aumenta tras la comunicación de resultados en el Servicio.

Objetivo 7. Factores que pueden influir en la resolución del cuadro clínico.

- **15.** La edad menor a 60años, las infecciones agudas y las infecciones sobre osteosíntesis, son factores predisponentes de resolución del cuadro clínico.
- **16.** La resolución del cuadro clínico se presenta de forma más frecuente en los casos en los que el m.o. finalmente aislado es sensible al tratamiento empírico prescrito.

CONCLUSIONS

Objective 1. Local epidemiology changes over time.

- The microbiological spectrum syndrome causes changes over time within the same service.
- **2.** There is a close relationship between gram negative bacilli (GNB) infections and arthroplasty and internal fixation relationship in Vega Baja Hospital.

Objective 2. Risk factors for gram-negative bacilli (GNB) and polymicrobial infections (PM).

- **3.** Among the factors related to the patient: lymphopenia and more than two days of preoperative stay were associated with GNB and PM infections, respectively.
- **4.** Surgery after fracture was associated with GNB and PM infections.
- **5.** Acute clinical of infection was isolated as independent risk factor to GNB and PM infections.

Objective 3. Local epidemiology changes by geographical location.

- **6.** We didn't observed significant interannual variations within the centre or between two centres with the passage of time for infections by groups (GPC, GNB, PM).
- **7.** There are significant differences between the species most common organisms that cause the syndrome to study in two European centres.

Objective 4. Resistance level Changes.

- 8. Resistance levels change over time and from place to place,
- 9. They are measured reliably using techniques of ARIMA time series analysis.

Objective 5. Development and effectiveness of a recommendation of empirical therapy

- 10. We can draw up a recommendation for empirical therapy, knowing the most often microorganism it causes the syndrome to study and the expected level of resistance (Webresist).
- **11.** Providing microbiological experts the species most common organisms that cause the syndrome in a given area, the effectiveness of empiric therapy increases,

12. Using one of the recommendations developed with the help of WebResist, maintain the increased efficiency of empiric therapy, trying to use an antimicrobial which generates less resistance.

Objective 6. Implementation, effectiveness and degree of adherence to a recommendation.

- **13.** In our series the factor "follow the recommendation" made by the experts with the information extracted from Webresist, increases the effectiveness of empiric therapy.
- **14.** The implementation of the recommendation increases the effectiveness of empiric therapy, and the degree of adherence of physicians increases after disclosure of results.

Objective 7. Find predisposing factors of resolution of infection.

- **15.** A minor 60 years of age, acute infections and infections on osteosynthesis, are predisposing factors resolution of symptoms.
- **16.** The resolution occurs more frequently in cases where the isolated organism is sensitive to empirical treatment prescribed.

BIBLIOGRAFÍA

- 1. Whitehouse JD, Friedman ND, Kirkland KB, Richardson WJ, Sexton DJ. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length os stay, and extra cost. Infect Control Hosp Epidemiol. 2002 Abr; 23(4): p. 183-9.
- Díaz-Agero Pérez C, Robustillo Rodela A, Pita López MJ, López Fresneña N, Monge Jodrá V.
 Surgical wound infection rates in Spain: data summary, January 1997 throught June 2012.
 Am J Infec Control. 2014 May; 42(5): p. 521-4.
- 3. Monge Jodra V, Sainz de Los Terreros Soler L, Diaz-Agero Perez C, Saa Requejo C, Plana Farras N. Excess length os stay attributable to surgical site infection following hip replacement: a nested case-control study. Infect Control Hosp Epidemiol. 2006 Dic; 27(12): p. 1299-303.
- 4. Coello R, Charlett A, Wilson J, Ward V, Pearson A, Borriello P. Adverse impact of surgical site infections in English hospitals. J Hosp Infect. 2005 Jun; 60(2): p. 93-103.
- 5. von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005; 65(2): p. 179-214.
- 6. Cordero Ampuero J. Mecanismos de resistencia bacteriana en la infección de implantes. Rev Ortp Traumatol. 2000 Abr; 44(2): p. 115-26.
- 7. Petty W. The effect of methylmethacrylate on chemotaxis of polymorphonuclear leukocytes. J Bone Joint Surg Am. 1978 Jun; 60(4): p. 492-8.
- 8. Ehrlich GD, Soodley P, Kathju S, Zhao Y, McLeod BR, Balaban N, et al. Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin Orthop Relat Res. 2005 Ago; (437): p. 59-66.
- 9. Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-Biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009 May; 30(14): p. 2782-9.
- 10. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995; 49: p. 711-45.
- 11. Southwood RT, Rice JL, McDonald PJ, Hakendorf PH, Rozenbilds MA. Infection in experimental hip arthroplasties. J Bone Joint Surg Br. 1985 Mar; 67(2): p. 229-31.
- 12. Garvin KL, Hinrichs SH, Urban JA. Emerging antibiotic-resistant bacteria. Their treatment in total joint arthroplasty. Clin Orthop Relat Res. 1999 Dic;(369): p. 110-23.
- 13. Ip D, Yam SK, Chen CK. Implications of the changing pattern of bacterial infections

- following total joint replacements. J Orthop Surg (Hong Kong). 2005 Ago; 13(2): p. 125-30.
- 14. Rafiq I, Gambhir AK, Wroblewski BM, Kay PR. The microbiology of infected hip arthroplasty. Int Orthop. 2006 Dic; 30(6): p. 532-5.
- 15. Nickinson RS, Board TN, Gambhir AK, Porter ML, Kay PR. The microbiology of the infected knee arthroplasty. Int Orthop. 2010 Abr; 34(4): p. 505-10.
- 16. Bulla F, Filippini P. Prosthetic joint infections by multi-drug resistant bacteria. Infez Med. 2010 Mar; 18(1): p. 5-11.
- 17. Peel TN, Cheng AC, Buising KL, Choong PF. Microbiological aetiology, epidemiology, and clinical profile of prosthetic joint infections: are current antibiotic prophylaxis guidelines effective? Antimicrob Agents Chemother. 2012 May; 56(5): p. 2386-91.
- 18. Malhas AM, Lawton R, Reidy M, Nathwani D, Clift BA. Causative organisms in revision total hip & knee arthroplasty for infection: Increasing multi-antibiotic resistance in coagulase-negative Staphylococcus and the implications for antibiotic prophylaxis. Surgeon. 2015 Oct; 13(5): p. 250-5.
- 19. Benito N, Franco M, Coll P, Gálvez ML, Jordán M, López-Contreras J, et al. Etiology of surgical site infections after primary total joint arthroplasties. J Orthop Res. 2014 May; 32(5): p. 633-7.
- 20. Martínez-Pastor JC, Vilchez F, Pitart C, Sierra JM, Soriano A. Antiotic resistance in orthopaedic surgery: acute knee prosthetic joint infections due to extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. Eur J Clin Microbiol Infect Dis. 2010 Ago; 29(8): p. 1039-41.
- 21. Moran E, Masters S, Berendt AR, McLardy-Smith P, Byren I, Atkins BL. Guiding empirical antibiotic therapy in orthopaedics: The microbiology of prosthetic joint infection managed by debridement, irrigatin and prosthesis retention. J Infect. 2007 Jul; 55(1): p. 1-7.
- 22. Werner G, Bronzwaer S. Ensuring prudent use of antimicrobials in human medicine in the European Union, 2005. Euro Surveill. 2007 Ene; 12(1-3): p. 65-7.
- 23. García-de-Lomas, J; López Cerezo, L; Gimeno Cardona, C; GEVIPAR. Sensibilidad de los patógenos respiratorios en la comunidad en España: resultados del estudio SAUCE. An Esp Pediatr. 2002 Mar; 56(supl 1): p. 9-19.
- 24. Muñoz I, Vanaclocha H, Martín-Sierra M, González F. Microbiological Surveillance Network in the Valencian community. Enferm Inecc Microbiol Clin. 2008 Feb; 26(2): p. 77-81.
- 25. Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB. Impact of clinical guidelines in the management of severe hospital-acquired pneumonia. Chest. 2005 Oct; 128(4): p. 2778-87.

- 26. Gilbert DN, Moellering RC, Eliopoulos GM, Chambers HF, Saag MS, editors. The Sanford Guide to Antimicrobial Therapy. 40th ed. Sperryville: Sanford Guide; 2010.
- 27. Frommelt L. Principles of systematic antimicrobial therapy in foreign material associated infection in bone tissue, with special focus on periprosthetic infection. Injury. 2006 May; 37(Supl 2): p. 87-94.
- 28. Moran E, Byren I, Atkins BL. The diagnosis and management of prothetic joint infections. J Antimicrob Chemother. 2010 Nov; 65(Supl 3): p. 45-54.
- 29. Sousa R, Pereira A, Massada M, da Silva MV, Lemos R, Costa e Castro J. Empirical antibiotic therapy in prosthetic joint infections. Acta Orthop Belg. 2010 Abr; 76(2): p. 254-9.
- 30. Mensa J, Gatell JM, García-Sánchez JE, Letang E, López-Suñé E, editors. Guía de terapeútica antimicrobiana. 19th ed. Sabadell: Antares; 2010.
- 31. Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975 Ago; 8(4): p. 303-20.
- 32. Kim DK, Fagan LM, Jones KT, Berrios DC, Yu VL. MYCIN II: design and implementation of a therapy reference with complex content-based indexing. In Proc AMIA Symp; 1998; Lake Buena Vista, FL. p. 175-9.
- 33. Evans RS, Pestotnik SL, Classen DC, Clemmer TP, Weaver LK, Orme JFJ, et al. A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med. 1998 Ene; 338(4): p. 232-8.
- 34. Pestotnik SL, Calssen DC, Evans RS, Burke JP. Implementing antibiotic practice guidelines through computer-assisted decision support: clinical and financial outcomes. Ann Intern Med. 1996 May; 124(10): p. 884-90.
- 35. Leibovici L, Paul M, Nielsen AD, Tacconelli E, Andreassen S. The TREAT project: decision support and prediction using causal probabilistic networks. Int J Antimicrob Agents. 2007 Nov; 30(Supl 1): p. 93-102.
- 36. Paul M, Andreassen S, Tacconelli E, Nielsen AD, Almanareh N, Frank U, et al. Improving empirical antibiotic treatment using TREAT, a computerized decision support system: cluster randomized trial. J Antimicrobial Chemother. 2006 Dic; 58(6): p. 1338-45.
- 37. López-Lozano JM, Monnet DL, Yagüe A, Burgos A, Gonzalo N, Campillos P, et al. Modelling and forecasting antimicrobial resistance and its dynamic relationship to antimicrobial use: a time series analysis. Int J Antimicrob Agents. 2000 Feb; 14(1): p. 21-31.
- 38. Monnet D, López-Lozano JM, Campillos P, Burgos A, Yagüe A, Gonzalo N. Making sense of antimicrobial use and resistance surveillance data: application of ARIMA and transfer

- function models. Clin Microbiol Infect. 2001; 7(Supl 5): p. 29-36.
- 39. Monnet DL, Lennox KA, Philips L, Tenover F, McGowan JE, Gaynes RP. Antimicrobial use and resistance in eight US hospitals: complexities of analysis and modeling. Infect Control Hosp Epidemiol. 1998 Jun; 19(6): p. 388-394.
- 40. Vernaz N, Huttner B, Muscionico D, Salomon JL, Bonnabry P, López-Lozano JM, et al. Modelling the impact of antibiotic use on antibiotic-resistant Escherichia coli using population-based data from a large hospital and its surrounding community. J Antimicrob Chemother. 2011 Abr; 66(4): p. 928-35.
- 41. Aldeyab MA, Monnet DL, López-Lozano JM, Hughes CM, Scott MG, Kearney MP, et al. Modelling the impact of antibiotic use and infection control practices on the incidence of hospital-acquired methicillin-resistant Staphylococcus aureus: a time-series analysis. J Antimicrob Chemother. 2008 Sept; 62(3): p. 593-600.
- 42. Mackenzie FM, López-Lozano JM, Monnet DL, Stuart D, Beyaert A, Wilson R, et al. Temporal relationship between prevalence of meticillin-resistant Staphylococcus aureus (MRSA) in one hospital and prevalence of MRSA in the surrounding community: a timeseries analysis. J Hosp Infect. 2007 Nov; 67(3): p. 225-31.
- 43. Muller A, Patry I, Talon D, Cornette C, López-Lozano JM, Plèsiat P, et al. Surveillance of antimicrobial resistance and antimicrobial use in a university-affiliated hospital: implementation of a computerized system. Pathol Biol (Paris). 2006 Mar; 54(2): p. 112-7.
- 44. Monnet DL, López-Lozano JM. Relationship between antibiotic consumption and resistance in European hospitals. Med Mal Infect. 2005 Jun; 35(Supl 2): p. 127-8.
- 45. Monnet DL, MacKenzie FM, López-Lozano JM, Beyaert A, Camacho M, Wilson R, et al. Antimicrobial drug use and methicillin-resistant Staphylococcus aureus, Aberdeen, 1996-2000. Emerg Infect Dis. 2004 Ago; 10(8): p. 1432-41.
- 46. Muller A, López-Lozano JM, Bertrand X, Talon D. Relationship between ceftriaxone use and resistance to third-generation cephalosporins among clinical strains of Enterobacter cloacae. J Antimicrob Chemother. 2004 Jul; 54(1): p. 173-7.
- 47. Rodríguez JC, Sirvent E, López-Lozano JM, Royo G. Criteria of time and antibiotic susceptibility in the elimination of duplicates when calculating resistance frequencies. J Antimicrob Chemother. 2003 Jul; 52(1): p. 132-4.
- 48. Muller AA, Mauny F, Berlin M, Cornette C, López-Lozano JM, Viel JF, et al. Relationship between spread of methicillin-resistant Staphylococcus aureus and antimicrobial use in a French university hospital. Clin Infect Dis. 2003 Abr; 36(8): p. 971-8.
- 49. López Lozano JM. Vigilancia de la resistencia bacteriana y su relación con el uso de antibióticos por medio del análisis de series temporales (Tesis Doctoral). In Universidad de

Murcia; 2002.

- 50. Bretón Martínez JR. Vigilancia de la Resistencia bacteriana en Pediatría y su relación con el uso de antibióticos por medio del análisis de series temporales (Tesis Doctora). In Universidad de Valencia; 2004.
- 51. Cordero-Ampuero J, Esteban J, García-Rey E. Results after late polymicrobial, gramnegative, and methicillin-resistant infections in knee arthroplasty. Clin Orthop Relat Res. 2010 May; 468(5): p. 1229-36.
- 52. Tsukayama DT, Estrada R, Gustilo RB. Infection after total hip arthroplasty. A study os the treatment of one hundred and six infections. J Bone Joint Surg Am. 1996 Abr; 78(4): p. 512-23.
- 53. López-Medrano F, Moreno-Ramos F, de Cueto M, Mora-Rillo M, Salavert M. How to assist clinicians in improving antimicrobial prescribing: tools and interventions provided by stewardship programs. Enferm Infecc Microbiol Clin. 2013 Sep; 31(Supl 4): p. 38-44.
- 54. Mittal Y, Fehring TK, Hanssen A, Marculescu C, Odum SM, Osmon D. Two-stage reimplantation for periprosthetic knee infection involving resistant organisms. J Bone Joint Surg Am. 2007 Jun; 89(6): p. 1227-31.
- 55. Papagelopoulos PJ, Mavrogenis AF, Giannitsioti E, Kikilas A, Kanellakopoulou K, Saucacos PN. Management of a multidrug-resistant Pseudomonas aeruginosa infected total knee arthroplasty using colistin. A case report and review of the literature. J Arthroplasty. 2007 Abr; 22(3): p. 457-63.
- 56. Marcos M, Soriano A, Iñurrieta A, Martínez JA, Romero A, Cobos N, et al. Changing epidemiology of central venous catheter-related bloodstream infections: increasing prevalence of Gram-negative pathogens. J Antimicrob Chemother. 2011 Sep; 66(9): p. 2119-25.
- 57. Holmberg A, Thórhallsdóttir VG, Robertsson O, W-Dahl A, Stefánsdóttir A. 75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections. Acta Orthop. 2015; 86(4): p. 457-62.
- 58. Tucaliuc D, Alexa O, Tuchilus CG, Ursu RG, Tucaliuc ES, Iancu LS. Retrospective study on the etiological spectrum and antibiotic resistance in infections associated with osteosynthesis materials. Rev Med Chir Soc Med Nat Iasi. 2014 Ene-Mar; 118(1): p. 147-53.
- 59. Neubauer T, Bayer GS, Wagner M. Open fractures and infection. Acta Chir Orthop Traumatol Cech. 2006 Oct; 73(5): p. 301-12.
- 60. Chen AF, Schreiber VM, Washington W, Rao N, Evans AR. What is the rate of methicillin-resistant Staphylococcus aureus and Gram-negative infections in open fractures? Clin Orthop Relat Res. 2013 Oct; 471(10): p. 3135-40.

- 61. Torbert JT, Joshi M, Moraff A, Matuszewski PE, Holmes A, Pollak AN, et al. Current bacterial speciation and antibiotic resistance in deep infections after operative fixation of fractures. J Orthop Trauma. 2015 Ene; 29(1): p. 7-17.
- 62. Al-Mayahi M, Betz M, Müller DA, Stern R, Tahintzi P, Bernard L, et al. Remission rate of implant-related infections following revision surgery after fractures. Int Orthop. 2013 Nov; 37(11): p. 2253-8.
- 63. Duckworth AD, Phillips SA, Stone O, Moran M, Breusch SJ, Biant LC. Deep infection after hip fracture surgery: predictors of early mortality. Injury. 2012 Jul; 43(7): p. 1182-6.
- 64. Lin S, Mauffrey C, Hammerberg EM, Stahel PF, Hak DJ. Surgical site infection after open reduction and internal fixation of tibial plateau fractures. Eur J Orthop Surg Trauma. 2014 Jul; 24(5): p. 797-803.
- 65. Holleyman RJ, Baker P, Charlett A, Gould K, Deehan DJ. Microorganisms responsible for periprosthetic knee infections in England and Wales. Knee Surg Sports Traumatol Arthrosc. 2015 Abr;(Epub ahead of print).
- 66. Sendi P, Christensson B, Uçkay I, Trampuz A, Achermann Y, Boggian K, et al. Group B streptococcus in prosthetic hip and knee joint-associated infections. J Hosp Inf. 2011 Sep; 79(1): p. 64-69.
- 67. Sendi P, Zimmerli W. Challenges in periprosthetic knee-joint infection. Int J Artif Organs. 2011 Sep; 34(9): p. 947-56.
- 68. Tornero E, Morata L, Martínez-Pastor JC, Bori G, Climent C, García-Velez DM, et al. KLIC-score for predicting early failure in prosthetic joint infections treated with debridement, implant retention and antibiotics. Clin Microbiol Infect. 2015 Ago; 21(8): p. 786.e9-786.e17.
- 69. Atkins BL, Athanasou N, Deeks JJ, Crook DW, Simpson H, Peto TE, et al. Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. The OSIRIS Collaborative Study Group. J Clin Microbiol. 1998 Oct; 36(10): p. 2932-9.
- 70. Mabit C, Marcheix PS, Mounier M, Dijoux P, Pestourie N, Bonnevialle P, et al. Impact of a surgical site infection (SSI) surveillance program in orthopedics and traumatology. Orthop Traumatol Surg Res. 2012 Oct; 98(6): p. 690-5.
- 71. Chen A, Haddad F, Lachiewicz P, Bolognesi M, Cortes LE, Franceschini M, et al. Prevention of late PJI. J Orthop Res. 2014 Ene; 32(Supl 1): p. S158-71.
- 72. Coelho-Prabhu N, Oxentenko AS, Osmon DR, Baron TH, Hanssen AD, Wilson WR, et al. Increased risk of prosthetic joint infection associated with esophago-gastro-duodenoscopy with biopsy. Acta Orthop. 2013 Feb; 84(1): p. 82-6.

- 73. Gupta A, Osmon DR, Hanssen AD, Lightner DJ, Wilson WR, Steckelberg JM, et al. Genitourinary Procedures as Risk Factors for Prosthetic Hip or Knee Infection: A Hospital-Based Prospective Case-Control Study. Open Forum Infect Dis. 2015 Jun; 2(3): p. 1-7.
- 74. Phillips JE, Crane TP, Noy M, Elliot TS, Grimer RJ. The incidence of deep prosthetic infections in a specialist orthopaedic hospital: a 15-year prospective survey. J Bone Joint Surg Br. 2006 Jul; 88(7): p. 943-8.
- 75. Stefánsdottir A, Johansson D, Knutson K, Lidgren L, Robertsson O. Microbiology of the infected knee arthroplasty: report from the Swedish Knee Arthroplasty Register on 426 surgically revised cases. Scand J Infect Dis. 2009; 41(11-12): p. 831-40.
- 76. Aggarwal VK, Bakhshi H, Ecker NU, Parvizi J, Gehrke T, Kendoff D. Organism profile in periprosthetic joint infection: pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J knee Surg. 2014 Oct; 27(5): p. 399-406.
- 77. Boucher HW, Talbot GH, Benjamin DK, Bradley J, Guidos RJ, Jones RN, et al. 10 x '20 Progress--development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013 Jun; 56(12): p. 1685-94.
- 78. Parvizi J, Alijanipour P, Barberi EF, Hickok NJ, Philips KS, Shapiro IM, et al. Novel developments in the prevention, diagnosis, and treatment of periprosthetic joint infections. J Am Acad Orthop Surg. 2015 Abr; 23: p. S32-S43.
- 79. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013 Ene; 56(1): p. e1-e25.
- 80. Lo E, Rezai K, Evans AT, Madariaga MG, Phillips M, Brobbey W, et al. Why don't they listen? Adherence to recommendations of infectious disease consultations. Clin Infect Dis. 2004 May; 38(9): p. 1212-8.
- 81. Kim BN. Compliance with an infectious disease specialist's advisory consultations on targeted antibiotic usage. J Infect Chemother. 2005 Abr; 11(2): p. 84-8.
- 82. Hosoglu S. Use of infectious disease consultations by surgeons. Int J Infect Control. 2011; 7(3).
- 83. Madariaga MG. Non-adherence to infectious disease consultations: are surgeons to blame? J Antimicrob Chemother. 2006 May; 57(5): p. 1019-20.
- 84. Lajara-Marco F, Izquierdo-Plazas L, Muela-Pérez B, López-Lozano JM, Boix-Ballester A, Lozano-Requena JA. Eficacia de una Guía Dinámica de Antibioterapia Empírica guiada por ViReSiST en el tratamiento de infecciones con material ortopédico. In 50 Congreso SECOT; 2013; Barcelona.

- 85. Tornero E, Martínez-Pastor JC, Bori G, García-Ramiro S, Morata L, Bosch J, et al. Risk factors for failure in early prosthetic joint infection treated with debridement. Influence of etiology and antibiotic treatment. J Appl Biomater Funct Mater. 2014 Dic; 12(3): p. 129-34.
- 86. Puhto AP, Puhto T, Niinimäki T, Ohtonen P, Leppilahti J, Syrjälä H. Predictors of treatment outcome in prosthetic joint infections treated with prosthesis retention. Int Orthop. 2015 Sep; 39(9): p. 1785-91.
- 87. Koyonos L, Zmistowski B, Della Valle CJ, Parvizi J. Infection control rate of irrigation and débridement for periprosthetic joint infection. Clin Orthop Relat Res. 2011 Nov; 469(11): p. 3043-8.
- 88. Mortazavi SM, Vegari D, Ho A, Zmistowski B, Parvizi J. Two-stage exchange arthroplasty for infected total knee arthroplasty: predictors of failure. Clin Orthop Relat Res. 2011 Nov; 469(11): p. 3049-3054.
- 89. Leung F, Richards CJ, Garbuz DS, Masri BA, Duncan CP. Two-stage total hip arthroplasty: how often does it control methicillin-resistant infection? Clin Orthop Relat Res. 2011 Abr; 469(4): p. 1009-15.
- 90. Odum SM, Fehring TK, Lombardi AV, Zmisfowski BM, Brown NM, Luna JT, et al. Irrigation and debridement for periprosthetic infections: does the organism matter? J Arthroplasty. 2011 Sep; 26(6 Supl): p. 114-8.
- 91. Hsieh PH, Lee MS, Hsu KY, Chang YH, Shih HN, Ueng SW. Gram-negative prosthetic joint infections: risk factors and outcome of treatment. Clin Infect Dis. 2009 Oct; 49(7): p. 1036-43.
- 92. Zmistowski B, Fedorka CJ, Sheehan E, Deirmengian G, Austin MS, Parvizi J. Prosthetic joint infection caused by gram-negative organisms. J Arthroplasty. 2011 Sep; 26(6 Supl): p. 104-108.
- 93. Rodríguez-Pardo D, Pigrau C, Lora-Tamayo J, Soriano A, del Toro MD, Cobo J, et al. Gramnegative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect. 2014 Nov; 20(11): p. O911-9.
- 94. Betz M, Abrassart S, Vaudaux P, Gjika E, Schindler M, Billières J, et al. Increased risk of joint failure in hip prostheses infected with Staphylococcus aureus treated with debridement, antibiotics and implant retention compared to Streptococcus. Int Orthop. 2015 Mar; 39(3): p. 397-401.
- 95. Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis. 2006 Ago; 19(4): p. 349-56.
- 96. Allepuz A, Serra-Sutton V, Martínez O, Tebé C, Nardi J, Portabella F, et al. Los registros de

- artroplastias como sistema de vigilancia poscomercializacion: el Registro de Artroplastias de Cataluña. Rev Esp Cir Ortop Traumaol. 2013 Ene-Feb; 57(1): p. 27-37.
- 97. Soriano A, Popescu D, García S, Bori G, Martínez JA, Balasso V, et al. Usefulness of teicoplanin for preventing methicillin-resistant Staphylococcus aureus infections in orthopedic surgery. Eur J Clin Microbiol Infect Dis. 2006 Ene; 25(1): p. 35-8.
- 98. Tornero E, García-Ramiro S, Martínez-Pastor JC, Bori G, Bosch J, Morata L, et al. Prophylaxis with teicoplanin and cefuroxime reduces the rate of prosthetic joint infection after primary arthroplasty. Antimicrob Agents Chemother. 2015 Feb; 59(2): p. 831-7.
- 99. Blay-Domínguez E, Bernáldez-Silvetti PF, Lajara-Marco F, Muela-Pérez B, Palazón-Banegas MA, Lozano-Requena JA. Disminución de las complicaciones de herida quirúrgica tras instauración de nuevo protocolo de profilaxis antibiótica en fracturas de cadera. In 52 Congreso SECOT; 2015; Valencia.

PRODUCCIÓN CIENTÍFICA RELACIONADA CON LA TESIS

Congresos Nacionales

- Blay-Domínguez E, Bernáldez-Silvetti PF, Lajara-Marco F, Muela-Pérez B, Palazón-Banegas MA, Lozano-Requena JA. Disminución de las complicaciones de herida quirúrgica tras instauración de nuevo protocolo de profilaxis antibiótica en fracturas de cadera. (Comunicación Oral). 52 Congreso Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT), 23-25 de septiembre de 2015. Valencia.
- Lajara-Marco F, Izquierdo-Plazas L, Muela-Pérez B, Aguilar-Martínez ML, Palazón Banegas MA, Lozano-Requena JA. Estudio de la epidemiología y los factores de riesgo en infección de herida quirúrgica tras fractura de cadera en el anciano. (Cartel Científico) 50 Congreso Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT), 2-4 de octubre de 2013. Barcelona.
- Lajara-Marco F, Izquierdo-Plazas L, Muela-Pérez B, López-Lozano JM, Boix-Ballester A, Lozano-Requena JA. Eficacia de una Guía de Antibioterapia Empírica guiada por ViReSiST en el tratamiento de infecciones con material ortopédico. (Comunicación Oral) 50 Congreso Sociedad Española de Cirugía Ortopédica y Traumatología (SECOT), 2-4 de octubre de 2013. Barcelona.

FACULTAD DE MEDICINA

UNIVERSIDAD MIGUEL HERNÁNDEZ

DEPARTAMENTO DE PATOLOGÍA Y CIRUGÍA

TESIS DOCTORAL

TOMO ANEXOS

ELABORACIÓN Y PUESTA EN MARCHA DE UNA GUÍA DE TERAPIA EMPÍRICA ANTIMICROBIANA GUIADA POR LA EPIDEMIOLOGÍA LOCAL

Memoria presentada por:

FRANCISCO LAJARA MARCO

Directores

DR. JOSÉ M. LÓPEZ LOZANO, DR. JUAN A. LOZANO REQUENA, PROF. JAMES D. HUTCHINSON

Alicante, España 2016

Tabla de Contenido Anexos

ÍNDICE DE FIGURAS ANEXOS	9
ÍNDICE DE TABLAS ANEXOS	
ANEXOSANÁLISIS DE SERIES TEMPORALES	
MODELO ARIMA (p, d,q)(P,D,Q) _s	
ARIMA UNIVARIANTE paso a paso con SPSS(3)	12
ANEXO II. TABLAS DE DATOS Y CÁLCULOS ESTADÍSTICOS	
Objetivo 3. Cambios en la epidemiología local según la localización geográfica	147
Objetivo 4. Cambios en el nivel de resistencia	190
Objetivo 5. Elaboración de una recomendación de terapia empírica	190
Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación	191
Objetivo 7. Factores que pueden influir en la resolución del cuadro clínico	192
ANEXO III. ANTIBIÓTICOS MÁS UTILIZADOS.(4)	223
ACTIVIDAD FRENTE A LA PARED CELULAR	223
CAUSAN DISRUPCIÓN EN LA MEMBRANA CITOPLASMÁTICA	229
INHIBIDORES DE LA SÍNTESIS DE PROTEINAS Y DE ARN	230
ANTIBIÓTICOS QUE INHIBEN LA SÍNTESIS DE ÁCIDO FÓLICO	235
INHIBIDORES DE ENZIMAS ESPECÍFICAS QUE PARTICIPAL EN LA SÍNTES ENROLLAMIENTO DEL ADN	
RIBLIOGRAFÍA ANEVOS	220

ÍNDICE DE FIGURAS ANEXOS

Figura 1. Esquema ilustrativo de la metodología de Box y Jenkins para la modelización de serie
temporales
Figura 2. Exploración gráfica de la Serie
Figura 3. Correlograma: Función de correlación simple (ACF)13
Figura 4. Correlograma: Función de correlación parcial (ACF parcial)13
Figura 5. Correlograma: Función de correlación simple (ACF) tras diferenciación de orden 114
Figura 6. Correlograma: Función de correlación parcial (ACF parcial) tras diferenciación de
orden 114
Figura 7. Función de autocorrelación simple (FAS) y parcial (FAP) de los residuos del modelo
ARIMA (0,1,1)
Figura 8. Función de autocorrelación simple (FAS) y parcial (FAP) de los residuos del modelo
ARIMA (1,2,3,0,0)
Figura 9. Función de autocorrelación simple (FAS) y parcial (FAP) de los residuos del modelo
ARIMA (1,3,0,0)
Figura 10. Representación gráfica de la predicción
Figura 11. Mecanismo de acción de los antibióticos

ÍNDICE DE TABLAS ANEXOS

Tabla I. Suma cuadrática de los residuos para el modelo ARIMA (0,1,1)	15
Tabla II. Estadísticos del modelo ARIMA (0,1,1)	16
Tabla III. Estimación y significación estadística de los parámetros del modelo ARIMA	(0,1,1)16
Tabla IV. Estimación y significación estadística de los parámetros del modelo ARIMA	(1,2,3,0,0).
	17
Tabla V. Estimación y significación estadística de los parámetros del modelo ARIMA	(1,3,0,0).18
Tabla VI. Previsión para los 3 meses siguientes al final de la serie	19
Tabla VII. Tabla de datos Objetivo 1 HVB 1/6	21
Tabla VIII. Tabla de datos Objetivo 1 HVB 2/6	22
Tabla IX. Tabla de datos Objetivo 1 HVB 3/6	23
Tabla X. Tabla de datos Objetivo 1 HVB 4/6	24
Tabla XI. Tabla de datos Objetivo 1 HVB 5/6	25
Tabla XII. Tabla de datos Objetivo 1 HVB 6/6	26
Tabla XIII. Tabla de datos Objetivo 2 HVB 1/6	27
Tabla XIV. Tabla de datos Objetivo 2 HVB 2/6	28
Tabla XV. Tabla de datos Objetivo 2 HVB 3/6	28
Tabla XVI. Tabla de datos Objetivo 2 HVB 4/6	29
Tabla XVII. Tabla de datos Objetivo 2 HVB 5/6	29
Tabla XVIII. Tabla de datos Objetivo 2 HVB 6/6	30
Tabla XIX. Tabla de datos Objetivo 3 HVB 1/2	147
Tabla XX. Tabla de datos Objetivo 3 HVB 2/2.	148
Tabla XXI. Tabla de datos Objetivo 3 ARI 1/2	149
Tabla XXII. Tabla de datos Objetivo 3 ARI 2/2	150
Tabla XXIII. Descripción de espectro de betalactámicos	225
Tabla XXIV. Dosis, vía de administración de betalactámicos	226
Tabla XXV. Dosis, vía de administración y cobertura antibiótica	228

ANEXOS

ABREVIATURAS

POR ORDEN ALFABÉTICO

Α Artroplastia

aba Acinetobacter baumanii Acinetobacter iwoffi ac-

ACF Función de Autocorrelación simple ACF parcial Función de Autocorrelación parcial

aeh Aeromonas caviae

Album **Albumina**

Amoxicilina-Ácido Clavulánico **AMC**

AMK Amikacina **AMP Ampicilina AMX** Amoxicilina Mixed Anaerobes ane AR Autoregresivo

COT-ARI Aberdeen Royal Infirmary

ARMA Autoregresivo y de Medias Móviles AST Análisis de Series Temporales

ATM Aztreonam

ATS American Thoracic Society

AZM Azitromicina

Bacteroides fragilis bfr **BGN**

Bacilos Gram Negativos

Bifidobacterium bgp

Betalactamasas de espectro ampliado **BLEAS**

Candida albicans can

CAZ Ceftazidima

cca Micro-aerophilic streptococcus

Citrobacter freundii cfr CGP Cocos Gram Positivos

CIP Ciprofloxacino CLI Clindamicina

National Commitee for Clinical Laboratory Standards CLSI

COL Coliforme Diphtheroids cor

Cirugía Ortopédica y Traumatología COT

CPD Cefpodoxima CRO Ceftriaxona **CTR** Cotrimoxazol CTX Cefotaxima Cefuroxima CXA Cefazolina CZO

Diabetes Mellitus DM

Ε Experto

eae Enterobacter aerogenes EARSS European Antimicrobial Resistence Surveillance System

ecl Enterobacter cloacae

eco Echerichia coli

efa Enterococcus faecalis efm Enterococcus faecium

EL Experto Local

en- Enterobacter aerógenes

ERY Eritromicina

FA Fibrilación Auricular

FEP Cefepime
FOS Fosfomicina
FOX Fosfomicina
FUS Ac Fusídico
GEN Gentamicina

HELP Health Evaluation Through Logical Processing

COT-HVB Hospital Vega Baja

IHQ Infección de Herida Quirúrgica

IHQ-I-COT Infección de Herida Quirúrgica sobre implante en COT

IMC Índice de Masa Corporal

infec infección

Inmunosupr Inmunosupresores

IPM Imipenem

IRC Insuficiencia Renal Crónica

kpl Raoultella planticola kpn Klebsiella pneumoniae

Linf Linfocitos
LNZ Linezolid
LVX Levofloxacino
m.o. microorganismo/os
MA Medias Móviles
MEM Meropenem

mmo Morganella morganii

MTR Metronidazol NET Netilmicina NIT Nitrofurantoína NOR Norfloxacino 0 Osteosíntesis OFX Ofloxacino OR Odds ratio OXA Oxacilina

pae Pseudomona aeruginosa

PEN Bencil Penicilina

pep Peptoniphilus asaccharolyticus

PIP Piperacilina
PM Polimicrobianas
pr- Proteus species

pre Pseudomona stutzeri

PROA Programas para la optimización del uso de antibióticos

prop Propionibacterium

RedMIVA Red de Vigilancia Microbiológica de la Comunidad Valenciana

RR Riesgo Relativo SAM Ampic-Sulbactam

SARM Staphylococcus aureus Resistente a Meticilina

sau Staphylococcus aureus

SAUCE Sensibilidad de los Antibióticos Usados en la Comunidad en España

SCAP Sistemas Computerizados de Ayuda a la Prescripción

SCN Staphylococcus coagulasa negativos

SCN-RM SCN resistente meticilina sep Staphylococcus epidermidis SERM sep Resistente a Meticilina

sgc Streptococcus agalactiae (Streptococcus Grupo B)

sma Serratia marcescens spn Streptococo pneumoniae

svi Streptococcus viridans (Streptococcus Grupo G)

SXT Cotrimoxazol
TCY Tetraciclina
TMP Trimetoprim
TOB Trobramicina
Tqx Tiempo Quirúgico

Trasfus Post Trasfusión Postquirúrgica

Trasfus Prev Trasfusión Previa

TZP Piper-Tazo

UCI Unidad de cuidados intensivos.

VAN Vancomicina

ViResiST Vigilancia de la Resistencia por medio del Análisis de Series Temporales

WebResist Nueva versión de ViResiST

>2d hosp

prev Más de dos días de hospitalización previa

ANEXOS

ANEXO I. ANÁLISIS DE SERIES TEMPORALES

CONCEPTOS(1).

- Ruido Blanco: secuencia de datos gobernada por un proceso aleatorio puro, sus datos no siguen ninguna regularidad y se sitúan en el gráfico en una u otra posición de manera arbitraria.
- Serie temporal. Sucesión ordenada en el tiempo de valores de un fenómeno obtenidos a intervalos constantes. Si esta secuencia de datos no es completamente aleatoria, entre sus valores debe existir cierto grado de correlación. Si existe dependencia entre sus valores sucesivos, no puede ser modelizada por medio de las técnicas clásicas de regresión, por ejemplo: regresión lineal sobre el tiempo, ya que este tipo de metodología exige independencia entre los valores consecutivos, es decir se requiere ausencia de lo que se denomina autocorrelación.
- Serie estacionaria: es una serie con media y varianza constantes a lo largo del tiempo.
- Navaja de Okhram/principio de máxima parsimonia: "en igualdad de condiciones, la explicación más sencilla suele ser la más probable".

MODELO ARIMA (p, d,q)(P,D,Q)s

Box y Jenkins(2) han desarrollado modelos estadísticos para series temporales que tienen en cuenta la dependencia existente entre los datos, esto es, cada observación en un momento dado es modelada en función de los valores anteriores. Los análisis se basan en un modelo explícito. Los modelos se conocen con el nombre genérico de ARIMA (AutoRegresive Integrated Moving Average), que deriva de sus tres componentes AR (Autoregresivo), I (Integrado) y MA (Medias Móviles).

La metodología de Box y Jenkins se resume en cuatro fases (Figura 1):

- 1. **Identificar** el posible modelo ARIMA que sigue la serie, lo que requiere:
- Decidir qué transformaciones aplicar para convertir la serie observada en una serie estacionaria. Nos interesa transformar las series en estacionarias, porque con ellas podemos obtener predicciones fácilmente. Además como la media es constante, podemos estimarla con todos los datos, y utilizar este valor para predecir una nueva observación y se pueden obtener intervalos de confianza para las predicciones.
- Determinar un modelo ARMA para la serie estacionaria, es decir, los órdenes **p y q** de su estructura autorregresiva y de media móvil.
- 2. **Estimación.** Se estiman los parámetros AR y MA por máxima verosimilitud y se obtienen sus errores estándar y los residuos del modelo.
- 3. **Diagnóstico.** Donde se comprueba que los residuos no tienen estructura de dependencia y siguen un proceso de ruido blanco. Si los residuos muestran estructura se modifica el modelo para incorporarla y se repiten las etapas anteriores hasta obtener un modelo adecuado, siguiendo el principio de máxima parsimonia.
- 4. **Predicción.** Una vez se ha obtenido un modelo adecuado se realizan predicciones con el mismo.

ANEXOS

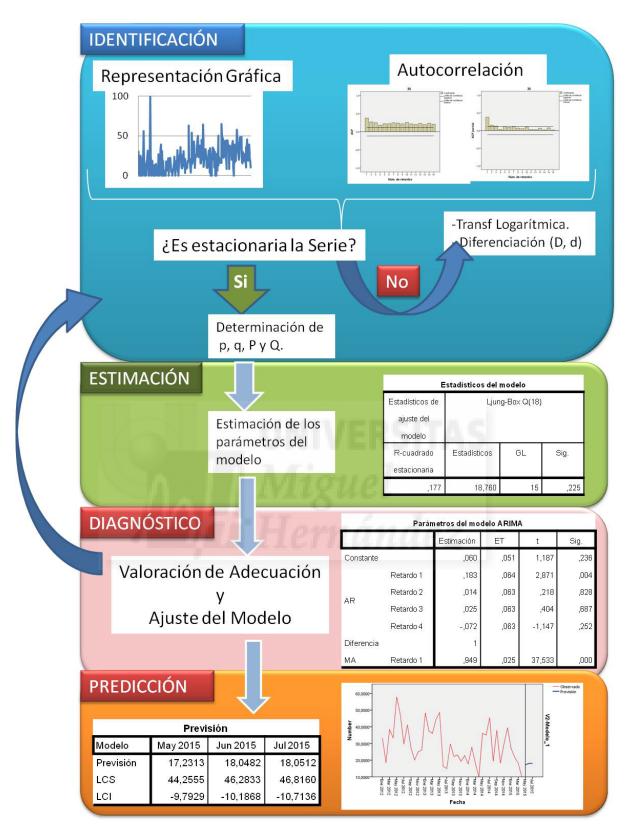


Figura 1. Esquema ilustrativo de la metodología de Box y Jenkins para la modelización de series temporales.

ARIMA UNIVARIANTE paso a paso con SPSS(3)

- 1. IDENTIFICAR el modelo. AR(p)I(d)MA(q), SAR(P)SI(D)SMA(Q)
- a). **Exploración Gráfica.** La fase de identificación comienza realizando una representación gráfica de la variable.
- El primer paso es Datos/Definir fechas.
- Representación gráfica de la variable: Analizar/Predicciones/Gráficos de secuencia.

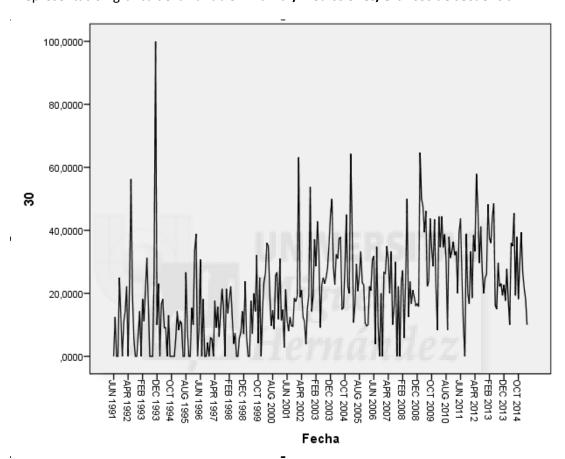


Figura 2. Exploración gráfica de la Serie.

 b) Detectar si la serie es estacionaria o no estacionaria. Mediante las funciones de autocorrelación (ACF) y autocorrelación parcial (ACF parcial) (correlogramas).
 Analizar/Predicciones/Autocorrelaciones.

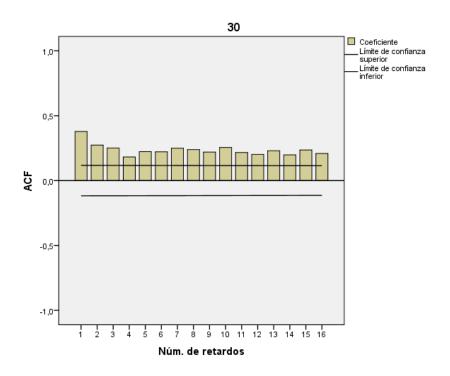


Figura 3. Correlograma: Función de correlación simple (ACF).

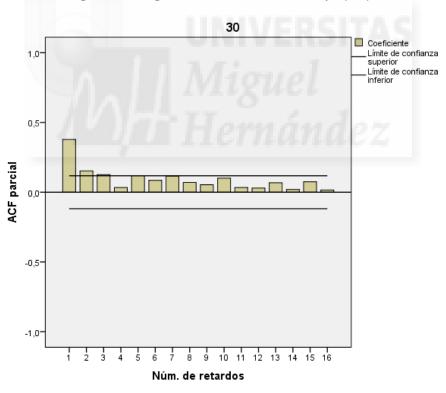


Figura 4. Correlograma: Función de correlación parcial (ACF parcial).

Si los retardos en ACF caen rápidamente la serie sería estacionaria, si no decaen sería no estacionaria en media y por tanto precisa de diferenciación. En este caso, no caen rápidamente por tanto se trata de una serie no estacionaria y precisa de transformaciones para hacerla estacionaria.

Tras realizar una diferenciación de orden 1. Los retardos de la función de autocorrelación ACF decaen tan rápidamente, que sólo el primero es significativo, con lo que no existen problemas de estacionariedad en la serie diferenciada. Ya tenemos la *d* del modelo *I(1)*.

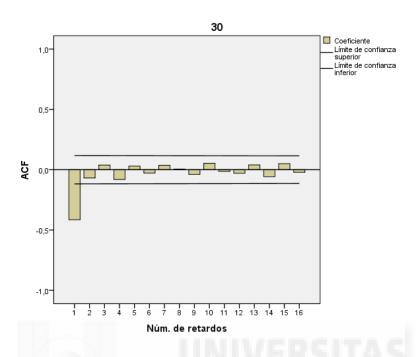


Figura 5. Correlograma: Función de correlación simple (ACF) tras diferenciación de orden 1.



Figura 6. Correlograma: Función de correlación parcial (ACF parcial) tras diferenciación de orden 1.

Respecto a la identificación de la parte de media móvil de la serie (MA(q)), observamos el número de retardos significativos de la ACF. En nuestro caso en la serie diferenciada sólo el primer retardo es significativo en ACF. En consecuencia la parte de media móvil se modeliza como un proceso MA (1).

Para identificar la parte autorregresiva (AR (p)), nos centramos en el número de retardos significativos en la ACFparcial. En nuestro caso, en la serie diferenciada observamos varios registros significativos, pero el decrecimiento de los retardos de la ACFparcial es muy rápido, por lo que se desestiman y por tanto la parte autorregresiva se modeliza como un proceso AR (0).

Por tanto podría ser una estructura ARIMA (0, 1,1), ejecutamos el procedimiento ARIMA: **Analizar/Predicciones/Crear modelos**, ahí es donde seleccionamos ARIMA y definimos la estructura. Solicitamos los estadísticos y los gráficos de residuos.

2. ESTIMACIÓN de los coeficientes del modelo. Una vez identificados los modelos tentativos para una serie, procedemos a la búsqueda de los parámetros óptimos de un modelo ARMA, que se fundamenta en la maximización del logaritmo de una función denominada "de verosimilitud". Esa función adquiere su mayor valor para aquellas estimaciones de los parámetros del modelo que hagan mínima la suma cuadrática de los residuos, que es la suma de las diferencias al cuadrado entre los valores de la serie y valores producidos por el modelo para iguales momentos (Tabla I y Tabla II).

Tabla I. Suma cuadrática de los residuos para el modelo ARIMA (0,1,1)

Estadístico	Media	Mínimo	Máximo	Percentil						
de ajuste	ivieula	IVIIIIIIII	IVIAXIIIIO	5	10	25	50	75	90	95
R-cuadrado estacionaria	0,354	0,354	0,354	0,354	0,354	0,354	0,354	0,354	0,354	0,354
R-cuadrado	0,197	0,197	0,197	0,197	0,197	0,197	0,197	0,197	0,197	0,197
RMSE	13,505	13,505	13,505	13,505	13,505	13,505	13,505	13,505	13,505	13,505
MAPE	53,684	53,684	53,684	53,684	53,684	53,684	53,684	53,684	53,684	53,684
MaxAPE	560,542	560,542	560,542	560,542	560,542	560,542	560,542	560,542	560,542	560,542
MAE	10,068	10,068	10,068	10,068	10,068	10,068	10,068	10,068	10,068	10,068
MaxAE	87,191	87,191	87,191	87,191	87,191	87,191	87,191	87,191	87,191	87,191
BIC normalizado	5,246	5,246	5,246	5,246	5,246	5,246	5,246	5,246	5,246	5,246

Tabla II. Estadísticos del modelo ARIMA (0,1,1)

Modelo	Número de predictores	Estadísticos de ajuste del modelo	Ljun	g-Box Q(18)		Número de valores atípicos
		R-cuadrado estacionaria	Estadísticos GL Sig.			
30-Modelo_1	0	,354	12,429	17	,773	0

3. DIAGNÓSTICO. Validación del modelo: Tras la estimación del modelo tentativo se procede a la valoración de su adecuación. El modelo quedará validado si sus parámetros cumplen algunas condiciones: deben tener significación estadística, deben ser diferentes de la unidad, no deberemos haber dejado de estimar ningún parámetro significativo, y las funciones de autocorrelación simple y parcial de los residuos no deben presentar valores significativos, es decir, deben ser ruido blanco.

Tabla III. Estimación y significación estadística de los parámetros del modelo ARIMA (0,1,1).

Parámetro	s del modelo ARIMA	Estimación	OTETO	t	Sig.
Constante	$\exists I \land I \mid$,055	,075	,737	,462
Diferencia		1	ma Fra	Ann	
MA	Retardo 1	,910	,026	35,249	,000

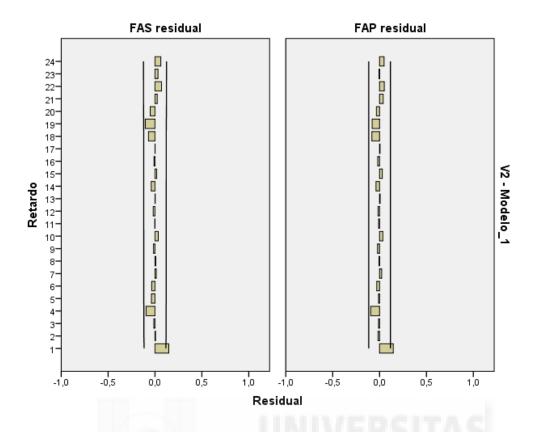


Figura 7. Función de autocorrelación simple (FAS) y parcial (FAP) de los residuos del modelo ARIMA (0,1,1).

En nuestro caso, el retardo estimado tiene significación estadística, las funciones de autocorrelación simple y parcial de los residuos no presentan valores significativos. Pero el retardo estimado se aproxima a la unidad (0,91). Por tanto el modelo puede no ser el más adecuado para realizar predicciones. Volvemos al paso 1, identificación del modelo, observamos los correlogramas de la serie sin diferenciar (Figura 3 y Figura 4).

Estimamos que hay 3 retardos significativos en la función de ACF parcial, y desestimamos los de la ACF simple. Recordemos que la serie está sin diferenciar. Por tanto, el modelo propuesto en este caso sería AR (1,2,3), I(0), MA(0). **Estimamos** los coeficientes del modelo tentativo y procedemos a la valoración de su adecuación (Tabla IV y Figura 8).

Tabla IV. Estimación y significación estadística de los parámetros del modelo ARIMA (1,2,3,0,0).

Parámetro	s del modelo ARIMA	Estimación	ET	t	Sig.
Constante		20,520	1,761	11,650	,000
AR	Retardo 1	,303	,059	5,135	,000
	Retardo 2	,112	,061	1,822	,070
	Retardo 3	,129	,059	2,180	,030

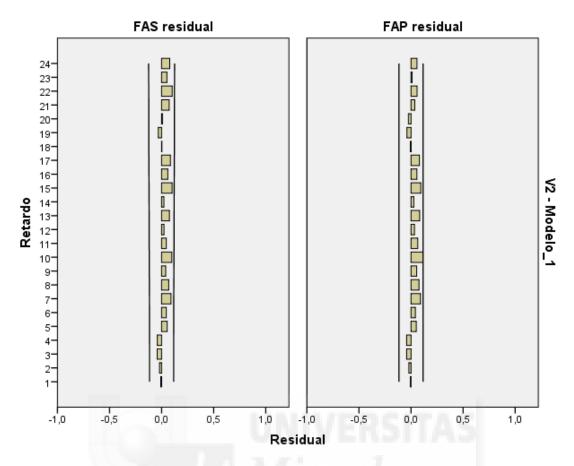


Figura 8. Función de autocorrelación simple (FAS) y parcial (FAP) de los residuos del modelo ARIMA (1,2,3,0,0).

Observamos que 2 de los retardos estimados tiene significación estadística, son diferentes de la unidad y las funciones de autocorrelación simple y parcial de los residuos no presentan valores significativos. Por tanto el modelo puede ser adecuado, sin embargo para un mejor ajuste del modelo debemos eliminar el retardo que no tiene significación estadística, es decir, el retardo 2, por tanto probamos el modelo AR(1,3), I(0), MA(0). (Tabla V y Figura 9).

Tabla V. Estimación y significación estadística de los parámetros del modelo ARIMA (1,3,0,0).

Paráme	tros del modelo ARIMA	Estimación	ET	t	Sig.
Constante		20,546	1,612	12,744	,000
AR	Retardo 1	,336	,056	5,977	,000
	Retardo 3	,162	,056	2,875	,004

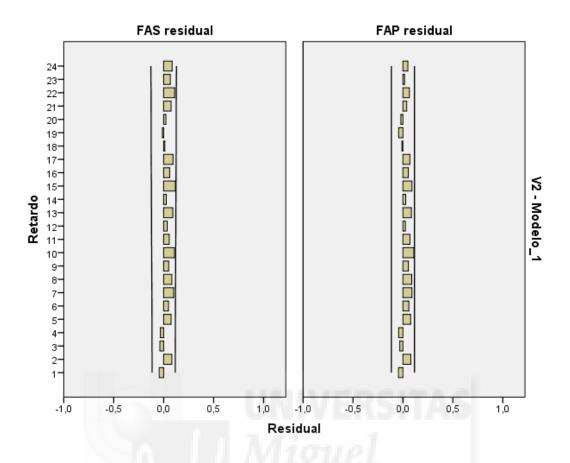


Figura 9. Función de autocorrelación simple (FAS) y parcial (FAP) de los residuos del modelo ARIMA (1,3,0,0).

Observamos que los 2 de los retardos estimados tiene significación estadística, son diferentes de la unidad y las funciones de autocorrelación simple y parcial de los residuos no presentan valores significativos. Por tanto el modelo es el adecuado para la elaboración de predicciones.

4. PREDICCIONES. En base a los resultados de pasos anteriores, siguiendo el principio de máxima parsimonia, se decide sobre el modelo adoptado. Y el modelo seleccionado se utilizará como fórmula inicial de predicción. (Tabla VI y Figura 10).

Tabla VI. Previsión para los 3 meses siguientes al final de la serie.

Modelo		May 2015	Jun 2015	Jul 2015
	Previsión	17,2313	18,0482	18,0512
30-Modelo_1	LCS	44,2555	46,2833	46,8160
	LCI	-9,7929	-10,1868	-10,7136

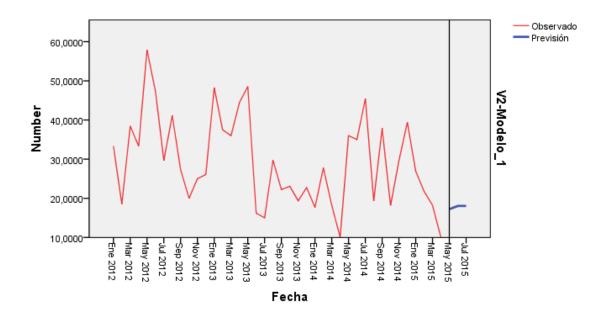


Figura 10. Representación gráfica de la predicción.

ANEXO II. TABLAS DE DATOS Y CÁLCULOS ESTADÍSTICOS.

Objetivo 1. Cambios en la epidemiología local con el paso del tiempo.

TABLAS DE DATOS.

Tabla VII. Tabla de datos Objetivo 1 HVB 1/6

N	Año	Sexo	Edad	Cultivo	Abreviatura	Grupo
1	2003	Н	24	Р	en-,ecl	BGN
2	2003	Н	75	S	sau, efm, cor	CGP, BGP
3	2003	Н	69	S	en-	BGN
4	2003	Н	51	Р	sau	CGP
5	2003	Н	72	Р	pau	BGN
6	2003	Н	79	S	ecl, efa	BGN, CGP
7	2003	М	72	S	en-	BGN
8	2003	М	67	S	mmo	BGN
9	2003	Н	75	S	pau	BGN
10	2004	Н	60	Р	pau, ecl	BGN
11	2004	М	60	S	efm	CGP
12	2004	Н	58	S	cor	BGP
13	2004	Н	79	Р	eco	CGP, BGN
14	2004	Н	72	Р	cor	BGP
15	2004	М	81	Р	sep	CGP
16	2004	М	70	S	sau	CGP
17	2004	М	76	Р	SCN	CGP
18	2004	Н	42	S	sau, ecl	CGP, BGN
19	2004	Н	19	S	sgc,svi	CGP
20	2005	Н	80	Р	can	Hongo
21	2005	М	88	S	efa	CGP
22	2005	Н	66	Р	SCN, sep	CGP
23	2005	М	84	Р	sau, SCN	CGP
24	2005	Н	83	Р	sep, SCN, cor	CGP, BGP
25	2005	М	31	S	pau, sma	BGN

Abreviaturas 1: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococco pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

Tabla VIII. Tabla de datos Objetivo 1 HVB 2/6

N	Año	Sexo	Edad	Cultivo	Abreviatura	Grupo
26	2005	Н	47	S	sau	CGP
27	2005	Н	42	S	ecl	BGN
28	2005	Н	57	Р	ecl	BGN
29	2005	М	52	S	ecl	BGN
30	2005	М	63	S	efa, SCN	CGP
31	2006	М	79	S	ecl, pre	BGN
32	2006	М	83	S	ecl, bfr	BGN
33	2006	М	81	S	pr-	BGN
34	2006	М	61	S	ecl	BGN
35	2006	Н	90	S	pau	BGN
36	2006	Н	74	S	efa	CGP
37	2006	М	77	Р	spn	CGP
38	2006	Н	48	S	sau	CGP
39	2006	М	97	S	efa, eco, pr-, pau	CGP, BGN
40	2006	Н	57	S	ecl, kpn, pau	BGN
41	2006	Н	58	Р	sau	CGP
42	2006	Н	59	S	kpn, ecl	BGN
43	2006	Н	39	Р	ecl	BGN
44	2006	Н	55	S	ecl, SCN	BGN, CGP
45	2006	Н	7	S	sau	CGP
46	2006	M	78	S	sau	CGP
47	2006	Н	57	Р	sep, SCN, eco	CGP, BGN
48	2006	M	70	S	SCN	CGP
49	2006	М	81	Р	mmo	BGN
50	2006	M	77	S	ecl, sau	BGN, CGP

Abreviaturas 2: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococo pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

Tabla IX. Tabla de datos Objetivo 1 HVB 3/6

N	Año	Sexo	Edad	Cultivo	Abreviatura	Grupo
51	2006	Н	74	S	ecl, PMO	BGN
52	2006	М	76	Р	sep	CGP
53	2006	M	61	Р	sau	CGP
54	2006	Н	43	S	sau, pre	CGP, BGN
55	2006	M	80	Р	sma	BGN
56	2006	М	67	S	sau	CGP
57	2006	Н	80	S	sau	CGP
58	2007	Н	61	S	sep, SCN	CGP
59	2007	М	89	Р	sau, sep, SCN, efa	CGP
60	2007	М	70	S	sau	CGP
61	2007	М	76	S	sep, efm	CGP
62	2007	Н	39	S	sau, bgn	CGP, BGN
63	2007	Н	66	S	svi	CGP
64	2007	Н	38	S	pau, ecl	BGN
65	2007	Н	65	S	efa, bgp, sep	CGP, BGP
66	2007	Н	30	Р	SCN	CGP
67	2007	М	89	S	pr-, sep	BGN, CGP
68	2007	M	82	S	pau	BGN
69	2007	M	41	S	efa, SCN	BGN, CGP
70	2007	M	62	Р	sau	CGP
71	2007	M	71	Р	sau	CGP
72	2007	Н	87	S	pr-	BGN
73	2007	Н	80	S	aba, SCN, sep	BGN, CGP
74	2008	Н	66	Р	sau	CGP
75	2008	Н	79	S	ecl	BGN

Abreviaturas 3: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococc pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

Tabla X. Tabla de datos Objetivo 1 HVB 4/6

N	Año	Sexo	Edad	Cultivo	Abreviatura	Grupo
76	2008	М	75	Р	pau	BGN
77	2008	Н	74	Р	sau	CGP
78	2008	Н	75	Р	sep	CGP
79	2008	Н	66	Р	pau	BGN
80	2008	Н	53	S	sau	CGP
81	2008	Н	71	Р	SCN	CGP
82	2008	М	62	S	sau	CGP
83	2008	Н	78	S	sep	CGP
84	2008	Н	37	Р	sma	BGN
85	2008	Н	55	S	ppt	Anaerobios
86	2008	М	80	Р	pau, pr-	BGN
87	2008	М	75	Р	sep	CGP
88	2008	Н	65	S	pep	Anaerobios
89	2009	Н	70	Р	eco	BGN
90	2009	Н	87	Р	sep, sau	CGP
91	2009	Н	33	S	pau, sep, SCN	BGN, CGP
92	2009	Н	23	S	ecl, sau	BGN, CGP
93	2009	М	76	S	cor	BGP
94	2009	Н	70	S	sep, ecl	CGP, BGN
95	2009	M	71	S	sma, SCN	BGN, CGP
96	2009	Н	65	Р	sep	CGP
97	2009	M	71	S	en-	BGN
98	2009	М	64	Р	SCN	CGP
99	2010	M	87	Р	sep, sau, cor, efa, pau	CGP, BGN, BGP
100	2010	Н	67	S	sep	CGP

Abreviaturas 4: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococo pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

Tabla XI. Tabla de datos Objetivo 1 HVB 5/6

N	Año	Sexo	Edad	Cultivo	Abreviatura	Grupo
101	2010	M	84	Р	SCN	CGP
102	2010	Н	70	Р	sau	CGP
103	2010	Н	66	S	sep	CGP
104	2010	М	64	S	sau	CGP
105	2010	М	61	Р	sep	CGP
106	2011	M	68	Р	prop	BGP
107	2011	М	56	Р	sau	CGP
108	2011	Н	38	S	sau	CGP
109	2011	Н	35	Р	sau	CGP
110	2011	М	50	S	SCN, cor	CGP, BGP
111	2011	Н	19	S	pau	BGN
112	2011	М	60	S	SCN, sau	CGP
113	2011	Н	78	Р	sep	CGP
114	2011	M	65	Р	sep, sma	CGP, BGN
115	2011	Н	67	Р	sep	CGP
116	2011	Н	66	Р	ecl	BGN
117	2011	M	42	Р	kpn, sep, SCN	BGN, CGP
118	2011	Н	76	Р	sau	CGP
119	2011	M	68	S	eco	BGN
120	2011	M	51	Р	ac-	BGN
121	2011	M	69	S	sau	CGP
122	2011	M	46	Р	sma, sep	BGN, CGP
123	2011	M	61	Р	sau	CGP
124	2011	Н	82	Р	sau	CGP
125	2012	Н	71	Р	sep	CGP

Abreviaturas 5: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococo pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

Tabla XII. Tabla de datos Objetivo 1 HVB 6/6

N	Año	Sexo	Edad	Cultivo	Abreviatura	Grupo
126	2012	Н	78	Р	sep	CGP
127	2012	Н	70	S	pau, ecl	BGN
128	2012	М	82	S	sau, sep	CGP
129	2012	М	70	S	prop, pep	BGP, CGP
130	2012	М	72	S	pau, eco	BGN
131	2012	Н	15	Р	pau	BGN
132	2012	М	80	S	sep	CGP
133	2012	М	63	Р	SCN	CGP
134	2012	Н	63	Р	SCN	CGP
135	2012	М	48	S	sau	CGP
136	2012	Н	52	S	en-	BGN
137	2012	М	79	Р	sep	CGP
138	2012	Н	41	Р	sau	CGP
139	2012	Н	69	Р	pau, sau, sep	BGN, CGP
140	2012	М	70	Р	pau	BGN, CGP
141	2012	Н	78	Р	prop, SCN	CGP, BGP
142	2012	Н	32	Р	sau	CGP
143	2012	M	75	Р	en-	BGN
144	2012	M	81	Р	cor, sep	BGP, CGP

Abreviaturas 6: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococo pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

Objetivo 2. Factores de riesgo de infección por bacilos gram negativos y polimicrobianas.

TABLAS DE DATOS.

Tabla XIII. Tabla de datos Objetivo 2 HVB 1/6

Ν	Año	Factores Riesgo PreQuirúrgicos (FR PreQx)	FR Qx	Cirugí indice*	Tipo Infección**	Grupo
1	2003	Linfopenia, Anemia	Qx>120min, Trasf Post	OFA	Α	BGN
2	2003	IMC>30, Fumador, Bebedor	Qx>120min, Trasf Post	Α	С	CGP, BGP
3	2003	Fumador	-	Α	Α	BGN
4	2003	Trasf Prev, Bebedor	Qx>120min	Α	Α	CGP
5	2003	Linfopenia, Anemia, Bebedor	-	Α	С	BGN
6	2003	IMC>30, Linfopenia, DM, Fumador, Bebedor, Neoplasia	-	Α	Α	BGN, CGP
7	2003	Linfopenia	-	Α	Α	BGN
8	2003	IMC>30	-	Α	AH	BGN
9	2003	IMC>30, Linfopenia	Trasf Post	Α	Α	BGN
10	2004	-	-	Α	С	BGN
11	2004	Linfopenia, >2d Hosp Prev	Qx>120min, Trasf Post	AR	Α	CGP
12	2004	IMC>30, Bebedor	-	00	С	BGP
13	2004	Hepatopatía, Bebedor, >2d Hosp Prev	Trasf Post	AF	С	CGP, BGN
14	2004	Bebedor	Qx>120min, Trasf Post	Α	С	BGP
15	2004	IMC>30, DM	Trasf Post	Α	С	CGP
16	2004	DM, >2d Hosp Prev	Qx>120min	OFC	Α	CGP
17	2004	-	-	Α	С	CGP
18	2004	-	-	OFC	Α	CGP, BGN
19	2004	-	-	OFC	С	CGP
20	2005	Fumador	-	Α	С	Hongo
21	2005	Anemia, DM	Trasf Post	OFC	Α	CGP
22	2005	IMC>30, DM	-	Α	CIOP	CGP
23	2005	>2d Hosp Prev		AF	Α	CGP
24	2005	Anemia, Trasf Prev, >2d Hosp Prev		AF	С	CGP, BGP
25	2005			00	AH	BGN

Abreviaturas 7: *Cirugía Índice: A: Artroplastia, AF: Artroplastia por fractura, AR: Artroplastia de recambio, OO: Osteosíntesis ortopedia, OFC: Osteosíntesis fractura cerrada, OFA: Osteosíntesis fractura abierta. **Tipo de infección según Tsukayama: A: Aguda, AH: Aguda Hematógena, C: Crónica, CIOP: cultivo intraoperatorio positivo.

Tabla XIV. Tabla de datos Objetivo 2 HVB 2/6

N	Año	Factores Riesgo PreQuirúrgicos (FR PreQx)	FR Qx	Cirugí indice*	Tipo Infección**	Grupo
26	2005	Fumador, Bebedor, >2d Hosp Prev	-	OFC	А	CGP
27	2005	Bebedor, >2d Hosp Prev	Qx>120min	OFA	Α	BGN
28	2005	Fumador, Bebedor	-	Α	CIOP	BGN
29	2005	-	Trasf Post	OFC	Α	BGN
30	2005	Anemia, >2d Hosp Prev	Qx>120min, Trasf Post	AF	Α	CGP
31	2006	IMC>30, Trasf Prev, DM	-	Α	Α	BGN
32	2006	IMC>30	Qx>120min, Trasf Post	Α	CIOP	BGN
33	2006	>2d Hosp Prev	-	OFC	Α	BGN
34	2006	-	-	OFC	Α	BGN
35	2006	Linfopenia, Traf Prev, DM, >2d Hosp Prev	-	AF	Α	BGN
36	2006	Linfopenia, Traf Prev, Fumador, Bebedor	Qx>120min, Trasf Post	Α	Α	CGP
37	2006	Neoplasia	-	Α	AH	CGP
38	2006	IMC>30, Linfopenia, Traf Prev, Corticoides, Inmunosupresores	-	OFC	С	CGP
39	2006	Linfopenia, Anemia, Trasf Prev, >2d Hosp Prev	Trasf Post	AF	Α	CGP, BGN
40	2006	Bebedor, Otra infec	-	OFC	Α	BGN
41	2006	Anemia, >2d Hosp Prev	Qx>120min, Trasf Post	AF	Α	CGP
42	2006	Trasf Prev, Fumador, Neoplasia	Qx>120min	OFC	С	BGN
43	2006	Bebedor	-	OFC	Α	BGN
44	2006	-	Qx>120min, Trasf Post	OFC	Α	BGN, CGP
45	2006	-	-	OFC	Α	CGP
46	2006	DM	-	OFC	Α	CGP
47	2006	Linfopenia, >2d Hosp Prev	-	OFC	Α	CGP, BGN
48	2006	DM	-	Α	Α	CGP
49	2006	Linfopenia, Anemia	Qx>120min, Trasf Post	Α	Α	BGN
50	2006	Linfopenia	-	AF	Α	BGN, CGP

Abreviaturas 8: *Cirugía Índice: A: Artroplastia, AF: Artroplastia por fractura, AR: Artroplastia de recambio, OO: Osteosíntesis ortopedia, OFC: Osteosíntesis fractura cerrada, OFA: Ostesosíntesis fractura abierta. **Tipo de infección según Tsukayama: A: Aguda, AH: Aguda Hematógena, C: Crónica, CIOP: cultivo intraoperatorio positivo.

Tabla XV. Tabla de datos Objetivo 2 HVB 3/6

N	Año	Factores Riesgo PreQuirúrgicos (FR PreQx)	FR Qx	Cirugí indice*	Tipo Infección**	Grupo
51	2006			OFA	Α	BGN
52	2006	>2d Hosp Prev	Trasf Post	Α	CIOP	CGP
53	2006	M/4123.77	-	OFC	С	CGP
54	2006	Linfopenia, >2d Hosp Prev	1-14-1-7	OFC	С	CGP, BGN
55	2006	IMC>30, Trasf Prev, DM	Qx>120min, Trasf Post	Α	AH	BGN
56	2006	-	-	OFC	Α	CGP
57	2006	-	-	Α	С	CGP
58	2007	Linfopenia, Anemia, DM, Bebedor	Qx>120min, Trasf Post	AR	CIOP	CGP
59	2007	Linfopenia, Anemia, >2d Hosp Prev	Trasf Post	AF	Α	CGP
60	2007	IMC>30, Otra infec, >2d Hosp Prev	Qx>120min, Trasf Post	AF	Α	CGP
61	2007	-	-	Α	Α	CGP
62	2007	Fumador, >2d Hosp Prev	Qx>120min	OFC	Α	CGP, BGN
63	2007	-	Qx>120min	OFA	С	CGP
64	2007	>2d Hosp Prev	-	OFA	Α	BGN
65	2007	FA, Trasf Prev, Fumador	Trasf Post	Α	С	CGP, BGP
66	2007	-	-	OFA	С	CGP
67	2007	Linfopenia, Anemia, Trasf Prev	Trasf Post	OFC	Α	BGN, CGP
68	2007	>2d Hosp Prev	Trasf Post	OFC	AH	BGN
69	2007	IMC>30	Trasf Post	00	Α	BGN, CGP
70	2007	IMC>30	Qx>120min, Trasf Post	Α	AH	CGP
71	2007	Linfopenia, FA	Trasf Post	Α	AH	CGP
72	2007	Anemia, DM	-	AF	Α	BGN
73	2007	Linfopenia, Otra infec, >2d Hosp Prev	Trasf Post	Α	Α	BGN, CGP
74	2008	IMC>30, DM	-	Α	С	CGP
75	2008	-	Trasf Post	Α	Α	BGN

Abreviaturas 9: *Cirugía Índice: A: Artroplastia, AF: Artroplastia por fractura, AR: Artroplastia de recambio, OO: Osteosíntesis ortopedia, OFC: Osteosíntesis fractura cerrada, OFA: Osteosíntesis fractura abierta. **Tipo de infección según Tsukayama: A: Aguda, AH: Aguda Hematógena, C: Crónica, CIOP: cultivo intraoperatorio positivo.

Tabla XVI. Tabla de datos Objetivo 2 HVB 4/6

N	Año	Factores Riesgo PreQuirúrgicos (FR PreQx)	FR Qx	Cirugí indice*	Tipo Infección**	Grupo
76	2008	IMC>30, DM	Qx>120min, Trasf Post	AR	Α	BGN
77	2008	DM, >2d Hosp Prev	-	OFC	AH	CGP
78	2008	Anemia, Corticoides, >2d Hosp Prev	-	AF	CIOP	CGP
79	2008	IMC>30	Qx>120min	OFA	С	BGN
80	2008	>2d Hosp Prev	Qx>120min	OFC	Α	CGP
81	2008	IMC>30, DM	-	Α	С	CGP
82	2008	IMC>30, Linfopenia, Bebedor, >2d Hosp Prev	Qx>120min, Trasf Post	OFC	Α	CGP
83	2008	DM	Qx>120min, Trasf Post	Α	С	CGP
84	2008	Fumador, >2d Hosp Prev	Qx>120min, Trasf Post	OFC	С	BGN
85	2008	Linfopenia, Fumador, Bebedor, >2d Hosp Prev	Qx>120min	OFC	Α	Anaerobios
86	2008	Anemia, Trasf Prev	Trasf Post	Α	Α	BGN
87	2008	IMC>30, Anemia, DM	Trasf Post	Α	С	CGP
88	2008	-	Qx>120min	Α	Α	Anaerobios
89	2009	IMC>30, Linfopenia, Traf Prev	-	Α	CIOP	BGN
90	2009	FA, DM, >2d Hosp Prev	-	AF	Α	CGP
91	2009	Anemia, Trasf Prev, >2d Hosp Prev	Qx>120min, Trasf Post	OFC	Α	BGN, CGP
92	2009	Trasf Prev, Fumador, >2d Hosp Prev	-	OFC	Α	BGN, CGP
93	2009	Trasf Prev, >2d Hosp Prev	Trasf Post	OFA	Α	BGP
94	2009	IMC>30	Qx>120min, Trasf Post	Α	Α	CGP, BGN
95	2009	IMC>30, DM, >2d Hosp Prev	Qx>120min	Α	Α	BGN, CGP
96	2009	IMC>30, Bebedor	Trasf Post	Α	С	CGP
97	2009	-	-	AR	С	BGN
98	2009	IMC>30, Hipoalbuminemia	-	Α	CIOP	CGP
99	2010	Linfopenia, Anemia, FA, >2d Hosp Prev	-	AF	Α	CGP, BGN, BGP
100	2010	Hepatopatía, Fumador, Bebedor, >2d Hosp Prev	-	OFC	Α	CGP

Abreviaturas 10: *Cirugía Índice: A: Artroplastia, AF: Artroplastia por fractura, AR: Artroplastia de recambio, OO: Osteosíntesis ortopedia, OFC: Osteosíntesis fractura cerrada, OFA: Osteosíntesis fractura abierta. **Tipo de infección según Tsukayama: A: Aguda, AH: Aguda Hematógena, C: Crónica, CIOP: cultivo intraoperatorio positivo.

Tabla XVII. Tabla de datos Objetivo 2 HVB 5/6

N	Año	Factores Riesgo PreQuirúrgicos (FR PreQx)	FR Qx	Cirugí indice*	Tipo Infección**	Grupo
101	2010	FA		Α	С	CGP
102	2010	Linfopenia, IRC	- 11	Α	AH	CGP
103	2010	IMC>30		Α	Α	CGP
104	2010	IMC>30, DM	ENGLY PROPERTY	00	Α	CGP
105	2010	Anemia	3 6 6 5 5 5 6	Α	С	CGP
106	2011	IMC>30	Trasf Post	Α	С	BGP
107	2011	IMC>30	-	00	С	CGP
108	2011	Trasf Prev	Qx>120min	00	Α	CGP
109	2011	-	Qx>120min	00	С	CGP
110	2011	IMC>30, Hepatopatía, DM	-	Α	С	CGP, BGP
111	2011	Fumador	Qx>120min	00	Α	BGN
112	2011	IMC>30, AR	-	00	С	CGP
113	2011	IMC>30, DM	Qx>120min	Α	С	CGP
114	2011	IMC>30, Anemia, DM	-	Α	С	CGP, BGN
115	2011	-	-	Α	С	CGP
116	2011	IMC>30, DM, Bebedor	Qx>120min	Α	Α	BGN
117	2011	Linfopenia, >2d Hosp Prev	Qx>120min, Trasf Post	OFC	С	BGN, CGP
118	2011	Fumador	-	Α	Α	CGP
119	2011	IMC>30, FA, Trasf Prev, DM	-	AF	С	BGN
120	2011	IMC>30, Anemia, DM	-	Α	CIOP	BGN
121	2011	IMC>30	Qx>120min	Α	Α	CGP
122	2011	IMC>30, Hepatopatía, Trasf Prev, Inmunosupresores	Trasf Post	Α	Α	BGN, CGP
123	2011	Fumador, Bebedor, Neoplasia, Inmunosupresores, >2d Hosp Pre	Qx>120min	OFC	AH	CGP
124	2011	Anemia, IRC, Fumador, Bebedor, >2d Hosp Prev	Trasf Post	AF	Α	CGP
125	2012	Linfopenia	Qx>120min	Α	С	CGP

Abreviaturas 11: *Cirugía Índice: A: Artroplastia, AF: Artroplastia por fractura, AR: Artroplastia de recambio, OO: Osteosíntesis ortopedia, OFC: Osteosíntesis fractura cerrada, OFA: Osteosíntesis fractura abierta. **Tipo de infección según Tsukayama: A: Aguda, AH: Aguda Hematógena, C: Crónica, CIOP: cultivo intraoperatorio positivo.

Tabla XVIII. Tabla de datos Objetivo 2 HVB 6/6

N	Año	Factores Riesgo PreQuirúrgicos (FR PreQx)	FR Qx	Cirugí indice*	Tipo Infección**	Grupo
126	2012	IMC>30, DM	Qx>120min, Trasf Post	AR	С	CGP
127	2012	Fumador, Bebedor	Qx>120min	OFC	Α	BGN
128	2012	-	-	Α	Α	CGP
129	2012	IMC>30	-	Α	Α	BGP, CGP
130	2012	AR, Corticoides, >2d Hosp Prev	Qx>120min, Trasf Post	OFC	Α	BGN
131	2012	IMC>30, Fumador	-	00	AH	BGN
132	2012	-	Trasf Post	Α	С	CGP
133	2012	IMC>30	-	Α	CIOP	CGP
134	2012	IMC>30	Qx>120min	Α	С	CGP
135	2012	DM, Otra infec	Qx>120min	OFC	Α	CGP
136	2012	-	Qx>120min	OFC	Α	BGN
137	2012	IMC>30, DM	Trasf Post	Α	Α	CGP
138	2012	Anemia, >2d Hosp Prev	Qx>120min, Trasf Post	00	AH	CGP
139	2012	-	Qx>120min	AF	Α	BGN, CGP
140	2012	-	-	Α	Α	BGN, CGP
141	2012	-	Trasf Post	Α	Α	CGP, BGP
142	2012	-	Qx>120min	00	Α	CGP
143	2012	IMC>30	Trasf Post	Α	С	BGN
144	2012	-	Trasf Post	AR	С	BGP, CGP

Abreviaturas 12: *Cirugía Índice: A: Artroplastia, AF: Artroplastia por fractura, AR: Artroplastia de recambio, OO: Osteosíntesis ortopedia, OFC: Osteosíntesis fractura cerrada, OFA: Osteosíntesis fractura abierta. **Tipo de infección según Tsukayama: A: Aguda, AH: Aguda Hematógena, C: Crónica, CIOP: cultivo intraoperatorio positivo.

ANEXOS

CÁLCULOS ESTADÍSTICOS OBJETIVO 2.

Tablas de contingencia BGN

Resumen del procesamiento de los casos

	Casos					
	Vá	lidos	Per	didos	Т	otal
	N	Porcentaje	N	Porcentaje	N	Porcentaje
BGN * Sexo	144	100,0%	0	0,0%	144	100,0%
BGN * >64años	144	100,0%	0	0,0%	144	100,0%
BGN * IMC >30	144	100,0%	0	0,0%	144	100,0%
BGN * Linfocitos <1500	144	100,0%	0	0,0%	144	100,0%
BGN * Albúmina <3,5	144	100,0%	0	0,0%	144	100,0%
BGN * Anemia	144	100,0%	0	0,0%	144	100,0%
BGN * FA	144	100,0%	0	0,0%	144	100,0%
BGN * Insuf Renal (Cr)	144	100,0%	0	0,0%	144	100,0%
BGN * Hepatopatía	144	100,0%	0	0,0%	144	100,0%
BGN * Hemofilia	144	100,0%	0	0,0%	144	100,0%
BGN * Trasfusiones Previas	144	100,0%	0	0,0%	144	100,0%
BGN * DM	144	100,0%	0	0,0%	144	100,0%
BGN * Fumador	144	100,0%	0	0,0%	144	100,0%
BGN * Bebedor	144	100,0%	0	0,0%	144	100,0%
BGN * AR	144	100,0%	0	0,0%	144	100,0%
BGN * Neoplasia	144	100,0%	0	0,0%	144	100,0%
BGN * Corticoides	144	100,0%	0	0,0%	144	100,0%
BGN * Inmunosupresores	144	100,0%	0	0,0%	144	100,0%
BGN * Otra infección simultánea	144	100,0%	0	0,0%	144	100,0%
BGN * Qx >120min	144	100,0%	0	0,0%	144	100,0%

BGN * Trasfusión PostQx	144	100,0%	0	0,0%	144	100,0%
BGN * >2 días de Hosp previa	144	100,0%	0	0,0%	144	100,0%
BGN * Descripcion Cirugía Indice	144	100,0%	0	0,0%	144	100,0%
BGN * Clave Qx_indice	144	100,0%	0	0,0%	144	100,0%
BGN * Cirugía electiva S/N	144	100,0%	0	0,0%	144	100,0%
BGN * A/O	144	100,0%	0	0,0%	144	100,0%
BGN * Agudas/Crónica	144	100,0%	0	0,0%	144	100,0%
BGN * Trampuz	144	100,0%	0	0,0%	144	100,0%
BGN * Profundo/Superf	144	100,0%	0	0,0%	144	100,0%

BGN * Sexo

Tabla de contingencia

		/	Se	хо	Total
		/LA) a i	Hei	М	ıder
	_	Recuento	43	38	81
		Frecuencia esperada	43,9	37,1	81,0
	0	% dentro de BGN	53,1%	46,9%	100,0%
		% dentro de Sexo	55,1%	57,6%	56,2%
BGN		% del total	29,9%	26,4%	56,2%
BGN		Recuento	35	28	63
		Frecuencia esperada	34,1	28,9	63,0
	1	% dentro de BGN	55,6%	44,4%	100,0%
		% dentro de Sexo	44,9%	42,4%	43,8%
		% del total	24,3%	19,4%	43,8%

	Recuento	78	66	144
Total	Frecuencia esperada	78,0	66,0	144,0
	% dentro de BGN	54,2%	45,8%	100,0%
	% dentro de Sexo	100,0%	100,0%	100,0%
	% del total	54,2%	45,8%	100,0%

Pruebas de chi-cuadrado

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,087ª	1	,768		
Corrección por continuidad ^b	,016	1	,899		
Razón de verosimilitudes	,087	1	,768	ITAS	
Estadístico exacto de Fisher		3.73		,866	,450
N de casos válidos	144	IVI1	guei		

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 28,88.

b. Calculado sólo para una tabla de 2x2.

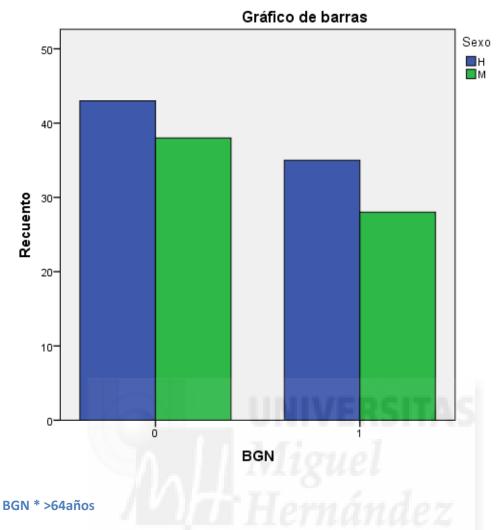


Tabla de contingencia

			>64años		Total
			0	1	
	0	Recuento	28	53	81
		Frecuencia esperada	30,4	50,6	81,0
BGN		% dentro de BGN	34,6%	65,4%	100,0%
		% dentro de >64años	51,9%	58,9%	56,2%
		% del total	19,4%	36,8%	56,2%
		Recuento	26	37	63
	1	Frecuencia esperada	23,6	39,4	63,0
		% dentro de BGN	41,3%	58,7%	100,0%

	% dentro de >64años	48,1%	41,1%	43,8%
	% del total	18,1%	25,7%	43,8%
	Recuento	54	90	144
	Frecuencia esperada	54,0	90,0	144,0
Total	% dentro de BGN	37,5%	62,5%	100,0%
	% dentro de >64años	100,0%	100,0%	100,0%
	% del total	37,5%	62,5%	100,0%

Pruebas de chi-cuadrado

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,679 ^a	1	,410	ITAS	
Corrección por continuidad ^b	,423	1	,515		
Razón de verosimilitudes	,678	1	,410		
Estadístico exacto de Fisher	Um	He	rnáno	,488	,257
Asociación lineal por lineal	,674	1	,412		
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 23,63.

b. Calculado sólo para una tabla de 2x2.

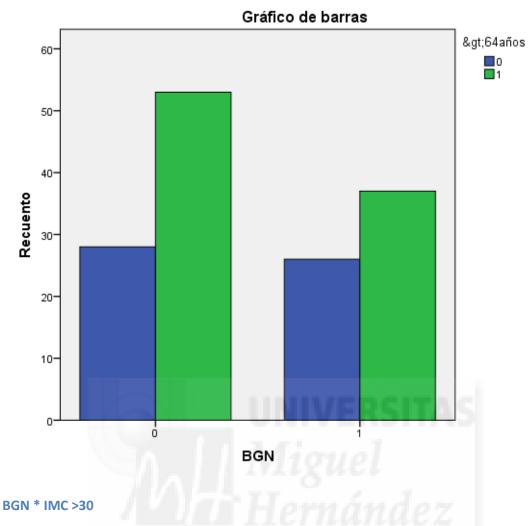
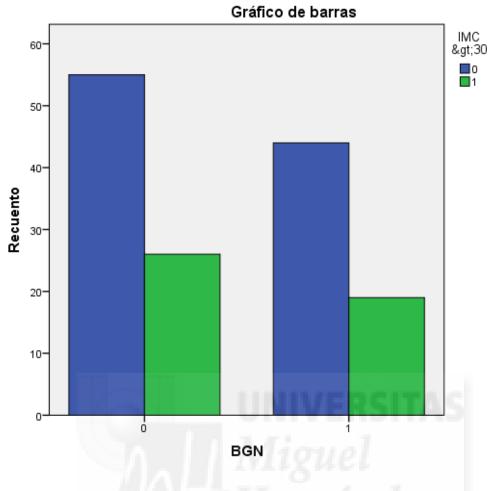


Tabla de contingencia

			IMC >30		Total
			0	1	
	0	Recuento	55	26	81
		Frecuencia esperada	55,7	25,3	81,0
		% dentro de BGN	67,9%	32,1%	100,0%
BGN		% dentro de IMC >30	55,6%	57,8%	56,2%
BGN		% del total	38,2%	18,1%	56,2%
	1	Recuento	44	19	63
		Frecuencia esperada	43,3	19,7	63,0
		% dentro de BGN	69,8%	30,2%	100,0%


	% dentro de IMC >30	44,4%	42,2%	43,8%
	% del total	30,6%	13,2%	43,8%
	Recuento	99	45	144
	Frecuencia esperada	99,0	45,0	144,0
Total	% dentro de BGN	68,8%	31,2%	100,0%
	% dentro de IMC >30	100,0%	100,0%	100,0%
	% del total	68,8%	31,2%	100,0%

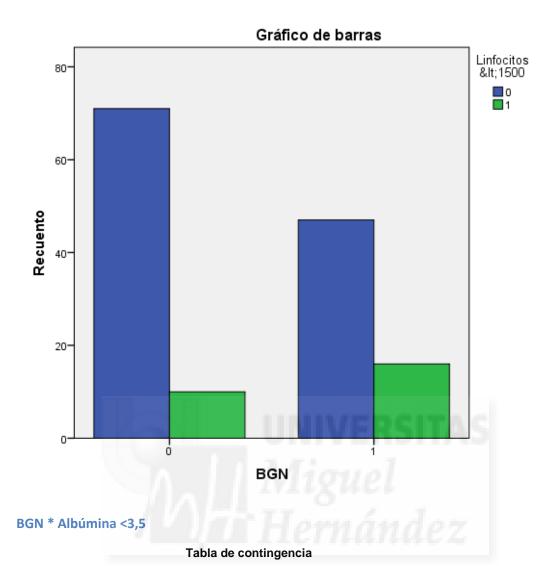
Pruebas de chi-cuadrado

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,062 ^a	1	,803	ITAS	
Corrección por continuidad ^b	,005	1	,946		
Razón de verosimilitudes	,062	1	,803		
Estadístico exacto de Fisher	Uan	·He	rnáno	,857	,474
Asociación lineal por lineal	,062	1	,804		
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 19,69.

b. Calculado sólo para una tabla de 2x2.

BGN * Linfocitos <1500

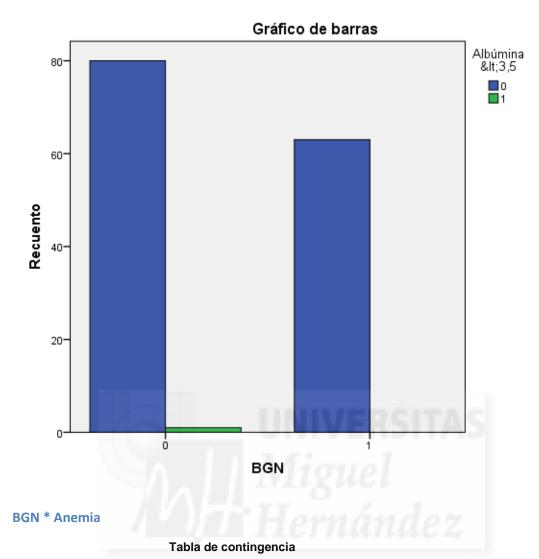

Tabla de contingencia

			Linfocitos <1500		Total
			0	1	
		Recuento	71	10	81
BGN	0	Frecuencia esperada	66,4	14,6	81,0
		% dentro de BGN	87,7%	12,3%	100,0%
		% dentro de Linfocitos <1500	60,2%	38,5%	56,2%
		% del total	49,3%	6,9%	56,2%
	1	Recuento	47	16	63
	ı	Frecuencia esperada	51,6	11,4	63,0

	% dentro de BGN	74,6%	25,4%	100,0%
	% dentro de Linfocitos <1500	39,8%	61,5%	43,8%
	% del total	32,6%	11,1%	43,8%
	Recuento	118	26	144
	Frecuencia esperada	118,0	26,0	144,0
Total	% dentro de BGN	81,9%	18,1%	100,0%
	% dentro de Linfocitos <1500	100,0%	100,0%	100,0%
	% del total	81,9%	18,1%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	4,080 ^a	1	,043	7	
Corrección por continuidad ^b	3,245	1	,072	<i>lez</i>	
Razón de verosimilitudes	4,057	1	,044		
Estadístico exacto de Fisher				,051	,036
Asociación lineal por lineal	4,051	1	,044		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 11,38.
- b. Calculado sólo para una tabla de 2x2.

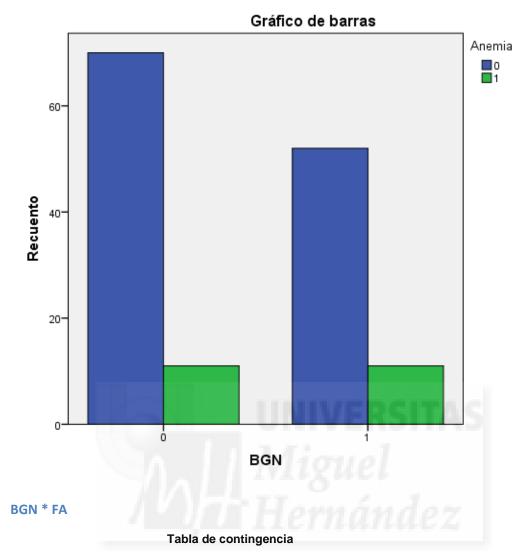


Albúmina <3,5 Total 0 1 Recuento 80 1 81 Frecuencia esperada 80,4 81,0 ,6 % dentro de BGN 98,8% 1,2% 100,0% 0 dentro de Albúmina BGN 55,9% 100,0% 56,2% <3,5 % del total 55,6% 0,7% 56,2% Recuento 0 63 63 Frecuencia esperada 62,6 63,0

	% dentro de BGN	100,0%	0,0%	100,0%
	% dentro de Albúmina <3,5	44,1%	0,0%	43,8%
	% del total	43,8%	0,0%	43,8%
	Recuento	143	1	144
	Frecuencia esperada	143,0	1,0	144,0
Total	% dentro de BGN	99,3%	0,7%	100,0%
	% dentro de Albúmina <3,5	100,0%	100,0%	100,0%
	% del total	99,3%	0,7%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,783 ^a	1	,376	7	
Corrección por continuidad ^b	,000	1	1,000	<i>lez</i>	
Razón de verosimilitudes	1,156	1	,282		
Estadístico exacto de Fisher				1,000	,562
Asociación lineal por lineal	,778	1	,378		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,44.
- b. Calculado sólo para una tabla de 2x2.

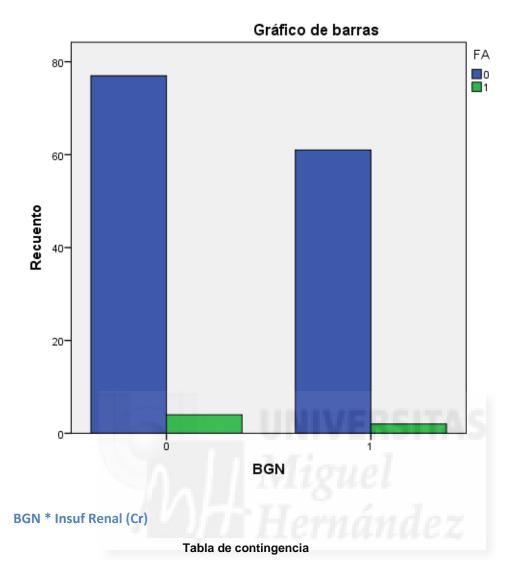

Anemia Total 0 1 Recuento 70 81 11 Frecuencia esperada 68,6 12,4 81,0 0 % dentro de BGN 86,4% 13,6% 100,0% % dentro de Anemia 57,4% 50,0% 56,2% BGN % del total 48,6% 7,6% 56,2% Recuento 52 11 63 Frecuencia esperada 53,4 9,6 63,0 % dentro de BGN 82,5% 17,5% 100,0%

	% dentro de Anemia	42,6%	50,0%	43,8%
	% del total	36,1%	7,6%	43,8%
	Recuento	122	22	144
	Frecuencia esperada	122,0	22,0	144,0
Total	% dentro de BGN	84,7%	15,3%	100,0%
	% dentro de Anemia	100,0%	100,0%	100,0%
	% del total	84,7%	15,3%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,412ª	1	,521	ITAS	
Corrección por continuidad ^b	,167	1	,683		
Razón de verosimilitudes	,410	AVA 1	,522		
Estadístico exacto de Fisher	Uui	He	rnáno	,642	,340
Asociación lineal por lineal	,409	1	,522		
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 9,63.

b. Calculado sólo para una tabla de 2x2.


FA Total 0 1 Recuento 77 4 81 Frecuencia esperada 77,6 3,4 81,0 0 % dentro de BGN 95,1% 4,9% 100,0% % dentro de FA 55,8% 66,7% 56,2% BGN % del total 53,5% 2,8% 56,2% Recuento 61 2 63 1 Frecuencia esperada 60,4 2,6 63,0 % dentro de BGN 96,8% 3,2% 100,0%

	% dentro de FA	44,2%	33,3%	43,8%
	% del total	42,4%	1,4%	43,8%
	Recuento	138	6	144
	Frecuencia esperada	138,0	6,0	144,0
Total	% dentro de BGN	95,8%	4,2%	100,0%
	% dentro de FA	100,0%	100,0%	100,0%
	% del total	95,8%	4,2%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,276ª	1	,599	ITAS	
Corrección por continuidad ^b	,011	1	,916		
Razón de verosimilitudes	,283	1	,595		
Estadístico exacto de Fisher	Uni	He	rnáno	,696	,466
Asociación lineal por lineal	,274	1	,601		
N de casos válidos	144				

a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 2,63.

b. Calculado sólo para una tabla de 2x2.

Insuf Renal (Cr) Total 0 1 Recuento 79 2 81 Frecuencia esperada 79,9 81,0 1,1 0 % dentro de BGN 97,5% 2,5% 100,0% % dentro de Insuf Renal (Cr) 55,6% 100,0% 56,2% BGN % del total 54,9% 1,4% 56,2% Recuento 63 0 63 Frecuencia esperada 62,1 ,9 63,0 % dentro de BGN 100,0% 0,0% 100,0%

	% dentro de Insuf Renal (Cr)	44,4%	0,0%	43,8%
	% del total	43,8%	0,0%	43,8%
	Recuento	142	2	144
	Frecuencia esperada	142,0	2,0	144,0
Total	% dentro de BGN	98,6%	1,4%	100,0%
	% dentro de Insuf Renal (Cr)	100,0%	100,0%	100,0%
	% del total	98,6%	1,4%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	1,577 ^a	1	,209	ITAS	
Corrección por continuidad ^b	,290	1	,590		
Razón de verosimilitudes	2,323	1	,127		
Estadístico exacto de Fisher	Uan	He	rnáne	,504	,315
Asociación lineal por lineal	1,567	1	,211		
N de casos válidos	144				

a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,88.

b. Calculado sólo para una tabla de 2x2.

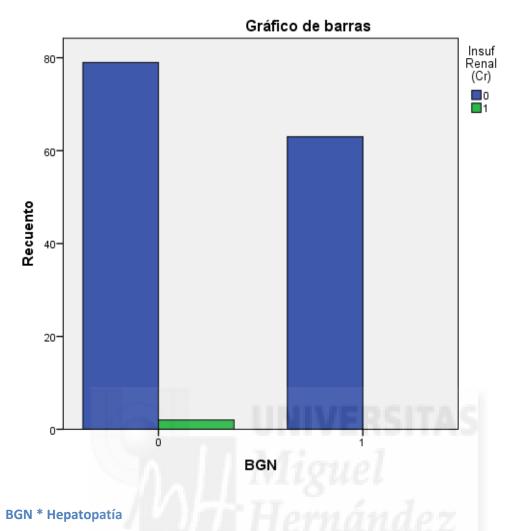


Tabla de contingencia

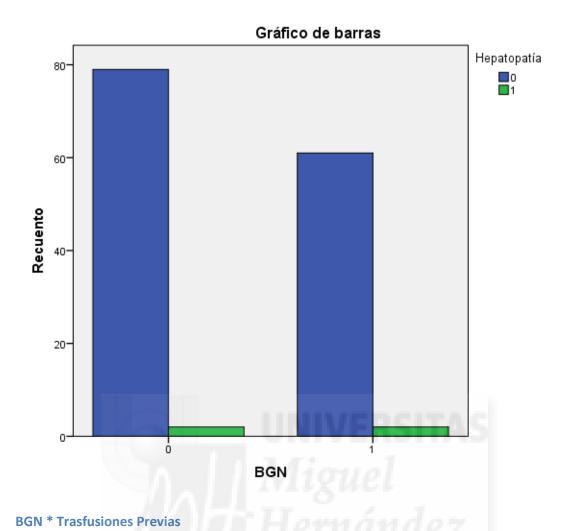
			Hepatopatía		Total
			0	1	
	-	Recuento	79	2	81
		Frecuencia esperada	78,8	2,3	81,0
	0	% dentro de BGN	97,5%	2,5%	100,0%
BGN		% dentro de Hepatopatía	56,4%	50,0%	56,2%
BGIN		% del total	54,9%	1,4%	56,2%
1	Recuento	61	2	63	
	Frecuencia esperada	61,3	1,8	63,0	
	% dentro de BGN	96,8%	3,2%	100,0%	

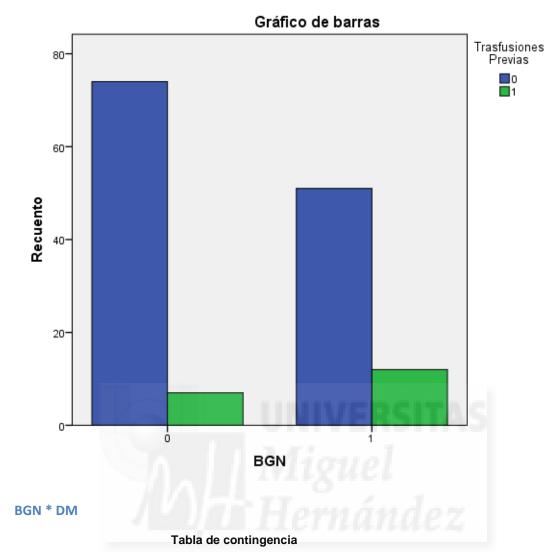
	% dentro de Hepatopatía	43,6%	50,0%	43,8%
	% del total	42,4%	1,4%	43,8%
	Recuento	140	4	144
	Frecuencia esperada	140,0	4,0	144,0
Total	% dentro de BGN	97,2%	2,8%	100,0%
	% dentro de Hepatopatía	100,0%	100,0%	100,0%
	% del total	97,2%	2,8%	100,0%

1/8	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,065 ^a	1	,798		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,065	Ha	,799	lez	
Estadístico exacto de Fisher				1,000	,590
Asociación lineal por lineal	,065	1	,799		
N de casos válidos	144				

a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 1,75.

b. Calculado sólo para una tabla de 2x2.



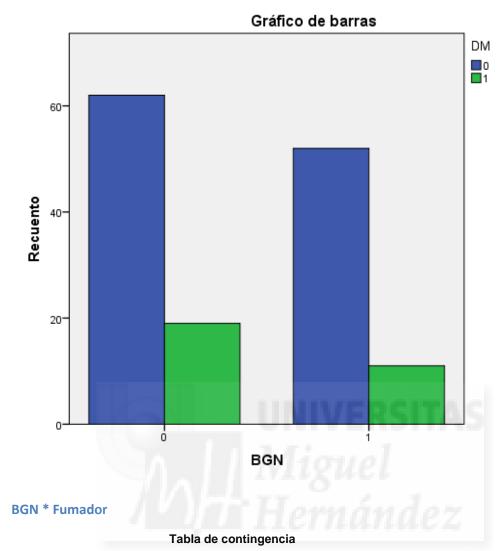

Tabla de contingencia

			Trasfusion	Total	
			0	1	
	-	Recuento	74	7	81
		Frecuencia esperada	70,3	10,7	81,0
	0	% dentro de BGN	91,4%	8,6%	100,0%
BGN		% dentro de Trasfusiones Previas	59,2%	36,8%	56,2%
		% del total	51,4%	4,9%	56,2%
	1	Recuento	51	12	63
	ı	Frecuencia esperada	54,7	8,3	63,0

	% dentro de BGN	81,0%	19,0%	100,0%
	% dentro de Trasfusiones Previas	40,8%	63,2%	43,8%
	% del total	35,4%	8,3%	43,8%
	Recuento	125	19	144
	Frecuencia esperada	125,0	19,0	144,0
Total	% dentro de BGN	86,8%	13,2%	100,0%
	% dentro de Trasfusiones Previas	100,0%	100,0%	100,0%
	% del total	86,8%	13,2%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	3,350 ^a	1	,067	1	
Corrección por continuidad ^b	2,503	1	,114	<i>lez</i>	
Razón de verosimilitudes	3,332	1	,068		
Estadístico exacto de Fisher				,084	,057
Asociación lineal por lineal	3,327	1	,068		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 8,31.
- b. Calculado sólo para una tabla de 2x2.

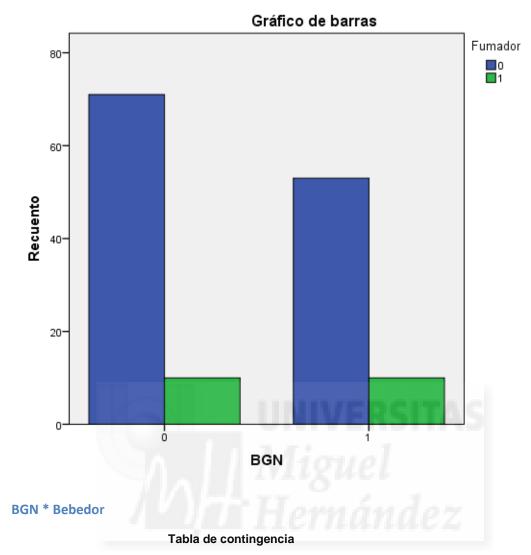

			D	DM	
			0	1	
		Recuento	62	19	81
		Frecuencia esperada	64,1	16,9	81,0
	0	% dentro de BGN	76,5%	23,5%	100,0%
BGN		% dentro de DM	54,4%	63,3%	56,2%
BGN		% del total	43,1%	13,2%	56,2%
		Recuento	52	11	63
	1	Frecuencia esperada	49,9	13,1	63,0
		% dentro de BGN	82,5%	17,5%	100,0%

	% dentro de DM	45,6%	36,7%	43,8%
	% del total	36,1%	7,6%	43,8%
	Recuento	114	30	144
	Frecuencia esperada	114,0	30,0	144,0
Total	% dentro de BGN	79,2%	20,8%	100,0%
	% dentro de DM	100,0%	100,0%	100,0%
	% del total	79,2%	20,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,773ª	1	,379	ITAS	
Corrección por continuidad ^b	,452	1	,501		
Razón de verosimilitudes	,782	1	,377		
Estadístico exacto de Fisher	Uan	·He	rnáno	,415	,252
Asociación lineal por lineal	,767	1	,381		
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 13,13.

b. Calculado sólo para una tabla de 2x2.

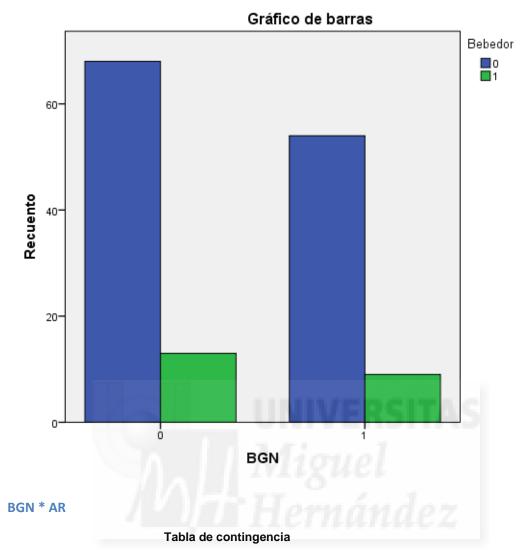

Fumador Total 0 1 Recuento 71 10 81 Frecuencia esperada 69,8 11,3 81,0 0 % dentro de BGN 87,7% 12,3% 100,0% % dentro de Fumador 57,3% 50,0% 56,2% BGN % del total 49,3% 6,9% 56,2% Recuento 53 10 63 Frecuencia esperada 54,3 8,8 63,0 100,0% % dentro de BGN 84,1% 15,9%

	% dentro de Fumador	42,7%	50,0%	43,8%
	% del total	36,8%	6,9%	43,8%
	Recuento	124	20	144
	Frecuencia esperada	124,0	20,0	144,0
Total	% dentro de BGN	86,1%	13,9%	100,0%
	% dentro de Fumador	100,0%	100,0%	100,0%
	% del total	86,1%	13,9%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,369 ^a	1	,544	ITAS	
Corrección por continuidad ^b	,133	1	,716		
Razón de verosimilitudes	,366	AVA 1	,545		
Estadístico exacto de Fisher	Uni	He	rnáno	,630	,356
Asociación lineal por lineal	,366	1	,545		
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 8,75.

b. Calculado sólo para una tabla de 2x2.


Bebedor Total 0 1 Recuento 68 13 81 Frecuencia esperada 68,6 12,4 81,0 0 % dentro de BGN 84,0% 16,0% 100,0% % dentro de Bebedor 55,7% 59,1% 56,2% BGN % del total 47,2% 9,0% 56,2% Recuento 54 9 63 Frecuencia esperada 53,4 9,6 63,0 % dentro de BGN 85,7% 14,3% 100,0%

	% dentro de Bebedor	44,3%	40,9%	43,8%
	% del total	37,5%	6,2%	43,8%
	Recuento	122	22	144
	Frecuencia esperada	122,0	22,0	144,0
Total	% dentro de BGN	84,7%	15,3%	100,0%
	% dentro de Bebedor	100,0%	100,0%	100,0%
	% del total	84,7%	15,3%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,085 ^a	1	,770	ITAS	
Corrección por continuidad ^b	,003	1	,953		
Razón de verosimilitudes	,086	AVA 1	,770		
Estadístico exacto de Fisher	Uni	He	rnáno	,819	,480
Asociación lineal por lineal	,085	1	,771		
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 9,63.

b. Calculado sólo para una tabla de 2x2.

			AR		Total
			0	1	
		Recuento	80	1	81
		Frecuencia esperada	79,9	1,1	81,0
	0	% dentro de BGN	98,8%	1,2%	100,0%
BGN		% dentro de AR	56,3%	50,0%	56,2%
DGN		% del total	55,6%	0,7%	56,2%
		Recuento	62	1	63
	1	Frecuencia esperada	62,1	,9	63,0
		% dentro de BGN	98,4%	1,6%	100,0%

	% dentro de AR	43,7%	50,0%	43,8%
	% del total	43,1%	0,7%	43,8%
	Recuento	142	2	144
	Frecuencia esperada	142,0	2,0	144,0
Total	% dentro de BGN	98,6%	1,4%	100,0%
	% dentro de AR	100,0%	100,0%	100,0%
	% del total	98,6%	1,4%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,032 ^a	1	,858	ITAS	
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,032	AVA 1	,858		
Estadístico exacto de Fisher	Uan	·He	rnáno	1,000	,685
Asociación lineal por lineal	,032	1	,858		
N de casos válidos	144				

a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,88.

b. Calculado sólo para una tabla de 2x2.

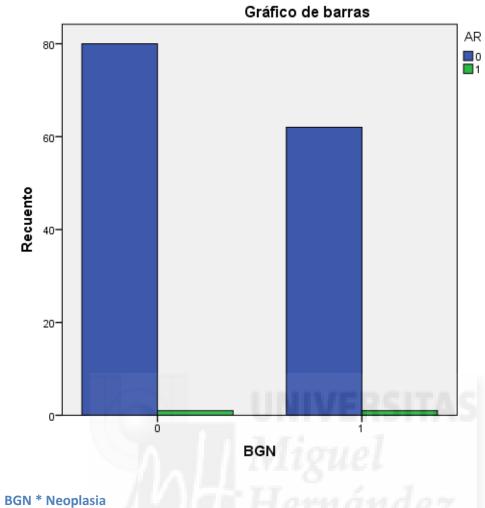
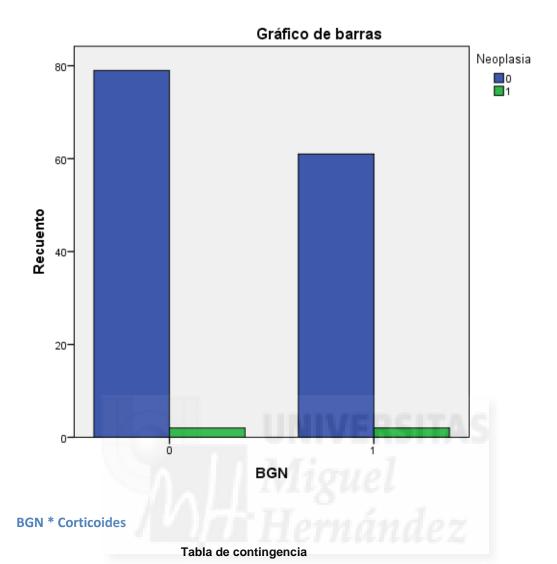


Tabla de contingencia


			Neop	Total	
			0	1	
		Recuento	79	2	81
		Frecuencia esperada	78,8	2,3	81,0
	0	% dentro de BGN	97,5%	2,5%	100,0%
BGN		% dentro de Neoplasia	56,4%	50,0%	56,2%
BGN		% del total	54,9%	1,4%	56,2%
		Recuento	61	2	63
1	1	Frecuencia esperada	61,3	1,8	63,0
		% dentro de BGN		3,2%	100,0%

	% dentro de Neoplasia	43,6%	50,0%	43,8%
	% del total	42,4%	1,4%	43,8%
	Recuento	140	4	144
	Frecuencia esperada	140,0	4,0	144,0
Total	% dentro de BGN	97,2%	2,8%	100,0%
	% dentro de Neoplasia	100,0%	100,0%	100,0%
	% del total	97,2%	2,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,065 ^a	1	,798	ITAS	
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,065	AVA 1	,799		
Estadístico exacto de Fisher	Uan	He	rnáno	1,000	,590
Asociación lineal por lineal	,065	1	,799		
N de casos válidos	144				

a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 1,75.

b. Calculado sólo para una tabla de 2x2.

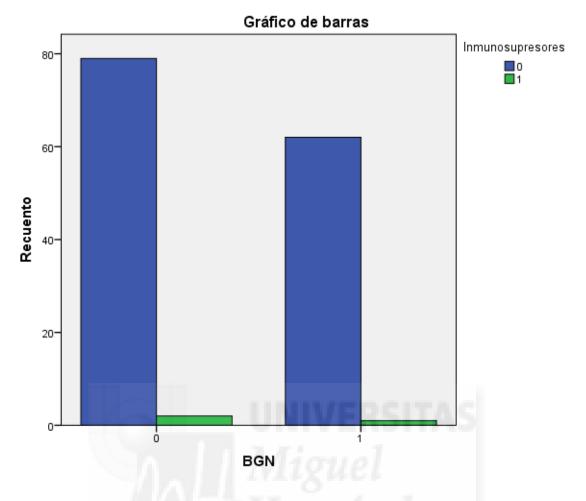
Corticoides Total 0 1 Recuento 79 2 81 Frecuencia esperada 79,3 1,7 81,0 0 % dentro de BGN 97,5% 2,5% 100,0% % dentro de Corticoides 56,0% 66,7% 56,2% BGN % del total 54,9% 1,4% 56,2% Recuento 62 1 63 Frecuencia esperada 61,7 1,3 63,0 % dentro de BGN 98,4% 1,6% 100,0%

	% dentro de Corticoides	44,0%	33,3%	43,8%
	% del total	43,1%	0,7%	43,8%
	Recuento	141	3	144
	Frecuencia esperada	141,0	3,0	144,0
Total	% dentro de BGN	97,9%	2,1%	100,0%
	% dentro de Corticoides	100,0%	100,0%	100,0%
	% del total	97,9%	2,1%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,135 ^a	1	,713	ITAS	
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,139	1	,710		
Estadístico exacto de Fisher	Uui	·He	rnáno	1,000	,594
Asociación lineal por lineal	,134	1	,714		
N de casos válidos	144				

a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 1,31.

b. Calculado sólo para una tabla de 2x2.


Tabla de contingencia

		Inmunosupresores		Total
		0	1	
	Recuento	79	2	81
	Frecuencia esperada	79,3	1,7	81,0
0	% dentro de BGN	97,5%	2,5%	100,0%
BGN	% dentro de Inmunosupresores	56,0%	66,7%	56,2%
	% del total	54,9%	1,4%	56,2%
1	Recuento	62	1	63
	Frecuencia esperada	61,7	1,3	63,0

	% dentro de BGN	% dentro de BGN		1,6%	100,0%
	% dentro Inmunosupresores	de	44,0%	33,3%	43,8%
	% del total		43,1%	0,7%	43,8%
	Recuento		141	3	144
	Frecuencia esperada		141,0	3,0	144,0
Total	% dentro de BGN		97,9%	2,1%	100,0%
	% dentro Inmunosupresores	de	100,0%	100,0%	100,0%
	% del total		97,9%	2,1%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,135 ^a	1	,713	7	
Corrección por continuidad ^b	,000	1	1,000	<i>lez</i>	
Razón de verosimilitudes	,139	1	,710		
Estadístico exacto de Fisher				1,000	,594
Asociación lineal por lineal	,134	1	,714		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 1,31.
- b. Calculado sólo para una tabla de 2x2.

BGN * Otra infección simultánea

Tabla de contingencia

		Otra infección simultánea		Total	
			0	1	
	-	Recuento	79	2	81
		Frecuencia esperada	78,8	2,3	81,0
	0	% dentro de BGN	97,5%	2,5%	100,0%
BGN	% dentro de Otra infección simultánea	56,4%	50,0%	56,2%	
	% del total	54,9%	1,4%	56,2%	
	Recuento	61	2	63	
	1	Frecuencia esperada	61,3	1,8	63,0

	% dentro de BGN	96,8%	3,2%	100,0%
	% dentro de Otra infección simultánea	43,6%	50,0%	43,8%
	% del total	42,4%	1,4%	43,8%
	Recuento	140	4	144
	Frecuencia esperada	140,0	4,0	144,0
Total	% dentro de BGN	97,2%	2,8%	100,0%
	% dentro de Otra infección simultánea	100,0%	100,0%	100,0%
	% del total	97,2%	2,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,065 ^a	1	,798	7	
Corrección por continuidad ^b	,000	1	1,000	<i>lez</i>	
Razón de verosimilitudes	,065	1	,799		
Estadístico exacto de Fisher				1,000	,590
Asociación lineal por lineal	,065	1	,799		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 1,75.
- b. Calculado sólo para una tabla de 2x2.

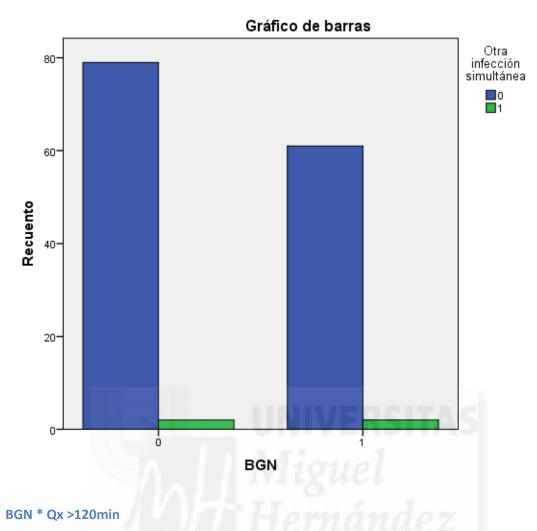


Tabla de contingencia

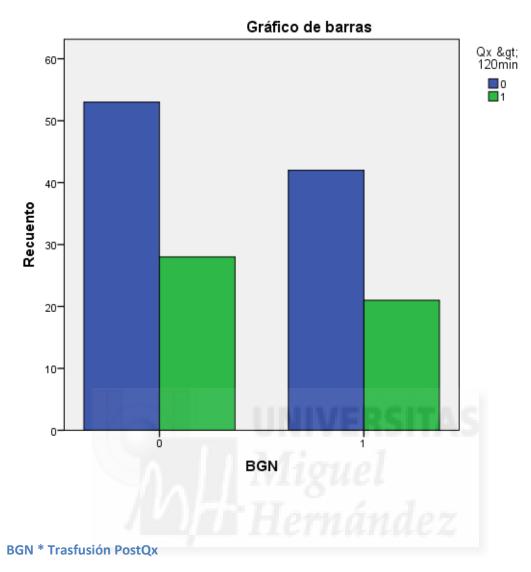
			Qx >	Total	
			0	1	
	_	Recuento	53	28	81
		Frecuencia esperada	53,4	27,6	81,0
	0	% dentro de BGN	65,4%	34,6%	100,0%
BCN.		% dentro de Qx >120min	55,8%	57,1%	56,2%
BGN 1		% del total	36,8%	19,4%	56,2%
		Recuento	42	21	63
	1	Frecuencia esperada	41,6	21,4	63,0
		% dentro de BGN	66,7%	33,3%	100,0%

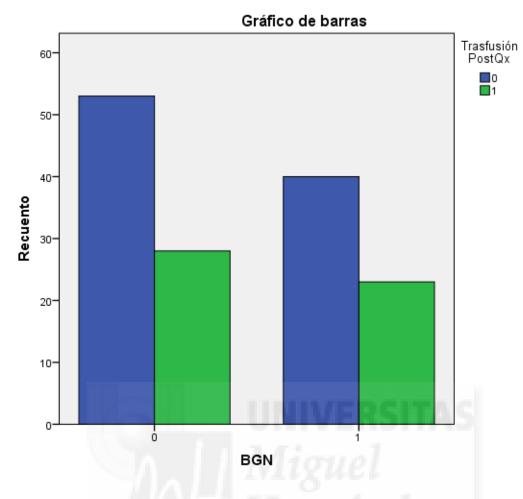
	% dentro de Qx >120min	44,2%	42,9%	43,8%
	% del total	29,2%	14,6%	43,8%
	Recuento	95	49	144
	Frecuencia esperada	95,0	49,0	144,0
Total	% dentro de BGN	66,0%	34,0%	100,0%
	% dentro de Qx >120min	100,0%	100,0%	100,0%
	% del total	66,0%	34,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,024 ^a	1	,877	ITAS	
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,024	1	,877		
Estadístico exacto de Fisher	Um	He	rnáno	1,000	,510
Asociación lineal por lineal	,024	1	,877		
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 21,44.

b. Calculado sólo para una tabla de 2x2.




Tabla de contingencia

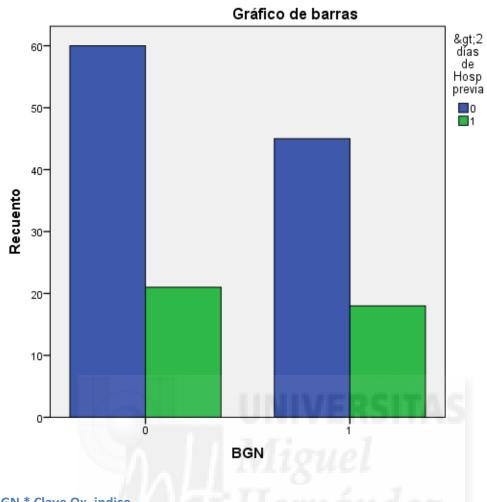
			Trasfusión PostQx		Total
			0	1	
	-	Recuento	53	28	81
0	Frecuencia esperada	52,3	28,7	81,0	
	0	% dentro de BGN	65,4%	34,6%	100,0%
BGN		% dentro de Trasfusión PostQx	57,0%	54,9%	56,2%
		% del total	36,8%	19,4%	56,2%
	1	Recuento	40	23	63

	Frecuencia esperada	40,7	22,3	63,0
	% dentro de BGN	63,5%	36,5%	100,0%
	% dentro de Trasfusión PostQx	43,0%	45,1%	43,8%
	% del total	27,8%	16,0%	43,8%
	Recuento	93	51	144
	Frecuencia esperada	93,0	51,0	144,0
Total	% dentro de BGN	64,6%	35,4%	100,0%
	% dentro de Trasfusión PostQx	100,0%	100,0%	100,0%
	% del total	64,6%	35,4%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,058ª	1	,809	167	
Corrección por continuidad ^b	,004	1	,947		
Razón de verosimilitudes	,058	1	,809		
Estadístico exacto de Fisher				,861	,473
Asociación lineal por lineal	,058	1	,810		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 22,31.
- b. Calculado sólo para una tabla de 2x2.

BGN * >2 días de Hosp previa


Tabla de contingencia

			>2 días de Hosp previa		
			0	1	
		Recuento	60	21	81
	0 BGN	Frecuencia esperada	59,1	21,9	81,0
		% dentro de BGN	74,1%	25,9%	100,0%
BGN		% dentro de >2 días de Hosp previa	57,1%	53,8%	56,2%
		% del total	41,7%	14,6%	56,2%
	1	Recuento	45	18	63
	1	Frecuencia esperada	45,9	17,1	63,0

	% dentro de BGN	71,4%	28,6%	100,0%
	% dentro de >2 días de Hosp previa	42,9%	46,2%	43,8%
	% del total	31,2%	12,5%	43,8%
	Recuento	105	39	144
	Frecuencia esperada	105,0	39,0	144,0
Total	% dentro de BGN	72,9%	27,1%	100,0%
	% dentro de >2 días de Hosp previa	100,0%	100,0%	100,0%
	% del total	72,9%	27,1%	100,0%

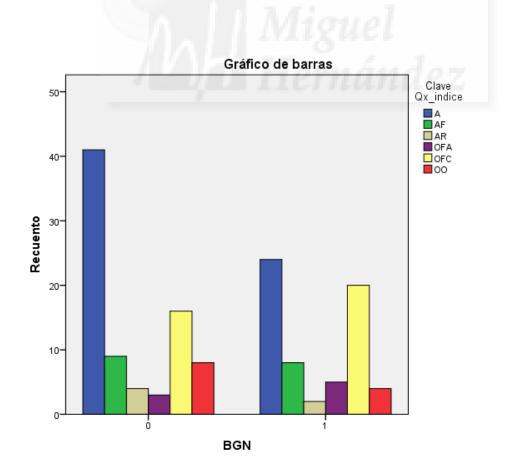
	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,126 ^a	1	,723	7	
Corrección por continuidad ^b	,027	1	,869	<i>lez</i>	
Razón de verosimilitudes	,125	1	,723		
Estadístico exacto de Fisher				,850	,433
Asociación lineal por lineal	,125	1	,724		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 17,06.
- b. Calculado sólo para una tabla de 2x2.

BGN * Clave Qx_indice

Tabla de contingencia

			Clave Qx_indice				
			А	AF	AR	OFA	OFC
	=	Recuento	41	9	4	3	16
	0	Frecuencia esperada	36,6	9,6	3,4	4,5	20,3
		% dentro de BGN	50,6%	11,1%	4,9%	3,7%	19,8%
BGN		% dentro de Clave Qx_indice	63,1%	52,9%	66,7%	37,5%	44,4%
		% del total	28,5%	6,2%	2,8%	2,1%	11,1%
	1	Recuento	24	8	2	5	20
	ı	Frecuencia esperada	28,4	7,4	2,6	3,5	15,8

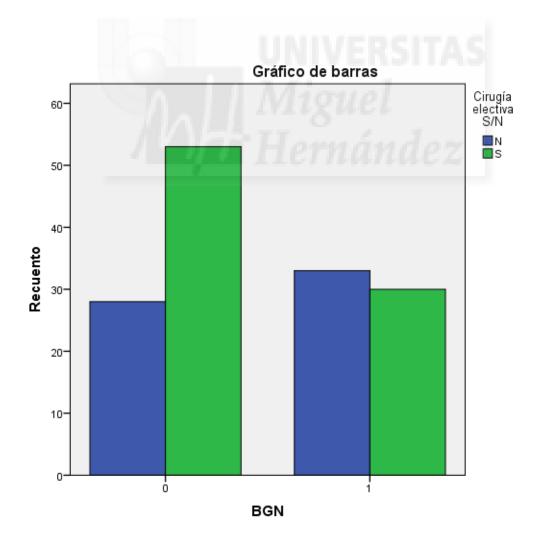

	% dentro de BGN	38,1%	12,7%	3,2%	7,9%	31,7%
	% dentro de Clave Qx_indice	36,9%	47,1%	33,3%	62,5%	55,6%
	% del total	16,7%	5,6%	1,4%	3,5%	13,9%
	Recuento	65	17	6	8	36
	Frecuencia esperada	65,0	17,0	6,0	8,0	36,0
Total	% dentro de BGN	45,1%	11,8%	4,2%	5,6%	25,0%
	% dentro de Clave Qx_indice	100,0%	100,0%	100,0%	100,0%	100,0%
	% del total	45,1%	11,8%	4,2%	5,6%	25,0%

		UNIVERS	Clave Qx_indice	Total
		A Miguel	00	
		Recuento	107 8	81
		Frecuencia esperada	6,8	81,0
	0	% dentro de BGN	9,9%	100,0%
		% dentro de Clave Qx_indice	66,7%	56,2%
DOM		% del total	5,6%	56,2%
BGN		Recuento	4	63
		Frecuencia esperada	5,3	63,0
	1	% dentro de BGN	6,3%	100,0%
		% dentro de Clave Qx_indice	33,3%	43,8%
		% del total	2,8%	43,8%
Tatal		Recuento	12	144
Total		Frecuencia esperada	12,0	144,0

% dentro de BGN	8,3%	100,0%
% dentro de Clave Qx_indice	100,0%	100,0%
% del total	8,3%	100,0%

	Valor	gl	Sig. asintótica (bilateral)
Chi-cuadrado de Pearson	5,282 ^a	5	,382
Razón de verosimilitudes	5,291	5	,381
N de casos válidos	144		

a. 4 casillas (33,3%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 2,63.

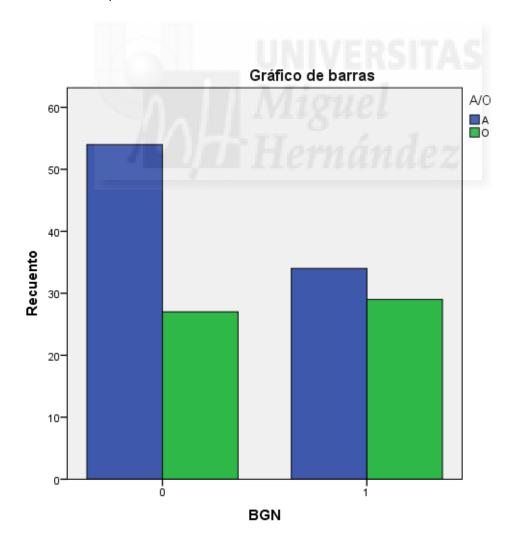


BGN * Cirugía electiva S/N

			Cirugía el	ectiva S/N	Total
			N	S	
		Recuento	28	53	81
		Frecuencia esperada	34,3	46,7	81,0
	0	% dentro de BGN	34,6%	65,4%	100,0%
		% dentro de Cirugía electiva S/N	45,9%	63,9%	56,2%
BGN		% del total	19,4%	36,8%	56,2%
DGIN		Recuento	33	30	63
		Frecuencia esperada	26,7	36,3	63,0
	1	% dentro de BGN	52,4%	47,6%	100,0%
		% dentro de Cirugía electiva S/N	54,1%	36,1%	43,8%
		% del total	22,9%	20,8%	43,8%
		Recuento	61	83	144
		Frecuencia esperada	61,0	83,0	144,0
Total		% dentro de BGN	42,4%	57,6%	100,0%
		% dentro de Cirugía electiva S/N	100,0%	100,0%	100,0%
		% del total	42,4%	57,6%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	4,605 ^a	1	,032		
Corrección por continuidad ^b	3,905	1	,048		
Razón de verosimilitudes	4,612	1	,032		
Estadístico exacto de Fisher				,041	,024
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 26,69.
- b. Calculado sólo para una tabla de 2x2.

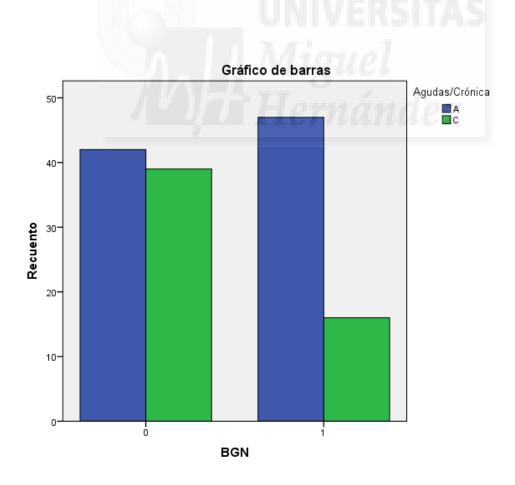


BGN * A/O

			A	′O	Total	
			Α	0		
		Recuento	54	27	81	
		Frecuencia esperada	49,5	31,5	81,0	
	0	% dentro de BGN	66,7%	33,3%	100,0%	
		% dentro de A/O	61,4%	48,2%	56,2%	
BGN		% del total	37,5%	18,8%	56,2%	
BGIN	BGN	Recuento	34	29	63	
		Frecuencia esperada	38,5	24,5	63,0	
	1	1	% dentro de BGN	54,0%	46,0%	100,0%
		% dentro de A/O	38,6%	51,8%	43,8%	
		% del total	23,6%	20,1%	43,8%	
		Recuento	88	56	144	
		Frecuencia esperada	88,0	56,0	144,0	
Total		% dentro de BGN	61,1%	38,9%	100,0%	
		% dentro de A/O	100,0%	100,0%	100,0%	
		% del total	61,1%	38,9%	100,0%	

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	2,404 ^a	1	,121		
Corrección por continuidad ^b	1,900	1	,168		
Razón de verosimilitudes	2,401	1	,121		
Estadístico exacto de Fisher				,126	,084
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 24,50.
- b. Calculado sólo para una tabla de 2x2.


BGN * Agudas/Crónica

			Agudas	/Crónica	Total
			А	С	
		Recuento	42	39	81
		Frecuencia esperada	50,1	30,9	81,0
	0	% dentro de BGN	51,9%	48,1%	100,0%
		% dentro de Agudas/Crónica	47,2%	70,9%	56,2%
DOM:		% del total	29,2%	27,1%	56,2%
BGN		Recuento	47	16	63
		Frecuencia esperada	38,9	24,1	63,0
	1	% dentro de BGN	74,6%	25,4%	100,0%
		% dentro de Agudas/Crónica	52,8%	29,1%	43,8%
		% del total	32,6%	11,1%	43,8%
		Recuento	89	55	144
		Frecuencia esperada	89,0	55,0	144,0
Total		% dentro de BGN	61,8%	38,2%	100,0%
		% dentro de Agudas/Crónica	100,0%	100,0%	100,0%
		% del total	61,8%	38,2%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	7,770 ^a	1	,005		
Corrección por continuidad ^b	6,837	1	,009		
Razón de verosimilitudes	7,945	1	,005		
Estadístico exacto de Fisher				,006	,004
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 24,06.

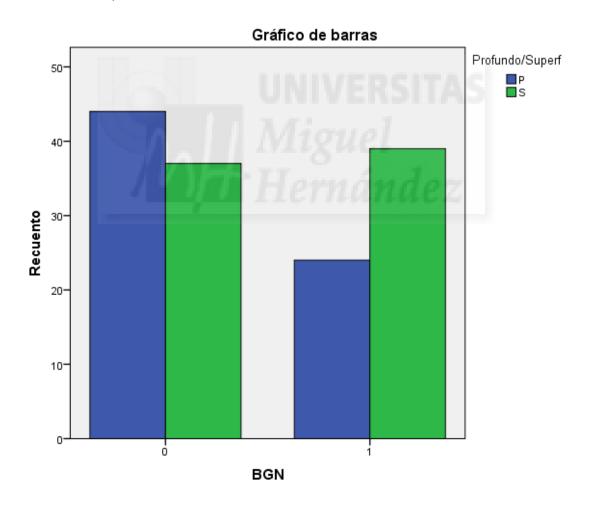

BGN * Profundo/Superf

Tabla de contingencia

				Profund	o/Superf	Total
				Р	S	
		Recuento		44	37	81
		Frecuencia esperada		38,3	42,8	81,0
	0	% dentro de BGN		54,3%	45,7%	100,0%
		% dentro Profundo/Superf	de	64,7%	48,7%	56,2%
BGN		% del total		30,6%	25,7%	56,2%
DGIN		Recuento		24	39	63
		Frecuencia esperada		29,8	33,3	63,0
	1	% dentro de BGN	1	38,1%	61,9%	100,0%
		% dentro Profundo/Superf	de	35,3%	51,3%	43,8%
		% del total	_	16,7%	27,1%	43,8%
		Recuento		68	76	144
		Frecuencia esperada		68,0	76,0	144,0
Total		% dentro de BGN		47,2%	52,8%	100,0%
		% dentro Profundo/Superf	de	100,0%	100,0%	100,0%
		% del total		47,2%	52,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	3,743 ^a	1	,053		
Corrección por continuidad ^b	3,121	1	,077		
Razón de verosimilitudes	3,767	1	,052		
Estadístico exacto de Fisher				,065	,038
N de casos válidos	144				

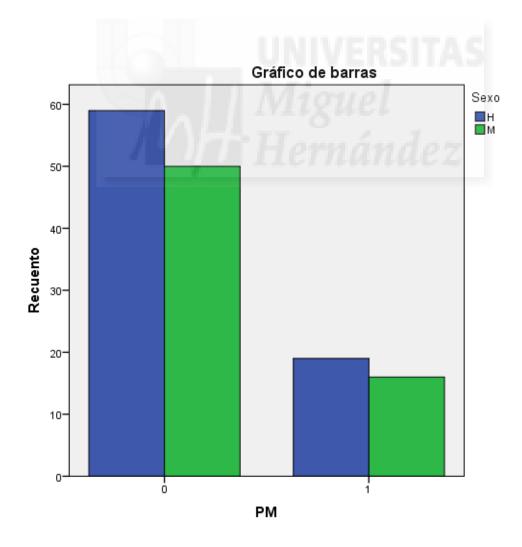
- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 29,75.
- b. Calculado sólo para una tabla de 2x2.

Tablas de contingencia PM

Resumen del procesamiento de los casos

		Casos						
	Vá	lidos	Per	didos	Т	otal		
	N	Porcentaje	N	Porcentaje	N	Porcentaje		
PM * Sexo	144	100,0%	0	0,0%	144	100,0%		
PM * >64años	144	100,0%	0	0,0%	144	100,0%		
PM * IMC >30	144	100,0%	0	0,0%	144	100,0%		
PM * Linfocitos &It1500	144	100,0%	0	0,0%	144	100,0%		
PM * Albúmina <3,5	144	100,0%	0	0,0%	144	100,0%		
PM * Anemia	144	100,0%	0	0,0%	144	100,0%		
PM * FA	144	100,0%	0	0,0%	144	100,0%		
PM * Insuf Renal (Cr)	144	100,0%	0	0,0%	144	100,0%		
PM * Hepatopatía	144	100,0%	0	0,0%	144	100,0%		
PM * Hemofilia	144	100,0%	0	0,0%	144	100,0%		
PM * Trasfusiones Previas	144	100,0%	0	0,0%	144	100,0%		
PM * DM	144	100,0%	0	0,0%	144	100,0%		
PM * Fumador	144	100,0%	0	0,0%	144	100,0%		
PM * Bebedor	144	100,0%	0	0,0%	144	100,0%		
PM * AR	144	100,0%	0	0,0%	144	100,0%		
PM * Neoplasia	144	100,0%	0	0,0%	144	100,0%		
PM * Corticoides	144	100,0%	0	0,0%	144	100,0%		
PM * Inmunosupresores	144	100,0%	0	0,0%	144	100,0%		
PM * Otra infección simultánea	144	100,0%	0	0,0%	144	100,0%		
PM * Qx >120min	144	100,0%	0	0,0%	144	100,0%		
PM * Trasfusión PostQx	144	100,0%	0	0,0%	144	100,0%		

PM * >2 días de Hosp previa	144	100,0%	0	0,0%	144	100,0%
PM * Descripcion Cirugía Indice	144	100,0%	0	0,0%	144	100,0%
PM * Clave Qx_indice	144	100,0%	0	0,0%	144	100,0%
PM * Cirugía electiva S/N	144	100,0%	0	0,0%	144	100,0%
PM * A/O	144	100,0%	0	0,0%	144	100,0%
PM * Agudas/Crónica	144	100,0%	0	0,0%	144	100,0%
PM * Trampuz	144	100,0%	0	0,0%	144	100,0%
PM * Profundo/Superf	144	100,0%	0	0,0%	144	100,0%



PM * Sexo

			Se	XO	Total
			Н	М	
		Recuento	59	50	109
		Frecuencia esperada	59,0	50,0	109,0
	0	% dentro de PM	54,1%	45,9%	100,0%
		% dentro de Sexo	75,6%	75,8%	75,7%
PM		% del total	41,0%	34,7%	75,7%
I IVI		Recuento	19	16	35
		Frecuencia esperada	19,0	16,0	35,0
	1	% dentro de PM	54,3%	45,7%	100,0%
		% dentro de Sexo	24,4%	24,2%	24,3%
		% del total	13,2%	11,1%	24,3%
		Recuento	78	66	144
		Frecuencia esperada	78,0	66,0	144,0
Total		% dentro de PM	54,2%	45,8%	100,0%
		% dentro de Sexo	100,0%	100,0%	100,0%
		% del total	54,2%	45,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,000 ^a	1	,987		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,000	1	,987		
Estadístico exacto de Fisher				1,000	,572
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 16,04.
- b. Calculado sólo para una tabla de 2x2.

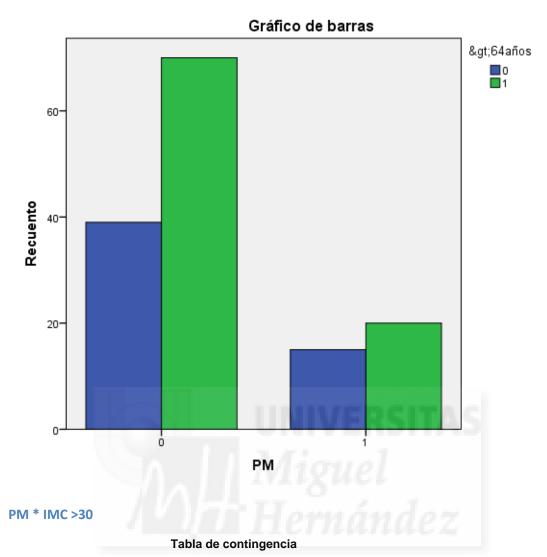
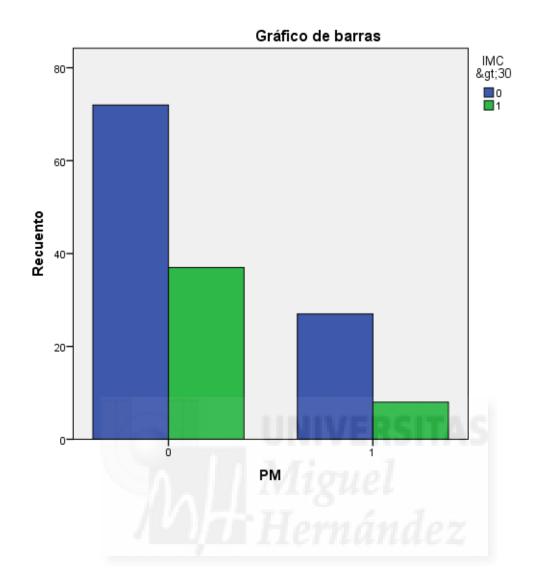

PM * >64años

Tabla de contingencia

			>64	4años	Total
			0	1	
		Recuento	39	70	109
		Frecuencia esperada	40,9	68,1	109,0
	0	% dentro de PM	35,8%	64,2%	100,0%
		% dentro de >64años	72,2%	77,8%	75,7%
PM		% del total	27,1%	48,6%	75,7%
PIVI		Recuento	15	20	35
		Frecuencia esperada	13,1	21,9	35,0
	1	% dentro de PM	42,9%	57,1%	100,0%
		% dentro de >64años	27,8%	22,2%	24,3%
		% del total	10,4%	13,9%	24,3%
		Recuento	54	90	144
		Frecuencia esperada	54,0	90,0	144,0
Total		% dentro de PM	37,5%	62,5%	100,0%
		% dentro de >64años	100,0%	100,0%	100,0%
		% del total	37,5%	62,5%	100,0%

Medidas simétricas

		Valor	Error típ. asint.ª	T aproximada ^b
Intervalo por intervalo	R de Pearson	-,063	,085	-,749
Ordinal por ordinal	Correlación de Spearman	-,063	,085	-,749
N de casos válidos		144		

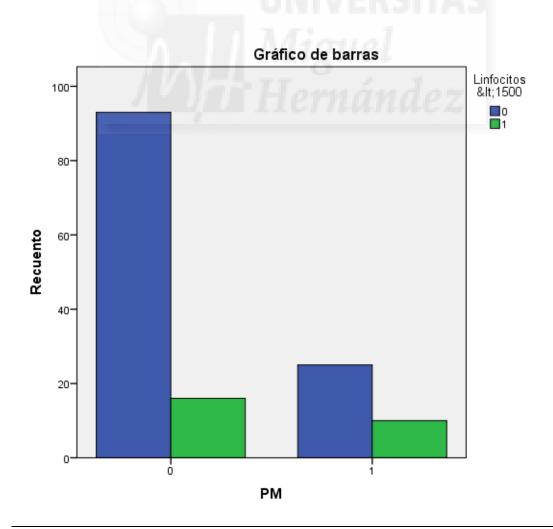

IMC >30 Total 0 1 Recuento 72 37 109 Frecuencia esperada 74,9 34,1 109,0 0 % dentro de PM 66,1% 33,9% 100,0% % dentro de IMC >30 72,7% 82,2% 75,7% PΜ % del total 50,0% 25,7% 75,7% Recuento 27 8 35 Frecuencia esperada 24,1 10,9 35,0 % dentro de PM 77,1% 22,9% 100,0%

	% dentro de IMC >30	27,3%	17,8%	24,3%
	% del total	18,8%	5,6%	24,3%
	Recuento	99	45	144
	Frecuencia esperada	99,0	45,0	144,0
Total	% dentro de PM	68,8%	31,2%	100,0%
	% dentro de IMC >30	100,0%	100,0%	100,0%
	% del total	68,8%	31,2%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	1,516 ^a	1	,218	ITAS	
Corrección por continuidad ^b	1,044	1	,307		
Razón de verosimilitudes	1,579	1	,209		
Estadístico exacto de Fisher	Uan	He	rnáne	,295	,153
Asociación lineal por lineal	1,505	1	,220		
N de casos válidos	144				

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 10,94.

b. Calculado sólo para una tabla de 2x2.

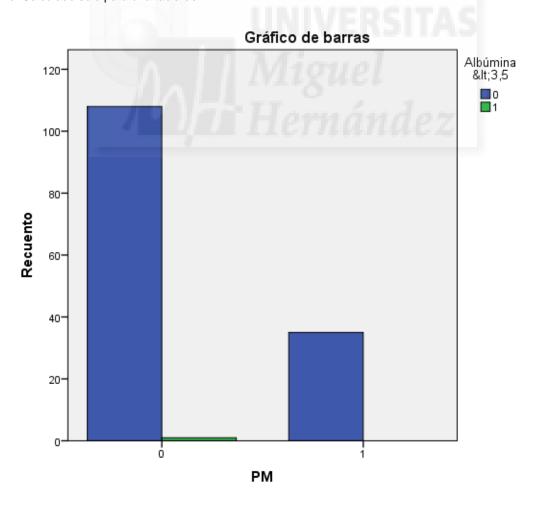


PM * Linfocitos <1500

			Linfocitos	s <1500	Total
			0	1	
		Recuento	93	16	109
		Frecuencia esperada	89,3	19,7	109,0
	0	% dentro de PM	85,3%	14,7%	100,0%
		% dentro de Linfocitos <1500	78,8%	61,5%	75,7%
PM		% del total	64,6%	11,1%	75,7%
FIVI		Recuento	25	10	35
		Frecuencia esperada	28,7	6,3	35,0
	1	% dentro de PM	71,4%	28,6%	100,0%
		% dentro de Linfocitos <1500	21,2%	38,5%	24,3%
		% del total	17,4%	6,9%	24,3%
		Recuento	118	26	144
		Frecuencia esperada	118,0	26,0	144,0
Total		% dentro de PM	81,9%	18,1%	100,0%
		% dentro de Linfocitos <1500	100,0%	100,0%	100,0%
		% del total	81,9%	18,1%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	3,456 ^a	1	,063		
Corrección por continuidad ^b	2,581	1	,108		
Razón de verosimilitudes	3,197	1	,074		
Estadístico exacto de Fisher				,078	,058
Asociación lineal por lineal	3,432	1	,064		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 6,32.
- b. Calculado sólo para una tabla de 2x2.

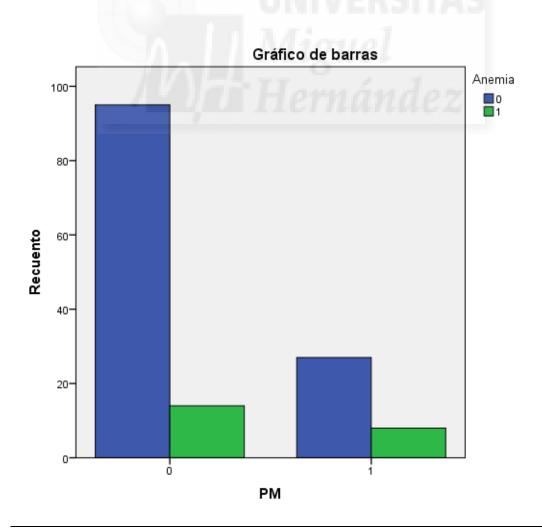


PM * Albúmina <3,5

			Albúmin	a <3,5	Total
			0	1	
		Recuento	108	1	109
		Frecuencia esperada	108,2	,8	109,0
	0	% dentro de PM	99,1%	0,9%	100,0%
		% dentro de Albúmina <3,5	75,5%	100,0%	75,7%
PM		% del total	75,0%	0,7%	75,7%
PIVI		Recuento	35	0	35
		Frecuencia esperada	34,8	,2	35,0
	1	% dentro de PM	100,0%	0,0%	100,0%
		% dentro de Albúmina <3,5	24,5%	0,0%	24,3%
		% del total	24,3%	0,0%	24,3%
		Recuento	143	1	144
		Frecuencia esperada	143,0	1,0	144,0
Total		% dentro de PM	99,3%	0,7%	100,0%
		% dentro de Albúmina <3,5	100,0%	100,0%	100,0%
		% del total	99,3%	0,7%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,323ª	1	,570		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,559	1	,455		
Estadístico exacto de Fisher				1,000	,757
Asociación lineal por lineal	,321	1	,571		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,24.
- b. Calculado sólo para una tabla de 2x2.

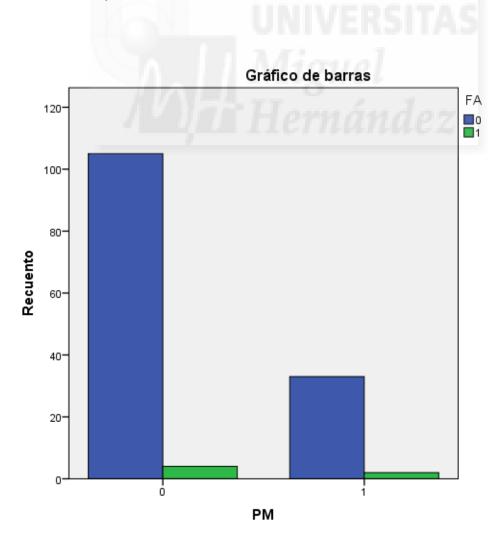


PM * Anemia

			Ane	mia	Total
			0	1	
		Recuento	95	14	109
		Frecuencia esperada	92,3	16,7	109,0
	0	% dentro de PM	87,2%	12,8%	100,0%
		% dentro de Anemia	77,9%	63,6%	75,7%
PM		% del total	66,0%	9,7%	75,7%
FIVI		Recuento	27	8	35
		Frecuencia esperada	29,7	5,3	35,0
	1	% dentro de PM	77,1%	22,9%	100,0%
		% dentro de Anemia	22,1%	36,4%	24,3%
		% del total	18,8%	5,6%	24,3%
		Recuento	122	22	144
		Frecuencia esperada	122,0	22,0	144,0
Total		% dentro de PM	84,7%	15,3%	100,0%
		% dentro de Anemia	100,0%	100,0%	100,0%
		% del total	84,7%	15,3%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	2,052 ^a	1	,152		
Corrección por continuidad ^b	1,351	1	,245		
Razón de verosimilitudes	1,907	1	,167		
Estadístico exacto de Fisher				,179	,124
Asociación lineal por lineal	2,038	1	,153		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 5,35.
- b. Calculado sólo para una tabla de 2x2.

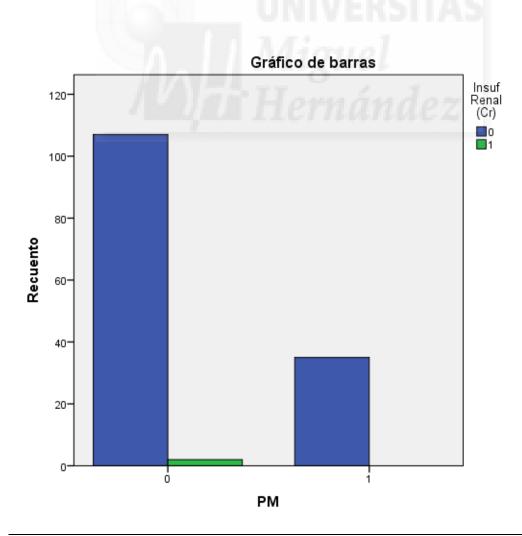


PM * FA

			F	A	Total
			0	1	
		Recuento	105	4	109
		Frecuencia esperada	104,5	4,5	109,0
	0	% dentro de PM	96,3%	3,7%	100,0%
		% dentro de FA	76,1%	66,7%	75,7%
PM		% del total	72,9%	2,8%	75,7%
FIVI		Recuento	33	2	35
		Frecuencia esperada	33,5	1,5	35,0
	1	% dentro de PM	94,3%	5,7%	100,0%
		% dentro de FA	23,9%	33,3%	24,3%
		% del total	22,9%	1,4%	24,3%
		Recuento	138	6	144
		Frecuencia esperada	138,0	6,0	144,0
Total		% dentro de PM	95,8%	4,2%	100,0%
		% dentro de FA	100,0%	100,0%	100,0%
		% del total	95,8%	4,2%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,277 ^a	1	,598		
Corrección por continuidad ^b	,002	1	,968		
Razón de verosimilitudes	,259	1	,611		
Estadístico exacto de Fisher				,633	,451
Asociación lineal por lineal	,275	1	,600		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 1,46.
- b. Calculado sólo para una tabla de 2x2.

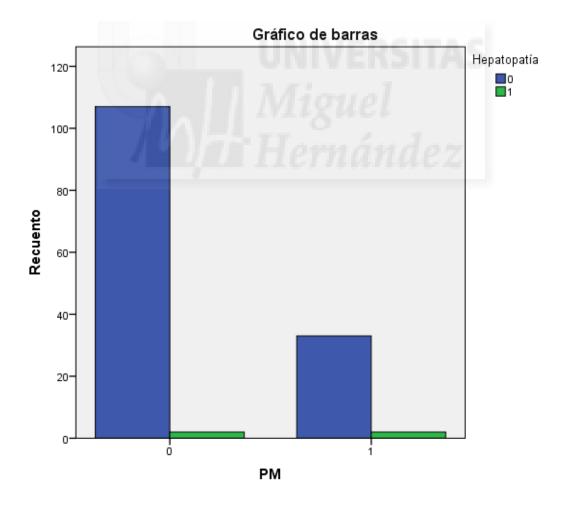


PM * Insuf Renal (Cr)

			Insuf Re	enal (Cr)	Total
			0	1	
		Recuento	107	2	109
		Frecuencia esperada	107,5	1,5	109,0
	0	% dentro de PM	98,2%	1,8%	100,0%
		% dentro de Insuf Renal (Cr)	75,4%	100,0%	75,7%
DM		% del total	74,3%	1,4%	75,7%
РМ		Recuento	35	0	35
		Frecuencia esperada	34,5	,5	35,0
	1	% dentro de PM	100,0%	0,0%	100,0%
		% dentro de Insuf Renal (Cr)	24,6%	0,0%	24,3%
		% del total	24,3%	0,0%	24,3%
		Recuento	142	2	144
		Frecuencia esperada	142,0	2,0	144,0
Total		% dentro de PM	98,6%	1,4%	100,0%
		% dentro de Insuf Renal (Cr)	100,0%	100,0%	100,0%
		% del total	98,6%	1,4%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,651 ^a	1	,420		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	1,123	1	,289		
Estadístico exacto de Fisher				1,000	,572
Asociación lineal por lineal	,647	1	,421		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,49.
- b. Calculado sólo para una tabla de 2x2.

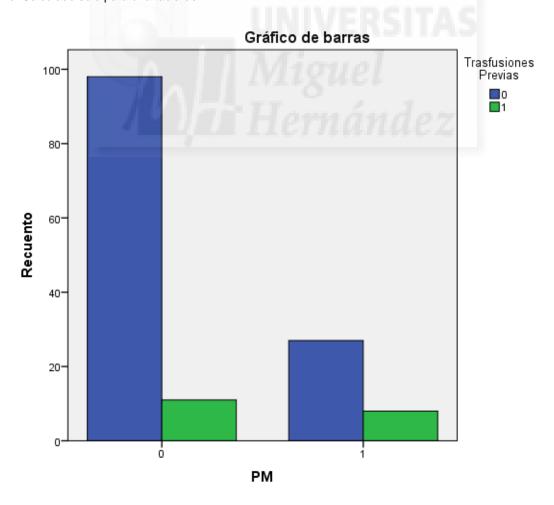


PM * Hepatopatía

			Hepat	opatía	Total
			0	1	
		Recuento	107	2	109
		Frecuencia esperada	106,0	3,0	109,0
	0	% dentro de PM	98,2%	1,8%	100,0%
		% dentro de Hepatopatía	76,4%	50,0%	75,7%
D.4		% del total	74,3%	1,4%	75,7%
РМ		Recuento	33	2	35
		Frecuencia esperada	34,0	1,0	35,0
	1	% dentro de PM	94,3%	5,7%	100,0%
		% dentro de Hepatopatía	23,6%	50,0%	24,3%
		% del total	22,9%	1,4%	24,3%
		Recuento	140	4	144
		Frecuencia esperada	140,0	4,0	144,0
Total		% dentro de PM	97,2%	2,8%	100,0%
		% dentro de Hepatopatía	100,0%	100,0%	100,0%
		% del total	97,2%	2,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	1,476 ^a	1	,224		
Corrección por continuidad ^b	,389	1	,533		
Razón de verosimilitudes	1,268	1	,260		
Estadístico exacto de Fisher				,248	,248
Asociación lineal por lineal	1,466	1	,226		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,97.
- b. Calculado sólo para una tabla de 2x2.

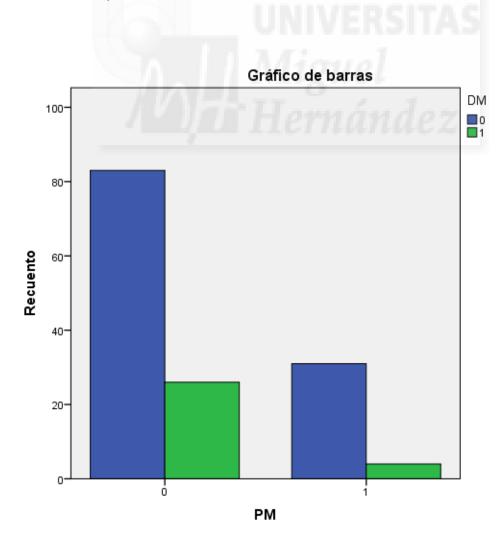


PM * Trasfusiones Previas

			Trasfusion	es Previas	Total
			0	1	
		Recuento	98	11	109
		Frecuencia esperada	94,6	14,4	109,0
	0	% dentro de PM	89,9%	10,1%	100,0%
		% dentro de Trasfusiones Previas	78,4%	57,9%	75,7%
PM		% del total	68,1%	7,6%	75,7%
FIVI		Recuento	27	8	35
		Frecuencia esperada	30,4	4,6	35,0
	1	% dentro de PM	77,1%	22,9%	100,0%
		% dentro de Trasfusiones Previas	21,6%	42,1%	24,3%
		% del total	18,8%	5,6%	24,3%
		Recuento	125	19	144
		Frecuencia esperada	125,0	19,0	144,0
Total		% dentro de PM	86,8%	13,2%	100,0%
		% dentro de Trasfusiones Previas	100,0%	100,0%	100,0%
		% del total	86,8%	13,2%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	3,769 ^a	1	,052		
Corrección por continuidad ^b	2,737	1	,098		
Razón de verosimilitudes	3,404	1	,065		
Estadístico exacto de Fisher				,081	,054
Asociación lineal por lineal	3,743	1	,053		
N de casos válidos	144				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 4,62.
- b. Calculado sólo para una tabla de 2x2.

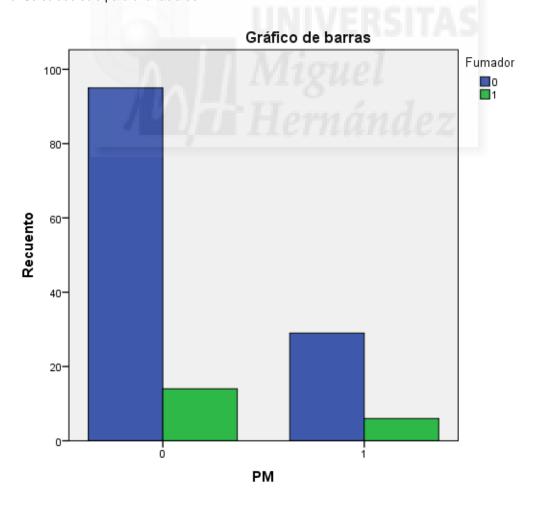


PM * DM

			D	M	Total
			0	1	
		Recuento	83	26	109
		Frecuencia esperada	86,3	22,7	109,0
	0	% dentro de PM	76,1%	23,9%	100,0%
		% dentro de DM	72,8%	86,7%	75,7%
PM		% del total	57,6%	18,1%	75,7%
I IVI		Recuento	31	4	35
		Frecuencia esperada	27,7	7,3	35,0
	1	% dentro de PM	88,6%	11,4%	100,0%
		% dentro de DM	27,2%	13,3%	24,3%
		% del total	21,5%	2,8%	24,3%
		Recuento	114	30	144
		Frecuencia esperada	114,0	30,0	144,0
Total	otal % dentro de PM	% dentro de PM	79,2%	20,8%	100,0%
		% dentro de DM	100,0%	100,0%	100,0%
		% del total	79,2%	20,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	2,480 ^a	1	,115		
Corrección por continuidad ^b	1,784	1	,182		
Razón de verosimilitudes	2,739	1	,098		
Estadístico exacto de Fisher				,152	,087
Asociación lineal por lineal	2,462	1	,117		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 7,29.
- b. Calculado sólo para una tabla de 2x2.

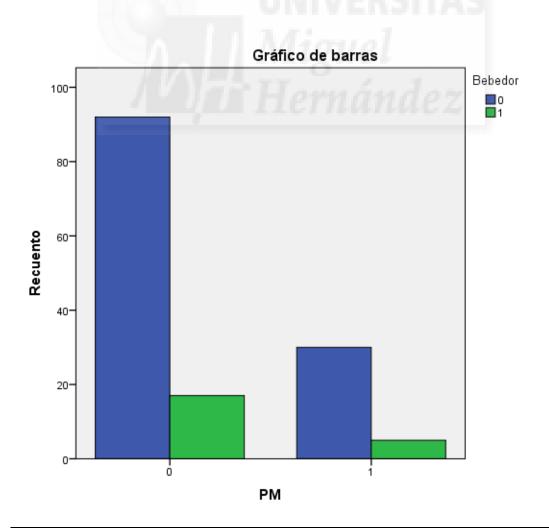


PM * Fumador

			Fumador		Total
			0	1	
PM	0	Recuento	95	14	109
		Frecuencia esperada	93,9	15,1	109,0
		% dentro de PM	87,2%	12,8%	100,0%
		% dentro de Fumador	76,6%	70,0%	75,7%
		% del total	66,0%	9,7%	75,7%
		Recuento	29	6	35
	1	Frecuencia esperada	30,1	4,9	35,0
		% dentro de PM	82,9%	17,1%	100,0%
		% dentro de Fumador	23,4%	30,0%	24,3%
		% del total	20,1%	4,2%	24,3%
Total		Recuento	124	20	144
		Frecuencia esperada	124,0	20,0	144,0
		% dentro de PM	86,1%	13,9%	100,0%
		% dentro de Fumador	100,0%	100,0%	100,0%
		% del total	86,1%	13,9%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,409ª	1	,522		
Corrección por continuidad ^b	,129	1	,720		
Razón de verosimilitudes	,393	1	,531		
Estadístico exacto de Fisher				,576	,349
Asociación lineal por lineal	,407	1	,524		
N de casos válidos	144				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 4,86.
- b. Calculado sólo para una tabla de 2x2.

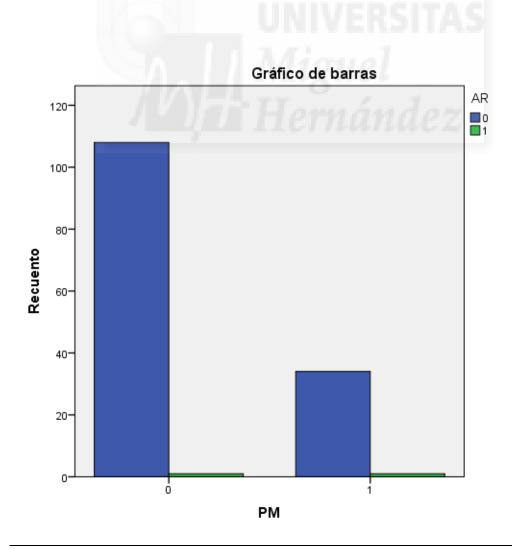


PM * Bebedor

			Beb	edor	Total
			0	1	
		Recuento	92	17	109
		Frecuencia esperada	92,3	16,7	109,0
	0	% dentro de PM	84,4%	15,6%	100,0%
		% dentro de Bebedor	75,4%	77,3%	75,7%
PM		% del total	63,9%	11,8%	75,7%
PIVI		Recuento	30	5	35
		Frecuencia esperada	29,7	5,3	35,0
	1	% dentro de PM	85,7%	14,3%	100,0%
		% dentro de Bebedor	24,6%	22,7%	24,3%
		% del total	20,8%	3,5%	24,3%
		Recuento	122	22	144
		Frecuencia esperada	122,0	22,0	144,0
Total		% dentro de PM	84,7%	15,3%	100,0%
		% dentro de Bebedor	100,0%	100,0%	100,0%
		% del total	84,7%	15,3%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,035 ^a	1	,851		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,036	1	,850		
Estadístico exacto de Fisher				1,000	,546
Asociación lineal por lineal	,035	1	,852		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 5,35.
- b. Calculado sólo para una tabla de 2x2.

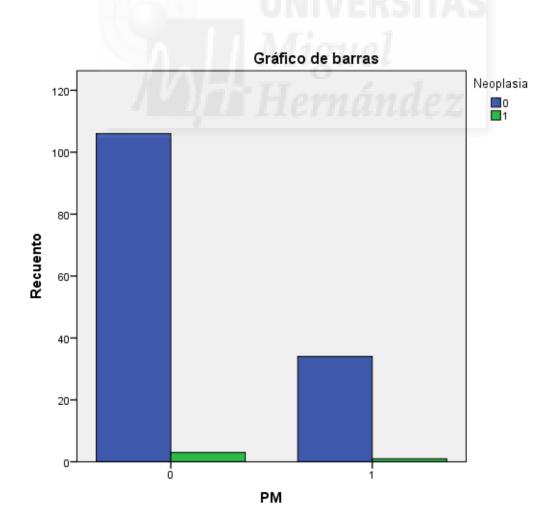


PM * AR

			А	R	Total
			0	1	
		Recuento	108	1	109
		Frecuencia esperada	107,5	1,5	109,0
	0	% dentro de PM	99,1%	0,9%	100,0%
		% dentro de AR	76,1%	50,0%	75,7%
PM		% del total	75,0%	0,7%	75,7%
PIVI		Recuento	34	1	35
		Frecuencia esperada	34,5	,5	35,0
	1	% dentro de PM	97,1%	2,9%	100,0%
		% dentro de AR	23,9%	50,0%	24,3%
		% del total	23,6%	0,7%	24,3%
		Recuento	142	2	144
		Frecuencia esperada	142,0	2,0	144,0
Total		% dentro de PM	98,6%	1,4%	100,0%
		% dentro de AR	100,0%	100,0%	100,0%
		% del total	98,6%	1,4%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,728ª	1	,394		
Corrección por continuidad ^b	,001	1	,982		
Razón de verosimilitudes	,623	1	,430		
Estadístico exacto de Fisher				,428	,428
Asociación lineal por lineal	,723	1	,395		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,49.
- b. Calculado sólo para una tabla de 2x2.

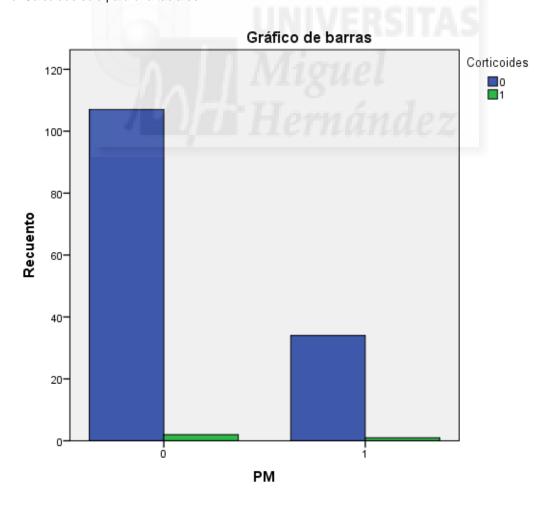


PM * Neoplasia

			Neop	lasia	Total
			0	1	
		Recuento	106	3	109
		Frecuencia esperada	106,0	3,0	109,0
	0	% dentro de PM	97,2%	2,8%	100,0%
		% dentro de Neoplasia	75,7%	75,0%	75,7%
PM		% del total	73,6%	2,1%	75,7%
PIVI		Recuento	34	1	35
		Frecuencia esperada	34,0	1,0	35,0
	1	% dentro de PM	97,1%	2,9%	100,0%
		% dentro de Neoplasia	24,3%	25,0%	24,3%
		% del total	23,6%	0,7%	24,3%
		Recuento	140	4	144
		Frecuencia esperada	140,0	4,0	144,0
Total		% dentro de PM	97,2%	2,8%	100,0%
		% dentro de Neoplasia	100,0%	100,0%	100,0%
		% del total	97,2%	2,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,001 ^a	1	,974		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,001	1	,974		
Estadístico exacto de Fisher				1,000	,676
Asociación lineal por lineal	,001	1	,974		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,97.
- b. Calculado sólo para una tabla de 2x2.

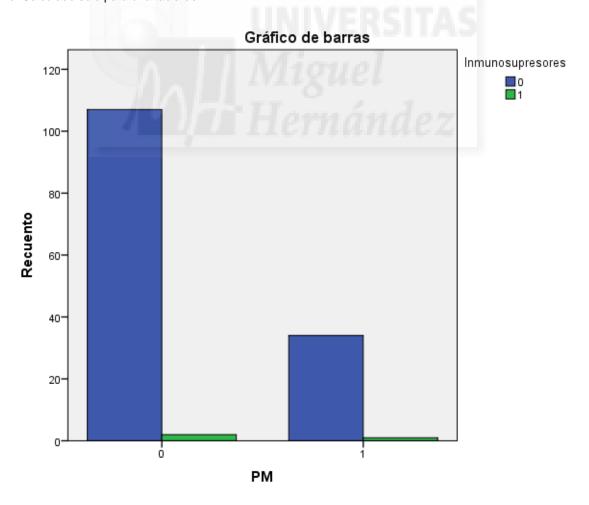


PM * Corticoides

			Cortic	coides	Total
			0	1	
		Recuento	107	2	109
		Frecuencia esperada	106,7	2,3	109,0
	0	% dentro de PM	98,2%	1,8%	100,0%
		% dentro de Corticoides	75,9%	66,7%	75,7%
PM		% del total	74,3%	1,4%	75,7%
PIVI		Recuento	34	1	35
		Frecuencia esperada	34,3	,7	35,0
	1	% dentro de PM	97,1%	2,9%	100,0%
		% dentro de Corticoides	24,1%	33,3%	24,3%
		% del total	23,6%	0,7%	24,3%
		Recuento	141	3	144
		Frecuencia esperada	141,0	3,0	144,0
Total		% dentro de PM	97,9%	2,1%	100,0%
		% dentro de Corticoides	100,0%	100,0%	100,0%
		% del total	97,9%	2,1%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,136ª	1	,713		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,127	1	,722		
Estadístico exacto de Fisher				,569	,569
Asociación lineal por lineal	,135	1	,714		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,73.
- b. Calculado sólo para una tabla de 2x2.

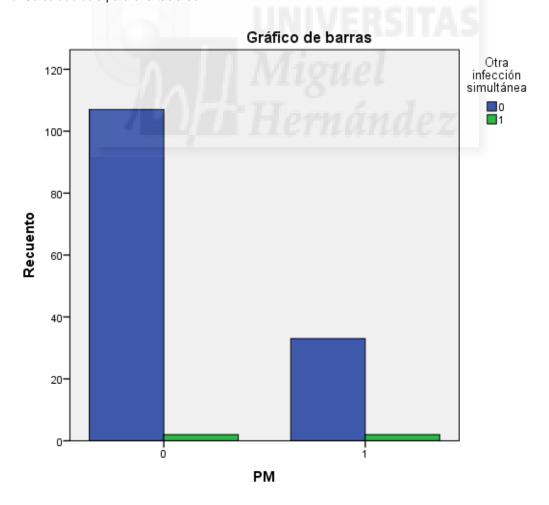


PM * Inmunosupresores

				Inmunosu	upresores	Total
				0	1	
		Recuento		107	2	109
		Frecuencia esperada		106,7	2,3	109,0
	0	% dentro de PM		98,2%	1,8%	100,0%
		% dentro Inmunosupresores	de	75,9%	66,7%	75,7%
PM		% del total		74,3%	1,4%	75,7%
FIVI	1	Recuento		34	1	35
		Frecuencia esperada	ī	34,3	,7	35,0
		% dentro de PM	1	97,1%	2,9%	100,0%
		% dentro Inmunosupresores	de	24,1%	33,3%	24,3%
		% del total	I	23,6%	0,7%	24,3%
		Recuento		141	3	144
		Frecuencia esperada		141,0	3,0	144,0
Total		% dentro de PM		97,9%	2,1%	100,0%
		% dentro Inmunosupresores	de	100,0%	100,0%	100,0%
		% del total		97,9%	2,1%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,136ª	1	,713		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,127	1	,722		
Estadístico exacto de Fisher				,569	,569
Asociación lineal por lineal	,135	1	,714		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,73.
- b. Calculado sólo para una tabla de 2x2.

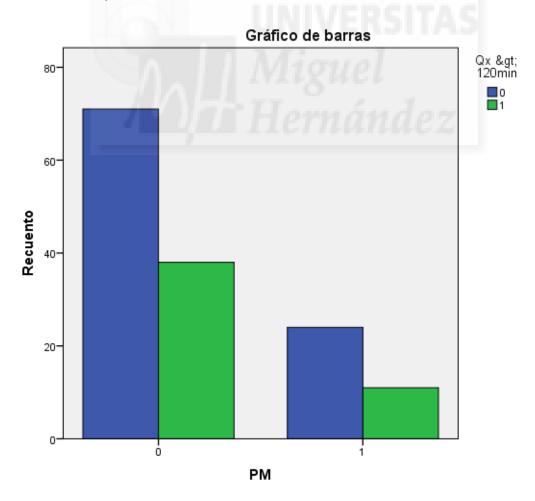


PM * Otra infección simultánea

			Otra infecció	n simultánea	Total
			0	1	
		Recuento	107	2	109
		Frecuencia esperada	106,0	3,0	109,0
	0	% dentro de PM	98,2%	1,8%	100,0%
		% dentro de Otra infección simultánea	76,4%	50,0%	75,7%
PM		% del total	74,3%	1,4%	75,7%
PIVI		Recuento	33	2	35
		Frecuencia esperada	34,0	1,0	35,0
	1	% dentro de PM	94,3%	5,7%	100,0%
		% dentro de Otra infección simultánea	23,6%	50,0%	24,3%
		% del total	22,9%	1,4%	24,3%
		Recuento	140	4	144
		Frecuencia esperada	140,0	4,0	144,0
Total		% dentro de PM	97,2%	2,8%	100,0%
		% dentro de Otra infección simultánea	100,0%	100,0%	100,0%
		% del total	97,2%	2,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	1,476 ^a	1	,224		
Corrección por continuidad ^b	,389	1	,533		
Razón de verosimilitudes	1,268	1	,260		
Estadístico exacto de Fisher				,248	,248
Asociación lineal por lineal	1,466	1	,226		
N de casos válidos	144				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,97.
- b. Calculado sólo para una tabla de 2x2.

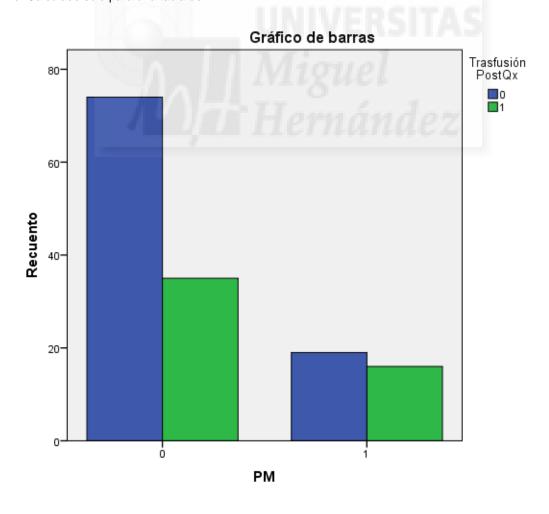


PM * Qx >120min

			Qx >	120min	Total
			0	1	
		Recuento	71	38	109
		Frecuencia esperada	71,9	37,1	109,0
	0	% dentro de PM	65,1%	34,9%	100,0%
		% dentro de Qx >120min	74,7%	77,6%	75,7%
PM		% del total	49,3%	26,4%	75,7%
FIVI		Recuento	24	11	35
		Frecuencia esperada	23,1	11,9	35,0
	1	% dentro de PM	68,6%	31,4%	100,0%
		% dentro de Qx >120min	25,3%	22,4%	24,3%
		% del total	16,7%	7,6%	24,3%
		Recuento	95	49	144
		Frecuencia esperada	95,0	49,0	144,0
Total		% dentro de PM	66,0%	34,0%	100,0%
		% dentro de Qx >120min	100,0%	100,0%	100,0%
		% del total	66,0%	34,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,139ª	1	,709		
Corrección por continuidad ^b	,028	1	,867		
Razón de verosimilitudes	,140	1	,708		
Estadístico exacto de Fisher				,838,	,438
Asociación lineal por lineal	,138	1	,710		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 11,91.
- b. Calculado sólo para una tabla de 2x2.

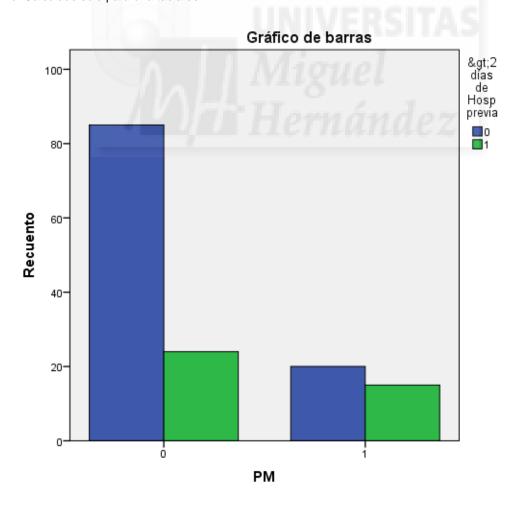


PM * Trasfusión PostQx

			Trasfusió	n PostQx	Total
			0	1	
		Recuento	74	35	109
		Frecuencia esperada	70,4	38,6	109,0
	0	% dentro de PM	67,9%	32,1%	100,0%
		% dentro de Trasfusión PostQx	79,6%	68,6%	75,7%
PM		% del total	51,4%	24,3%	75,7%
FIVI		Recuento	19	16	35
	1	Frecuencia esperada	22,6	12,4	35,0
		% dentro de PM	54,3%	45,7%	100,0%
		% dentro de Trasfusión PostQx	20,4%	31,4%	24,3%
		% del total	13,2%	11,1%	24,3%
		Recuento	93	51	144
		Frecuencia esperada	93,0	51,0	144,0
Total		% dentro de PM	64,6%	35,4%	100,0%
		% dentro de Trasfusión PostQx	100,0%	100,0%	100,0%
		% del total	64,6%	35,4%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	2,144 ^a	1	,143		
Corrección por continuidad ^b	1,590	1	,207		
Razón de verosimilitudes	2,096	1	,148		
Estadístico exacto de Fisher				,159	,104
Asociación lineal por lineal	2,129	1	,145		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 12,40.
- b. Calculado sólo para una tabla de 2x2.



PM * >2 días de Hosp previa

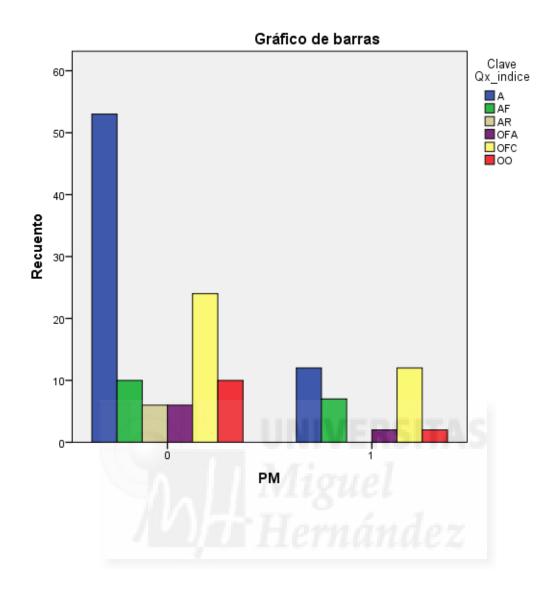
			>2 días de	Hosp previa	Total
			0	1	
		Recuento	85	24	109
		Frecuencia esperada	79,5	29,5	109,0
	0	% dentro de PM	78,0%	22,0%	100,0%
		% dentro de >2 días de Hosp previa	81,0%	61,5%	75,7%
PM		% del total	59,0%	16,7%	75,7%
FIVI		Recuento	20	15	35
		Frecuencia esperada	25,5	9,5	35,0
	1	% dentro de PM	57,1%	42,9%	100,0%
		% dentro de >2 días de Hosp previa	19,0%	38,5%	24,3%
		% del total	13,9%	10,4%	24,3%
		Recuento	105	39	144
		Frecuencia esperada	105,0	39,0	144,0
Total		% dentro de PM	72,9%	27,1%	100,0%
		% dentro de >2 días de Hosp previa	100,0%	100,0%	100,0%
		% del total	72,9%	27,1%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	5,826 ^a	1	,016		
Corrección por continuidad ^b	4,818	1	,028		
Razón de verosimilitudes	5,497	1	,019		
Estadístico exacto de Fisher				,027	,016
Asociación lineal por lineal	5,785	1	,016		
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 9,48.
- b. Calculado sólo para una tabla de 2x2.

PM * Clave Qx_indice

Tabla de contingencia

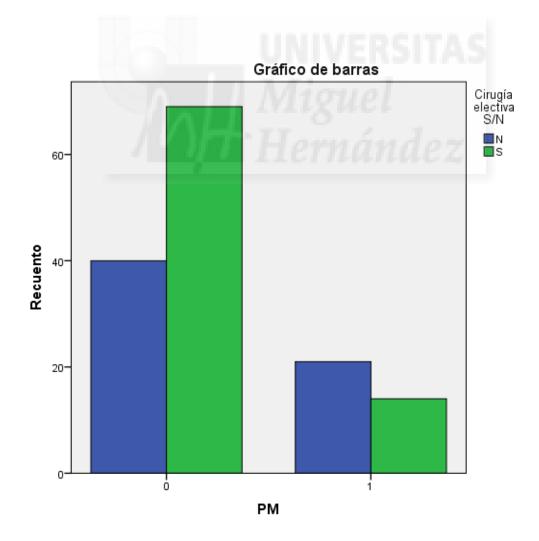

			Clave Qx_indice				
			А	AF	AR	OFA	OFC
		Recuento	53	10	6	6	24
		Frecuencia esperada	49,2	12,9	4,5	6,1	27,3
	0	% dentro de PM	48,6%	9,2%	5,5%	5,5%	22,0%
		% dentro de Clave Qx_indice	81,5%	58,8%	100,0%	75,0%	66,7%
PM		% del total	36,8%	6,9%	4,2%	4,2%	16,7%
FIVI		Recuento	12	7	0	2	12
		Frecuencia esperada	15,8	4,1	1,5	1,9	8,8
	1	% dentro de PM	34,3%	20,0%	0,0%	5,7%	34,3%
		% dentro de Clave Qx_indice	18,5%	41,2%	0,0%	25,0%	33,3%
		% del total	8,3%	4,9%	0,0%	1,4%	8,3%
		Recuento	65	17	6	8	36
		Frecuencia esperada	65,0	17,0	6,0	8,0	36,0
Total		% dentro de PM	45,1%	11,8%	4,2%	5,6%	25,0%
		% dentro de Clave Qx_indice	100,0%	100,0%	100,0%	100,0%	100,0%
		% del total	45,1%	11,8%	4,2%	5,6%	25,0%

Clave Qx_indice	Total
00	

		Recuento	10	109
		Frecuencia esperada	9,1	109,0
	0	% dentro de PM	9,2%	100,0%
		% dentro de Clave Qx_indice	83,3%	75,7%
DM		% del total	6,9%	75,7%
PM		Recuento	2	35
	Frecuencia esperada 1 % dentro de PM		2,9	35,0
			5,7%	100,0%
		% dentro de Clave Qx_indice	16,7%	24,3%
		% del total	1,4%	24,3%
		Recuento	12	144
		Frecuencia esperada	12,0	144,0
Total	% dentro de PM		100,0%	
		% dentro de Clave Qx_indice	100,0%	100,0%
		% del total	8,3%	100,0%

	Valor	gl	Sig. asintótica (bilateral)
Chi-cuadrado de Pearson	7,741 ^a	5	,171
Razón de verosimilitudes	8,862	5	,115
N de casos válidos	144		

a. 5 casillas (41,7%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 1,46.



PM * Cirugía electiva S/N

			Cirugía el	ectiva S/N	Total
			N	S	
		Recuento	40	69	109
		Frecuencia esperada	46,2	62,8	109,0
	0	% dentro de PM	36,7%	63,3%	100,0%
		% dentro de Cirugía electiva S/N	65,6%	83,1%	75,7%
PM		% del total	27,8%	47,9%	75,7%
FIVI	1	Recuento	21	14	35
		Frecuencia esperada	14,8	20,2	35,0
		% dentro de PM	60,0%	40,0%	100,0%
		% dentro de Cirugía electiva S/N	34,4%	16,9%	24,3%
		% del total	14,6%	9,7%	24,3%
		Recuento	61	83	144
		Frecuencia esperada	61,0	83,0	144,0
Total		% dentro de PM	42,4%	57,6%	100,0%
		% dentro de Cirugía electiva S/N	100,0%	100,0%	100,0%
		% del total	42,4%	57,6%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	5,892 ^a	1	,015		
Corrección por continuidad ^b	4,976	1	,026		
Razón de verosimilitudes	5,844	1	,016		
Estadístico exacto de Fisher				,019	,013
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 14,83.
- b. Calculado sólo para una tabla de 2x2.

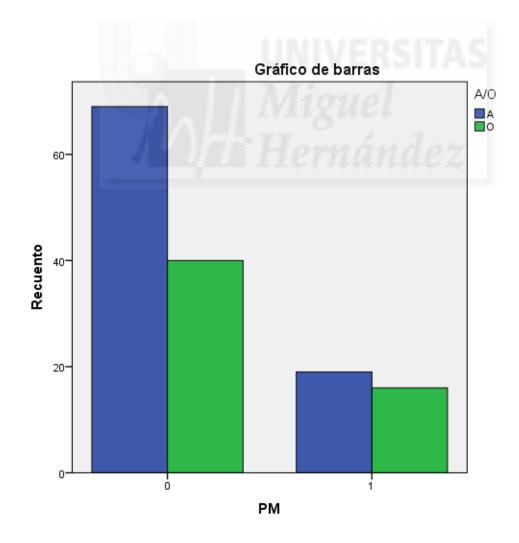
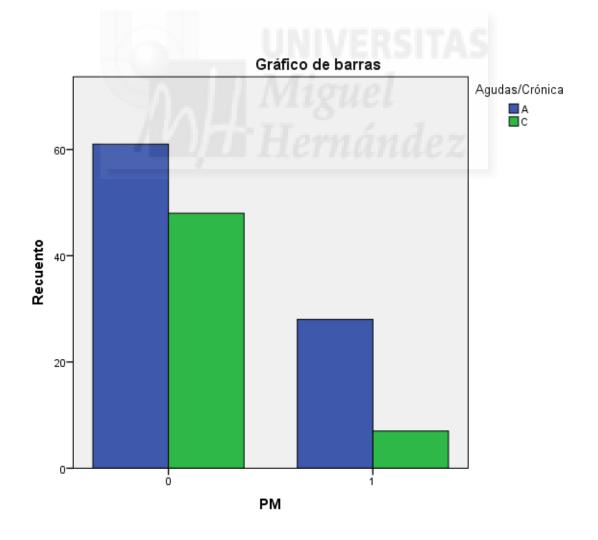

PM * A/O

Tabla de contingencia

			A/O		Total
			А	0	
		Recuento	69	40	109
		Frecuencia esperada	66,6	42,4	109,0
	0	% dentro de PM	63,3%	36,7%	100,0%
		% dentro de A/O	78,4%	71,4%	75,7%
PM		% del total	47,9%	27,8%	75,7%
PIVI	Recuento	19	16	35	
	1	Frecuencia esperada	21,4	13,6	35,0
		% dentro de PM	54,3%	45,7%	100,0%
		% dentro de A/O	21,6%	28,6%	24,3%
		% del total	13,2%	11,1%	24,3%
		Recuento	88	56	144
		Frecuencia esperada	88,0	56,0	144,0
Total		% dentro de PM	61,1%	38,9%	100,0%
		% dentro de A/O	100,0%	100,0%	100,0%
		% del total	61,1%	38,9%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,906ª	1	,341		
Corrección por continuidad ^b	,567	1	,452		
Razón de verosimilitudes	,896	1	,344		
Estadístico exacto de Fisher				,426	,225
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 13,61.
- b. Calculado sólo para una tabla de 2x2.

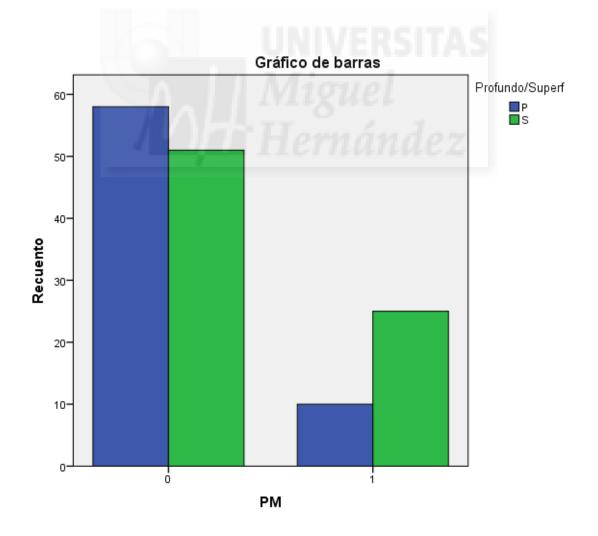


PM * Agudas/Crónica

			Agudas	/Crónica	Total
			Α	С	
		Recuento	61	48	109
		Frecuencia esperada	67,4	41,6	109,0
	0	% dentro de PM	56,0%	44,0%	100,0%
		% dentro de Agudas/Crónica	68,5%	87,3%	75,7%
PM		% del total	42,4%	33,3%	75,7%
FIVI		Recuento	28	7	35
		Frecuencia esperada	21,6	13,4	35,0
	1	% dentro de PM	80,0%	20,0%	100,0%
		% dentro de Agudas/Crónica	31,5%	12,7%	24,3%
		% del total	19,4%	4,9%	24,3%
	Total	Recuento	89	55	144
		Frecuencia esperada	89,0	55,0	144,0
Total		% dentro de PM	61,8%	38,2%	100,0%
		% dentro de Agudas/Crónica	100,0%	100,0%	100,0%
		% del total	61,8%	38,2%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	6,484 ^a	1	,011		
Corrección por continuidad ^b	5,506	1	,019		
Razón de verosimilitudes	6,942	1	,008		
Estadístico exacto de Fisher				,016	,008
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 13,37.
- b. Calculado sólo para una tabla de 2x2.



PM * Profundo/Superf

				Profund	o/Superf	Total
				Р	S	
		Recuento		58	51	109
		Frecuencia esperada		51,5	57,5	109,0
	0	% dentro de PM		53,2%	46,8%	100,0%
		% dentro Profundo/Superf	de	85,3%	67,1%	75,7%
PM		% del total		40,3%	35,4%	75,7%
FIVI		Recuento		10	25	35
	1	Frecuencia esperada		16,5	18,5	35,0
		% dentro de PM		28,6%	71,4%	100,0%
		% dentro Profundo/Superf	de	14,7%	32,9%	24,3%
		% del total		6,9%	17,4%	24,3%
		Recuento		68	76	144
		Frecuencia esperada		68,0	76,0	144,0
Total		% dentro de PM		47,2%	52,8%	100,0%
		% dentro Profundo/Superf	de	100,0%	100,0%	100,0%
		% del total		47,2%	52,8%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	6,454 ^a	1	,011		
Corrección por continuidad ^b	5,503	1	,019		
Razón de verosimilitudes	6,647	1	,010		
Estadístico exacto de Fisher				,012	,009
N de casos válidos	144				

- a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 16,53.
- b. Calculado sólo para una tabla de 2x2.

Regresión logística BGN

Resumen del procesamiento de los casos

Casos no ponderados ^a		N	Porcentaje
	Incluidos en el análisis	144	100,0
Casos seleccionados	Casos perdidos	0	,0
	Total	144	100,0
Casos no seleccionados	0	,0	
Total		144	100,0

a. Si está activada la ponderación, consulte la tabla de clasificación para ver el número total de casos.

Codificación de la variable dependiente

Valor original	Valor interno
0	0
1	1

Codificaciones de variables categóricas

		Frecuencia	Codificación de parámetros
			(1)
	A	89	1,000
Agudas/Crónica	С	55	,000
A/O	Α	88	1,000
A/O	0	56	,000
Circurán alantina O/N	N	61	1,000
Cirugía electiva S/N	S	83	,000

Bloque 0: Bloque inicial

Tabla de clasificación^{a,b}

Observado			Pronosticado				
			ВС	ΘN	Porcentaje		
			0	1	correcto		
	BGN	0	81	0	100,0		
Paso 0		1	63	0	,0		
	Porcentaje global				56,3		

- a. En el modelo se incluye una constante.
- b. El valor de corte es ,500

Variables en la ecuación

	В	E.T.	Wald	gl	Sig.	Exp(B)
Paso 0 Constante	-,251	,168	2,238	lel 1	,135	,778

Variables que no están en la ecuación

			Puntuación	gl	Sig.
	Variables	Linfocitoslt1500	4,080	1	,043
		gt2díasdeHospprevia	,126	1	,723
Pasa 0		CirugíaelectivaSN(1)	4,605	1	,032
Paso 0		AO(1)	2,404	1	,121
		AgudasCrónica(1)	7,770	1	,005
	Estadísticos globales		15,089	5	,010

Bloque 1: Método = Por pasos hacia adelante (Wald)

Pruebas omnibus sobre los coeficientes del modelo

		Chi cuadrado	gl	Sig.
	Paso	7,945	1	,005
Paso 1	Bloque	7,945	1	,005
	Modelo	7,945	1	,005

Resumen del modelo

Paso	-2 log de la	R cuadrado de	R cuadrado de
	verosimilitud	Cox y Snell	Nagelkerke
1	189,425 ^a	,054	,072

a. La estimación ha finalizado en el número de iteración 3 porque las estimaciones de los parámetros han cambiado en menos de ,001.

Variables en la ecuación

		В	VETS Horn	Wald	gl des	Sig.	Exp(B)
Paso 1 ^a	AgudasCrónica(1)	1,003	,365	7,558	1	,006	2,728
Paso I	Constante	-,891	,297	9,006	1	,003	,410

Variables en la ecuación

			ara EXP(B)
		Inferior	Superior
Paso 1 ^a	AgudasCrónica(1)	1,334	5,578
1 030 1	Constante		

a. Variable(s) introducida(s) en el paso 1: AgudasCrónica.

ANEXOS

Variables que no están en la ecuación

			Puntuación	gl	Sig.
		Linfocitoslt1500	3,099	1	,078
	Variables Paso 1	gt2díasdeHospprevia	,137	1	,711
Paso 1		CirugíaelectivaSN(1)	2,196	1	,138
	AO(1)		1	,321	
	Estadísticos globales		7,679	4	,104

Regresión logística PM

Resumen del procesamiento de los casos

Casos no ponderados ^a	N	Porcentaje	
140	Incluidos en el análisis	144	100,0
Casos seleccionados	Casos perdidos	0	,0
	Total	144	100,0
Casos no seleccionados	mujus me	0	,0
Total		144	100,0

a. Si está activada la ponderación, consulte la tabla de clasificación para ver el número total de casos.

Codificación de la variable dependiente

Valor original	Valor interno	
0	0	
1	1	

Codificaciones de variables categóricas

		Frecuencia	Codificación de parámetros
			(1)
Agudas/Crónica	A	89	1,000
	С	55	,000
A/O	Α	88	1,000
A/O	0	56	,000
Cirugía electiva S/N	N	61	1,000
	S	83	,000

Bloque 0: Bloque inicial

Tabla de clasificación^{a,b}

Observado			Pronosticado			
Λ		Р	М	Porcentaje		
		-//	0	Hler	correcto	
	PM	0	109	0	100,0	
Paso 0	FIVI	1	35	0	,0	
	Porc	entaje global			75,7	

- a. En el modelo se incluye una constante.
- b. El valor de corte es ,500

Variables en la ecuación

		В	E.T.	Wald	gl	Sig.	Exp(B)
Paso 0	Constante	-1,136	,194	34,189	1	,000	,321

Variables que no están en la ecuación

			Puntuación	gl	Sig.
Variables		Linfocitoslt1500	3,456	1	,063
	gt2díasdeHospprevia	5,826	1	,016	
	Variables CirugíaelectivaSN(1)		1	,015	
Paso 0	Paso 0	AO(1)	,906	1	,341
	AgudasCrónica(1)		1	,011	
	Estadísticos globales		12,889	5	,024

Bloque 1: Método = Por pasos hacia adelante (Wald)

Pruebas omnibus sobre los coeficientes del modelo

		Chi cuadrado	gl	Sig.
	Paso	6,942	177	,008
Paso 1	Bloque	6,942	1	,008
	Modelo	6,942	1	,008

Resumen del modelo

Paso	-2 log de la	R cuadrado de	R cuadrado de
	verosimilitud	Cox y Snell	Nagelkerke
1	152,776 ^a	,047	,070

a. La estimación ha finalizado en el número de iteración 5 porque las estimaciones de los parámetros han cambiado en menos de ,001.

Variables en la ecuación

		В	E.T.	Wald	gl	Sig.	Exp(B)
Paso 1 ^a	AgudasCrónica(1)	1,147	,465	6,092	1	,014	3,148
	Constante	-1,925	,405	22,645	1	,000	,146

Variables en la ecuación

		I.C. 95% para EXP(B)		
		Inferior	Superior	
Paso 1 ^a	AgudasCrónica(1)	1,266	7,823	
	Constante			

a. Variable(s) introducida(s) en el paso 1: AgudasCrónica.

Variables que no están en la ecuación

		//v/TÉ	Puntuación	gl	Sig.
Paso 1		Linfocitoslt1500	2,514	1	,113
	Variables	gt2díasdeHospprevia	3,204	1	,073
		CirugíaelectivaSN(1)	3,305	1	,069
		AO(1)	,170	1	,680
	Estadísticos globales		6,379	4	,173

Objetivo 3. Cambios en la epidemiología local según la localización geográfica.

TABLAS DE DATOS. COT-HVB.

Tabla XIX. Tabla de datos Objetivo 3 HVB 1/2.

Ν	Hospital	Año	Sexo	Edad	Tipo	Qx electiva	A/O	Cultivo	Abreviatura	CGP	BGN	PM	BGP	Anaerobios
1	HVB	2007	Н	61	С	S	Α	S	sep, SCN	1	0	0	0	0
2	HVB	2007	М	89	Α	N	Α	Р	sau, sep, SCN, efa	1	0	1	0	0
3	HVB	2007	М	70	Α	N	Α	S	sau	1	0	0	0	0
4	HVB	2007	М	76	Α	S	Α	S	sep, efm	1	0	1	0	0
5	HVB	2007	Н	39	Α	N	0	S	sau, bgn	1	1	1	0	0
6	HVB	2007	Н	66	С	N	0	S	svi	1	0	0	0	0
7	HVB	2007	Н	38	Α	N	0	S	pau, ecl	0	1	1	0	0
8	HVB	2007	Н	65	С	S	Α	S	efa, bgp, sep	1	0	1	1	0
9	HVB	2007	Н	30	С	N	0	Р	SCN	1	0	0	0	0
10	HVB	2007	М	89	Α	N	0	S	pr-, sep	1	1	1	0	0
11	HVB	2007	М	82	Α	N	0	S	pau	0	1	0	0	0
12	HVB	2007	М	41	Α	S	0	S	efa, SCN	1	1	1	0	0
13	HVB	2007	М	62	Α	S	Α	Р	sau	1	0	0	0	0
14	HVB	2007	М	71	Α	S	Α	Р	sau	1	0	0	0	0
15	HVB	2007	Н	87	Α	N	Α	S	pr-	0	1	0	0	0
16	HVB	2007	Н	80	Α	S	Α	S	aba, SCN, sep	1	1	1	0	0
17	HVB	2008	Н	66	С	S	Α	Р	sau	1	0	0	0	0
18	HVB	2008	Н	79	Α	S	Α	S	ecl	0	1	0	0	0
19	HVB	2008	М	75	Α	S	Α	Р	pau	0	1	0	0	0
20	HVB	2008	Н	74	Α	N	0	Р	sau	1	0	0	0	0
21	HVB	2008	Н	75	С	N	Α	Р	sep	1	0	0	0	0
22	HVB	2008	Н	66	С	N	0	Р	pau	0	1	0	0	0
23	HVB	2008	Н	53	Α	N	0	S	sau	1	0	0	0	0
24	HVB	2008	Н	71	С	S	Α	Р	SCN	1	0	0	0	0
25	HVB	2008	М	62	Α	N	0	S	sau	1	0	0	0	0
26	HVB	2008	Н	78	С	S	Α	S	sep	1	0	0	0	0
27	HVB	2008	Н	37	С	N	0	P	sma	0	1	0	0	0
28	HVB	2008	Н	55	Α	N	0	S	ppt	0	0	0	0	1
29	HVB	2008	М	80	Α	S	Α	P	pau, pr-	0	1	1	0	0
30	HVB	2008	М	75	С	S	Α	P	sep	1	0	0	0	0
31	HVB	2008	Н	65	Α	S	Α	S	pep	0	0	0	0	1
32	HVB	2009	Н	70	С	S	Α	P	eco	0	1	0	0	0
33	HVB	2009	Н	87	Α	N	Α	P	sep, sau	1	0	0	0	0
34	HVB	2009	Н	33	Α	N	0	S	pau, sep, SCN	1	1	1	0	0
35	HVB	2009	Н	23	Α	N	0	S	ecl, sau	1	1	1	0	0
36	HVB	2009	М	76	Α	N	0	S	cor	0	0	0	1	0
37	HVB	2009	Н	70	Α	S	Α	S	sep, ecl	1	1	1	0	0
38	HVB	2009	М	71	Α	S	Α	S	sma, SCN	1	1	1	0	0
39	HVB	2009	Н	65	С	S	Α	P	sep	1	0	0	0	0
40	HVB	2009	М	71	С	S	Α	S	en-	0	1	0	0	0
41	HVB	2009	М	64	С	S	Α	P	SCN	1	0	0	0	0
42	HVB	2010	М	87	Α	N	Α	P	sep, sau, cor, efa, pau	1	1	1	1	0
43	HVB	2010	Н	67	Α	N	0	S	sep	1	0	0	0	0
44	HVB	2010	М	84	С	S	Α	P	SCN	1	0	0	0	0

Abreviaturas 13: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococc pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

Tabla XX. Tabla de datos Objetivo 3 HVB 2/2.

Ν	Hospital	Año	Sexo	Edad	Tipo	Qx electiva	A/O	Cultivo	Abreviatura	CGP	BGN	PM	BGP	Anaerobios
45	HVB	2010	Н	70	Α	S	Α	Р	sau	1	0	0	0	0
46	HVB	2010	Н	66	Α	S	Α	S	sep	1	0	0	0	0
47	HVB	2010	М	64	Α	S	0	S	sau	1	0	0	0	0
48	HVB	2010	М	61	С	S	Α	Р	sep	1	0	0	0	0
49	HVB	2011	М	68	С	S	Α	Р	prop	0	0	0	1	0
50	HVB	2011	М	56	С	S	0	Р	sau	1	0	0	0	0
51	HVB	2011	Н	38	Α	S	0	S	sau	1	0	0	0	0
52	HVB	2011	Н	35	С	S	0	Р	sau	1	0	0	0	0
53	HVB	2011	М	50	С	S	Α	S	SCN, cor	1	0	0	1	0
54	HVB	2011	Н	19	Α	S	0	S	pau	0	1	0	0	0
55	HVB	2011	М	60	С	S	0	S	SCN, sau	1	0	0	0	0
56	HVB	2011	Н	78	С	S	Α	Р	sep	1	0	0	0	0
57	HVB	2011	М	65	С	S	Α	Р	sep, sma	1	1	1	0	0
58	HVB	2011	Н	67	С	S	Α	Р	sep	1	0	0	0	0
59	HVB	2011	Н	66	Α	S	Α	Р	ecl	0	1	0	0	0
60	HVB	2011	М	42	С	N	0	Р	kpn, sep, SCN	1	1	1	0	0
61	HVB	2011	Н	76	Α	S	Α	Р	sau	1	0	0	0	0
62	HVB	2011	М	68	С	N	Α	S	есо	0	1	0	0	0
63	HVB	2011	М	51	С	S	Α	Р	ac-	0	1	0	0	0
64	HVB	2011	М	69	Α	S	Α	S	sau	1	0	0	0	0
65	HVB	2011	М	46	Α	S	Α	Р	sma, sep	1	1	1	0	0
66	HVB	2011	М	61	Α	N	0	Р	sau	1	0	0	0	0
67	HVB	2011	Н	82	Α	N	Α	Р	sau	1	0	0	0	0
68	HVB	2012	Н	71	С	S	Α	Р	sep	1	0	0	0	0
69	HVB	2012	Н	78	С	S	Α	Р	sep	1	0	0	0	0
70	HVB	2012	Н	70	Α	N	0	S	pau, ecl	0	1	1	0	0
71	HVB	2012	М	82	Α	S	Α	S	sau, sep	1	0	0	0	0
72	HVB	2012	М	70	Α	S	Α	S	prop, pep	1	0	0	1	0
73	HVB	2012	М	72	Α	N	0	S	pau, eco	0	1	1	0	0
74	HVB	2012	Н	15	Α	S	0	Р	pau	0	1	0	0	0
75	HVB	2012	М	80	С	S	Α	S	sep	1	0	0	0	0
76	HVB	2012	М	63	С	S	Α	Р	SCN	1	0	0	0	0
77	HVB	2012	Н	63	С	S	Α	P	SCN	1	0	0	0	0
78	HVB	2012	М	48	Α	N	0	S	sau	1	0	0	0	0
79	HVB	2012	Н	52	Α	N	0	S	en-	0	1	0	0	0
80	HVB	2012	М	79	Α	S	Α	Р	sep	1	0	0	0	0
81	HVB	2012	Н	41	Α	S	0	Р	sau	1	0	0	0	0
82	HVB	2012	Н	69	Α	N	Α	Р	pau, sau, sep	1	1	1	0	0
83	HVB	2012	М	70	Α	S	Α	Р	pau	1	1	0	0	0
84	HVB	2012	Н	78	Α	S	Α	Р	prop, SCN	1	0	0	1	0
85	HVB	2012	Н	32	Α	S	0	Р	sau	1	0	0	0	0
86	HVB	2012	М	75	С	S	Α	Р	en-	0	1	0	0	0
87	HVB	2012	М	81	С	S	Α	Р	cor, sep	1	0	0	1	0

Abreviaturas 14: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococc pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

TABLAS DE DATOS. COT-ARI.

Tabla XXI. Tabla de datos Objetivo 3 ARI 1/2.

Ν	Hospital	Año	Sexo	Edad	Tipo	Qx electiva	A/O	Cultivo	Abreviatura	CGP	BGN	PM	BGP	Anaerobios
1	ARI	2007	Н	42	С	N	0	S	sau	1	0	1	0	0
2	ARI	2007	М	68	С	S	Α	S	COL, pr-	0	1	0	0	0
3	ARI	2007	Н	64	С	S	Α	Р	svi	1	1	1	0	0
4	ARI	2007	Н	29	С	S	Α	Р	sau	1	0	0	0	0
5	ARI	2007	Н	27	С	N	0	S	sau	1	0	0	0	0
6	ARI	2007	Н	18	Α	N	0	S	sau	1	0	0	0	0
7	ARI	2007	Н	26	С	N	0	S	sau	1	0	0	0	0
8	ARI	2007	Н	25	Α	N	0	Р	SCN, eco	1	0	0	0	0
9	ARI	2008	Н	92	С	S	Α	S	svi	1	1	1	0	0
10	ARI	2008	Н	70	С	S	Α	S	sau	1	0	1	0	0
11	ARI	2008	Н	43	С	N	0	S	sau	1	0	0	0	0
12	ARI	2008	Н	62	С	S	Α	S	svi	0	1	0	0	0
13	ARI	2008	М	76	С	S	Α	Р	COLI, svi	0	1	0	0	0
14	ARI	2008	Н	60	Α	S	Α	Р	sau, svi	1	0	0	0	0
15	ARI	2008	Н	79	С	S	Α	Р	ecl prod BLEAS, pae, SARM	0	1	1	0	0
16	ARI	2008	Н	58	Α	N	0	S	sau	1	1	1	0	0
17	ARI	2008	Н	65	Α	N	0	Р	COL, sau, en-	0	1	0	0	0
18	ARI	2008	Н	74	С	S	Α	Р	eco	0	1	0	0	0
19	ARI	2008	М	70	Α	S	Α	S	sau	1	0	0	0	0
20	ARI	2008	М	32	С	N	0	S	sau	1	0	0	0	0
21	ARI	2008		56	С	N	0	S	SCN	1	0	0	0	0
22	ARI	2008	Н	70	С	S	Α	Р	SCN, en-	1	0	0	0	0
23	ARI	2009	М	56	С	N	0	S	svi	1	1	1	1	0
24	ARI	2009	М	66	Α	S	0	S	sau (SARM)	1	0	0	0	0
25	ARI	2009	М	59	С	S	Α	Р	svi	1	1	1	0	0
26	ARI	2009	Н	69	С	S	Α	S	pae, sau	1	1	1	0	0
27	ARI	2009	Н	58	С	N	Α	S	COL	0	1	0	0	0
28	ARI	2009	М	62	С	S	Α	Р	COL	0	1	0	0	0
29	ARI	2009	М	86	С	S	Α	Р	COL (eco)	0	1	0	0	0
30	ARI	2009	М	59	С	N	0	S	sau	1	0	0	0	0
31	ARI	2009	Н	78	С	S	Α	S	svi	1	1	1	0	0
32	ARI	2009	Н	67	С	S	Α	Р	svi	1	1	1	0	0
33	ARI	2009	М	62	С	S	Α	S	sau, svi	1	0	0	0	0
34	ARI	2009	Н	72	Α	S	Α	S	pae	1	1	1	0	0
35	ARI	2009	М	54	С	S	Α	S	COL	0	1	0	0	0
36	ARI	2009	Н	37	С	N	0	S	sau	1	0	0	0	0
37	ARI	2009	Н	25	Α	N	0	S	sau	1	0	0	0	0
38	ARI	2009	М	56	С	S	0	S	sau	1	0	0	0	0
39	ARI	2009	M	69	С	S	Α	Р	sau	1	0	0	0	0
40	ARI	2009	Н	77	C	S	Α	S	sau	1	0	0	0	0
41	ARI	2009		81	Α	S	Α	S	sau	1	0	0	0	0
42	ARI	2009	Н	89	С	S	Α	Р	sau, eco	1	0	0	0	0
43	ARI	2009	М	74	С	S	Α	P	SCN	1	0	0	0	0
44	ARI	2009		88	A	S	Α	S	SCN, en-	1	0	0	0	0
45	ARI	2010		65	С	S	Α	S	COL (eco)	0	1	0	0	0
46	ARI	2010	Н	76	С	S	Α	P	sau	1	0	0	0	0
47	ARI	2010	H	78	С	S	Α	P	svi	1	1	1	0	0
48	ARI	2010		51	С	S	Α	S	svi	1	1	1	0	0
49	ARI	2010	Н.	61	С	S	Α	P	svi	1	1	1	0	0
50	ARI	2010		54	A	S	0	P	pae	1	1	1	0	0
50	7.1111	2010		57					F == -	-		-	J	5

Abreviaturas 15: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococco pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

Tabla XXII. Tabla de datos Objetivo 3 ARI 2/2.

N	Hospital	Año	Sexo	Edad	Tipo	Qx electiva	A/O	Cultivo	Abreviatura	CGP	BGN	PM	BGP	Anaerobios
51	ARI	2010	Н	73	С	S	Α	Р	sau	1	0	1	0	0
52	ARI	2010	Н	72	С	S	Α	Р	BGP (Difterhoid), sau	0	1	0	0	0
53	ARI	2010	М	68	Α	N	0	S	COL (eco), Kpn	0	1	0	0	0
54	ARI	2010	М	55	С	N	0	S	sau	1	0	0	0	0
55	ARI	2010	М	81	С	S	Α	Р	sau	1	0	0	0	0
56	ARI	2010	М	70	С	S	Α	S	sau,	1	0	0	0	0
57	ARI	2010	Н	61	Α	S	Α	S	sau, sma	1	0	0	0	0
58	ARI	2010	Н	79	С	S	Α	Р	sau,eco, BGN (Raoultella planticola)	1	0	0	0	0
59	ARI	2010	М	70	С	S	Α	Р	SCN	1	0	0	0	0
60	ARI	2010	Н	71	С	S	Α	Р	sep	1	0	0	0	0
61	ARI	2011	Н	74	С	S	Α	Р	SARM	1	1	1	0	0
62	ARI	2011	М	69	С	S	Α	S	eco y kpn,	0	1	1	0	0
63	ARI	2011	М	81	С	S	Α	Р	svi, sau	1	1	1	0	0
64	ARI	2011	Н	44	С	N	0	S	sau	1	0	1	0	0
65	ARI	2011	М	79	Α	S	Α	Р	eco	0	1	0	0	0
66	ARI	2011	М	58	С	N	0	S	svi	1	1	1	0	0
67	ARI	2011	М	71	Α	S	Α	S	eco, pr-, svi	0	1	0	0	0
68	ARI	2011	М	36	С	N	0	S	sau, svi	1	0	0	0	0
69	ARI	2011	Н	69	С	S	Α	S	sau,svi	1	0	0	0	0
70	ARI	2011	Н	80	С	S	Α	Р	svi	1	0	0	1	0
71	ARI	2011	Н	95	Α	N	0	S	ecl, sau	0	1	1	0	0
72	ARI	2011	Н	43	Α	N	0	S	Aeromonas caviae	0	1	0	0	0
73	ARI	2011	М	83	Α	N	Α	Р	eco y sau	0	1	0	0	0
74	ARI	2011	Н	50	С	N	0	Р	eco	0	1	0	0	0
75	ARI	2011	Н	31	Α	N	0	Р	en-	0	1	0	0	0
76	ARI	2011	М	82	С	S	0	S	en-, pae	0	1	0	0	0
77	ARI	2011	Н	48	С	N	0	Р	sau	1	0	0	0	0
78	ARI	2011	М	54	Α	S	Α	S	sau	1	0	0	0	0
79	ARI	2011	М	86	С	S	Α	Р	SCN	1	0	0	0	0
80	ARI	2011	М	18	С	S	Α	Р	SCN, pae	1	0	0	0	0
81	ARI	2012	Н	32	С	S	Α	Р	svi	1	1	1	0	0
82	ARI	2012	М	23	С	N	0	S	sau	1	0	1	0	0
83	ARI	2012	Н	72	С	S	Α	Р	sau	1	0	0	0	0
84	ARI	2012	Н	62	С	N	0	Р	sau	1	0	0	0	0
85	ARI	2012	М	59	Α	S	Α	Р	sau	1	0	0	0	0
86	ARI	2012		31	С	N	0	Р	sau, kpn, ecl, eco	1	0	0	0	0
87	ARI	2012	Н	75	С	S	Α	Р	svi, scn	1	1	1	0	0
88	ARI	2012	Н	53	С	N	Α	S	SCN, svi	1	0	0	0	0
89	ARI	2012	М	52	С	S	Α	Р	en-, sau, sep, can	1	1	1	0	0
90	ARI	2012	M	78	A	S	Α	P	cfr, mmo	0	1	0	0	0
91	ARI	2012	M	33	С	N	0	P	eco	0	1	0	0	0
92	ARI	2012	M	52	A	S	Α	P	sau	1	0	0	0	0
93	ARI	2012	Н	30	С	N	0	P	sau	1	0	0	0	0
94	ARI	2012	Н	58	A	S	Α	S	sau	1	0	0	0	0
95	ARI	2012	Н.	36	C	N	0	S	sau	1	0	0	0	0
96	ARI	2012	M	4	A	N	0	S	sau	1	0	0	0	0
97	ARI	2012	M	55	A	S	A	P	sau	1	0	0	0	0
98	ARI	2012	M	46	C	N	0	S	sau	1	0	0	0	0
99	ARI	2012	H	70	С	S	0	S	sau,eco	1	0	0	0	0
100	ARI	2012	H	82	С	S	A	S	SCN, sau	1	0	0	0	0
100	ANI	2012	п	02			_ ^		JCIN, Jau	1	U	U	U	U

Abreviaturas 16: aba: Acinetobacter baumanii; ac-: Acinetobacter iwoffi; aeh: Aeromonas caviae; ane: anaerobios; bfr: Bacteroides fragilis; bgp: Bifidobacterium; can: Candida albicans; cca: Micro-aerophilic streptococcus; cfr: Citrobacter freundii; COL: Coliforme; cor: Diphtheroids; ecl: Enterobacter cloacae; eco: Echerichia coli; efa: Enterococcus faecalis; efm: Enterococcus faecium; en-: Enterobacter aerógenes; kpl: Raoultella planticola; kpn: Klebsiella pneumonia; mmo: Morganella morganii; pae: Pseudomona aeruginosa; pep: Peptoniphilus asaccharolyticus; pr-: Proteus species; pre: Pseudomona stutzeri; prop: Propionibacterium; sau: Staphylococcus aureus; SCN: Staphylococcus coagulasa negatives; sep: Staphylococcus epidermidis; sgc: Streptococcus agalactiae (Streptococcus Grupo B); sma: Serratia marcescens; spn: Streptococo pneumoniae; svi: Streptococcus viridans (Streptococcus Grupo G). CULTIVO: P: Profundo, S: Superficial.

CÁLCULOS ESTADÍSTICOS OBJETIVO 3.

Prueba T

Estadísticos de grupo

	HOSPITAL	N	Media	Desviación típ.	Error típ. de la media
Edad	А	100	59,89	19,203	1,920
Edad	В	87	64,05	16,687	1,789

Prueba de muestras independientes

			evene para la e varianzas	Prueba T para la igualdad de medias		
		F	Sig.	t	gl	
Edad	Se han asumido varianzas iguales	2,641	,106	-1,568	185	
Lada	No se han asumido varianzas iguales	Mig	ruel	-1,584	185,000	

Prueba de muestras independientes

-			Prueba T para la iç	gualdad de medias	3
		Sig. (bilateral)	Diferencia de medias	Error típ. de la diferencia	95% Intervalo de confianza para la diferencia
					Inferior
Edad	Se han asumido varianzas iguales	,119	-4,156	2,650	-9,385
Luau	No se han asumido varianzas iguales	,115	-4,156	2,625	-9,334

Prueba de muestras independientes

		Prueba T para la igualdad de medias
		95% Intervalo de confianza para la diferencia
		Superior
Edad	Se han asumido varianzas iguales	1,073
Ludu	No se han asumido varianzas iguales	1,022

Tablas de contingencia Microorganismos más frecuentes vs Hospital

Resumen del procesamiento de los casos

			Ca	asos		
	Vá	lidos	Per	didos	Т	otal
	N	Porcentaje	N	Porcentaje	N	Porcentaje
HOSPITAL * Sexo	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * Agudas/Crónica	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * Cirugía electiva S/N	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * A/O	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * Profundo/Superf	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * CGP	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * BGN	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * PM	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * Anaerobios	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * BGP	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * sau	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * SARM	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * SCN+sep	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * SERM	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * svi	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * efa_efm	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * pae	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * COL	187	100,0%	0	0,0%	187	100,0%
HOSPITAL * Resolución	187	100,0%	0	0,0%	187	100,0%

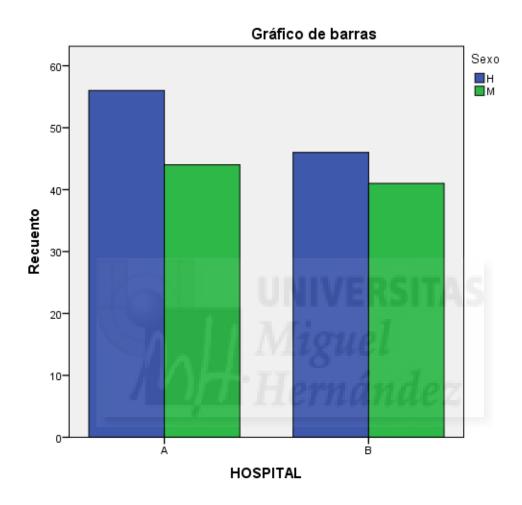

HOSPITAL * Sexo

Tabla de contingencia

			Se	exo	Total
			Н	М	
		Recuento	56	44	100
	Α	Frecuencia esperada	54,5	45,5	100,0
	A	% dentro de HOSPITAL	56,0%	44,0%	100,0%
HOSPITAL		% dentro de Sexo	54,9%	51,8%	53,5%
HOSPITAL		Recuento	46	41	87
	D	Frecuencia esperada	47,5	39,5	87,0
	В	% dentro de HOSPITAL	52,9%	47,1%	100,0%
		% dentro de Sexo	45,1%	48,2%	46,5%
		Recuento	102	85	187
Tatal		Frecuencia esperada	102,0	85,0	187,0
Total		% dentro de HOSPITAL	54,5%	45,5%	100,0%
		% dentro de Sexo	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,183ª	1	,668		
Corrección por continuidad ^b	,079	1	,779		
Razón de verosimilitudes	,183	1	,668		
Estadístico exacto de Fisher				,769	,389
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 39,55.
- b. Calculado sólo para una tabla de 2x2.

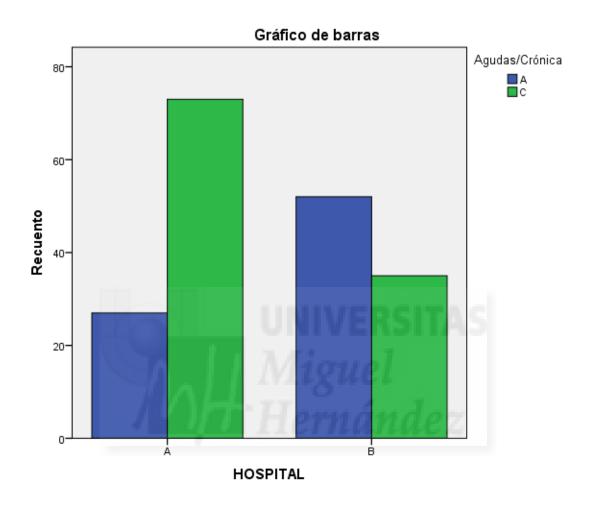

HOSPITAL * Agudas/Crónica

Tabla de contingencia

			Agudas	/Crónica	Total
			А	С	
		Recuento	27	73	100
	A	Frecuencia esperada	42,2	57,8	100,0
		% dentro de HOSPITAL	27,0%	73,0%	100,0%
HOSPITAL		% dentro de Agudas/Crónica	34,2%	67,6%	53,5%
HOSPITAL		Recuento	52	35	87
	В	Frecuencia esperada	36,8	50,2	87,0
	В	% dentro de HOSPITAL	59,8%	40,2%	100,0%
		% dentro de Agudas/Crónica	65,8%	32,4%	46,5%
		Recuento	79	108	187
Total		Frecuencia esperada	79,0	108,0	187,0
Total		% dentro de HOSPITAL	42,2%	57,8%	100,0%
		% dentro de Agudas/Crónica	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	20,477 ^a	1	,000		
Corrección por continuidad ^b	19,156	1	,000		
Razón de verosimilitudes	20,805	1	,000		
Estadístico exacto de Fisher				,000	,000
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 36,75.
- b. Calculado sólo para una tabla de 2x2.

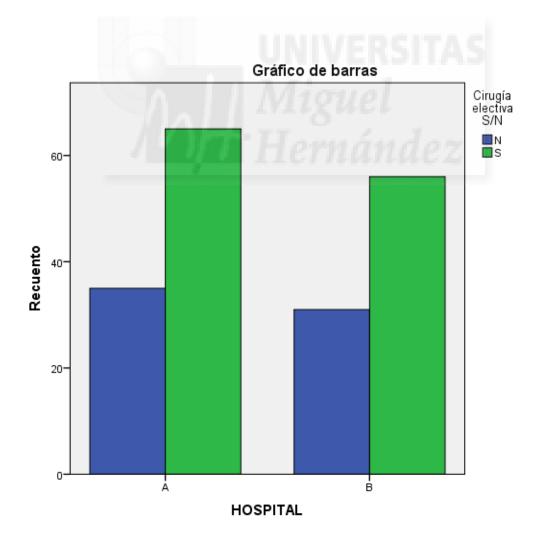

HOSPITAL * Cirugía electiva S/N

Tabla de contingencia

			Cirugía el	ectiva S/N	Total
			N	S	
		Recuento	35	65	100
		Frecuencia esperada	35,3	64,7	100,0
	Α	% dentro de HOSPITAL	35,0%	65,0%	100,0%
HOSPITAL		% dentro de Cirugía electiva S/N	53,0%	53,7%	53,5%
HOSPITAL		Recuento	31	56	87
		Frecuencia esperada	30,7	56,3	87,0
	В	% dentro de HOSPITAL	35,6%	64,4%	100,0%
		% dentro de Cirugía electiva S/N	47,0%	46,3%	46,5%
		Recuento	66	121	187
	Total	Frecuencia esperada	66,0	121,0	187,0
Total		% dentro de HOSPITAL	35,3%	64,7%	100,0%
		% dentro de Cirugía electiva S/N	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,008 ^a	1	,928		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,008	1	,928		
Estadístico exacto de Fisher				1,000	,525
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 30,71.
- b. Calculado sólo para una tabla de 2x2.

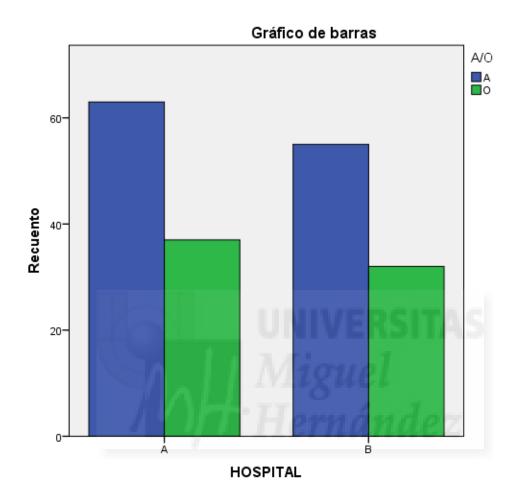

HOSPITAL * A/O

Tabla de contingencia

			A	O'O	Total
			А	0	
		Recuento	63	37	100
	A	Frecuencia esperada	63,1	36,9	100,0
	^	% dentro de HOSPITAL	63,0%	37,0%	100,0%
HOSPITAL		% dentro de A/O	53,4%	53,6%	53,5%
HOSFITAL		Recuento	55	32	87
	В	Frecuencia esperada	54,9	32,1	87,0
		% dentro de HOSPITAL	63,2%	36,8%	100,0%
		% dentro de A/O	46,6%	46,4%	46,5%
		Recuento	118	69	187
Total		Frecuencia esperada	118,0	69,0	187,0
iolai		% dentro de HOSPITAL	63,1%	36,9%	100,0%
		% dentro de A/O	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,001 ^a	1	,975		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,001	1	,975		
Estadístico exacto de Fisher				1,000	,549
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 32,10.
- b. Calculado sólo para una tabla de 2x2.

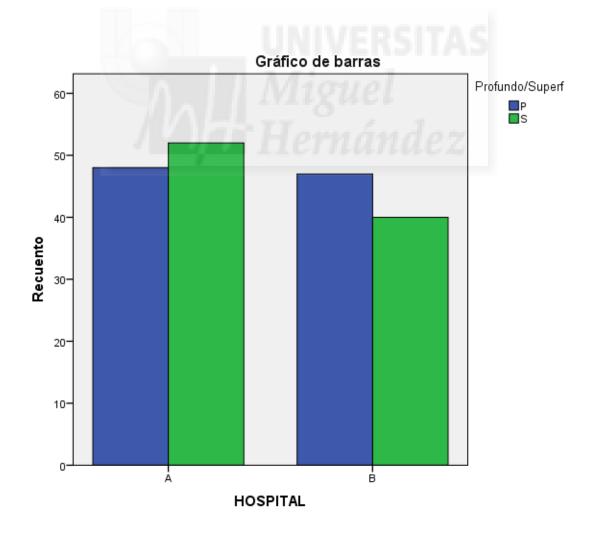

HOSPITAL * Profundo/Superf

Tabla de contingencia

				Profund	o/Superf	Total
				Р	S	
		Recuento		48	52	100
		Frecuencia esperada		50,8	49,2	100,0
	Α	% dentro de HOSPITAL		48,0%	52,0%	100,0%
LICODITAL		% dentro dentro	de	50,5%	56,5%	53,5%
HOSPITAL		Recuento		47	40	87
	Frecuencia esperada			44,2	42,8	87,0
	В	% dentro de HOSPITAL		54,0%	46,0%	100,0%
		% dentro dentro	de	49,5%	43,5%	46,5%
		Recuento		95	92	187
		Frecuencia esperada	ť	95,0	92,0	187,0
Total		% dentro de HOSPITAL		50,8%	49,2%	100,0%
		% dentro dentro de Profundo/Superf	de	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,675 ^a	1	,411		
Corrección por continuidad ^b	,456	1	,500		
Razón de verosimilitudes	,676	1	,411		
Estadístico exacto de Fisher				,464	,250
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 42,80.
- b. Calculado sólo para una tabla de 2x2.

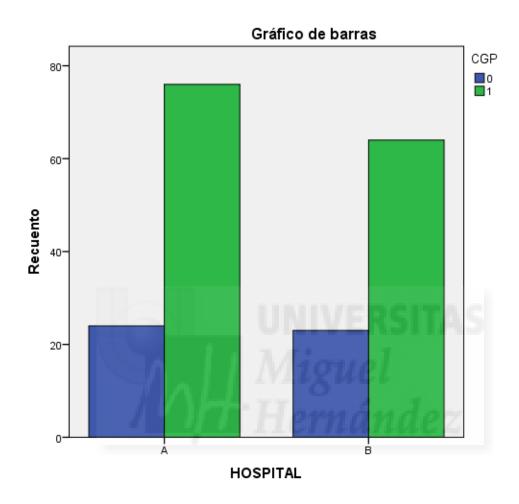

HOSPITAL * CGP

Tabla de contingencia

			C	ΘP	Total
			0	1	
		Recuento	24	76	100
	A	Frecuencia esperada	25,1	74,9	100,0
	A	% dentro de HOSPITAL	24,0%	76,0%	100,0%
HOSPITAL		% dentro de CGP	51,1%	54,3%	53,5%
HOSPITAL		Recuento	23	64	87
	D	Frecuencia esperada	21,9	65,1	87,0
	В	% dentro de HOSPITAL	26,4%	73,6%	100,0%
		% dentro de CGP	48,9%	45,7%	46,5%
		Recuento	47	140	187
Total		Frecuencia esperada	47,0	140,0	187,0
Total		% dentro de HOSPITAL	25,1%	74,9%	100,0%
		% dentro de CGP	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,147ª	1	,702		
Corrección por continuidad ^b	,046	1	,830		
Razón de verosimilitudes	,147	1	,702		
Estadístico exacto de Fisher				,737	,415
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 21,87.
- b. Calculado sólo para una tabla de 2x2.

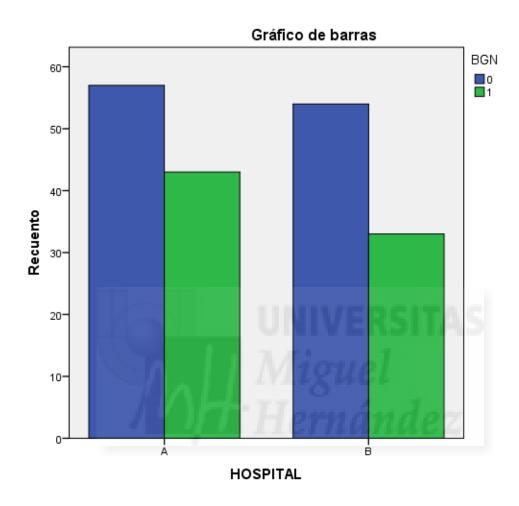

HOSPITAL * **BGN**

Tabla de contingencia

			ВС	ΞN	Total
			0	1	
		Recuento	57	43	100
	^	Frecuencia esperada	59,4	40,6	100,0
	A	% dentro de HOSPITAL	57,0%	43,0%	100,0%
LICODITAL		% dentro de BGN	51,4%	56,6%	53,5%
HOSPITAL		Recuento	54	33	87
		Frecuencia esperada	51,6	35,4	87,0
	В	% dentro de HOSPITAL	62,1%	37,9%	100,0%
		% dentro de BGN	48,6%	43,4%	46,5%
		Recuento	111	76	187
Takal		Frecuencia esperada	111,0	76,0	187,0
Total		% dentro de HOSPITAL	59,4%	40,6%	100,0%
		% dentro de BGN	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,496 ^a	1	,481		
Corrección por continuidad ^b	,308	1	,579		
Razón de verosimilitudes	,496	1	,481		
Estadístico exacto de Fisher				,551	,290
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 35,36.
- b. Calculado sólo para una tabla de 2x2.

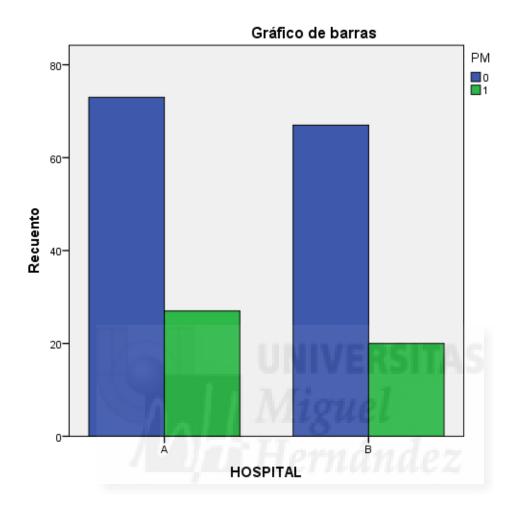

HOSPITAL * PM

Tabla de contingencia

			Р	M	Total
			0	1	
		Recuento	73	27	100
	A	Frecuencia esperada	74,9	25,1	100,0
	A	% dentro de HOSPITAL	73,0%	27,0%	100,0%
HOSPITAL		% dentro de PM	52,1%	57,4%	53,5%
HOSFITAL		Recuento	67	20	87
	В	Frecuencia esperada	65,1	21,9	87,0
	ь	% dentro de HOSPITAL	77,0%	23,0%	100,0%
		% dentro de PM	47,9%	42,6%	46,5%
		Recuento	140	47	187
Total		Frecuencia esperada	140,0	47,0	187,0
iolai		% dentro de HOSPITAL	74,9%	25,1%	100,0%
		% dentro de PM	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,398ª	1	,528		
Corrección por continuidad ^b	,213	1	,644		
Razón de verosimilitudes	,399	1	,528		
Estadístico exacto de Fisher				,613	,323
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 21,87.
- b. Calculado sólo para una tabla de 2x2.

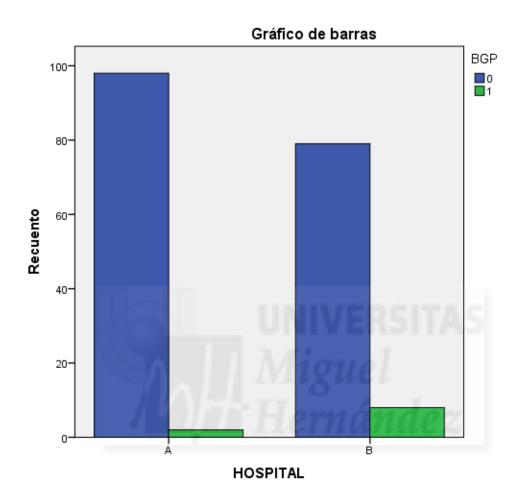

HOSPITAL * **BGP**

Tabla de contingencia

			ВС	GP .	Total
			0	1	
	=	Recuento	98	2	100
	A	Frecuencia esperada	94,7	5,3	100,0
	А	% dentro de HOSPITAL	98,0%	2,0%	100,0%
HOSPITAL		% dentro de BGP	55,4%	20,0%	53,5%
HOSPITAL		Recuento	79	8	87
	5	Frecuencia esperada	82,3	4,7	87,0
	В	% dentro de HOSPITAL	90,8%	9,2%	100,0%
		% dentro de BGP	44,6%	80,0%	46,5%
		Recuento	177	10	187
		Frecuencia esperada	177,0	10,0	187,0
Total		% dentro de HOSPITAL	94,7%	5,3%	100,0%
		% dentro de BGP	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	4,759 ^a	1	,029		
Corrección por continuidad ^b	3,443	1	,064		
Razón de verosimilitudes	4,994	1	,025		
Estadístico exacto de Fisher				,047	,031
N de casos válidos	187				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 4,65.
- b. Calculado sólo para una tabla de 2x2.

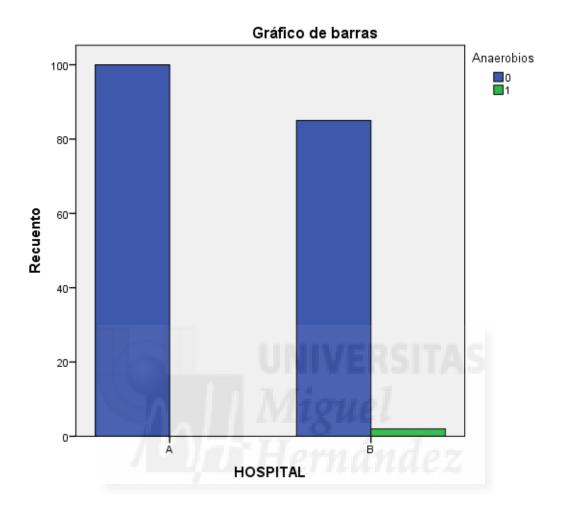

HOSPITAL * Anaerobios

Tabla de contingencia

			Anae	robios	Total
			0	1	
		Recuento	100	0	100
	A	Frecuencia esperada	98,9	1,1	100,0
	A	% dentro de HOSPITAL	100,0%	0,0%	100,0%
HOSPITAL		% dentro de Anaerobios	54,1%	0,0%	53,5%
HOSHIAL		Recuento	85	2	87
	В	Frecuencia esperada	86,1	,9	87,0
		% dentro de HOSPITAL	97,7%	2,3%	100,0%
		% dentro de Anaerobios	45,9%	100,0%	46,5%
		Recuento	185	2	187
Total		Frecuencia esperada	185,0	2,0	187,0
Total		% dentro de HOSPITAL	98,9%	1,1%	100,0%
		% dentro de Anaerobios	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	2,324 ^a	1	,127		
Corrección por continuidad ^b	,659	1	,417		
Razón de verosimilitudes	3,086	1	,079		
Estadístico exacto de Fisher				,215	,215
N de casos válidos	187				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,93.
- b. Calculado sólo para una tabla de 2x2.

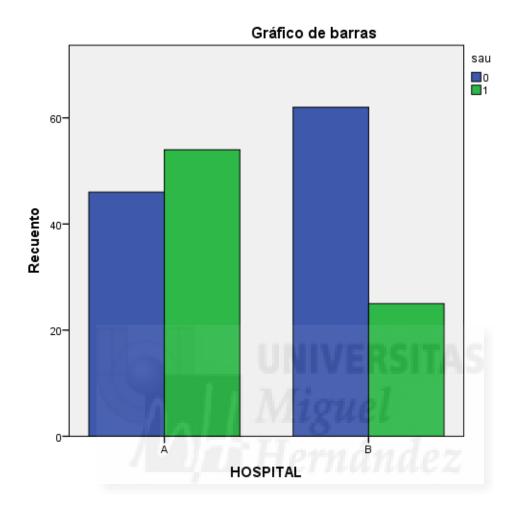

HOSPITAL * sau

Tabla de contingencia

			Sã	au	Total
			0	1	
		Recuento	46	54	100
	Δ.	Frecuencia esperada	57,8	42,2	100,0
	A	% dentro de HOSPITAL	46,0%	54,0%	100,0%
LICODITAL		% dentro de sau	42,6%	68,4%	53,5%
HOSPITAL		Recuento	62	25	87
		Frecuencia esperada	50,2	36,8	87,0
	В	% dentro de HOSPITAL	71,3%	28,7%	100,0%
		% dentro de sau	57,4%	31,6%	46,5%
		Recuento	108	79	187
Takal		Frecuencia esperada	108,0	79,0	187,0
Total		% dentro de HOSPITAL	57,8%	42,2%	100,0%
	AL B	% dentro de sau	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	12,171 ^a	1	,000		
Corrección por continuidad ^b	11,158	1	,001		
Razón de verosimilitudes	12,373	1	,000		
Estadístico exacto de Fisher				,001	,000
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 36,75.
- b. Calculado sólo para una tabla de 2x2.

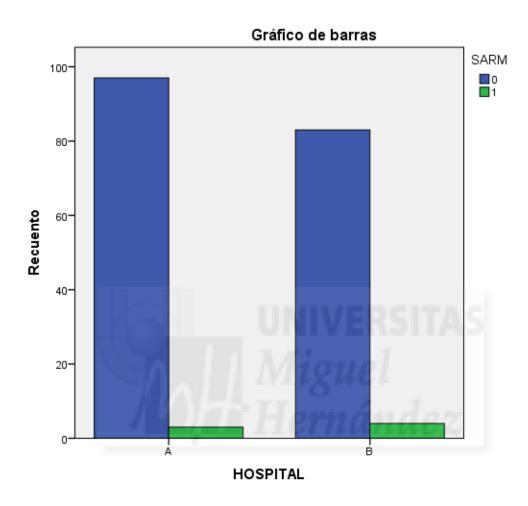

HOSPITAL * **SARM**

Tabla de contingencia

			SA	RM	Total
			0	1	
		Recuento	97	3	100
	٨	Frecuencia esperada	96,3	3,7	100,0
	Α	% dentro de HOSPITAL	97,0%	3,0%	100,0%
LICODITAL		% dentro de SARM	53,9%	42,9%	53,5%
HOSPITAL		Recuento	83	4	87
	В	Frecuencia esperada	83,7	3,3	87,0
	В	% dentro de HOSPITAL	95,4%	4,6%	100,0%
		% dentro de SARM	46,1%	57,1%	46,5%
		Recuento	180	7	187
T		Frecuencia esperada	180,0	7,0	187,0
Total		% dentro de HOSPITAL	96,3%	3,7%	100,0%
		% dentro de SARM	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,330 ^a	1	,566		
Corrección por continuidad ^b	,035	1	,851		
Razón de verosimilitudes	,329	1	,566		
Estadístico exacto de Fisher				,707	,423
N de casos válidos	187				

- a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 3,26.
- b. Calculado sólo para una tabla de 2x2.

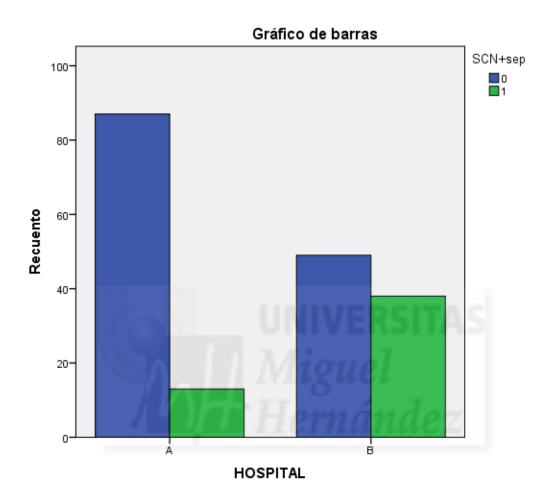

HOSPITAL * SCN+sep

Tabla de contingencia

			SCN	+sep	Total
			0	1	
		Recuento	87	13	100
	A	Frecuencia esperada	72,7	27,3	100,0
	А	% dentro de HOSPITAL	87,0%	13,0%	100,0%
HOSPITAL		% dentro de SCN+sep	64,0%	25,5%	53,5%
HOSPITAL		Recuento	49	38	87
	В	Frecuencia esperada	63,3	23,7	87,0
	Ь	% dentro de HOSPITAL	56,3%	43,7%	100,0%
		% dentro de SCN+sep	36,0%	74,5%	46,5%
		Recuento	136	51	187
T		Frecuencia esperada	136,0	51,0	187,0
Total		% dentro de HOSPITAL	72,7%	27,3%	100,0%
		% dentro de SCN+sep	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	22,075 ^a	1	,000		
Corrección por continuidad ^b	20,556	1	,000		
Razón de verosimilitudes	22,656	1	,000		
Estadístico exacto de Fisher				,000	,000
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 23,73.
- b. Calculado sólo para una tabla de 2x2.

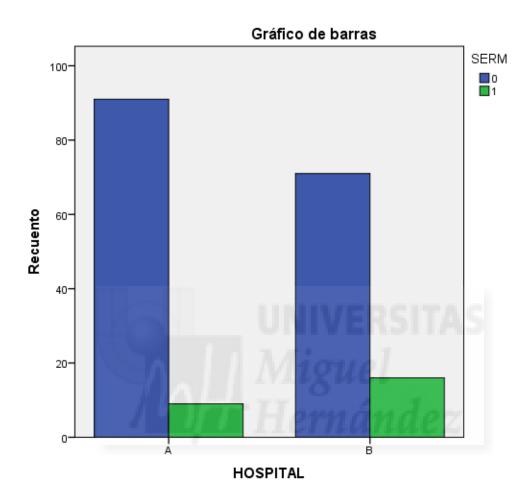

HOSPITAL * **SERM**

Tabla de contingencia

			SE	RM	Total
			0	1	
		Recuento	91	9	100
	A	Frecuencia esperada	86,6	13,4	100,0
	A	% dentro de HOSPITAL	91,0%	9,0%	100,0%
HOSPITAL		% dentro de SERM	56,2%	36,0%	53,5%
HOSPITAL		Recuento	71	16	87
	В	Frecuencia esperada	75,4	11,6	87,0
	Ь	% dentro de HOSPITAL	81,6%	18,4%	100,0%
		% dentro de SERM	43,8%	64,0%	46,5%
		Recuento	162	25	187
Total		Frecuencia esperada	162,0	25,0	187,0
Total		% dentro de HOSPITAL	86,6%	13,4%	100,0%
		% dentro de SERM	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	3,543 ^a	1	,060		
Corrección por continuidad ^b	2,778	1	,096		
Razón de verosimilitudes	3,557	1	,059		
Estadístico exacto de Fisher				,084	,048
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 11,63.
- b. Calculado sólo para una tabla de 2x2.

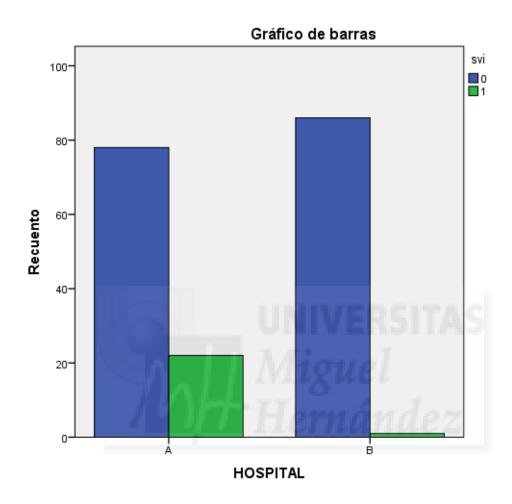

HOSPITAL * svi

Tabla de contingencia

			svi		Total
			0	1	
A HOSPITAL B		Recuento	78	22	100
	۸	Frecuencia esperada	87,7	12,3	100,0
	A	% dentro de HOSPITAL	78,0%	22,0%	100,0%
		% dentro de svi	47,6%	95,7%	53,5%
		Recuento	86	1	87
	В	Frecuencia esperada	76,3	10,7	87,0
	Ь	% dentro de HOSPITAL	98,9%	1,1%	100,0%
	% dentro de svi	52,4%	4,3%	46,5%	
Total	Recuento	164	23	187	
		Frecuencia esperada	164,0	23,0	187,0
		% dentro de HOSPITAL	87,7%	12,3%	100,0%
		% dentro de svi	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	18,751 ^a	1	,000		
Corrección por continuidad ^b	16,868	1	,000		
Razón de verosimilitudes	23,144	1	,000		
Estadístico exacto de Fisher				,000	,000
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 10,70.
- b. Calculado sólo para una tabla de 2x2.

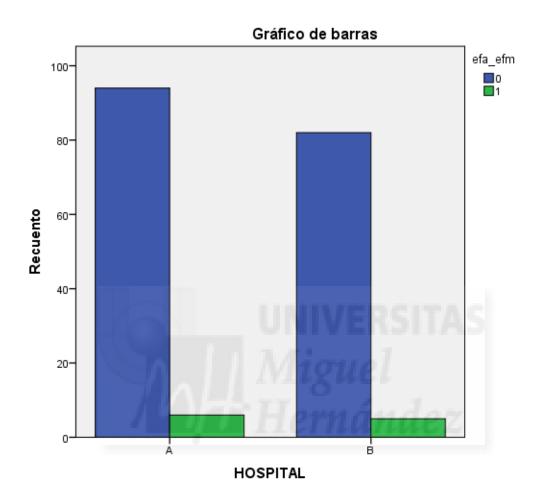

HOSPITAL * efa_efm

Tabla de contingencia

			efa_	efm	Total
			0	1	
		Recuento	94	6	100
	^	Frecuencia esperada	94,1	5,9	100,0
	Α	% dentro de HOSPITAL	94,0%	6,0%	100,0%
LICODITAL		% dentro de efa_efm	53,4%	54,5%	53,5%
HOSPITAL		Recuento	82	5	87
	5	Frecuencia esperada	81,9	5,1	87,0
	В	% dentro de HOSPITAL	94,3%	5,7%	100,0%
		% dentro de efa_efm	46,6%	45,5%	46,5%
		Recuento	176	11	187
Takal		Frecuencia esperada	176,0	11,0	187,0
Total		% dentro de HOSPITAL	94,1%	5,9%	100,0%
		% dentro de efa_efm	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,005 ^a	1	,942		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,005	1	,942		
Estadístico exacto de Fisher				1,000	,596
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 5,12.
- b. Calculado sólo para una tabla de 2x2.

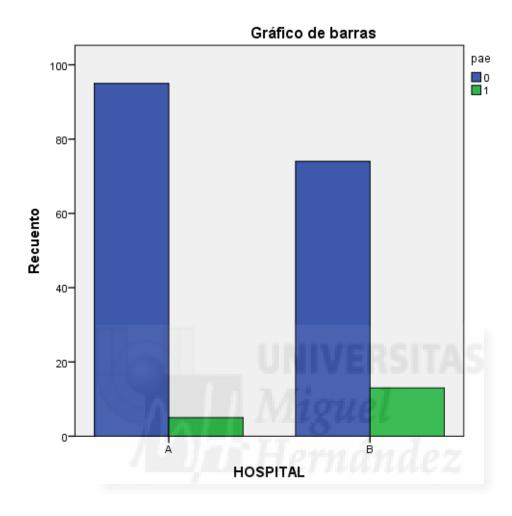

HOSPITAL * pae

Tabla de contingencia

			pa	ae	Total
			0	1	
		Recuento	95	5	100
	Δ.	Frecuencia esperada	90,4	9,6	100,0
	A	% dentro de HOSPITAL	95,0%	5,0%	100,0%
LICODITAL		% dentro de pae	56,2%	27,8%	53,5%
HOSPITAL		Recuento	74	13	87
	Б	Frecuencia esperada	78,6	8,4	87,0
	В	% dentro de HOSPITAL	85,1%	14,9%	100,0%
		% dentro de pae	43,8%	72,2%	46,5%
		Recuento	169	18	187
Takal		Frecuencia esperada	169,0	18,0	187,0
Total		% dentro de HOSPITAL	90,4%	9,6%	100,0%
		% dentro de pae	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	5,287 ^a	1	,021		
Corrección por continuidad ^b	4,206	1	,040		
Razón de verosimilitudes	5,395	1	,020		
Estadístico exacto de Fisher				,026	,020
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 8,37.
- b. Calculado sólo para una tabla de 2x2.

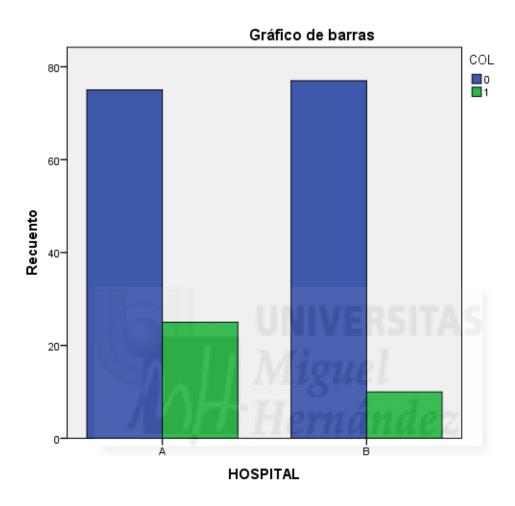

HOSPITAL * COL

Tabla de contingencia

			C	DL	Total
			0	1	
		Recuento	75	25	100
	A	Frecuencia esperada	81,3	18,7	100,0
	A	% dentro de HOSPITAL	75,0%	25,0%	100,0%
HOSPITAL		% dentro de COL	49,3%	71,4%	53,5%
HOSPITAL		Recuento	77	10	87
	В	Frecuencia esperada	70,7	16,3	87,0
	ь	% dentro de HOSPITAL	88,5%	11,5%	100,0%
		% dentro de COL	50,7%	28,6%	46,5%
		Recuento	152	35	187
Total		Frecuencia esperada	152,0	35,0	187,0
iolai		% dentro de HOSPITAL	81,3%	18,7%	100,0%
		% dentro de COL	100,0%	100,0%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	5,578 ^a	1	,018		
Corrección por continuidad ^b	4,726	1	,030		
Razón de verosimilitudes	5,763	1	,016		
Estadístico exacto de Fisher				,024	,014
N de casos válidos	187				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 16,28.
- b. Calculado sólo para una tabla de 2x2.

Objetivo 4. Cambios en el nivel de resistencia.

Las tablas de predicción de resistencia y las gráficas fueron consultadas a través del programa ViResiST, antecesor de Proyecto WebResist, y también se pueden consultar en www.webresist.org.

Objetivo 5. Elaboración de una recomendación de terapia empírica

TABLA DE DATOS.COT-ARI.

Ν	Hospital	Año	Sexo	Edad	MO	Atb prescrito	S Atb	Ер	S_Ep	LEp	S_LEp	EW	S_EW	LEW	S_LEW
1	ARI	2008	M	70	sau	Fluclox	1	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
2	ARI	2008	M	32	sau	Cefalexin	1	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
3	ARI	2008	Н	43	sau	Co-Amoxiclav	1	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
4	ARI	2008	Н	74	eco	Fluclox/BenPen	0	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
5	ARI	2008	Н	92	svi	Cipro	0	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
6	ARI	2008	Н	58	sau	teico/cipro	1	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
7	ARI	2008	Н	65	COL, sau, en-	Fluclox/BenPen	1	VAN+CZ	1	VAN+GE	0	VAN+CO	1	VAN+CO	1
8	ARI	2008	Н	79	ecl, pae, SARM	Fluclox	0	VAN+CZ	1	VAN+GE	0	VAN+CO	0	VAN+CO	0
9	ARI	2008	Н	62	svi	Fluclox	0	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
10	ARI	2008	Н	70	SCN, en-	Clindamycin	1	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
11	ARI	2008	Н	70	sau	Amox/Rifampicin	0	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
12	ARI	2008	M	76	COLI, svi	Fluclox/BenPen	0	VAN+CZ	1	VAN+GE	1	VAN+CO	1	VAN+CO	1
13	ARI	2009	M	59	sau	Cipro	0	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
14	ARI	2009	Н	37	sau	Clindamuycin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
15	ARI	2009	Н	72	pae	Fluclox/Pen V	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
16	ARI	2009	Н	69	pae, sau	Fluclox	0	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
17	ARI	2009	M	62	sau, svi	Fluclox/Fusidate	0	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
18	ARI	2009	M	88	SCN, en-	Fluclox.Rifampicin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	0	GEN+AU	0
19	ARI	2009	Н	58	COL	Co-Amoxiclav	0	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
20	ARI	2009	M	59	svi	Clindamycin	0	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
21	ARI	2009	M	74	SCN	Flucloxacillin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
22	ARI	2009	M	62	COL	Vancomycin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
23	ARI	2009	Н	67	svi	Flucloxacillin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
24	ARI	2009	M	56	svi	Flucloxacillin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
25	ARI	2009	Н	25	sau	Fluclox/Benpen	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
26	ARI	2009	M	56	sau	Clindamycin	0	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
27	ARI	2009	M	54	COL	Cipro	0	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
28	ARI	2009	M	66	sau (SARM)	Vancomycin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
29	ARI	2009	M	69	sau	Fluclox/Rifampicin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
30	ARI	2009	M	86	COL (eco)	Clindamycin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
31	ARI	2009	Н	77	sau	Flucloxacillin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
32	ARI	2009	Н	78	svi	Flucloxacillin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
33	ARI	2009	М	81	sau	Flucloxacillin	1	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
34	ARI	2009	Н	89	sau, eco	Fluclox	0	VAN+CZ	1	VAN+GE	1	GEN+AU	1	GEN+AU	1
35	ARI	2010	Н	76	sau	Fluclox	0	VAN+CZ	1	VAN+GE	1	VAN+PT	1	GEN+CO	1
36	ARI	2010	Н	71	sep	Fluclox &	1	VAN+CZ	1	VAN+GE	1	VAN+PT	1	GEN+CO	1

Abreviaturas 17: S Atb: sensibilidad al antibiótico prescrito, Ep: recomendación del experto, LEp: recomendación del experto local, EW: elección del experto entre las recomendaciones de Webresist, LEW, elección del experto local entre las recomendaciones de Webresist.

TABLA DE DATOS.COT-HVB.

Ν	Hospital	Año	Sexo	Edad	MO	Atb prescrito	S Atb	Ер	S_Ep	LEp	S_LEp	EW	S_EW	LEW	S_LEW
1	HVB	2008	Н	66	sau	KT	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
2	HVB	2008	Н	79	ecl	KT	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
3	HVB	2008	М	75	pau	LNZ+RIF	0	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
4	HVB	2008	Н	74	sau	AMC	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
5	HVB	2008	Н	75	sep	KT	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
6	HVB	2008	Н	66	pau	AMC+KT	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
7	HVB	2008	Н	53	sau	AMC	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
8	HVB	2008	Н	71	SCN	KT	0	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
9	HVB	2008	М	62	sau	AMC+CIP	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
10	HVB	2008	Н	78	sep	VAN	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
11	HVB	2008	Н	37	sma	KT	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
12	HVB	2008	Н	55	ppt	KT	0	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
13	HVB	2008	М	80	pau, pr-	KT	1	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
14	HVB	2008	М	75	sep	OFLOX+RIF	0	VAN+GEN	1	VAN+CAZ	1	VAN+GEN	1	VAN+CAZ	1
15	HVB	2009	Н	70	eco	OFLOX	0	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
16	HVB	2009	Н	87	sep, sau	LNZ+VAN+TOB	1	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
17	HVB	2009	Н	33	pau, sep, SCN	CIP	0	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
18	HVB	2009	Н	23	ecl, sau	CIP+RIF	1	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
19	HVB	2009	М	76	cor	CIP	1	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
20	HVB	2009	Н	70	sep, efa	CIP+RIF	0	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
21	HVB	2009	М	71	sma, SCN	OFLOX	0	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
22	HVB	2009	Н	65	sep	AMC	1	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
23	HVB	2009	М	64	SCN	CIP	1	VAN+GEN	1	VAN+TZP	1	VAN+TZP	1	VAN+TZP	1
24	HVB	2010	Н	67	sep	KT	1	VAN+GEN	1	VAN+TZP	1	VAN+GEN	1	VAN+TZP	1

Abreviaturas 18: S Atb: sensibilidad al antibiótico prescrito, Ep: recomendación del experto, LEp: recomendación del experto local, EW: elección del experto entre las recomendaciones de Webresist, LEW, elección del experto local entre las recomendaciones de Webresist.

Objetivo 6. Puesta en marcha, efectividad y grado de adhesión a una recomendación.

La Tabla de datos es la correspondiente al Objetivo 7.

Objetivo 7. Factores que pueden influir en la resolución del cuadro clínico.

TABLA DE DATOS.

N A	Año S	Sexo	Edad	Tipo	Qx Electiva	A/O	MO	Q Atb prescri	Sigue Rec	S Atb	DAIR	EMOyEsp	Resultado	Resol Bino
1 2	2010	Н	67	Α	N	0	sep	KT	N	1	S	S	Α	0
2 2	2010	Н	66	Α	S	Α	sep	AMC	N	0	S	N	Rs	1
3 2	2010	М	70	С	N	0	pae	CAZ+TOB	S	1	N	S	Rc	1
4 2	2010	М	64	Α	S	0	sau	VAN+TOB	S	1	S	N	Rs	1
	2010	Н	39	Α	N	0	ecl	CIP+RIF	N	1	N	N	Rs	1
-	2010	М	61	С	S	Α	sep	VAN+CAZ	S	1	N	S	Rc	1
	2011	М	8	A	N	0	sau	VAN+CAZ	S	1	N	N	Rs	1
	2011	Н	35	С	S	0	sau	CIP	N	1	S	S	Rs	1
	2011	М	60	С	S	0	SCN, sau	VAN	S	1	S	S	Rs	1
-				С	S						S			
10 2	_	M	50			A	SCN, cor	KT	N	1	-	N	Rs	1
11 2		H	19	Α	S	0	pau	CIP+RIF	N	1	S	S	Rs	1
12 2	_	Н	78	С	S	Α	sep	VAN+TOB	S	1	N	S	Rc	1
13 2		М	65	С	S	Α	sep, sma	KT	N	0	N	S	Rc	1
14 2		Н	66	Α	S	Α	ecl	VAN+CAZ	S	1	S	N	Rc	0
15 2	2011	М	42	С	N	0	kpn, sep, SCN	KT	N	0	S	S	G	0
16 2	2011	Н	78	С	S	Α	sep	CIP	N	0	N	S	Е	0
17 2	2011	Н	76	Α	S	Α	sau	VAN+CAZ	S	1	S	N	Rs	1
18 2	2011	М	69	Α	S	Α	sau	CIP	N	1	S	N	Rs	1
19 2	2011	М	46	Α	S	Α	sma, sep	VAN+CAZ	S	1	S	N	Rs	1
20 2	2011	Н	65	Α	S	Α	рер	OFLOX	N	0	N	S	Rc	1
21 2	2011	М	61	Α	N	0	sau	VAN+CAZ	S	1	S	Si	Rs	1
22 2	2011	Н	82	Α	N	Α	sau	VAN+CAZ	S	1	N	S	Rs	1
23 2		Н	71	С	S	Α	sep	CIP+RIF	N	1	S	N	Rs	1
	2012	М	82	Α	S	Α	sau, sep	CIP+RIF	N	1	S	S	Rc	1
25 2		М	70	Α	S	Α	prop, pep	CIP	N	1	S	N	Rs	1
26 2	_	M	72	A	N	0	pau, eco	CIP+RIF	N	0	S	S	Rs	1
	2012	М	79	Α	S	A	sep	VAN+CAZ	S	1	N	S	Rc	1
28 2	_	Н	15	Α	S	0	pau	KT+CIP	N	1	N	S	Rs	1
29 2	_	М	80	С	S	Α	sep	KT	N	0	N	S	E	0
30 2	_	Н	63	С	S	Α	SCN	VAN+CAZ	S	1	S	N	Rs	1
31 2	2012	М	48	Α	N	0	sau	KT	N	1	N	S	Rs	1
32 2	2012	Н	52	Α	N	0	en-	OFLOX+RIF	N	1	S	N	Rs	1
33 2	2012	Н	41	Α	S	0	sau	VAN+Ceftria	S	1	S	Si	Rs	1
34 2	2012	М	70	Α	S	Α	pau	CIP+TOB	N	1	S	N	Rs	1
35 2	2012	М	69	Α	S	0	sau	VAN	S	1	N	S	Rs	1
36 2	2012	Н	78	Α	S	Α	prop, SCN	VAN+CAZ	S	1	S	N	Rs	1
37 2	2012	М	81	С	S	Α	cor, sep	VAN+CAZ	S	1	S	N	TS	0
38 2	2012	Н	32	Α	S	0	sau	AMC	N	0	S	N	Rs	1
39 2	2013	Н	75	Α	S	Α	prop	KT	N	1	N	S	Rc	1
40 2	2013	Н	64	С	N	0	sau, en-	VAN+CAZ	S	1	S	S	Rs	1
41 2	2013	Н	24	Α	S	0	sau	AMC+Ceftria	N	1	S	N	PS	0
42 2		М	83	Α	N	0	SCN	VAN	S	1	N	S	Rs	1
43 2	_	М	58	Α	N	0	sep, SCN	VAN+CIP	S	1	S	N	Rs	1
44 2	_	Н	74	С	S		sep	VAN+CAZ	S	1	S	N	Rs	1
44 2	1013	-''	74	C	J	^	Kpn, efa,	VAINTCAZ	3		3	IN	1/2	1
45 2	0014		62	_	c	_		CIDATOR	_	1	NI NI	NI NI	Do	1
45 2	2014	Н	63	С	S	0	mmo	CIP+TOB	S	- 1	N	N	Rs	1
				_	_		sep, SCN, sgc,		_					_
46 2	_	Н	74	С	S	Α	efa	VAN+CAZ	S	1	S	S	G	0
47 2	_	Н	39	Α	N	0	sau	VAN+CAZ	S	1	N	N	Rs	1
48 2	_	Н	49	Α	N	0	ecl	CAZ	N	0	N	N	Rs	1
49 2	2014	М	65	Α	S	Α	pae, pr-, efa	VAN+CAZ	S	1	N	S	E	0
IFO											_		a contract of the contract of	
50 2	2014	М	65	Α	S	Α	sau	VAN+CAZ	S	1	S	N S	E	0

Abreviaturas 19: DAIR: desbridamiento y reteción del implante. Resultado: A: Artrodesis, Rs: Resolución, Rc: Recambio, G: Girdlestone, E: espaciador definitivo, TS: terapia supresiva.

CÁLCULOS ESTADÍSTICOS OBJETIVO 7.

Tablas de contingencia Factores Riesgo vs Resolución

Resumen del procesamiento de los casos

			Ca	asos		
	Vá	lidos	Per	didos	Т	otal
	N	Porcentaje	N	Porcentaje	N	Porcentaje
>60años * Resol Bino	51	100,0%	0	0,0%	51	100,0%
Linfopenia * Resol Bino	51	100,0%	0	0,0%	51	100,0%
Qx>120min * Resol Bino	51	100,0%	0	0,0%	51	100,0%
Tsukuyama * Resol Bino	51	100,0%	0	0,0%	51	100,0%
Cirugía electiva S/N * Resol Bino	51	100,0%	0	0,0%	51	100,0%
A/O * Resol Bino	51	100,0%	0	0,0%	51	100,0%
BGN * Resol Bino	51	100,0%	0	0,0%	51	100,0%
PM * Resol Bino	51	100,0%	0	0,0%	51	100,0%
S Atb prescrito * Resol Bino	51	100,0%	0	0,0%	51	100,0%
Hubiera Seguido Rec * Resol Bino	51	100,0%	0	0,0%	51	100,0%
DAIR * Resol Bino	51	100,0%	0	0,0%	51	100,0%
EMOyEsp * Resol Bino	51	100,0%	0	0,0%	51	100,0%

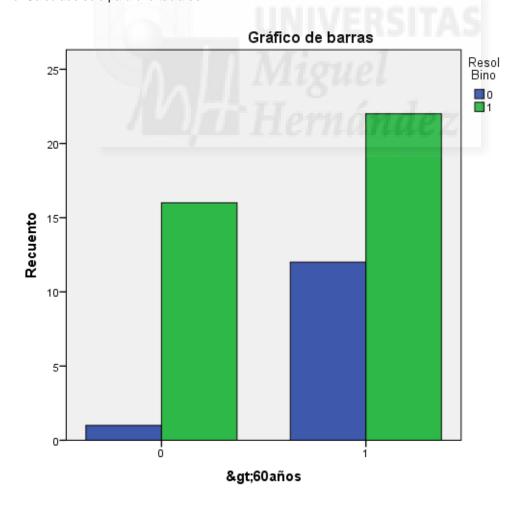
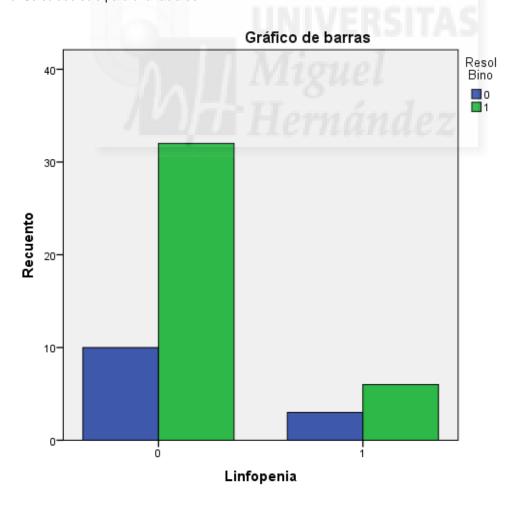

60años * Resol Bino

Tabla de contingencia

			Reso	l Bino	Total
			0	1	
	5	Recuento	1	16	17
		Frecuencia esperada	4,3	12,7	17,0
	0	% dentro de >60años	5,9%	94,1%	100,0%
	0	% dentro de Resol Bino	7,7%	42,1%	33,3%
		% del total	2,0%	31,4%	33,3%
0 4 00 ~		Residuos corregidos	-2,3	2,3	
>60años		Recuento	12	22	34
		Frecuencia esperada	8,7	25,3	34,0
		% dentro de >60años	35,3%	64,7%	100,0%
	1	% dentro de Resol Bino	92,3%	57,9%	66,7%
		% del total	23,5%	43,1%	66,7%
		Residuos corregidos	2,3	-2,3	
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de >60años	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	5,162 ^a	1	,023		
Corrección por continuidad ^b	3,730	1	,053		
Razón de verosimilitudes	6,146	1	,013		
Estadístico exacto de Fisher				,038	,022
Asociación lineal por lineal	5,061	1	,024		
N de casos válidos	51				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 4,33.
- b. Calculado sólo para una tabla de 2x2.

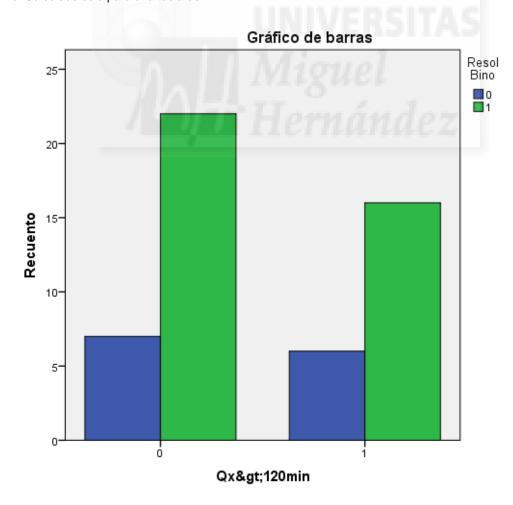


Linfopenia * Resol Bino

			Reso	l Bino	Total
			0	1	
		Recuento	10	32	42
		Frecuencia esperada	10,7	31,3	42,0
	0	% dentro de Linfopenia	23,8%	76,2%	100,0%
	U	% dentro de Resol Bino	76,9%	84,2%	82,4%
		% del total	19,6%	62,7%	82,4%
Linfononio		Residuos corregidos	-,6	,6	
Linfopenia		Recuento	3	6	9
		Frecuencia esperada	2,3	6,7	9,0
		% dentro de Linfopenia	33,3%	66,7%	100,0%
	1	% dentro de Resol Bino	23,1%	15,8%	17,6%
		% del total	5,9%	11,8%	17,6%
		Residuos corregidos	,6	-,6	
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de Linfopenia	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,354ª	1	,552		
Corrección por continuidad ^b	,030	1	,862		
Razón de verosimilitudes	,338	1	,561		
Estadístico exacto de Fisher				,676	,414
Asociación lineal por lineal	,347	1	,556		
N de casos válidos	51				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 2,29.
- b. Calculado sólo para una tabla de 2x2.

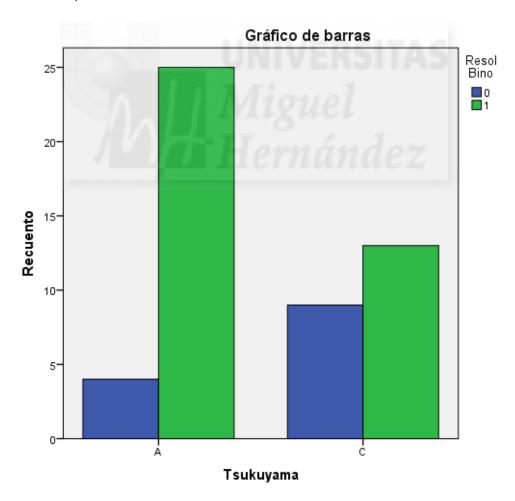


Qx>120min * Resol Bino

			Reso	l Bino	Total
			0	1	
		Recuento	7	22	29
		Frecuencia esperada	7,4	21,6	29,0
	0	% dentro de Qx>120min	24,1%	75,9%	100,0%
	0	% dentro de Resol Bino	53,8%	57,9%	56,9%
		% del total	13,7%	43,1%	56,9%
0.08		Residuos corregidos	-,3	,3	
Qx>120min		Recuento	6	16	22
	1	Frecuencia esperada	5,6	16,4	22,0
		% dentro de Qx>120min	27,3%	72,7%	100,0%
		% dentro de Resol Bino	46,2%	42,1%	43,1%
		% del total	11,8%	31,4%	43,1%
		Residuos corregidos	,3	-,3	
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de Qx>120min	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,065 ^a	1	,799		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,065	1	,799		
Estadístico exacto de Fisher				1,000	,525
Asociación lineal por lineal	,063	1	,801		
N de casos válidos	51				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 5,61.
- b. Calculado sólo para una tabla de 2x2.

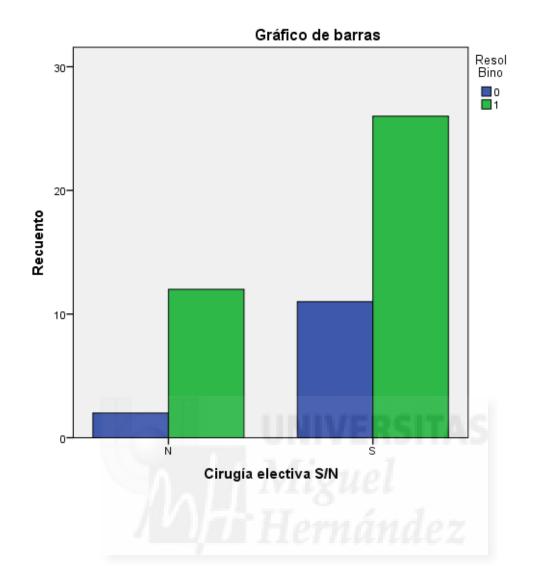


Tsukuyama * Resol Bino

			Reso	l Bino	Total
			0	1	
		Recuento	4	25	29
		Frecuencia esperada	7,4	21,6	29,0
	A	% dentro de Tsukuyama	13,8%	86,2%	100,0%
	А	% dentro de Resol Bino	30,8%	65,8%	56,9%
		% del total	7,8%	49,0%	56,9%
Taulumana		Residuos corregidos	-2,2	2,2	
Tsukuyama		Recuento	9	13	22
	% der	Frecuencia esperada	5,6	16,4	22,0
		% dentro de Tsukuyama	40,9%	59,1%	100,0%
		% dentro de Resol Bino	69,2%	34,2%	43,1%
		% del total	17,6%	25,5%	43,1%
		Residuos corregidos	2,2	-2,2	
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de Tsukuyama	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	4,843 ^a	1	,028		
Corrección por continuidad ^b	3,521	1	,061		
Razón de verosimilitudes	4,865	1	,027		
Estadístico exacto de Fisher				,050	,030
N de casos válidos	51				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 5,61.
- b. Calculado sólo para una tabla de 2x2.


Cirugía electiva S/N * Resol Bino

			Reso	l Bino	Total
			0	1	
		Recuento	2	12	14
		Frecuencia esperada	3,6	10,4	14,0
	N	% dentro de Cirugía electiva S/N	14,3%	85,7%	100,0%
		% dentro de Resol Bino	15,4%	31,6%	27,5%
		% del total	3,9%	23,5%	27,5%
Circurá a alactiva C/N		Residuos corregidos	-1,1	1,1	
Cirugía electiva S/N		Recuento	11	26	37
		Frecuencia esperada	9,4	27,6	37,0
	S	% dentro de Cirugía electiva S/N	29,7%	70,3%	100,0%
		% dentro de Resol Bino	84,6%	68,4%	72,5%
		% del total	21,6%	51,0%	72,5%
		Residuos corregidos	1,1	-1,1	
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de Cirugía electiva S/N	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	1,276 ^a	1	,259		
Corrección por continuidad ^b	,592	1	,442		
Razón de verosimilitudes	1,385	1	,239		
Estadístico exacto de Fisher				,472	,225
N de casos válidos	51				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 3,57.
- b. Calculado sólo para una tabla de 2x2.

A/O * Resol Bino

Tabla de contingencia

			Reso	l Bino	Total
			0	1	
		Recuento	11	17	28
		Frecuencia esperada	7,1	20,9	28,0
	Α	% dentro de A/O	39,3%	60,7%	100,0%
	А	% dentro de Resol Bino	84,6%	44,7%	54,9%
		% del total	21,6%	33,3%	54,9%
A/O		Residuos corregidos	2,5	-2,5	
A/O		Recuento	2	21	23
		Frecuencia esperada	5,9	17,1	23,0
	0	% dentro de A/O	8,7%	91,3%	100,0%
	O	% dentro de Resol Bino	15,4%	55,3%	45,1%
		% del total	3,9%	41,2%	45,1%
		Residuos corregidos	-2,5	2,5	
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total	otal	% dentro de A/O	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	6,221 ^a	1	,013		
Corrección por continuidad ^b	4,715	1	,030		
Razón de verosimilitudes	6,790	1	,009		
Estadístico exacto de Fisher				,022	,013
N de casos válidos	51				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 5,86.
- b. Calculado sólo para una tabla de 2x2.

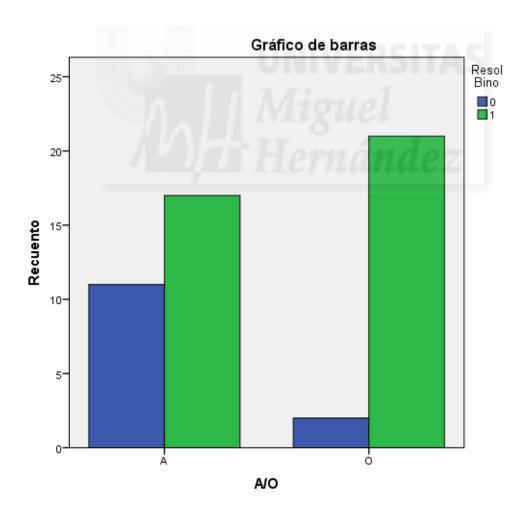
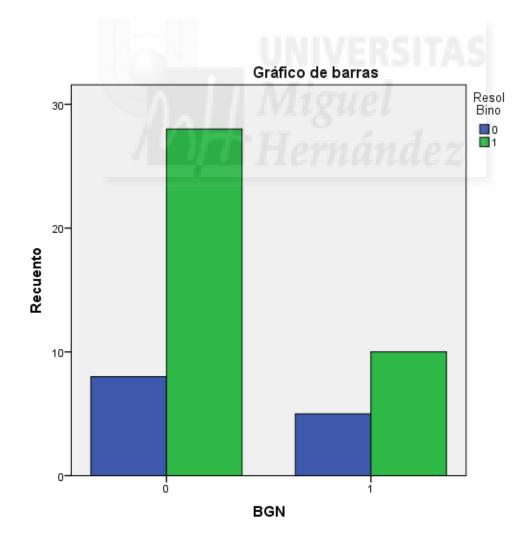



Tabla de contingencia

			Reso	l Bino	Total
			0	1	
		Recuento	8	28	36
		Frecuencia esperada	9,2	26,8	36,0
	0	% dentro de BGN	22,2%	77,8%	100,0%
	0	% dentro de Resol Bino	61,5%	73,7%	70,6%
		% del total	15,7%	54,9%	70,6%
DCN		Residuos corregidos	-,8	,8	
DGIN	BGN	Recuento	5	10	15
		Frecuencia esperada	3,8	11,2	15,0
	4	% dentro de BGN	33,3%	66,7%	100,0%
	1	% dentro de Resol Bino	38,5%	26,3%	29,4%
		% del total	9,8%	19,6%	29,4%
		Residuos corregidos	,8	-,8	MC 77
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de BGN	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,688ª	1	,407		
Corrección por continuidad ^b	,228	1	,633		
Razón de verosimilitudes	,667	1	,414		
Estadístico exacto de Fisher				,487	,311
Asociación lineal por lineal	,675	1	,411		
N de casos válidos	51				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 3,82.
- b. Calculado sólo para una tabla de 2x2.

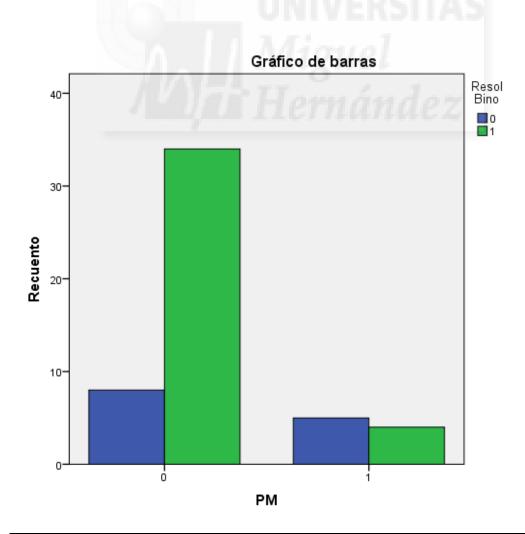

PM * Resol Bino

Tabla de contingencia

-			Reso	l Bino	Total
			0	1	
		Recuento	8	34	42
		Frecuencia esperada	10,7	31,3	42,0
	0	% dentro de PM	19,0%	81,0%	100,0%
	0	% dentro de Resol Bino	61,5%	89,5%	82,4%
		% del total	15,7%	66,7%	82,4%
PM		Residuos corregidos	-2,3	2,3	
PIVI		Recuento	5	4	9
		Frecuencia esperada	2,3	6,7	9,0
	4	% dentro de PM	55,6%	44,4%	100,0%
	1	% dentro de Resol Bino	38,5%	10,5%	17,6%
		% del total	9,8%	7,8%	17,6%
		Residuos corregidos	2,3	-2,3	1102
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de PM	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	5,201 ^a	1	,023		
Corrección por continuidad ^b	3,457	1	,063		
Razón de verosimilitudes	4,635	1	,031		
Estadístico exacto de Fisher				,036	,036
Asociación lineal por lineal	5,099	1	,024		
N de casos válidos	51				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 2,29.
- b. Calculado sólo para una tabla de 2x2.

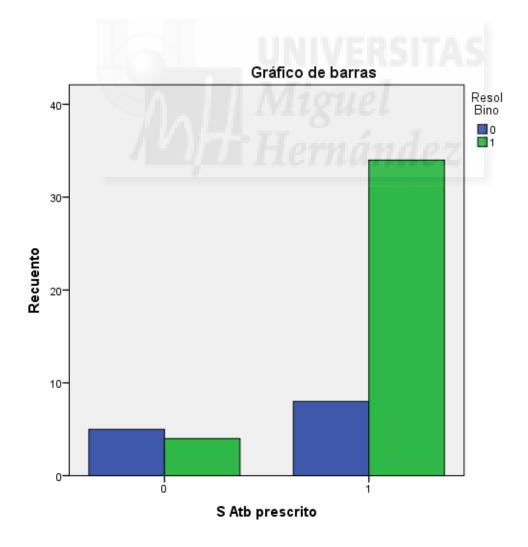
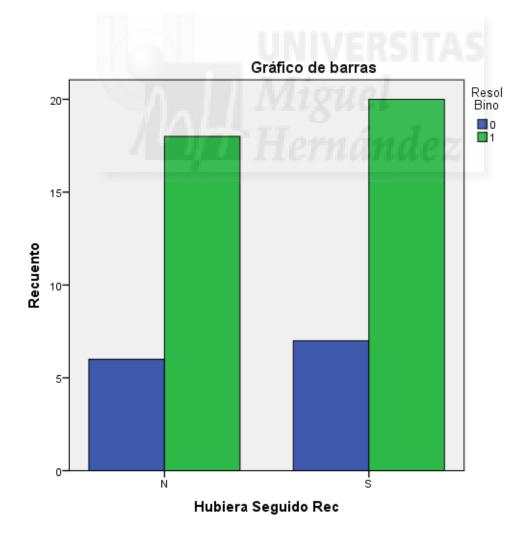

S Atb prescrito * Resol Bino

Tabla de contingencia

			Reso	l Bino	Total
			0	1	
		Recuento	5	4	9
		Frecuencia esperada	2,3	6,7	9,0
	0	% dentro de S Atb prescrito	55,6%	44,4%	100,0%
	0	% dentro de Resol Bino	38,5%	10,5%	17,6%
		% del total	9,8%	7,8%	17,6%
C Ath proporito		Residuos corregidos	2,3	-2,3	
S Atb prescrito		Recuento	8	34	42
		Frecuencia esperada	10,7	31,3	42,0
	1	% dentro de S Atb prescrito	19,0%	81,0%	100,0%
		% dentro de Resol Bino	61,5%	89,5%	82,4%
		% del total	15,7%	66,7%	82,4%
		Residuos corregidos	-2,3	2,3	
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de S Atb prescrito	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	5,201 ^a	1	,023		
Corrección por continuidad ^b	3,457	1	,063		
Razón de verosimilitudes	4,635	1	,031		
Estadístico exacto de Fisher				,036	,036
Asociación lineal por lineal	5,099	1	,024		
N de casos válidos	51				

- a. 1 casillas (25,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 2,29.
- b. Calculado sólo para una tabla de 2x2.



Hubiera Seguido Rec * Resol Bino

		Reso	l Bino	Total
		0	1	
	Recuento	6	18	24
	Frecuencia esperada	6,1	17,9	24,0
N	% dentro de Hubiera Seguido Rec	25,0%	75,0%	100,0%
	% dentro de Resol Bino	46,2%	47,4%	47,1%
	% del total	11,8%	35,3%	47,1%
Hubiera Seguido Rec	Residuos corregidos	-,1	,1	
nublera Seguldo Rec	Recuento	7	20	27
10	Frecuencia esperada	6,9	20,1	27,0
S	% dentro de Hubiera Seguido Rec	25,9%	74,1%	100,0%
7 100	% dentro de Resol Bino	53,8%	52,6%	52,9%
	% del total	13,7%	39,2%	52,9%
	Residuos corregidos	,1	-,1	
	Recuento	13	38	51
	Frecuencia esperada	13,0	38,0	51,0
Total	% dentro de Hubiera Seguido Rec	25,5%	74,5%	100,0%
	% dentro de Resol Bino	100,0%	100,0%	100,0%
	% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	,006 ^a	1	,940		
Corrección por continuidad ^b	,000	1	1,000		
Razón de verosimilitudes	,006	1	,940		
Estadístico exacto de Fisher				1,000	,598
N de casos válidos	51				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 6,12.
- b. Calculado sólo para una tabla de 2x2.

ANEXOS

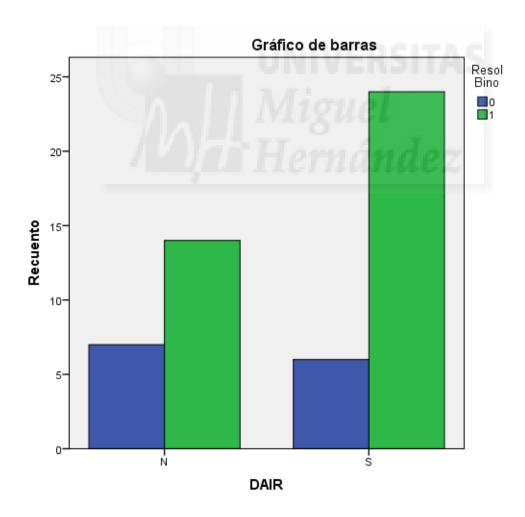

DAIR * Resol Bino

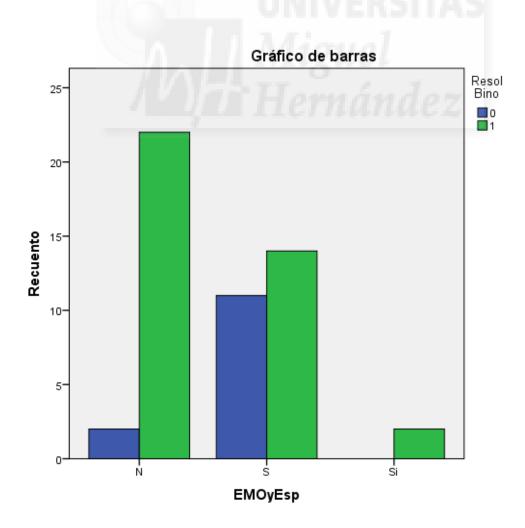
Tabla de contingencia

			Reso	l Bino	Total
			0	1	
		Recuento	7	14	21
		Frecuencia esperada	5,4	15,6	21,0
	N	% dentro de DAIR	33,3%	66,7%	100,0%
	IN	% dentro de Resol Bino	53,8%	36,8%	41,2%
		% del total	13,7%	27,5%	41,2%
DAID		Residuos corregidos	1,1	-1,1	
DAIR	DAIR	Recuento	6	24	30
		Frecuencia esperada	7,6	22,4	30,0
	S	% dentro de DAIR	20,0%	80,0%	100,0%
	5	% dentro de Resol Bino	46,2%	63,2%	58,8%
		% del total	11,8%	47,1%	58,8%
		Residuos corregidos	-1,1	1,1	
		Recuento	13	38	51
		Frecuencia esperada	13,0	38,0	51,0
Total		% dentro de DAIR	25,5%	74,5%	100,0%
		% dentro de Resol Bino	100,0%	100,0%	100,0%
		% del total	25,5%	74,5%	100,0%

	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	1,156 ^a	1	,282		
Corrección por continuidad ^b	,561	1	,454		
Razón de verosimilitudes	1,143	1	,285		
Estadístico exacto de Fisher				,338	,226
N de casos válidos	51				

- a. 0 casillas (0,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 5,35.
- b. Calculado sólo para una tabla de 2x2.

EMOyEsp * Resol Bino


			Reso	l Bino	Total
			0	1	
		Recuento	2	22	24
		Frecuencia esperada	6,1	17,9	24,0
	N	% dentro de EMOyEsp	8,3%	91,7%	100,0%
	IN	% dentro de Resol Bino	15,4%	57,9%	47,1%
		% del total	3,9%	43,1%	47,1%
		Residuos corregidos	-2,7	2,7	
		Recuento	11	14	25
		Frecuencia esperada	6,4	18,6	25,0
EMOyEsp	S	% dentro de EMOyEsp	44,0%	56,0%	100,0%
EIWIOYESP	3	% dentro de Resol Bino	84,6%	36,8%	49,0%
		% del total	21,6%	27,5%	49,0%
		Residuos corregidos	3,0	-3,0	
		Recuento	0	2	2
		Frecuencia esperada	,5	1,5	2,0
	Si	% dentro de EMOyEsp	0,0%	100,0%	100,0%
	SI	% dentro de Resol Bino	0,0%	5,3%	3,9%
		% del total	0,0%	3,9%	3,9%
		Residuos corregidos	-,8	,8	
		Recuento	13	38	51
Total		Frecuencia esperada	13,0	38,0	51,0
		% dentro de EMOyEsp	25,5%	74,5%	100,0%

% dentro de Resol Bino	100,0%	100,0%	100,0%
% del total	25,5%	74,5%	100,0%

Pruebas de chi-cuadrado

	Valor	gl	Sig. asintótica (bilateral)
Chi-cuadrado de Pearson	8,914 ^a	2	,012
Razón de verosimilitudes	9,836	2	,007
N de casos válidos	51		

a. 2 casillas (33,3%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es ,51.

Prueba T

Estadísticos de grupo

	Resol Bino	N	Media	Desviación típ.	Error típ. de la media
Edod	0	13	71,00	11,225	3,113
Edad	1	38	56,74	19,187	3,113

Prueba de muestras independientes

			evene para la e varianzas	Prueba T para la igualdad de medias	
		F Sig. t			gl
Edad	Se han asumido varianzas iguales	4,827	,033	2,526	49
No se han asumido varianzas iguales		Her	nánd	3,240	36,237

Prueba de muestras independientes

			Prueba T para la igualdad de medias					
		Sig. (bilateral)	Diferencia de medias	Error típ. de la diferencia	95% Intervalo de confianza para la diferencia			
					Inferior			
Edad	Se han asumido varianzas iguales	,015	14,263	5,647	2,916			
Luau	No se han asumido varianzas iguales	,003	14,263	4,402	5,337			

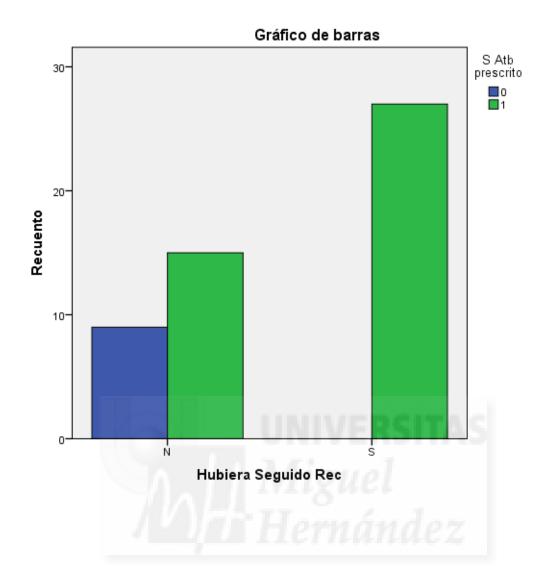
Prueba de muestras independientes

		Prueba T para la igualdad de medias
		95% Intervalo de confianza para la diferencia
		Superior
Edad	Se han asumido varianzas iguales	25,611
Luau	No se han asumido varianzas iguales	23,189

Tablas de contingencia. S_ATB_Prescrito_Seguir Recomendación.

Tabla de contingencia Hubiera Seguido Rec * S Atb prescrito

		ONIVE	S Atb p	rescrito	Total
		Migu	0	1	
/	7)	Recuento	9	15	24
		Frecuencia esperada	4,2	19,8	24,0
	N	% dentro de Hubiera Seguido Rec	37,5%	62,5%	100,0%
		% dentro de S Atb prescrito	100,0%	35,7%	47,1%
		% del total	17,6%	29,4%	47,1%
Hubiera Seguido Rec	Recuen Frecuer S % de	Residuos corregidos	3,5	-3,5	
		Recuento	0	27	27
		Frecuencia esperada	4,8	22,2	27,0
		% dentro de Hubiera Seguido Rec	0,0%	100,0%	100,0%
		% dentro de S Atb prescrito	0,0%	64,3%	52,9%


	% del total	0,0%	52,9%	52,9%
	Residuos corregidos	-3,5	3,5	
	Recuento	9	42	51
	Frecuencia esperada	9,0	42,0	51,0
Total	% dentro de Hubiera Seguido Rec	17,6%	82,4%	100,0%
	% dentro de S Atb prescrito	100,0%	100,0%	100,0%
	% del total	17,6%	82,4%	100,0%

Pruebas de chi-cuadrado

16	Valor	gl	Sig. asintótica (bilateral)	Sig. exacta (bilateral)	Sig. exacta (unilateral)
Chi-cuadrado de Pearson	12,295 ^a	1	,000		
Corrección por continuidad ^b	9,850	1	,002	lez	
Razón de verosimilitudes	15,777	1	,000		
Estadístico exacto de Fisher				,000	,000
N de casos válidos	51				

a. 2 casillas (50,0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 4,24.

b. Calculado sólo para una tabla de 2x2.

ANEXO III. ANTIBIÓTICOS MÁS UTILIZADOS.(4)

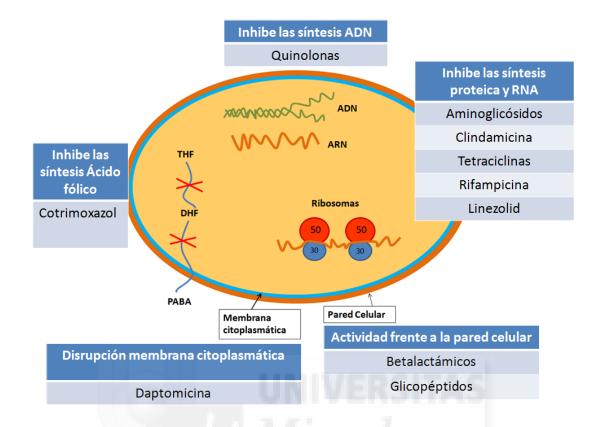


Figura 11. Mecanismo de acción de los antibióticos.

Abreviaturas: PABA: ácido paraminobenzoico, dihidrofolato, tetrahidrofolato (Ácido fólico).

ACTIVIDAD FRENTE A LA PARED CELULAR

BETALACTÁMICOS

Los betalactámicos bloquean la actividad transpeptidasa de las proteínas de unión a penicilina (PBP). Estos antibióticos son bactericidas y tiempo-dependientes. El máximo efecto se consigue cuando las concentraciones libres en suero son el cuádruple de concentración mínima inhibitoria (CMI) por lo menos 40 % en carbapenems, 50% en penicilinas, 60% en cefalosporinas en el intervalo entre dos dosis consecutivas (T>CMI).

La evidencia sugiere que en infecciones severas el máximo efecto se alcanza cuando la concentración sérica de betalactámicos es del 100% sobre el CMI. El espectro antimicrobiano de los grupos betalactámicos incluye penicilinas, cefalosporinas y carbapenems como se muestra en la Tabla XXIII. Los fármacos más activos frente al *S. Aureus* sensible a betalactámicos son las penicilinas resistentes a penicilnasa (meticilina, oxacilina o flucloxacilina) seguida de cefazolina que es usada para el tratamiento y la profilaxis. El *S.*

Aureus produce cuatro tipos diferentes de penicilasas (A, B, C, D), siendo las cepas productoras de penicilnasa tipo A sensibles a cefazolina; este hecho se asocia con el fallo en la profilaxis (105) y el tratamiento en infecciones agudas cuando existe una alta concentración bacteriana inoculada y no está planeado retirar el implante (106).

Las dosis recomendadas y la vía de administración de betalactámicos se muestran en la Tabla XXIV. La mayoría de betalactámicos tienen una vida media corta y suelen ser administrados varias veces al día o en perfusión continua (107) (108) para alcanzar un índice farmacodinámico (T>CMI). La mayoría de los estudios sobre los betalactámicos y los inhibidores de las betalactamasas (ácido clavulánico, tazobactam, sulbactam) muestran una concentración en hueso del 10-30% de la concentración sérica (109).

La actividad de los betalactámicos contra bacterias gram positivas y gram negativas en el biofilms es limitada. La actividad de penicilinas (penicilinas y oxacilinas), cefalosporinas (cefazolina), y carbapenems (imipenem) frente a bacterias planctónicas y biofilms de *S. Aureus* y *P. Aeuruginosa* ha sido estudiada en el laboratorio (110) (111). La concentración necesaria para erradicar los biofilms fue en general cien veces mayor que la precisada para erradicar las poblaciones planctónicas. La eficacia frente es limitada especialmente frente a las variantes de colonia pequeña (SCV) (112), éstas son capaces de presentar localización intracelular (ya que al secretar menos alfa-toxina no inducen la lisis celular y se pueden localizar en las células endoteliales, fibroblastos u osteoblastos), lo que les permite tener un escudo ante los fagocitos y células de ataque macrófagos, así como también disminuye su exposición a los antibióticos. Por otra parte, la reducción en el transporte de electrones disminuye el gradiente electroquímico en la membrana bacteriana por lo que disminuye el aporte antibiótico asociado a la eficacia de cargas positivas (aminoglucósidos) y el crecimiento lento dificulta la acción de los beta-lactámicos.

Estos datos sugieren que los betalactámicos son buenos fármacos frente a las infecciones agudas, donde las bacterias planctónicas son la población bacteriana dominante pero su eficacia es limitada para erradicar biofilms. Además, son más recomendables otras alternativas para terapias de larga duración, por los efectos adversos que pueden presentar los betalactámicos. Entre ellos, los más relevantes son reacciones alérgicas inmediatas mediadas por Ig E (edema angioneurótico, broncoespasmo, hipotensión y urticaria), éstas se han recogido en el 0.01% de los pacientes que recibían derivados de la penicilina. El 10% de los pacientes con alergia a la penicilina son también alérgicos a las cefalosporinas. Las alteraciones gastrointestinales están asociadas a betalactámicos orales como náuseas, vómitos y diarrea no

específica o diarrea asociada al *Clostridium difficile*. En pacientes con un tratamiento superior a 10 días con dosis mayores a 150 mg/kg/día, la neutropenia es un efecto secundario hematológico potencial. Los betalactámicos, especialmente imipenem o cefepime, en altas dosis y en pacientes con fallo renal, están asociados a riesgo de convulsión.

Tabla XXIII. Descripción de espectro de betalactámicos.

Grupo	Antibióticos	Vía	Actividad predominante
Penicilinas			
Naturales	Penicilina G	lm-iv	GP
	Penicilina V	Oral	
Resistentes a	Meticilina	lm-iv	S. Aureus
penicilasa	Oxacilina	lm-iv	
	Cloxacilina	Im-iv-oral	
Aminopenicilinas	Ampicilina	Im-iv-oral	GP, E. faecalis
	Amoxicilina	Oral	
	Combinación con	Im-iv-oral	GP, <i>E. faecalis</i> , GN,
	Clavulánico- tazobactam		anaerobios
Carboxi y	Piperacilina- tazobactam	lm-iv	GN, P. aeuruginosa, E.
ureidopenicilinas	-NI LINI	VERS	faecalis, anaerobios
Cefalosporinas			
Primera	Cefazolina	lm-iv	GP
generación	Cefalexina	Oral	GP
Segunda	Cefuroxima	Im-iv-oral	GP, GN
generación	Cefonicid ^a	Im-iv	GP, GN
	Cefoxitina	lm- iv	GP, GN, anaerobios
Tercera y cuarta	Ceftriaxona ^a	Im- iv	GN
generación	Ceftazidima	lm- iv	GN, P. aeuruginosa
	Cefepime	Im- iv	GN, P. aeuruginosa
Quinta generación	Ceftarolina ^b	lv	GN, GP, SARM
Carbapenems			
Activos frente a P.	Imipenem	lv	GP, GN, P. aeuruginosa, E-
aeruginosa	Meropenem ^c	lv	BLEAS, anaerobios
	Doripenem ^c	lv	
No actividad	Ertapenem	iv	GP, GN, E-BLEAS,
frente a <i>P.</i>			anaerobios
aeuruginosa			

Abreviaturas: GP: Gram positivos (excluyendo SARM y Enterococcus spp.). GN: Gram negativos (excluyendo Pseudomonas spp. y ESBL-E). E-BLEAS: Enterobacteriaceae (Escherichia y Klebsiella) productores de betalactamasas de amplio espectro. MRSA: Staphylococcus aureus meticilin resistente.

a antibióticos con vida media larga

b Primer betalactámico con actividad frente a SARM.

c Meropenem y Doripenem son mucho más activos frente a P. aeuruginosa que Imipenem.

Tabla XXIV. Dosis, vía de administración de betalactámicos.

Antibiótico	Dosis	Frecuencia	Vía	Cobertura
Cloxacilina	2g DC: 0,5-1g (10- 30 min) + IC: 8-12 g	4h En 24 h	iv	SASM
Cefazolina	1- 2g DC: 0,5-1g (10- 30 min) + IC: 60-80 mg/kg	8 h En 24 h	iv	SASM
Ampicilina	2g	4 h	iv	E. faecalis
Amoxicilina- clavulánico	875/125 mg 1-2 g	8 h 8-6 h	Oral iv	SASM, GN, anaerobios
Piperacilina- tazobactam	3/0,375	6h	iv	P. aeuruginosa
Ceftriaxona	1-2 g	24 h	iv	GN
Ceftazidima	2g DC: 0,5-1g (10- 30 min) + IC: 6g	8 h En 24 h	lv iv	P. aeuruginosa
Meropenem	1-2 g (primero 500 mg en 10-30 minutos) infusión en 3 horas	8h	iv	P. aeuruginosa E-BLEAS
Ertapenem	1g	24h	iv	E-BLEAS

Abreviaturas: DC dosis de carga, IC Infusión continua, SASM S. Aureus sensible meticilina, GN gram negativos (excluyendo Pseudomonas spp. Y E-BLEAS). E-BLEAS Enterobacteriaceae (Escherichia y Klebsiella) productoras de betalactamasas de amplio espectro.

GLICOPÉPTIDOS

Vancomicina

Vancomicina tiene actividad bactericida frente a S. aureus, tiempo-dependiente, más lenta que la ejercida por los betalactámicos. Consensos recientes recomiendan una concentración sérica de vancomicina mayor o igual a 15 mg/l (5). La dosis requerida para obtener este objetivo cuando la CMI de vancomicina es menor o igual a 1 mg/l se muestra en la Tabla XXIVTabla XXV. Experiencias clínicas usando Vancomicina en pacientes con bacteriemia debida a *Staphylococcus* con una CMI mayor o igual a 1 mg/l demostraron un mayor fallo y ratio de mortalidad (6). Sin embargo no hay experiencias clínicas en hueso e infección articular. En pacientes con remplazo de cadera se han encontrado concentraciones séricas medias del 7% en hueso cortical y 13% en hueso esponjoso y solo 3 de 6 muestras de hueso de pacientes con osteomielitis tenían concentraciones por encima del mínimo valor de detección (7). La actividad de vancomicina frente a biofilms y la actividad frente a las colonias intracelulares

(SCV) in Vitro así como con modelos animales es muy limitada(8)(9); sin embargo, la actividad contra el biofilm se incrementa cuando se combina con rifampicina o tetraciclinas (10).

Los efectos adversos más importantes son flebitis (10%), síndrome del hombre rojo durante una infusión intravenosa rápida caracterizada por prurito, rash cutáneo y nefrotoxicidad. El síndrome del hombre rojo con una infusión lenta (1 hora). La nefrotoxicidad está asociada con una concentración sérica superior a 15 mg/l mayor a siete días de duración o el uso concomitante de fármacos nefrotóxicos (diuréticos, aminoglucósidos, anfotericina-B) y en estas situaciones es mayor del 20%.

Teicoplanina

La teicoplanina se ha utilizado en el tratamiento de la infección de prótesis articulares o material de osteosíntesis, en la osteomielitis aguda o crónica y en la artritis séptica producidas por S. aureus. En los pacientes con artritis séptica el pronóstico fue mejor cuando se emplearon dosis de 12 mg/kg. En cambio, en los casos de osteomielitis, la dosis de 6 mg/kg fue suficiente. En el tratamiento de endocarditis de la válvula tricuspídea por S. aureus con teicoplanina, aún administrada a dosis altas, ha resultado sensiblemente menos eficaz que cloxacilina. Los estudios que han comparado teicoplanina con vancomicina en el tratamiento de infecciones producidas por microorganismos grampositivos no han observado diferencias significativas en la eficacia clínica. La nefrotoxicidad, el síndrome del hombre rojo y la necesidad de retirar el tratamiento, fueron más frecuentes en la rama de vancomicina. En comparación con linezolid, teicoplanina es menos efectiva para erradicar el estado de portador nasal de SARM y los resultados de eficacia clínica son inferiores. Teicoplanina se ha empleado con éxito en la profilaxis de la infección estafilocócica (incluyendo SARM) en cirugía limpia, con colocación de material protésico.

Frente a vancomicina, teicoplanina tiene la ventaja de poderse administrar en una sola dosis Diaria, con un tiempo de infusión más corto, menor nefrotoxicidad y prácticamente sin riesgo de aparición del síndrome del hombre rojo. Sin embargo, la actividad intrínseca y el efecto bactericida son menores que los de vancomicina y la selección de mutantes resistentes se produce con mayor frecuencia.

Tabla XXV. Dosis, vía de administración y cobertura antibiótica.

Antibiótico	Dosis y frecuencia	Vía	Cobertura
Vancomicina	15-20 mg/kg/12h ^a	lv	SARM, SCN-RM, E. faecius
Daptomicina	6-10 mg/kg/24 h ^{a,b}	lv	SARM, SCN-RM, E. faecius
Aminoglucósidos			
Gentamicina	5-7 mg/kg/24-12 h ^a	lv, im	GP, GN
Amikacina	15-20 mg/kg/24-12 h ^a	lv, im	GP, GN, <i>P.</i> aeuruginosa
Clindamicina	300 mg/8h	Oral	GP, anaerobios
	600 mg /6-8 h	lv	
	CI: 30-40 mg/kg en 24 h	lv	
Tetraciclinas ^c	UNI	VERSIT	GP, GN, anerobios
Doxiciclina	200 mg (1 dosis) 100 mg/12h	lv, oral	GP, SARM, GN, anerobios
Minociclina	200 mg (1 dosis) 100 mg/12h	lv, oral	GP, SARM, GN, anerobios, Enterobacteriaceae spp.
Tigeciclina	100 mg (1 dosis) 50 mg/12h	lv	GP, SARM
Rifampicina	450-900 mg/24-12 h	lv, oral	GP, SARM, Enterococcus spp.
Linezolid	600 mg /12 h	lv, oral	SARM
Cotrimoxazol (trimetroprim- sulfametoxazol)	160/800 mg /12- 8 h	lv, oral	GN, GP, P. aeuruginosa
Fluorquinolonas			
Ciprofloxacino	400 mg/12-8 h 750 mg/12 h	lv, oral	GN, GP, P. aeuruginosa

Levofloxacino	500 mg/24-12h	Iv, oral	GN, aeurug	GP, iinosa	Р.
Moxifloxacino	400 mg/24 h	lv, oral	GN, GP	GN, GP, anaerobios	

GP: Gram positivos (excluyendo SARM y Enterococcus spp.). GN: Gram negativos (excluyendo Pseudomonas spp. y E-BLEAS). E-BLEAS: Enterobacteriaceae (Escherichia y Klebsiella) productores de betalactamasas de amplio espectro. SARM: Staphylococcus aureus resistente a meticilina.

a Proporcional al peso total corporal.

b Dosis mayores a 6 mg/kg están recomendadas para infecciones severas y cuando no se lleva a cabo el cambio de implante. En pacientes con obesidad mórbida no se deben usar dosis mayores a 8 mg/kg

c Minociclina y tigeciclina son mas activos frente a S. aureus que doxiciclina.

CAUSAN DISRUPCIÓN EN LA MEMBRANA CITOPLASMÁTICA

DAPTOMICINA.

La daptomicina es un lipopéptido con una potente actividad bactericida concentracióndependiente frente a cocos gram positivos. La parte hidrofóbica interacciona con las cadenas aciles de la membrana bacteriana. Una vez insertado en la membrana las moléculas de la daptomicina forman poros que rompen la integridad funcional de la membrana citoplasmática permitiendo la liberación de iones intracelulares y una rápida muerte celular (11). El índice farmacodinámico que predice la eficacia de la daptomicina es el área bajo la curva (ABC-CMI). Las dosis aceptadas (4-6/mg/kg/día intravenoso) han conseguido altas ABC, habiendo experiencias clínicas en pacientes con osteomielitis e infecciones en prótesis articulares que demuestran que dosis bajas (4 mg/kg/día) están asociadas a peores resultados que dosis altas (12)(13). Un ensayo clínico reciente, randomizado, abierto en pacientes con infección de prótesis articular producida por estafilococos en los que se sometieron a dos etapas de tratamiento, tratamiento con daptomicina a dosis de 6mg/kg, 8 mg/kg frente a otro tratamiento (vancomicina en la mayoría de los casos) durante 6 semanas. Los resultados clínicos fueron satisfactorios en los tres grupos 88%, 91% y 91%. Considerando también los efectos adversos y el fracaso microbiológico, los resultados se reducen al 58%, 61% y 38% respectivamente.

Estos resultados demuestran que en infecciones óseas son necesarias altas dosis de antibiótico Tabla XXV, probablemente porque este antibiótico se encuentra fuertemente ligado a proteínas (92%) y tiene un alto peso molecular. En las áreas pobremente vascularizadas donde la superficie de intercambio es menor en comparación con el área de tejido infectado (por ejemplo tejido desvitalizado, prótesis y abscesos no drenados) la rapidez para alcanzar la

concentración de fármaco en el tejido depende de la velocidad de difusión. La velocidad de difusión molecular depende, en parte, del gradiente de concentración entre la dosis de fármaco libre en capilares y el centro de la lesión y de las propiedades físico-químicas de la molécula. Obteniendo una dosis alta de fármaco libre conseguimos una concentración elevada en foco, mayor que la CMI. Además, existen modelos animales que muestran mejores resultados cuando se combina Daptomicina con Rifampicina.

Se han medido las concentraciones de Daptomicina en hueso esponjoso en pacientes diabéticos en tratamiento con diálisis (14). Los resultados muestran que la concentración de daptomicina libre en plasma es igual a la concentración libre en hueso. De acuerdo a los datos in vitro, la daptomicina es el antibiótico más potente contra los biofilms(15) probablemente porque la actividad bactericida de la daptomicina está menos afecta por la división celular o por el metabolismo activo. La daptomicina es un potente bactericida frente a las pequeñas variantes de colonias extracelulares a dosis cuádruple de la Concentración mínima inhibitoria (CMI) pero la actividad frente a variantes de colonia pequeña (SCV) intracelular se reducirá significativamente y solo se recupera cuando se asocia con rifampicina o gentamicina.

El efecto adverso más importante es la miotoxicidad que generalmente aparece tras dos semanas con tratamiento a altas dosis. De acuerdo con diferentes estudios, utilizando una dosis media de 8 m/kg, el 10% de pacientes desarrollaran un aumento de la creatinfosfoquinasa (CPK) y un 4-5% síntomas miopáticos. Es recomendable suspender el tratamiento con daptomicina cuando los síntomas miopáticos aparecen o cuando existe un aumento de la CPK cinco veces por encima de sus niveles.

INHIBIDORES DE LA SÍNTESIS DE PROTEINAS Y DE ARN

AMINOGLUCÓSIDOS (Gentamicina y Tobramicina).

Los aminoglucósidos se enlazan a los ribosomas de células procariotas produciendo una disminución de la síntesis proteica. La mayoría de antibióticos con similar modo de acción (tetraciclinas, clindamicina, linezolid) son bacteriostáticos, en ocasiones los aminoglucósidos son bactericidas concentración-dependientes, esto sugiere mecanismos bactericidas aun no conocidos.

Los aminoglucósidos son transportados a través de la membrana citoplasmática mediante un mecanismo dependiente de energía que es inhibido con condiciones de anaereobiosis y bajas concentraciones de pH, esto expone la baja actividad de éstos frente a anaerobios y en abscesos. El espectro de los aminoglucósidos incluye aerobios y bacilos gram negativos

(Enterobacteriaceae, P. Aeruginosa y Acinetobacter spp.), el SAMS suele ser sensible pero SARM suele tener resistencia. Y los Staphylococcus y Streptococcus son resistentes a aminoglucósidos. Generalmente, estos antibióticos muestran sinergia cuando se combinan con antibióticos que actúan frente a la pared celular (betalactámicos y vancomicina). Aunque la vida media de los aminoglucósidos es corta, el grado de muerte bacteriana aumenta conforme aumenta la concentración de antibiótico (Cmáx/MIC), teniendo además un efecto postantibiótico prolongado, por esto la terapia optima es una dosis elevada una o dos veces al día.

La información sobre la penetrancia de los aminoglucósidos en hueso es escasa. La actividad frente a biofilms es limitada debido a cationes y a la matriz extraceular de los biofilms que contienen polisacáridos aniones que probablemente impidan la difusión del aminoglucósido(15). Los aminoglucósidos no son efectivos frente a SCV, debido a que son resistentes a este tipo de antibiótico porque el transporte activo que precisan estos antibióticos está bloqueado y éstos no son internalizados(16). Además, un estudio retrospectivo de monoterapia (antibióticos activos frente a la pared celular) versus terapia combinada con aminoglucosido(17), hubo más casos de nefrotoxicidad y ototoxicidad en los pacientes tratados con aminoglucósidos. De acuerdo a esta información el uso de aminoglucósidos está restringido a fases agudas de infecciones severas en combinación con antibióticos activos frente a la pared celular pero con duración no mayor a 3-5 días y para tratamientos para gérmenes gram negativos multirresistentes como la *P. Aeruginosa*.

La incidencia de nefrotoxicidad varía desde el 5% al 25%. El uso de otros fármacos nefrotoxicos (diuréticos, vancomicina), la existencia de lesiones renales previas y la duración del tratamiento mayor a 3-5 días están asociados a un mayor riesgo. Esta recomendado hacer una medición de los niveles séricos y niveles pico para garantizar la eficacia y evitar toxicidad. Otro efecto adverso es la ototoxicidad y el bloqueo neuromuscular.

CLINDAMICINA.

La clindamicina se une a la unidad 50s ribosomal y bloquea la síntesis proteica en la fase temprana de elongación. Su actividad incluye Gram positivos y anaerobios. Es importante mencionar que algunos gram positivos (estafilococos) pueden inducir resistencia a la clindamicina. Este mecanismo de resistencia no es capturado por la concentración mínima inhibitoria pero hay estudios que demuestran el fallo clínico de clindamicina en pacientes con estafilococos que crean resistencia (18). Este mecanismo de resistencia puede ser sospechado cuando un microorganismo sensible a clindamicina es resistente a eritromicina. En estos casos,

antes de dar clindamicina es necesario realizar un test de resistencia. La clindamicina es tiempo-dependiente y bacteriostático y sus dosis recomendadas se muestran en la Tabla XXV. Como otros inhibidores de las proteínas, la clindamicina reduce rápidamente los factores de virulencia críticos en la patogenia de la infección(19). Estudios sobre la penetrancia de la clindamicina en hueso humano condujeron en 1970 un rango de clindamicina en suero de 0.20-0.45, ligeramente mayor al de los betalactámicos. Ciertamente, existen modelos animales de osteomielitis que muestran que la clindamicina es superior que la cefazolina en la erradicación de *S.Aureus* en hueso infectado (20). Combinada con rifampicina, la clindamicina ha mostrado una alta tasa de éxito en series cortas de infección de implante (21). Zeller et al (22) describieron que pacientes tratados concomitantemente con rifampicina en comparación con pacientes tratados con clindamicina únicamente tuvieron una disminución del 40% en la concentración sérica, aunque no encontraron diferencias entre ambos grupos en cuanto al objetivo del estudio.

El efecto adverso más importante son las alteraciones gastrointestinales incluyendo diarrea, vómitos y dolor abdominal y han sido encontradas en el 10% de los casos. La diarrea asociada a *C. Difficile* es una complicación severa encontrada en <5% de los casos.

TETRACICLINAS.

Las tetraciclinas inhiben la síntesis de proteínas bacterianas al unirse a la subunidad 30s ribosomial y son antibióticos de amplio espectro, bacteriostáticos y tiempo dependientes (T>MIC), activos frente a bacterias gram negativas y positivas. Desde los años 70 el incremento de resistencias a tetraciclinas ha limitado su uso en la práctica clínica. Recientemente una nueva generación de tetraciclinas (tigeciclina), que conserva el amplio espectro de las tetraciclinas, está siendo desarrollada. La dosis media de la tetraciclina se muestra en la Tabla XXV.

Nuevas técnicas analíticas para medir la concentración en hueso de tigeciclina, ha demostrado una alta penetración ósea (23). Estudios in vitro han mostrado que las tetraciclinas son activas frente al biofilm estaficolococico (24), especialmente en combinación con otros antibióticos, entre los que se incluye la rifampicina, clindamicina o vancomicina y frente a las variantes de colonia pequeña intracelulares. Modelos animales de infecciones sobre cuerpo extraño producidas por *SARM* demostraron similares resultados para la tigeciclina y vancomicina y ambos casos obtuvieron mejores resultados que el grupo control (25). La experiencia clínica en infecciones sobre prótesis articulares se limita al uso de minociclina como terapia supresora

durante un largo periodo. La tolerancia es excelente y no hubo recaída en el 50% de los casos al final de seguimiento.

Las alteraciones gastrointestinales (nauseas, vómitos) son los más frecuentes tras la administración oral de tetraciclinas. La administración de doxiciclina o minocliclina con el alimento disminuye estos síntomas. Otro efecto adverso es la coloración marrón-grisácea y amarillo de los dientes en niños que toman tetraciclinas. La administración de menos de 2g/día intravenoso no está asociada a disfunción hepática en embarazadas. Las tetraciclinas agravan las lesiones renales preexistentes, alteraciones como reacciones de hipersensibilidad, incluyendo anafilaxia, urticaria, edema periorbital, erupciones, y rash morbiliforme y fotosensibilidad no son comunes. El vértigo es un síntoma causado por la minociclina a partir del segundo o tercer día de tratamiento y es más frecuente en mujeres. Los síntomas son reversibles tras suspender el tratamiento, pero los efectos adversos limitan el uso de la minociclina. El uso de terapias medio-largas con minociclina se ha asociado a casos de hipertensión craneal benigna (pseudotumor cerebri).

RIFAMPICINA.

La rifampicina ejerce su poder antimicrobiano mediante la inhibición de la subunidad Beta de la ARN polimerasa dependiente de ADN, que está fuertemente conservada en microorganismos procariotas. Rifampicina mantiene su poder bactericida concentracióndependiente (Cmax/MIC) con una actividad potente frente a micobacterias y microorganismos gram positivos. La rifampicina ejerce su acción frente a bacterias en fase estacionaria(26), variantes de colonia pequeña intracelulares (SCV)(9) y biofilms bacterianos(15). Las dosis recomendadas se muestran en la Tabla XXV; es importante añadir que la rifampicina no debe usarse en monodosis debido a que la aparición de mutaciones de cepas resistentes es común. La rifampicina a dosis de 450 mg/12 h en combinación con ciprofloxacino es más efectiva que el ciprofloxacino solo (100% vs 53%) en infección de implantes tratadas sin retirada de implante(27). Ya que la rifampicina es un antibiótico concentración-dependiente (Cmax/MIC), una única administración al día de 600-900 mg /24 h es más fácil y permite una más elevada concentración Cmax/MIC que dos dosis al día, 450 mg /12 h. Además teniendo en cuenta el largo periodo para la duplicación del biofilm bacteriano la administración de rifampicina una vez al día es suficiente. Ha sido demostrada que la concentración en hueso oscila entre 0.2-0.5(28). Varios estudios observacionales han demostrado la eficacia de la rifampicina en combinación con fluorquinolonas, linezolid, cotrimoxazol o tetraciclinas, frente a la infección protésica(29)(30). La rifampicina reduce la concentración sérica de otros antibióticos como el linezolid, clindamicina o cotrimoxazol, anticoagulantes, antiepilépticos (fenitoina), por esto su control clínico es obligatorio.

Los síntomas gastrointestinales, como el dolor abdominal o calambres, náuseas, vómitos y diarrea son frecuentes. El aumento de los niveles de transaminasas pueden ocurrir durante el tratamiento, aunque su incidencia es menor del 1%, aunque puede ser mayor en pacientes con patología ya conocida de hígado, abuso de alcohol o con la administración conjunta de otros fármacos con toxicidad hepática. El rash cutáneo y otras reacciones son causas de no continuar el tratamiento, aunque tratamiento antihistamínico puede paliar los síntomas y ayudar con el mantenimiento del tratamiento. Otras manifestaciones relativamente comunes son la trombocitopenia leve, leucopenia y agranulocitosis. Otra complicación asociada es la aparición de fallo renal tras tratamiento intermitente con rifampicina tras periodo libre de ella.

LINEZOLID.

El linezolid inhibe la síntesis proteica mediante la unión a la subunidad 50 de los ribosomas y a su interfase con la subunidad 30s, inhibiendo la formación del complejo 70s. Es un antibiótico bacteriostático tiempo-dependiente con actividad frente a la mayoría de microorganismos gram positivos, incluyendo el *S. Aureus* (meticilin sensible y resistente), *E.faecalis* (vancomicinsensible y vancomicin resistente) y *E. faecius*. Las dosis recomendadas se encuentran en la Tabla XXV. Las concentraciones en hueso se encuentran en un rango entre 0.2 y 0.5 (9). Es un antibiótico de administracion oral frente a estafilococos meticilin resistentes, por lo que hacen de este antibiótico una atractiva alternativa frente a los glicopeptidos intravenosos. Una revisión de la literatura mostraba un alto número de éxito (85-90&) en infecciones protésicas en las que ha habido recambio del implante(31)(32). El éxito del antibiótico cuando se recambiaba el implante variaba de 72% en casos de infección aguda a 43& en casos de infección crónica(33)(34).

Los efectos adversos más importantes son las nauseas, vómitos y diarrea. También son frecuentes los casos de trombocitopenia y anemia en tratamientos que duran más de dos semanas, aunque estos efectos adversos son menores cuando se combina el tratamiento con rifampicina. La razón por la que ocurre esto es porque la rifampicina disminuye las concentraciones séricas de linezolid. Se han descrito casos de neuropatía periférica en pacientes con tratamientos superiores a tres meses. Casos de acidosis láctica también han sido descritos, aunque son raros. El linezolid produce un bloqueo de la monoaminoxidasa y potencia el efecto de drogas serotoninergicas.

ANTIBIÓTICOS QUE INHIBEN LA SÍNTESIS DE ÁCIDO FÓLICO

COTRIMOXAZOL

El cotrimoxazol es una combinación de sulfametoxazol y trimetroprim. Cada uno inhibe una enzima diferente del proceso de síntesis de timidina bacteriana. Éste es un antibiótico bactericida y más del 90 % de los *S.Aureus* (incluyendo los MRSA) son sensibles y solo son activos frente a gram negativos diferentes a P.aeruginosa. Presenta una biodisponibilidad oral que hace que sea una opción atractiva para el tratamiento de las infecciones protésicas. Las dosis se muestran en la Tabla XXV Ha sido documentado que el pus inhibe las sulfamidas. Un mayor componente pustuloso polimeriza el ADN liberando sustancias inflamatorias y lesionando tejidos. El *S. Aureus* es capaz de generar timidina del DNA y esta timidina antagoniza los efectos antiestafilococicos del trimetroprim y del sulfametoxazol. Es por esto por lo que se recomienda el comienzo del cotrimoxazol después del desbridamiento de tejido necrótico y del pus y preferiblemente en combinación(35)(36). La información sobre la actividad del cotrimoxazol sobre el biofilm es escasa pero datos in vitro muestran que las SCV son resistentes a cotrimoxazol.

Los efectos adversos más importantes son reacciones alérgicas con rash cutáneo, fiebre, síndrome similar a la enfermedad del suero o necrosis hepática. Raros efectos como nefritis intersticial y necrosis tubular aguda también han sido descritos. Pero las reacciones más graves causadas por sulfonamidas son anemia hemolítica, que a veces muestra la deficiencia de la glucosa-6-fosfato deshidrogenasa (G6PD), anemia aplásica, agranulocitosis, trombocitopenia y leucopenia. Es recomendable el no uso conjunto de anticoagulantes. En general es un fármaco bien tolerado y es usado para infecciones crónicas protésicas como terapia supresora.

INHIBIDORES DE ENZIMAS ESPECÍFICAS QUE PARTICIPAL EN LA SÍNTESIS Y ENROLLAMIENTO DEL ADN

FLUORQUINOLONAS

Las fluorquinolonas inhiben la ADN girasa (topoisomerasa II) y topoisomerasa IV. Estos antibióticos tienen una elevada potencia bactericida frente a gram negativos y gram positivos. Los índices farmacodinámicos predicen su eficacia ABC/CMI y su valor óptimo es de >125, aunque acorde con datos de estudios in vitro es necesario un valor de 250 para reducir la presencia de microorganismos mutantes. Su objetivo se alcanza con las dosis mostradas en la Tabla XXV. Las dosis altas de las fluorquinolonas están recomendadas en los primeros 5-7 días de tratamiento frente a *P. aeuruginosa*. La fluorquinolona más activa frente gram negativos

incluyendo *P. aeruginosa* es el ciprofloxacino y el levofloxacino. La experiencia en infecciones protésicas causadas por gram negativos es escasa pero en general el resultado se considera pobre. Ahora bien, recientes expertos sugieren que cuando las quinolonas están incluidas en el régimen antibiótico (combinado con un betalactámico los primeros 14 días) la tasa de éxito es alta (37). Las fluorquinolonas son posiblemente eficaces en el tratamiento de las infecciones de implante y osteomielitis causadas por gram negativos por dos razones (1) por su difusión a tejido sinovial (38) y hueso (39) su actividad frente a biofilms. En estudios in vitro sobre el biofilm producido por *P. Aeruginosa*, Tanaka et al(40) mostró que la acción bactericida de los betalactámicos frente al biofilm estaba afectada por el número de células que crecían dentro del biofilm, mientras que las quinolonas son consideradas independientes de este crecimiento. Desafortunadamente la resistencia de las fluorquinolonas en la familia *Enterobacteriaceae* está aumentando, sin embargo son necesarias investigaciones futuras para obtener nuevas opciones de tratamiento para estas infecciones.

Aunque el ciprofloxacino asociado a rifampicina ha demostrado un alto éxito en los ensayos controlados sobre infecciones protésicas causadas por estafilococos, actualmente, el levofloxacino es superior al ciprofloxacino, debido a que el levofloxacino tiene mejor índice como consecuencia de una pequeña CMI frente a *S. Aureus* y al aumento de concentración sérica. Además su administración una vez al día facilita la adherencia al tratamiento.

La experiencia por nuestro grupo muestra que los tratamientos prolongados por vía oral con levofloxacino mas rifampicina son bien tolerados y tiene buenos resultados en las infecciones protésicas causadas por cocos gram positivos(41). El moxifloxacino es más activo frente a estafilococos que el levofloxacino y tiene una actividad moderada frente a SCV intracelular(42), además, la rifampicina induce cambios en el metabolismo de moxifloxacino reduciendo sus niveles aproximadamente en un 30% (43), además el moxifloxacino puede llegar a ser la mejor fluorquinolona para los casos producidos por estafilococos cuando la rifampicina no pueda ser administrada.

Los efectos adversos más importantes son los gastrointestinales, disconfort y diarrea asociada a C. difficile en un 1-5% de los casos. Otros síntomas descritos en menos del 2% de los casos son cefalea, vértigo, mareo o convulsiones (más frecuentes en pacientes con antecedentes de epilepsia). Otros tales como la taquicardia u otra arritmia especialmente en pacientes con hipocalemia e hipomagnesemia. Y en menos de 1% de los casos aparecen artralgias o tendinitis del T. Aquiles.

BIBLIOGRAFÍA ANEXOS

- Aguirre JA. Comentarios para la continuación. In Aguirre JA. Introducción al tratamiento de series temporales. Aplicación a las ciencias de la salud. Madrid: Ediciones Díaz de Santos; 1994. p. 377-383.
- 2. Box GE, Jenkins GM. Time series analysis: forecasting and control San Francisco: Holden Day; 1976.
- 3. De la Fuente Fernández S. Series Temporales: Modelo ARIMA. In Departamento de Economía Aplicada; Universidad Autónoma de Madrid. p. 1-53.
- 4. Soriano A. Antibiotics in treatment of periprosthetic joint infections. In Springer BD, Parvizi J, editors. Periprosthetic joint infection of the hip and knee. New York: Springer Science and Bussines media; 2014. p. 107-123.
- 5. Rybak M, Lomaestro B, Rotschafer JC, Moellering RJ, Craig WA, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacist, the Infecious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009 Jan; 66(1): p. 82-98.
- 6. Van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Cin Infect Dis. 2012 Mar; 54(6): p. 755-71.
- 7. Graziani AL, Lawson LA, Gibson GA, Steinberg MA, McGregor RR. Vancomycin concentrations in infected and noninfected human bone. Antimicrob Agents Chemother. 1988 Sep; 32(9): p. 1320-2.
- 8. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999 Jun; 37(6): p. 1771-6.
- Nguyen HA, Denis O, Vegison A, Tulkens PM, Struelens MJ, Van Bambeke F. Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: study of antibiotic combinations. Antimicrob Agents Chemother. 2009 Apr; 53(4): p. 1443-9.
- Monzon M, Oteiza C, Leiva J, Amorena B. Synergy of different antibiotic combinations in biofilms of Staphylococcus epidermidis. J Antimicrob Chemother. 2001 Dec; 48(6): p. 793-801.
- 11. Sauerman R, Rothenburger M, Graninger W, Joukhadar C. Daptomycin: a review 4 years after first approval. Pharmacology. 2008; 81(2): p. 79-91.

- 12. Lamp KC, Friedrich LV, Mendez-Vigo L, Russo R. Clinical experience with daptomycin for the treatment of patients with osteomyelitis. Am J Med. 2007 Oct; 120(10 Suppl 1): p. S13-20.
- 13. Rao N, Regalla DM. Uncertain efficacy of daptomycin for prosthetic joint infections: a prospective case series. Clin Orthop Relat Res. 2006 Oct; 451: p. 34-7.
- 14. Traunmüller F, Schintler MV, Metzler J, Spendel S, Mauric O, Popovic M, et al. Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J Antimicrob Chemother. 2010 Jun; 65(6): p. 1252-7.
- Edmiston CJ, Goheen MP, Seabrook GR, Johnson CP, Lewis BD, Brown KR, et al. Impact of selective antimicrobial agents on staphylococcal adherence to biomedical device. Am J Surg. 2006 Sep; 192(3): p. 344-54.
- 16. Proctor RA, Von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006 Apr; 4(4): p. 295-305.
- 17. El Helou OC, Berbari EF, Marculecu CE, El Atrouni WI, Razonable RR, Steckelberg JM, et al. Outcome of enterococcal prosthetic joint infection: is combination systemic therapy superior to monotherapy? Clin Infect Dis. 2008 Oct; 47(7): p. 903-9.
- 18. Levin TP, Suh B, Axelrod P, Truant AL, Fekete T. Potential clindamycin resistance in clindamycin-susceptible, erythromycin-resistant Staphylococcus aureus: report of a clinical failure. Antimicrob Agents Chemother. 2005 Mar; 49(3): p. 1222-4.
- 19. Stevens DL, Ma Y, Salmi DB, McIndoo E, Wallace RJ, Bryant AE. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Infect Dis. 2007 Jan; 195(2): p. 202-11.
- 20. Mader JT, Adams K, Morrison L. Comparative evaluation of cefazolin and clindamycin in the treatment of experimental Staphylococcus aureus osteomyelitis in rabbits. Antimicrob Agents Chemother. 1989 Oct; 33(10): p. 1760-4.
- 21. Czekaj J, Dinh A, Moldovan A, Vaudaux P, Gras G, Hoffmeyer P, et al. Efficacy of a combined oral clindamycin-rifampicin regimen for therapy of staphylococcal osteoarticular infections. Scand J Infect Dis. 2011 Dec; 43(11-12): p. 962-7.
- 22. Zeller V, Dzeing-Ella A, Kitzis MD, Ziza JM, Mamoudy P, Desplaces N. Continuous clindamycin infusion, an innovative approach to treating bone and joint infections. Antimicrob Agents Chemother. 2010 Jan; 54(1): p. 88-92.
- 23. Landersdorfer CB, Bulitta JB, Kinzig M, Holzgrabe U, Sörgel F. Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin Pharmacokinet. 2009; 48(2): p. 89-124.

- 24. Raad I, Hanna H, Jiang Y, Dvorak , Reitzel R, Chaiban G, et al. Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrob Agents Chemother. 2007 May; 51(5): p. 1656-60.
- 25. Vaudaux P, Fleury B, Gjinovci A, Huggler E, Tangomo-Bento M, Lew DP. Comparison of tigecycline and vancomycin for treatment of experimental foreign-body infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009 Jul; 53(7): p. 3150-2.
- 26. Zimmerli W, Frei R, Widmer AF, Rajacic Z. Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J Antimicrob Chemother. 1994 May; 33(5): p. 959-67.
- 27. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. JAMA. 1998 May; 279(19): p. 1537-41.
- 28. Landersdorfer CB, Bulitta JB, Kinziq M, Holzgrabe U, Sörgel F. Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin Pharmacokinet. 2009; 48(2): p. 89-124.
- 29. Lora-Tamayo J, Murillo O, Iribarren JA, Soriano A, Sánchez-Somolinos M, Baraia-Etxaburu JM, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis. 2013 Jan; 56(2): p. 182-94.
- 30. Ferry T, Uçkay I, Vaudaux P, François P, Schrenzel J, Harbarth S, et al. Risk factors for treatment failure in orthopedic device-related methicillin-resistant Staphylococcus aureus infection. Eur J Clin Microbiol Infect Dis. 2010 Feb; 29(2): p. 171-80.
- 31. Rao N, Hamilton CW. Efficacy and safety of linezolid for Gram-positive orthopedic infections: a prospective case series. Diagn Microbiol Infect Dis. 2007 Oct; 59(2): p. 173-9.
- 32. Romero-Candao F, Perez-Ferri R, Madrigal J, Najarro F, Huesa F. Tratamiento con linezolid oral en osteomielitis postraumática. Rev Ortop Traumatol. 2007 Apr; 51(2): p. 75-9.
- 33. Soriano A, Gómez J, Gómez L, Azanza JR, Pérez R, Romero F, et al. Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections. Eur J Clin Microbiol Infect Dis. 2007 May; 26(5): p. 353-6.
- 34. Gómez J, Canovas E, Baños V, Martínez L, García E, Hernández-Torres A, et al. Linezolid plus rifampin as a salvage therapy in prosthetic joint infections treated without removing the implant. Antimicrob Agents Chemother. 2011 Sep; 55(9): p. 4308-10.
- 35. Euba G, Murillo O, Fernández-Sabé N, Mascaró J, Cabo J, Pérez A, et al. Long-term follow-

- up trial of oral rifampin-cotrimoxazole combination versus intravenous cloxacillin in treatment of chronic staphylococcal osteomyelitis. Antimicrob Agents Chemother. 2009 Jun; 53(6): p. 2672-6.
- 36. Nguyen S, Pasquet A, Legout L, Beltrand E, Dubreuil L, Migaud H, et al. Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections. Clin Microbiol Infect. 2009 Dec; 15(12): p. 1163-9.
- 37. Martínez-Pastor JC, Muñoz-Mahamud E, Vilchez F, García-Ramiro S, Bori G, Sierra J, et al. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob Agents Chemother. 2009 Nov; 53(11): p. 4772-7.
- 38. Rimmelé T, Boselli E, Breih D, Djabarouti S, Bel JC, Guyot R, et al. Diffusion of levofloxacin into bone and synovial tissues. J Antimicrob Chemother. 2004 Mar; 53(3): p. 533-5.
- 39. Stoodley P, Nistico L, Johnson S, Lasko LA, Baratz M, Gahlot V, et al. Direct demondstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. J Bone Joint Surg Am. 2008 Aug; 90(8): p. 1751-8.
- 40. Tanaka G, Shigeta M, Komatsuzawa H, Sugai M, Suginaka H, Usui T. Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: beta-lactams and fluoroquinolones. Chemotherapy. 1999 Jan-Feb; 45(1): p. 28-36.
- 41. Vilchez F, Martínez-Pastor JC, García-Ramiro S, Bori G, Maculé F, Sierra J, et al. Outcome and predictors of treatment failure in early post-surgical prosthetic joint infections due to Staphylococcus aureus treated with debridement. Clin Microbiol Infect. 2011 Mar; 17(3): p. 439-44.
- 42. García LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, et al. Pharmacodynamic evaluation of the activity of antibiotics against hemin- and menadione-dependent small-colony variants of Staphylococcus aureus in models of extracellular (broth) and intracellular (THP-1 monocytes) infections. Antimicrob Agents Chemother. 2012 Jul; 56(7): p. 3700-11.
- 43. Weiner M, Burman W, Luo CC, Peloquin CA, Engle M, Goldberg S, et al. Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin. Antimicrob Agents Chemother. 2007 Aug; 51(8): p. 2861-6.