
Geoderma 396 (2021) 115069

Available online 10 April 2021
0016-7061/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Use of composite samples and NIR spectroscopy to detect changes in 
SOC contents 

César Guerrero a,*, Romina Lorenzetti b 

a Department of Agrochemistry and Environment. Universidad Miguel Hernández de Elche. E-03202. Elche, Alicante, Spain 
b CREA - Council for Agricultural Research and Agricultural Economy Analysis, Florence, Italy   

A R T I C L E  I N F O   

Handling Editor: Budiman Minasny  

Keywords: 
Composites 
NIR spectroscopy 
4p1000 
Soil organic carbon 
Spiking 
Minimum detectable difference 

A B S T R A C T   

Depending on the land management, soils can behave as sources or sinks of carbon. Thus, monitoring the changes 
in the SOC (ΔSOC) is of significance. However, this monitoring is often challenging because the value of ΔSOC is 
typically small in comparison with the spatial variability, and a large sample size is required, which may incur 
prohibitive costs. In the absence of the necessary sample size, hypothesis testing may be performed under 
deficient statistical conditions, which may result in misleading conclusions. In this study, we compared several 
cost-effective approaches to solve the aforementioned problems: i) using composites, as the number of samples to 
be analysed is smaller, and the costs using a reference method do not represent a substantial amount; ii) using 
NIR spectroscopy, which is a fast and cheap technique, and allows the analysis of massive number of samples; 
and iii) the combination of these approaches. In particular, the approaches were compared by evaluating the 
corrected minimum detectable difference (MDDC), which corresponds to the MDD after the errors of the methods 
have been accounted for. Bulking into the composites reduced the analysis costs, and the variance was reduced as 
the sample size reduced. However, a larger penalisation of the random measurement errors increased the MDDC. 
Biased predictions were obtained when an NIR spectroscopy based national scale model was used to predict the 
SOC at the local scale, resulting in extremely high values of the MDDC. By using composites to adapt that model 
to the local conditions through spiking with the extra-weighting technique, the bias was considerably reduced, 
along with the MDDC. In addition to their role as a spiking subset, the composites exhibited a desirable effect 
when combined with the NIR spectroscopy technique, since they allowed to find the model that was predicting 
SOC contents with the lowest bias, and hence measuring the ΔSOC with the highest accuracy. This analysis was 
highly specific and cannot be applied using any other spiking subsets, and allowed to identify a model that 
obtained an MDDC smaller than that obtained using only the composites. Therefore, the combination of the 
composites and NIR spectroscopy can be used to monitor ΔSOC since it is inexpensive, accurate and robust, and 
the spatial distribution of the SOC contents is not lost. Moreover, the cost efficiency of this combined approach 
probably improves along successive rounds in the monitoring process.   

1. Introduction 

Soil organic carbon (SOC) plays a central role in soil quality (Büne-
mann et al., 2018), and increasing the SOC contents can help facilitate 
climate change mitigation (Minasny et al., 2017). Land management can 
affect the SOC contents (Lal, 2004; González-Sánchez et al., 2012). 
Consequently, it is necessary to measure the exact influence of the land 
management on the SOC and identify the agricultural practices that can 
help enhance or maintain the SOC levels (Smith et al., 2020). Although 
experimental plots provide valuable information that can be used to 

understand the effect of certain agricultural management practices on 
the SOC levels, the local conditions (soil type, climatic conditions, etc.) 
likely modulate the response once implemented at the local scale. 
Therefore, it is necessary to measure, report and monitor the changes in 
the SOC contents (ΔSOC) to support the implementation of the practices 
and verify the supposed changes (Jandl et al., 2014; Viscarra Rossel and 
Brus, 2018). However, in several cases, the ΔSOC induced by the 
implementation of land management practices, or during two assess-
ment periods of a monitoring programme, is small in comparison to the 
considerably large spatial variation (Conant and Paustian, 2002; Goidts 
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et al., 2009; Rawlins et al., 2009). Consequently, a large sample size is 
required, which may exceed the size that can be obtained within the 
available budget. In such scenarios, the comparisons performed with an 
statistical power that is lower than the pre-established desired value, 
allows to a higher occurrence of Type II errors, which may lead to hy-
pothesis testing with misleading conclusions (Saby et al., 2008; 
Schrumpf et al., 2011). In this context, several researchers have raised 
concerns regarding the robustness, capacity and credibility of the pro-
tocols and methodology to monitor the ΔSOC with a high accuracy and 
efficiency (Jandl et al., 2014; Saby et al., 2008; Smith et al., 2020). 

This problem can be alleviated or avoided by increasing the period 
between two assessments until the ΔSOC is sufficiently large to be 
detected using an affordable number of samples. In this way, the ΔSOC 
to be detected can be over the minimum detectable difference (MDD). 
However, this strategy is adequate only for cumulative changes and may 
lead to a considerable delay in certain cases (Smith, 2004; Necpálová 
et al., 2014). The use of an adequate sampling design can help, as a 
paired approach typically needs a lower sample size than that required 
in the unpaired approach (Conant et al., 2003; Heim et al., 2009; Lark, 
2009), because the implied variance is smaller. However, this design 
cannot be applied over independent plots in a chronosequence (started 
from the implementation of a different land management strategy) when 
are compared in an arbitrary time (i.e., synchronous design). Moreover, 
in some scenarios (e.g., carbon auditing), the paired approach (static 
sampling design) must be avoided since it can be easily gamed, for 
example, by applying the preferential management only in the sampling 
plots and not in the whole area (which is expensive), thereby leading to 
misleading conclusions (Allen et al., 2010; de Gruijter et al., 2016). In 
certain other scenarios, the second round sampling cannot be performed 
by revisiting the same sampling locations (static) because the first round 
sampling may have led to considerable disturbances (e.g., extracting 
large cores with heavy machinery); hence, the need to displace the 
sampling points together with a large short-scale spatial variation may 
introduce an unacceptably large error (Lark, 2012; Chappell et al., 
2013). The efficiency can also be improved by using cost-efficient 
methods, such as by using composite samples. When using composites, 
the laboratory costs are drastically reduced because the individual 
samples are bulked into a few composites, and the SOC contents in only 
these mixtures are analysed. However, the spatial information of the 
SOC contents in the collected samples is lost, although this situation is 
acceptable when the research objective pertains to the changes in the 
mean values (de Gruijter et al., 2006; Patil et al., 2011). Another 
drawback is that the sample size is reduced (Viscarra Rossel and Brus, 
2018), which can adversely influence the hypothesis testing due to the 
higher influence of the analysis method’s random error (de Gruijter 
et al., 2006, 2016; Patil et al., 2011). The use of low-cost methods such 
as diffuse reflectance near infrared (NIR) spectroscopy is another 
interesting alternative as these methods allow to increase the sample 
size in a relatively inexpensive manner (Bellon-Maurel and McBratney, 
2011; Nocita et al., 2015). However, the quality of the data measured 
using such low-cost methods is considerably lower in comparison to that 
achievable using reference methods such as the Walkley–Black, or 
elemental analysers (Bellon-Maurel and McBratney, 2011; Viscarra 
Rossel et al., 2016). Thus, it remains unclear whether analysing a large 
set by using a method such as the NIR spectroscopy technique is more 
efficient that analysing a smaller set (composites) by using a reference 
method. Consequently, the main objective of this study was to identify 
the approach that corresponds to the lowest MDD. Three approaches 
were considered: (1) The use of composites, which involves a small 
sample set that can be analysed using a reference method with a low 
cost; (2) the use of NIR spectroscopy, which can enable an inexpensive 
and rapid analysis while handling a larger number of samples, or (3) the 
combination of both techniques (composites and NIR spectroscopy). An 
experiment was performed in which data were obtained with relatively 
similar costs (same field effort and laboratory analysis). The errors of the 
considered methods were determined to calculate a corrected MDD value 

(MDDC) to allow a fairer and more realistic comparison of the 
approaches. 

2. Material and methods 

2.1. Study site 

Soil samples were collected in December 2017 in two agricultural 
fields located in Tarazona de la Mancha (Albacete, Spain). The distance 
between the fields was less than 2 km, and thus, they exhibited similar 
characteristics such as the soil type (Calcixerept over old river terraces), 
meteorological conditions (mean temperature of 14 ◦C; mean annual 
rainfall of 500 mm), slope (<2%), parent material (calcareous and 
fluvial deposits), rotation crops (wheat, maize, etc.) and irrigation sys-
tem (centre pivot irrigation system). Approximately 20 years ago, the 
management of one of the fields was changed from conventional to no- 
tillage (NT20), whereas the other field remained with conventional 
tillage (CON). The size of the CON and NT20 fields was approximately 
60 and 45 ha, respectively, and both the fields were circular irrigation 
plots. Each field (CON and NT20) was divided into 12 strata (k=12) of 
similar size, which were defined by compact geographical stratification. 
This stratification method was selected due to the lack of available 
ancillary information regarding the SOC variability (Chappell et al., 
2013; de Gruijter et al., 2016). 

2.2. Samples 

2.2.1. Individual samples 
Six samples were randomly collected in each stratum. As result, 72 

individual samples were collected in CON and 72 in NT20. Each indi-
vidual sample consisted of four subsamples (cores) located approxi-
mately 1 m from the sampling point, and the subsamples were collected 
using a manual auger at a depth of 0–10 cm. The soil samples were air- 
dried in laboratory conditions (25 ◦C) for two weeks and later sieved (<2 
mm). The NIR spectra were obtained by Fourier Transform (FT)–NIR 
diffuse reflectance spectroscopy (MPA, Bruker Optik GmbH, Ettlingen, 
Germany). Each spectrum was composed of 64 scans, and two spectra 
per sample were acquired and averaged. The x-scale of the spectra was 
transformed to nanometres (830–2630 nm) and resampled to 1-nm 
resolution (OPUS 7.0 software, BrukerOptik GmbH, Ettlingen, Ger-
many). The SOC content (%) in each soil sample was analysed using the 
Walkley–Black method with laboratory replicates: All the 144 samples 
were analysed in duplicate, except 72 randomly selected samples, for 
which the SOC contents were analysed using triplicates. These values 
were used to obtain the mean SOC content of the 72 samples collected in 
CON (XCON) and the mean SOC content of the 72 samples collected in 
NT20 (XNT20). The difference in SOC contents due to different agricul-
tural management, denoted as ΔSOC, was obtained with Eq. (1): 

ΔSOC = XNT20 − XCON (1) 

These values were also used to determine the pooled variance (sp
2), as 

described in Eq. (2): 

s2
p =

(nCON − 1) × s2
CON + (nNT20 − 1) × s2

NT20

nCON + nNT20 − 2
(2)  

where s2
CON and s2

NT20 denote the sample variance observed in samples 
collected in the CON and NT20 fields, respectively, and nCON and nNT20 
denote the corresponding sample sizes (here, nCON= nNT20). 

2.2.2. Composites 
In each field, composites samples were obtained by using aliquots 

from the individual samples. Two main types of composites were ob-
tained: physical and virtual composites. Regardless of the type, the field 
effort (f) was fixed, corresponding to the 72 individual samples (f=72) 
collected in each field. Moreover, in all the cases, f=k⋅n, where k is the 
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number of aliquots contributing to each composite, and n is the final 
number of composites obtained. For each case, the sp

2 of the composites 
was calculated with the s2

CON and s2
NT20 observed in the composites. 

2.2.2.1. Physical composites. In each field, the physical composites 
(n=6) were obtained by bulking one aliquot from each stratum (k=12) 
defined by the compact geographical stratification (Viscarra Rossel and 
Brus, 2018). Thus, 12 aliquots from the individual samples (with each 
sample located in a different stratum) contributed to each composite. In 
this manner, the 72 individual samples of each field were used to obtain 
6 physical composites. Therefore, 6 physical composites were obtained 
in CON and 6 in NT20. These physical composites represent a case of the 
composites (f=72, k=12 and n=6) constrained by the strata. The SOC 
content of each physical composite was analysed in duplicate by using 
the Walkley–Black method. 

2.2.2.2. Virtual composites. Several types of virtual composites were 
obtained to provide additional and complementary data that may help 
explain certain results, especially those related with the materialization 
and the sp

2 observed in physical composites. The virtual composites were 
obtained without generating the physical mixture (i.e., no materialisa-
tion occurred). It was assumed that the SOC content of each virtual 
composite was the arithmetic mean of the SOC contents analysed in the k 
individual samples that contributed to that composite (de Gruijter et al., 
2006; Patil et al., 2011). First, we created virtual composites by using 
the same combination followed to create the physical composites (see 
previous section). In the interest of conciseness and to differentiate from 
other virtual composites, these composites are referred to as theoretic 
composites hereinafter. The SOC contents of the theoretic composites 
represented the expected values of the physical composites when it was 
assumed a perfect materialization and the absence of errors in the 
analysis the SOC contents. 

In order to evaluate if the combination followed to create the phys-
ical composites was a particular case or close to an expected case, the sp

2 

of the theoretic composites was compared with the mean sp
2 obtained in 

1,000 different combinations of virtual composites with similar char-
acteristics (f=72, k=12 and n=6), wherein the allocation of each aliquot 
to a composite was random but constrained by the strata (i.e., one 
aliquot from each strata). Additionally, another set of 1,000 virtual 
composites of similar characteristics (f=72, k=12 and n=6) but not 
constrained by the strata were created to evaluate (by comparison) the 
relevance of the compact geographical stratification on the sp

2. 
Finally, we obtained virtual composites by varying the number of 

aliquots (k) contributing to the composite. Since the field effort in each 

plot was constant (f=72) and f=k⋅n, the variation in k influenced the 
final number of composites n, as indicated in Table 1. In each field, 1,000 
combinations of the configurations were simulated, as listed in Table 1, 
in which the k aliquots that contributed to form a composite were 
randomly selected and not constrained by the compact geographical 
strata. Thus, the strata defined by the compact geographical stratifica-
tion did not participate to the allocation of the aliquots into the com-
posites. Subsequently, we computed the sp

2 in each of these 1,000 
simulations for each configuration. The last two rows of Table 1 were not 
included in this study. 

2.3. NIR spectroscopy 

2.3.1. NIR models 
We calibrated different NIR models to estimate the SOC content in 

the 144 individual samples. The generation of these different models has 
been based on a modification of the spiking with extra-weighting 
approach (Guerrero et al., 2014). In all the cases, the PLS-regression 
algorithm and OPUS software were used to calibrate the models 
(OPUS 7.0, BrukerOptik GmbH, Ettlingen, Germany).  

- UNS: A national scale model was calibrated using a set of 3606 
samples collected across Spain. This national scale model was 
applied to local conditions (i.e., downscaling) without any adapta-
tion. To ensure consistent terminology across all the models, this 
model was labelled as the unspiked model (UNS). 

- SPC: The national scale model was spiked with 12 physical com-
posites (six from each field). The SOC value assigned to each com-
posite of the spiking subset was not the mean of its duplicates, but 
rather one value randomly selected among the duplicates. This 
condition thus mimicked the case in which the SOC contents in the 
samples of the spiking subset were analysed using the reference 
method without using the laboratory replicates (this aspect is further 
discussed in Section 2.5.1).  

- SEW: To develop this model, the spiking subset of the SPC model was 
extra-weighted as in Guerrero et al. (2016). To this end, 300 copies of 
the 12 samples were added to the calibration set. Consequently, the 
size of the spiking subset (once extra-weighted) was approximately 
equal to that of the national set (n=3606).  

- SEW01 to SEW21: A set of models were derived from the SEW model 
as follows: (1◦) The starting point was the SEW model. Owing to the 
application of the extra-weighting approach, the extra-weighted 
samples were fitted preferentially by the model at the expense of a 
poorer fit over other samples included in the calibration set (i.e., the 
national samples with different characteristics). Consequently, 
certain national samples were likely to be identified as outliers. The 
OPUS software was used to automatically generate a list of potential 
outliers (concentration outliers) according to the difference between 
the fitted and actual values and the difference in the residuals among 
different samples by using the F ratio with a probability level of 99%. 
(2◦) The national samples identified by the software as outliers were 
removed, and a new model was calibrated without these outliers. 
(3◦) If other samples appeared as new outliers in the new model, they 
were removed, and a new model was calibrated (i.e., step 2◦ was 
repeated). This loop of eliminating the outliers and re-calibrating 
was stopped when no more national samples were displayed as 
new outliers or until all the national samples were cleared. In this 
manner, a number of models was generated during these cycles. The 
models were successively numbered as SEW01, SEW02, and so on, 
until SEW21, as the loop finished after 21 cycles.  

- SEW-best: All the developed models were used to predict the SOC 
content in the 144 individual samples. Subsequently, the 144 pre-
dictions obtained using a particular model were averaged into 12 
mean values in the same manner (same combination) as the physical 
composites generation. Next, these 12 arithmetic means were 
compared with the 12 SOC values that were measured in the 

Table 1 
Virtual composites in each field.  

Number of individual samples 
(k) contributing to each 
composite 

Final number of composites 
to be analysed in the 
laboratory (n) 

Field effort (f) 
(in each field); f 
= k⋅n 

1 (=not bulking) 72a 72 = 1⋅72 
2 36 72 = 2⋅36 
3 24 72 = 3⋅24 
4 18 72 = 4⋅18 
6 12 72 = 6⋅12 
8 9 72 = 8⋅9 
9 8 72 = 9⋅8 
12c 6b 72 = 12⋅6 
18 4 72 = 18⋅4 
24 3 72 = 24⋅3 
36 2 72 = 36⋅2 
72 1d 72 = 72⋅1  

a Individual samples. 
b The physical composites correspond to this combination. 
c For the physical composites, this k corresponds to the strata as well. 
d Lowest costs for the laboratory analysis, albeit impractical condition in hy-

pothesis testing (no variance). 
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composites with the reference method. This comparison directly 
measures the bias of the prediction, since the bias computed with the 
12 values (arithmetic means) and that computed with the 144 values 
(individual samples) is the same. Therefore, this simple analysis al-
lows to identify which model predicts with less bias the mean SOC in 
CON (XCON) and the mean SOC in NT (XNT20), and hence, the model 
that yields the most accurate measure of the change (ΔSOC). Once 
identified, this model was also labelled as “SEW-best”. 

2.3.2. Predictions of SOC 
The SOC contents were estimated in the 144 individual samples with 

the previously described models, and then the quality of the predictions 
was assessed by using the classical performance parameters such as the 
determination coefficient (R2), standard error of prediction (SEP), bias, 
root mean square error of prediction (RMSEP) and ratio of performance 
to the interquartile range (RPIQ). To compute these parameters, the SOC 
contents predicted using the NIR model were compared with those 
analysed using the reference method with laboratory replicates. 

2.4. Minimum detectable difference (MDD) 

Given a pre-established acceptable rates of Type I and II errors, the 
sample variability and its size control the smallest difference between 
the two means that can be detected, i.e., the MDD (Heim et al., 2009; 
Petrokofsky et al., 2012; Harcum and Dressing, 2015). In this study, the 
difference in SOC contents due to different agricultural management, 
denoted as ΔSOC, is the target. The MDD was computed using Eq. (3), in 
which the MDD is related to the sample variance and sample size for an 
arbitrary value of the significance level (α) and power (1 − β), which are 
parameters related to the Type I and Type II errors, respectively: 

MDD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(t(α,ν) + t(β,ν))2
× 2(sp

2)

n

√

(3) 

Here, t(α,ν) denotes the critical t value (one tail) that is tabulated and 
can be obtained as a function of alpha (α=0.05 in this study) and the 
degrees of freedom ν. In this case, a one tail approach was used, which 
allows a higher power than two tails. If two tails must be considered, 
then t(α/2) must be determined. t(β,ν) is a critical t value (dependent on the 
degrees of freedom ν), which is related to the power, and its value was 
preset as 95% in this study (1− β=0.95; β=0.05). This value can be 
decreased at the expenses of an increase in the rate of Type II errors. 
However, this decrease is not recommended due to the importance of 
this error type. In this scenario, the sample variance was the pooled 
variance (sp

2), because it corresponded to a comparison of two means 
from independent groups. n denoted the sample size (per group). The 
MDD in composites was obtained with Eq. (3), although the values of sp

2 

and the sample size (n) were different. 

2.5. Correcting the minimum detectable difference 

Eq. (3) implies that the data are obtained using an errorless method. 
Therefore, the analysis method is expected to yield perfect measure-
ments of the ΔSOC and sp

2 in the hypothesis testing. This aspect repre-
sents an ideal yet unrealistic situation, since all analytical methods 
contain certain errors. Two methods with substantial differences in their 
accuracies cannot provide the same MDD for an arbitrary similar sample 
size (Zimmerman et al., 1993; Zimmerman and Zumbo, 2015). There-
fore, the error of the method must be considered in the MDD compu-
tation to enable the realisation of a fair and realistic comparison of the 
MDD when a parameter is obtained using different analysis methods 
(NIR, Walkley–Black, etc.). Hence, the reliability of the methods is used 
to produce a fairer and more realistic version of the MDD formulation. 

2.5.1. Reliability of methods used to measure the ΔSOC and pooled 
variance (sp

2) 
The reliability refers to the repeatability and consistency of a mea-

sure, which in this case refers to the capacity of measuring the ΔSOC and 
sp
2. The approaches to quantify the reliability of NIR spectroscopy and 

Walkley–Black on the different sample supports were slightly different, 
but in all cases were obtained empirically. 

2.5.1.1. NIR spectroscopy. The SOC contents predicted with NIR on the 
72 individual samples collected in CON were used to calculate the XCON 

and the s2
CON. Similarly, the SOC contents predicted with NIR on the 72 

individual samples collected in NT20 were used to calculate the XNT20 
and the s2

NT20. Then, these values were used to obtain the ΔSOC and sp
2 

values, which were compared with the true values, allowing the quan-
tification of the errors ∊ΔSOC and ∊sp

2, respectively:  

∊ΔSOC = |ΔSOC (NIR) − ΔSOC (true)|                                            (4)  

∊sp
2 = |sp

2 (NIR) − sp
2 (true)|                                                               (5) 

The true values of ΔSOC and sp
2 were considered to be those obtained 

when the reference method (Walkley–Black) was used to measure the 
SOC in the individual samples and using laboratory replicates (see 
Section 2.2.1). We are well aware that a measurement obtained with 
Walkley–Black is not the true value, even if several laboratory replicates 
are considered; however, here we are considering it as the “gold 
standard”. 

As the SOC contents were predicted using 24 different NIR models, 
24 different values of ∊ΔSOC and ∊sp

2 were obtained. 

2.5.1.2. Reference method (Walkley-Black) on individual samples. The 
SOC content in each individual sample was analysed using the Wal-
kley–Black method with laboratory replicates (see Section 2.2.1), 
allowing to obtain the ΔSOC and sp

2 in two different ways: (1) when the 
SOC content assigned to each sample was the mean value of its labo-
ratory replicates, or (2) when the SOC content assigned to each sample 
was one of its laboratory replicates. As in the previous section, it was 
assumed that the first case represented the true values of ΔSOC and sp

2, 
since laboratory replicates were used to measure the SOC (“gold stan-
dard”). The second case represented routine conditions, since the SOC 
was measured with the reference method although without laboratory 
replicates. Here, the differences between the true values of ΔSOC and sp

2 

and those obtained under routine conditions were used to assess the 
reliability of the Walkley–Black method (∊ΔSOC and ∊sp

2). 
As the computation of ΔSOC and sp

2 is obtained with 144 individual 
samples and at least two laboratory replicates were conducted in each 
sample, there are billions of different combinations potentially valid to 
represent empirically the routine conditions, each of which provides 
plausible but different values of ΔSOC and sp

2, and hence also billions of 
different values of ∊ΔSOC and ∊sp

2. Therefore, to estimate values for 
∊ΔSOC and ∊sp

2 that may be closer to the expected values during routine 
conditions, the mean values observed in 10,000 different configurations 
were calculated. These 10,000 different configurations of the dataset 
were generated by randomly changing the laboratory replicate selected 
as the SOC content to be assigned to each sample. 

The following steps were employed: 
1◦) For a given arbitrary configuration i, the SOC content assigned to 

each of the 144 samples was not the mean of the laboratory replicates, 
but the value of a randomly selected replicate. 

2◦) The values of XCON i (n = 72), XNT20 i (n = 72), s2
CON i (n = 72) 

and s2
NT20 i (n = 72) were computed for i. Next, the ΔSOCi and s2

p i for i 
was computed using Eqs. (6) and (7), respectively: 

ΔSOCi = XNT20i − XCONi (6)  
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s2
pi =

(nCON − 1) × s2
CONi + (nNT20 − 1) × s2

NT20i
nCON + nNT20 − 2

(7) 

3◦) Then, the values of the given configuration were compared with 
the true values using Eqs. (8) and (9): 

∊ΔSOCi = |ΔSOCi − ΔSOC (true)| (8)  

∊s2
pi =

⃒
⃒
⃒s2

pi − s2
p(true)

⃒
⃒
⃒ (9) 

4◦) Steps 1◦ to 3◦ were repeated for each of the 10,000 configurations 
(m), and the mean values were obtained: 

∊ΔSOC =
1
m
×

∑m

i=1
(∊ΔSOCi) (10)  

∊s2
p =

1
m
×
∑m

i=1

(
∊s2

pi
)

(11) 

Thus, the reliability was based on the repeatability (reproducibility) 
to produce accurate estimations of the ΔSOC and sp

2. 

2.5.1.3. Reference method (Walkley-Black) on physical composites.. Two 
laboratory replicates were measured in each physical composite. These 
two SOC values allowed the generation of 4096 different combinations 
(212=4096), each of which represented a plausible case wherein the SOC 
content in each physical composite was analysed with the reference 
method without laboratory replicates (i.e., routine conditions). The 
ΔSOC and sp

2 were obtained for each combination and then were 
compared with the true values to obtain the ∊ΔSOC and ∊sp

2. Here it was 
assumed that the true values of ΔSOC and sp

2 were those obtained with 
the theoretic composites, because the SOC content of a theoretic com-
posite is the arithmetic mean of 12 individual samples that were ana-
lysed using the reference method and laboratory replicates. 

As in the previous section, since different values of ∊ΔSOC and ∊sp
2 

were measured for each combination, the mean values were computed. 
In general, the steps and equations were similar to those used for the 
individual samples (Eq. (6) to Eq. (11)), and the main difference cor-
responded to the parameter calculation (XCON, XNT20, s2

CON and s2
NT20) 

in step 2◦. In this case, the calculations were based on six composites 
each in CON and NT20, whereas in the previous case, the calculations 
were based on 72 individual samples each in CON and NT20. 

2.5.2. Minimum detectable difference corrected (MDDC) 
Here, the lack of reliability (or errors) of the methods used to 

determine the ΔSOC and sp
2, namely ∊ΔSOC and ∊sp

2 respectively, was 
considered to obtain a realistic MDD, which was denoted as corrected 
MDD (MDDC). This correction was performed in two stages. During the 
first stage, the ∊sp

2 was used to partially correct the MDD, resulting in 
MDDCp, which was obtained with the formula shown in Eq. (12): 

MDDCp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(t(α,ν) + t(β,ν))2
× 2(spc

2)

n

√

(12) 

Eq. (12) is similar to Eq. (3), except for sp
2 being replaced by spc

2 , 
which represents the corrected pooled variance, obtained as follows:  

spc
2 = sp

2 + |∊sp
2|                                                                             (13) 

where sp
2 is the true pooled variance, and ∊sp

2 is the error of the method 
(Walkley–Black, NIR, etc.; see Section 2.5.1) when sp

2 is measured. n is 
the sample size (per group), with a value of 72 for the individual samples 
and six for the composites. In this manner, the error (∊sp

2) was added to 
the true pooled variance (sp

2). The deviation against the true value could 
be positive or negative if the values were overestimated or under-
estimated, respectively. A negative value would decrease the MDDCp 
with respect to the uncorrected MDD, leading to an apparent (false) 
improvement. Clearly, a method involving a larger error cannot provide 

improved results, that is, it cannot yield a lower MDDCp. Therefore, this 
deviation was considered to be positive, leading to a higher spc

2 , which 
increased the MDDCp with respect to the MDD. Consequently, a larger 
error incurs a higher penalty, which increases the MDDCp. In other 
words, a less accurate method possesses less statistical power with the 
same number of samples (Zimmerman and Zumbo, 2015). In a less 
formally way, the corrected pooled variance spc

2 included in Eqs. (12) 
and (13) is the pooled variance observed with the method under eval-
uation (Walkley–Black without laboratory replicates, NIR, etc.). 

The second stage of the correction can be expressed as follows:  

MDDC = MDDCp + |∊ΔSOC|                                                         (14) 

The value of ∊ΔSOC in Eq. (14) indicates the error of an arbitrary 
method used to measure the ΔSOC. Therefore, the second correction 
included in Eq. (14) corresponds to the ability of the method to measure 
the ΔSOC (∊ΔSOC). As in Eq. (13), this error was directly added (with a 
positive sign) in Eq. (14) to penalise the MDDC (i.e., to increase the 
MDDC) (Chappell and Baldock, 2016). In this manner, both the errors 
(∊ΔSOC and ∊sp

2) were included in the expressions to compute the 
MDDC: larger errors corresponded to a higher MDDC and to an inferior 
capacity in hypothesis testing. 

3. Results 

3.1. Descriptive values of SOC in the fields 

The mean SOC content in the 72 samples collected in CON field 
(XCON) was 1.14 %SOC (Table 2), and the standard deviation was 0.11 % 
SOC. The values were ranging from 0.90 to 1.34 %SOC. The mean SOC 
content in the 72 samples collected in NT20 field (XNT20) was 1.66 % 
SOC (Table 2), and the standard deviation was 0.31 %SOC. The values 
were ranging from 1.02 to 2.66 %SOC. It was assumed that these fields 
belonged to a chronosequence, and thus, both fields had similar SOC 
contents before the change in the management strategy. The accumu-
lation rate (0.53 %SOC in 20 years) was within the range observed by 
other authors under similar conditions (González-Sánchez et al., 2012; 
Álvaro-Fuentes et al., 2014). 

There was a high correlation (r=0.99) between the SOC contents 
measured in the physical composites (using the reference method in 
duplicate) and the theoretic SOC contents of its virtual composites, 
which were obtained as the arithmetic means of the SOC measured in 
the individual samples forming the composites. However, despite the 
high correlation, a slope close to 1 (1.07) and small offset (0.072), the 
materialisation of the composite was not an perfect procedure because 
of the inherent errors in the sub-sampling and mixing the aliquots. 
Moreover, the influence of the measurement random error was expected 
to be large since the SOC content in a theoretic composite was the 
arithmetic mean of the 12 values measured in 12 individual samples, 
whereas only one value was obtained when the SOC content of the 
physical composite was analysed. As consequence, the mean SOC con-
tent measured in the physical composites from CON was 1.15 %SOC 
(n=6), 1.71 %SOC in those from NT20 (n=6), and their difference 
(ΔSOC) was 0.55 %SOC, being slightly different respect to that observed 
with the individual samples (ΔSOC=0.53 %SOC). 

3.2. Variances in individual samples and composites 

The sample variance observed in the 72 individual samples collected 
in CON (s2

CON) and those 72 collected in NT20 (s2
NT20) was 0.012 % 

SOC2 and 0.093 %SOC2, respectively. Therefore, when 72 individual 
samples from each field were used, then the pooled variance sp

2 was 
0.053 %SOC2 (Fig. 1). As expected, the variance in the composites was 
substantially lower than the observed in the individual samples. Fig. 1 
shows the sp

2 obtained with virtual composites formed at different values 
of k, and therefore not constrained by the compact geographical strata. 
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In all the cases, f=72 and f=k⋅n (Table 1); therefore, the final number of 
composites (n) decreased as k increased. The values of sp

2 plotted in Fig. 1 
indicate averages obtained after 1,000 simulations, and hence, they 
represent the expected values. The results of these simulations were in 
agreement with the theoretical pattern, wherein the variation in the f 
individual samples, sp

2, reduced by k times if k aliquots were pooled to 
obtain n composites. For instance, at k=12, the sp

2 obtained using the six 
composites each from the CON and NT20 fields was 0.0044 %SOC2, 
which was approximately 12 times lower than that observed using the 
individual samples (sp

2=0.053 %SOC2). However, the reduction rate of 
size k was the expected value, and the exact value in a particular com-
bination depends on the aliquots mixed (Patil et al., 2011). As in strat-
ification, if the aliquots contributing to a composite were collected 
across different well-defined homogeneous strata, a large reduction in 
the sample variance and an increase in the precision can be expected (de 

Gruijter et al., 2016). Conversely, bulking within homogeneous strata (i. 
e., when generating internally homogeneous composites) may even in-
crease the sample variance (Patil et al., 2011). Therefore, according to 
the trend shown in Fig. 1 (neutral effect of stratification and compos-
iting), the sp

2 in the composites was expected to be approximately k times 
lower than that observed in the individual samples, especially at larger 
values of k. 

When the formation of the virtual composites was constrained by the 
strata (defined by compact geographical stratification) the sp

2 was, on 
average of 1,000 simulations, 0.0043 %SOC2. This value is very close to 
the observed with composites not constrained by the strata (0.0044 % 
SOC2) when k=12. This result is suggesting that compact geographical 
stratification has not been particularly efficient in the stratification of 
the SOC contents, since in both the cases, these numbers were similar to 
the expected rate of 12 (with k=12 in both the cases), indicating a 
neutral effect. Thus, the distribution of the SOC in the fields was not 
directly related to the strata. 

The combination followed to create the physical composites repre-
sents one of the several plausible combinations wherein the formation of 
the composites was constrained by the strata defined by the compact 
geographical stratification. The sp

2 computed using the corresponding 
theoretic composites, i.e., the virtual composites developed using the 
same combination used to obtain the physical composites, was also 
0.0043 %SOC2. Thus, the combination followed to form the physical 
composites can be considered as a representative case and not a 
particular case. Nevertheless, this value (sp

2=0.0043 %SOC2) represents 
a perfect materialisation of this combination, and therefore, it serves as 
the theoretic reference. When the composites were physically materi-
alised, and the SOC contents were analysed in the mixtures using the 
reference method (with duplicates), the sp

2 of the physical composites 
was 0.0101 %SOC2. This value was different than that computed using 
the theoretic composites (0.0043 %SOC2), likely because of the errors in 
the materialisation process and the SOC determination (Lancaster and 
Keller-McNulty, 1998; de Gruijter et al., 2006). 

3.3. MDD obtained using individual samples and virtual composites 

Fig. 2 shows the MDD obtained using Eq. (3) with the data from the 
individual samples (72 per field; represented by a star), from the virtual 
composites having different k (represented by points) and from the 
theoretic SOC contents of the physical composites (6 per field; repre-
sented by triangles). The values of the MDD computed using the indi-
vidual samples (n=72) and theoretic (virtual) composites (n=6) were 
very close. Despite the large differences between the sample size and sp

2 

(Fig. 1), both the parameters decreased by k times in the case of 

Table 2 
Main parameters measured using the reference method Walkley–Black (WB), and predicted with four different NIR models (UNS, SPC, SEW and SEW-best). The SOC 
content was expressed in %.   

Walkley–Black (WB) NIR models  

True (WB with replicates)a Routine (WB without replicates)b UNS SPC SEW SEW-best 

XCON  1.14  1.14  1.49  1.45  1.07  1.15 

XNT20  1.66  1.66  2.57  2.52  1.84  1.70 

ΔSOC 0.525  0.525  1.081  1.065  0.762  0.551 
∊ΔSOC 0c  0.0082d  0.5559e  0.5402e  0.2370e  0.0256e 

s2
CON 0.012  0.014  0.029  0.028  0.017  0.019 

s2
NT20 0.093  0.099  0.343  0.337  0.222  0.115 

sp
2 0.053  0.056  0.186  0.183  0.120  0.067 
∊sp

2 0c  0.0043f  0.1335g  0.1300g  0.0670g  0.0140g  

a The SOC content assigned to each sample was the mean of its laboratory replicates. 
b The SOC content assigned to each sample was one of its laboratory replicates. 
c Since WB is used with replicates, these values are assumed as true values. 
d Obtained using Eq.(10). 
e Obtained using Eq. (4). 
f Obtained using Eq. (11). 
g Obtained using Eq. (5). 
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Fig. 1. Pooled variance (sp
2) in composites: The points denote the sp

2 obtained 
using the virtual composites at different values of k for a fixed field effort f (f =
72), with f = k⋅n. The number located near the symbol (n) denotes the final 
number of samples to be analysed in the laboratory (i.e., sample size from each 
field). The error bars represent the standard deviation observed in 1,000 sim-
ulations. The star denotes the sp

2 of the individual samples (k = 1; not bulked), 
and the triangle denotes the theoretic value of the physical composites (k = 6). 
SOC content is expressed in %. 
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composites. Consequently, it was considered that bulking into the 
composites exerted an almost neutral effect on the MDD. However, the 
MDD for the composites was slightly larger than that obtained using the 
individual samples (Fig. 2). This difference was only due to the degrees 
of freedom (ν), which affected the critical t values. The critical t values 
increased with the decrease in degrees of freedom. In our pre-established 
conditions (one tail, α=0.05), the value of t(α) was 1.8125 for the com-
posites (ν=10 when n=6 per field) and 1.6556 for the individual samples 
(ν=142 when n=72 per field). These values were also used for t(1—β), 
because the power was pre-established at 95% (1− β=0.95). Therefore, 
in a virtual plane, the use of composites is an interesting approach to 
avoid large costs, since it does not produce a substantial negative impact 
on the MDD. Indeed, the difference in MDD respect to the obtained with 
the individual samples was small, whereas the laboratory costs were 
decreased by 12 times (k=12). The differences in MDD along the 
different configurations (f=k⋅n) of the virtual composites occurred only 
due to the variations in the critical t values (denoted as grey crosses in 
Fig. 2), and assuming a neutral effect of the stratification (i.e., the 
variance diminishes at rate k). 

3.4. Predictions 

Fig. 3 shows the predicted SOC contents in the 144 individual sam-
ples in comparison with the true values (measured with the reference 
method and laboratory replicates). The predictions obtained using the 
national scale model (UNS) were biased (Fig. 3a). This pattern has been 
widely observed when a national-scale model has been directly used to 
predict at the local scale (downscaling) without previous adaptation to 
the local conditions (Bellon-Maurel and McBratney, 2011; Guerrero 
et al., 2016). Although its precision is adequate, the accuracy of this 
unspiked model is extremely low owing to large bias. Similar results 
were obtained when the national scale model was spiked with 12 
composites (SPC), indicating an extremely small effect of spiking 
(Fig. 3b). This result was expected because the impact of 12 samples on a 
large calibration set was almost null, as noted by Guerrero et al. (2014, 

2016). The accuracy was improved substantially when the spiking 
subset was extra-weighted (SEW), primarily owing to the decrease in the 
bias and somewhat also due to the decrease in the SEP (Fig. 3c). 

The preferential fitting over the extra-weighted samples was per-
formed at the expense of a poorer fit over the remaining samples. 
Therefore, certain samples from the national set appeared as concen-
tration outliers after applying the extra-weighting step (data not shown). 
After the outliers were removed, a new model was fitted with the 
remaining samples; however, this new fitting involved a new set of 
outliers, which were removed as well, leading to another new different 
model (data not shown). This loop was stopped after 21 cycles, when no 
more outliers were identified. Therefore, a total of 21 new models were 
generated. 

Fig. 4a shows the RMSEP obtained when the different models were 
used to predict the SOC contents in the 144 individual samples. The 
point denotes the RMSEP computed using the 144 predictions obtained 
in the individual samples. As expected, the accuracy of these 21 models 
varied, since their calibration sets were different in size (as the number 
of cycles increased, the size of the calibration set decreased). This 
variation implied the existence of an optimal value. However, under 
practical conditions, this optimal value cannot be known since the SOC 
contents in the 144 individual samples are not available. The star in 
Fig. 4a denotes the RMSEP when the 144 predictions were averaged as 
the 12 composites. This information is available under practical (real-
istic) conditions because the SOC contents in the composites are known, 
since they were analyzed to build the spiking subset. A correlation exists 
between the two approaches to compute the RMSEP, although the cor-
responding values are different, as expected. Consequently, the RMSEP 
obtained using the averages provides only partial information, and the 
pattern of the RMSEP in the 144 individual samples cannot be inferred. 

Fig. 4b shows the bias. The bias calculated using the 144 individual 
samples (points in Fig. 4b) and the 12 averages (stars in Fig. 4b) was the 
same owing to the data configuration (as indicated in Table 1), wherein 
all the individual samples were averaged into mean values with equal 
sizes (i.e., all the composites were created using k aliquots). Therefore, 
the model producing less biased predictions could be identified under all 
those practical conditions in which the SOC contents in the 12 com-
posites are known, such as in the SPC, SEW and the 21 newly derived 
models (SEW01 to SEW21). 

Similar to the bias, the ∊ΔSOC computed using the 144 individual 
samples (points in Fig. 5a) and computed using the 12 averages (stars in 
Fig. 5a) was the same. The sequential elimination of the outliers 
(together with the model recalibration as new model) resulted in a 
decrease in the ∊ΔSOC, especially during the first five cycles, followed 
by a stabilising trend. The model calibrated in cycle #10, i.e., model 
SEW10, was the “best model” as it corresponded to the minimum ∊ΔSOC 
(Fig. 5a), and therefore, it was also labelled as “SEW-best” (Fig. 3d). As 
discussed, the information displayed as points cannot be obtained under 
realistic conditions, because the actual SOC contents of the 144 samples 
are unknown, and are only available under experimental conditions. 
Hence, the SEW-best model cannot be identified. In contrast, SEW-best 
can be determined by inspecting the ∊ΔSOC computed using the pre-
dictions averaged as composites (stars, Fig. 5a), because under practical 
conditions, the actual SOC contents in the 12 composites are known. 

3.5. Reliability of methods used to determine the ΔSOC and pooled 
variance (sp

2) 

3.5.1. Using NIR spectroscopy (n=72 per field) 
Table 2 lists the XCON and s2

CON of the 72 samples collected in the 
CON field, and the XNT20 and s2

NT20 of the 72 samples collected in the 
NT20 field, depending on the NIR model used to estimate the SOC. This 
table also summarises the capacity of the NIR predictions to measure the 
ΔSOC and sp

2. Despite the high R2 values (above 0.83), the capacity of the 
UNS and SPC models to measure the ΔSOC was low due to the large bias, 
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Fig. 2. Left y-axis: Minimum detectable difference (MDD) obtained using in-
dividual samples (star), virtual composites (points) and physical composites 
(theoretic) (triangle). The results were obtained assuming ideal but unrealistic 
conditions, in which the materialisation (in the case of composites) and the 
analysis of the SOC contents were perfect procedures, and therefore, the dif-
ference in the means and pooled variance was determined without errors. The 
values of α and β were 0.05 each. Right y-axis: Critical t values (denoted as grey 
crosses) in the computation of the MDD (one tail, when α = 0.05). These critical 
t values were also valid for β in Eq. (3) since the power (1 − β) was fixed at 95% 
(β = 0.05). 
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Fig. 3. Predicted SOC contents in the 144 individual samples against the values measured using the reference method (Walkley–Black). The values predicted using 
the unspiked model (UNS), spiked model (SPC), SEW model, and SEW10 (also labelled as “best”) are shown in 3a, 3b, 3c and 3d, respectively. 

Fig. 4. Values of RMSEP (4a) and bias (4b) of predictions obtained with different models. The point denotes the value computed with the 144 individual samples, 
whereas the star denotes the value when it was computed with 12 averages of these 144 individual samples. 
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and the values of ∊ΔSOC were substantial (>0.54). The predictions 
obtained after extra-weighting (SEW) halved that error due to the effect 
of the extra-weighting in the bias. As discussed, when the values of the 
composites are known, the model that yields the lowest ∊ΔSOC can be 
determined. This identification is crucial, as in this study, the minimum 
∊ΔSOC was one order of magnitude lower than that observed using the 
SEW model (Table 2). As shown in Fig. 3d, the SEW-best model pre-
dicted the SOC with an extremely small bias (0.021%). 

Unlike the ∊ΔSOC, the ∊sp
2 values computed using the 144 individual 

values (points; Fig. 5b) were notably different than those computed with 
the values averaged as composites (stars; Fig. 5b). Therefore, the model 
yielding the minimum ∊sp

2 value could not be identified under realistic 
conditions. Nevertheless, the different accuracy of those spectroscopic 
models was also noted when the predictions were used to estimate the sp

2, 
and the largest and smallest error ∊sp

2 occurred when the SOC was pre-
dicted using the unspiked model (UNS) and SEW-best model, respec-
tively (Fig. 5b). 

3.5.2. Using the Walkley–Black method in the individual samples (n=72 
per field) 

Although Walkley–Black is a reference method, it involves errors, 
and its reliability depends on how the method is applied during routine 
conditions (for example, if laboratory replicates are used). As described, 
in this section we examined the reliability of the Walkley–Black method 
to measure the ΔSOC and sp

2 when only one determination per sample 
was used (i.e., without laboratory replicates), which were considered as 
the routine conditions. To resemble the scenario in which the SOC is 
analysed without laboratory replicates, we simulated 10,000 different 
configurations of the data. In each of these configurations, the SOC 
content assigned to each sample was not the mean of its laboratory 
replicates, but the SOC content of one of its randomly selected replicates. 
Consequently, the values of the parameters (XCON, XNT20, ΔSOC, s2

CON, 
s2

NT20 and sp
2) varied in each particular random configuration, owing to 

the differences in the replicates (i.e., repetitiveness of the method). 
The values of the XCON (n=72) and XNT20 (n=72) observed in these 

10,000 configurations are shown in the x-axis in Fig. 6. The mean ΔSOC 
value was 0.525 %SOC (Table 2), and the minimum and maximum 
ΔSOC values were 0.485 and 0.560 %SOC, respectively. The mean 
∊ΔSOC was 0.0082, and this value was considered as the expected error 
when the ΔSOC was computed under routine conditions (i.e., using the 

Walkley–Black method to measure the SOC content in the samples, 
without laboratory replicates). Similarly, the values of the sp

2 differed in 
each of the 10,000 simulations. The values of s2

CON (n=72) and s2
NT20 

(n=72) obtained in each simulation are shown on the y-axis in Fig. 6. 
The mean sp

2 was 0.056 %SOC2. The mean ∊sp
2 was 0.0043, and this value 

was considered as the expected error when the sp
2 was computed under 

the given routine conditions (that is, using the Walkley–Black without 
laboratory replicates). 

Fig. 5. Values of ∊ΔSOC (5a) and ∊sp
2 (5b) obtained with different models. The point denotes the value computed with the 144 individual samples, whereas the star 

denotes the value when it was computed with 12 averages of these 144 individual samples. 

mean SOC content (n=72)

1.12 1.14 1.16 1.65 1.70

sa
m

pl
e 

va
ria

nc
e 

(n
=7

2)

0.010

0.015

0.020

0.080

0.100

0.120 Conventional (CON)
20 years no-till (NT20)

Fig. 6. Values of the mean SOC content and sample variance in the CON (n =
72) and NT20 (n = 72) fields, observed in 10,000 different configurations of 
data. Each configuration represents a case in which the SOC content in the 144 
individual samples was measured using the reference method (Walkley–Black) 
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3.5.3. Using the Walkley–Black method in the composites (n=6 per field) 
The capacity to provide a reliable value of ΔSOC and sp

2 was different 
in the case of composites than in the case of individual samples, despite 
the method for the SOC analysis and its laboratory conditions being the 
same (Walkley–Black without laboratory replicates). When only one 
replicate was used to analyse the SOC content in the composites, ∊ΔSOC 
and ∊sp

2 were 0.0321 and 0.0078, respectively. These errors were higher 
than those obtained in the individual samples (Table 2), and the lower 
reliability could be partially attributed to the presence of additional 
errors linked to the imperfect materialisation of the composites, such as 
those pertaining to the sub-sampling and weighting of the aliquots, 
which was performed 12 times, and the mixing. However, the main 
reason for the lower reliability was the larger contribution of the random 
measurement error in the composites, because for the computation of 
each parameter (XCON, XNT20, ΔSOC, s2

CON, s2
NT20 and sp

2), the individual 
samples involved 12 times more measurements than those pertaining to 
the composites. 

Assuming ideal conditions wherein the analytical method measures 
without error, the variance of the estimated sample mean depends on 
the spatial variation (sample variance) and the sample size. In such a 
case, the variance of the estimated sample mean in the CON and NT20 
fields by using the individual samples is expected to be s2

CON/n and 
s2

NT20/n, respectively. When the composites are used, these values are 
the same, because s2

CON and s2
NT20 decreased k times (in the same 

proportion as the decrease in the sample size, k). Interestingly, the 
process is k times cheaper, since the sample size to be analysed is k times 
smaller, and neutral (in terms of the precision) because the sample 
variance in the composites is approximately k times smaller than the 
sample variance of the individual samples. However, the measurements 
are not exact even when using a reference method, and the measurement 
error also contributes to the variance of the estimated sample mean. 
Therefore, when the individual samples were used, the sample size was k 
times larger than that in the case of the composites, and hence, the 
random measurement error was expected to exert a k times smaller in-
fluence on the variance (Patil et al., 2011; de Gruijter et al., 2016). 

3.6. MDDc 

The results described in the previous section indicated that the 
methods cannot perfectly measure the ΔSOC and sp

2 owing to the dif-
ferences in the reliability measuring SOC contents (Table 2). These 
differential reliabilities must be considered when comparing the 
different methods and conditions. To enable a fairer and more realistic 
comparison, we computed the corrected MDD (MDDC), which takes into 
account the errors. To this end, we used Eq. (14), according to which, an 
increase in the errors results in an increase in the MDDC (i.e., larger 
penalisation). 

The MDDC values are shown in Fig. 7. When the errors of the Wal-
kley–Black method were considered, the MDDC calculated using the 144 
individual samples (72 per field) was 0.1399 %SOC, which is slightly 
larger than the “ideal” MDD (0.1266 %SOC), represented by the white 
segment in Fig. 7. The penalisation owing to ∊ΔSOC was more important 
than that of ∊sp

2, as the size of the black segment was considerable larger 
than the grey segment, almost imperceptible in Fig. 7. The SOC contents 
in these 144 samples might be analysed using laboratory replicates to 
reduce the errors ∊ΔSOC and ∊sp

2 and consequently the MDDC. However, 
due to the small differences between the MDD and MDDC, the expected 
improvement is small. Thus, the use of laboratory duplicates is not 
worth, as it requires the duplication of the efforts in the laboratory, 
necessitating the determination of 144 additional values of SOC (288 in 
total), which may be extremely expensive yet almost ineffectual (Goidts 
et al., 2009; Rawlins et al., 2009). 

The SOC contents in the physical composites were analysed under 
similar routine conditions as those of the individual samples, that is, by 
using the Walkley–Black method without laboratory replicates. 

However, the number of measurements to obtain ΔSOC and sp
2 was 12 

times lower in the composites (n=6 per field) than that in the case of 
individual samples (n=72 per field), and therefore, the random mea-
surement errors were less attenuated. Moreover, additional errors were 
present in the composites, owing to the imperfect materialisation. 
Therefore, the difference between the MDD and MDDC of the composites 
was substantially higher, since it changed from 0.1374 to 0.2629 %SOC 
(Fig. 7) and only from 0.1266 to 0.1399 %SOC in the case of the indi-
vidual samples. A small portion of the difference between the MDDC in 
composites and individual samples could be partially attributed to the 
higher t value (almost similar white segments in Fig. 7), which depends 
on the degrees of freedom, as explained in Section 3.3. Hence, the 
contribution of this effect is smaller than that of the errors. Nevertheless, 
whereas the composites represent a 12-fold cheaper option compared to 
the individual samples, the associated MDDC is not 12-fold worse. 
Therefore, the use of composites may be considered as a cost-effective 
approach that can be used when the budget for the SOC analysis is 
limited and a poorer (higher) value of the MDDC (0.2629 %SOC) is 
acceptable and still useful (Saby et al., 2008; Minasny et al., 2017; FAO, 
2019; Smith et al., 2020). 

The MDDC obtained using the NIR spectroscopy was strongly 
dependent on the model used to estimate the SOC content in the 144 
individual samples, since the MDDC values ranged from 0.1680 to 
0.7940 %SOC (Fig. 7). These values were notably higher compared to 
the corresponding MDD (white segments in Fig. 7), which was 0.1266 % 
SOC in all the cases, owing to the same sample size (72 samples per 
group). The highest MDDC was obtained with data obtained from model 
UNS, which was six times higher than the corresponding MDD, mostly 
due to the error ∊ΔSOC (Table 2), which represents the 70% of the total 
MDDC. Similar results and patterns were observed when using the SPC 
model. Due to the substantial decrease in the bias caused by the extra- 
weighting, the reliability to measure the ΔSOC was notably improved 
(Table 2), resulting in a diminution of the MDDC of the SEW model 
compared to that of the SPC model. Despite the important attenuation of 
the bias, ∊ΔSOC was the main factor contributing to the difference be-
tween the MDDC and MDD in the SEW model, representing 55% of the 
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Fig. 7. The white segments represent the MDD under ideal conditions (SOC 
determined using an exact method; Eq. (3)). The grey and black segments 
denote the two stages of the MDD correction (see Section 2.5.2), and together 
with the MDD (white segment), all these segments represent the total size of the 
MDDC. n denotes the sample size (per group). The number in italics (inside the 
white segment in the columns: 0, 12, 144) denotes the total number of Wal-
kley–Black determinations required. The number above the bar denotes 
the MDDC. 
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MDDC. 
The lowest MDDC was obtained using the SEW-best model, for which 

the errors represented less than 25% of the MDDC. Anyway, as expected, 
the MDDC in SEW-best (0.1680 %SOC) was higher than that obtained 
using the Walkley–Black method (0.1399 %SOC) with the same sample 
size (72 per group; 144 samples). However, the costs associated with the 
Walkley–Black for 144 samples are likely prohibitive, whereas the 
analytical cost to process 144 samples using NIR spectroscopy is 
considerably lower, since the scanning of the samples does not require 
the use of chemicals and is a rapid process. 

Interestingly, the MDDC obtained using the SEW-best model (0.1680 
%SOC) was lower than that obtained using the 12 physical composites 
(0.2629 %SOC). These approaches differ only in the scanning costs 
(required for SEW-best). Except for the scanning cost, the approaches 
are nearly equivalent in terms of the effort, because both the approaches 
require a similar number of SOC analyses using the reference method. 
This equivalence occurs since the size of the spiking subset was the same 
as the number of physical composites (12), n=6 per field in both the 
cases, and the SOC content was determined without laboratory repli-
cates. Hence, the scanning cost, which is relatively small, offers a net 
advantage owing to the lower MDDC and allows the retention of the 
information regarding the spatial distribution of the SOC contents, 
which is provided by the SOC predicted using the individual samples and 
is lost when using composites. 

4. Discussion 

It is necessary to develop credible, accurate, efficient and affordable 
methodologies and protocols to verify the changes in SOC contents 
(Saby et al., 2008; Schrumpf et al., 2011; Petrokofsky et al., 2012; Jandl 
et al., 2014; Smith et al., 2020). In this regard, it is necessary to identify 
the optimal methodology, because even small differences in the costs 
(and accuracy) represent a substantial amount once extended in space 
and time. In terms of the accuracy, we must assume that all the methods 
involve errors, and their measurements are more or less reliable. A 
method with a low reliability produces measurements with errors, and 
consequently, for any arbitrary sample size, the statistical power is al-
ways overestimated compared to that of an ideal exact (non-existent) 
method (Zimmerman and Zumbo, 2015). Thus, comparing methods 
using the MDD is not recommended because the errors in the method are 
not considered in this approach. In contrast, the comparison using the 
MDDC is fairer and more realistic, since this value represents the MDD 
corrected considering the errors in the method. Larger errors correspond 
to a higher penalisation (and correction) and thus higher MDDC values. 
This aspect enables a suitable evaluation of the capacity of the method, 
thereby allowing a fairer comparison among different approaches. 

Composite samples is well-known and widely used sample support 
used in soil science to reduce the analytical costs (de Gruijter et al., 
2006). For a fixed field work, the MDDC obtained with physical com-
posites is higher than that obtained with individual samples, mostly due 
to the higher influence of the measurement errors because the number of 
measurements is lower, the imperfect materialization, and somewhat 
owing to the higher t values as consequence of the lower degrees of 
freedom. However, the inferior capacity (higher MDDC) is a minor 
problem compared to the substantial cost reduction, as this approach is 
12 times cheaper. Assuming an annual linear change in the SOC, the 
MDDC of the 72 individual samples would allow to revisit every 5.33 
years. Using the composites, the second round must be delayed until 
10.01 years, which is when the cumulative change (ΔSOC) equals the 
MDDC. This difference does not represent a substantial delay, whereas 
the reduction in analytical costs is important, since is 12 times lower. 
Thus, the use of composites is a competitive alternative in several sce-
narios, such as in those in which the economic restrictions are stronger 
than those imposed by the need to increase the revisitation frequency 
(Smith, 2004; Necpálová et al., 2014; FAO, 2019). 

In comparison with a reference method such as the Walkley-Black for 

SOC, the NIR spectroscopy is faster and cheaper (Bellon-Maurel and 
McBratney, 2011; O’Rourke and Holden, 2011; Viscarra Rossel and 
Brus, 2018), thereby allowing a reduction in the costs necessary to 
analyse an arbitrary sample size (or an increase in the sample size with 
an arbitrary budget). However, there should be a balance between these 
advantages (higher sample size; minor costs) and its major drawback, 
which is the inferior data quality, that may be compromising and 
limiting its usefulness. An example of useless predictions includes those 
obtained at the local scale by using models calibrated with samples 
collected at the national, continental or global scale, since these pre-
dictions are typically biased, as observed in this study when the pre-
dictions were obtained using the UNS model. Several researchers have 
proposed different procedures, strategies and approaches to predict at 
the local scale; for instance, (i) by calibrating site-specific models 
(Wetterlind et al., 2010), (ii) by using rs-LOCAL models (Lobsey et al., 
2017), (iii) through the adaptation of pre-existing larger-scale models to 
the local characteristics via model transferring (Grunwald et al., 2018; 
Padarian et al., 2019), or (iv) by adapting the model to the local con-
ditions through spiking with local samples (Guerrero et al., 2014, 2016), 
which substantially reduces the bias and enables a successful down-
scaling. However, to apply these procedures, certain local samples must 
be analysed using the reference method, which requires an investment. 
When realising the adaptation through spiking with extra-weighting, the 
local samples are known as the spiking subset. Spiking ensures that the 
recalibrated model contains a set of samples with the local character-
istics, whereas the extra-weighting forces the model to fit preferentially 
to that set (Guerrero et al., 2016). This preferential fit is expected to lead 
to better predictions over the samples with similar characteristics. 
Consequently, representative samples should be used as the spiking 
subset owing to their resemblance with the overall prediction set. In fact, 
Guerrero et al. (2014) compared several types of samples as the optimal 
spiking subset and noted that the highest accuracy was obtained when 
the spiking subset was composed of representative samples selected 
using the Kennard–Stone algorithm, with the bias reduction being the 
main mechanism. In this study, the spiking subset was constituted by the 
12 physical composites, a type of samples which were has not previously 
tested for this purpose (to the best of our knowledge), and once extra- 
weighted, the quality of predictions was considerably improved, 
mostly owing to a decrease in the bias too. The efficiency of composites 
to act as an effective spiking subset can be explained by the fact that they 
are formed by mixtures of the samples to be predicted, and hence, they 
can also be considered as representative samples. Despite the consid-
erable improvement, some bias was still present in the SOC predictions 
obtained using the SEW, and consequently, the MDDC was larger than 
the value achieved using the physical composites. Hence, at first glance, 
it may appear more reasonable to proceed only with the physical com-
posites (without coupling with NIR) because in addition to a lower 
MDDC, is a more conservative approach (simpler and less risky than 
NIR). However, the combination (composites and NIR) is recommended, 
because in addition to act as spiking subset, the composites allow the 
measurement of the bias and ∊ΔSOC of the predictions. This is an 
interesting and powerful analysis (Demattê et al., 2019), which is 
feasible once the predictions have been averaged as the composites, and 
then these averages are compared against the values measured in the 
composites. Hence, if several models are available, such as those 
generated during the cycles of outliers removal, then the “best” model in 
terms of the smallest ∊ΔSOC or the smallest bias can be identified. The 
relevance of this identification is not minor, since the MDDC obtained 
using the predictions of the “best” model (SEW-best) was considerably 
smaller than that obtained using the 12 physical composites analysed 
using the Walkley–Black method. The unique condition needed to check 
the bias and ∊ΔSOC is that the total number of individual samples (f) 
should be bulked into n composites of equal size k (as all those combi-
nations included in Table 1, where f=k⋅n). This aspect affects the sample 
size; however, this limitation is minor in comparison to the associated 
benefits. The possibility of determining the bias of the predictions 
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amplifies the level of credibility and confidence on the spectroscopic 
models, since typically, the bias is the largest and most commonly 
observed error when large scale models are predicting at the local scale 
(downscaling), and it represents a key aspect of the prediction quality. 
Nevertheless, once the SOC predictions have been obtained in the in-
dividual samples and averaged as composites, if the bias and ∊ΔSOC are 
large, then these NIR predictions can be discarded, and the more con-
servative approach can be employed to obtain the MDDC (i.e., using the 
SOC values measured on the physical composites with the reference 
method). 

Other spiking subsets, such as those composed by samples selected 
using the Kennard–Stone algorithm, may be probably more efficient 
removing the bias than the composites (Guerrero et al., 2014); however, 
they cannot identify the “best” model, which is an exclusive and 
particular analysis of the composites when are used as spiking subset. 
Thus, additional studies are needed to evaluate if that identification is an 
advantage over other spiking subsets. 

In this work, the cost of the national model was not considered, since 
this task should ideally be addressed by institutions operating at the 
national scale, for whom such development cost is affordable. Moreover, 
the scanning cost has not been included, although this cost is justified 
when maps are also required. One disadvantage of using composites is 
that maps cannot be created. If no maps are required, and the objective 
is only to measure the change in the mean, the scanning costs should be 
considered and included in the evaluation to decide the methodology to 
be employed. In particular, these costs may be relevant in the case of 
mid-IR spectroscopy, in which the sample preprocessing is more inten-
sive than that in the case of the NIR spectroscopy (Guillou et al., 2015), 
since the samples must be preferentially scanned after grinding (whereas 
in NIR spectroscopy, only sieving is required). Nevertheless, in the 
spectroscopic approach, the total cost decreases in successive rounds, 
since a new spiking subset does not need to be included owing to the 
model is already adapted. In other words, the cost of the model adap-
tation to local conditions is restricted to the first survey (first round). 
However, in cases in which the SOC quality is expected to change be-
tween rounds, which may be a new source of bias, an additional adap-
tation, and thus an additional spiking subset may be required. 
Nevertheless, the efforts required for this additional recalibration are 
likely less stringent than those in the initial adaptation, because the 
presence of new minerals or drastic textural changes is not expected. 
Consequently, the cost efficiency of the NIR spectroscopy is expected to 
increase along the overall monitoring period. Nevertheless, it may be 
interesting to perform the analysis of a few composites in the successive 
monitoring rounds, not to play a role as a spiking subset but to verify 
that the bias and ∊ΔSOC are within a reasonable range. In this case, once 
the individual samples have been scanned, they can be bulked into a 
small (affordable) number of composites. However, using extremely few 
samples is not advised owing to the influence of the measurement error. 

According to the results, the use of the NIR spectroscopy in field 
conditions does not seem to be an adequate strategy because the errors 
are considerably higher than those under laboratory conditions. 
Although scanning directly in the field may facilitate the sample 
acquisition and thereby increase the sample size, the penalisation owing 
to the errors may be substantial and hamper any positive net effect. A 
more careful evaluation must be performed that is not restricted to the 
throughput. In addition, the increase in the sample size does not help 
correct the bias, which directly influences the ∊ΔSOC, which is often the 
most important error. An effective strategy must be robust against any 
bias. Moreover, an increase in the sample size is only effective within a 
certain range, beyond which, the benefits are almost ineffectual. Thus, 
the idea of replacing quality with quantity only holds for a certain 
number of conditions. The replacement of a few precise measurements 
with lots of imprecise measurements is only feasible if the bias is small. 

We encourage authors to evaluate the capacity of their models in a 
practical way, focussing on their utility in realistic scenarios, such as in 
hypothesis testing (as in this study), thereby avoiding evaluations based 

exclusively on the prediction performance parameters such as R2, 
RMSEP, RPD or RPIQ values. 

5. Conclusions 

We quantified empirically the errors expected during the measure-
ment of the ΔSOC and sp

2 using NIR spectroscopy and Walkley–Black as 
the analysis techniques. These errors were used to correct the MDD to 
obtain the MDDC. The MDDC was always higher than the MDD because 
these methods involved measurement errors. The lowest MDDC was 
obtained when the SOC contents of the individual samples were ana-
lysed using the reference method (Walkley–Black). However, this 
approach may be unaffordable because the reference method is typically 
expensive. In a strictly theoretic plane, this problem might be solved by 
bulking the individual samples into composites, since the number of 
analyses to be performed is considerably reduced. However, in a realistic 
plane, although this approach is clearly cheaper, the MDDC may be 
notably increased because of the higher penalisation of the measure-
ment error. 

The composites can be used in combination with the NIR spectros-
copy to act as a spiking subset to adapt the NIR model to the local 
conditions. This approach can avoid the generation of excessively biased 
predictions that are useless due to the high MDDC. In comparison with 
the approach using only composites, the combination with the NIR 
spectroscopy requires an additional effort to scan the individual sam-
ples. However, in this combined approach, the composites can also be 
used to find the spectroscopic model that predicts with the lowest bias 
and the smallest ∊ΔSOC. In this study, we could identify a model that 
obtained an MDDC value lower than that obtained using only compos-
ites. In addition to the net advantage, the predictions in the individual 
samples retain the information regarding the spatial distribution, which 
is lost when using only composites. The costs required to adapt the NIR 
spectroscopy model to the local conditions are probably restricted to the 
first round; therefore, the cost efficiency is expected to be improved in 
the successive monitoring rounds. Therefore, the combination of com-
posites and the NIR spectroscopy exhibits several desirable character-
istics, such as low cost, high accuracy, and high robustness, which make 
it an ideal protocol for SOC monitoring (Demattê et al., 2019). 
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K.D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B.G., 
Bartholomeus, H.M., Bayer, A.D., Bernoux, M., Böttcher, K., Brodský, L., Du, C.W., 
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