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1 Summary

1.1 English

This thesis has its core in variational analysis, a vast and modern mathemati-
cal field closely related to optimization. From its origin in the second half of the
20th century a fast growing literature has arisen; overviews on the topic can be
found in the monographs [15, 20, 26, 29], among others. Over the years, hand by
hand with the development of computers, the theory of variational analysis and
optimization has become more and more important, especially because of its nu-
merous applications into our society, finding examples of applications in logistics,
location problems, project selection, resource managing, economy, etc. In partic-
ular, the current dissertation is mainly focused on the quantitative stability of
feasible and optimal solutions to linear optimization problems, whose theoretical
analysis comes from the early 1950s (see, e.g., [16, 18, 30]). Concerning theory,
methods and applications of linear optimization problems with arbitrarily many
constraints, the reader is addressed to the monograph [17].

As pointed out at the very beginning, the thesis is a compendium of three
published papers, gathered in Appendices A, B, C, and two preprints, in Ap-
pendices D and E, presented in chronollogical order of production. These papers
also appear at the begining of the bibliography chapter with the corresponding
capital letters instead of numbers, so that the original contributions of the thesis
can be easily identified. For instance, Theorem 4 of Appendix A will be cited
as [A, Theorem 4]. Clearly, each appendix has its own reference list, and in the
bibliography chapter of the thesis, before the appendices, we only include those
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references which are cited in Chapters 1 to 5 of the thesis.

In general terms, the main original contributions of the thesis (gathered in
[A-E]) are concerned with linear optimization problems in different parametric
settings and their associated feasible and optimal set (argmin) mappings. Some
results have been established for general multifunctions between metric (or more
structured) spaces. For pedagogical reasons, given such a multifunction  ∶ 𝑌 ⇉

𝑋, we shall refer to elements in 𝑌 as parameters and to elements in 𝑋 as points
or solutions, since this is the role played by these elements in our framework. In
this way, (𝑦) can be thought as the (feasible or optimal) solution set associated
with parameter 𝑦 ∈ 𝑌 . Each Lipschitz-type property can be quantified by means
of its associated sharp Lipschitz constant, which will be referred to as modulus.
Roughly speaking, the thesis deals with variation rates of solutions with respect
to parameters. Some of these rates (as the calmness modulus) are local, in the
sense that we consider parameters in a neighborhood of a nominal (given) one, 𝑦,
and solutions around a nominal 𝑥 ∈ 𝑋. Some other rates (as the Lipschitz upper
semicontinuity modulus) are semilocal, as they combine small perturbations of
the parameter with the variation of the whole solution set. Finally, global rates
(as the Hoffman constant) are concerned with all parameters and their whole
solution sets.

The immediate antecedents which constitute the starting point of the thesis
are papers [11], and [10] devoted to the calmness moduli of the feasible and the
argmin mappings, respectively. Point-based (only involving nominal parameters
and solutions) formulae for these moduli are provided there. One of the goals
achieved in the thesis is to determine point-based formulae for semilocal and
global moduli, specifically as the maximum of finitely many calmness moduli.

More in detail, Appendix A is concerned with all these properties for a generic
multifunction, showing a particularly good behavior when the graph of such a
multifunction is closed and convex. This is the case of the feasible set mapping of
linear inequality systems parameterized by its right-hand side (RHS in brief). This
section introduces two new properties aside the mentioned above: the uniform
calmness (semilocal) [A, Definition 1] and the Hoffman stability at 𝑦 (between
semilocal and global) [A, Formula (5)]. As main results, we draw the reader’s
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attention to [A, Theorems 4,5,6], which will be discussed in Chapter 4.

The fact that the graph of the optimal set mapping is no longer convex, even
when the objective function remains unperturbed, provokes notable differences in
the methodological approach for computing moduli. Such a computation is carried
out in Appendices B and E. Appendix B is mainly concerned with the Lipschitz
upper semicontinuity of the optimal set mapping under canonical perturbations
(RHS perturbations of the constrains and tilt perturbations of the objective).
Moving from local to semilocal measures, [B] introduces a new concept named
local directional convexity [B, Section 3]. Specifically, the graph of the optimal set
mapping is convex when restricted to small perturbations of the RHS along a fixed
direction [B, Theorem 3.1]. Thanks to this geometrical property, we are able to
compute the Lipschitz upper semicontinuity modulus of the argmin mapping as a
maximum of some specific calmness moduli [B, Theorem 4.2]. On the other hand,
to jump from semilocal to global measures, Appendix E develops in [E, Section 3]
a sort of finite piecewise linear procedure in order to compute the global Hoffman
constant of the argmin mapping under RHS perturbations in [E, Theorem 5]. To
this aim, the concept of well-connected polyhedral mapping is introduced in [E,
Definition 2]; outstanding steps in this procedure are given in [E, Definition 3,
Theorem 4 and Corollary 1]. For the sake of completeness let us mention that the
global Hoffman constant under canonical perturbations is always infinite except
in the trivial case when all left-hand side coefficients of the constraints are zero
[E, Proposition 2].

Up to now we have dealt with different types of variation rates when the
left-hand side of the constraints remains unperturbed. Appendix C presents an
approach to the stability of the feasible set mapping under left-hand side per-
turbations from the broader paradigm of the so-called radius theorem, which has
been widely studied in different frameworks (see, e.g. [8, 13, 14, 23]). Roughly
speaking, the radius of a certain property for some multifunction is the smallest
perturbation of this multifunction causing failure of such a property. In the light
of the antecedents of the thesis, the natural property to consider would be the
metric subregularity of the inverse feasible set mapping, since this property is
known to be equivalent to the calmness of the feasible set mapping. However,
this property holds for free for finite linear inequality systems, so that the radius
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turns out to be infinite, as pointed out in [13]. Therefore, it makes sense to con-
sider desirable stronger properties whose fulfillment is not guaranteed. Appendix
C introduces two of such properties, called robust and continuous subregularity
in [C, Definition 1]. The main results to this respect are [C, Theorems 5 and 6 and
Corollaries 2 and 3]. Previously, [C, Theorem 3] provides some technical results
on the stability of the so-called end set of a convex polyhedron. As a consequence,
the continuity of the subregularity modulus is characterized in [C, Theorem 4].
The radius of robust subregularity is computed through a point-based formula
in [C, Theorem 6], whereas determining the radius of continuous subregularity
remains as an open problem.

Finally, the thesis makes an incursion in monotone operator theory with the
aim of incorporating this stuff to provide a new approach to feasibility problems.
The close link between monotone operators and convex analysis is exhibited by
the well-known fact that the subdifferential of a proper lower semicontinuous con-
vex function is maximally monotone. In Apendix D we focus in operators that are
simultaneously paramotone and bimonotone, which are shown to be constant on
their domains [D, Corollary 9]. This fact is applied in two particular situations.
The first one looks for the smallest perturbation (in the sense of translations) over
a finite amount of convex sets in order to reach a nonempty intersection. This
problem is directly related with simultaneous projections, solved in [D, Propo-
sitions 16 and 18 and Theorem 19] for the case of two closed convex sets in a
Hilbert space, and it is extended to finitely many sets under some differentia-
bility assumptions in [D, Theorem 21]. The second application deals with the
distance to feasibility; more in detail, given an inconsistent convex inequality sys-
tem, we derive lower and upper estimates for the smallest RHS perturbation that
produces a feasible system [D, Proposition 24]. These estimates coincide in the
linear case [D, Corollary 28], and an operative procedure to determine such a
distance is provided in [D, Theorem 29].
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1.2 Spanish

Esta tesis tiene su núcleo en el análisis variacional, un vasto y moderno campo
matemático estrechamente relacionado con la optimización. Desde su origen en
la segunda mitad del siglo XX ha surgido una literatura en rápido crecimiento;
se pueden encontrar visiones generales sobre el tema en las monografías [15, 20,
26, 29], entre otras. A lo largo de los años, de la mano del desarrollo de los orde-
nadores, la teoría del análisis variacional y de la optimización se ha vuelto cada
vez más importante, especialmente por sus numerosas aplicaciones en nuestra
sociedad, encontrando ejemplos de aplicación en logística, problemas de loca-
lización, selección de proyectos, gestión de recursos, economía, etc. En particular,
la presente disertación se centra principalmente en la estabilidad cuantitativa de
soluciones factibles y óptimas de problemas de optimización lineal, cuyo análi-
sis teórico se remonta a principios de los años cincuenta (véanse, por ejemplo,
[16, 18, 30]). En cuanto a la teoría, los métodos y aplicaciones de problemas
de optimización lineal con un número arbitrario de restricciones, el lector puede
consultar la monografía [17].

Como se señala nada más comenzar, la tesis es un compendio de tres artículos
publicados, recogidos en los Apéndices A, B y C, y de dos "preprints", en los
Apéndices D y E, presentados por orden cronológico de producción. Estos trabajos
también aparecen al principio del capítulo de bibliografía con las correspondientes
mayúsculas en lugar de números para que las contribuciones originales de la tesis
puedan identificarse fácilmente. Por ejemplo, el Teorema 4 del Apéndice A se
citará como [A, Teorema 4]. Claramente, cada apéndice tiene su propia lista de
referencias, y en el capítulo de bibliografía de la tesis, antes de los apéndices, sólo
incluimos las referencias citadas en los capítulos 1 a 5 de la tesis.

En términos generales, las principales contribuciones originales de la tesis
(recogidas en [A-E]) versan sobre problemas de optimización lineal en diferentes
configuraciones paramétricas y sus multifunciones conjunto factible y conjunto
óptimo (argmin) asociadas. Se han establecido algunos resultados para multi-
funciones generales entre espacios métricos (o más estructurados). Por razones
pedagógicas, dada una multifunción  ∶ 𝑌 ⇉ 𝑋, nos referiremos a los elementos
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de 𝑌 como parámetros y a los elementos de 𝑋 como puntos o soluciones, ya que
este es el papel que desempeñan estos elementos en nuestro marco de trabajo. De
este modo, (𝑦) puede considerarse como el conjunto de soluciones (factibles u
óptimas) asociado al parámetro 𝑦 ∈ 𝑌 . Cada propiedad de tipo Lipschitz puede
cuantificarse mediante su constante de Lipschitz ajustada asociada, que se de-
nominará módulo. A grandes rasgos, la tesis trata de las tasas de variación de las
soluciones con respecto a los parámetros. Algunas de estas tasas (como el módulo
de calmness -no suele traducirse el término-) son locales, en el sentido de que que
consideramos parámetros entorno a uno nominal (dado), 𝑦, y soluciones alrede-
dor de un 𝑥 ∈ 𝑋 nominal. Algunas otras ratios (como el módulo de Lipschitz
upper semicontinuity) son semilocales, ya que combinan pequeñas perturbaciones
del parámetro con la variación de todo el conjunto de soluciones. Por último, las
tasas globales (como la constante de Hoffman) se refieren a todos los parámetros
y a todo su conjunto de soluciones.

Los antecedentes inmediatos que constituyen el punto de partida de la tesis son
los trabajos [11] y [10], dedicados a los módulos de calmness de las multifunciones
conjunto factible y argmin, respectivamente. En estos trabajos se proporcionan
fórmulas de las que llamamos "point-based" (que sólo implican parámetros y
soluciones nominales) para estos módulos. Uno de los objetivos alcanzados en la
tesis es determinar fórmulas de este tipo para los módulos semilocales y globales,
concretamente como el máximo de una cantidad finita de módulos de calmness.

Más en detalle, el Apéndice A se ocupa de todas estas propiedades para
una multifunción genérica, mostrando un comportamiento particularmente bueno
cuando el grafo de dicha multifunción es cerrado y convexo. Este es el caso de la
multifunción conjunto factible para sistemas de desigualdades lineales parametriza-
dos por su lado derecho (RHS en sus siglas en inglés). En este apartado se intro-
ducen dos nuevas propiedades aparte de las mencionadas anteriormente: uniform
calmness (semilocal) [A, Definición 1] y la estabilidad de Hoffman en 𝑦 (entre
semilocal y global) [A, Fórmula (5)]. Como principales resultados, llamamos la
atención del lector sobre [A, Teoremas 4, 5 y 6], que se discutirán en el Capítulo
4.

El hecho de que el grafo de la multifunción conjunto óptimo deje de ser con-
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vexo, incluso cuando la función objetivo permanece inalterada, provoca notables
diferencias en el enfoque metodológico para calcular los módulos. Dicho cálculo se
lleva a cabo en los Apéndices B y E. El Apéndice B se ocupa principalmente de la
propiedad de Lipschitz upper semicontinuity de la multifunción conjunto óptimo
bajo perturbaciones canónicas (perturbaciones RHS de las restricciones y pertur-
baciones de inclinación del objetivo). Pasando de medidas locales a semilocales,
[B] introduce un nuevo concepto denominado convexidad direccional local [B, Sec-
ción 3]. Específicamente, el grafo de la multifunción conjunto óptimo es convexo
cuando se restringe a pequeñas perturbaciones RHS a lo largo de una dirección
fija [B, Teorema 3.1]. Gracias a esta propiedad geométrica podemos calcular el
módulo de Lipschitz upper semicontinuity de la multifunción argmin como un
máximo de algunos módulos de calmness específicos [B, Teorema 4.2]. Por otra
parte, para saltar de medidas semilocales a globales, el Apéndice E desarrolla
en [E, Sección 3] una especie de procedimiento finito lineal a trozos para para
calcular la constante global de Hoffman de la multifunción argmin bajo perturba-
ciones RHS en [E, Teorema 5]. Con este objetivo, el concepto de well-connected
polyhedral mapping se introduce en [E, Definición 2]; pasos destacados en este
procedimiento se dan en [E, Definición 3, Teorema 4 y Corolario 1]. En aras de
la exhaustividad mencionemos que la constante global de Hoffman bajo pertur-
baciones canónicas es siempre infinita excepto en el caso trivial en el que todos
los coeficientes del lado izquierdo de las restricciones son cero [E, Proposición 2].

Hasta ahora hemos tratado diferentes tipos de tasas de variación cuando el
lado izquierdo de las restricciones permanece inalterado. En el Apéndice C se
presenta una aproximación a la estabilidad del conjunto factible bajo perturba-
ciones del lado izquierdo desde el paradigma más amplio del llamado teorema
del radio, que ha sido ampliamente estudiado en diferentes marcos (véase, por
ejemplo. [8, 13, 14, 23]). En términos generales, el radio de una cierta propiedad
para alguna multifunción es la perturbación más pequeña de esta multifunción
que causa el fallo de dicha propiedad. A la luz de los antecedentes de la tesis, la
propiedad natural a considerar sería la subregularidad métrica de la inversa de la
multifunción conjunto factible, ya que esta propiedad se sabe que es equivalente a
la calmness de la multifunción conjunto factible. Sin embargo, esta propiedad se
cumple siempre para sistemas de desigualdades lineales finitos, por lo que el radio
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resulta ser infinito, como se señala en [13]. Por lo tanto, tiene sentido considerar
propiedades deseables más fuertes cuyo cumplimiento no esté garantizado. En el
Apéndice C se presentan dos de estas propiedades, denominadas subregularidad
robusta y subregularidad continua en [C, Definición 1]. Los principales resultados
a este respecto son [C, Teoremas 5 y 6 y Corolarios 2 y 3]. Anteriormente, [C, Teo-
rema 3] proporciona algunos resultados técnicos sobre la estabilidad del llamado
end set de un poliedro convexo. Como consecuencia, la continuidad del módulo
de subregularidad se caracteriza en [C, Teorema 4]. El radio de subre-gularidad
robusta se calcula a través de una fórmula "point-based" en [C, Teorema 6], mien-
tras que determinar el radio de subregularidad continua sigue siendo un problema
abierto.

Por último, la tesis hace una incursión en la teoría de operadores monótonos
con el objetivo de incorporar estas herramientas para proporcionar un nuevo
enfoque a los problemas de factibilidad. El estrecho vínculo entre los operadores
monótonos y el análisis convexo queda de manifiesto en el hecho conocido de que
el subdiferencial de una función convexa, semicontinua inferiormente y propia es
maximalmente monótono. En el apéndice D nos centramos en operadores que
son simultáneamente paramonotonos y bimonotonos, los cuales resultan ser cons-
tantes en sus dominios [D, Corolario 9]. Este hecho se aplica en dos situaciones
particulares. En la primera se busca la menor perturbación (en el sentido de
traslaciones) sobre una cantidad finita de conjuntos convexos con el fin de alcanzar
una intersección no vacía. Este problema está directamente relacionado con las
proyecciones simultáneas, resuelto en [D, Proposiciones 16 y 18 y Teorema 19] para
el caso de dos conjuntos convexos cerrados en un espacio de Hilbert, y se extiende
a una cantidad finita de conjuntos bajo algunos supuestos de diferenciabilidad en
[D, Teorema 21]. La segunda aplicación trata de la distancia a la factibilidad; más
en detalle, dado un sistema de desigualdades convexo inconsistente, obtenemos
acotaciones inferiores y superiores para la menor perturbación RHS que produce
un sistema consistente [D, Proposición 24]. Estas estimaciones coinciden en el
caso lineal [D, Corolario 28], y se proporciona un procedimiento operativo para
determinar tal distancia en [D, Teorema 29].



2. methodology 19

2 Methodology

The usual methodology for a doctoral thesis in mathematics has been followed.
The very first step is to introduce the doctoral candidate in the field through
some selected literature. Once we have an overview of the topic, we search for
open problems, either well-known ones or interesting new ones, and set our ob-
jectives. To this end, an in-depth study of the state of the art is needed, including
the possibility of discussing directly with relevant researchers in the specific area
under consideration. Next, we conjecture some results, generally based on pat-
terns observed in academic examples. Finally, we provide formal proofs for those
statements that turn out to be right and counterexamples otherwise. Once the
contents are considered of enough quality, they are submitted to publication and
shared with the scientific community in different conferences and workshops.
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3 Introduction

This chapter is devoted to introduce our model and the necessary notation and
definitions to enable the reader to obtain, in the next chapter, a more detailed
perspective of the thesis and its main original contributions than that sketched in
the summary. In addition, we include just a basic selection on background results
and references. In order to avoid unnecessary redundancies, for more detailed
information the reader is addressed to the publications gathered in Appendices
A-E.

Most of the thesis is concerned with the parameterized linear optimization
problem

𝜋 ∶ minimize 𝑐′𝑥

subject to 𝑎′𝑡𝑥 ≤ 𝑏𝑡, 𝑡 ∈ 𝑇 ∶= {1, 2,… , 𝑚},

where 𝑥 ∈ ℝ𝑛 is the decision variable, regarded as a column vector, and the prime
denotes transposition, so that 𝑐′𝑥 is the usual inner product of 𝑐 and 𝑥 in ℝ𝑛. In all
the thesis except Appendix C, the left-hand side coefficient function 𝑎 ∶ 𝑡 ↦ 𝑎𝑡 ∈
ℝ𝑛 is fixed. The most common parametric setting is that of the so-called canonical
perturbations, in which 𝑐 ∈ ℝ𝑛 and 𝑏 ∶ 𝑡 ↦ 𝑏𝑡 ∈ ℝ are considered as parameters.
Accordingly, we identify problem 𝜋 with the pair (𝑐, 𝑏) ∈ ℝ𝑛 ×ℝ𝑚. Regarding the
topology, the space of variables, ℝ𝑛, is endowed with an arbitrary norm ‖⋅‖ unless
otherwise specified (for instance, the end of Appendix D deals with the Euclidean
norm). The corresponding dual norm is given by ‖𝑢‖∗ ∶= max‖𝑥‖≤1 |𝑢′𝑥|. The
parameter space, ℝ𝑚, of RHS perturbations of the constraint system is endowed
with the supremum norm ‖𝑏‖∞ ∶= max𝑡∈{1,2,…,𝑚} |𝑏𝑡| and in the case of canonical



22 3. introduction

perturbations we set

‖ (𝑐, 𝑏) ‖ ∶= max
{‖𝑐‖∗, ‖𝑏‖∞

}
,

since 𝑐 is viewed as a linear functional.

In this framework, we consider the feasible set mapping,  ∶ ℝ𝑚 ⇉ ℝ𝑛, given
by

 (𝑏) ∶= {𝑥 ∈ ℝ𝑛 | 𝑎′𝑡𝑥 ≤ 𝑏𝑡, 𝑡 ∈ 𝑇 }.

Part of Appendix A deals with linear semi-infinite inequality systems (possibly
infinitely many constraints), where, specifically, 𝑇 is a compact Hausdorff space.
The reader is addressed to [17, Chapter 6] for the stability theory of linear semi-
infinite inequality systems in the more general case when 𝑇 is arbitrary, with no
topological structure. In the case when function 𝑎 ≡ (

𝑎𝑡
)
𝑡∈𝑇 is also perturbed (in

Appendix C) we represent by 𝜎 ≡ (𝑎, 𝑏) the constraint system {𝑎′𝑡𝑥 ≤ 𝑏𝑡, 𝑡 ∈ 𝑇 }.

The optimal set mapping, also called argmin mapping,  𝑜𝑝 ∶ ℝ𝑛 × ℝ𝑚 ⇉ ℝ𝑛,
is given by

 𝑜𝑝(𝑐, 𝑏) ∶= argmin{𝑐′𝑥 ∶ 𝑥 ∈  (𝑏)}, (𝑐, 𝑏) ∈ ℝ𝑛 ×ℝ𝑚.

In the case when 𝑐 remains fixed at its nominal value 𝑐, we are dealing with
 𝑜𝑝
𝑐 ∶ ℝ𝑚 ⇉ ℝ𝑛, given by

 𝑜𝑝
𝑐 (𝑏) ∶=  𝑜𝑝(𝑐, 𝑏), 𝑏 ∈ ℝ𝑚.

A significant part of the results affecting  ,  𝑜𝑝 or  𝑜𝑝
𝑐 and most of definitions

are given for a generic multifunction  ∶ 𝑌 ⇉ 𝑋 between metric spaces, with
both distances being denoted by 𝑑. In this case, as pointed out in the summary,
elements 𝑦 ∈ 𝑌 are called parameters and elements 𝑥 ∈ 𝑋 will be referred to as
points or solutions.

Next, we introduce the main (upper) Lipschitz type properties dealt with in
the thesis. Mapping  ∶ 𝑌 ⇉ 𝑋 is said to be:
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• calm at
(
𝑦, 𝑥

)
∈ gph (the graph of ) if there exist a constant 𝜅 ≥ 0

along with a neighborhood of
(
𝑦, 𝑥

)
, 𝑉 × 𝑈, such that

𝑑(𝑥,(𝑦)) ≤ 𝜅𝑑
(
𝑦, 𝑦

)
for all 𝑥 ∈ (𝑦) ∩ 𝑈 and all 𝑦 ∈ 𝑉 .

This property is known to be equivalent to the metric subregularity of −1

(the inverse of ) at
(
𝑥, 𝑦

)
which reads as the existence of 𝜅 ≥ 0 and a

(possibly smaller) neighborhood 𝑈 of 𝑥 such that

𝑑(𝑥,(𝑦)) ≤ 𝜅𝑑
(
𝑦,−1(𝑥)

)
for all 𝑥 ∈ 𝑈 .

• Lipschitz upper semicontinuous at 𝑦 ∈ dom (the domain of ) if there
exists a neighborhood 𝑉 of 𝑦 and a constant 𝜅 ≥ 0 such that

𝑑(𝑥,(𝑦)) ≤ 𝜅𝑑
(
𝑦, 𝑦

)
for all 𝑦 ∈ 𝑉 and all 𝑥 ∈  (𝑦) . (3.1)

• Hoffman stable at 𝑦 ∈ dom if (3.1) holds for all (𝑦, 𝑥) ∈ gph.

• uniformly calm at 𝑦 ∈ dom (introduced in [A, Definition 1]) if there exist
a neighborhood 𝑉 of 𝑦 along with 𝜀 > 0 and 𝜅 ≥ 0 such that

𝑑(𝑥,(𝑦)) ≤ 𝜅𝑑
(
𝑦, 𝑦

)
for all 𝑦 ∈ 𝑉 and all 𝑥 ∈ 𝜀 (𝑦) ,

where
𝜀 (𝑦) ∶=  (𝑦) ∩ 𝐵

( (
𝑦
)
, 𝜀
)

for 𝑦 ∈ 𝑌 ,

or, equivalently, if 𝜀 is Lipschitz upper semicontinuous at 𝑦 for some 𝜀 > 0.

For each of the previously defined properties we can associate the correspond-
ing modulus at

(
𝑦, 𝑥

)
∈ gph or 𝑦 ∈ dom as the infimum of constants 𝜅 such

that the corresponding variational inequality holds for some associated neigh-
borhoods, except the modulus of Hoffman stability, which does not involve any
neighborhood. These moduli may be written as follows (the first and the third
come directly from the definitions, while the second and the fourth are established
in [A, Proposition 2]):
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• calmness modulus of  at
(
𝑦, 𝑥

)
∈ gph :

clm (
𝑦, 𝑥

)
= lim sup

𝑥→𝑥

𝑑(𝑥,(𝑦))
𝑑
(
𝑦,−1(𝑥)

) ,

• Lipschitz upper semicontinuity modulus of  at 𝑦 ∈ dom ∶

Lipusc(𝑦) = lim sup
𝑦→𝑦

(
sup

𝑥∈(𝑦)

𝑑(𝑥,(𝑦))
𝑑
(
𝑦, 𝑦

)
)
,

• Hoffman modulus of  at 𝑦 ∈ dom ∶

Hof  (
𝑦
)
= sup

𝑥∈𝑋

𝑑(𝑥,(𝑦))
𝑑
(
𝑦,−1(𝑥)

) ,

• uniform calmness modulus of  at 𝑦 ∈ dom ∶

uclm(𝑦) = lim sup
𝑑(𝑥,(𝑦))→0

𝑑(𝑥,(𝑦))
𝑑
(
𝑦,−1(𝑥)

) .

Finally, the global Hoffman constant of , inspired by the pioneer work [18],
is defined as

Hof  = sup
(𝑦,𝑥)∈(dom)×𝑋

𝑑(𝑥,(𝑦))
𝑑
(
𝑦,−1(𝑥)

) .

Here we use the convention 0
0
∶= 0 and lim sup𝑧→𝑧 is understood as the supre-

mum (maximum, indeed) of all possible sequential upper limits for all possible
sequences

{
𝑧𝑟
}
𝑟∈ℕ converging to 𝑧 as 𝑟 → ∞.

It is clear that

sup
𝑥∈(𝑦)

clm (
𝑦, 𝑥

) ≤ uclm (
𝑦
) ≤ Lipusc (

𝑦
) ≤ Hof  (

𝑦
) ≤ Hof . (3.2)

Concerning background results, [22] expresses the calmness modulus of the
feasible set mapping (in the equivalent terminology of local error bounds) in terms
of limits of subdifferentials. A point-based expression for this modulus is given
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in [11, Theorem 4] under RHS perturbations and an extension to semi-infinite
systems under a certain regularity condition is established in [25]. The case of
full perturbations is solved in [11, Theorem 5]. Concerning the calmness modulus
of  𝑜𝑝 at a nominal

((
𝑐, 𝑏

)
, 𝑥
)
, which turns out to coincide with that of  𝑜𝑝

𝑐 at(
𝑏, 𝑥

)
, a point-based expression is given in [10, Theorem 4.1] in terms of a certain

type of feasible set mappings. For additional details, the reader is addressed to
the preliminary sections of Apendices A and B. In relation to the global Hoffman
constant for  , its finiteness and some first estimates were given in the seminal
work of Hoffman [18]. Some exact formulae from different points of view can be
traced out from [7], [21] and [27], among others.

In order to introduce the framework of Appendix C, let us denote by 𝑎 the
inverse multifunction of 𝑎, by specifying the left-hand side 𝑎 in our feasible set
mapping  , since it is also subject to perturbations in this appendix. Given any
property  of 𝑎 fulfilled at the nominal

(
𝑥, 𝑏

)
∈ gph𝑎, the radius of -stability

at that point is defined as

rad 𝑎(𝑥, 𝑏) ∶= inf
𝑔∈(ℝ𝑛,ℝ𝑚)

{
‖𝑔‖ |||𝑎 + 𝑔 does not have  at

(
𝑥, 𝑏 + 𝑔

(
𝑥
))}

,

(3.3)
where  (ℝ𝑛,ℝ𝑚) stands for the space of linear functions from ℝ𝑛 to ℝ𝑚 endowed
with the norm subordinated to the norms under consideration in these spaces.
This definition of radius is inspired by the one given in [14, Definition 1.4] for the
metric regularity property in more general contexts; see also [13] for the property
of metric subregularity.

Definition 1 (adaptation of [C, Definition 1]) Given system 𝜎 ≡ (𝑎, 𝑏) and
𝑥 ∈ 𝑎

(
𝑏
)
, we say that

(𝑖) 𝑎 is robustly subregular at
(
𝑥, 𝑏

)
if there exist constants 𝜅 ≥ 0 and 𝜀 > 0

along with a neighborhood 𝑈 of 𝑥 such that

𝑑
(
𝑥,𝑎

(
𝑏 + (𝑎 − 𝑎)′𝑥

)) ≤ 𝜅𝑑
(
𝑏 + (𝑎 − 𝑎)′𝑥,𝑎(𝑥)

)
(3.4)

for all 𝑥 ∈ 𝑈 and all 𝑎 ∈ ℝ𝑛 such that ‖𝑎 − 𝑎‖ < 𝜀. The infimum of constants 𝜅
over the triplets (𝜅, 𝜀, 𝑈 ) satisfying (3.4) is called the robust subregularity modulus
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of 𝑎 at
(
𝑥, 𝑏

)
and will be denoted by rob𝑎

(
𝑥, 𝑏

)
. As stated in [C, Theorem 5

(iii)]
rob𝑎

(
𝑥, 𝑏

)
= lim sup

𝑎→𝑎
 (𝑎) , (3.5)

where  (𝑎) ∶= clm𝑎

(
𝑏 + (𝑎 − 𝑎)′𝑥, 𝑏

)
(see the beginning of [C, Section 3]).

(𝑖𝑖) 𝑎 is continuously subregular at
(
𝑥, 𝑏

)
if  is continuous at 𝑎.

For the reader’s convenience, we finish this chapter by extracting some relevant
information from the introduction of Appendix D. Note that each appendix has
its own notation and now 𝑇 is used to represent an operator. Specifically, let
𝑋 be a real Banach space, with topological dual 𝑋∗, and denote by ⟨⋅, ⋅⟩ the
corresponding canonical pairing. A set-valued operator 𝑇 ∶ 𝑋 ⇉ 𝑋∗ is said to be
monotone if

⟨𝑥 − 𝑦, 𝑥∗ − 𝑦∗⟩ ≥ 0 whenever (𝑥, 𝑥∗) , (𝑦, 𝑦∗) ∈ gph𝑇 .

In the case when both 𝑇 and −𝑇 are monotone, then 𝑇 is called bimonotone. If 𝑇
is monotone and, in addition, gph𝑇 is maximal in the sense of inclusion order, it
is said to be maximally monotone. A well-known example of maximally monotone
operator is the subdifferential operator of a proper lower semicontinuous (lsc, for
short) convex function 𝑓 ∶ 𝑋 → ]−∞,+∞] , denoted by 𝜕𝑓 (see [D, Section 2]
for details). Monotone operators are fundamental tools of nonlinear analysis and
optimization; see, e.g., the books [2, 4, 6, 28, 29, 31, 32]. A monotone operator 𝑇
is called paramonotone if the following implication holds:

(𝑥, 𝑥∗) , (𝑦, 𝑦∗) ∈ gph𝑇

⟨𝑥 − 𝑦, 𝑥∗ − 𝑦∗⟩ = 0

⎫⎪⎬⎪⎭
⇒ (𝑥, 𝑦∗) , (𝑦, 𝑥∗) ∈ gph𝑇 .

The term paramonotonicity was introduced in [12] (although the condition was
previously presented in [5] without a name). The initial motivation for the intro-
duction of paramonotone operators comes from its crucial role regarding interior
point methods for variational inequalities (see again [5] and [12], and also [19]).
Some important examples of paramonotone operators are gathered in [D, Section
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2]. At this moment, let us mention that subdifferentials of proper lsc convex func-
tions enjoy this property (see [19, Proposition 2.2] in the Euclidean space and [3,
Fact 3.1] for its extension to Banach spaces).
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4 Discussion of main original re-
sults

This chapter is intended to gather the main original contributions of the thesis,
so that the reader has a panoramic overview. For further details, see Appendices
A-E. The chapter is divided into three sections. The first one, corresponding
to Appendices A, B and E, is focused on the semilocal and global Lipschitz-type
moduli appearing in (3.2) and their particularization to  ,  𝑜𝑝 and  𝑜𝑝

𝑐 ; the second
one, corresponding to Appendix C, deals with robust and continuous subregularity
and the radius of the first one; the third section is focused on paramonotone and
bimonotone operators, as well as their applications to feasibility problems, and
corresponds to Appendix D.

4.1 Semilocal and global moduli

First of all, we show that for appropriate convex graph multifunctions all inequal-
ities in (3.2) except the last one hold as equalities. This is the case of  (under
RHS perturbations).

Theorem 1 ([A, Theorem 4]) Let  ∶ 𝑌 ⇉ 𝑋, with 𝑌 being a normed space
and 𝑋 being a reflexive Banach space, and assume that gph is a nonempty
convex set. Let 𝑦 ∈ dom with  (

𝑦
)

closed. Then one has

sup
𝑥∈(𝑦)

clm (
𝑦, 𝑥

)
= uclm (

𝑦
)
= Lipusc (

𝑦
)
= Hof  (

𝑦
)
.
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In the next theorem, 𝑇 is assumed to be a compact metric space and we
consider the parameter space (𝑇 ,ℝ) of continuous functions 𝑏 ∶ 𝑡 ↦ 𝑏𝑡 ∈ ℝ
endowed with the supremum norm. In this context we provide a formula for Hof 
which, combined with Theorem 3, shows that the last inequality of (3.2) may be
strict for  . This theorem generalizes the previous known formulae commented
in the previous chapter; specifically [27, (3) and (4)], [21, Theorem 2.7] and [7,
Theorem 8]. Hereafter ‘conv’ means convex hull.

Theorem 2 ([A, Theorem 5]) Consider  ∶ (𝑇 ,ℝ) ⇉ ℝ𝑛. We have

Hof  = sup
𝐽⊂𝑇 compact

0𝑛∉conv{𝑎𝑡, 𝑡∈𝐽}

𝑑∗(0𝑛, conv{𝑎𝑡, 𝑡 ∈ 𝐽})−1.

The next theorem essentially refines the expression sup𝑥∈(𝑦) clm (
𝑦, 𝑥

)
of

Theorem 1 when applied to  by reducing the supremum to a maximum of a
finite amount of calmness moduli. To do this we need some extra notation. From
now on we consider the set

 (𝑏) ∶= extr
( (𝑏) ∩ span

{
𝑎𝑡, 𝑡 ∈ 𝑇

})
, with 𝑏 ∈ dom , (4.1)

where ‘extr’ and ‘span’ stand for the set of extreme points and the linear subspace
generated by the corresponding sets, respectively. It is known that  (𝑏) is always
a nonempty and finite set when 𝑇 is finite (see Appendix A for details). This
construction is inspired by the one of [24, p. 142]. The theorem also appeals to
the family  (𝑥) of subsets 𝐷 ⊂ 𝑇 (𝑥) (set of active indices at 𝑥 for the linear
system under consideration) such that system

⎧⎪⎨⎪⎩

𝑎′𝑡𝑑 = 1, 𝑡 ∈ 𝐷,

𝑎′𝑡𝑑 < 1, 𝑡 ∈ 𝑇 (𝑥) ⧵𝐷

⎫⎪⎬⎪⎭
(4.2)

is consistent (in the variable 𝑑 ∈ ℝ𝑛).

Theorem 3 ([A, Theorem 6]) Let 𝑏 ∈ dom and assume that {𝑎′𝑡𝑥 ≤ 𝑏𝑡, 𝑡 ∈
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𝑇 } is a locally polyhedral system (see [A, Section 4]). Then

Hof  (
𝑏
)
= sup

𝑥∈(𝑏)
clm (

𝑏, 𝑥
)
= sup

𝑥∈(𝑏)
sup

𝐷∈(𝑥)
𝑑∗

(
0𝑛, conv

{
𝑎𝑡, 𝑡 ∈ 𝐷

})−1 .

The previous theorem provides a point-based expression for Hof  (
𝑏
)

in con-
trast to that of [1, Theorem 2.6].

Our next focus is on the optimal set mapping. Despite the striking resemblance
between Theorems 3 and 5, the methodology for deriving them is completely
different, due to the fact that gph 𝑜𝑝

𝑐 is no longer convex (and hence neither is
gph 𝑜𝑝). Nevertheless, we extract geometrical patterns from the graph that serve
as a tool to overcome this drawback. Specifically, we construct the local directional
optimal set mapping for a nominal problem 𝜋 ≡ (

𝑐, 𝑏
)
, some 𝜀 > 0 and direction

𝑑 ∈ ℝ𝑚 with ‖𝑑‖∞ = 1 as the multifunction  𝑜𝑝
𝜋,𝑑,𝜀 ∶= [0, 𝜀] ⇉ ℝ𝑛 given by

 𝑜𝑝
𝜋,𝑑,𝜀(𝜇) =  𝑜𝑝

(
𝑐, 𝑏 + 𝜇𝑑

)
, 𝜇 ∈ [0, 𝜀].

Theorem 4 ([B, Theorem 3.1]) Let 𝜋 =
(
𝑐, 𝑏

)
∈ dom 𝑜𝑝 and 𝜀 > 0 be as in

[B, Lemma 3.2]. Then gph 𝑜𝑝
𝜋,𝑑,𝜀 is convex for all 𝑑 ∈ ℝ𝑚 with ‖𝑑‖∞ = 1.

In the following theorem we appeal to the set of "generalized extreme points"
𝑜𝑝(𝜋) ∶= extr( 𝑜𝑝(𝜋) ∩ span{𝑎𝑡, 𝑡 ∈ {1,… , 𝑚}).

Theorem 5 ([B, Theorem 4.2]) Let 𝜋 ∈ dom 𝑜𝑝, then

Lipusc 𝑜𝑝(𝜋) = max
𝑥∈𝑜𝑝(𝜋)

clm 𝑜𝑝(𝜋, 𝑥).

In the remaining part of this section we are concerned with the global Hoff-
man constant of the argmin mapping. First we show that the case of canonical
perturbations is essentially trivial.
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Proposition 6 ([E, Proposition 2]) We have that

Hof  𝑜𝑝 =
⎧⎪⎨⎪⎩

0 if
{
𝑎𝑡, 𝑡 ∈ 𝑇

}
= {0𝑛},

+∞ otherwise.

This reduces our study to mapping  𝑜𝑝
𝑐 , whose graph presents a rich structure.

We isolate one of the relevant features of this graph in the following definition.
Here we use symbol  with a different meaning to that of Appendix C (see
Definition 1 in Chapter 3), with the aim of keeping the same notation as in the
appendices, i.e., of the original publications (preprint [E] in this case).

Definition 7 ([E, Definition 2]) Let 𝐼 be a finite index set and, for each 𝑖 ∈ 𝐼,
consider a multifunction 𝑖 ∶ ℝ𝑚 ⇉ ℝ𝑛 with a polyhedral graph. We say that
 ∶= ∪𝑖∈𝐼𝑖 is a well-connected polyhedral mapping if the following properties
hold:

(i) dom is a convex set in ℝ𝑚;

(ii) |dom𝑖
= 𝑖, for all 𝑖 ∈ 𝐼.

The previous structure is key to obtain the desired formula of the global
Hoffman constant of  𝑜𝑝

𝑐 , as well as the following construction:

Definition 8 ([E, Definition 3]) Let  = ∪𝑖∈𝐼𝑖 be a well-connected polyhedral
mapping. Let 𝑏, 𝑏 ∈ dom. We call a subdivision 0 =∶ 𝜇0 < 𝜇1 < … < 𝜇𝑁 ∶= 1
together with a family of indices 𝑖1,… , 𝑖𝑁 ∈ 𝐼 connecting 𝑏 with 𝑏 if for all
𝑘 ∈ {1,… , 𝑁} and all 𝜇 ∈ [𝜇𝑘−1, 𝜇𝑘] there holds 𝑏+𝜇

(
𝑏 − 𝑏

)
∈ dom𝑖𝑘. In other

words,  (
𝑏 + 𝜇

(
𝑏 − 𝑏

))
= 𝑖𝑘

(
𝑏 + 𝜇

(
𝑏 − 𝑏

))
whenever 𝜇 ∈ [𝜇𝑘−1, 𝜇𝑘].

The following technical result constitutes the key tool to derive the aimed for-
mula for Hof  in terms of the supremum of calmness moduli, which is established
in the subsequent corollary.



4. discussion of main original results 33

Theorem 9 ([E, Theorem 4]) Let  =
⋃

𝑖∈𝐼 𝑖 be a well-connected polyhedral
mapping. Let 𝑏, 𝑏 ∈ dom with 𝑏 ≠ 𝑏 and consider a subdivision 0 =∶ 𝜇0 < 𝜇1 <
... < 𝜇𝑁 ∶= 1 together with a family of indices 𝑖1, ..., 𝑖𝑁 ∈ 𝐼 connecting 𝑏 with 𝑏.
Then, for every 𝑥 ∈  (𝑏) , there exist points 𝑥𝑘 ∈  (

𝑏 + 𝜇𝑘𝑑
)

with 𝑘 = 0, ..., 𝑁−1
such that

𝑑
(
𝑥, (

𝑏
))

𝑑
(
𝑏, 𝑏

) ≤ max{clm (
𝑏 + 𝜇𝑘

(
𝑏 − 𝑏

)
, 𝑥𝑘

)
∣ 𝑘 = 0, ..., 𝑁 − 1}

≤ max{Lipusc (
𝑏 + 𝜇𝑘

(
𝑏 − 𝑏

))
∣ 𝑘 = 0, ..., 𝑁 − 1}.

Corollary 10 ([E, Corollary 1]) Let  be a well-connected polyhedral map-
ping. Then

Hof  = sup{Lipusc (𝑏) ∣ 𝑏 ∈ dom} = sup{clm (𝑏, 𝑥) ∣ (𝑏, 𝑥) ∈ gph}.

Once the well-connected polyhedral structure has proven to be useful in order
to get a formula for the global Hoffman constant, we look for a computable
expression for Hof  𝑜𝑝

𝑐 . The role of 𝐼 will be played by the family of all possible
minimal Karush-Kuhn-Tucker subsets of indices which is defined by

𝑐 ∶=
⎧⎪⎨⎪⎩
𝐷 ⊂ 𝑇

||||||||

−𝑐 ∈ cone
{
𝑎𝑡, 𝑡 ∈ 𝐷

}
and 𝐷 is

minimal w.r.t. the inclusion order

⎫⎪⎬⎪⎭
,

where ‘cone’ means ‘convex cone generated by’.

After checking that  𝑜𝑝
𝑐 is a well-connected polyhedral mapping (see [E, Propo-

sition 4]), and combining this with some mentioned background results on calm-
ness moduli (in terms of the so-called end set, see e.g. [E, Theorem 2] for details)
we obtain the following theorem, providing a point-based expression for Hof  𝑜𝑝

𝑐 .
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Theorem 11 ([E, Theorem 5]) Let −𝑐 ∈ cone
{
𝑎𝑡, 𝑡 ∈ 𝑇

}
. One has

Hof  𝑜𝑝
𝑐 = max

𝑏∈dom Lipusc 𝑜𝑝 (𝑐, 𝑏)

= max
𝑏∈dom max

𝑥∈𝑜𝑝(𝑐,𝑏)
clm 𝑜𝑝 ((𝑐, 𝑏) , 𝑥)

= max
𝐷⊂𝑆⊂𝑇
𝐷∈𝑐

{
𝑑∗

(
0𝑛, end conv

{
𝑎𝑡, 𝑡 ∈ 𝑆; − 𝑎𝑡, 𝑡 ∈ 𝐷

})}−1 .

4.2 Robust and continuous subregularity

Another incursion into the world of stability analysis is been made in this thesis
from the study of the radius of a given property. The topic started with the
seminal work [14], where the idea of perturbing the nominal problem conserving
a desired property is embodied and developed in the context of metric regularity
for different types of mappings: linear, sublinear, differentiable, etc. In contrast
to metric regularity, the particular behavior of the metric subregularity property,
which does always hold in the finite linear inequality system setup under data
perturbation, puts us in a dichotomy: tackling some of the already existing open
questions from the last 20 years on specific types of structured perturbations or
studying the linear structure from a different point of view. We advance that
the second path was the chosen one in [C], leading to new stuff centered on
the variation of the classical moduli. We focus on studying the continuity of the
metric subregularity modulus, but there is still room for further research in this
new direction.

More in depth, we consider left-hand side (LHS in brief) perturbations over
a nominal system and record the continuity of the metric subregularity modulus.
First, we make use of the characterization recalled in [C, Theorem 2] for the former
modulus in terms of the end set or, equivalently, in terms of the family 𝑎, which
is the same introduced in (3.2) above but making explicit the dependence on the
LHS coefficients. Therefore, describing the behavior of such end sets will translate
into immediate consequences on the behavior of the moduli themselves. With this
aim, recall the definition of set (𝑎) in Definition 1(𝑖) , which can be also written
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as (see [C, Formula (17) and Theorem 1])

(𝑎) = 𝑑∗(0𝑛, 𝐸(𝑎))−1,

with
𝐸(𝑎) =

⋃
𝐷∈𝑎

conv{𝑎𝑡, 𝑡 ∈ 𝐷},

for 𝑎 ∈ ℝ𝑛×𝑚.

The next two technical results concern the continuity behavior of the previous
mappings 𝐸 and  .

Theorem 12 ([C, Theorem 3]) Let 𝑎 ∈ ℝ𝑛×𝑚. We have:

(i) Liminf
𝑎→𝑎

𝐸(𝑎) =
⋃

𝐷∈𝑎

conv
{
𝑎𝑡, 𝑡 ∈ 𝐷

}
= 𝐸(𝑎);

(ii) Limsup
𝑎→𝑎

𝐸(𝑎) =
⋃

𝐷∈𝑎∪0
𝑎

conv
{
𝑎𝑡, 𝑡 ∈ 𝐷

}
⊃ 𝐸(𝑎).

Therefore, 𝐸 is lower semicontinuous in the sense of Berge. Moreover, the
inclusion in (ii) involving 0

𝑎 defined by replacing 1 with 0 in 𝑎 may be strict.

Theorem 13 ([C, Theorem 4]) Let 𝜎 ≡ (𝑎, 𝑏) and 𝑥 ∈ 𝑎(𝑏). Then:

(i) Liminf
𝑎→𝑎

(𝑎) =
[
𝑑∗

(
0𝑛,

⋃
𝐷∈𝑎

conv
{
𝑎𝑡, 𝑡 ∈ 𝐷

})]−1

= (𝑎);

(ii) Limsup
𝑎→𝑎

(𝑎) = ⎡⎢⎢⎣
𝑑∗

⎛⎜⎜⎝
0𝑛,

⋃
𝐷∈𝑎∪0

𝑎

conv
{
𝑎𝑡, 𝑡 ∈ 𝐷

}⎞⎟⎟⎠

⎤⎥⎥⎦

−1

≥ (𝑎).

Again,  may fail to be upper semicontinuous, finding situations of finite
continuity gaps and others of infinite nature.

Since we encounter two types of continuity gaps, we proceed to characterize
the finiteness in a first stage. Unexpectedly, the characterization provided in the
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next Theorem 14 is nothing else but another kind of uniform regularity property,
which we name as robust subregularity. Moreover, its associated modulus, denoted
by rob𝑎(𝑥, 𝑏), is precisely the upper limit of  at the nominal 𝑎. Secondly, the
continuity of  at 𝑎 is captured in the continuous subregularity property, which
is characterized in Corollary 15.

Theorem 14 ([C, Theorem 5]) Given 𝜎 ≡ (
𝑎, 𝑏

)
and 𝑥 ∈ 𝑎

(
𝑏
)
, the follow-

ing statements are equivalent:

(i) lim sup𝑎→𝑎  (𝑎) is finite;

(ii) 0𝑛 ∉ bd conv
{
𝑎𝑡, 𝑡 ∈ 𝑇𝜎

(
𝑥
)}

;

(iii) There exist constants 𝜅 ≥ 0 and 𝜀 > 0 along with a neighborhood 𝑈 of 𝑥
such that

𝑑
(
𝑥,𝑎

(
𝑏 + (𝑎 − 𝑎)′𝑥

)) ≤ 𝜅𝑑
(
𝑏 + (𝑎 − 𝑎)′𝑥,𝑎(𝑥)

)

for all 𝑥 ∈ 𝑈 and all 𝑎 ∈ ℝ𝑛 such that ‖𝑎 − 𝑎‖ < 𝜀.

Moreover, lim sup𝑎→𝑎  (𝑎) coincides with the infimum of constants 𝜅 over
the triplets (𝜅, 𝜀, 𝑈 ) satisfying (3.4).

Corollary 15 ([C, Corollary 2]) For the nominal data 𝜎 ≡ (𝑎, 𝑏) and 𝑥 ∈ 𝑎

(
𝑏
)
,

the following statements are equivalent:

(i) 𝑎 is continuously subregular at
(
𝑥, 𝑏

)
;

(ii) rob𝑎

(
𝑥, 𝑏

)
=  (

𝑎
)
;

(iii) It holds

0 ≠ 𝑑∗
(
0𝑛,

⋃
𝐷 ∈ 𝑎 conv{𝑎𝑡, 𝑡 ∈ 𝐷}

)
= 𝑑∗

(
0𝑛,

⋃
𝐷 ∈ 𝑎 ∪0

𝑎 conv{𝑎𝑡, 𝑡 ∈ 𝐷}
)
.

Finally, their radii are studied with moderate success. A computable point-
based formula is given:
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Theorem 16 ([C, Theorem 6]) Assume that 𝑎 is robustly subregular at (𝑥, 𝑏).
Then

radrob 𝑎

(
𝑥, 𝑏

)
= 𝑑∗(0𝑛, bd conv{𝑎𝑡, 𝑡 ∈ 𝑇𝜎(𝑥)}).

As for the radius of continuous subregularity, apart from the direct bound

radrob 𝑎

(
𝑥, 𝑏

) ≥ radcont 𝑎

(
𝑥, 𝑏

)
,

some hints for future development can be extracted from the last example in
Appendix C.

Corollary 17 ([C, Corollary 3]) One has

radrob 𝑎

(
𝑥, 𝑏

) ≤ 1

rob𝑎

(
𝑥, 𝑏

) ,

and the inequality may be strict. Moreover, rob𝑎

(
𝑥, 𝑏

)
< +∞ implies

radrob 𝑎

(
𝑥, 𝑏

)
> 0.

4.3 Feasibility problems via paramonotone oper-

ators

To conclude the current chapter, let us comment one last area of interest in
which we have taken part in the thesis. Up to this point, all systems considered
are feasible since the properties under consideration so far involve elements of
the domain or the graph of the corresponding multifunctions. When feasibility
is not guaranteed, the question of reaching it arises. The distance to feasibility
problem serves also as a motivation to review the literature related to monotone
operators, which has a wide range of uses in applied mathematics. As pointed out
in Chapter 3, we focus on those operators which are simultaneously paramonotone
and bimonotone, whose characterization is given the following corollary of [D,
Proposition 8], which we omit here for brevity.



38 4. discussion of main original results

Corollary 18 ([D, Corollary 9]) Let 𝑇 ∶ 𝑋 ⇉ 𝑋∗, the following conditions
are equivalent:

(i) 𝑇 is paramonotone and bimonotone;

(ii) 𝑇 is monotone and constant on its domain;

(iii) (dom 𝑇 − dom 𝑇 ) ⟂ (range 𝑇 − range 𝑇 ) and gph 𝑇 = dom 𝑇 × range 𝑇 .

The first application verses about simultaneous projections. More in depth,
we study the minimal weighted distance to two disjoint non-empty closed convex
sets in a Hilbert space, denoted by 𝑆1 and 𝑆2 (see also [D, Theorem 21] for an
extension to finitely sets under some differentiability assumptions). If we define

(𝛼1, 𝛼2, 𝑝) ∶= argmin 𝛼1𝑑(⋅, 𝑆1)𝑝 + 𝛼2𝑑(⋅, 𝑆2)𝑝,

then there are three differentiated classes of problems depending on the chosen
alphas and 𝑝:

1. 𝑝 = 1, 𝛼1 ≠ 𝛼2. Then [D, Proposition 16] states, assuming without loss of
generality that 𝛼1 > 𝛼2, that

(𝛼1, 𝛼2, 1) = argmin
𝑆1

𝑑(⋅, 𝑆2).

2. 𝑝 = 1, 𝛼1 = 𝛼2 = 1∕2. Appealing to [D, Proposition 18 (ii)] we have

(1
2
, 1
2
, 1
)
= {𝑥 ∈ 𝑋∶𝑥 ∈]𝑃1(𝑥), 𝑃2(𝑥)[} ∪ argmin

𝑆1
𝑑(⋅, 𝑆2) ∪ argmin

𝑆2
𝑑(⋅, 𝑆1),

where 𝑃𝑖 stands for the projection over the set 𝑆𝑖, 𝑖 = 1, 2.

3. 𝑝 > 1. We can describe (𝛼1, 𝛼2, 𝑝) as the set of fixed points of

𝛼
1

𝑝−1
1

𝛼
1

𝑝−1
1 + 𝛼

1
𝑝−1
2

𝑃1 +
𝛼

1
𝑝−1
2

𝛼
1

𝑝−1
1 + 𝛼

1
𝑝−1
2

𝑃2
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according to [D, Theorem 19 (iii)].

The second application deals with the distance to feasibility in the framework
of convex inequality systems in ℝ𝑛 under RHS perturbations. Let us consider the
parameterized system,

𝜎 (𝑏) ∶=
{
𝑔𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 = 1,… , 𝑚

}
,

where 𝑥 ∈ ℝ𝑛, (𝑏𝑖)𝑖=1,…,𝑚 ≡ 𝑏 ∈ ℝ𝑚, and 𝑔𝑖 ∶ ℝ𝑛 → ℝ is a convex function,
𝑖 = 1, 2, ..., 𝑚, where the space of variables, ℝ𝑛, is endowed with an arbitrary
norm, ‖⋅‖ , with dual norm ‖⋅‖∗ and the associated distances denoted by 𝑑 and
𝑑∗, respectively. The space of parameters, ℝ𝑚, is endowed with any 𝑝-norm, ‖⋅‖𝑝 ,
provided that 𝑝 ≥ 2, and the associated distance is denoted by 𝑑𝑝. We denote by
Θ𝑐 the set of consistent parameters; i.e.,

Θ𝑐 ∶= {𝑏 ∈ ℝ𝑚 ∣ 𝜎 (𝑏) is consistent} .

The distance from 𝑏 ∈ ℝ𝑚 ⧵ Θ𝑐 to feasibility is

𝑑𝑝
(
𝑏,Θ𝑐

)
= inf

{‖‖‖𝑏 − 𝑏‖‖‖𝑝 ∶ 𝑏 ∈ Θ𝑐

}
,

and verifies (see [D, Proposition 23])

𝑑𝑝
(
𝑏,Θ𝑐

)𝑝
= inf

𝑥∈ℝ𝑛

𝑚∑
𝑖=1

[𝑔𝑖 (𝑥) − 𝑏𝑖]
𝑝
+.

The next key result extends the well-known Ascoli formula, for the distance
from a point to a half space, to the convex case. Here ‘𝜕’ stands for the classical
subdifferential of convex analysis.

Proposition 19 ([D, Proposition 24]) Let 𝑔 ∶ ℝ𝑛 → ℝ be a convex function
and 𝑏 ∈ ℝ be such that the corresponding sublevel set, 𝑆, is nonempty. Then we
have:
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(i) For any 𝑥 ∈ ℝ𝑛,

𝑑𝑆 (𝑥) ≥ [𝑔 (𝑥) − 𝑏]+
𝑑∗

(
0𝑛, 𝜕𝑔 (𝑥)

) ;

(ii) Assume that there exists 𝑥 ∈ ℝ𝑛 (called a Slater point) such that 𝑔(𝑥) < 𝑏.
Then, for any 𝑥 ∈ ℝ𝑛,

𝑑𝑆 (𝑥) ≤ [𝑔 (𝑥) − 𝑏]+
𝑑∗

(
0𝑛, 𝜕𝑔

(
𝑃𝑆 (𝑥)

)) ,

where 𝑃𝑆 (𝑥) is the metric projection set of 𝑥 on 𝑆 with respect to the norm
‖⋅‖ .

As a consequence of this result, upper and lower estimates for the 𝑝-distance
(𝑝 ≥ 2) to feasibility are proven in [D, Corollary 27] when ℝ𝑛 is equipped with
the Euclidean norm. When confined to the linear setup, those bounds tighten
attaining equality: 𝑑𝑝

(
𝑏,Θ𝑐

)
= ‖‖‖𝑑

‖‖‖𝑝 for a certain 𝑑 ∈ ℝ𝑚 (see [D, Corollary 28]
for details). The next theorem provides an operative procedure to compute such a
distance. In it [𝑦]+ , 𝑦 ∈ ℝ𝑚 stands for the positive part coordinate by coordinate;
i.e., [𝑦]+ ∶=

([
𝑦𝑖
]
+

)
𝑖=1,…,𝑚

and set  appearing below is defined at the beginning
of [D, Section 5.1].

Theorem 20 The following conditions are equivalent:

(i)
(
𝑥0, ℎ0) ∈ ×

{
𝑑
}
;

(ii)
(
𝑥0, ℎ0) is a solution of the system, in the variable (𝑥, ℎ) ,

⎧⎪⎨⎪⎩

[
𝐴𝑥 − 𝑏

]
+
= ℎ,

𝐴′ℎ = 0𝑛.

(iii)
(
𝑥0, ℎ0) is an optimal solution of the quadratic problem, in the variable
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(𝑥, ℎ) ,

min ⟨ℎ, ℎ⟩
𝑠.𝑡. 𝐴𝑥 ≤ 𝑏 + ℎ,

ℎ ≥ 0𝑚.
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5 Conclusions and perspectives

5.1 English

The previous chapter presents a selection of the main original contributions of the
thesis, conceived just as an overview. It has been stated in a direct style for the
sake of brevity and with the intention of avoiding unnecessary redundancies with
the appendices containing the complete publications. As a quick summary, we
provide point-based expressions for the Lipschitz upper semicontinuity modulus
of  ,  𝑜𝑝 and  𝑜𝑝

𝑐 , as well as the Hoffman modulus at 𝑏 of  and the global Hoff-
man constant for  (in the semi-infinite case) and  𝑜𝑝

𝑐 (for  𝑜𝑝 it is +∞ except
a trivial situation). Moreover, two new concepts of (metric) subregularity, specif-
ically robust and continuous subregularity, have been introduced and the radius
with respect to the first of them has been computed. Finally, we have investi-
gated operators which are simultaneously paramonotone and bimonotone, and
presented two applications to simultaneous projections and feasibility problems.

There are some open problems directly connected with the achievements of
the thesis, which we list below:

• The semi-infinite case. To the best of our knowledge, there are no opera-
tive expressions of clm for semi-infinite systems without the (quite restric-
tive) regularity condition introduced in [25]. Any advance in the calmness
modulus could have direct repercussions in semilocal Lipschitz-type moduli.

• The convex case. Each convex inequality turns our to be equivalent (in
the sense of having the same solution set) to a linear semi-infinite inequality
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system by means of the so-called standard linearization via the Fenchel-
Legendre conjugate. In this way a convex system under RHS perturbations
gives rise to a larger linear system with the same type of perturbations and
a relatively good structure (depending on the quality of convex functions
involved).

• Moduli for fully perturbed systems. Perturbing both sides (𝑎 and 𝑏)
of linear inequality systems entails notable differences with the context of
RHS perturbations. To start with, the graph of the feasible set mapping is
no longer convex and hence Theorem 1 does not apply. A first interesting
problem to solve is determining the Lipschitz upper semicontinuity modulus
of the feasible set mapping in the case when the nominal feasible set is
bounded. We have some conjectures.

• Hoffman modulus of the argmin mapping  𝑜𝑝 at
(
𝑐, 𝑏

)
. [B, Exam-

ple 5.1] exhibits a situation where Lipusc 𝑜𝑝
(
𝑐, 𝑏

)
< Hof  𝑜𝑝

(
𝑐, 𝑏

)
but we

do not have a point-based expression for the latter. Perhaps it would be
interesting to start with  𝑜𝑝

𝑐 . To this respect, the concept of break steps
introduced in [E, Section 5] could be a key ingredient.

• Radius of continuous regularity. The problem of finding a point-based
formula for such a radius remains open. Some hints for future research can
be traced out from [C, Example 4], which illustrates some of the difficulties
that may arise in this search and the wide casuistry that appears.

• Radii for fully perturbed systems. A key feature for defining the radius
of a (set-valued) mapping with respect to a given property is the fact that
the perturbed mapping should belong to the same class as the original one.
In the case of the feasible set mapping of a linear inequality system under
RHS perturbations, the perturbed mapping corresponds to another system
with a different LHS. But if both sides (𝑎 and 𝑏) are regarded as parameters,
then the perturbed mapping corresponds to a quadratic system (see [9,
Section 5] for details). Therefore, the problem of finding an appropriate
framework for studying the radius of metric regularity or different types of
subregularity of linear systems under full perturbations arises.
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5.2 Spanish

El capítulo anterior presenta una selección de las principales aportaciones origi-
nales de la tesis, concebida sólo como una visión general. Se ha expuesto en un
estilo directo en aras de la brevedad y con la intención de evitar redundancias
innecesarias con los apéndices que contienen las publicaciones completas. A modo
de resumen rápido, proporcionamos expresiones de tipo "point-based" para el mó-
dulo de Lipschitz upper semicontinuity de  ,  𝑜𝑝 y  𝑜𝑝

𝑐 , así como el módulo de
Hoffman en 𝑏 de  𝑜𝑝 y la constante global de Hoffman para  (en el caso semi-
infinito) y  𝑜𝑝

𝑐 (para  𝑜𝑝 es +∞ salvo una situación trivial). Además, dos nuevos
conceptos de subregularidad (métrica), específicamente subregularidad robusta y
continua, han sido introducidos y el radio con respecto al primero de ellos ha sido
calculado. Por último, hemos investigado operadores que son simultáneamente
paramonótonos y bimonótonos, y presentado dos aplicaciones a proyecciones si-
multáneas y problemas de factibilidad.

Hay algunos problemas abiertos directamente relacionados con los logros de
la tesis, que enumeramos a continuación:

• El caso semi-infinito. Hasta donde nosotros sabemos, no existen expre-
siones operativas de clm para sistemas semi-infinitos sin la condición de
regularidad (bastante restrictiva) introducida en [25]. Cualquier avance en
el módulo de calmness podría tener repercusiones directas en los módulos
semilocales de tipo Lipschitz.

• El caso convexo. Cada desigualdad convexa resulta ser equivalente (en el
sentido de tener el mismo conjunto solución) a un sistema lineal semiinfinito
por medio de la llamada linealización estándar mediante la conjugada de
Fenchel-Legendre. De este modo, un sistema convexo bajo perturbaciones
RHS da lugar a un sistema lineal mayor con el mismo tipo de perturbaciones
y una estructura relativamente buena (dependiendo de la calidad de las
funciones convexas implicadas).

• Módulos para sistemas bajo perturbaciones totales. Perturbar am-
bos lados (𝑎 y 𝑏) de sistemas de desigualdades lineales implica diferencias
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notables con respecto al contexto de las perturbaciones RHS. Para empezar,
el grafo de la multifunción conjunto factible ya no es convexo y por lo tanto
el Teorema 1 no se aplica. Un primer problema interesante por resolver es
la determinación del módulo de Lipschitz upper semicontinuity de la multi-
función conjunto factible en el caso de que el conjunto factible nominal esté
acotado. Tenemos algunas conjeturas.

• Módulo de Hoffman de la multifunción argmin  𝑜𝑝 en
(
𝑐, 𝑏

)
. [B,

Ejemplo 5.1] exhibe una situación en la que Lipusc 𝑜𝑝
(
𝑐, 𝑏

)
< Hof  𝑜𝑝

(
𝑐, 𝑏

)
,

pero no tenemos una expresión general para esta último. Tal vez sería in-
teresante empezar con  𝑜𝑝

𝑐 . A este respecto, el concepto de break steps in-
troducido en [E, Sección 5] podría ser un ingrediente clave.

• Radio de regularidad continua. El problema de encontrar una fórmula
de tipo "point-based" para dicho radio sigue abierto. Algunas pistas para su
futura investigación se pueden seguir a partir de [C, Ejemplo 4], que ilustra
algunas de las dificultades que pueden surgir en esta búsqueda y la amplia
casuística que aparece.

• Radios para sistemas bajo perturbaciones totales. Una caracterís-
tica clave para definir el radio de una aplicación (conjunto-valuada) con
respecto a una propiedad dada es el hecho de la multifunción perturbada
debe pertenecer a la misma clase que la original. En el caso de la multifun-
ción conjunto factible de un sistema de desigualdades lineales bajo pertur-
baciones RHS, la aplicación perturbada corresponde a otro sistema con un
miembro izquierdo de las desigualdades diferente. Pero si ambos lados (𝑎
y 𝑏) se consideran como parámetros, entonces la multifunción perturbada
corresponde a un sistema cuadrático (véase [9, Sección 5] para más detalles).
Por lo tanto, se plantea el problema de encontrar un marco apropiado para
estudiar el radio de regularidad métrica o diferentes tipos de subregularidad
de sistemas lineales bajo perturbaciones totales.
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Abstract. In this paper we focus on different---global, semilocal, and local---versions of Hoffman-
type inequalities expressed in a variational form. In a first stage our analysis is developed for generic
multifunctions between metric spaces, and we finally deal with the feasible set mapping associated
with linear semi-infinite inequality systems (finitely many variables and possibly infinitely many
constraints) parameterized by their right-hand sides. The Hoffman modulus is shown to coincide with
the Lipschitz upper semicontinuity modulus and the supremum of calmness moduli when confined to
multifunctions with a convex graph and closed images in a reflexive Banach space, which is the case
for our feasible set mapping. Moreover, for this particular multifunction a formula---involving only
the system's left-hand side---of the global Hoffman constant is derived, providing a generalization to
our semi-infinite context of finite counterparts developed in the literature. In the particular case of
locally polyhedral systems, the paper also provides a point-based formula for the (semilocal) Hoffman
modulus in terms of the calmness moduli at certain feasible points (extreme points when the nominal
feasible set contains no lines), yielding a practically tractable expression for finite systems.
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systems, feasible set mapping
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1. Introduction. Concerning finite linear inequality systems parameterized by
their right-hand sides, the celebrated Hoffman lemma [10] is a result of global nature
as far as it works for any parameter making the system consistent and any point of
the Euclidean space. We can also find in the literature related semilocal results as
far as they work around a nominal (given) parameter and any point in the Euclidean
space, leading to the concept of a Hoffman constant at this parameter (see, e.g.,
Az\'e and Corvellec [2] and Z\u alinescu [27]). In this paper we relate these global and
semilocal Hoffman constants with the local concept of a calmness modulus, which
involves parameters and points, both around nominal ones. Our analysis is developed
in a first step in the context of generic multifunctions then subsequently moves to
the particular case of the feasible set mapping associated with a parameterized linear
semi-infinite inequality system

(1) \sigma (b) := \{ a\prime tx \leq bt, t \in T\} ,

where T is a compact metric space, t \mapsto \rightarrow at \in \BbbR n is a fixed continuous function from
T to \BbbR n, and b \equiv (bt)t\in T \in C (T,\BbbR ) is the parameter to be perturbed, C (T,\BbbR ) being
the space of continuous functions from T to \BbbR . We are considering column-vectors,
and the prime stands for transposition, so x\prime y denotes the usual inner product of x
and y in \BbbR n. In this parametric context, the feasible set mapping \scrF : C (T,\BbbR ) \rightrightarrows \BbbR n
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is given by

(2) \scrF (b) := \{ x \in \BbbR n | a\prime tx \leq bt, t \in T\} .
With respect to the topology, \BbbR n is equipped with an arbitrary norm, \| \cdot \| , with dual
norm given by \| u\| \ast = max\| x\| \leq 1 | u\prime x| , and the parameter space C (T,\BbbR ) is endowed
with the supremum norm \| b\| \infty := maxt\in T | bt| .

The particular case when T is finite is included in this framework, in which case
\scrF coincides with the polyhedral mapping considered in [10], and the Hoffman lemma
reads as the existence of some constant \kappa \geq 0 such that, for all x \in \BbbR n and all
b \in dom\scrF (the domain of \scrF ),

(3) d (x,\scrF (b)) \leq \kappa max
t\in T

[a\prime tx - bt]+ ,

where [\alpha ]+ := max \{ \alpha , 0\} is the positive part of \alpha \in \BbbR . This result is of a global nature
as far as it involves all points x \in \BbbR n and all b \in dom\scrF . Since maxt\in T [a\prime tx - bt]+ =

d
\bigl( 
b,\scrF  - 1 (x)

\bigr) 
, inequality (3) can be written in a variational form, as is done in the

following paragraph for a generic multifunction.
Given a multifunction \scrM : Y \rightrightarrows X between metric spaces with both distances

being denoted by d, we say that the (global) Hoffman property holds if there exists a
constant \kappa \geq 0 such that

(4) d(x,\scrM (y)) \leq \kappa d
\bigl( 
y,\scrM  - 1(x)

\bigr) 
for all x \in X and all y \in dom\scrM ,

where d (x,\Omega ) := inf \{ d (x, \omega ) | \omega \in \Omega \} for x \in X and \Omega \subset X, with inf \emptyset := +\infty , so
that d (x, \emptyset ) = +\infty . Since this paper is concerned with nonnegative constants, we use
the convention sup \emptyset := 0. Here dom\scrM is the domain of \scrM (recall that y \in dom\scrM \leftrightarrow 
\scrM (y) \not = \emptyset ) and \scrM  - 1 denotes the inverse mapping of \scrM (i.e., y \in \scrM  - 1 (x) \leftrightarrow x \in 
\scrM (y)).

Now we write a semilocal version of (4) by fixing y = y. \scrM is said to be Hoffman
stable at y \in dom\scrM if there exists \kappa \geq 0 such that

(5) d(x,\scrM (y)) \leq \kappa d
\bigl( 
y,\scrM  - 1(x)

\bigr) 
for all x \in X.

When inequality (5) is only required to be satisfied in a neighborhood of x \in \scrM (y) we
are dealing with the calmness of \scrM at (y, x) \in gph\scrM , the graph of \scrM . Formally, the
calmness of \scrM at (y, x) \in gph\scrM , or equivalently the metric subregularity of \scrM  - 1

at (x, y) (cf. [7, Theorem 3H.3 and Exercise 3H.4]), is satisfied when there exist a
constant \kappa \geq 0 and a neighborhood U of x such that

(6) d(x,\scrM (y)) \leq \kappa d
\bigl( 
y,\scrM  - 1(x)

\bigr) 
for all x \in U.

The infimum of constants \kappa appearing in (4), (5), and (6) are called, respectively,
the global Hoffman constant of \scrM , the Hoffman modulus of \scrM at y \in dom\scrM , and
the calmness modulus of \scrM at (y, x) \in gph\scrM . The three constants are denoted,
respectively, by Hof\scrM , Hof\scrM (y), and clm\scrM (y, x) and, as a consequence of the
definitions, they may be written as follows:

(7)

Hof\scrM = sup
(y,x)\in (dom\scrM )\times X

d(x,\scrM (y))

d (y,\scrM  - 1(x))
,

Hof\scrM (y) = sup
x\in X

d(x,\scrM (y))

d (y,\scrM  - 1(x))
, y \in dom\scrM ,

clm\scrM (y, x) = lim sup
x\rightarrow x

d(x,\scrM (y))

d (y,\scrM  - 1(x))
, (y, x) \in gph\scrM ,
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under the convention 0
0 := 0, where lim sup is understood as the supremum (indeed,

maximum) of all possible sequential upper limits (i.e., with (y, x) being replaced with
elements of sequences \{ (yr, xr)\} r\in \BbbN converging to (y, x) as r \rightarrow \infty ).

Now we describe the main contributions of the paper. Clearly

Hof\scrM = sup
y\in dom\scrM 

Hof\scrM (y),

and we wonder if a similar relationship between Hof\scrM (y) and the supremum of all
calmness moduli clm\scrM (y, x), with x \in \scrM (y), works. Section 3 is devoted to this
question, and Theorem 4 gives a positive answer when gph\scrM is convex and \scrM (y)
is closed, Y being a normed space and X being a reflexive Banach space. Some
examples show that the convexity assumption is not superfluous. Moreover, some
intermediate constants such as the Lipschitz upper semicontinuity modulus are also
considered.

With respect to mapping \scrF our focus is on formulae only involving the system's
coefficients for Hof \scrF and Hof \scrF (b), which are established in Theorems 5 and 6, respec-
tively. The first one extends to the current semi-infinite framework previous results
on finite linear systems (see, e.g., Burke and Tseng [4, Theorem 8], Klatte and Thiere
[13, Theorem 2.7], and Pe\~na, Vera, and Zuluaga [18, Formula (3)]); for comparative
purposes, some details are gathered in section 2. Theorem 6 provides a formula for
Hof \scrF (b) in terms of the at's, the bt's, and some feasible points in the case when our
system \sigma 

\bigl( 
b
\bigr) 
is locally polyhedral. Specifically, from the referred Theorem 4, we have

that

Hof \scrF (b) = sup
x\in \scrF (b)

clm\scrF 
\bigl( 
b, x
\bigr) 
,

and Theorem 6 refines this expression by reducing the supremum to a smaller set
(which turns out to be finite when T also is). Then, making use of the expression for
clm\scrF 

\bigl( 
b, x
\bigr) 
established in Li, Meng, and Yang [16] (recalled in Theorem 3), we derive

the announced point-based formula for Hof \scrF (b). Here we use the term ``point-based""
to emphasize the fact that the expression for Hof \scrF (b) does not involve parameters
different from b or points outside \scrF (b). An alternative expression for Hof \scrF (b) ap-
pealing to points outside \scrF (b) is given in [2, Theorem 2.6] (recalled in Theorem 2).
We point out the fact that Theorem 6 yields a particularly tractable procedure for
computing Hof \scrF (b) when T is finite.

In summary, the structure of the paper is as follows: Section 2 introduces the
necessary notation and gathers some preliminary results. Section 3 analyzes the rela-
tionships among different semilocal versions of Hoffman- and Lipschitz-type properties
for generic multifunctions and their moduli (Lipschitz-type properties are widely an-
alyzed in the monographs [7, 12, 17, 22]). Section 3 also provides illustrative counter-
examples. Section 4 is focused on Hof \scrF and Hof \scrF (b), the latter in the case of locally
polyhedral systems. Before establishing the announced formula for Hof \scrF (b) some
technical geometrical results are proved. The paper finishes with a short section of
conclusions and perspectives.

2. Preliminaries. Given S \subset \BbbR k, k \in \BbbN , we denote by convS, coneS, and spanS
the convex hull, the conical convex hull, and the linear hull of S, respectively. It is
assumed that coneS always contains the zero-vector 0k, in particular cone(\emptyset ) = \{ 0k\} .
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Moreover, S\circ denotes the (negative) polar of S given by

S\circ :=
\bigl\{ 
u \in \BbbR k | u\prime x \leq 0 for all x \in S

\bigr\} 

(S\circ = \BbbR k if S = \emptyset ). From the topological side, intS, clS, and bdS stand, respectively,
for the (topological) interior, closure, and boundary of S. For a nonempty convex set
C \subset \BbbR k, O+C denotes its recession cone given by

O+C :=
\bigl\{ 
d \in \BbbR k | u+ \alpha d \in C for all u \in C and all \alpha \geq 0

\bigr\} 
,

while endC denotes its end set (introduced in [11]) defined as

endC := \{ u \in clC | \nexists \mu > 1 such that \mu u \in clC\} .

Moreover, extrC stands for the set of extreme points of C. Recall that x \in extrC if
x \in C and it cannot be expressed as a convex combination of two points of C\setminus \{ x\} .
In any metric space (Z, d) , the closed ball centered at z \in Z with radius r > 0 is
denoted by B (z, r) , whereas B (S, r) := \{ z \in Z | d (z, S) \leq r\} , for S \subset Z, denotes
the r-enlargement of S.

For comparative purposes, the next theorem gathers some results in the literature
on Hof \scrF when confined to finite linear systems, where C (T,\BbbR ) \equiv \BbbR m for some
m \in \BbbN . It is adapted to our current notation and to our choice of norms. The first
two expressions come from [18, formulae (3) and (4)] (see also [13, Theorem 2.7] when
\BbbR n is endowed with the Euclidean norm), while the third one can be derived from [4,
Theorem 8], where a dual approach is followed. The last one appeals to the set

W2 :=
\bigl\{ 
y \in \BbbR m

+ | \{ at, t \in supp (y)\} lin. indep.
\bigr\} 
,

where \BbbR m
+ is formed by the vectors of \BbbR m having nonnegative coordinates and supp (y)

:= \{ t \in \{ 1, . . . ,m\} | yt \not = 0\} is the support of y; indeed W2 is considered a subset of
the dual space of \BbbR m, which we are identifying with \BbbR m itself.

Theorem 1. Consider the feasible set mapping \scrF defined in (2) and assume that
T is finite. We have

Hof \scrF = max
J\subset T

0n /\in conv\{ at, t\in J\} 

d\ast (0n, conv \{ at, t \in J\} ) - 1
(8)

= max
J\subset T, rankAJ=rankA
\{ at, t\in J\} lin. indep.

d\ast (0n, conv \{ at, t \in J\} ) - 1
(9)

= sup \{ \| y\| 1 | y \in W2, \| A\prime y\| \ast = 1\} ,(10)

where AJ and A stand for the matrices whose rows are a\prime t, with t \in J and t \in T,
respectively, and d\ast stands for the distance associated with the dual norm \| \cdot \| \ast .

Proof. According to [18, formula (3)] and the subsequent comments therein, to
establish (8) we only have to prove that condition 0n /\in conv \{ at, t \in J\} is equivalent
to the consistency of system \{ a\prime tx < 0, t \in J\} , and this follows, for instance, from
equivalence (iv) \leftrightarrow (v) in [9, Theorem 6.1]. Equality (9) comes from [18, formula
(4)] with the trivial observation that instead of all linearly independent \{ at, t \in J\} ,
with J \subset T , we can confine ourselves to those which are maximal with respect to
the inclusion order. Indeed, the result also follows from (8), since the sufficiency of
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considering those \{ at, t \in J\} which are linearly independent comes from [2, Lemma
3.1].

Formula (10) comes from [4, Theorem 8]. Let us comment that we can, alterna-
tively, see the relationship between the second and the third expression by observing
that, for any y \in \BbbR m

+ , y \not = 0m,

1

\| y\| 1
A\prime y =

1

\| y\| 1

m\sum 

i=1

ytat \in conv \{ at, t \in supp (y)\} ,

and that \| A\prime y\| \ast = 1 is equivalent to \| y\| 1 =
\bigm\| \bigm\| 1
\| y\| 1

A\prime y
\bigm\| \bigm\|  - 1

\ast .

Generalizations of Hoffman constants to infinite-dimensional spaces or to convex
functions playing the role of the distance function can be found in [4]. Many other
authors have contributed to the study of Hoffman constants and their relationship
with other concepts (as Lipschitz constants). Additional references can be obtained
from the reference list of the papers mentioned above as well as [2] and [27], among
others. At this moment we also cite Belousov and Andronov [3], Li [15], and Robinson
[20].

The following theorem provides formulae for Hof \scrF (b), with b \in dom\scrF , and
clm\scrF 

\bigl( 
b, x
\bigr) 
, with

\bigl( 
b, x
\bigr) 
\in gph\scrF through points outside \scrF (b). They appeal to the

supremum function fb : \BbbR n \rightarrow \BbbR , with b \in C (T,\BbbR ) , given by

fb (x) := sup
t\in T

(a\prime tx - bt) for x \in \BbbR n,

which is known to be convex on \BbbR n. For each x \in \BbbR n, we consider the subset of
indices

Jb (x) = \{ t \in T | a\prime tx - bt = fb (x)\} .

The well-known Valadier's formula works by virtue of the Ioffe--Tikhomirov theorem
(see, e.g., [26, Theorem 2.4.18]), yielding

\partial fb (x) = conv \{ at, t \in Jb (x)\} ,

where \partial fb (x) stands for the usual subdifferential of convex analysis (see, e.g., [21]).

Theorem 2. The following statements hold:
(i) [2, Theorem 2.6] For any b \in dom\scrF , one has

Hof \scrF (b) = sup
fb(x)>0

d\ast 
\bigl( 
0n, \partial fb (x)

\bigr)  - 1

= sup
fb(x)>0

d\ast 
\bigl( 
0n, conv

\bigl\{ 
at, t \in Jb (x)

\bigr\} \bigr)  - 1
.

(ii) [14, Theorem 1] For any
\bigl( 
b, x
\bigr) 
\in gph\scrF ,

clm\scrF (b, x) = lim sup
x\rightarrow x, fb(x)>0

d\ast 
\bigl( 
0n, \partial fb (x)

\bigr)  - 1

= lim sup
x\rightarrow x, fb(x)>0

d\ast 
\bigl( 
0n, conv

\bigl\{ 
at, t \in Jb (x)

\bigr\} \bigr)  - 1
.
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Remark 1. Observe that b \in dom\scrF and fb (x) > 0 mean that \sigma 
\bigl( 
b
\bigr) 
is consistent

(it has some feasible solution) but x /\in \scrF (b)); in this case, 0n /\in conv\{ at, t \in Jb (x)\} ,
since x is not a global minimizer of the convex function fb. Actually, [2, Theorem 2.6]

is formulated in terms of (Hof \scrF (b)) - 1, which is called there the condition number
of fb at level 0; in the terminology of [14], observe that (clm\scrF (b, x)) - 1 is the error
bound modulus (also known as conditioning rate [19]) of fb at x.

The following theorem is devoted to the computation of clm\scrF (b, x), (b, x) \in gph\scrF ,
through a point-based formula (expressed exclusively in terms of the system's coef-
ficients and the nominal point x). Now we introduce some extra notation. Given a
fixed b \in dom\scrF , for any x \in \scrF (b), we consider (for simplicity, since there will be no
ambiguity, we omit the dependence on b)

T (x) :=
\bigl\{ 
t \in T | a\prime tx - bt = 0

\bigr\} 
,

the subset of active indices of system \sigma 
\bigl( 
b
\bigr) 
at x; i.e., T (x) = Jb (x) if fb (x) = 0, while

T (x) = \emptyset if fb (x) < 0 (i.e., if x is a strict solution---Slater point---of the system). Let
A (x) be the corresponding active cone at x; i.e.,

A (x) := cone \{ at, t \in T (x)\} 

(recall that A (x) = \{ 0n\} if T (x) = \emptyset ). We also consider the family \scrD (x) of subsets
D \subset T (x) such that system

(11)

\biggl\{ 
a\prime td = 1, t \in D,
a\prime td < 1, t \in T (x) \setminus D

\biggr\} 
,

is consistent (in the variable d \in \BbbR n); i.e., \{ at, t \in D\} is contained in some hyperplane
which leaves \{ 0n\} \cup \{ at, t \in T (x) \setminus D\} on one of its two associated open half-spaces.
With this notation, the next theorem generalizes the corresponding finite version
established in [6, Theorem 4]. It appeals to the following regularity condition at x:
``There exists a neighborhood W of x such that

(12) \scrF (b) \cap W =
\bigl( 
x+A (x)

\circ \bigr) \cap W.""

Observe that this condition is held at all points of polyhedral sets and, for instance,
at the vertex of the ice cream cone.

Theorem 3 ([16, Corollary 2.1, Remark 2.3, and Corollary 3.2]). Let x \in \scrF (b)
such that fb (x) = 0 and assume that the regularity condition (12) is held at x. Then

(13) clm\scrF 
\bigl( 
b, x
\bigr) 
= d\ast 

\bigl( 
0n, end\partial fb (x)

\bigr)  - 1
= sup

D\in \scrD (x)

d\ast (0n, conv \{ at, t \in D\} ) - 1
.

Remark 2. Although condition (12) is not superfluous for establishing the first
equality in (13) as [16, Example 3.3] shows (see also Example 4), the second equality
does work for semi-infinite systems (1) without any additional condition. Indeed,
from [16, Corollary 2.1 and Remark 2.3] we can deduce

(14) \cup D\in \scrD (x) conv \{ at, t \in D\} \subset end\partial fb (x) \subset cl
\bigl( 
\cup D\in \scrD (x)conv \{ at, t \in D\} 

\bigr) 
.

3. From calmness to Hoffman constants for a generic multifunction.
The purpose of this section is to analyze the relationship among different Hoffman-
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and Lipschitz-type properties, including the known Lipschitz upper semicontinuity
that goes back to the classical work of Robinson [20]. At the beginning of this section
\scrM : Y \rightrightarrows X is a generic multifunction between metric spaces Y and X. Later we will
need further structure. To start with, observe that alternatively to (5) we can write
the Hoffman stability of \scrM at y \in dom\scrM in terms of the existence of \kappa \geq 0 such
that

d(x,\scrM (y)) \leq \kappa d (y, y) for all (y, x) \in gph\scrM ,

while the calmness of \scrM at (y, x) \in gph\scrM , introduced in (6) in terms of the (equiv-
alent) metric subregularity of \scrM  - 1, is written as the existence of neighborhoods V
of y and U of x along with a constant \kappa \geq 0 such that

d(x,\scrM (y)) \leq \kappa d (y, y) for all (y, x) \in (V \times U)\cap gph\scrM .

Moreover, the following equalities constitute well-known alternative expressions to (7)
for the corresponding moduli

Hof\scrM (y) = sup
(y,x)\in gph\scrM 

d(x,\scrM (y))

d (y, y)
,(15)

clm\scrM (y, x) = lim sup
(y,x)\rightarrow (y,x)
(y,x)\in gph\scrM 

d(x,\scrM (y))

d (y, y)
.

Recall that \scrM is said to be Lipschitz upper semicontinuous at y \in dom\scrM if there
exists a neighborhood V of y along with a constant \kappa \geq 0 such that

(16) d(x,\scrM (y)) \leq \kappa d (y, y) for all (y, x) \in (V \times \BbbR n)\cap gph\scrM .

Here we borrow the terminology from [12] or [24], although this property, introduced
in [20] as upper Lipschitz continuity, has been also popularized as outer Lipschitz
continuity (see [7]). Equivalently, (16) may be written as e(\scrM (y),\scrM (y)) \leq \kappa d (y, y)
for all y \in V, where e (A,B) := supx\in A d (x,B) is the Hausdorff excess of A over
B, with A,B \subset X. The associated Lipschitz upper semicontinuity modulus, denoted
by Lipusc\scrM (y), is defined as the infimum of constants \kappa satisfying (16) for some
associated V.

In the next definition, given y \in dom\scrM and \varepsilon > 0, the mapping \scrM \varepsilon : Y \rightrightarrows X is
defined by

\scrM \varepsilon (y) := \scrM (y) \cap B (\scrM (y) , \varepsilon ) for y \in Y.

(For simplicity in the notation we obviate the dependence of \scrM \varepsilon on y.)

Definition 1. Given y \in dom\scrM , we say that \scrM is uniformly calm at y if there
exists a neighborhood V of y along with \varepsilon > 0 and \kappa \geq 0 such that

(17) d(x,\scrM (y)) \leq \kappa d (y, y) for all y \in V and all x \in \scrM \varepsilon (y) ,

or, equivalently, if \scrM \varepsilon is Lipschitz upper semicontinuous at y for some \varepsilon > 0.

The corresponding modulus naturally appears. Specifically, we define the modulus
of uniform calmness of \scrM at y, denoted by uclm\scrM (y), as the infimum of constants
\kappa satisfying (17) for some associated V and \varepsilon > 0. It is straightforward to check that

(18) uclm\scrM (y) = inf
\varepsilon >0

Lipusc\scrM \varepsilon (y).
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Roughly speaking, the uniform calmness of \scrM at y entails the calmness of \scrM at any
(y, x) for all x \in \scrM (y) with the same calmness constant \kappa , the same neighborhood
V of y, and a common radius \varepsilon for all neighborhoods of points x \in \scrM (y) , say
Ux := B(x, \varepsilon ). Example 1 below shows that the calmness of \scrM at (y, x) for all
x \in \scrM (y) does not ensure the uniform calmness of \scrM at y.

As it occurs with the calmness property, the uniform calmness turns out to be
equivalent to a certain metric regularity--type property, showing that neighborhood V
in Definition 1 is redundant. The key fact is that points x \in \scrM (y) which are required
to satisfy (17) are those which are sufficiently close to \scrM (y) . This comment, which
was already pointed out for polyhedral multifunctions in [20] (see the corollary after
Proposition 1 therein), is formalized in the following proposition.

Proposition 1. Let y \in dom\scrM . For any \kappa > 0, the following conditions are
equivalent:

(i) There exist a neighborhood V of y and \varepsilon > 0 such that (17) holds.
(ii) There exists \varepsilon >0 such that (5) holds when restricted to those x\in B (\scrM (y) , \varepsilon ) .

Proof. Let us establish the nontrivial implication ``(i) \Rightarrow (ii)."" Consider V and \varepsilon 
as in statement (i) . Take \varepsilon 1 > 0 such that B(y, \varepsilon 1)\subset V and define \varepsilon 2 := min\{ \varepsilon , \kappa \varepsilon 1\} >
0. Let us see that (ii) holds for \varepsilon 2 > 0. Take x \in B (\scrM (y) , \varepsilon 2) and consider y \in 
\scrM  - 1 (x) . Now, we distinguish between two cases:

If d (y, y) \leq \varepsilon 1, then y \in V and, since we also have x \in B (\scrM (y) , \varepsilon ) (recall that
\varepsilon 2 \leq \varepsilon ), from (i) we conclude the aimed inequality d(x,\scrM (y)) \leq \kappa d (y, y) .

Otherwise, if d (y, y) \geq \varepsilon 1, then d(x,\scrM (y)) \leq \varepsilon 2 \leq \kappa \varepsilon 1 \leq \kappa d (y, y) .

Remark 3. The statement of Proposition 1 does not hold for \kappa = 0. To see this,
take \scrM : \BbbR  - \rightarrow \BbbR (single-valued) given by \scrM (y) := max \{ 0, y  - 1\} and let y = 0.
Clearly (i) holds for V = ] - 1, 1[ and \kappa = 0, whereas (ii) works for \varepsilon > 0 if and only
if \kappa \geq \varepsilon / (1 + \varepsilon ) .

Corollary 1. Let y \in dom\scrM . We have the following:
(i) \scrM is uniformly calm at y if and only if there exist \varepsilon > 0 and \kappa \geq 0 such that

(19) d(x,\scrM (y)) \leq \kappa d
\bigl( 
y,\scrM  - 1(x)

\bigr) 
for all x \in B (\scrM (y) , \varepsilon ) .

(ii) The modulus of uniform calmness can be expressed as follows:

uclm\scrM (y) = inf \{ \kappa \geq 0 | \exists \varepsilon > 0 such that (19) holds\} .

Proof. Both (i) and (ii) come from the fact that uniform calmness at y with
associated elements V, \varepsilon > 0, and \kappa \geq 0 in (17) entails the same property with V, \varepsilon > 0,
and \widetilde \kappa > \kappa . Hence the conclusions follow straightforwardly from Proposition 1.

Next we provide characterizations of Lipusc\scrM (y) and uclm\scrM (y) in terms of
certain upper limits, which allow for a better understanding of these concepts and a
clear relationship among all moduli introduced in the paper.

Proposition 2. Let \scrM : Y \rightrightarrows X be a multifunction between metric spaces, and
let y \in dom\scrM . Then

(i) Lipusc\scrM (y) = lim sup
y\rightarrow y

\bigl( 
sup

x\in \scrM (y)

d(x,\scrM (y))
d(y,y)

\bigr) 
;

(ii) uclm\scrM (y) = lim sup
d(x,\scrM (y))\rightarrow 0

d(x,\scrM (y))
d(y,\scrM  - 1(x)) .
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Proof. (i) For the sake of simplicity, let us denote by s the right-hand side of (i)
and

(20) K := \{ \kappa \geq 0 | \exists V neighborhood of y verifying (16)\} .

We start by establishing inequality ``\leq "". Since Lipusc\scrM (y) = infK, we can write
Lipusc\scrM (y) = limr\rightarrow \infty \kappa r for some \{ \kappa r\} \subset K. For each r take a neighborhood Vr

associated with \kappa r according to (20) and define

\kappa r := sup
y\in Vr\cap B(y,1/r)

\Biggl( 
sup

x\in \scrM (y)

d(x,\scrM (y))

d (y, y)

\Biggr) 
\leq \kappa r.

By definition \kappa r \in K, having Vr \cap B (y, 1/r) as an associated neighborhood, so that
we have Lipusc\scrM (y) = limr\rightarrow \infty \kappa r.

Finally, for each r, consider any yr \in Vr \cap B (y, 1/r) such that

\kappa r  - 
1

r
\leq sup

x\in \scrM (yr)

d(x,\scrM (y))

d (yr, y)
\leq \kappa r.

Obviously, \{ yr\} r\in \BbbN converges to y, and then

Lipusc\scrM (y) = lim
r\rightarrow \infty 

sup
x\in \scrM (yr)

d(x,\scrM (y))

d (yr, y)
\leq s.

In order to prove ``\geq "" in (i) , we may assume the nontrivial case s > 0 and write

s = lim
r\rightarrow \infty 

sup
x\in \scrM (\widetilde yr)

d(x,\scrM (y))

d (\widetilde yr, y)

for some \{ \widetilde yr\} r\in \BbbN converging to y. It is clear that we may replace \{ \widetilde yr\} r\in \BbbN with a
suitable subsequence (denoted as the whole sequence for simplicity) such that \widetilde yr \in Vr,
and then

s \leq lim
r\rightarrow \infty 

\kappa r = Lipusc\scrM (y).

(ii) The procedure is analogous to the previous one by considering

\widehat K = \{ \kappa \geq 0 | \exists \varepsilon > 0 such that (19) holds\} .

As a direct consequence of the expressions in (15) for clm\scrM (y, x) and Hof\scrM (y) ,
together with (18) and the previous proposition, we conclude the following corollary.
Observe that the smaller \varepsilon > 0, the smaller Lipusc\scrM \varepsilon (y) , and Lipusc\scrM (y) corre-
sponds to \varepsilon = +\infty .

Corollary 2. Let y \in dom\scrM . We have

(21) sup
x\in \scrM (y)

clm\scrM (y, x) \leq uclm\scrM (y) \leq Lipusc\scrM (y) \leq Hof\scrM (y) .

Remark 4. The previous corollary yields (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) , where
(i) \scrM is Hoffman stable at y;
(ii) \scrM is Lipschitz upper semicontinuous at y;
(iii) \scrM is uniformly calm at y;
(iv) \scrM is calm at every (y, x) \in gph\scrM .

D
ow

nl
oa

de
d 

06
/0

6/
23

 to
 1

93
.1

47
.1

43
.2

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

2868 J. CAMACHO, M. J. C\'ANOVAS, AND J. PARRA

The next three examples show that all converse implications in the previous re-
mark may fail for a suitable multifunction.

Example 1. Let \scrM : \BbbR \rightrightarrows \BbbR be given by \scrM (y) = \{ hr (y) , r \in \BbbN \} , where

hr (y) =

\Biggl\{ 
r + y if y \leq 1

r ,

r + 1
r + r

\bigl( 
y  - 1

r

\bigr) 
if y > 1

r .

For y = 0, it is easy to check that clm\scrM (y, x) = 1 for all x \in \scrM (y). Hence,
supx\in \scrM (y) clm\scrM (y, x) = 1. Nevertheless, it is impossible to find \varepsilon > 0 that meets
the conditions for uniform calmness; i.e., uclm\scrM (y) = +\infty . More specifically, take
\varepsilon r := r - 1 + r - 1/2 for all r \in \BbbN , r \geq 8 (to ensure \varepsilon r < 1/2) and consider yr :=
r - 1 + r - 3/2 and xr := hr (yr) = r + r - 1 + r - 1/2 \in \scrM \varepsilon r (yr) . Then

d (xr,\scrM (0))

d (yr, 0)
=

r - 1 + r - 1/2

r - 1 + r - 3/2
\rightarrow +\infty as r \rightarrow +\infty .

Example 2. Consider \scrM : \BbbR  - \rightarrow \BbbR (single-valued) given by \scrM (y) = 0 if y \leq 
0 and \scrM (y) = 1 if y > 0. It is clear that \scrM is uniformly calm at y = 0 (take \varepsilon = 1/2)
but not Lipschitz upper semicontinuous by just considering yr = 1/r for r \in \BbbN .

Example 3. Let \scrM : \BbbR \rightrightarrows \BbbR be given by

\scrM (y) = [0, 1] if y < 0, \scrM (y) = [0,+\infty [ if y \geq 0.

It is clear that \scrM is Lipschitz upper semicontinuous, with zero modulus, at any y \in \BbbR .
Nevertheless, it is not Hoffman stable at any y < 0.

The next theorem establishes that all inequalities in (21) become equalities under
the convexity of gph\scrM together with the closedness of \scrM (y) , provided that Y is
a normed space and X is a reflexive Banach space. As an obvious consequence,
all properties in Remark 4 become equivalent in such a case. First, we include two
lemmas.

Lemma 1. Let X be a normed space and \emptyset \not = C \subset X be a closed set. Take any
x \in X and assume that there exists a best approximation, x, of x in C. Then x is a
best approximation of x\lambda := (1 - \lambda )x+ \lambda x in C for all \lambda \in [0, 1].

Proof. Reasoning by contradiction, suppose that for some \lambda \in [0, 1] there exists
\^x \in C such that \| \^x - x\lambda \| < \| x - x\lambda \| . Then

\| \^x - x\| \leq \| \^x - x\lambda \| + \| x\lambda  - x\| < \| x - x\lambda \| + \| x\lambda  - x\| 
= \lambda \| x - x\| + (1 - \lambda ) \| x - x\| = \| x - x\| ,

which contradicts the fact that x is a best approximation of x in C.

In the next result X is assumed to be a reflexive Banach space in order to ensure
the existence of best approximations on nonempty closed convex sets; see, e.g., [26,
Theorem 3.8.1].

Lemma 2. Let \scrM : Y \rightrightarrows X be a multifunction between a normed space Y and
a reflexive Banach space X, and assume that gph\scrM is a nonempty convex set. Let
y \in dom\scrM and suppose that \scrM (y) is closed. Consider any (y, x) \in gph\scrM and let
x be a best approximation of x in \scrM (y). Then

d (x,\scrM (y))

d (y, y)
\leq clm\scrM (y, x) .
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Proof. By the convexity assumption, for each \lambda \in [0, 1] ,

(y\lambda , x\lambda ) := (1 - \lambda ) (y, x) + \lambda (y, x) \in gph\scrM .

According to Lemma 1, x is also a best approximation of x\lambda in \scrM (y) for each \lambda \in 
[0, 1]. Therefore,

d (x,\scrM (y))

d (y, y)
=

\| x - x\| 
\| y  - y\| =

\| x\lambda  - x\| 
\| y\lambda  - y\| =

d (x\lambda ,\scrM (y))

d (y\lambda , y)
for all \lambda \in ]0, 1].

Since, letting \lambda \rightarrow 0, we have (y\lambda , x\lambda ) \rightarrow (y, x) , by the definition of the calmness
modulus (recall (15)) we conclude that

clm\scrM (y, x) \geq lim sup
\lambda \rightarrow 0

d (x\lambda ,\scrM (y))

d (y\lambda , y)
=

d (x,\scrM (y))

d (y, y)
.

Theorem 4. Let \scrM : Y \rightrightarrows X, with Y being a normed space and X being a
reflexive Banach space, and assume that gph\scrM is a nonempty convex set. Let y \in 
dom\scrM with \scrM (y) closed. Then one has

sup
x\in \scrM (y)

clm\scrM (y, x) = uclm\scrM (y) = Lipusc\scrM (y) = Hof\scrM (y) .

Proof. We only have to prove Hof\scrM (y) \leq supx\in \scrM (y) clm\scrM (y, x) , according to
(21).

Take any (\widetilde y, \widetilde x) \in gph\scrM and let x be a best approximation of \widetilde x in \scrM (y). Lemma
2 ensures that

d (\widetilde x,\scrM (y))

d (\widetilde y, y) \leq clm\scrM (y, x) \leq sup
x\in \scrM (y)

clm\scrM (y, x) .

Then, recalling (15), we conclude that

Hof\scrM (y) = sup
(\widetilde y,\widetilde x)\in gph\scrM 

d(\widetilde x,\scrM (y))

d (\widetilde y, y) \leq sup
x\in \scrM (y)

clm\scrM (y, x) .

We finish this section by observing that the global Hoffman constant for the
whole graph can be larger than the Hoffman modulus for a specific y. Just consider
\scrM : \BbbR \rightrightarrows \BbbR given by

\scrM (y) = ] - \infty , y] if y < 0, \scrM (y) = ] - \infty , 0] if y \geq 0.

Then clearly Hof\scrM (y) = 1 if y < 0 and Hof\scrM (y) = 0 if y \geq 0, so that Hof\scrM = 1.

4. Hoffman and calmness moduli for linear semi-infinite inequality sys-
tems. This section aims to obtain expressions for Hof \scrF and Hof \scrF 

\bigl( 
b
\bigr) 
, b \in dom\scrF ,

in terms of the system's data. These expressions are established in Theorems 5 and
6, respectively. The first result generalizes Theorem 1 to the current semi-infinite
framework, while the second provides an alternative expression to Theorem 2(i) , via
points inside \scrF 

\bigl( 
b
\bigr) 
, for locally polyhedral systems. In the case of finite linear systems

Theorem 6 is particularly useful as far as it establishes an implementable procedure
for computing Hof \scrF 

\bigl( 
b
\bigr) 
.
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Theorem 5. Consider \scrF : C (T,\BbbR ) \rightrightarrows \BbbR n defined in (2). We have

Hof \scrF = sup
J\subset T compact

0n /\in conv\{ at, t\in J\} 

d\ast (0n, conv \{ at, t \in J\} ) - 1
.

Proof. It is clear that Hof \scrF = supb\in dom\scrF Hof \scrF (b) , and applying Theorem 2 we
have

(22) Hof \scrF = sup
b\in dom\scrF 

sup
x/\in \scrF (b)

d\ast (0n, conv \{ at, t \in Jb (x)\} ) - 1
.

Hence, inequality ``\leq "" comes from (22) taking into account that b \in dom\scrF and
x /\in \scrF (b) imply 0n /\in conv \{ at, t \in Jb (x)\} (recall Remark 1). Also take into account
that each Jb (x) is compact since it is closed in T as far as Jb (x) is the preimage of
\{ fb (x)\} by the continuous function t \mapsto \rightarrow a\prime tx - bt.

Let us prove the converse inequality ``\geq "". Observe that for J = \emptyset we have
d\ast (0n, conv \{ at, t \in J\} ) - 1

= d\ast (0n, \emptyset ) - 1
= 0. Fix a nonempty compact set \widehat J \subset T

such that 0n /\in conv
\bigl\{ 
at, t \in \widehat J

\bigr\} 
and let us define \widehat b \in C (T,\BbbR ) such that

\widehat J = J\widehat b (\widehat x) for some \widehat x /\in \scrF 
\Bigl( 
\widehat b
\Bigr) 
, \widehat b \in dom\scrF .

First, by separation, since 0n /\in conv
\bigl\{ 
at, t \in \widehat J

\bigr\} 
, there exists 0n \not = \widehat x \in \BbbR n, such that

a\prime t\widehat x \geq \widehat x\prime \widehat x for all t \in \widehat J,

where \widehat x is the best approximation of 0n in the compact set conv
\bigl\{ 
at, t \in \widehat J

\bigr\} 
with

respect to the Euclidean norm in \BbbR n. Define

\widehat bt := max\{ a\prime t\widehat x, 1
2\widehat x\prime \widehat x\}  - \varphi (t) 1

2\widehat x\prime \widehat x, t \in T,

where

\varphi (t) = 1 - d
\Bigl( 
t, \widehat J
\Bigr) 

for all t \in T.

Observe that \widehat b \in dom\scrF since \widehat bt \geq 1
2 (1 - \varphi (t)) \widehat x\prime \widehat x \geq 0 for all t \in T and, for instance,

0n \in \scrF 
\bigl( \widehat b
\bigr) 
. On the other hand, \widehat x /\in \scrF 

\bigl( \widehat b
\bigr) 
since

a\prime t\widehat x - \widehat bt = a\prime t\widehat x - 
\bigl( 
a\prime t\widehat x - \varphi (t) 1

2\widehat x\prime \widehat x
\bigr) 
= 1

2\widehat x\prime \widehat x > 0 if t \in \widehat J.
Finally, observe that

a\prime t\widehat x - \widehat bt \leq a\prime t\widehat x - a\prime t\widehat x+ \varphi (t) 1
2\widehat x\prime \widehat x < 1

2\widehat x\prime \widehat x whenever t \in T \setminus \widehat J.
So

\widehat J =
\Bigl\{ 
t \in T | a\prime t\widehat x - \widehat bt = f\widehat b (\widehat x)

\Bigr\} 
,

in other words, \widehat J = J\widehat b (\widehat x) , which finishes the proof.

Remark 5. Theorem 5 is the only result in this paper which uses the fact that T
is assumed to be a compact metric space. The rest of the results work for T being a
compact Hausdorff space, which is the framework of the so-called continuous systems
in [9].

D
ow

nl
oa

de
d 

06
/0

6/
23

 to
 1

93
.1

47
.1

43
.2

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

FROM CALMNESS TO HOFFMAN CONSTANTS 2871

The rest of this section is focused on Hof \scrF 
\bigl( 
b
\bigr) 
, provided that b \in dom\scrF . To

start with, as a consequence of Theorem 4, we always have

(23) Hof \scrF 
\bigl( 
b
\bigr) 
= sup

x\in \scrF (b)
clm\scrF 

\bigl( 
b, x
\bigr) 
= sup

x\in bd\scrF (b)
clm\scrF 

\bigl( 
b, x
\bigr) 
, b \in dom\scrF ,

where the last equality comes from the fact that clm\scrF 
\bigl( 
b, x
\bigr) 
= 0 when x \in int\scrF 

\bigl( 
b
\bigr) 

(the trivial case bd\scrF 
\bigl( 
b
\bigr) 
= \emptyset , equivalently \scrF 

\bigl( 
b
\bigr) 
= \BbbR n, is included; recall sup \emptyset := 0).

From now on we are devoted to refining (23) by replacing bd\scrF 
\bigl( 
b
\bigr) 
with a smaller

subset. The concluding result is Theorem 6. First, we establish some technical results.

Proposition 3. Let x1, x2 \in bd\scrF 
\bigl( 
b
\bigr) 
such that T

\bigl( 
x1
\bigr) 
\subset T

\bigl( 
x2
\bigr) 
. Then

(i) end\partial fb
\bigl( 
x1
\bigr) 
\subset end\partial fb

\bigl( 
x2
\bigr) 
;

(ii) if the regularity condition (12) is held at xi, i = 1, 2, then

clm\scrF 
\bigl( 
b, x1

\bigr) 
\leq clm\scrF 

\bigl( 
b, x2

\bigr) 
.

Proof. (i) First, xi \in bd\scrF 
\bigl( 
b
\bigr) 
implies fb

\bigl( 
xi
\bigr) 
= 0, and so T

\bigl( 
xi
\bigr) 
\not = \emptyset , i = 1, 2, by

the compactness of T together with the continuity of t \mapsto \rightarrow 
\bigl( at

bt

\bigr) 
. Recall that \partial fb

\bigl( 
xi
\bigr) 
=

conv
\bigl\{ 
ai, i \in T

\bigl( 
xi
\bigr) \bigr\} 

, i = 1, 2, and hence \partial fb
\bigl( 
x1
\bigr) 
\subset \partial fb

\bigl( 
x2
\bigr) 
.

Assume, arguing by contradiction, that there exists a \in end\partial fb
\bigl( 
x1
\bigr) 
\setminus end\partial fb

\bigl( 
x2
\bigr) 
.

Since, by compactness, end\partial fb
\bigl( 
x1
\bigr) 
\subset \partial fb

\bigl( 
x1
\bigr) 
\subset \partial fb

\bigl( 
x2
\bigr) 
, we have a \in \partial fb

\bigl( 
x2
\bigr) 
\setminus 

end\partial fb
\bigl( 
x2
\bigr) 
. Then we have \lambda a \in \partial fb

\bigl( 
x2
\bigr) 
for some \lambda > 1 and can write

(24) \lambda a =
\sum 

t\in T (x1)

\lambda tat +
\sum 

t\in T (x2)\setminus T (x1)

\lambda tat

for some \{ \lambda t\} t\in T (x2) \subset \BbbR + such that
\bigl\{ 
\lambda t | \lambda t \not = 0, t \in T

\bigl( 
x2
\bigr) \bigr\} 

is a finite set.

On the other hand, consider d := x1  - x2 and observe that

\biggl\{ 
a\prime td = 0, t \in T

\bigl( 
x1
\bigr) 
,

a\prime td = a\prime tx
1  - a\prime tx

2 < bt  - bt = 0, t \in T
\bigl( 
x2
\bigr) 
\setminus T
\bigl( 
x1
\bigr) 
.

Then, multiplying (with the inner product) both members of (24) by d, we deduce

0 = \lambda a\prime d =
\sum 

t\in T (x2)\setminus T (x1)

\lambda ta
\prime 
td,

which yields \lambda t = 0 for all t \in T
\bigl( 
x2
\bigr) 
\setminus T
\bigl( 
x1
\bigr) 
. So, we attain the contradiction \lambda a =\sum 

t\in T (x1) \lambda tat \in \partial fb
\bigl( 
x1
\bigr) 
.

Statement (ii) follows straightforwardly from Theorem 3.

The following example shows that the regularity condition assumed in statement
(ii) of the previous proposition is not superfluous. The example comes from modifying
Example 1 in [6] (revisited in [16, Example 3.3]).

Example 4. Let us consider the system, in \BbbR 2 endowed with the Euclidean norm,
given by

\sigma 
\bigl( 
b
\bigr) 
:=

\left\{ 
 
 

t (cos t)x1 + t (sin t)x2 \leq t, t \in [0, \pi ] ,
x1 \leq 1, t = 4,

 - x1  - x2 \leq 1, t = 5

\right\} 
 
 ;
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Fig. 1. Illustration of Example 4.

i.e., T := [0, \pi ] \cup \{ 4, 5\} , at := t (cos t, sin t)
\prime 
for t \in [0, \pi ] , a4 := (1, 0)

\prime 
, and a5 :=

( - 1, - 1)
\prime 
; b \in C ([0, \pi ] \cup \{ 4, 5\} ,\BbbR ) is given by bt = t, t \in [0, \pi ] , b4 = 1, and b5 = 1.

Consider the feasible points x1 = (1, 0)
\prime 
and x2 = (1, - 2)

\prime 
. The feasible set of \sigma 

\bigl( 
b
\bigr) 

is represented in Figure 1.
As proved in [6, Example 1], we have that

clm\scrF 
\bigl( 
b, x1

\bigr) 
= +\infty .

Alternatively, we can apply Theorem 2(ii) with sequence xr =
\bigl( 
1 + 1

r

\bigr) \bigl( cos 1
r

sin 1
r

\bigr) 
. It

is clear that the regularity condition (12) is not satisfied at x1. Indeed (0, 1)
\prime \in 

A
\bigl( 
x1
\bigr) \circ 

= cone
\bigl\{ 
(1, 0)

\prime \bigr\} \circ 
= \BbbR  - \times \BbbR , but x1+\varepsilon (0, 1)

\prime 
/\in \scrF 

\bigl( 
b
\bigr) 
for any \varepsilon > 0. Moreover,

\partial fb
\bigl( 
x1
\bigr) 
= conv

\bigl\{ 
(0, 0)

\prime 
, (1, 0)

\prime \bigr\} 

and end\partial fb
\bigl( 
x1
\bigr) 
=
\bigl\{ 
(1, 0)

\prime \bigr\} 
. Hence, clm\scrF 

\bigl( 
b, x1

\bigr) 
\not = d\ast 

\bigl( 
02, end\partial fb

\bigl( 
x1
\bigr) \bigr)  - 1

.
With respect to point x2, one easily sees that condition (12) is satisfied, where

A
\bigl( 
x2
\bigr) \circ 

=
\bigl\{ 
u \in \BbbR 2 |  - u1  - u2 \leq 0, u1 \leq 0

\bigr\} 
. In this case, \partial fb

\bigl( 
x2
\bigr) 
= conv

\bigl\{ 
(0, 0)

\prime 
,

(1, 0)
\prime 
, ( - 1, - 1)

\prime \bigr\} 
. Hence, from Theorem 3 we have

clm\scrF 
\bigl( 
b, x2

\bigr) 
= d\ast 

\bigl( 
02, end\partial fb

\bigl( 
x2
\bigr) \bigr)  - 1

= d\ast 
\bigl( 
02, conv

\bigl\{ 
(1, 0)

\prime 
, ( - 1, - 1)

\prime \bigr\} \bigr)  - 1
=

\surd 
5.

Proposition 4. Let C be a nonempty closed convex subset of \BbbR n different from
a singleton with extrC \not = \emptyset and let x0 \in C\setminus extrC. Then there exist y0 \in extrC,
z0 \in C, and \mu \in ]0, 1[ such that x0 = (1 - \mu ) y0 + \mu z0.

Proof. The assumption extrC \not = \emptyset is equivalent to the fact that C contains no
lines (i.e., its lineality space is \{ 0n\} ). According to [21, Corollary 14.6.1], this is also
equivalent to int (O+C)

\circ \not = \emptyset , recalling that O+C is the recession cone of C. Pick
0n \not = u \in int (O+C)

\circ 
and consider

K := C \cap 
\bigl\{ 
x \in \BbbR n | u\prime x \geq u\prime x0  - 1

\bigr\} 
.

Let us see that K is bounded, i.e., O+K = \{ 0n\} (see [21, Theorem 8.4]). Reasoning
by contradiction, assume the existence of 0n \not = v \in O+K. Then x0 + \lambda v \in K and,
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accordingly, u\prime \bigl( x0 + \lambda v
\bigr) 
\geq u\prime x0 - 1 for all \lambda > 0. Letting \lambda \rightarrow +\infty we obtain u\prime v \geq 0.

On the other hand, v \in O+C and, for \alpha > 0 small enough, we have u+\alpha v \in (O+C)
\circ 
,

yielding the contradiction 0 \geq (u+ \alpha v)
\prime 
v \geq \alpha v\prime v.

Once we know that K is a nonempty convex compact set, by applying the
Minkowski--Carath\'eodory theorem (see, e.g., [23, Theorem 8.11]), we have K =
conv (extrK) and can write

(25) x0 =
k\sum 

i=1

\lambda ix
i

with
\bigl\{ 
x1, . . . , xk

\bigr\} 
\subset extrK being affinely independent,

\sum k
i=1 \lambda i = 1, and \lambda i > 0 for

all i = 1, . . . , k. Clearly it is not restrictive to assume u\prime x1 \geq u\prime x0, which easily entails
x1 \in extrC. More specifically, if x1 were a midpoint of distinct points in C, we could
replace these points with others in the same segment verifying u\prime x \geq u\prime x0  - 1, and
hence these points would be in K, contradicting x1 \in extrK.

On the other hand, by applying [9, Theorem A.7], (25) entails that x0 is in the
relative interior of conv

\bigl\{ 
x1, . . . , xk

\bigr\} 
(i.e., the interior relative to the affine hull of

these points), and then z0 := x1 + \beta 
\bigl( 
x0  - x1

\bigr) 
\in conv

\bigl\{ 
x1, . . . , xk

\bigr\} 
\subset C for a small

enough \beta > 1. Finally, let us write

x0 =
\Bigl( 
1 - 1

\beta 

\Bigr) 
x1 + 1

\beta z
0,

which provides the desired result with y0 = x1 and \mu = 1
\beta .

The following theorem appeals to locally polyhedral (LOP, in brief) systems.
Recall that given b \in dom\scrF , \sigma 

\bigl( 
b
\bigr) 
is a LOP system if and only if

(26) D
\bigl( 
\scrF 
\bigl( 
b
\bigr) 
, x
\bigr) 
= A (x)

\circ 
for all x \in \scrF 

\bigl( 
b
\bigr) 
,

where D
\bigl( 
\scrF 
\bigl( 
b
\bigr) 
, x
\bigr) 
denotes the cone of feasible directions of \scrF 

\bigl( 
b
\bigr) 
at x; i.e., d \in 

D
\bigl( 
\scrF 
\bigl( 
b
\bigr) 
, x
\bigr) 
if there exists \varepsilon > 0 such that x+\alpha d \in \scrF 

\bigl( 
b
\bigr) 
for all \alpha \in [0, \varepsilon ] . See [1] for

a comprehensive analysis of LOP systems (see also [9]). At this moment we recall a
characterization of LOP systems in terms of the regularity condition (26) which can
be derived from Corollary 3.3 in [16].

Lemma 3 (see [16, Corollary 3.3]). Let b \in dom\scrF . The following conditions are
equivalent:

(i) D
\bigl( 
\scrF 
\bigl( 
b
\bigr) 
, x
\bigr) 
= A (x)

\circ 
for all x \in \scrF 

\bigl( 
b
\bigr) 
.

(ii) The regularity condition (12) is held at any x \in \scrF 
\bigl( 
b
\bigr) 
.

From now on we consider the set

(27) \scrE 
\bigl( 
b
\bigr) 
:= extr

\bigl( 
\scrF 
\bigl( 
b
\bigr) 
\cap span \{ at, t \in T\} 

\bigr) 
, with b \in dom\scrF .

Observe that \scrE 
\bigl( 
b
\bigr) 
is always a nonempty and finite set when T is finite; moreover,

\scrE 
\bigl( 
b
\bigr) 
= extr\scrF 

\bigl( 
b
\bigr) 
\leftrightarrow extr\scrF 

\bigl( 
b
\bigr) 
\not = \emptyset ;

in fact, extr\scrF 
\bigl( 
b
\bigr) 
\not = \emptyset if and only if \scrF 

\bigl( 
b
\bigr) 
does not contain any line, which is equivalent

to the fact that span \{ at, t \in T\} = \BbbR n. This construction is inspired by that of [15,
p. 142], and is used in [8] to compute the calmness modulus of the optimal value
function of finite linear optimization problems.

D
ow

nl
oa

de
d 

06
/0

6/
23

 to
 1

93
.1

47
.1

43
.2

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

2874 J. CAMACHO, M. J. C\'ANOVAS, AND J. PARRA

Theorem 6. Let b \in dom\scrF and assume that \sigma 
\bigl( 
b
\bigr) 
is a LOP system. Then

Hof \scrF 
\bigl( 
b
\bigr) 
= sup

x\in \scrE (b)
clm\scrF 

\bigl( 
b, x
\bigr) 
= sup

x\in \scrE (b)
sup

D\in \scrD (x)

d\ast (0n, conv \{ at, t \in D\} ) - 1
.

Proof. To start with, we recall (23):

Hof \scrF 
\bigl( 
b
\bigr) 
= sup

x\in bd\scrF (b)
clm\scrF 

\bigl( 
b, x
\bigr) 
.

Since \scrE 
\bigl( 
b
\bigr) 
\subset bd\scrF 

\bigl( 
b
\bigr) 
, the inequality Hof \scrF 

\bigl( 
b
\bigr) 
\geq supx\in \scrE (b) clm\scrF 

\bigl( 
b, x
\bigr) 
follows triv-

ially.
Let us see that Hof \scrF 

\bigl( 
b
\bigr) 
\leq supx\in \scrE (b) clm\scrF 

\bigl( 
b, x
\bigr) 
. Specifically, let us prove that

for every x \in bd\scrF 
\bigl( 
b
\bigr) 
there exists \widetilde x \in \scrE 

\bigl( 
b
\bigr) 
such that clm\scrF 

\bigl( 
b, x
\bigr) 
\leq clm\scrF 

\bigl( 
b, \widetilde x
\bigr) 
.

Fix arbitrarily x \in bd\scrF 
\bigl( 
b
\bigr) 
and write x = y + z, where y \in span \{ at, t \in T\} and

z \in \{ at, t \in T\} \bot (the orthogonal subspace to \{ at, t \in T\} ). Since a\prime tx = a\prime ty for all
t \in T, y \in bd\scrF 

\bigl( 
b
\bigr) 
and

T (x) = T (y).

Moreover, applying Lemma 3, we have that the regularity condition (12) is held at
both x and y. Hence, Proposition 3(ii) yields

(28) clm\scrF 
\bigl( 
b, x
\bigr) 
= clm\scrF 

\bigl( 
b, y
\bigr) 
.

Let us denote

C = \scrF 
\bigl( 
b
\bigr) 
\cap span \{ at, t \in T\} ,

which satisfies extrC \not = \emptyset . If y \in extrC = \scrE 
\bigl( 
b
\bigr) 
, we are done. Otherwise, if y \in 

C\setminus extrC, we can apply Proposition 4 and conclude the existence of \widetilde x \in extrC,
\widetilde z \in C, and \mu \in ]0, 1[ such that y = (1 - \mu ) \widetilde x+ \mu \widetilde z. Observe that

T (y) \subset T (\widetilde x),

since a\prime ty = bt implies (1 - \mu ) a\prime t\widetilde x+ \mu a\prime t\widetilde z = bt, which entails a\prime t\widetilde x = a\prime t\widetilde z = bt (because
both \widetilde x, \widetilde z \in \scrF 

\bigl( 
b
\bigr) 
). So, we conclude with the desired inequality

clm\scrF 
\bigl( 
b, y
\bigr) 
\leq clm\scrF 

\bigl( 
b, \widetilde x
\bigr) 
,

which together with (28) yields

clm\scrF 
\bigl( 
b, x
\bigr) 
\leq clm\scrF 

\bigl( 
b, \widetilde x
\bigr) 
, with \widetilde x \in \scrE 

\bigl( 
b
\bigr) 
.

In this way, the first equality of the current theorem is established. Finally, observe
that the second one comes from Theorem 3.

4.1. On the finite case. This subsection gathers some specifics on finite linear
systems. Thus, throughout this subsection we assume that T is finite, in which case,
for a fixed

\bigl( 
b, x
\bigr) 
\in gph\scrF , \scrD (x) is also finite and clearly

\cup D\in \scrD (x)conv \{ at, t \in D\} = end\partial f (x)
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is a closed set; moreover, \scrE 
\bigl( 
b
\bigr) 
is also finite and clm\scrF 

\bigl( 
b, x
\bigr) 
and Hof \scrF 

\bigl( 
b
\bigr) 
can be

computed through the implementable computations:

clm\scrF 
\bigl( 
b, x
\bigr) 
= max

D\in \scrD (x)
d\ast (0n, conv \{ at, t \in D\} ) - 1

,

Hof \scrF 
\bigl( 
b
\bigr) 
= max

x\in \scrE (b)
clm\scrF 

\bigl( 
b, x
\bigr) 
.

In addition, as a consequence of Theorem 6, we can write

Hof \scrF = max
b\in dom\scrF 

Hof \scrF (b) = max
b\in dom\scrF 

max
x\in \scrE (b)

clm\scrF (b, x) .

Indeed, if the maximum in (9) in Theorem 1 is attained at J \subset T such that rankAJ =
rankA and \{ at, t \in J\} is linearly independent, we have

Hof \scrF = Hof \scrF 
\bigl( 
bJ
\bigr) 
= clm\scrF 

\bigl( 
bJ , 0n

\bigr) 
,

where bJ is defined as bJt = 0 if t \in J and bJt = 1 otherwise.
Finally, we observe that Proposition 3(i) admits a refinement in this finite case,

which is written in the following result.

Proposition 5. Let x1, x2 \in bd\scrF 
\bigl( 
b
\bigr) 
such that T

\bigl( 
x1
\bigr) 
\subset T

\bigl( 
x2
\bigr) 
. Then \scrD 

\bigl( 
x1
\bigr) 
\subset 

\scrD 
\bigl( 
x2
\bigr) 
.

Proof. Given D \in \scrD 
\bigl( 
x1
\bigr) 
, let us see that D \in \scrD 

\bigl( 
x2
\bigr) 
. First, consider d := x1 - x2

and observe that

\biggl\{ 
a\prime td = 0, t \in T

\bigl( 
x1
\bigr) 
,

a\prime td = a\prime tx
1  - a\prime tx

2 < bt  - bt = 0, t \in T
\bigl( 
x2
\bigr) 
\setminus T
\bigl( 
x1
\bigr) 
.

Now, recalling (11), the fact that D \in \scrD 
\bigl( 
x1
\bigr) 
ensures the existence of d \in \BbbR n such

that

\biggl\{ 
a\prime td = 1, t \in D,

a\prime td < 1, t \in T
\bigl( 
x1
\bigr) 
\setminus D.

For every \alpha > 0, we consider a new vector d\alpha := d+ \alpha d; observe that

\biggl\{ 
a\prime td\alpha = a\prime td+ \alpha a\prime td = 1, t \in D,

a\prime td\alpha = a\prime t
\bigl( 
d+ \alpha d

\bigr) 
< 1, t \in T

\bigl( 
x1
\bigr) 
\setminus D.

Since a\prime td < 0 for t \in T
\bigl( 
x2
\bigr) 
\setminus T
\bigl( 
x1
\bigr) 
, we can choose \alpha large enough (any \alpha >

maxt\in T (x2)\setminus T (x1)
a\prime 
td - 1
 - a\prime 

td
will do) to make a\prime t

\bigl( 
d+ \alpha d

\bigr) 
< 1 for all t \in T

\bigl( 
x2
\bigr) 
\setminus T
\bigl( 
x1
\bigr) 
.

This proves D \in \scrD 
\bigl( 
x2
\bigr) 
.

The following example shows that the previous proposition does not hold in the
semi-infinite framework.

Example 5. Let us consider the system, in \BbbR 2 endowed with the Euclidean norm,
given by

\sigma 
\bigl( 
b
\bigr) 
:=
\bigl\{ 

(1 + t cos t)x1 + (t sin t)x2 \leq 0, t \in 
\bigl[ 
0, \pi 

2

\bigr] \bigr\} 
,
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and take x1 = (0, - 1)
\prime 
and x2 = (0, 0)

\prime 
. Then T

\bigl( 
x1
\bigr) 
= \{ 0\} \subset 

\bigl[ 
0, \pi 

2

\bigr] 
= T

\bigl( 
x2
\bigr) 
. We

have

\{ 0\} \in \scrD 
\bigl( 
x1
\bigr) 
\setminus \scrD 

\bigl( 
x2
\bigr) 
.

To check that \{ 0\} /\in \scrD 
\bigl( 
x2
\bigr) 
observe that the system, in the variable d = (d1, d2)

\prime \in \BbbR 2,

\bigl\{ 
d1 = 1, (1 + t cos t) d1 + (t sin t) d2 < 1, t \in 

\bigr] 
0, \pi 

2

\bigr] \bigr\} 

is inconsistent.

5. Conclusions and perspectives. We have analyzed different properties ori-
ented to quantify the global, semilocal, and local Hoffman behavior of set-valued
mappings between metric spaces, where by ``semilocal"" we mean the study of the
whole image set with respect to parameter perturbations (a similar use of this term
can be found, for instance, in [25, Definition 2.1]), yielding to the known Lipschitz
upper semicontinuity when the study is concentrated around a nominal parameter.
Local properties, such as calmness, are focused on the behavior of the multifunc-
tion around a fixed element of its graph. The corresponding moduli are analyzed.
Both Hoffman stability (5) and uniform calmness (17) constitute intermediate steps
between calmness and global Hoffman properties. All these semilocal properties are
shown to be equivalent (and with the same rate/modulus) for convex-graph multi-
functions taking closed values in a reflexive Banach space (Theorem 4). This is the
case of the feasible set mapping, \scrF , associated with a continuous linear semi-infinite
inequality system parameterized with respect to the right-hand side. At this moment,
let us comment that paper [5] analyzes the upper Lipschitz behavior of the optimal
set mapping, \scrF op, in finite linear programming, which does not have a convex graph.
Appealing to a certain concept of directional convexity introduced in that paper, [5]
establishes a counterpart for the optimal set mapping of formula

Lipusc\scrF (b) = sup
x\in \scrF (b)

clm\scrF 
\bigl( 
b, x
\bigr) 
.

However, it is shown there that the Hoffman and Lipschitz upper semicontinuity
moduli do not coincide when applied to \scrF op at a nominal parameter.

For this feasible set mapping we succeed in giving the following formula for the
global Hoffman constant (Theorem 5), which extends to the current semi-infinite
framework some previous results for finite systems:

Hof \scrF = sup
J\subset T compact

0n /\in conv\{ at, t\in J\} 

d\ast (0n, conv \{ at, t \in J\} ) - 1
.

With respect to the semilocal measure, Hof \scrF 
\bigl( 
b
\bigr) 
, when confined to locally polyhedral

systems (which includes finite systems), Theorem 6 provides a point-based formula
involving exclusively some feasible points and the nominal data at's and bt's:

(29) Hof \scrF 
\bigl( 
b
\bigr) 
= sup

x\in \scrE (b)
sup

D\in \scrD (x)

d\ast (0n, conv \{ at, t \in D\} ) - 1
,

where \scrE 
\bigl( 
b
\bigr) 
is defined as in (27). When T is finite (and hence \scrE 

\bigl( 
b
\bigr) 
and each \scrD (x)

also are), the previous expression yields a specially computable procedure. It provides
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an alternative approach to the one given in [2] via points outside the feasible set:

Hof \scrF (b) = sup
x/\in \scrF (b)

d\ast 
\bigl( 
0n, conv

\bigl\{ 
at, t \in Jb (x)

\bigr\} \bigr)  - 1
.

The problem of finding an expression for Hof \scrF 
\bigl( 
b
\bigr) 
in the line of (29) for not locally

polyhedral systems remains as open problem. A crucial step here is to extend Theorem
3 about the calmness modulus (traced out from [16]) to more general semi-infinite
systems.

Acknowledgments. The authors are indebted to the anonymous referees and
the associate editor for their valuable critical comments, which have definitely im-
proved the original version of the paper.

REFERENCES

[1] J. E. Anderson, M. A. Goberna, and M. A. L\'opez, Locally polyhedral linear inequality
systems, Linear Algebra Appl., 270 (1998), pp. 231--253.

[2] D. Az\'e and J.-N. Corvellec, On the sensitivity analysis of Hoffman constants for systems
of linear inequalities, SIAM J. Optim., 12 (2002), pp. 913--927, https://doi.org/10.1137/
S1052623400375853.

[3] E. G. Belousov and V. G. Andronov, On exact Lipschitz and Hoffman constants for systems
of linear inequalities, Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., 47 (1999),
pp. 28--32 (in Russian); English translation in Moscow Univ. Comput. Math. Cybernet., 4
(1999), pp. 35--41.

[4] J. V. Burke and P. Tseng, A unified analysis of Hoffman's bound via Fenchel duality, SIAM
J. Optim., 6 (1996), pp. 265--282, https://doi.org/10.1137/0806015.

[5] J. Camacho, M. J. C\'anovas, and J. Parra, Lipschitz upper semicontinuity in linear op-
timization via local directional convexity, Optimization, (2022), https://doi.org/10.1080/
02331934.2022.2057851.

[6] M. J. C\'anovas, M. A. L\'opez, J. Parra, and F. J. Toledo, Calmness of the feasible set
mapping for linear inequality systems, Set-Valued Var. Anal., 22 (2014), pp. 375--389.

[7] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings: A
View from Variational Analysis, Springer, New York, 2009.

[8] M. J. Gisbert, M. J. C\'anovas, J. Parra, and F. J. Toledo, Calmness of the optimal value
in linear programming, SIAM J. Optim., 28 (2018), pp. 2201--2221, https://doi.org/10.
1137/17M112333X.

[9] M. A. Goberna and M. A. L\'opez, Linear Semi-infinite Optimization, John Wiley \& Sons,
Chichester, UK, 1998.

[10] A. J. Hoffman, On approximate solutions of systems of linear inequalities, J. Research Nat.
Bur. Standards, 49 (1952), pp. 263--265.

[11] H. Hu, Characterizations of the strong basic constraint qualifications, Math. Oper. Res., 30
(2005), pp. 956--965.

[12] D. Klatte And B. Kummer, Nonsmooth Equations in Optimization: Regularity, Calculus,
Methods and Applications, Nonconvex Optim. Appl. 60, Kluwer Academic, Dordrecht,
The Netherlands, 2002.

[13] D. Klatte and G. Thiere, Error bounds for solutions of linear equations and inequalities, Z.
Oper. Res., 41 (1995), pp. 191--214.

[14] A. Kruger, H. Van Ngai, and M. Th\'era, Stability of error bounds for convex constraint
systems in Banach spaces, SIAM J. Optim., 20 (2010), pp. 3280--3296, https://doi.org/10.
1137/100782206.

[15] W. Li, Sharp Lipschitz constants for basic optimal solutions and basic feasible solutions of
linear programs, SIAM J. Control Optim., 32 (1994), pp. 140--153, https://doi.org/10.
1137/S036301299222723X.

[16] M. H. Li, K. W. Meng, and X. Q. Yang, On error bound moduli for locally Lipschitz and
regular functions, Math. Program. Ser. A, 171 (2018), pp. 463--487.

[17] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory,
Springer, Berlin, 2006.

[18] J. Pe\~na, J. C. Vera, and L. F. Zuluaga, New characterizations of Hoffman constants for
systems of linear constraints, Math. Program., 187 (2021), pp. 79--109.

D
ow

nl
oa

de
d 

06
/0

6/
23

 to
 1

93
.1

47
.1

43
.2

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

2878 J. CAMACHO, M. J. C\'ANOVAS, AND J. PARRA

[19] J.-P. Penot, Error bounds, calmness and their applications in nonsmooth analysis, in Nonlin-
ear Analysis and Optimization. II. Optimization, Contemp. Math. 514, Israel Math. Conf.
Proc., AMS, Providence, RI, 2010, pp. 225--247.

[20] S. M. Robinson, Some continuity properties of polyhedral multifunctions, Math. Progr. Study,
14 (1981), pp. 206--214.

[21] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[22] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
[23] B. Simon, Convexity: An Analytic Viewpoint, Cambridge Tracts Math. 187, Cambridge Uni-

versity Press, New York, 2011.
[24] A. Uderzo, On the quantitative solution stability of parameterized set-valued inclusions, Set-

Valued Var. Anal., 29 (2021), pp. 425--451.
[25] N. D. Yen, J.-C. Yao, and B. T. Kien, Covering properties at positive-order rates of multi-

functions and some related topics, J. Math. Anal. Appl., 338 (2008), pp. 467--478.
[26] C. Z\u alinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.
[27] C. Z\u alinescu, Sharp estimates for Hoffman's constant for systems of linear inequali-

ties and equalities, SIAM J. Optim., 14 (2003), pp. 517--533, https://doi.org/10.1137/
S1052623402403505.

D
ow

nl
oa

de
d 

06
/0

6/
23

 to
 1

93
.1

47
.1

43
.2

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 





b. lipschitz upper semicontinuity in linear optimization via local
directional convexity. 75

B Lipschitz upper semicontinu-
ity in linear optimization via
local directional convexity.



OPTIMIZATION
https://doi.org/10.1080/02331934.2022.2057851

Lipschitz upper semicontinuity in linear optimization via
local directional convexity

J. Camacho, M. J. Cánovas and J. Parra

Center of Operations Research, Miguel Hernández University of Elche, Elche, Alicante, Spain

ABSTRACT
This work is focussed on computing the Lipschitz upper
semicontinuity modulus of the argmin mapping for canoni-
cally perturbed linear programs. The immediate antecedent
can be traced out from Camacho J et al. [2022. From calm-
ness to Hoffman constants for linear semi-infinite inequality
systems. Available from: https://arxiv.org/pdf/2107.10000v2.
pdf], devoted to the feasible setmapping. The aimedmodulus
is expressed in terms of a finite amount of calmness moduli,
previously studied in the literature. Despite the parallelism in
the results, themethodology followed in the current paper dif-
fers notably from Camacho J et al. [2022] as far as the graph
of the argmin mapping is not convex; specifically, a new tech-
nique based on a certain type of local directional convexity is
developed.
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1. Introduction andmotivation

Themain goal of the present paper is to compute the upper semicontinuity mod-
ulus of the optimal set (argmin) mapping associated with the parameterized
linear programming (LP, in brief) problem given by

π : minimize c′x
subject to a′

tx ≤ bt , t ∈ T := {1, 2, . . . ,m} , (1)

where x ∈ Rn is the decision variable, regarded as a column-vector, the prime
stands for transposition, at ∈ Rn is fixed for each t ∈ T, and the pair (c, b) ∈
Rn × Rm, with b = (bt)t∈T ∈ Rm, is the parameter to be perturbed around a
nominal one (c, b) ∈ Rn × Rm. In this way we are dealing with the so-called
canonical perturbations (tilt perturbations of the objective function together with
the right-hand side – RHS – of the constraints). We consider the feasible set and
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2 J. CAMACHO ET AL.

the optimal set mappings F : Rm ⇒ Rn and Fop : Rn × Rm ⇒ Rn defined as

F (b) := {
x ∈ Rn : a′

tx ≤ bt for all t ∈ T
}
, (2)

Fop (π) := argmin
{
c′x : x ∈ F (b)

}
. (3)

From now on we identify each problem π with the corresponding parameter
(c, b); accordingly, π ≡ (c, b) denotes the nominal problem. The space of vari-
ables, Rn, is endowed with an arbitrary norm ‖ · ‖, whose dual norm is denoted
by ‖ · ‖∗, i.e. ‖u‖∗ = max‖x‖≤1 |u′x|. The parameter space Rn × Rm is endowed
with the norm ‖(c, b)‖ := max{‖c‖∗, ‖b‖∞}(since c is identified with the linear
functional x 	→ c′x), where ‖b‖∞ := maxt∈T |bt|.

The current paper is mainly oriented to the computation of the Lipschitz
upper semicontinuity modulus of Fop at the nominal parameter π , denoted
by LipuscFop(π) following [1]; see Section 2 for the formal definitions. At
this moment let us comment that LipuscFop(π) provides a semi-local mea-
sure of the stability (in fact, a rate of deviation) of the optimal set around the
nominal problem π . The term ‘semi-local’ refers to the fact that only param-
eters π around π are considered, while all elements of Fop(π) are taken into
account. A point-based formula (only depending on the nominal data (c, b)) for
the aimed LipuscFop(π) is provided in Theorem 4.2 (see also Theorem 4.1) in
terms of a finite amount of calmness moduli (of a local nature) of certain fea-
sible set mappings coming from adding new constraints to the system in (1).
These calmness moduli can be computed through the point-based formula given
in [2, Theorem 4] and recalled in [3, Theorem 3]. The reader is referred to
monographs on variational analysis as [4–7] for details about calmness and
other Lipschitz-type properties and to [8] for other stability criteria in linear
optimization.

The theory of parametric linear optimization goes back to the early 1950s (see,
e.g. [9, 10]). Some years later a systematic development of stability theory in
LPwith canonical perturbations emerged.One direction of researchwas the anal-
ysis of semicontinuity and Lipschitz continuity properties based on approaches
from variational analysis like Berge’s theory or Hoffman’s error bounds. In the
current parametric context both F and Fop are polyhedral multifunctions; i.e.
their graphs, gphF and gphFop, are finite unions of convex polyhedra. In fact
gphF is a convex polyhedral cone, while the union of polyhedra constituting
gphFop comes from considering the different choices of subsets of active indices
involved in the Karush–Kuhn–Tucker (KKT) optimality conditions. Hence, as a
consequence of a classical result by Robinson [11], both F and Fop are Lipschitz
upper semicontinuous (see Section 2.2 for the formal definition) at any b and π ,
respectively, provided that F(b) and Fop(π) are nonempty. The current paper
borrows the terminology from [5] or [1], although the Lipschitz upper semi-
continuity property, introduced in [11] as upper Lipschitz continuity, has been
also popularized under the name outer Lipschitz continuity (see the reference
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book [4]). In the context of RHS perturbations (where only b is perturbed, c
remains fixed) a well-known result establishes that both F and Fop are Lips-
chitz continuous relative to their domains (see, e.g. [[12, p. 232],[13, Chapter IX
(Sec. 7)],[4, Chapter 3C]]). At thismomentwe point out that the case of ‘fully per-
turbed’ problems, when all data (c, at and bt , t ∈ T) are perturbed, entails notable
differences regarding the Lipschitz upper semicontinuity as it is emphasized in
Remark 2.3.

The immediate antecedent to this work can be found in [3, Theorems 4 and
6], where the Lipschitz upper semicontinuity modulus of F at b, LipuscF(b), is
analysed.

Remark 1.1: There exists a striking resemblance between the formula of
LipuscF(b) obtained from [3, Theorems 4 and 6] and the new one, established
in Theorem 4.2, of LipuscFop(π). Just to show the similar appearance, here we
gather both formulae:

LipuscF
(
b
)

= max
x∈E

(
b
) clmF

(
b, x
)
,

LipuscFop (π) = max
x∈Eop(π)

clmFop (π , x) ,

where clmF(b, x) denotes the calmness modulus (see again Section 2 for the
definition) ofF at (b, x) ∈ gphF and clmFop(π , x) the corresponding calmness
modulus of Fop at (π , x) ∈ gphFop, and E(b) and Eop(π) are two nonempty
finite subsets of extreme points of certain subsets ofF(b) andFop(π) introduced
in (11) and (16), respectively. Despite these formal similarities between the two
results, let us emphasize that they both follow different methodologies, mainly
due to the fact that gphF is convex (hence the last part of Theorem 2.1 below
applies), while gphFop is not, even when fixing c and allowing only for RHS
perturbations. Indeed, as commented above, gphFop is a finite union of convex
polyhedra.

To overcome the drawback coming from the lack of convexity of gphFop, the
paper appeals to a weaker form of this property. Specifically, Theorem 3.1 shows
that a certain local directional convexity property of the graph ofFop is preserved;
indeed, when parameter c remains fixed (c = c) and b is perturbed in the way
b + μd for a fixed direction d ∈ Rn and a small μ ≥ 0. In order to illustrate this
idea, let us consider the following example, where convX stands for the convex
hull of X ⊂ Rn.

Example 1.1: Let us consider the problem in R2

minimize c1x1 + c2x2
subject to x1 ≤ b1, x2 ≤ b2, x1 + x2 ≤ b3, −1

2x1 + 1
2x2 ≤ b4,

(4)

with
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Figure 1. Local directional convexity in Example 1.1.

c = c =
(−1

−1

)
and b = (0, 0, 0, 1)′ + μ (1, 1, 1,−1)′ , μ ∈ R;

in other words, we are perturbing b = (0, 0, 0, 1)′ in the directions ±d with d =
(1, 1, 1,−1)′.

It can be easily checked that (see Figure 1)

Fop
(
c, b + μd

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
μ

μ

)}
if μ ≤ 0,

conv
{(

μ

0

)
,
(
0
μ

)}
if 0 ≤ μ ≤ 2

3 ,

conv

{(
μ

0

)
,
(−1 + 3

2μ

1 − 1
2μ

)}
if 2

3 ≤ μ ≤ 2,{(
μ

2 − μ

)}
if μ ≥ 2.

In particular
(

(c, b − d),
(−1

−1

))
and

(
(c, b + d),

(
1
0

))
belong to gphFop,

while the middle point
(

(c, b),
(

0
−1/2

))
does not.

Now we summarize the structure of the paper. Section 2 contains some
notation and preliminary results used later on. Section 3 formalizes the
announced local directional convexity of gphFop. Themain result of this section,
Theorem 3.1, is applied in Section 4 to establish Lemma 4.1, which constitutes
a key step in the process of computing LipuscFop(π), leading to Theorem 4.2.
Finally, Section 5 includes some conclusions and perspectives. In particular, the
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so-called Hoffman stability modulus is recalled, which is known to coincide with
the Lipschitz upper semicontinuity modulus under the convexity of the graph.
This is the case ofF , but no longer ofFop (see Example 5.1). The reader is referred
to [3, 14–18] for extra details about Hoffman constants from a global (instead of
semi-local) approach.

2. Preliminaries

This section introduces some necessary notation and results which are used later
on. Given X ⊂ Rp, p ∈ N, we use the standard notation coneX and spanX for
the conical convex hull and linear hull of X respectively, with the convention
cone ∅ = span∅ = {0p} (the zero vector ofRp). Provided that X is convex, extrX
stands for the set of extreme points of X.

Consider a generic multifunction M : Y ⇒ X between metric spaces Y and
X (with both distances denoted by d). Recall that the graph and the domain of
M are respectively given by (y, x) ∈ gphM ⇔ x ∈ M(y) and y ∈ domM ⇔
M(y) �= ∅. Mapping M is said to be calm at (y, x) ∈ gphM if there exist a
constant κ ≥ 0 and neighbourhoods V of y and U of x such that

d(x,M(y)) ≤ κ d
(
y, y
)

for all y ∈ V and all x ∈ M(y) ∩ U, (5)

where d(x,�) := inf{d(x,ω) : ω ∈ �}, provided that x ∈ X and � ⊂ X, with
the usual convention inf ∅ := +∞ and d(x, ∅) = +∞. Since we are concerned
with nonnegative constants, we understand that sup ∅ := 0. It is well-known
(see, e.g. [4, Theorem 3H.3 and Exercise 3H.4]) that neighbourhood V appear-
ing in the definition of calmness is redundant; formally, the calmness of M at
(y, x) ∈ gphM is equivalent to the existence of a constant κ ≥ 0 and a (possibly
smaller) neighbourhood U of x such that

d(x,M(y)) ≤ κ d
(
y,M−1(x)

)
for all x ∈ U. (6)

The latter property is known as the metric subregularity of M−1 at (x, y)
(recall that y ∈ M−1(x) ⇔ x ∈ M(y)). The calmness modulus of M at (y, x) ∈
gphM, denoted by clmM(y, x), is the infimum of constants κ such that (5)
(equivalently (6)) holds for some associated neighbourhoods; this modulus can
be written as:

clmM
(
y, x
) = lim sup

(y,x)→(y,x)
x∈M(y)

d(x,M(y))
d
(
y, y
) = lim sup

x→x

d(x,M(y))
d
(
y,M−1(x)

) , (7)

where 0
0 := 0 and lim sup is understood as the supremum (maximum, indeed) of

all possible sequential upper limits (i.e. with (y, x) being replaced with elements
of sequences {(yr, xr)}r∈N converging to (y, x) as r → ∞).
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2.1. Lipschitz upper semicontinuity ofmultifunctions

The current work is focussed on a semi-local Lipschitz-type property: A
multifunction M is said to be Lipschitz upper semicontinuous (see, e.g. [[1,
Definition 2.1(iii)],[3, Section 3]]) at y ∈ domM if there exist a constant κ ≥ 0
and a neighbourhood V of y such that

d(x,M(y)) ≤ κ d
(
y, y
)

for all y ∈ V and all x ∈ M(y). (8)

The associated Lipschitz upper semicontinuity modulus at y ∈ domM, denoted
by LipuscM(y), is defined as the infimum of constants κ satisfying (8) for some
associated V. Clearly V is not redundant here. The following result provides a
limiting expression for LipuscM(y).

Proposition 2.1 ([3, Proposition 2(i)]): Let M : Y ⇒ X be a multifunction
between metric spaces and let y ∈ domM, then

LipuscM(y) = lim sup
y→y

(
sup

x∈M(y)

d(x,M(y))
d
(
y, y
) )

.

The following result establishes the relationship between calmness and Lip-
schitz upper semicontinuity for generic multifunctions. See Section 5 for addi-
tional comments including the so-called Hoffman stability, defined in (22).

Theorem 2.1 ([3, Corollary 2 and Theorem 4]): Let M : Y ⇒ X be a multi-
function between metric spaces and let y ∈ domM. We have

LipuscM
(
y
) ≥ sup

x∈M(y)
clmM

(
y, x
)
. (9)

Moreover, equality holds in (9) if Y is a normed space, X is a reflexive Banach space,
gphM is a nonempty convex set, and M(y) is closed.

Remark 2.1: (i) Observe that the previous theorem relates local and semi-local
Lipschitz-type measures for multifunctions.

(ii) The convexity assumption in the previous theorem is not superfluous for
establishing equality in (9), as it was shown in [3, Example 2].

2.2. Lipschitz upper semicontinuity of the feasible setmapping

This subsection deals with the feasible set mapping F : Rm ⇒ Rn introduced
in (2), which has a closed convex graph and, so, Theorem 2.1 allows us to write

LipuscF(b) = sup
x∈F(b)

clmF
(
b, x
)
. (10)

Going further, the next theorem provides a more computable expression for
LipuscF(b) as far as it involves a finite amount of calmness moduli. It appeals
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to the following set of extreme points:

E (b) := extr
(
F(b) ∩ span {at , t ∈ T}) , b ∈ domF . (11)

For details about this construction the reader is addressed to [19, p. 142]. In addi-
tion to the following theorem, set E(b) is also a key tool in [20] to provide a
point-based formula for the calmness modulus of the optimal value function in
linear optimization. This set is known to be always nonempty and finite.

Theorem 2.2 ([3, See Theorems 4 and 6]): Let b ∈ domF . Then

LipuscF(b) = max
x∈E

(
b
) clmF

(
b, x
)
. (12)

In the sequel, for any (b, x) ∈ gphF , Tb(x) represents the set of active indices
at x, defined as

Tb (x) := {
t ∈ T : a′

tx = bt
}
.

In particular, it is appealed to in the definition of the following family of sets
appearing in the next remark: given (b, x) ∈ gphF ,Db(x) is formed by all subsets
D ⊂ Tb(x) such that system{

a′
td = 1, t ∈ D,
a′
td < 1, t ∈ Tb(x) \ D

}
is consistent (in the variable d ∈ Rn); in other words, {at , t ∈ D} lives in some
hyperplane which leaves the remaining coefficient vectors at , t ∈ Tb(x) \ D and
the origin, 0n, in one of its two associated open half-spaces.

Remark 2.2: It is worth mentioning that any calmness modulus, clmF(b, x),
at any x ∈ E(b) appearing in (12) can be computed through the point-based
formula given in [2, Theorem 4] (see also [3, Theorem 3], as stated in the
introduction), which is recalled here for completeness:

clmF(b, x) = max
D∈Db(x)

d∗ (0n, conv {at , t ∈ D})−1 ,
(
b, x
)

∈ gphF , (13)

where d∗ represents the distance associated with the dual norm ‖ · ‖∗.

Remark 2.3: The fact of considering RHS perturbations is crucial in our analy-
sis. Observe that in the case when the at ’s are also perturbed the corresponding
feasible set mapping is no longer Lipschitz upper semicontinuous in general.
Just consider the example in R2 with only one constraint: F̃(a, b) = {x ∈ R2 |
a1x1 + a2x2 ≤ b}, a = (a1, a2)′ ∈ R2, b ∈ R. Then, for each r = 1, 2, . . ., we have

sup
x∈F̃((1,− 1

r
)
,0
) d(x, F̃((1, 0)′ , 0))

r−1 ≥ lim
k→∞

d(
( k
rk
)
, F̃
(
(1, 0)′, 0

)
)

r−1 = +∞,

which entails Lipusc F̃((1, 0)′, 0) = +∞. Roughly speaking, the previous situa-
tion arises from the semi-local nature of this property (i.e. the fact that it involves
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the whole feasible sets associated with perturbed parameters). Indeed, other vari-
ational properties of local character (dealing with parameters and points near the
nominal ones) do not change so drastically. For instance, this is the case of the
calmness property (see, [2, Theorem 5]).

3. Local directional convexity ofFop

This is an instrumental section oriented to tackle our problem of computing
LipuscFop(π). As gphFop is not convex, we are not allowed to apply the last
part of Theorem 2.1, and this fact entails notable differences with respect to the
methodology followed in [3]. Specifically, this section is devoted to establish a
certain directional-type convexity of the graph of Fop around b with a fixed c,
where only local directional RHS perturbations of the constraints are considered;
see Figure 1 for a geometrical motivation. Formally, associated with our nominal
problem π = (c, b), any scalar ε > 0, and any direction d ∈ Rm with ‖d‖∞ = 1,
we consider the local directional optimal set mapping Fop

π ,d,ε : [0, ε] ⇒ Rn given
by

Fop
π ,d,ε (μ) = Fop

(
c, b + μd

)
, μ ∈ [0, ε]. (14)

The following lemmas constitute key tools for establishing Theorem 3.1. To
start with, we introduce some extra notation: given π = (c, b) ∈ domFop, Mπ

denotes the so-calledminimal KKT subsets of indices at π , defined as

Mπ :=
{
D ⊂ Tb (x)

∣∣∣∣ −c ∈ cone {at , t ∈ D}
D is minimal for the inclusion order

}
, (15)

provided that x is any optimal point of π . For convenience, sometimes Mπ is
alternatively denoted byMc,b for π = (c, b) ∈ domFop. Let us observe thatMπ

is correctly defined since the expression in (15) indeed does not depend on x as it
was commented in [20, Remark 2]. Finally, we introduce the counterpart of E(b)
when dealing with optimization problems,

Eop (π) := extr
(
Fop(π) ∩ span {at , t ∈ T}) , π ∈ domFop. (16)

The reader is referred to [20, Section 2.2] for additional details about this set
of extreme points. Standard arguments of linear optimization yield Eop(π) =
Fop(π) ∩ E(b) for π = (c, b) ∈ domFop.

Lemma 3.1 ([20, Lemma 2]): Let {π r}r∈N ⊂ domFop converge to π . Then

∅ �= Limsupr Eop (π r) ⊂ Eop (π) ,

where Limsupr stands for the Painlevé–Kuratowski upper/outer limit as r → ∞
(see, e.g. [6, 7]).
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Lemma 3.2: Let (c, b) ∈ domFop. Then there exists ε > 0 such that for every b ∈
domF with ‖b − b‖∞ ≤ ε we have Mc,b ⊂ Mc,b.

Proof: Reasoning by contradiction, suppose that there exists a sequence {br}r∈N
such that domF � br → b and Dr ∈ Mc,br \ Mc,b for all r ∈ N. Since Dr ⊂ T
(finite) for all r, we may assume (by taking a subsequence if necessary) that
{Dr}r∈N is constant, say Dr = D for all r.

Applying Lemma 3.1, let x ∈ Limsupr Eop(c, br) and, without loss of gener-
ality (for an appropriate subsequence, without relabelling), write x = limr xr,
for some xr ∈ Eop(c, br), r = 1, 2, . . . For each r, D ∈ Mc,br entails D ⊂ Tbr(xr),
which yieldsD ⊂ Tb(x). Moreover, −c ∈ cone{at , t ∈ D} andD is minimal with
respect to this property since it is for any r (recall Dr = D). Hence, we attain the
contradiction D ∈ Mc,b. �

Theorem 3.1: Let π = (c, b) ∈ domFop and ε > 0 be as in Lemma 3.2. Then
gphFop

π ,d,ε is convex for all d ∈ Rm with ‖d‖∞ = 1.

Proof: Let (μ0, x0), (μ1, x1) ∈ gphFop
π ,d,ε with 0 ≤ μ0 ≤ μ1 ≤ ε. Let us see that

(μλ, xλ) := (1 − λ)(μ0, x0) + λ(μ1, x1) ∈ gphFop
π ,d,ε for λ ∈]0, 1[. If μ0 = μ1,

then x0 and x1 belong to the same convex set Fop(c, b + μ0d), and hence clearly
xλ ∈ Fop(c, b + μ0d) = Fop

π ,d,ε(μλ)for all λ ∈]0, 1[.
From now on, let us assumeμ0 < μ1. First observe that xλ ∈ F(b + μλd) for

all λ ∈]0, 1[ because of the convexity of gphF . We distinguish two cases:
Case 1 μ0 = 0. Fix any λ ∈]0, 1[. Observe that in this case μλ = λμ1. Let us

prove that xλ ∈ Fop
π ,d,ε(μλ). TakeD1 ∈ Mc,b+μ1d ⊂ Mc,b (because of Lemma 3.2

and the choice of ε). In particular, D1 ⊂ Tb+μ1d(x
1) ∩ Tb(x

0). Therefore D1 ⊂
Tb+λμ1d(x

λ) since, for any t ∈ D1,

a′
tx

λ = (1 − λ) a′
tx

0 + λa′
tx

1 = (1 − λ) bt + λ
(
bt + μ1dt

)
= bt + λμ1dt .

Hence, as we are not perturbing c, KKT optimality conditions ensure xλ ∈
Fop(c, b + λμ1d) = Fop

π ,d,ε(μλ).
Case 2 μ0 > 0. Fix again any λ ∈]0, 1[ and let us see that xλ ∈ Fop

π ,d,ε(μλ).
Start by choosing an arbitrary x ∈ Fop

π ,d,ε(0) = Fop(c, b) and define

x̃1 :=
(
1 − μ0

μ1

)
x + μ0

μ1
x1.

Reasoning as in the previous case, with x and μ0
μ1

playing the role of x0 and λ,
respectively, we deduce

x̃1 ∈ Fop
π ,d,ε

(
μ0

μ1
μ1

)
= Fop

π ,d,ε (μ0) .



10 J. CAMACHO ET AL.

Appealing to the convexity of the previous optimal set, define

x̃α := (1 − α) x0 + αx̃1 ∈ Fop
π ,d,ε (μ0) ∀ α ∈ [0, 1].

A routine computation yields the existence of scalars α ∈ [0, 1] and β ≥ 1 such
that

xλ − x = β
(
x̃α − x

)
.

Indeed, they are unique and their explicit expressions are

α = λμ1

(1 − λ)μ0 + λμ1
, β = (1 − λ)μ0 + λμ1

μ0
.

Since x̃α ∈ Fop
π ,d,ε(μ0), there exists Dα ∈ Mc,b+μ0d ⊂ Mc,b, in particular, Dα ⊂

Tb+μ0d(x̃
α) ∩ Tb(x). Hence, for any t ∈ Dα , taking into account the fact that

βμ0 = μλ, one has

a′
tx

λ = a′
tx + βa′

t
(
x̃α − x

)
= bt + β

(
bt + μ0dt − bt

)
= bt + βμ0dt = bt + μλdt .

In this way, Dα ⊂ Tb+μλd(x
λ) and again the KKT optimality conditions yield

xλ ∈ Fop(c, b + μλd). In other words, (μλ, xλ) ∈ gphFop
π ,d,ε. �

The following example illustrates the previous results.

Example 3.1 (Example 1.1 revisited): Let us consider the parameterized prob-
lem (4) inR2 with T = {1, 2, 3, 4} and let us see that the statement of Lemma 3.2
fulfils by taking 0 < ε < 2

5 . First observe that

‖b − b‖∞ < 2
5

x ∈ Fop(c, b)

}
=⇒ Tb (x) ⊂ {1, 2, 3}. (17)

Reasoning by contradiction, assume that there exists (b, x) ∈ R4 × R2 such that
x ∈ Fop(c, b), ‖b − b‖∞ < 2

5 and 4 ∈ Tb(x). It is clear that {4} � Tb(x) accord-
ing to KKT conditions (−c /∈ cone{a4}). Then, by distinguishing cases we attain
a contradiction: assume that 1 ∈ Tb(x), then x1 = b1 and −1

2x1 + 1
2x2 = b4,

which yields x2 = b1 + 2b4 > −2
5 + 2(1 − 2

5) = 4
5 which contradicts x2 ≤ b2 <

2
5 . Hence 1 /∈ Tb(x). Then, necessarily 3 ∈ Tb(x) (since −c /∈ cone{a2, a4}), but
again x1 + x2 = b3 and −1

2x1 + 1
2x2 = b4 yield the contradiction 2

5 > x2 =
1
2b3 + b4 > −1

5 + 3
5 = 2

5 .
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From (17) one easily derives

Mc,b ⊂ Mc,b = {{1, 2}, {3}}, whenever ‖b − b‖∞ <
2
5
. (18)

Indeed, given any ‖b − b‖∞ < 2
5 one can check

Mc,b =
⎧⎨⎩

{{1, 2}, {3}}, if b1 + b2 = b3,
{{1, 2}}, if b1 + b2 < b3,
{{3}}, if b1 + b2 > b3.

Therefore, for any d ∈ R4, with ‖d‖∞ = 1, and μ ∈ [0, 25 [, we have

Fop
(
c, b + μd

)
=

⎧⎪⎪⎨⎪⎪⎩
{
μ

(
d1
d2

)}
, if d1 + d2 ≤ d3,

μ conv
{(

d1
d3 − d1

)
,
(
d3 − d2

d2

)}
, if d1 + d2 > d3,

(19)
which clearly entails the convexity of gphFop

π ,d,ε for each d ∈ R4 with ‖d‖∞ = 1
and each 0 < ε < 2

5 .
Finally, observe that (17) is no longer true for ε = 2

5 since

Tb+ 2
5 (−1,1,−1,−1)′

((
−4
5
,
2
5

)′)
= {2, 3, 4}.

However, (18) still holds by replacing 2
5 with 1

2 , since the only way to preclude
Mc,b ⊂ Mc,b is having {1, 4} ∈ Mc,b, which implies ‖b − b‖∞ ≥ 1

2 ; although
the description of Fop(c, b + μd) would be different from that of (19) when
μ > 2

5 .

4. Lipschitz upper semicontinuity of the optimal set mapping

This section tackles the final goal of the current paper: the computation of the
Lipschitz upper semicontinuity modulus for the optimal set mapping Fop intro-
duced in (3). First, let us see that perturbations of c are redundant when looking
for the aimed modulus. Formally, we consider Fop

c : Rm ⇒ Rn given by

Fop
c (b) = Fop (c, b) , b ∈ Rm.

Proposition 4.1 ([20, Lemma 4]): There exists ε > 0 such that

Fop (π) ⊂ Fop (c, b) ,

whenever π ≡ (c, b),π ≡ (c, b) ∈ domFop satisfy ‖π − π‖ < ε.
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Corollary 4.1: Let π ≡ (c, b) ∈ domFop. We have

LipuscFop (π) = LipuscFop
c

(
b
)

= lim sup
b→b

⎛⎝ sup
x∈Fop(c,b)

d
(
x,Fop (π)

)
d
(
b, b
)

⎞⎠ .

(20)

Proof: Inequality LipuscFop(π) ≥ LipuscFop
c (b) follows directly from the def-

initions. Appealing to Propositions 2.1 and 4.1 we have

LipuscFop (π) = lim sup
π→π

(
sup

x∈Fop(π)

d
(
x,Fop (π)

)
d (π ,π)

)

≤ lim sup
π→π

(
sup

x∈Fop(c,b)

d
(
x,Fop (π)

)
d (π ,π)

)

≤ lim sup
b→b

⎛⎝ sup
x∈Fop(c,b)

d
(
x,Fop (π)

)
d
(
b, b
)

⎞⎠
= LipuscFop

c

(
b
)
. �

From now on, appealing to the local directional convexity of the graph of
Fop under RHS perturbations, we adapt some arguments used in [3] to the cur-
rent setting. The following technical lemma uses Theorem 3.1 to provide an
upper bound on the variation rate of optimal solutions with respect to RHS
perturbations.

Lemma 4.1: Let π = (c, b) ∈ domFop. Let ε > 0 be as in Lemma 3.2, take
((c, b), x) ∈ gphFop with ‖b − b‖∞ ≤ ε and let p(x) be a projection (a best
approximation) of x in Fop(π). Then

d
(
x,Fop (π)

)
d
(
b, b
) ≤ clmFop (π , p (x)

)
.

Proof: The case b = b is trivial from 0/0 := 0. Assume b �= b and let d :=
b−b

‖b−b‖∞
. With the notation (14), p(x) ∈ Fop

π ,d,ε(0) and x ∈ Fop
π ,d,ε(‖b − b‖∞),

which entails, for each λ ∈ [0, 1], by applying Theorem 3.1,

xλ := (1 − λ)p (x) + λx ∈ Fop
π ,d,ε

(
λ‖b − b‖∞

)
= Fop

(
c, (1 − λ) b + λb

)
.

Moreover, from [3, Lemma 1] we have that p(x) is also a best approximation of
xλ in Fop(π); i.e. ‖xλ − p(x)‖ = d(xλ,Fop(π)), λ ∈ [0, 1]. Consequently,

d
(
xλ,Fop (π)

)
‖λ
(
b − b

)
‖∞

= λ‖x − p (x) ‖
λ‖b − b‖∞

= d
(
x,Fop (π)

)
d
(
b, b
) , whenever λ ∈ ]0, 1] .
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Hence, letting λ → 0 we obtain the aimed inequality. �

Proposition 4.2: Let π = (c, b) ∈ domFop, then

LipuscFop (π) = sup
z∈Fop(π)

clmFop (π , z) .

Proof: Inequality ‘≥’ comes from Theorem 2.1. Let us prove the nontrivial
inequality ≤. Take an ε > 0 as in Lemma 3.2 (and Theorem 3.1). We can write
(recall Corollary 4.1)

LipuscFop
(
c, b
)

= lim sup
b→b

⎛⎝ sup
x∈Fop

c (b)

d
(
x,Fop (π)

)
d
(
b, b
)

⎞⎠
≤ lim sup

b→b
‖b−b‖≤ε

⎛⎝ sup
x∈Fop

c (b)
clmFop (π , p (x)

)⎞⎠ ,

where we have applied Lemma 4.1 and, as in that lemma, for each x ∈ Fop
c (b),

with ‖b − b‖ ≤ ε, p(x) ∈ Fop(π) is a projection of x in Fop(π).
Consequently,

LipuscFop (π) ≤ sup
z∈Fop(π)

clmFop (π , z) .

�

Next we show that the supremum in the previous proposition may be reduced
to a finite subset of points, indeed to points in Eop(c, b). To do that we appeal to
the following theorem.

Theorem 4.1 ([21, Corollary 4.1]): Let (π , x) ∈ gphFop with π = (c, b). Then

clmFop
((

c, b
)
, x
)

= max
D∈Mπ

clmLD

((
b,−bD

)
, x
)
, (21)

where, for each D ∈ Mπ , LD : Rm × RD ⇒ Rn is defined by

LD (b, d) := {
x ∈ Rn : a′

tx ≤ bt , t = 1, . . . ,m; −a′
tx ≤ dt , t ∈ D

}
,

and bD := (bt)t∈D.

Remark 4.1: Observe that each LD is nothing else but a feasible set mapping
of the same type as F but associated with an enlarged system. Consequently,
Remark 2.2 also applies here for computing each clmLD((b,−bD), x), and there-
fore clmFop((c, b), x).
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Finally, by gathering the previous results of this section, we can establish our
main goal in the following theorem. We point out that this theorem provides an
implementable procedure for computing the aimed LipuscFop(π) as far as it is
written in terms of a finite amount of calmness moduli of feasible set mappings
(as the previous theorem says) and these calmness moduli can be computed via
formula (13).

Theorem 4.2: Let π ∈ domFop, then

LipuscFop (π) = max
x∈Eop(π)

clmFop (π , x) .

Proof: Starting from the equalities of Proposition 4.2 and Theorem 4.1, we can
write

LipuscFop (π) = sup
x∈Fop(π)

clmFop (π , x)

= sup
x∈Fop(π)

max
D∈Mπ

clmLD

((
b,−bD

)
, x
)

= max
D∈Mπ

sup
x∈LD

(
b,−bD

) clmLD

((
b,−bD

)
, x
)

= max
D∈Mπ

max
x∈Eop(π)

clmLD

((
b,−bD

)
, x
)

= max
x∈Eop(π)

clmFop
((

c, b
)
, x
)
.

In the third equality we have used the fact that Fop(c, b) = LD(b,−bD) for all
D ∈ Mπ (see [21, Proposition 4.1]), while the fourth comes from Theorems 2.1
and 2.2 by taking Remark 4.1 into account, together with the fact that the role
played by E(b) in Theorem 2.2 is now played by

extr
(
LD

(
b,−bD

)
∩ span {at , t ∈ T}

)
= Eop (π) , for all D ∈ Mπ .

The last equality comes again from Theorem 4.1. �

5. Conclusions and perspectives

At this moment we recall the parallelism between both formulae of LipuscF(b)
and LipuscFop(π), for π = (c, b) ∈ domFop, pointed out in Remark 1.1. The
first one was established in [3] by strongly appealing to the convexity of gphF ,
while a local directional convexity property of gphFop has been used here to
develop the second one. Indeed, [3] analyses another Lipschitz-type property,
called there Hoffman stability, which is commented in the next subsection.
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5.1. On the Hoffman stability of the optimal set

We say that M : Y ⇒ X, with Y and X being metric spaces, is Hoffman stable at
y if there exists κ ≥ 0 such that d(x,M(y)) ≤ κ d(y, y) for all y ∈ domM and
all x ∈ M(y), or, equivalently, if

d(x,M(y)) ≤ κ d
(
y,M−1(x)

)
for all x ∈ X. (22)

The associated Hoffman modulus at y ∈ domM, Hof M(y), is the infimum of
constants κ satisfying (22) and may be expressed as

Hof M(y) = sup
(y,x)∈gphM

d(x,M(y))
d
(
y, y
) = sup

x∈X
d(x,M(y))

d
(
y,M−1(x)

) .
Theorem 4 in [3], again appealing to the convexity of gphF , establishes the
equality

LipuscF
(
b
)

= Hof F
(
b
)
,

which is no longer true for our optimal set mapping Fop, neither for Fop
c (recall

that gphFop and gphFop
c are not convex), as the following example shows.

Example 5.1: Consider the parameterized problem of Example 1.1 with R2

being endowed with the Euclidean norm, and consider the following nominal
parameters:

c =
(−1

−1

)
and b = (−1,−1,−1, 1)′ .

The reader can easily check that∥∥∥(c, b) −
(
c, b
)∥∥∥ <

1
3

⇒ Fop (c, b) =
{(

b1
b2

)}
.

Thus, an ad hoc routine calculation gives

LipuscFop
(
c, b
)

= √
2.

Of course Theorem 4.2 can be alternatively used for this computation.
Now, let us perturb b by considering bμ := b + μ(−1, 0, 0,−1)′ for μ ≥ 2/3.

Then it is easy to check that
(−1 − μ

1 − 3μ

)
∈ Fop(c, bμ) for all μ ≥ 2/3 and,

accordingly,

Hof Fop
(
c, b
)

≥ Hof Fop
c

(
b
)

≥ lim
μ→+∞

∥∥∥∥(−1 − μ

1 − 3μ

)
−
(−1

−1

)∥∥∥∥∥∥∥bμ − b
∥∥∥∞

= lim
μ→+∞

√
μ2 + (3μ − 2)2

μ
= √

10.
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The computation of Hof Fop(c, b) and Hof Fop
c (b) remains as an open prob-

lem for further research.

5.2. Some repercussions on the stability of the optimal value

Let us finish the paper with some comments about perspectives on the behaviour
of the optimal value function ϑ : Rn × Rm → [−∞,+∞], given by

ϑ (π) := inf{c′x : x ∈ F (b)}, π = (c, b) ∈ Rn × Rm,

(with the convention ϑ(π) := +∞ when F(b) = ∅); in our context of finite LP
problemsϑ(π) is finite if and only ifπ ∈ domFop.Moreover, awell-known result
in the literature establishes the continuity of ϑ restricted to its domain (see, e.g.
[22, Theorem 4.5.2] for a proof based on the Berge’s theory); i.e. the continuity of
ϑR := ϑ |domFop . Going further and regarding the subject of the current paper,
the calmness modulus of ϑR provides a quantitative measure of the stability of
the optimal value (indeed, a rate of variation with respect to perturbations of the
data). Specifically, for π ∈ domFop this calmness modulus is given by

clmϑR(π) = lim sup
π→π

π∈domFop

|ϑ (π) − ϑ (π) |
‖π − π‖ .

This calmness modulus is analysed in [20], where point-based formulae for this
quantity are provided in two stages: firstly, under RHS perturbations and, in a
second stage, under canonical perturbations. That paper is focussed on a dual
approach and formulae obtained there involve the maximum and minimum
norms of dual optimal solutions (vectors of KKTmultipliers) associated with the
minimal KKT subsets of indices, Mπ .

At this moment we point out the fact that appealing to LipuscFop(π) we may
follow a primal approach to the estimation of clmϑR(π). The situation is particu-
larly easy in the case of RHS perturbations as commented in the next lines: given
(c, b), (c, b) ∈ domFop we have

|ϑ (c, b) − ϑ
(
c, b
)

| = |c′x − c′p (x) | ≤ ‖c‖∗ d
(
x,Fop (π)

)
, (23)

where x ∈ Rn is any optimal solution of (c, b) and p(x) ∈ Rn is any projection of
x on Fop(π). From (23), we obtain

lim sup
b→b

(c,b)∈domFop

|ϑ (c, b) − ϑ (π) |
‖π − π‖ ≤ ‖c‖∗ LipuscFop (π) .

Adding perturbations of c and trying to reproduce inequalities of the form (23)
in the context of canonical perturbations yields a different scenario, where the
size of primal optimal solutions could play an important role, but this lies out of
the scope of the present paper.
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1 Introduction

In this paper we firstly analyze continuity properties of the modulus of metric 
subregularity for linear inequality systems. This analysis motivates the intro-
duction of new properties named as robust and continuous metric subregularity. 
Hereafter we frequently omit the word ‘metric’ for simplicity. We are particularly 
concerned with the radius (a sort of distance to ill-posedness) with respect to both 
properties, as well as with the connection with the modulus of robust subregular-
ity. This topic is framed in the broader paradigm

for some stability property, P , which has been widely studied in different contexts 
(cf. [11, 12, 20]). We also draw the reader’s attention to paper [4], devoted to the 
metric regularity of the inverse feasible set mapping for linear semi-infinite inequal-
ity systems (see [14]), where equality (1) holds. We advance that relation (1) does 
not always hold for the properties analyzed in the present paper.

We deal with (finite) linear inequality systems in ℝn of the form

where x ∈ ℝ
n is the decision variable, regarded as a column-vector, and the prime 

represents transposition. System � will be identified with the pair of coefficient 
functions (a,  b),   where a =

(
at
)
t∈T

∈ (ℝn)T and b =
(
bt
)
t∈T

∈ ℝ
T ≡ ℝ

m . For the 
sake of simplicity in the notation we will identify (ℝn)T with ℝn×m, so that function 
a ∶ t ↦ at will be regarded as a matrix whose t-th column is at . In this way system 
� may be abbreviated as a′x ≤ b. The space ℝn is equipped with an arbitrary norm 
‖⋅‖ , while ‖ ⋅ ‖∗ stands for its dual norm, given by ‖u‖∗ ∶= max‖x‖=1 �u�x� , whose 
associated distance is denoted by d∗, and ℝT is endowed with the supremum norm, 
‖b‖∞ ∶= maxt∈T �bt�.

In this framework, system � may be rewritten as the generalized equation

where Ga ∶ ℝ
n ⇉ ℝ

m and ℝm
+
 stands for the subset of elements of ℝm with nonnega-

tive coordinates. For each a ∈ ℝ
n×m, the inverse multifunction

given by x ∈ Fa(b) ⇔ b ∈ Ga(x) , is nothing else but the feasible set mapping  of 
system � under right-hand side perturbations.

Throughout the paper we work with a fixed consistent system denoted by 
� ≡

(
a, b

)
 and a fixed x ∈ Fa

(
b
)
 . We refer to a, b and x as the nominal data. 

Given any property P of Ga fulfilled at the nominal 
(
x, b

)
∈ gphGa (where gph 

stands for graph), the radius of P-stability at that point is defined as

(1)radius of P = 1

modulus of P

(2)� = {a�
tx ≤ bt, t ∈ T = {1,… , m}},

(3)Ga(x) ∶= a�x +ℝm
+
∋ b,

Fa ∶= G
−1
a

∶ ℝ
m ⇉ ℝ

n,
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where L(ℝn,ℝm) stands for the space of linear functions from ℝn to ℝm endowed 
with the norm subordinated to the norms under consideration in these spaces. This 
definition of radius is inspired by the one given in [12, Definition 1.4] for the metric 
regularity property in more general contexts; see also [11] for the property of metric 
subregularity. In order to adapt this concept to our current notation, let us identify a 
linear function g with the matrix g ∈ ℝn×m such that g(x) reads as g′x. In this way, 
denoting by gt the t-th column of g, we have

Remark 1 Observe that 
(
Ga + g

)
(x) = (a + g)�x +ℝm

+
 for all x ∈ ℝn . In other words,

In this way, linear perturbations of Ga translate into left-hand side (LHS, in brief) 
perturbations of the linear inequality system (2). Hence, assuming that � ≡

(
a, b

)
 

satisfies a certain stability property P, roughly speaking, rad PGa(x, b) provides the 
infimum size of LHS perturbations of � which cause failure of property P at the 
same point x with parameter b + g�x.

As already commented in [11, Example 1.1], when P is the metric subregularity 
property, then rad PGa(x, b) is + ∞ as, for any a ∈ ℝn×m , Ga is always metrically sub-
regular at any (x, b) ∈ gphGa (this fact follows from the classical work of Robinson 
[24]). Therefore, the associated modulus is always finite, but not necessarily zero 
(in which case (1) fails). Indeed, the subregularity modulus of Ga at (x, b) is known 
to coincide with the calmness modulus of Fa at (b, x) which is computed through an 
implementable formula in Theorem 2;  see Sect. 2 for further details. This comment 
motivates the fact of considering a different (more restrictive) property P which is 
not satisfied at all ((a, b), x) with (x, b) ∈ gphGa. In this way, the continuous/robust 
subregularity come into play.

It is important to emphasize the practical repercussions of the metric subregularity 
property (and its counterparts in terms of calmness and local error bounds), for 
instance with respect to the convergence of algorithms. Just observe that finding a solu-
tion of our generalized equation Ga(x) ∋ b, with b sufficiently close to the nominal b, 
might be considerably difficult, whereas the residual (in our case, maxt∈T

[
a�
t
x − bt

]
+
, 

where [�]+ represents the positive part of � ∈ ℝ ) is much easier to compute or esti-
mate. Hence, the metric subregularity of Ga at (x, b) with constant � (see Sect. 2 for the 
definition) ensures the existence of such a solution whose distance to x is no longer 
than � times the residual. In particular, if we know an estimate for the rate of conver-
gence of the residual to zero, then we can evaluate the rate of convergence of a sequence 
of approximate solutions to an exact solution. Two specific applications of calmness 

(4)

rad PGa(x, b) ∶= inf
g∈L(ℝn,ℝm)

�
‖g‖ ���Ga + g does not have P at

�
x, b + g

�
x
���

,

‖g‖ = max‖x‖=1 ‖g
�x‖∞ = max‖x‖=1max

t∈T

��g�tx�� = max
t∈T

��gt��∗.

(5)Ga + g = Ga+g.
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modulus are given in [6, Section 5] to the computation of some constants related to the 
convergence of certain optimization methods. The first one is focused on a particular 
procedure described in [19, Section 3.1] for a descent method, and the second deals 
with a concrete regularization scheme for mathematical programs with complementa-
rity constraints introduced in [17]. In [23] we can find several references on the algo-
rithmic repercussions of Hoffman constants (of a global nature, in contrast with the 
local character of calmness) as well as other related error bounds in establishing con-
vergence properties of a variety of modern convex optimization algorithms.

Concerning interior-point methods, in [5, Section  4] the well-known central 
path construction associated with a linear programming problem is considered. If 
{(x(�), y(�), z(�)), for 𝜇 > 0} denotes such a path and Λ is the primal-dual solution set 
for the original problem (corresponding to � = 0 ), then, under appropriate hypotheses, 
[5, Theorem 4.1] shows that

for � small enough, where � is directly related with the calmness modulus of a suit-
able feasible set mapping defined in terms of the nominal problem’s data, so that 
constant � can be computed through an implementable procedure as it involves only 
fixed elements. A closely related problem is tackled in [1, Corollary 3], where an 
application to the convergence of a certain path-following algorithmic scheme, also 
in terms of calmness constants, is developed.

Aside the importance of the regularity concepts themselves, the study of related 
radii is also relevant. As already mentioned in [11, Section 5], the radius of nonsin-
gularity of matrices is ultimately related to their condition number, and precondition-
ing is a highly efficient tool for enhancing computations in numerical linear algebra. 
In that paper the authors also suggest that different radius expressions could be utilized 
in procedures for conditioning of problems of feasibility and optimization. For a wider 
insight on conditioning, see [2].

The present paper is structured as follows: Sect. 2 sets up the necessary notation and 
preliminary results. Section 3 deals with the continuity behavior of the subregularity 
modulus of linear inequality systems under LHS perturbations, which is analyzed in 
two steps. First, Theorem 3 sheds light on the stability of the end set of polyhedra. As a 
consequence of this result, the continuity of the subregularity modulus is characterized 
in Theorem 4. In Sect.  4 we introduce the properties of robust and continuous sub-
regularity and characterize them in Theorem 5 and Corollary 2 , respectively. Section 5 
computes the radius of robust subregularity (Theorem 6) and gives some insights on 
the radius of continuous subregularity (see Example 4). The paper finishes with a sec-
tion of conclusions and future research.

d((x(�), y(�), z(�)),Λ) ≤ ��
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2  Preliminaries

Firstly, let us give some definitions and notations used along the paper. Given 
S ⊂ ℝ� , � ∈ ℕ , convS denotes the convex hull of S. From the topological side, intS, 
clS,  and bdS stand for the interior, the closure, and the boundary of S, respectively. 
Additionally, if S is convex, its  end set (introduced in [15]) is defined as

Here we recall the lower/inner and upper/outer limit of sets in the Painlevé-Kura-
towski sense (cf. [22, p. 13], see also [25, p. 152]). Given two metric spaces X and 
A and a family of subsets of X,   

{
Xa

}
a∈A

 , we say x ∈ Lim infa→a Xa if for each 
sequence {ar}r∈ℕ converging to a there exist r0 ∈ ℕ and {xr}r≥r0 verifying xr ∈ Xar 
for all r ≥ r0 and limr→∞ xr = x. Regarding the outer limit, x ∈ Lim supa→a Xa if 
x = limr→∞ xr with xr ∈ Xar for some sequence {ar}r∈ℕ converging to a.

A set-valued mapping M ∶ X ⇉ Y  between metric spaces (with both distances 
denoted by d) is said to be (metrically) subregular at (x, y) ∈ gphM if there exist a 
constant � ≥ 0 together with a neighborhood U of x such that

Here d(x,C) ∶= infy∈C d(x, y) denotes the point-to-set distance, with d(x, �) = +∞ . 
Throughout the paper we assume 1∕0 = +∞ and 1∕(+∞) = 0. The infimum of con-
stants � in (6), over the set of all possible (�,U) is called the subregularity modulus 
of M at (x, y) and it is denoted by subregM(x, y).

The subregularity property of M at (x, y) ∈ gphM is known to be equivalent 
to the calmness of its inverse M−1 at (y, x) and it is also known that subregM(x, y) 
coincides with the calmness modulus of M−1 at (y, x) (cf. [13, 16, 18, 22, 25]).

Our focus is on mapping Ga, with a ∈ ℝn×m, given in (3), where a point-based 
formula (in terms of the given data) for its subregularity modulus is known (see 
Theorem 2). More specifically, given our nominal data � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
, 

such expression of subregGa

(
x, b

)
 appeals to the set of active indices at x,

and involves the family Da (introduced in [9, Section 4] under the name D
(
x
)
 ) of 

subsets D ⊂ T𝜎
(
x
)
 such that system

is consistent in the variable d ∈ ℝn. Observe that if D ∈ Da and d is such a solution, 
then 

{
at, t ∈ D

}
 is contained in the hyperplane {z ∈ ℝn ∣ d�z = 1}, which leaves 

{0n} ∪ {at, t ∈ T�
(
x
)
⧵ D} on one of its two associated open half-spaces.

Another key tool in the present paper is the family of sets D0

a
 (see [7, Section 3.2]) 

formed by all D ⊂ T𝜎
(
x
)
 such that system

end S ∶=
{
u ∈ cl S |∄𝜇 > 1 such that 𝜇u ∈ cl S

}
.

(6)d(x,M−1(y)) ≤ �d(y,M(x)) for all x ∈ U.

T�
(
x
)
∶=

{
t ∈ T ∣ a

�
t
x = bt

}
,

(7)
{

a
�
t
d = 1, t ∈ D,

a
�
t
d < 1, t ∈ T𝜎

(
x
)
⧵ D,

}
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has nonzero solutions in the variable d ∈ ℝn . Now, if D ∈ D
0

a
 and d ∈ ℝn�{0n} sat-

isfies (8), then the hyperplane {z ∈ ℝn ∣ d�z = 0} contains {0n} ∪ {at, t ∈ D} and 
leaves {at, t ∈ T�

(
x
)
⧵ D} on one of its two associated open half-spaces.

Theorem 1 Let � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
. Then

Proof It is a direct consequence of [21, Corollary 2.1 and Remark 2.3].   ◻

Theorem 2 Let � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
. Then

Proof For x ∈ bdFa

(
b
)
 the result follows from [9, Theorem 4] together with Theo-

rem 1. If x ∈ intFa

(
b
)
, then Da = {�} and

  ◻

Remark 2 (On semi-infinite systems) For the sake of completeness, let us comment 
on some facts which may arise when the set T indexing the constraints is infinite. 
To start with, in the case when T is a compact metric space and t ↦

(
at, bt

)
 is con-

tinuous on T,  the set T�
(
x
)
 is also compact and [21, Corollary 2.1 and Remark 2.3] 

ensures, denoting B
�
x
�
∶=

⋃
D∈Da

conv
�
at, t ∈ D

�
, that

hence,

which generalizes to this continuous semi-infinite case the second equality in Theo-
rem 2. The first equality in Theorem 2 holds under the following regularity condi-
tion (see [21, Corollary 2.1, Remark 2.3 and Corollary 3.2]): “There exists a neigh-
borhood W of x such that

(8)
{

a
�
t
d = 0, t ∈ D,

a
�
t
d < 0, t ∈ T𝜎

(
x
)
⧵ D,

}

(9)end conv
{
at, t ∈ T�

(
x
)}

=
⋃
D∈Da

conv
{
at, t ∈ D

}
.

subregGa(x, b) =d∗
(
0n, end conv

{
at, t ∈ T�

(
x
)})−1

=max
D∈Da

d∗
(
0n, conv

{
at, t ∈ D

})−1
.

0 = subregGa(x, b) = d∗
(
0n, �

)−1
.

B
(
x
)
⊂ end conv

{
at, t ∈ T𝜎

(
x
)}

⊂ clB
(
x
)
,

d∗
(
0n, end conv

{
at, t ∈ T�

(
x
)})

= inf
D∈Da

d∗
(
0n, conv

{
at, t ∈ D

})
,

(10)Fa(b) ∩W =
(
x + (cone

{
at, t ∈ T�

(
x
)}

)◦
)
∩W”,
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where X◦ denotes the (negative) polar of X. Observe that this condition is held at 
all points of polyhedral sets and, for instance, at the vertex of the ice-cream cone. 
Indeed, the fulfilment of the condition (10) at all points of Fa(b) is equivalent the 
fact that system � is locally polyhedral (see [21, Corollary 3.3] and also [14, Sec-
tion 5.2]). To the authors knowledge, the exact computation of subregGa(x, b) for 
more general semi-infinite systems via a point-based formula (in terms exclusively 
of the nominal data a, b, x ) remains as an open problem.

3  On the continuity of the subregularity modulus

Given the nominal data � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
 , we follow the perturbation struc-

ture of [12, p. 496]. In other words, we are considering arbitrary LHS perturbations 
a − a of � and, in order to preserve feasibility of x, the corresponding right-hand side 
perturbations are given by b +

(
a − a

)�
x . In this way, (5) with g = a − a shifts 

(
x, b

)
 

to 
(
x, b +

(
a − a

)�
x
)
. In the sequel, it will be useful to note that, denoting the set of 

active indices of system (2) at x ∈ Fa(b) by T(a,b)(x) ∶=
{
t ∈ T ∣ a�

t
x = bt

}
, we have

Now we introduce the function S ∶ ℝn×m → ℝ given by

In order to simplify the notation, in S(a) we omit the dependence on the nominal 
data a , b, and x . Taking Theorem 2 and equality (11) into account, the end set of 
conv

{
at, t ∈ T�

(
x
)}

 constitutes a crucial ingredient in the computation of S(a) for 
any a ∈ ℝn×m. The following subsection is devoted to analyzing the stability behav-
ior of this end set under perturbations of the at’s; this is a subject of independent 
interest.

3.1  Stability of the end set of polyhedra

This subsection is intended to be self-contained as far as our statements on {
at, t ∈ T�

(
x
)}

 could be given for any finite family in ℝn, not necessarily coming from 
a linear inequality system. In this way, set T�

(
x
)
 could be replaced by any finite index 

set. Accordingly, throughout this subsection we consider a finite index set I. For each 
a =

(
at
)
t∈I

∈ (ℝn)I , we define

and the families Da and D0
a
 coming from replacing in (7) and (8), respectively, T�

(
x
)
 

by I and a by a. Recall that, from Theorem 1,

(11)T(
a,b+(a−a)

�
x
)(x) = T�

(
x
)
for all a ∈ ℝn×m.

(12)S(a) ∶= subregGa(x, b +
(
a − a

)�
x), a ∈ ℝn×m.

(13)E(a) ∶= end conv
{
at, t ∈ I

}
,



 J. Camacho et al.

1 3

The following lemma provides the Painlevé-Kuratowski upper/outer limit of Da ⊂ 2I 
(the subsets of I),  with a approaching a; in it, the finite set 2I is endowed with the 
discrete topology.

Lemma 1 Given a ∈ (ℝn)I , we have: 

 (i) Lim sup
a→a

⋃
D∈Da

conv
�
at, t ∈ D

�
=

⋃
D∈ Lim sup

a→a

Da

conv
�
at, t ∈ D

�
;

 (ii) Lim sup
a→a

Da =
{
S ⊂ I ∣ ∃D ∈ Da ∪D

0

a
with S ⊂ D

}
.

Proof (i) Let u ∈ Lim supa→a

⋃
D∈Da

conv
�
at, t ∈ D

�
 be written as u = limr→∞ ur 

with ur =
∑

t∈Dr
�r
t
ar
t
, 
∑

t∈Dr
�r
t
= 1, �r

t
≥ 0 for all t ∈ Dr, for certain Dr ∈ Dar asso-

ciated with some sequence ar → a. Since Dr ⊂ I (finite) for all r,   it is not restric-
tive to assume (by taking a suitable subsequence) that 

{
Dr

}
r∈ℕ

 is constant, say 
Dr = D, and 

{
�r
t

}
r
 converges to some �t ≥ 0 for each t ∈ D, hence 

∑
t∈D �t = 1 and 

u =
∑

t∈D �tat, with

Now, let us prove ‘ ⊃ ’. Take u =
∑

t∈D̃ �tat with 
∑

t∈D̃ �t = 1, �t ≥ 0 for all t ∈ D̃ and 
D̃ ∈ Lim sup

a→a

Da. Then, there exists ar → a with D̃ ∈ Dar for all r,  which entails

Accordingly, u ∈ Lim supa→a

⋃
D∈Da

conv
�
at, t ∈ D

�
.

(ii) We start by proving the inclusion ‘ ⊃ ’. Let S ⊂ I be such that S ⊂ D for some 
D ∈ Da ∪D

0

a
 . If D ∈ Da, take p = 1, otherwise ( D ∈ D

0

a
) take p = 0. In any case, 

let d ∈ ℝn ⧵ {0n} be such that

Define the sequence by

so that, denoting by ‖⋅‖2 the Euclidean norm,

(14)E(a) =
⋃
D∈Da

conv
{
at, t ∈ D

}
, for each a ∈ (ℝn)I .

D ∈ Lim sup
r→∞

Dar ⊂ Lim sup
a→a

Da.

⋃
D∈Dar

conv
{
ar
t
, t ∈ D

}
∋
∑
t∈D̃

�ta
r
t
→ u.

{
a
�
t
d = p, t ∈ D,

a
�
t
d < p, t ∈ I ⧵ D.

ar
t
∶=

{
at +

1

r
d, t ∈ S,

at, t ∈ I ⧵ S,

�
ar
t

���
p +

1

r
‖d‖2

2

�−1

d

�
= 1, t ∈ S,

< 1, t ∈ I ⧵ S,
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for all r ∈ ℕ ; i.e., in both cases ( p = 0 or p = 1 ), S ∈ Dar for all r ∈ ℕ . Therefore, 
S ∈ lim supa→a Da.

Let us prove the converse inclusion, ‘ ⊂ ’. Take any S ∈ Lim supa→a Da and 
assume the non-trivial case S ≠ ∅. There exists some sequence ar → a such that 
S ∈ Dar for all r ∈ ℕ . Hence, for each r there exists an associated dr ∈ ℝ

n�{0n} such 
that

If {dr}r∈ℕ is bounded, then we can take a subsequence (denoted as the whole 
sequence for simplicity) converging to some d ∈ ℝ

n. Since 
(
ar
t

)�
dr = 1 for t ∈ S ≠ �, 

we conclude a�
t
d = 1 for those t, which entails d ≠ 0n, i.e.,

(the inclusion may be strict) and D ∈ Da.

In the case when {dr}r∈ℕ is unbounded we may assume (by taking an appropriate 
subsequence if necessary) that ‖dr‖ → +∞ and dr

‖dr‖ → d ∈ ℝ
n with ‖d‖ = 1 . Then, 

dividing both sides of (15) by ‖dr‖ and letting r → +∞ we obtain

(the inclusion may be strict again) and D ∈ D
0

a
. In any case S ⊂ D , with 

D ∈ Da ∪D
0

a
, and the proof is complete.   ◻

Theorem 3 Let a ∈ (ℝn)I . We have 

 (i) Lim inf
a→a

E(a) =
⋃

D∈Da

conv {at, t ∈ D} = E
�
a
�
;

 (ii) Lim sup
a→a

E(a) =
⋃

D∈Da∪D
0

a

conv {at, t ∈ D} ⊃ E
�
a
�
.

Proof (i) The second equality is established Theorem  1 and it is clear from the 
definition that Lim infa→a E(a) ⊂ E

(
a
)
 as E is closed-valued. In order to prove the 

converse inclusion, take D ∈ Da and u =
∑

t∈D �tat for some � =
(
�t
)
t∈D

∈ ℝ
D
+
 

with 
∑

t∈D �t = 1 and let d ∈ ℝ
n with a�

t
d = 1 for all t ∈ D and a′

t
d < 1 for 

all t ∈ I�D. Taking any {ar}r∈ℕ ⊂ (ℝn)I converging to a, define, for each r,   
wr ∶=

∑
t∈D �ta

r
t
∈ conv

�
ar
t
, t ∈ I

�
. Then

On the other hand, for a fixed r and any v ∈ conv
{
ar
t
, t ∈ I

}
, writing v =

∑
t∈I �ta

r
t
 

with � ∈ ℝI
+
 and 

∑
t∈I �t = 1, one has

(15)
{(

ar
t

)�
dr = 1, if t ∈ S,(

ar
t

)�
dr < 1, if t ∈ I ⧵ S.

S ⊂ D ∶=
{
t ∈ I ∣ a

�
t
d = 1

}

S ⊂ D ∶=
{
t ∈ I ∣ a

�
t
d = 0

}

(wr)�d → u�d =
∑
t∈D

�ta
�
t
d = 1 as r → ∞.
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in particular, (wr)�d ≤ 1 + ��ar − a��‖d‖. This entails, for each r ∈ ℕ such that 
(wr)�d > 0, the existence of

such that ur ∶= �rw
r ∈ E(ar). Consequently,

Since {ar}r∈ℕ has been arbitrarily chosen, one has u ∈ Lim infa→a E(a) .
(ii) comes from the Lemma 1 together with (14).   ◻

Remark 3 (i) Theorem  3 (i) establishes the lower semicontinuity in the sense of 
Berge of mapping E at a (equivalently, the inner semicontinuity at a ). Here we do 
not have an analogous result to Lemma 1 (ii); more specifically, Lim infa→a Da may 
be strictly contained in Da. For instance, for the family

one has Lim infa→a Da = {�, {1}, {3}}, whereas Da = {�, {1}, {3}, {1, 2, 3}}.

(ii) The union in Theorem 3 (ii) could be confined to those D ∈ Da ∪D
0

a
 which 

are maximal with respect to the inclusion order. Moreover, the inclusion ‘ ⊃ ’ may be 
strict as Example 1 below shows.

3.2  Lower and upper semicontinuity of the subregularity modulus

Let us consider the nominal data � ≡

(
a, b

)
 and x ∈ Fa

(
b
)
. From now on in the 

paper, for each a ∈ ℝn×m, we consider the end set defined in (13) in the particular 
case I = T�

(
x
)
; i.e.,

Observe that the index set T�
(
x
)
 does not vary as a varies by virtue of (11). From 

Theorem 2 we can write

Theorem 4 Let � ≡

(
a, b

)
and x ∈ Fa

(
b
)
. Then: 

v�d ≤
��

t∈I

�ta
�
t
d

�
+

��
t∈I

�t
��art − at

��∗‖d‖
�

≤ 1 + ��ar − a��‖d‖;

�r ∈

�
1,

1 + ��ar − a��‖d‖
(wr)�d

�

u = lim
r→∞

ur ∈ Lim inf
r→∞

E(ar).

{
a1 =

(
1

1

)
, a2 =

(
1

0

)
, a3 =

(
1

−1

)}

(16)E(a) ∶= end conv
{
at, t ∈ T�

(
x
)}

.

(17)S(a) = d∗
(
0n,E(a)

)−1
, for any a ∈ ℝn×m.
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 (i) S is lower semicontinuous at a; i.e., 

 (ii) We have 

Proof (i) Since E is inner semicontinuous at a , by [25, Proposition 5.11(b)] we have 
that d∗

(
0n,E(⋅)

)
 is upper semicontinuous at a and, accordingly, d∗

(
0n,E(⋅)

)−1 is 
lower semicontinuous at a.

(ii)
Appealing to (17), we may write

where the third equality follows from [25, Exercise 4.8] and the last one comes from 
Theorem 3(ii).   ◻

Corollary 1 If Lim infa→a E(a) = Lim supa→a E(a) = E
(
a
)
, i.e., if E is continuous 

in the Painlevé-Kuratowski sense, then S is continuous at a.

Proof As in the proof of statement (ii) in Theorem  4, and applying the current 
assumption, we have

  ◻

Remark 4 Observe that: 

 (i) S may fail to be upper semicontinuous at a, i.e., one can have 

lim inf
a→a

S(a) =

[
d∗

(
0n,

⋃
D∈Da

conv {at, t ∈ D}

)]−1

= S
(
a
)
;

lim sup
a→a

S(a) =
⎡⎢⎢⎣
d∗

⎛⎜⎜⎝
0n,

�
D∈Da∪D

0

a

conv {at, t ∈ D}
⎞⎟⎟⎠

⎤⎥⎥⎦

−1

≥ S
�
a
�
.

lim sup
a→a

S(a) = lim sup
a→a

d∗
(
0n,E(a)

)−1

=

(
lim inf
a→a

d∗
(
0n,E(a)

))−1

= d∗
(
0n, Lim supa→a E(a)

)−1

= d∗

(
0n,

⋃
D∈Da∪D

0

a

conv {at, t ∈ D}

)−1

.

lim supa→a S(a) = d∗
(
0n, Lim supa→a E(a)

)−1
= d∗

(
0n,E

(
a
))−1

= S
(
a
)
.

lim sup
a→a

S(a) > S(a)
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 and the ‘continuity gap’ can be finite (Example 1) or infinite (Example 2).
 (ii) The sufficient condition for the continuity of S given in Corollary 1 is not 

necessary. Just replace a3 in Example 1 below with 
(
1∕2
1∕2

)
.

Example 1 Consider the nominal system in ℝ2, endowed with the Euclidean norm,

and take x = 02. One easily checks from Theorem  3(ii) that 

Lim sup
a→a

E(a) = conv

��
0

2

�
,

�
1

2

��⋃
conv

��
0

1

�
,

�
0

2

��
 while E

(
a
)
=

conv

{(
0

2

)
,

(
1

2

)}
. Regarding function S, from Theorem 4(ii), one has

Example 2 Consider the nominal system in ℝ2, endowed with the Euclidean norm,

and take x = 02. Again from Theorem  3(ii), we have 

Lim supa→a E(a) = conv

{(
0

1

)
,

(
0

−1

)}
 while E

(
a
)
=

{(
0

1

)
,

(
0

−1

)}
 and

4  Robust and continuous subregularity

Starting from the fact that

and taking into account that the inequality above may be strict, this section is firstly 
devoted to characterizing the finiteness of the continuity gap, i.e., to characterize the 
condition lim supa→a S(a) < +∞, through an alternative (in principle, simpler) con-
dition to the one which can be derived from the explicit formula of Theorem 4(ii) . 
In a second stage, we provide a new approach to lim supa→a S(a) which allows us to 
interpret this quantity as a modulus of a robust-type metric subregularity property.

To start with, appealing to the definitions of Da and D0

a
, recall (7)-(8), one easily 

checks that

and the following proposition is an immediate consequence of this inclusion together 
with Theorem 4(ii).

� ∶=
{
x2 ≤ 0, 2x2 ≤ 0, x1 + 2x2 ≤ 0

}
,

lim sup
a→a

S(a) = 1 > S(a) = 1∕2.

� ∶=
{
x2 ≤ 0, − x2 ≤ 0

}
,

lim sup
a→a

S(a) = +∞, S(a) = 1.

lim sup
a→a

S(a) ≥ S
(
a
)
= lim inf

a→a
S(a),

⋃
D∈Da∪D

0

a

conv {at, t ∈ D} ⊂ bd conv
{
at, t ∈ T𝜎

(
x
)}

,
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Proposition 1 We have

The following example shows that the inequality in Proposition 1 may be strict.

Example 3 [9, Example 4] Let us consider the nominal system, in ℝ2 endowed with 
the Euclidean norm,

(associated with indices 1, 2, and 3, respectively) and the nominal solution x = 02 ; 
in other words, recalling that each at is regarded as a column-vector,

which entails T�
(
x
)
= T = {1, 2, 3}. Then, after a routine computation, we can show 

that ��a − a�� ≤ 1

2
√
2
 implies

Observe that the condition ‘ ��a − a�� ≤ 1

2
√
2
 ’ is not superfluous to ensure (19); indeed, 

if we take the unitary vector u = 1√
2

�
1

1

�
 and, for any 𝜇 >

1

2
√
2
, we consider the per-

turbed matrix a� =
(
a1 + �u a2 + �u a3 − �u

)
, then we obtain 

end conv
{
a
�
t , t = 1, 2, 3

}
= conv

{
a1, a2

}
. Moreover, ��a − a�� ≤ 1

2
√
2
 also implies 

d∗
(
02, bd conv

{
at, t ∈ T�

(
x
)})

= d∗
(
02, conv

{
a1, a2

})
. In particular,

In spite of not having equality in (18), d∗
(
0n, bd conv

{
at, t ∈ T�

(
x
)})

 can be 
used to characterize the finiteness of lim supa→a S(a), as the following theorem 
establishes.

Theorem  5 Given � ≡

(
a, b

)
and x ∈ Fa

(
b
)
, the following statements are 

equivalent: 

 (i) lim supa→a S(a) is finite; 
 (ii) 0n ∉ bd conv

{
at, t ∈ T�

(
x
)}

;

(18)lim sup
a→a

S(a) ≤ d∗
(
0n, bd conv

{
at, t ∈ T�

(
x
)})−1

.

{
x1 ≤ 0, x2 ≤ 0, x1 + x2 ≤ 0

}

a =
(
a1 a2 a3

)
=
(
1 0 1

0 1 1

)
, b = 03,

(19)end conv
{
at, t ∈ T�

(
x
)}

= conv
{
a1, a3

}
∪ conv

{
a2, a3

}
.

lim sup
a→a

S(a) = d∗
�
02, conv

�
a1, a3

�
∪ conv

�
a2, a3

��−1
= 1

< d∗
�
02, bd conv

�
at, t ∈ T𝜎

�
x
���−1

=
√
2.
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 (iii) There exist constants � ≥ 0 and 𝜀 > 0 along with a neighborhood U of x such 
that 

 for all x ∈ U and all a ∈ ℝn such that ‖a − a‖ < 𝜀.
Moreover, lim supa→a S(a) coincides with the infimum of constants � over the tri-
plets (�, �,U) satisfying (20) .
Proof (i) ⇔ (ii) Implication ‘ ⇐ ’ is a direct consequence of Proposition 1. In 
order to prove the converse implication, assume reasoning by contradiction that 
0n ∈ bd conv

{
at, t ∈ T�

(
x
)}

. By separation, consider d ∈ ℝn�{0n} such that 
a
′
t
d ≤ 0 for all t ∈ T�

(
x
)
, which necessarily satisfies D ∶=

{
t ∈ T ∣ a

�
t
d = 0

}
≠ �. 

Consider an arbitrary 𝜀 > 0 and let a�
t
∶= at + �d for all t ∈ T . For 

d̃ ∶=
(
�d�d

)−1
d we clearly have 

(
a�
t

)�
d̃ = 1 for all t ∈ D and 

(
a𝜀
t

)′�d < 1 for 
all t ∈ T�

(
x
)
�D. Consequently, taking (11) into account, D ∈ Da� . Moreover, 

the fact that 0n ∈ bd conv
{
at, t ∈ T�

(
x
)}

 and the definition of D easily imply 
0n ∈ conv

{
at, t ∈ D

}
 and, then, �d ∈ conv

{
a�
t
, t ∈ D

}
. Accordingly, recalling The-

orem 2, we attain the contradiction

(i) ⇔ (iii) Implication ‘ ⇐ ’ comes from the fact that any � ≥ 0 as in the statement is a 
subregularity constant for Ga at 

(
x, b + (a − a)�x

)
; in other words, taking � and � as 

in (iii), we have

entailing lim supa→a S(a) ≤ �. In order to prove the converse implication assume 
that lim supa→a S(a) is finite and take any 𝜅 > lim supa→a S(a). Let us prove that 
there exists a neighborhood U of x along with 𝜀 > 0 such that (20) holds for all 
x ∈ U and all a ∈ ℝn with ‖a − a‖ < 𝜀 . To do this we appeal to [10, Theorem 3], 
which shows –adapted to our current notation– that each S(a) is indeed a subregular-
ity constant itself with an associated neighborhood Ua, which –see formula (8) in 
that paper–, taking into account (11) and the ‘slack relationship’ [
bt +

(
at − at

)�
x
]
− a�

t
x = bt − a

�
t
x, is given by

with the convention inf � ∶= +∞. First, we analyze the case 
{t ∈ T�T�

(
x
)
∣ at ≠ 0n} ≠ �. Now define 𝜌 ∶= mint∉T𝜎(x)

(
bt − a

�
t
x
)
> 0 (recalling 

the finiteness of T) and take any

(20)d
(
x,Fa

(
b + (a − a)�x

)) ≤ �d
(
b + (a − a)�x,Ga(x)

)

S(a�) ≥ d∗
�
0n, conv

�
a�
t
, t ∈ D

��−1
≥
�
�‖d‖∗

�−1
→ +∞ as � ↓ 0.

S(a) ≤ 𝜅, whenever ‖a − a‖ < 𝜀,

(21)Ua ∶=

{
x ∈ ℝn

||||||
‖‖x − x‖‖ < 𝛿a ∶= inf

t∉T𝜎(x), at≠0n

bt − a
�
t
x

2‖‖at‖‖∗

}
,
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Assume ‖a − a‖ < 𝛿1; then, at ≠ 0n whenever t ∉ T�
(
x
)
 and at ≠ 0n. If, for some 

t ∉ T�
(
x
)
, we haveat ≠ 0n and at = 0n, then,

Therefore, ‖a − a‖ < 𝛿1 implies

Finally, take any 𝛿3 > 0 satisfying ‖a − a‖ < 𝛿3 ⇒ S(a) ≤ 𝜅. Then,

which establishes (iii) in this case.
Consider now the case when T�

(
x
)
= T . In this case, �a = +∞ for all a ∈ ℝn×m. 

Hence, (20) holds whenever ‖a − a‖ < 𝛿3 (defined as above) and x ∈ ℝn. Finally, 
assume at = 0 for all t ∈ T�T�

(
x
)
≠ �. This entails bt > 0 for all t ∈ T�T�

(
x
)
. 

Define � ∶= min
{
bt, t ∈ T�T�

(
x
)}

. Then �a ≥
�

2‖a−a‖ for all a ∈ ℝn×m. Accord-
ingly, (20) holds whenever ‖a − a‖ < 𝛿3 and ‖x − x‖ <

𝜌

2𝛿3
.

Moreover, reviewing the previous argument and observing that the proof is valid 
for any 𝜅 > lim supa→a S(a) , we conclude that lim supa→a S(a) coincides with the 
infimum of constants � over the triplets (�, �,U) satisfying (20).   ◻

Definition 1 Given system � ≡ (a, b) and x ∈ Fa

(
b
)
, we say that 

 (i) Ga is robustly subregular at 
(
x, b

)
 if any of the three equivalent conditions of 

Theorem 5 holds. Regarding Theorem 5(iii), the infimum of constants � over 
the triplets (�, �,U) satisfying (20) is called the robust subregularity modulus 
of Ga at 

(
x, b

)
 and will be denoted by robGa

(
x, b

)
 . As stated there, 

 (ii) Ga is continuously subregular at 
(
x, b

)
 if S is continuous at a.

Remark 5 Condition (iii) in Theorem 5 looks like a kind of uniform regularity prop-
erty with respect to a. Since the term uniform calmness has been already introduced 
in [3, Definition 1] (to be applied to the feasible set mapping Fa ) with another mean-
ing –uniformly with respect to x in Fa

(
b
)
 –, we have preferred here the term robust. 

0 < 𝛿1 < min

{
𝜌

2𝛿a
, min

{‖‖at‖‖∗ ∣ t ∉ T𝜎
(
x
)
, at ≠ 0n

}}
.

bt − a
�
t
x

2‖‖at‖‖∗
≥

bt − a
�
t
x

2�1
≥

�

2�1
≥ �a.

�a ≥ min
t∉T�(x), at≠0n

bt − a
�
t
x

2
(‖‖at‖‖∗ + �1

) =∶ �2.

‖a − a‖ < � ∶= min
�
𝛿1, 𝛿3

�
‖x − x‖ < 𝛿2

�
⇒ (20) holds,

(22)robGa

(
x, b

)
= lim sup

a→a

S(a).
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See the comment preceding Corollary 3 below. Also observe that [4, Theorem 2.1], 
adapted to our current setting, entails that the metric regularity property of Ga at (
x, b

)
 is characterized as 0n ∉ conv

{
at, t ∈ T�

(
x
)}

. Indeed, [4, Corollary 3.2] pro-
vides the following expression for the the modulus of metric regularity:

Accordingly, if 0n ∈ int conv
{
at, t ∈ T�

(
x
)}

, then Ga is robustly regular but not 
metrically regular at 

(
x, b

)
.

Corollary 2 For the nominal data � ≡ (a, b)and x ∈ Fa

(
b
)
 , the following statements 

are equivalent: 

 (i) Ga is continuously subregular at 
(
x, b

)
;

 (ii) robGa

(
x, b

)
= S

(
a
)
;

 (iii) It holds 

Proof The proof comes straightforwardly from (22) and Theorem 4.   ◻

5  Radii

In this section we formally introduce the radii announced in the introduction and 
succeed to compute one of them and give some hints on the other.

Following the notation introduced in (4), let us denote by rad robGa

(
x, b

)
 and 

rad cont Ga

(
x, b

)
 the radius of robust subregularity and continuous subregularity, 

respectively, of Ga at 
(
x, b

)
 . As a direct consequence of the definitions, continuous 

subregularity implies robust subregularity, and, hence,

The next technical lemma provides a quite standard result that could be given with 
more generality. We state it as we need it, in ℝn endowed with the dual norm ‖⋅‖∗.

regGa

(
x, b

)
= 1∕d∗

(
0n, conv

{
at, t ∈ T�

(
x
)})

.

0 ≠ d∗

�
0n,

�
D∈Da

conv {at, t ∈ D}

�
= d∗

⎛⎜⎜⎝
0n,

�
D∈Da∪D

0

a

conv {at, t ∈ D}
⎞⎟⎟⎠
.

(23)rad robGa

(
x, b

)
≥ rad cont Ga

(
x, b

)
.
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Lemma 2 For i = 1, 2, let Ci = conv
{
ui
j
, j = 1, ...,m

}
⊂ ℝn . Assume that for some 

u0 ∈ ℝn we have d∗
(
u0, bdC1

)
= 𝛿 > 0 and max1≤j≤m ‖‖‖u1j − u2

j

‖‖‖∗ ≤ 𝜀 < 𝛿. Then

Proof Firstly we consider the case u0 ∉ clC1 and assume, reasoning by contradic-
tion, that d∗

(
u0, bdC2

)
= ‖‖u0 − w2

‖‖∗ < 𝛿 − 𝜀 for some w2 ∈ C2. Let us write 
w2 =

∑m

j=1 �ju
2
j
 , with �j ≥ 0 for all j and 

∑m

j=1 �j = 1. Take w1 ∶=
∑m

j=1
�ju

1
j
∈ C1. 

Then

contradicting the fact that d∗
(
u0, bdC1

)
= d∗

(
u0,C1

)
= �.

Secondly, consider the case u0 ∈ intC1, so that u0 + 𝛿B∗ ⊂ C1. Then we will 
prove that u0 + (𝛿 − 𝜀)B∗ ⊂ C2. The argument here is similar to that of [8, Lemma 
6], which we sketch here for completeness. Assume by contradiction that there 
exists w̃2 ∈

(
u0 + (� − �)B∗

)
�C2 . Then we can strictly separate w̃2 and C2 , so that 

there exists p ∈ ℝn such that

Take z ∈ ℝn with ‖z‖∗ = � and p�z = ‖p‖‖z‖∗. Then

entailing w̃2 − z ∈ C1. Thus write w̃2 − z =
∑m

j=1
�̃ju

1
j
 , with �̃j ≥ 0 for all j and ∑m

j=1 �̃j = 1. Therefore, recalling (24), we attain the contradiction

  ◻

Theorem 6 Assume that Ga is  robustly subregular at 
(
x, b

)
. Then

Proof Write � ∶= d∗
(
0n, bd conv

{
at, t ∈ T�

(
x
)})

 and pick any a ∈ ℝn with ‖‖a − a‖‖ < 𝛿. Then Lemma 2 entails

d∗
(
u0, bdC2

)
≥ � − �.

‖‖u0 − w1
‖‖∗ ≤ ‖‖u0 − w2

‖‖∗ +
m∑
j=1

𝜆j
‖‖‖u

2
j
− u1

j

‖‖‖∗ < 𝛿 − 𝜀 + 𝜀 = 𝛿,

(24)p��w2 < p�u2
j
for all j = 1, ...,m.

��w̃2 − z − u0
��∗ ≤ ��w̃2 − u0

��∗ + ‖z‖∗ ≤ � − � + � = �,

p��w2 − p�z =

m�
j=1

�𝜆jp
�u2

j
+

m�
j=1

�𝜆jp
�
�
u1
j
− u2

j

�
> p��w2 − ‖p‖𝜀 = p��w2 − p�z.

rad robGa

(
x, b

)
= d∗

(
0n, bd conv

{
at, t ∈ T�

(
x
)})

.

d∗
(
0n, bd conv

{
at, t ∈ T�

(
x
)})

≥ � − ‖‖a − a‖‖,
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which in particular implies 0n ∉ bd conv
{
at, t ∈ T�

(
x
)}

. Therefore, Theorem  5 
yields that Ga is robustly subregular at 

(
x, b +

(
a − a

)�
x
)
. This, together with (5), 

proves rad robGa

(
x, b

)
≥ �.

In order to prove the converse inequality, take u ∈ bd conv
{
at, t ∈ T�

(
x
)}

 with 
‖u‖∗ = �. Let us show that 0n ∈ bd conv

{
at − u, t ∈ T�

(
x
)}

. It is clear that 
0n ∈ conv

{
at − u, t ∈ T�

(
x
)}

 since, if u =
∑

t∈T �tat , with �t ≥ 0 for all t ∈ T  and ∑
t∈T �t = 1, then 0n =

∑
t∈T �t

�
at − u

�
. Moreover, a very similar calculation shows 

that if there existed 𝜀 > 0 with 𝜀B∗ ⊂ conv
{
at − u, t ∈ T𝜎

(
x
)}

, i.e. 
0n ∈ int conv

{
at − u, t ∈ T�

(
x
)}

, then we would have the contradiction 
u + 𝜀B∗ ⊂ conv

{
at, t ∈ T𝜎

(
x
)}

. Now Theorem  5 ensures that G(at−u)t∈T is not 

robustly subregular at 
(
x,
(
bt − u�x

)
t∈T

)
. Accordingly, rad robGa

(
x, b

) ≤ �.   ◻

As an immediate consequence of Theorem 6, together with Proposition 1, (22), 
and Example 3, we obtain the following result. Observe that this is the opposite 
inequality to that obtained in general for the radius of metric regularity in [12, 
Theorem  1.5] (where radius ≥ 1∕modulus ). The last part of this result, which 
comes from Theorem  5(ii) together with the definition of robust subregularity, 
asserts that if Ga is robustly subregular at 

(
x, b

)
, then the robust subregularity 

radius is positive. Otherwise, the term ‘robust’ would sound inappropriate.

Corollary 3 One has

and the inequality may be strict. Moreover, robGa

(
x, b

)
< +∞ implies 

rad robGa

(
x, b

)
> 0.

The next example shows that inequality (23) may be strict, as well as provides 
some hints for the study of the radius of continuous subregularity.

Example 4 Let us consider the nominal system, in ℝ2 endowed with the Euclidean 
norm,

(associated with indices 1, 2 and 3, respectively) and the nominal solution x = 02. 
Hence, T�

(
x
)
= {1, 2, 3}. Let us check that

rad robGa

(
x, b

) ≤ 1

robGa

(
x, b

) ,

� =
{
x1 + 2x2 ≤ 0, x1 + 4x2 ≤ 0, 6x1 + 5x2 ≤ 0

}

rad cont Ga

�
x, b

�
=

1√
10

< rad robGa

�
x, b

�
=
√
5,
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where the last equality comes from Theorem 6. Indeed, writing � ≡

(
a, b

)
 , the min-

imum perturbation size from a making the perturbed a have proportional a1 and a2 
(i.e., making a1 and a2 belong to some straight line in ℝ2 passing through the origin), 
obtained by computing, with the well-known Ascoli formula, the distance from a1 
and a2 to such line, is 1∕

√
10. This minimum perturbation size is attained at the fol-

lowing system �� ≡ (a�, b�) for � = 1∕
√
10, where the perturbed a1∕

√
10

1
 and a1∕

√
10

2
 

are the only possible ones with the aimed property and the perturbed a1∕
√
10

3
 is irrel-

evant (so that we have kept it as in the nominal system), and where we have followed 
the criterion b� = b +

(
a� − a

)�
x. Define

Thus, we have:

Hence, S is continuous in the open ball centered at a with radius 1∕
√
10. On the 

other hand,

which entails

Consequently, lim
𝜇→

�
1∕

√
10

�+ S(a𝜇) =
����a

1∕
√
10

1

����
−1

∗

=
√
10

7
> S

�
a1∕

√
10
�
 

=
����a

1∕
√
10

2

����
−1

∗

=
√
10

13
. Putting all together, we have rad cont Ga

�
x, b

�
= 1√

10
.

�� =

⎧
⎪⎨⎪⎩

�
1 − 3√

10
�
�
x1 +

�
2 + 1√

10
�
�
x2 ≤ 0,�

1 + 3√
10
�
�
x1 +

�
4 − 1√

10
�
�
x2 ≤ 0,

6x1 + 5x2 ≤ 0.

��a − a�� ≤ 1√
10

⇒ S(a) = d∗
�
02, end conv

�
at, t ∈ T�

�
x
���−1

=d∗
�
02, conv

�
a2, a3

��−1
= ��a2��−1∗ .

end conv
�
a
𝜇

1
, a

𝜇

2
, a

𝜇

3

�
=

⎧
⎪⎨⎪⎩

conv
�
a
𝜇

2
, a

𝜇

3

�
, if 0 ≤ 𝜇 ≤ 1√

10
,

conv
�
a
𝜇

1
, a

𝜇

2

�
∪ conv

�
a
𝜇

2
, a

𝜇

3

�
, if

1√
10

< 𝜇 ≤ 5
√
10

11
,

S(a𝜇) =

⎧⎪⎨⎪⎩

���a
𝜇

2

���
−1

∗
, if 0 ≤ 𝜇 ≤ 1∕

√
10,

���a
𝜇

1

���
−1

∗
, if 1∕

√
10 < 𝜇 ≤ 5

√
10∕11.
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6  Conclusions and further research

The following diagram is intended to provide a complete picture of the main results 
of this work. In it, for each a ∈ ℝn×m , S(a) and E(a) represent the subregularity mod-
ulus and the end set defined in (12) and (16), respectively.

Our starting background is:

• Theorem 1 (from [21, Corollary 2.1 and Remark 2.3] ), which establishes 

• Theorem 2 (derived from [9, Theorem 4]), which yields 

Hereafter, (I) and (II) are used as abbreviations as follows:

The next diagram summarizes the main results of this paper, all of them being new 
except equality S

(
a
)
= d∗

(
0n,E

(
a
))−1

= (I) .

diagram of results on the stable behavior of S

lim inf
a→a

S(a) = S
(
a
)
= d∗

(
0
n
,E

(
a
))−1

= (I)

≤ lim sup
a→a

S(a)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∥

= d∗

(
0
n
, Lim sup

a→a
E(a)

)−1
= (II)

robG
a

(
x, b

)

≤ d∗

(
0
n
, bd conv

{
a
t
, t ∈ T�

(
x
)})−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∥

[ rad rob G
a

(
x, b

)
]−1

≤ [ rad cont Ga

(
x, b

)
]−1.

Finally, let us point out some remarkable facts:

• Examples 1 and 2 show that the gap with respect to the first inequality of the 
diagram may be finite or infinite, respectively. Examples 3 and 4 show that the 
second and the third inequalities may be strict.

E(a) =
⋃
D∈Da

conv
{
at, t ∈ D

}
, a ∈ ℝn×m.

S(a) = d∗
(
0n,E(a)

)−1
, a ∈ ℝn×m.

(I) ∶=

�
d∗

�
0n,

�
D∈Da

conv {at, t ∈ D}

��−1

,

(II) ∶=
⎡
⎢⎢⎣
d∗

⎛⎜⎜⎝
0n,

�
D∈Da∪D

0

a

conv {at, t ∈ D}
⎞⎟⎟⎠

⎤⎥⎥⎦

−1

.
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• Regarding the second inequality, from Theorem  5, the gap cannot be infi-
nite, as condition d∗

(
0n, bd conv

{
at, t ∈ T�

(
x
)})

= 0 is equivalent to 
lim supa→a S(a) = +∞.

• The modulus and radius of robust subregularity, robGa

(
x, b

)
 and 

rad robGa

(
x, b

)
 , are computed through point-based formulae (only involving 

the nominal data 
(
a, b, x

)
 , not appealing to elements in a neighborhood).

• The problem of finding a point-based formula for the radius of continuous 
subregularity, rad cont Ga

(
x, b

)
, remains as an open problem; Example 4 pro-

vides some hints for future research, as far as it illustrates some of the difficul-
ties which may arise in the computation of this radius.
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This paper is focused on some properties of paramonotone operators
on Banach spaces and their application to certain feasibility problems
for convex sets in a Hilbert space and convex systems in the Euclidean
space. In particular, it shows that operators that are simultaneously para-
monotone and bimonotone are constant on their domains, and this fact
is applied to tackle two particular situations. The first one, closely re-
lated to simultaneous projections, deals with a finite amount of convex
sets with an empty intersection and tackles the problem of finding the
smallest perturbations (in the sense of translations) of these sets to reach
a nonempty intersection. The second is focused on the distance to fea-
sibility; specifically, given an inconsistent convex inequality system, our
goal is to compute/estimate the smallest right-hand side perturbations
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1 Introduction

The present paper is focused on paramonotone operators with applications to
certain feasibility problems for convex sets in a Hilbert space and convex inequal-
ity systems in Rn. To start with, we recall some basic properties of operators
in Banach spaces. Let X be a real Banach space, with topological dual X∗,
and denote by 〈·, ·〉 the corresponding canonical pairing. A set-valued operator
T : X ⇒ X∗ is said to be monotone if

〈x − y, x∗ − y∗〉 ≥ 0 whenever (x, x∗) , (y, y∗) ∈ gphT,

where gphT := {(x, x∗) ∈ X × X∗ : x∗ ∈ T (x)} is the graph of T. In the
case when both T and −T are monotone, then T is called bimonotone. If T is
monotone and, in addition, gphT is maximal in the sense of inclusion order, it is
said to be maximally monotone. A well-known example of maximally monotone
operator is the subdifferential operator of a proper, lower semicontinuous (lsc,
for short), convex function f : X → ]−∞,+∞] , denoted by ∂f (see Section 2 for
details). Monotone operators are fundamental tools of nonlinear analysis and
optimization; see, e.g., the books [1, 6, 7, 18, 20, 22, 23]. A monotone operator
T is called paramonotone if the following implication holds:

(x, x∗) , (y, y∗) ∈ gphT

〈x − y, x∗ − y∗〉 = 0



⇒ (x, y∗) , (y, x∗) ∈ gphT.

The term paramonotonicity was introduced in [12] (although the condition was
previously presented in [9] without a name). The initial motivation for the
introduction of paramonotone operators comes from its crucial role regarding
interior point methods for variational inequalities (see again [9] and [12], and
also [14]). Some important examples of paramonotone operators are gathered
in Section 2. At this moment, let us mention that subdifferentials of proper lsc
convex functions enjoy this property (see [14, Proposition 2.2] in the Euclidean
space and [3, Fact 3.1] for its extension to Banach spaces).

Looking at the applications of Sections 4 and 5, we are interested in operators
of the form T1∩(−T2) , where T1, T2 : X ⇒ X∗ are paramonotone, which are also
paramonotone and, additionally, bimonotone; this fact entails that T1 ∩ (−T2)
is constant on its domain (as shown in Corollary 9); recall that the domain of
an operator T is given by domT := {x ∈ X | T (x) 6= ∅} . Observe that

dom(T1 ∩ (−T2)) = {x ∈ X | 0 ∈ (T1 + T2) (x)} , (1)

which, in the particular case Ti = ∂fi, i = 1, 2, where the fi’s are proper, lsc
and convex, is known to coincide with

argmin (f1 + f2) , (2)

i.e., with the set of (global) minima of f1 + f2, provided that a regularity con-
dition ensuring ∂f1 + ∂f2 = ∂ (f1 + f2) is satisfied. These comments easily
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generalize to the sum of a finite number of functions (see Section 3 for details)
and are applied to particular problems of the form

minimize
x∈X

m∑
i=1

fi (x) , (3)

where all fi’s are proper lsc convex functions on X.
Now we present two applications discussed in the paper. The first one is

developed in a Hilbert space X whose norm, associated with the corresponding
inner product, is denoted by ‖·‖. It deals with a finite number of nonempty
closed convex sets S1, S2, ..., Sm such that ∩m

i=1Si = ∅ and is focused on the
optimization problem given by

minimize
x∈X

m∑
i=1

αid (x, Si)
p
, (4)

where αi > 0, i = 1, ...,m; without loss of generality we assume
m∑
i=1

αi = 1,

p ≥ 1 and d (x, Si) denotes the distance from point x to set Si, i = 1, ...,m. The
following proposition establishes that (4) is equivalent to the problem:

minimize ‖u‖α,p
subject to ∩m

i=1 (Si + ui) 6= ∅,
u = (u1, ..., um) ∈ Xm,

(5)

where ‖u‖α,p denotes the weighted p-norm in space Xm defined as

‖u‖α,p =

(
m∑

i=1

αi ‖ui‖p
)1/p

. (6)

This equivalence was already observed in [2, Section 4] for Euclidean spaces; we
include a proof for the sake of completeness.

Proposition 1 A point u = (u1, ..., um) ∈ Xm is an optimal solution to (5) if
and only if there exist an optimal solution x to (4) such that ui = x − Pi (x) ,
i = 1, ...,m, with Pi (x) being the best approximation of x in Si.

Proof. Let u = (u1, ..., um) ∈ Xm be an optimal solution to (5), and take
x ∈ ∩m

i=1 (Si + ui) . There exist si ∈ Si, i = 1, ...,m, such that x = si + ui. For
every x ∈ X, we have

m∑

i=1

αid (x, Si)
p ≤

m∑

i=1

αi ‖x − si‖p =
m∑

i=1

αi ‖ui‖p ≤
m∑

i=1

αi ‖x − Pi (x)‖p (7)

=

m∑

i=1

αid (x, Si)
p
.

3



To justify the latter inequality, observe that ∩m
i=1 (Si + x − Pi (x)) 6= ∅, because

from the equalities x = Pi (x) + x − Pi (x) , i = 1, ...,m, it immediately follows
that x ∈ ∩m

i=1 (Si + x − Pi (x)) . Thus, x is an optimal solution to (4). Further-
more, setting x = x, we also deduce that d (x, Si) = ‖x − si‖ , i = 1, ...,m, that
is, si = Pi (x) , so that ui = xi − si = xi − Pi (x) .

Conversely, let x be an optimal solution to (4), u be a feasible solution to
(5), and take x ∈ ∩m

i=1 (Si + ui) . Then, there exist si ∈ Si, i = 1, ...,m, such
that x = si + ui, and we have

‖u‖pα,p =

m∑

i=1

αi ‖ui‖p =

m∑

i=1

αi ‖x − si‖p ≥
m∑

i=1

αid (x, Si)
p ≥

m∑

i=1

αid (x, Si)
p
(8)

=

m∑

i=1

αi ‖x − Pi (x)‖p ,

which shows that the point u = (u1, ..., um) , with ui := xi −Pi (x) , i = 1, ...,m,
is an optimal solution to (5).

According to Proposition 1, problem (4) is equivalent to that of finding the
smallest translations of the sets Si that achieve a nonempty intersection.

The second application, developed in Section 5, deals with convex inequality
systems in Rn parameterized with respect to the right-hand side (RHS, in brief),

σ (b) := {gi(x) ≤ bi, i = 1, . . . ,m} , (9)

where x ∈ Rn is the vector of decision variables and, for each i ∈ 1, . . . ,m, gi :
Rn → R is a (finite-valued) convex function on Rn, and (bi)i=1,...,m ≡ b ∈ Rm.
Taking a nominal b ∈ Rm such that σ

(
b
)
is inconsistent (i.e., there is no x ∈ Rn

satisfying all inequalities of σ
(
b
)
), our aim is to estimate the distance in Rm

endowed with any p-norm, with p ≥ 2, from b to the set of parameters b such
that σ (b) is consistent. This distance to feasibility can be computed by solving
the following problem:

minimize
x∈X

m∑
i=1

[gi (x) − bi]
p
+, (10)

which also adapts to the format of (3). Sharper results are presented for linear
systems when p = 2.

At this point, we summarize the structure of the paper. Section 2 gathers
some background on convex sets, convex functions, and monotone operators,
which is appealed to in the remaining sections. Section 3 explores some new
properties of paramonotone operators and, in particular, analyzes the simul-
taneous fulfilment of paramonotonicity and bimonotonicity. The problem of
simultaneous projections -see (4) and (5)- is tackled in Section 4, while the dis-
tance to feasibility of convex systems under RHS perturbations is dealt with in
Section 5.
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2 Preliminaries

Let X be a real Banach space and f : X → ]−∞,+∞] be a proper lsc convex
function. We denote by domf := {x ∈ X | f (x) < +∞} the domain of
function f. Recall that the subdifferential operator of f, ∂f : X ⇒ X∗, assigns
to each x ∈ domf the (possibly empty) set ∂f (x) formed by all x∗ ∈ X∗ (called
subgradients) such that

f (y) − f (x) ≥ 〈y − x, x∗〉 , for all y ∈ X.

When x /∈ domf we define ∂f (x) := ∅; in this way the domain of the set-valued
mapping, dom∂f, is always contained in domf. Associated with f, its Fenchel
conjugative function f∗ : X∗ → ]−∞,+∞] is given by

f∗ (x∗) = sup {〈x, x∗〉 − f (x) | x ∈ X} .

Recall that the Young-Fenchel inequality writes as f∗ (x∗) + f (x) ≥ 〈x, x∗〉 for
all x ∈ X.

For completeness, we gather in the following theorem some well-known re-
sults about ∂f and f∗ in Banach spaces used in the paper. They can be traced
out from different references dealing with convex analysis in infinite dimensional
spaces. Here, we mainly cite the books [6, 15, 17, 23]. From now on, intA de-
notes the interior of A ⊂ X (where, as usual, ⊂ is understood as ⊆) and the
zero vector of X∗ is denoted by just 0.

Theorem 2 Let f : X → ]−∞,+∞] be a proper lsc convex function. Then we
have:

(i) [6, Proposition 4.1.5] f is continuous at x if and only if x ∈ int domf ;
(ii) [15, Theorem 3.2.15] int domf ⊂ dom∂f ;
(iii) [15, Proposition 3.2.17] x ∈ argmin f if and only if 0 ∈ ∂f (x) ;
(iv) [15, Exercise 4.2.15] ∂f is maximally monotone;
(v) [3, Fact 3.1] (see [14, Proposition 2.2] for finite dimensions) ∂f is para-

monotone;
(vi) [15, Proposition 5.31] For any x ∈ X, we have the equivalence

x∗ ∈ ∂f (x) ⇔ f∗ (x∗) + f (x) = 〈x, x∗〉 ;

(indeed, this statement does not require convexity);
(vii) [15, Theorem 3.4.2] (see also [19, Theorem 3]) Let g : X → ]−∞,+∞]

be any proper convex function. If (int domf) ∩ domg 6= ∅, then we have the
subdifferential sum rule

∂f (x) + ∂g (x) = ∂ (f + g) (x) , whenever x ∈ dom∂f ∩ dom∂g,

(indeed, ‘⊃’ is the nontrivial inclusion, as ∂f (x)+∂g (x) ⊂ ∂ (f + g) (x) comes
directly from the definition of subdifferential; moreover, the lower semicontinuity
of f is not needed).
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Recall that, for an arbitrary monotone operator T : X ⇒ X∗, an lsc convex
function h : X ×X∗ → ]−∞,+∞] is said to be a representative function of T if

h(x, x∗)





= 〈x, x∗〉 , if (x, x∗) ∈ gphT,

> 〈x, x∗〉 , elsewhere.
.

Operators for which a representative function exists are called representable
monotone. For a detailed study of representable monotone operators we refer
to [16], where this notion was introduced.

Remark 3 From Theorem 2(vi) , observe that, if f : X → ]−∞,+∞] is a
proper lsc convex function, the function hf : X × X∗ → ]−∞,+∞] defined by

hf (x, x
∗) = f (x) + f∗ (x∗) , for (x, x∗) ∈ X × X∗ (11)

is a representative function of ∂f. More generally, every maximally monotone
operator is representable, as far as its well-known Fitzpatrick function is a repre-
sentative function (see, e.g. [6, Section 9.1.2] for details). An easy consequence
of this fact is that intersections of arbitrary collections of maximally monotone
operators are representable, too. According to [16, Corollary 32], in finite-
dimensional spaces only such intersections are representable. This is no longer
true in infinite dimensional spaces, as proved in [21, Theorem 11.2].

The rest of this section is devoted to recall some results about metric projec-
tions and, in order to ensure existence and uniqueness of the best approximation
to closed convex sets, we assume that X is a Hilbert space. Here, ‖·‖ denotes
the norm associated with the corresponding inner product 〈·, ·〉. Given any
nonempty closed convex set S ⊂ X, we denote by PS : X → X the metric
projection on S, which assigns to each x ∈ X its (unique) best approximation
in S, denoted by PS (x), i.e., PS (x) is the unique point of S such that

‖x − PS (x)‖ = d (x, S) = min {‖x − s‖ : s ∈ S} .

(Observe that we write PS : X → X instead PS : X ⇒ X due to its single-
valuedness.) It is well-known that function x 7→ d (x, S) , denoted for conve-
nience by dS : X → [0,+∞[ , is a continuous convex function. Recall that, for
a continuous convex function, f : X → R, applying [6, Corollary 4.2.5 ], we
deduce that f is Gâteaux differentiable at a point x if and only if ∂f (x) reduces
to a singleton, i.e. ∂f (x) = {∇f (x)}; see [6, Section 2 ] for details. In our
applications, the facts that the subdifferentials ∂dS (x) or ∂d2S (x) reduce to a
singleton are crucial. Accordingly, condition (i) in the following proposition is
stated directly in these terms (instead of Gâteaux differentiability). From now
on, NS (x) denotes the normal cone to S at x which is given by

NS (x) := {x∗ ∈ X∗ | 〈s − x, x∗〉 ≤ 0, s ∈ S} , (12)

B∗ denotes the closed unit ball in X∗ and bdS the boundary of S.
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Proposition 4 Let X be a Hilbert space and ∅ 6= S ⊂ X a closed set. Then,
we have

(i) [6, Corollary 4.2.5 and Theorem 4.5.7] S is convex if and only if ∂d2S (x)
is singleton for all x ∈ X ; in such a case,

∇d2S (x) = 2 (x − PS (x)) .

(ii) [15, Proposition 4.1.5] (see also [13, Section 1]) If S is convex, then

∂dS (x) =





{0} , if x ∈ intS,

NS (x) ∩ B∗, if x ∈ bdS,{
‖x − PS (x)‖−1

(x − PS (x))
}
, if x /∈ S.

3 On paramonotone and bimonotone operators

This section provides some results, appealed to in Sections 4 and 5, about
operators which are simultaneously paramonotone and bimonotone on a real
Banach space X. To start with, we provide some basic results on these two
properties separately.

Proposition 5 Let T : X ⇒ X∗ be a representable monotone operator. The
following statements are equivalent:

(i) T is paramonotone;
(ii) For any representative function h of T, the following implication holds:

(x, x∗) , (y, y∗) ∈ gphT

〈x − y, x∗ − y∗〉 = 0



⇒ h(x, y∗) + h(y, x∗) = h(x, x∗) + h(y, y∗). (13)

(iii)There exists a representative function h of T such that (13) holds.

Proof. (i) ⇒ (ii). Consider any representative function of T, h, and take
(x, x∗) , (y, y∗) ∈ gphT, with 〈x − y, x∗ − y∗〉 = 0. Then, the paramonotonicity
entails y∗ ∈ T (x) and x∗ ∈ T (y), yielding

h(x, y∗) + h(y, x∗) = 〈x, y∗〉 + 〈y, x∗〉 = 〈x, x∗〉 + 〈y, y∗〉 = h(x, x∗) + h(y, y∗);

(ii) ⇒ (iii). Straightforward.
(iii) ⇒ (i). Let h be a representative function of T satisfying (13). Let

x, y ∈ X , x∗ ∈ T (x), y∗ ∈ T (y) and suppose 〈x − y, x∗ − y∗〉 = 0. Hence,

h(x, y∗) + h(y, x∗) = h(x, x∗) + h(y, y∗) = 〈x, x∗〉 + 〈y, y∗〉 = 〈x, y∗〉 + 〈y, x∗〉 .

Since h(x, y∗) ≥ 〈x, y∗〉 and h(y, x∗) ≥ 〈y, x∗〉 , these inequalities actually hold
as equalities, yielding y∗ ∈ T (x) and x∗ ∈ T (y).
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Remark 6 Observe that the paramonotonicity of the subdifferential operator
∂f of a proper lsc convex function f can be alternatively deduced from Propo-
sition 5. Just consider the representative function hf introduced in (11), which
is separable and, hence, one always has

hf (x, y
∗) + hf (y, x

∗) = hf (x, x
∗) + hf(y, y

∗).

Other examples of paramonotone operators are mappings of the form I −A
where I is the identity mapping and A is nonexpansive (see [4, Theorem 6.1]);
see also [14, Section 3 ] for the analysis of paramonotonicity of affine functions
in Rn.

Proposition 7 For an operator T : X ⇒ X∗, the following conditions are
equivalent:

(i) T is bimonotone;
(ii) 〈x − y, x∗ − y∗〉 = 0, whenever (x, x∗) , (y, y∗) ∈ gphT ;
(iii) There exist monotone operators T1 and T2 such that T = T1 ∩ (−T2) .

Proof. (i) ⇔ (ii) is trivial.
(i) ⇒ (iii). Write T = T ∩ (− (−T )).
(iii) ⇒ (i). If T1 is monotone, so is T, since T ⊂ T1. Analogously, since

−T = T2 ∩ (−T1) ,

−T is monotone, too.

Proposition 8 For a representable monotone operator T : X ⇒ X∗, the fol-
lowing conditions are equivalent:

(i) T is bimonotone;
(ii) For any representative function h of T , the following implication holds

h(x, x∗) + h(y, y∗) = 〈x, x∗〉 + 〈y, y∗〉 ⇒ h(x, x∗) + h(y, y∗) = 〈x, y∗〉 + 〈y, x∗〉 .
(14)

(iii) There exists a representative function h of T such that (14) holds.

Proof. (i) ⇒ (ii) . Consider any representative function h of T , and assume
that

h(x, x∗) + h(y, y∗) = 〈x, x∗〉 + 〈y, y∗〉 .
Hence, h(x, x∗) = 〈x, x∗〉 and h(y, y∗) = 〈y, y∗〉 , that is, (x, x∗) , (y, y∗) ∈ gphT,
yielding 〈x − y, x∗ − y∗〉 = 0. Consequently,

〈x, y∗〉 + 〈y, x∗〉 = 〈x, x∗〉 + 〈y, y∗〉 = h(x, x∗) + h(y, y∗).

(ii) ⇒ (iii) . Straightforward.
(iii) ⇒ (i) . Let x, y ∈ X, (x, x∗) , (y, y∗) ∈ gphT. We then have

h(x, x∗) + h(y, y∗) = 〈x, x∗〉 + 〈y, y∗〉 ,
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and hence 〈x, y∗〉 + 〈y, x∗〉 = h(x, x∗) + h(y, y∗) = 〈x, x∗〉 + 〈y, y∗〉 , from which
the equality 〈x − y, x∗ − y∗〉 = 0 immediately follows.

From now on, symbol ‘⊥’ represents orthogonality; specifically, given any
subsets A ⊂ X and B ⊂ X∗, A ⊥ B means that 〈x, x∗〉 = 0 for any (x, x∗) ∈
A × B, whereas A⊥ := {x∗ ∈ X∗ | 〈x, x∗〉 = 0, for all x ∈ A} and B⊥ := {x ∈
X | 〈x, x∗〉 = 0, for all x∗ ∈ B}.

Corollary 9 For T : X ⇒ X∗, the following conditions are equivalent:
(i) T is paramonotone and bimonotone;
(ii) T is monotone and constant on its domain;
(iii) (domT − domT )⊥ (rangeT − rangeT ) and gph T = domT × rangeT.

Proof. (i) ⇒ (ii). Let x, y ∈ domT, and take x∗ ∈ T (x) , y∗ ∈ T (y) .
By bimonotonicity, we have 〈x − y, x∗ − y∗〉 = 0. Hence, by paramonotonicity,
y∗ ∈ T (x) and x∗ ∈ T (y) . This proves that T (x) = T (y) .

(ii) ⇒ (i). The paramonotonicity of T is an obvious consequence of its being
constant on its domain. To prove bimonotonicity, let (x, x∗) , (y, y∗) ∈ gphT .
Monotonicity implies 〈x − y, x∗ − y∗〉 ≥ 0, and we can interchange x∗ and y∗,
since T (x) = T (y) ; therefore 〈x − y, x∗ − y∗〉 = 0.

(ii) ⇔ (iii) Comes from the fact that T is constant on domT if and only if
gph T = domT × rangeT .

Corollary 10 Let T : X ⇒ X∗ be paramonotone and bimonotone. Then, we
have

(i) If domT is dense in X, then T is single valued;
(ii) If rangeT is dense in X∗, then domT is a singleton;
(iii) T is maximally monotone if and only if domT and rangeT are closed

affine varieties and

domT − domT = (rangeT − rangeT )⊥ . (15)

Proof. (i) Assume, reasoning by contradiction, that there exist (x, x∗) and
(x, x̃∗) in gphT with x∗ 6= x̃∗ and take u ∈ X with 〈u, x∗ − x̃∗〉 6= 0. Under the
current assumption, we can take a sequence {xr}r∈N ⊂ domT converging to
x+u. For r large enough we have 〈xr − x, x∗ − x̃∗〉 6= 0 and x∗ ∈ T (x) = T (xr)
because of Corollary 9. This contradicts (i) ⇒ (ii) in Proposition 7.

(ii) follows analogously to (i) by considering (x, x∗) and (x̃, x∗) in gphT with
x 6= x̃, taking again Corollary 9 into account.

(iii) Assume that T is maximally monotone. Take x0 ∈ domT, x∗
0 ∈ rangeT,

and let S and S∗ be the linear subspaces generated by domT − domT and
rangeT − rangeT, respectively. Define T̂ : X ⇒ X∗ by

T̂ (x) :=





x∗
0 + S⊥ if x ∈ x0 + clS,

∅ otherwise.
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We have

dom T̂ − dom T̂ = (x0 + clS) − (x0 + clS) = clS − clS = clS =
(
S⊥)⊥(16)

=
(
S⊥ − S⊥)⊥ =

((
x∗
0 + S⊥)−

(
x∗
0 + S⊥))⊥ (17)

=
(
range T̂ − range T̂

)⊥
,

which proves (15) for operator T̂ . Moreover,

gph T̂ = (x0 + clS) ×
(
x∗
0 + S⊥) = dom T̂ × range T̂ .

Therefore, by equivalence (i) ⇔ (iii) in Corollary 9, the operator T̂ is para-

monotone and bimonotone; in particular, T̂ is monotone. On the other hand,
by the same equivalence, we have

rangeT − rangeT ⊂ (domT − domT )
⊥
= S⊥;

hence S∗ ⊂ S⊥ and

gph T = domT × rangeT ⊂ (x0 + clS) × (x∗
0 + clS∗) ⊂ dom T̂ ×

(
x∗
0 + S⊥)(18)

= dom T̂ × range T̂ = gph T̂ .

Thus, by the maximal monotonicity of T, we have T = T̂ , from which we deduce
that domT = dom T̂ = x0+clS and rangeT = range T̂ = x∗

0+S⊥, thus proving
that domT and rangeT are closed affine varieties.

Let us see the converse implication. Let (x, x∗) ∈ X × X∗ be such that

〈x − y, x∗ − y∗〉 ≥ 0 for all (y, y∗) ∈ gph T = domT × rangeT (19)

(the latter equality following again from Corollary 9). Since rangeT is an affine

variety, we can easily prove that x−y ∈ (rangeT − rangeT )⊥ = domT −domT.
More in detail, replace y∗ in (19) with x∗

0 ± λv for any given x∗
0 ∈ rangeT and

any v ∈ rangeT − rangeT, with λ > 0, then divide both sides of the resulting
specification of (19) by λ and let λ → +∞ to obtain 〈x − y,±v〉 ≥ 0. Therefore,
given that domT is an affine variety, we deduce that x ∈ domT. Similarly, using
that rangeT − rangeT = (domT − domT )

⊥
, we obtain that x∗ ∈ rangeT.

Thus, (x, x∗) ∈ domT × rangeT = gph T, which proves that T is maximally
monotone.

The following propositions involve a finite number of paramonotone opera-
tors and are intended to provide a unified framework to deal with the applica-
tions of Sections 4 and 5. First, we introduce the following lemma, which has
an easy proof.

Lemma 11 If T1 : X ⇒ X∗ and T2 : X ⇒ X∗ are paramonotone, then so are
T1 + T2 and T1 ∩ (−T2) .
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Proposition 12 Let Ti : X ⇒ X∗, i = 1, . . . ,m, be paramonotone operators.
Then the intersection mappings

T̃i := Ti ∩
(

−
∑

j 6=i

Tj

)
, i = 1, . . . ,m. (20)

are monotone and constant in their common domain

A : =

{
x ∈ X | 0 ∈

m∑

j=1

Tj (x)

}
.

Proof. Fix i ∈ {1, . . . ,m}. From Lemma 11,
∑

j 6=i Tj is paramonotone and,

hence, the same lemma establishes that T̃i is paramonotone. Then, from equiv-
alence (i) ⇔ (iii) in Proposition 7, T̃i is bimonotone. Hence 9 (ii) yields that

T̃i is constant in domT̃i. Finally, one easily sees that domT̃i coincides with A.

Now, we particularize Proposition 12 by considering finitely many proper
lsc convex functions, fi : X → ]−∞,+∞] , i = 1, . . . ,m, and the corresponding
subdifferential operators Ti := ∂fi, i = 1, . . . ,m. We assume the following reg-
ularity condition in order to apply the subdifferential sum rule (see Theorem 2
(vii)): there exists some index i0 ∈ {1, . . . ,m}, such that

domfi0 ∩
(
⋂

i6=i0

intdomfi

)
6= ∅, (21)

which is equivalent to the existence of some x ∈ ∩i=1,...,mdomfi such that the
m−1 of the functions fi, i ∈ {1, . . . ,m}\{i0} are continuous at x (see Theorem
2 (i)).

In this particular case, we are considering the operators

T̃i := ∂fi ∩


−

∑

j 6=i

∂fj


 , i = 1, . . . ,m, (22)

whose the common domain, appealing to statements (iii) and (vii) in Theorem
2, writes as

A=

{
x ∈ X | 0 ∈

m∑

i=1

∂fi (x)

}
= argmin

m∑

i=1

fi. (23)

We summarize the previous comments in the following proposition.

Proposition 13 Let fi : X → ]−∞,+∞] , i = 1, . . . ,m, be proper lsc convex
functions and assume that for some i0 ∈ {1, . . . ,m} condition (21) holds. Then,

operators T̃i, {1, . . . ,m}, defined in (22) are constant on their common domain

A =argmin
m∑

i=1

fi.
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Remark 14 Proposition 13 can be applied to specific operators in order to
derive some classical statements which can be found in the literature, as the one
of [8, Lemma 2] involving ∂f ∩ (−NS), and regarding the optimization problem

minimize f (x)

subject to x ∈ C,

in the case when f : Rn → ]−∞,+∞] is a proper lsc convex function and C is a
closed convex subset of Rn. Specifically, if S denotes the set of optimal solutions
of such a problem, [8, Lemma 2] states that ∂f (x) ∩ (−NC (x)) is independent
of x ∈ S. To derive this statement from Proposition 13, just observe that the
normal cone operator, NC (recall (12)), is paramonotone as it coincides with
the subdifferential of the indicator function of C.

Corollary 15 Under the assumptions of Proposition 13, one has:
(i) If for some j0 ∈ {1, . . . ,m}, the function fj0 is differentiable at x ∈ A,

then T̃j0 (x) = {∇fj0(x)} , for all x ∈ A.
(ii) If for some j0 ∈ {1, . . . ,m}, the function fj0 is differentiable on A, then

∇fi0 is constant on A.

Proof. (i) follows straightforwardly from Proposition 13, taking into account

that if fj0 is differentiable at x, then T̃j0 (x) = ∂fj0 (x) = {∇fj0(x)} (since

∅ 6= T̃j0 (x) ⊂ {∇fj0(x)}), which entails that T̃j0 (x) = T̃j0 (x) = {∇fj0(x)}
whenever x ∈ A.

(ii) comes from (i) since for every x, x ∈ A we have

{∇fj0(x)} = T̃j0 (x) ⊂ ∂fj0 (x) = {∇fj0(x)} ;

hence ∇fj0(x) = ∇fj0(x).

4 Simultaneous projections and displacement map-

pings

This section is mainly devoted to study the minimal weighted distance to two
disjoint non-empty closed and convex subsets S1 and S2 of a Hilbert space X .
We will denote by d : X × X → R the distance function on X, i.e., d (x, y) :=
‖x − y‖ , and by dSi : X → R the distance function to Si, i = 1, 2. We set

d (S1, S2) := inf
s1∈S1, s2∈S2

d (s1, s2) .

For arbitrary real numbers α1, α2 > 0, with α1 + α2 = 1, and p ≥ 1, we define

v(α1, α2, p) : = inf
x∈X

α1d (x, S1)
p + α2d (x, S2)

p ,

A(α1, α2, p) : = argminα1d
p
S1

+ α2d
p
S2
. (24)
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Observe that v(α1, α2, p) and A(α1, α2, p) are the optimal value and the
set of optimal solutions of problem (4) for the case of two sets. Notice that
A(α1, α2, p) may be empty; consider, e.g., the case when X := R2, S1 is the
convex hull of a branch of a hyperbola and S2 is one of its asymptotes; in this
case v(α1, α2, p) = 0 is not attained.

We denote by P1 := PS1 and P2 := PS2 the metric projections over S1 and
S2, respectively. We distinguish several cases depending on the values of the
power p and parameters α1 and α2. At this moment we advance that in the case
when dpS1

and dpS2
are differentiable we are able to apply Corollary 15 to derive

information about A(α1, α2, p). Going further, Proposition 4(i) establishes the
differentiability of dpSi

on the whole space X when p ≥ 2, which allows us to
tackle the case of a finite amount of sets.

Case 1. p := 1, α1 6= α2.
Without loss of generality, we assume that α1 > α2. The following result has

a clear geometrical meaning according to Proposition 1.

Proposition 16 If α1 > α2, then A(α1, α2, 1) = argminS1 dS2 .

Proof. We start by proving that every x ∈ X satisfies a useful inequality:

α1d (P1 (x) , S1) + α2d (P1 (x) , S2) = α2d (P1 (x) , S2) (25)

≤ α2 (‖P1 (x) − x‖ + d (x, S2)) (26)

= α2 (d (x, S1) + d (x, S2)) (27)

≤ α1d (x, S1) + α2d (x, S2) .

Since the latter inequality is strict when x /∈ S1, it follows that A(α1, α2, 1) ⊂ S1.
To prove the inclusion A(α1, α2, 1) ⊂ argminS1 dS2 , let x ∈ A(α1, α2, 1) and
x ∈ S1. Since x ∈ S1, we have

α2d (x, S2) = α1d (x, S1)+α2d (x, S2) ≤ α1d (x, S1) +α2d (x, S2) = α2d (x, S2) ,

which shows that x ∈ argminS1 dS2 , thus proving the desired inclusion. For the
opposite inclusion, let x ∈ argminS1 dS2 and x ∈ X. Then

α1d (x, S1) + α2d (x, S2) = α2d (x, S2) ≤ α2d (P1 (x) , S2) (28)

= α1d (P1 (x) , S1) + α2d (P1 (x) , S2) (29)

≤ α1d (x, S1) + α2d (x, S2) ,

which implies that x ∈ A(α1, α2, 1). Therefore argminS1 dS2 ⊂ A(α1, α2, 1), so
the equality in the statement is proved.

In the following corollary, Π1 : S1×S2 → S1 denotes de projection mapping,
defined by Π1 (s1, s2) = s1.

Corollary 17 If α1 > α2, then A(α1, α2, 1) = Π1 (argminS1×S2 d)
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Proof. Taking into account Proposition 16, we will actually prove the equivalent
equality argminS1 dS2 = Π1 (argminS1×S2 d) . To prove the inclusion ⊂, let
s1 ∈ argminS1 dS2 and s1 ∈ S1. Then, for every s2 ∈ S2, we have

d (s1, P2 (s1)) = d (s1, S2) ≤ d (s1, S2) ≤ d (s1, s2) ;

hence (s1, P2 (s1)) ∈ argminS1×S2 d, implying that s1 ∈ Π1 (argminS1×S2 d) ,
thus proving the desired inclusion. We now proceed to prove the opposite in-
clusion. Let s1 ∈ Π1 (argminS1×S2 d) and s1 ∈ S1. There exists s2 ∈ S2 such
that (s1, s2) ∈ argminS1×S2 d, and for every s2 ∈ S2 we have

d (s1, S2) ≤ d (s1, s2) ≤ d (s1, s2) ;

taking infimum over s2 ∈ S2, this yields d (s1, S2) ≤ d (s1, S2) , which implies
that s1 ∈ argminS1 dS2 . Thus Π1 (argminS1×S2 d) ⊂ argminS1 dS2 , and the
proof is complete.

Case 2. p = 1, α1 = α2 = 1
2 . From now on ]P1 (x) , P2 (x)[ represents

the segment of points between P1 (x) and P2 (x) , except these two ones; i.e.,
]P1 (x) , P2 (x)[ := {(1 − λ)P1 (x) + λP2 (x) : 0 < λ < 1} .

Proposition 18 One has:
(i) v(12 ,

1
2 , 1) =

1
2d (S1, S2) ,

(ii) A(12 ,
1
2 , 1) = {x ∈ X : x ∈ ]P1 (x) , P2 (x)[}∪argminS1 dS2∪argminS2 dS1 .

Proof. (i) For x ∈ X, we have

d (x, S1) + d (x, S2) = ‖x − P1(x)‖ + ‖x − P2(x)‖ ≥ ‖P1(x) − P2(x)‖ (30)

≥ d (S1, S2) ,

which proves the inequality ≥. To prove the opposite inequality, it suffices to
observe that, for s1 ∈ S1 and s2 ∈ S2, we have

‖s1 − s2‖ = d (s1, S1) + ‖s1 − s2‖ ≥ d (s1, S1) + d (s1, S2) (31)

≥ 2v(12 ,
1
2 , 1).

(ii) Let x ∈ A(12 ,
1
2 , 1). If x /∈ S1 ∪ S2, then x ∈ ]P1 (x) , P2 (x)[ , since

otherwise we would have

d (x, S1) + d (x, S2) = ‖x − P1 (x)‖ + ‖x − P2 (x)‖ > ‖P1 (x) − P2 (x)‖ (32)

≥ d (S1, S2) ,

a contradiction with (i). If x ∈ S1, then, for any s1 ∈ S1 we have

d (x, S2) = d (x, S1) + d (x, S2) ≤ d (s1, S1) + d (s1, S2) = d (s1, S2) ,

which shows that x ∈ argminS1 dS2 . In the same way, if x ∈ S2, then x ∈
argminS2 dS1 . We have thus proved the inclusion ⊂. To prove the opposite

14



inclusion, let x ∈ X be such that x ∈ ]P1 (x) , P2 (x)[ and take λ ∈ ]0, 1[
such that x = (1 − λ)P1(x) + λP2(x). Combining this equality with the in-
equalities 〈si − Pi(x), x − Pi(x)〉 ≤ 0, which hold for every si ∈ Si, we obtain
〈s1 − P1(x), P2(x) − P1(x)〉 ≤ 0 and 〈s2 − P2(x), P1(x) − P2(x)〉 ≤ 0. Adding
the latter inequalities, we get 〈s2 − s1 + P1(x) − P2(x), P1(x) − P2(x)〉 ≤ 0;
hence

‖P1(x) − P2(x)‖2 ≤ 〈s1 − s2, P1(x) − P2(x)〉 ≤ ‖s1 − s2‖ ‖P1(x) − P2(x)‖ .

Therefore, ‖s1 − s2‖ ≥ ‖P1(x) − P2(x)‖, and we deduce that

d (x, S1)+d (x, S2) = ‖x − P1 (x)‖+‖x − P2 (x)‖ = ‖P1(x) − P2(x)‖ ≤ ‖s1 − s2‖ .

Since si ∈ Si, i = 1, 2, are arbitrarily chosen, we conclude

d (x, S1) + d (x, S2) ≤ d (S1, S2) ,

which, by (i), says that x ∈ A(12 ,
1
2 , 1). It remains to prove that

argminS1 dS2 ∪ argminS2 dS1 ⊂ A(12 ,
1
2 , 1).

For symmetry reasons, it suffices to prove that argminS1 dS2 ⊂ A(12 ,
1
2 , 1), but

this inclusion follows from the fact that, for x ∈ argminS1 dS2 , we have

d (x, S1) + d (x, S2) = d (x, S2) = min
s1∈S1

d (s1, S2) = min
s1∈S1

min
s2∈S2

d (s1, s2) (33)

= min
s1∈S1, s2∈S2

d (s1, s2) = d (S1, S2) .

Case 3. p > 1.
In our current setting, it is known that function dSi : X → R is convex and

differentiable outside Si and for every x ∈ X \ Si one has (recall Proposition
4(ii))

∇dSi (x) = (x − Pi(x)) / ‖x − Pi(x)‖ . (34)

Theorem 19 If p > 1, then:
(i) A(α1, α2, p) ∩ (S1 ∪ S2) = ∅.
(ii) For each i = 1, 2, function dpSi

is differentiable in A(α1, α2, p) and

∇dpSi
(x) = p ‖x − Pi(x)‖p−2

(x − Pi(x)) , x ∈ A(α1, α2, p).

(iii) A(α1, α2, p) coincides with the set of fixed points of

α
1

p−1

1

α
1

p−1

1 + α
1

p−1

2

P1 +
α

1
p−1

2

α
1

p−1

1 + α
1

p−1

2

P2.
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Proof. (i) It will suffice to prove that A(α1, α2, p)∩S1 = ∅. Let x ∈ S1 and pick
λ > 0 such that λp

1−(1−λ)p < α2

α1
(this is possible, since limλ→0+

λp

1−(1−λ)p = 0).

Since

d ((1 − λ)x+ λP2(x), S1) ≤ d ((1 − λ)x+ λP2(x), x) = λ ‖P2(x) − x‖

and

d ((1 − λ)x+ λP2(x), S2) ≤ d ((1 − λ)x+ λP2(x), P2(x)) = (1−λ) ‖x − P2(x)‖ ,

we have

α1d ((1 − λ)x+ λP2(x), S1)
p
+ α2d ((1 − λ)x+ λP2(x), S2)

p (35)

≤ α1λ
p ‖P2(x) − x‖p + α2 (1 − λ)

p ‖x − P2(x)‖p (36)

= (α1λ
p + α2 (1 − λ)p) ‖x − P2(x)‖p < α2 ‖x − P2(x)‖p (37)

= α1d (x, S1)
p
+ α2d ((x, S2)

p
,

which shows that x /∈ A(α1, α2, p), thus proving that A(α1, α2, p) and S1 are
disjoint.

(ii) is a consequence of (i) taking (34) into account.
(iii) For simplicity of notation, for x ∈ A(α1, α2, p) and i = 1, 2 we will

denote
Dp

i (x) := αi∇dpSi
(x) . (38)

Let x ∈ A(α1, α2, p). The equality Dp
1(x) +Dp

2(x) = 0 yields

α1 ‖x − P1(x)‖p−2 (x − P1(x)) + α2 ‖x − P2(x)‖p−2 (x − P2(x)) = 0, (39)

from which we deduce that

x =
α1 ‖x − P1(x)‖p−2

α1 ‖x − P1(x)‖p−2
+ α2 ‖x − P2(x)‖p−2P1(x) (40)

+
α2 ‖x − P2(x)‖p−2

α1 ‖x − P1(x)‖p−2
+ α2 ‖x − P2(x)‖p−2P2(x) (41)

=
α1

α1 + α2

(
‖x−P2((x)x)‖
‖x−P1(x)‖

)p−2P1(x) +
α2

α1

(
‖x−P1(x)‖
‖x−P2(x)‖

)p−2

+ α2

P2(x)

Since condition Dp
1(x) + Dp

2(x) = 0 implies that ‖Dp
1(x)‖ = ‖Dp

2(x)‖ , that is,

α1p ‖x − P1(x)‖p−1
= α2p ‖x − P2(x)‖p−1

, which is equivalent to the equality

α1

α2
=

(‖x − P2(x)‖
‖x − P1(x)‖

)p−1

, (42)
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we obtain

x =
α1

α1 + α2

(
α1

α2

) p−2
p−1

P1(x) +
α2

α1

(
α2

α1

) p−2
p−1

+ α2

P2(x) (43)

=
α

1
p−1

1

α
1

p−1

1 + α
1

p−1

2

P1(x) +
α

1
p−1

2

α
1

p−1

1 + α
1

p−1

2

P2(x).

This shows that x is a fixed point of
α

1
p−1
1

α
1

p−1
1 +α

1
p−1
2

P1 +
α

1
p−1
2

α
1

p−1
1 +α

1
p−1
2

P2.

Conversely, if x ∈ X is a fixed point of
α

1
p−1
1

α
1

p−1
1 +α

1
p−1
2

P1 +
α

1
p−1
2

α
1

p−1
1 +α

1
p−1
2

P2, then

x /∈ S1 ∪ S2. Indeed, otherwise, if, say, x ∈ S1, then, from the equalities

x =
α

1
p−1

1

α
1

p−1

1 + α
1

p−1

2

P1 (x) +
α

1
p−1

2

α
1

p−1

1 + α
1

p−1

2

P2 (x) (44)

and P1 (x) = x we would obtain x = P2 (x) ∈ S2, thus contradicting the assump-
tion that S1 ∩ S2 = ∅. Therefore, the functions dSi , i = 1, 2, are differentiable
at x. From (44), it follows that

α
1

p−1

1 (x − P1 (x)) + α
1

p−1

2 (x − P2 (x)) = 0, (45)

from which we deduce (42). Now, using (42), we can rewrite (45) as (39) to
obtain the equality Dp

1(x) +Dp
2(x) = 0, which shows that x ∈ A(α1, α2, p).

Notice that the set A(12 ,
1
2 , p) does not depend on p, since, by Theorem

19(iii), it coincides with the set of fixed points of 1
2 (P1 + P2) . Also notice that

A(α1, α2, 2) coincides with the set of fixed points of α1P1 + α2P2.
The following lemma provides the counterpart of Theorem 19(ii) for the case

p ≥ 2.

Lemma 20 Take p ≥ 2, and let ∅ 6= S ⊂ X be a closed convex set. The function
dpS is differentiable in X and we have

∇dpS (x) = pdp−2
S (x) (x − PS (x)) , for x ∈ X.

Proof. Just write dpS (x) as
(
d2S (x)

)p/2
and apply Proposition 4 (i).

The fact that function dpS is differentiable in the whole space X enables us to
tackle the case of a finite amount of subsets S1, ..., Sm, with ∩m

i=1Si = ∅, m ∈ N.
For simplicity, we use the notation

A(α, p) := argmin
m∑

i=1

αid
p
Si
, (46)

17



where α := (α1, α2, ..., αm) , with αi > 0, i = 1, ...,m, and
m∑
i=1

αi = 1. The

following theorem gathers the announced application of Corollary 15(ii).

Theorem 21 If p > 1 and m = 2, or p ≥ 2, the displacement mappings I −Pi,
i = 1, ...,m are constant on A(α, p).

Proof. From Theorem 19(ii) and Lemma 20 if any of the current cases occurs
we have that dpSi

is differentiable on A(α, p), for each i = 1, ...,m. Hence, by
Corollary 15(ii),

∇dpSi
(x) = p ‖x − Pi(x)‖p−2

(x − Pi (x)) (47)

is constant on A(α, p), i = 1, ...,m (again, Pi := PSi , i = 1, 2, ...,m). So,

∥∥∇dpSi
(x)
∥∥ = p ‖x − Pi(x)‖p−1

is constant on A(α, p), too, and hence so is ‖x − Pi(x)‖ . Therefore, from (47),
we conclude that I − Pi is constant on A(α, p), i = 1, ...,m.

As a consequence of the previous theorem, taking Proposition 1 into ac-
count, we derive the following corollary. Roughly speaking, under the current
assumptions, the corollary says that the smallest translations of the sets Si that
achieve a nonempty intersection are unique.

Corollary 22 If p > 1 and m = 2, or p ≥ 2, problem (5) has a unique optimal
solution, provided that problem (4) is solvable.

5 Distance to feasibility

This section is focused on the distance to feasibility for convex inequality systems
in Rn under RHS perturbations. In this framework, lower and upper estimates
for such a distance are provided in terms of some elements whose existence is
guaranteed from Corollary 15. Both estimates coincide when confined to linear
systems.

Let us consider the parameterized system,

σ (b) := {gi(x) ≤ bi, i = 1, . . . ,m} , (48)

where x ∈ Rn, (bi)i=1,...,m ≡ b ∈ Rm, and gi : Rn → R is a convex function,
i = 1, 2, ...,m. To start with, the space of variables, Rn, is endowed with an
arbitrary norm, ‖·‖ , with dual norm ‖·‖∗ and the associated distances denoted
by d and d∗, respectively. From Corollary 27 on we consider Rn equipped with
the Euclidean norm, ‖·‖2. The space of parameters, Rm, is endowed with any
p-norm, ‖·‖p , provided that p ≥ 2, and the associated distance is denoted by
dp. We denote by Θc the set of consistent parameters; i.e.,

Θc := {b ∈ Rm | σ (b) is consistent} .
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Throughout this section we consider a fixed b ∈ Rm \ Θc and our aim is to
estimate

dp
(
b,Θc

)
= inf

{∥∥b − b
∥∥
p
: b ∈ is consistent

}
,

called the distance from b to feasibility.

Proposition 23 Let b ∈ Rm \ Θc, then

dp
(
b,Θc

)p
= inf

x∈Rn

m∑

i=1

[gi (x) − bi]
p
+.

Proof. To establish the inequality ‘≤’, take any x ∈ Rn and define

bi := bi + [gi (x) − bi]+, i = 1, ...,m.

One can easily check that b = (bi)i=1,...,m ∈ Θc and, hence,

dp
(
b,Θc

)p ≤ dp
(
b, b
)p

=

m∑

i=1

[gi (x) − bi]
p
+.

Since x ∈ Rn has been arbitrarily chosen, then

dp
(
b,Θc

)p ≤ inf
x∈Rn

m∑

i=1

[gi (x) − bi]
p
+.

Let us prove the converse inequality. Take any b ∈ Θc, i.e., such that, for
some x ∈ Rn, gi (x) ≤ bi, i = 1, ...,m; then, gi (x) − bi ≤ bi − bi, i = 1, ...,m,
and so

[gi (x) − bi]+ ≤ [bi − bi]+ ≤
∣∣bi − bi

∣∣ , i = 1, ...,m.

Hence

inf
x∈Rn

m∑

i=1

[gi (x) − bi]
p
+ ≤

m∑

i=1

[gi (x) − bi]
p
+ ≤

∥∥b − b
∥∥p
p
.

Since the previous inequality is held for all b ∈ Θc, then infx∈Rn

m∑
i=1

[gi (x) −

bi]
p
+ ≤ dp

(
b,Θc

)p
.

The well-known Ascoli formula establishes that the distance from a point
x ∈ Rn to a half-space H := {x ∈ Rn | 〈a, x〉 ≤ b} , with 0n 6= a ∈ Rn and
b ∈ R, is given by

dH (x) =
[〈a, x〉 − b]+

‖a‖∗
. (49)

The following result is focused on the extension of (49) to the convex case, where
a convex inequality of the form ‘g(x) ≤ b’ is considered. In this context, the dis-
tance from x ∈ Rn to the nonempty closed convex set S := {x ∈ Rn | g(x) ≤ b} ,
denoted by dS (x) , is lower and upper bounded by quotients involving the resid-
ual [g (x) − b]+ and the minimum norm of some subgradients of g. Regarding
these quotients, we use the convention 0

0 := 0.
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Proposition 24 Let g : Rn → R be a convex function and b ∈ R such that the
corresponding sublevel set, S, is nonempty. Then we have:

(i) For any x ∈ Rn,

dS (x) ≥ [g (x) − b]+
d∗ (0n, ∂g (x))

;

(ii) Assume that there exists x̂ ∈ Rn (called a Slater point) such that g(x̂) <
b. Then, for any x ∈ Rn,

dS (x) ≤ [g (x) − b]+
d∗ (0n, ∂g (PS (x)))

,

where PS (x) is the metric projection set of x on S with respect to the norm ‖·‖ .
Proof. (i) Inequality g (x) ≤ b turns out to be equivalent (same solution set, S)
to its standard linearization by means of the Fenchel conjugate, g∗, (see, e.g.,
[5, Formula (3)]), namely system

{〈u, x〉 ≤ g∗ (u) + b, u ∈ ∂g (Rn)} .
The distance dS (x) may be computed by means of [10, Lemma 1], yielding (with
the convention 0

0 := 0)

dS (x) = sup

{
[〈v, x〉 − α]+

‖v‖∗

∣∣∣∣ (v, α) ∈ conv {(u, g∗ (u) + b) , u ∈ ∂g (Rn)}
}
(50)

≥ sup

{
[〈u, x〉 − (g∗ (u) + b)]+

‖u‖∗

∣∣∣∣u ∈ ∂g (Rn)

}
(51)

≥ sup

{
[g (x) − b]+

‖u‖∗

∣∣∣∣u ∈ ∂g (x)

}
(52)

=
[g (x) − b]+

inf {‖u‖∗ | u ∈ ∂g (x)} =
[g (x) − b]+

d∗ (0n, ∂g (x))
,

where in the third step we have appealed to the fact that

g (x) = g∗∗ (x) = 〈u, x〉 − g∗ (u) ⇔ u ∈ ∂g (x) .

(ii) It follows from [11, Lemma 2(ii)]. Observe that for x ∈ S we ap-
ply the convention 0

0 := 0, whereas for x /∈ S the existence of a Slater point
entails that PS (x) is not a minimizer of g (since g (PS (x)) = 0), and then
d∗ (0n, ∂g (PS (x))) > 0.

Remark 25 In many cases it is not difficult to see that

b 7→ δ (b) := d∗
(
0n, ∂g

(
g−1 (b)

))

is a positive nondecreasing function on the interval ]infRn g,+∞[ (we are as-
suming the nontrivial case when g is not constant, hence not bounded above).
Here infRn g could be −∞ and ∂g

(
g−1 (b)

)
=
⋃

g(y)=b ∂g (y) . For instance, if

g (x1, x2) = ex1 +ex2, with the Euclidean norm in R2, then δ (b) = b/
√
2 for b >

0.Accordingly, item (ii) in the previous lemma entails dS (x) ≤ [g (x)−b]+/δ (b) .
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Corollary 26 Let b ∈ Rm \ Θc and assume that Si :=
{
x ∈ Rn | gi(x) ≤ bi

}
6=

∅, i = 1, ...,m. Then, the following statements hold:
(i) Let ∅ 6= C ⊂ Rn be a closed convex set such that, for each i ∈ {1, ...,m},

there exists an upper bound ui ≥ d∗ (0n, ∂gi (x)) for all x ∈ C. Then,

dp
(
b,Θc

)p ≤ inf
x∈C

m∑

i=1

(ui)
p
dpSi

(x) = inf
x∈Rn

m∑

i=1

(ui)
p
dpSi

(x) + IC (x) , (53)

where IC is the indicator function of C; i.e., IC (x) = 0 if x ∈ C and IC (x) =
+∞ if x ∈ Rn \ C.

(ii) Assume that for each i ∈ {1, ...,m} there exists a lower bound 0 < li ≤
d∗ (0n, ∂gi (PSi (x))) for all x ∈ Rn \ Si. Then,

dp
(
b,Θc

)p ≥ inf
x∈Rn

m∑

i=1

(li)
p dpSi

(x) . (54)

Proof. (i) comes straightforwardly from Propositions 23 and 24 (i) , taking into

account the obvious fact that infx∈Rn

m∑
i=1

[gi (x)− bi]
p
+ ≤ infx∈C

m∑
i=1

[gi (x)− bi]
p
+.

(ii) follows immediately from Propositions 23 and 24 (ii) .
Provided that C, u = (ui)i=1,...,m , l = (li)i=1,...,m satisfy the conditions of

the previous corollary, we consider the argmin sets coming from (53) and (54):

A (C, u) := argmin

m∑

i=1

(ui)
p
dpSi

(x) + IC (x) ,

A (l) := argmin

m∑

i=1

(li)
p
dpSi

(x) .

Then we can state another corollary of Proposition 24, appealing also to Corol-
lary 15. Indeed, it brings to light the advantages of appealing to A (C, u) and

A (l) , instead of working directly with argmin
m∑
i=1

[gi (x) − bi]
p
+.The key point

is that, in the current case in which p ≥ 2, each function dpSi
is differentiable in

Rn (see Lemma 20)), which allows to appeal to Corollary 15, while this is not
the case of [gi (·) − bi]

p
+.

Hereafter in this section we consider that Rn is endowed with the Euclidean
norm ‖·‖2 and PS (x) will denote the unique projection point of x.on a closed
convex set S.

Corollary 27 Keeping the previous notation, assume that A (C, u) and A (l)
are nonempty. Then, we have that:

(i) dSi is constant on both A (C, u) and A (l) , for each i = 1, ...,m;
(ii) For each i = 1, ...,m, let us denote by d+i and d−i the constant val-

ues of uidSi (·) and lidSi (·) on A (C, u) and A (l) , respectively, and let d+ =(
d+i
)
i=1,...,m

and d− =
(
d−i
)
i=1,...,m

. Then,

dp
(
b,Θc

)
≤
∥∥d+

∥∥
p
.
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If, in addition, for each i = 1, ...,m there exists x̂i ∈ Rn such that gi(x̂i) < bi,
then

dp
(
b,Θc

)
≥
∥∥d−

∥∥
p
.

Proof. (i) Regarding A (l) , the statement coincides with the one of Theorem
21 (in the case when p ≥ 2) just replacing each αi with (li)

p
.With respect to

A (C, u) , the statement comes from an analogous argument to the one of that
theorem, just by adding the nondifferentiable mapping IC . For completeness, we
include here a sketch of the proof. Observe that all functions x 7→ (ui)

p
dpSi

(x)
are convex and differentiable in Rn, and x 7→ IC (x) is a proper lower semicon-
tinuous convex function from Rn to ]−∞,+∞] . Hence, the regularity condition
(21) is satisfied, yielding

A (C, u) =

{
x ∈ Rn | 0n ∈

m∑

i=1

(ui)
p ∇dpSi

(x) + ∂IC (x)

}
(6= ∅) .

From Corollary 15, for each i = 1, ...,m, we have that ∇dpSi
is constant on

A (C, u) , hence dSi is also constant on A (C, u) since taking norms we have

∥∥∇dpSi
(x)
∥∥ =

∥∥∥pdp−2
Si

(x) (x − Pi (x))
∥∥∥ = pdp−1

Si
(x) , for each x ∈ A (C, u) ,

where Pi (x) denotes the projection of x on Si (recall again Lemma 20).
(ii) follows immediately from (i) and Corollary 26.

5.1 Linear systems

This subsection is devoted to the linear case, i.e., where gi(x) = 〈ai, x〉 , for
some ai ∈ Rn, i = 1, ...,m. In this particular case, obviously ∂gi (x) = {ai} for
all x ∈ Rn, i = 1, ...,m. Let us consider b such that

σ
(
b
)
=
{
〈ai, x〉 ≤ bi, i = 1, ...,m

}
(55)

is inconsistent and for each i there exists x̂i ∈ Rn such that 〈ai, x̂i〉 < bi (observe
that it is always held when ai 6= 0n or bi > 0). According to the notation of
Corollary 26, we can choose:

C = Rn, li = ui = ‖ai‖∗ , i = 1, ...,m.

Hence A (C, u) = A (l) , and d+i = d−i for all i. Let us denote by A : = A (C, u)
and d :=

(
d+i
)
i=1,...,m

.

The following corollary follows straightforwardly from Corollary 27.

Corollary 28 Under the current assumptions, we have

dp
(
b,Θc

)
=
∥∥d
∥∥
p
,

where d+i = ‖ai‖∗ dSi (x) = [〈ai, x〉 − bi]+, for all x ∈ A. Moreover σ
(
b+ d

)
is

a consistent system nearest to σ
(
b
)
.
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The next result is devoted to provide an operative expression for determining
d with the Euclidean norm in both the space of variables and the space of
parameters. For simplicity all norms are denoted by ‖·‖ , A represents the matrix
whose rows are a′i, i = 1, . . . ,m, A′ denotes its transpose and, for any y ∈ Rm,
[y]+ denotes positive part coordinate by coordinate; i.e.,

[y]+ :=
(
[yi]+

)
i=1,...,m

.

Theorem 29 The following conditions are equivalent:
(i)
(
x0, h0

)
∈ A×

{
d
}
;

(ii)
(
x0, h0

)
is a solution of the system, in the variable (x, h) ,





[
Ax − b

]
+
= h,

A′h = 0n.
(56)

(iii)
(
x0, h0

)
is an optimal solution of the quadratic problem, in the variable

(x, h) ,

min 〈h, h〉
s.t. Ax ≤ b+ h,

h ≥ 0m.

(57)

Proof. Let us see (i) ⇒ (ii) . Let
(
x0, h0

)
∈ A×

{
d
}
, i.e., x0 ∈ A and h0 = d.

By Corollary 28, h0
i (= d+i ) =

[
a′ix

0 − bi
]
+
, for all i. Moreover, the optimality

condition

x0 ∈ A : = argmin

m∑

i=1

‖ai‖2 d2Si
(x)

is equivalent to

0n =

m∑

i=1

‖ai‖2 ∇d2Si

(
x0
)
= 2

m∑

i=1

‖ai‖ dSi

(
x0
)
ai = 2

m∑

i=1

[
a′ix

0 − bi
]
+
ai; (58)

in other words

0n =
m∑

i=1

h0
i ai = A′h0.

So,
(
x0, h0

)
is a solution of system (56).

(ii) ⇒ (i) Let
(
x0, h0

)
be a solution of (56); i.e., h0 =

[
Ax0 − b

]
+
and

0n =

m∑

i=1

h0
i ai = A′h0.

Then, by repeating the previous argument of (58), we have

0n =
m∑

i=1

‖ai‖2 ∇d2Si

(
x0
)
,
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which means that x0 ∈ A. Then, appealing again to Corollary 28, we deduce
h0 = d.

Now, let us prove (ii) ⇔ (iii) . By the Karush-Kuhn-Tucker (KKT, in brief)
conditions,

(
x0, h0

)
is an optimal solution of (57) if and only if there exist

λ, µ ∈ Rm
+ such that





−
(
0n
2h0

)
=

(
A′

−Im

)
λ+

(
0n×m

−Im

)
µ,

(
Ax0 − b − h0

)′
λ = 0, −

(
h0
)′
µ = 0,

Ax0 − b − h0 ≤ 0m, h0 ≥ 0m.

(59)

So, A′λ = 0n, and h0 = λ+µ
2 . Moreover, h0

iµi = 0 for all i. Let us see that
µ = 0m. If h0

i = 0, then λi + µi = 0, which entails λi = µi = 0, while, if h0
i > 0,

then µi = 0. Therefore

h0 =
λ

2
(60)

and, so,
A′h0 = 0n.

Let us see that
[
Ax0 − b

]
+
= h0. Observe that

(
a′ix

0 − bi − h0
i

)
λi = 0 for all i.

If a′ix
0 − bi < 0, then a′ix

0 − bi − h0
i < 0, thus we have λi = 0 and

h0
i =

λi

2
= 0.

If a′ix
0 − bi > 0, then h0

i > 0 and λi > 0, yielding a′ix
0 − bi − h0

i = 0. Finally, if
a′ix

0 − bi = 0, then h0
iλi = 0, and from (60) we have h0

i = 0. So,

[
a′ix

0 − bi
]
+
= h0

i , for all i,

and consequently
(
x0, h0

)
is a solution of (56).

Reciprocally, if
(
x0, h0

)
is a solution of (56) and we consider

λ = 2h0 and µ = 0m,

it can be easily seen that x0, h0, λ and µ satisfy the KKT conditions (59), and
then

(
x0, h0

)
is an optimal solution for problem (57).
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Abstract

The main contribution of this paper consists of providing an explicit
formula to compute the Hoffman constant of the argmin mapping in
linear optimization. The work is developed in the context of right-hand
side perturbations of the constraint system as the Hoffman constant
is always infinite when we perturb the objective function coefficients,
unless the left-hand side of the constraints reduces to zero. In our per-
turbation setting, the argmin mapping is a polyhedral mapping whose
graph is the union of convex polyhedral sets which assemble in a so
nice way that global measures of the stability (Hoffman constants)
can be computed through semilocal and local ones (as Lipschitz upper
semicontinuity and calmness moduli, whose computation has been de-
veloped in previous works). Indeed, we isolate this nice behavior of the
graph in the concept of well-connected polyhedral mappings and, in a
first step, the paper focuses on Hoffman constant for these multifunc-
tions. When confined to the optimal set, some specifics on directional
stability are also presented.
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1 Introduction and overview

The present paper is mainly focused on the global measure of the stability
called Hoffman constant for the optimal set in linear optimization. The
terminology ‘Hoffman constant’ (or Hoffman bound) comes from its coun-
terpart to feasible sets in the context of linear systems (see, e.g., [1, ?, 12,
18, 20]) and, going further, from the pioneer work of Hoffman [9] estab-
lishing the existence of a positive constant κ such that the distance of any
point in the Euclidean space to the feasible set of any consistent system is
bounded above by κ time the absolute residual. Hoffman constants play
a fundamental role in mathematical programming; in particular, regarding
convergence properties of optimization algorithms and sensitivity analysis,
among others; see again [18] and references therein (e.g., [14, 16, 17, 21]).

We consider the linear optimization problem

minimize c′x
subject to a′tx ≤ bt, t ∈ T := {1, 2, ...,m} , (1)

where c, at ∈ Rn, t ∈ T , the prime stands for transposition, x ∈ Rn is
the decision variable, regarded as a column-vector, and b = (bt)t∈T ∈ Rm.
Throughout the paper the at’s are fixed. Moreover, except in Section 4.1,
vector c also remains (indeed, we write c = c to emphasize this fact). So, we
mainly deal with the right-hand side (RHS for short) perturbation setting,
where b is the parameter to be perturbed around a nominal one, b ∈ Rm.
Regarding Section 4.1, it is focused in the framework of the so-called canon-
ical perturbations, where both c and b are treated as parameters. Let us
mention that direct antecedents to the current work, as [3] and [4], are de-
veloped in such a setting. While these previous works deal with local and
semilocal stability measures (calmness and Lipschitz upper semicontinuity
moduli), the current one focuses on a global measure and this fact entails
notable differences. Here the term ‘semilocal’ means that we are considering
the whole optimal sets associated with parameters in a neighborhood of the
nominal one. Indeed, as we will see in Section 4.1, the Hoffman constant
for the optimal set mapping of problems (1) under canonical perturbations
is always +∞ unless {at, t ∈ T} reduces to zero, and this fact justifies the
choice of our RHS perturbation framework.

For the reader’s convenience, the present paper follows the notation of
[3], which constitutes an immediate antecedent to the current work: F :
Rm ⇒ Rn and Fop : Rn ×Rm ⇒ Rn denote the feasible and the optimal set
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(argmin) mappings, given by

F (b) :=
{
x ∈ Rn : a′tx ≤ bt for all t ∈ T

}
, and (2)

Fop (c, b) := argmin
{
c′x : x ∈ F (b)

}
. (3)

The optimal set mapping under RHS perturbations (with c = c fixed) is
defined as

Fop
c (b) := Fop (c, b) . (4)

The reader is addressed to the monograph [8] for a comprehensive develop-
ment of the stability theory in linear optimization from a qualitative point
of view, formalized through continuity properties of the feasible and argmin
mappings in different parametric settings, and with an arbitrary (possibly
infinite) index set T .

At this point, let us specify the main contributions of the paper. Theo-
rem 5 constitutes one of the main final results as it provides a point-based
formula (only involving the nominal problem’s data) for the Hoffman con-
stant of Fop

c , denoted by Hof Fop
c . Roughly speaking, Hof Fop

c is such a con-
stant that the distance of any point x ∈ Fop

c (b) to the optimal set Fop
c

(
b
)
is

bounded above by Hof Fop
c times the distance between parameters b and b,

provided that b, b ∈ domFop
c (the domain of Fop

c ). Accordingly, Hof Fop
c can

seen as a Lipschitz constant of a global nature. A crucial intermediate step
to this final result consists of expressing Hof Fop

c as the maximum of certain
semilocal and local measures, namely the Lipschitz upper semicontinuity
and calmness moduli of Fop

c , denoted by LipuscFop
c (b) and clmFop

c (b, x) ,
respectively, at all b ∈ domFop

c and all x ∈ Fop
c (b) , which have been previ-

ously analyzed in [3] and [4], respectively; for completeness, Section 2 recalls
the necessary results about LipuscFop

c (b) which, in turn, are expressed in
terms of certain calmness moduli. See, e.g., the monographs [6], [11], [15]
and [19] for a wider perspective on Lipschitz-type properties and their mod-
uli.

Section 3 isolates the key properties, held by Fop
c , which are behind the

representation of Hof Fop
c in terms of LipuscFop

c (b) , b ∈ domFop
c . These

properties are formalized in Definition 2 giving rise to the concept of well-
connected polyhedral mappings, which are multifunctions of the form S :=⋃

i∈I Si, where I is a finite index set such that the graphs of mappings Si are
convex polyhedral sets assembled in an appropriate way. In particular, a key
technical result (Lemma 3) ensures, for each pair, b, b ∈ domS, the existence
of a subdivision 0 := µ0 < µ1... < µN = 1 and indices {i1, ..., iN} ⊂ I
connecting b with b in the sense of Definition 3, yielding

S
(
b+ µ

(
b − b

))
= Sik

(
b+ µ

(
b − b

))
, whenever µ ∈ [µk−1, µk].
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Starting from this technical result, we derive the variational inequality of
Theorem 4, which entails the crucial equality of Corollary 1:

Hof S = sup{LipuscS (b) | b ∈ domS} (5)

= sup{clmS (b, x) | (b, x) ∈ gphS},

provided that S is a well-connected polyhedral mapping.
Finally, let us comment that Section 5 is concerned with some charac-

teristics of the optimal set along segments determined by two parameters b,
b ∈ domFop

c , formally, with some features of Fop
c

(
b+ µ

(
b − b

))
, provided

that b, b ∈ domFop
c and µ ∈ [0, 1]. That section complements some results

of Section 3. In particular, Section 5 introduces the concept of break steps,
which provides a constructive procedure to determine a particular subdivi-
sion together with a family of indices connecting b with b. We advance that
this procedure is based on the concept of minimal KKT (Karush-Kuhn-
Tucker) sets of indices introduced in [4] in relation to the calmness modulus
of the argmin mapping.

The paper is structured as follows: Section 2 provides some notation and
preliminary results used throughout the work. Section 3 gathers the results
about a well-connected polyhedral mapping S =

⋃
i∈I Si, among which we

underline equality (5), which gives rise to its specification to S = Fop
c in

Theorem 5 of Section 4. Section 5 introduces the concept of break steps
and provides the announced constructive procedure to connect two elements
b, b ∈ domFop

c yielding the variational inequality of Theorem 6, which
underlies the computation of Hof Fop

c .

2 Preliminaries

To begin with, we introduce some definitions and fix the notation used
hereafter. Given X ⊂ Rp, p ∈ N, we denote by intX, clX, convX, coneX,
and spanX the interior, the closure, the convex hull, the conical convex hull,
and the linear hull of X respectively, with the convention conv∅ = ∅ and
cone∅ = span ∅ = {0p} (the zero vector of Rp). Provided that X is convex,
extrX stands for the set of extreme points of X.

Now we recall the Lipschitz type properties appealed to in the paper for
a multifunction M : Y ⇒ X between metric spaces, with both distances
being denoted by d. The Hoffman property holds if there exists a constant
κ ≥ 0 such that

d(x,M(ỹ)) ≤ κd (y, ỹ) for all y, ỹ ∈ domM and all x ∈ M (y) ; (6)
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equivalently,

d(x,M(ỹ)) ≤ κd
(
ỹ,M−1(x)

)
for all x ∈ X and all ỹ ∈ domM,

where, for x ∈ X and Ω ⊂ X, d (x,Ω) := inf {d (x, ω) | ω ∈ Ω} , with the
convention inf ∅ := +∞ (so that d (x, ∅) = +∞), domM is the domain of
M (recall that y ∈ domM ⇔ M(y) 6= ∅) and M−1 denotes the inverse
mapping of M (i.e. y ∈ M−1 (x) ⇔ x ∈ M(y)).

Regarding semilocal measures, this paper focuses on the Lipschitz upper
semicontinuity of M at y ∈ domM, which is defined as the existence of a
neighborhood V of y along with a constant κ ≥ 0 such that

d(x,M(y)) ≤ κd (y, y) for all y ∈ V and all x ∈ M (y) . (7)

We also appeal to the calmness property, which is a local measure as
it considers solutions near a given (nominal) solution x and parameters in
a neighborhood of the nominal one y. Specifically, M is said to be calm
at (y, x) ∈ gphM (the graph of M) if there exist a constant κ ≥ 0 and a
neighborhood of (y, x) , V × U, such that

d(x,M(y)) ≤ κd (y, y) for all x ∈ M(y) ∩ U and all y ∈ V, (8)

which is known to be equivalent to the metric subregularity (cf. [6, Theorem
3H.3 and Exercise 3H.4]) of M−1 at (x, y) which reads as the existence of
κ ≥ 0 and a (possibly smaller) neighborhood U of x such that

d(x,M(y)) ≤ κd
(
y,M−1(x)

)
for all x ∈ U . (9)

The infimum of constants κ, for some associated neighborhoods, appear-
ing in (6), (7) and (8)-(9) are the Hoffman constant of M, the Lipschitz
upper semicontinuity modulus of M at y and the calmness modulus of M
at (y, x) , denoted by Hof M, LipuscM (y) and clmM (y, x) , respectively.
These three constants may be written as follows (the first and the third
come directly from the definitions, while the second is established in [2,
Proposition 2]):

Hof M = sup
(y,x)∈(domM)×X

d(x,M(y))

d (y,M−1(x))
,

LipuscM(y) = lim sup
y→y

(
sup

x∈M(y)

d(x,M(y))

d (y, y)

)
, y ∈ domM,

clmM (y, x) = lim sup
x→x

d(x,M(y))

d (y,M−1(x))
, (y, x) ∈ gphM.

(10)
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Here we use the convention 0
0 := 0 and lim supz→z is understood as the

supremum (maximum, indeed) of all possible sequential upper limits for all
possible sequences {zr}r∈N converging to z as r → ∞. It is clear that

sup
(y,x)∈gphM

clmM (y, x) ≤ sup
y∈domM

LipuscM (y) ≤ Hof M. (11)

The following theorem, which comes from [2, Theorem 4], provides a
sufficient condition to get equalities in (11); Corollary 1 and Theorem 5 con-
stitute the counterpart of this result, in Euclidean spaces, for well-connected
polyhedral mappings and for the particular case of Fop

c , respectively.

Theorem 1 Let M : Y ⇒ X, with Y being a normed space and X being a
reflexive Banach space. Assume that gphM is a nonempty convex set and
that M has closed images. Then

Hof M = sup
y∈domM

LipuscM (y) = sup
(y,x)∈gphM

clmM (y, x) . (12)

Clearly, gphF is a convex set and F has closed images (indeed, gphF is a
convex polyhedral set) and, hence, the previous theorem applies for M = F .
Regarding the argmin mapping, gphFop is no longer convex; indeed, gphFop

c

is also nonconvex in general. This underlies the fact that the analysis of
Hof Fop and Hof Fop

c do not rely on Theorem 1; indeed, as announced in
Section 1, this analysis constitutes the main goal of the current paper and
it is developed in Section 4 appealing to the results of Section 3 about well-
connected polyhedral mapping.

The rest of this section is devoted to provide some background on the
calmness and Lipschitz upper semicontinuity moduli for multifunction Fop.
Specifically, Theorems 2 and 3 provide point-based formulae (only depending
on the nominal parameter and point) for these two constants. Although
gphFop is not convex, Fop still satisfies a certain local directional convexity
property, which turns out to be crucial for obtaining Theorem 3 (see [3,
Theorem 5]).

Let us introduce some notation and fix the topology of the involved
spaces. The space of variables, Rn, is endowed with an arbitrary norm ‖ · ‖,
whose dual norm ‖ · ‖∗ is given by ‖u‖∗ = max‖x‖≤1 |u′x|. Each element b in
the RHS parameter space, Rm, works with the norm ‖b‖∞ := maxt∈T |bt|.
The full parameter space, Rn × Rm, is endowed with the norm ‖ (c, b) ‖ :=
max {‖c‖∗, ‖b‖∞}. From now on we appeal to the set of active indices at
x ∈ F (b) , defined as

Tb (x) :=
{
t ∈ T : a′tx = bt

}
.
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Definition 1 Given (c, b) ∈ domFop and x ∈ Fop (c, b) , the family of
minimal KKT index subsets at ((c, b) , x) denoted by Mc,b (x) –and in-
troduced in [4]–, is defined as the collection of all D ⊂ Tb (x) such that
D is minimal (with respect to the inclusion order) among those satisfying
−c ∈ cone {at, t ∈ D} . It can be checked that Mc,b (x) does not depend on
x ∈ Fop (c, b) (cf. [7, Remark 2]), so that it is referred to as the family of
minimal KKT index subsets at (c, b), denoted as Mc,b.

Lemma 1 [3, Lemma3.2] Let (c, b) ∈ domFop. Then there exists ε > 0
such that for every b ∈ domF with ‖b − b‖∞ ≤ ε we have Mc,b ⊂ Mc,b.

For any D ∈ Mc,b we consider the mapping LD : Rm × RD ⇒ Rn given
by

LD (b, d) :=
{
x ∈ Rn : a′tx ≤ bt, t ∈ T ; −a′tx ≤ dt, t ∈ D

}
. (13)

Proposition 1 [4, Proposition 4.1] Let (c, b) ∈ domFop. Then

LD

(
b,−bD

)
= Fop(c, b) for all D ∈ Mc,b.

The next result provides three different expressions for the calmness
modulus of the optimal set mapping Fop at

((
c, b
)
, x
)

∈ gphFop. The first
two ones come directly from [4, Corollary 4.1]; in the second expression each
clmLD

((
b,−bD

)
, x
)
can be computed through the concept of end set of a

convex set C ⊂ Rn, traced out from [10] and defined as

endC := {u ∈ clC | ∄µ > 1 such that µu ∈ clC} .

The third expression can be seen as a geometrical interpretation of the for-
mula given in [5, Theorem 4] for the calmness modulus of a feasible set
mapping. Observe that LD is nothing else but the feasible set mapping
associated with an extension of the constraint system of (1) in order to
force that inequalities indexed by D are held as equalities at the nominal
parameter. Here bD means

(
bt
)
t∈D .

Theorem 2 [4, Corollary 4.1], [5, Theorem 4] Let
((
c, b
)
, x
)

∈ gphFop.
Then

clmFop
((
c, b
)
, x
)
= clmFop

c

(
b, x
)
= max

D∈Mc,b

clmLD

((
b,−bD

)
, x
)

=

(
min

D∈Mc,b

d∗
(
0n, end conv

{
at, t ∈ Tb (x) ;−at, t ∈ D

})
)−1

.
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Let us introduce the natural extension for the set of extreme points:

E (b) := extr (F (b) ∩ span {at, t ∈ T}) , b ∈ domF ,

Eop (c, b) := extr (Fop (c, b) ∩ span {at, t ∈ T}) , (c, b) ∈ domFop.

The reader is addressed to [13, p. 142] and [7, Section 2.2] for details about
these constructions. Note that Eop (c, b) = Fop (c, b) ∩ E (b) for (c, b) ∈
domFop.

Theorem 3 [3, Corollary 4.1, Proposition 4.2, and Theorem 4.2] Let
(
c, b
)

∈
domFop, then

LipuscFop
(
c, b
)

= LipuscFop
c

(
b
)

= sup
x∈Fop(π)

clmFop
((
c, b
)
, x
)
= max

x∈Eop(π)
clmFop

((
c, b
)
, x
)
.

3 Hoffman constant for a class of polyhedral map-
pings

The main objective of this section is to establish equalities (12) for a certain
class of multifunctions, which are introduced in the following definition. In
this way, Hoffman constants for such multifunctions are determined by the
local behavior of their graph, specifically, by the supremum of calmness
moduli at all points of their graphs.

Definition 2 Let I be a finite index set and, for each i ∈ I, consider a
multifunction Si : Rm ⇒ Rn with a convex polyhedral graph. We say that
S :=

⋃
i∈I Si is a well-connected polyhedral mapping if the following prop-

erties are fulfilled:
(i) domS (=

⋃
i∈I domSi) is a convex set in Rm;

(ii) S |domSi
= Si, for all i ∈ I (equivalently, Si (b) = Sj (b) whenever

b ∈ domSi ∩ domSj , i, j ∈ I).

Along this section we consider Rm and Rn endowed with arbitrary norms,
both denoted by ‖·‖ for simplicity. Given a nonempty closed set C ⊂ Rn,
we denote by

PC(x) := argminy{‖y − x‖ | y ∈ C}
the set of best approximations (projections) of x ∈ Rn onto C. One easily
checks (see [2, Lemma 1]) that for any x̃ ∈ PC(x) there holds

x̃ ∈ PC(x̃+ µ (x − x̃)), for all µ ∈ [0, 1]. (14)
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The following lemma constitutes the counterpart of [2, Lemma 1] into our
current context; indeed, this result holds for multifunctions with a convex
graph and a closed image at the reference point (the closedness of the whole
graph is not required there). For completeness, we write a sketch of the
proof. Hereafter, we liberalize the notation in the sense that symbol b does
not refer to a given nominal parameter.

Lemma 2 Let S =
⋃

i∈I Si be a well-connected polyhedral mapping. Assume
that b, b ∈ domSk for some k ∈ I. Take x ∈ S (b) and any x ∈ PS(b)(x).

Then
d
(
x,S

(
b
))

d
(
b, b
) ≤ clmS

(
b, x
)
.

Proof. Since gphSk is a convex polyhedral set,

(bµ, xµ) := (b, x) + µ((b, x) − (b, x)) ∈ gphSk, for each µ ∈ [0, 1] .

According to (14), x ∈ PSk(b)(xµ), for each µ ∈ [0, 1]. Moreover, taking into

account that Sk

(
b
)
= S

(
b
)
, we have

d
(
x,S

(
b
))

d
(
b, b
) =

‖x − x‖∥∥b − b
∥∥ =

‖xµ − x‖∥∥bµ − b
∥∥ =

d
(
xµ,S

(
b
))

d
(
bµ, b

) , for all µ ∈ ]0, 1].

Since limµ↓0 bµ = b, limµ↓0 xµ = x and, for each µ ∈ ]0, 1],

bµ ∈ domSk and xµ ∈ Sk (bµ) = S (bµ) ,

appealing to the definition of calmness modulus, we obtain the claimed
inequality

d
(
x,S

(
b
))

d
(
b, b
) = lim

µ→0

d
(
xµ,S

(
b
))

d
(
bµ, b

) ≤ clmS
(
b, x
)
.

Definition 3 Let S =
⋃

i∈I Si be a well-connected polyhedral mapping. Let
b, b ∈ domS. We call a subdivision 0 =: µ0 < µ1 < ... < µN := 1 together
with a family of indices i1, ..., iN ∈ I connecting b with b if for all k ∈
{1, ..., N} and all µ ∈ [µk−1, µk] there holds

b+ µ
(
b − b

)
∈ domSik (15)

(equivalently, S
(
b+ µ

(
b − b

))
= Sik

(
b+ µ

(
b − b

))
, whenever µ ∈ [µk−1, µk]).

9



Lemma 3 Let S =
⋃

i∈I Si be a well-connected polyhedral mapping. For
every pair b, b ∈ domS there are 0 =: µ0 < µ1 < ... < µN := 1 together with
a family of indices i1, ..., iN ∈ I connecting b with b.

Proof. We will follow a recursive process. Defining µ0 = 0, assume that
for some k ≥ 0 we have already found µ0 < ... < µk < 1 and indices
i1, ..., ik ∈ I (not any index when k = 0) with property (15) whenever
µ ∈ [µk−1, µk]. Define d := b− b and pick sequences νj ↓ µk and ij ∈ I such
that b + νjd ∈ domSij , where the latter exists for all νj sufficiently small
due to convexity of domS =

⋃
i∈I domSi. Since there are only finitely many

indices, by possibly passing to a subsequence we can assume that ij = i for
all j, for some i ∈ I. Consider the set

Rk+1 := {µ ≥ 0 | b+ µd ∈ domSi}.

Since domSi is a closed convex set as the projection of the convex polyhe-
dral set gphSi onto its first component, the set Rk+1 is a closed (possibly
unbounded) interval. Now define

µk+1 :=

{
supRk+1 if supRk+1 < 1

1 otherwise

and ik+1 := i. Since Rk+1 ∋ νj for all j, νj ↓ µk and Rk+1 is closed, we
readily obtain µk ∈ Rk+1 and µk+1 > µk. Further, if supRk+1 < ∞ then
supRk+1 = maxRk+1 and consequently µk+1 ∈ Rk+1. Thus [µk, µk+1] ⊂
Rk+1 and therefore b + µd ∈ domSk+1, whenever µ ∈ [µk, µk+1]. We now
claim that we can stop the procedure after a finite number N of steps with
µN = 1 connecting b with b. Indeed, if the claim did not hold we would
construct an infinite sequence of indices {ir}r∈N ⊂ I and consequently there
would be 1 ≤ p < q with µp < µq and ip = iq, implying Rp = Rq. By our
construction, this yields the contradiction µp = µq and thus our claim holds
true.

Theorem 4 Let S =
⋃

i∈I Si be a well-connected polyhedral mapping. Let
b, b ∈ domS with b 6= b and consider a subdivision 0 =: µ0 < µ1 < ... <
µN := 1 together with a family of indices i1, ..., iN ∈ I connecting b with
b. Then, for every x ∈ S (b) , there exist points xk ∈ S

(
b+ µkd

)
with k =

0, ..., N − 1 such that

d
(
x,S

(
b
))

d
(
b, b
) ≤ max{clmS

(
b+ µk

(
b − b

)
, xk
)

| k = 0, ..., N − 1}

≤ max{LipuscS
(
b+ µk

(
b − b

))
| k = 0, ..., N − 1}.
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Proof. The second inequality comes directly from the definitions. We will
prove the first one by induction in N. First assume that N = 1. Take any
x ∈ S (b). Then both b and b belong to domSi1 . Let x0 = PS(b)(x) and

apply Lemma 2 to obtain the aimed inequality

d
(
x,S

(
b
))

d
(
b, b
) ≤ clmS

(
b, x0

)
=: γ1.

Now consider a subdivision 0 =: µ0 < µ1 < ... < µN := 1 together with a
family of indices i1, ..., iN ∈ I connecting b with b. Take any x ∈ S (b) and
consider

xN−1 = PSN(b+µN−1(b−b))(x) = PS(b+µN−1(b−b))(x).

On the one hand, Lemma 2 yields

d
(
x,S

(
b+ µN−1

(
b − b

)))

d
(
b, b+ µN−1

(
b − b

)) ≤ clmS
(
b+ µN−1

(
b − b

)
, xN−1

)
,

equivalently
∥∥x − xN−1

∥∥ ≤ clmS
(
b+ µN−1

(
b − b

)
, xN−1

) ∥∥(1 − µN−1

) (
b − b

)∥∥ . (16)

On the other hand, we can write

d
(
x,S

(
b
))

≤
∥∥x − xN−1

∥∥+ d
(
xN−1,S

(
b
))

. (17)

Now, consider
b̃ := b+ µN−1

(
b − b

)
,

subdivision 0 =: µ̃0 < µ̃1 < ... < µ̃N−1 := 1, with µ̃i :=
µi

µN−1

, i =

1, ..., N − 1, together with the family of indices i1, ..., iN−1. Observe that
this subdivision is connecting b and b̃ as

b+ µ̃i

(
b̃ − b

)
= b+ µi

(
b − b

)
, i = 1, ..., N − 1. (18)

Hence, we apply the induction hypothesis with b and b̃ and subdivision

0 =: µ̃0 < µ̃1 < ... < µ̃N−1 := 1 to conclude that for xN−1 ∈ S
(
b̃
)
we can

find points xk ∈ S
(
b+ µ̃k

(
b̃ − b

))
with k = 0, ..., N − 2 such that

d
(
xN−1,S

(
b
))

∥∥µN−1

(
b − b

)∥∥ ≤ max{clmS
(
b+ µ̃k

(
b̃ − b

)
, xk
)

| k = 0, ..., N − 2} =: γ̃.

(19)
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Then, combining (16), (17), (18) and (19) we conclude,

d
(
x,S

(
b
))

≤ clmS
(
b̃, xN−1

) ∥∥(1 − µN−1

) (
b − b

)∥∥+ γ̃
∥∥µN−1

(
b − b

)∥∥

≤ max{clmS
(
b+ µk

(
b − b

)
, xk
)

| k = 0, ..., N − 1}
∥∥(b − b

)∥∥ ,

as we wanted to prove.

Corollary 1 Let S be a well-connected polyhedral mapping. Then

Hof S = sup{LipuscS (b) | b ∈ domS} =sup{clmS (b, x) | (b, x) ∈ gphS}.
Proof. The inequalities “≥” are always true (recall (11)) and inequalities
“≤” follow from Theorem 4.

Remark 1 Apart from conditions (i) and (ii) in Definition 2, the results
of this section only require mappings Si, to satisfy the following conditions
(which are obviously held when gphSi, i ∈ I, are convex polyhedral sets):

• gphSi is a (nonempty) closed convex set in Rm × Rn,

• domSi is a closed convex set in Rm.

Nevertheless, the section has been written for polyhedral mappings having
in mind our application to the argmin mapping under RHS perturbations.

The following example shows that the assumption of Corollary 1 is not
superfluous.

Example 1 Consider mappings M1, M2 : R −→ R given by

M1(y) =

{
0 if y ≤ 0
1 if y > 0

and M2(y) =

{
0 if y < 0

[0, 1] if y ≥ 0

Observe that

clmM1 (y, x) = 0 ∀ (y, x) ∈ gphM1, LipuscM1 (0) = +∞ ,

and
LipuscM2 (y) = 0 ∀y ∈ domM, while Hof M = +∞.

Clearly M1 is not polyhedral as gphM1 is not a finite union of convex
polyhedral sets. Regarding M2, it is a polyhedral mapping, which can be
represented as M2 = M21 ∪ M22, with

gphM21 =]−∞, 0] × {0}, gphM22 = [0,+∞[×[0, 1],

although condition (ii) in Definition 2 fails, since 0 ∈ domM21 ∩ domM22

but M21 (0) 6= M22 (0) .

12



4 Hoffman constant of the argmin mapping under
RHS perturbations

This section gathers the results about the Hoffman constant for the argmin
mapping in linear optimization. It is divided into two subsections depending
on the perturbation setting. In fact, as advanced in the introduction, the
interesting case is the one of RHS perturbations.

4.1 Canonical perturbations

This subsection deals with the optimal set mapping in the context of canon-
ical perturbations, Fop, introduced in (3). Indeed, it is oriented to show
that the computation of Hof Fop has no interest as it is infinite unless we
are placed in a trivial case formalized in the following proposition.

Recall that, in ordinary (finite) linear programming, optimality is equiv-
alent to primal-dual consistency. In other words,

domFop = (− cone {at, t ∈ T}) × domF . (20)

Clearly, gphF , domF , and domFop are convex, while gphFop is no longer
convex.

Proposition 2 We have that

Hof Fop =

{
0 if {at, t ∈ T} = {0n},
+∞ otherwise.

Proof. In the case when {at, t ∈ T} = {0n}, one trivially has

Fop (c, b) =

{
Rn if (c, b) ∈ {0n} × Rm

+ ,
∅ otherwise.

So, it is clear that Hof Fop = 0.
Assume now that {at, t ∈ T} 6= {0n}. Take x ∈ Rn and define bt =

a′tx+1 for all t ∈ T. Hence x ∈ intF
(
b
)
and it cannot be an optimal solution

for any
(
c, b
)

∈ domFop for any c 6= 0n. Fix any c ∈ − cone {at, t ∈ T}\{0n}.
We have d

(
x,Fop

(
c, b
))

= d
(
x,Fop

(
1
r c, b

))
> 0 for all r ∈ N.

On the other hand, it is clear that x ∈ Fop
(
0n, b

)
. Hence

Hof Fop ≥ lim
r→+∞

d
(
x,Fop

(
1
r c, b

))

d
((
0n, b

)
,
(
1
r c, b

)) = +∞.
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4.2 RHS perturbations

This subsection is concerned with multifunction Fop
c defined in (4). We

assume that −c ∈ cone {at, t ∈ T} , which entails, according to well-known
arguments in ordinary (finite) linear programming, that

domFop
c = domF ,

hence domFop
c is a closed and convex set in Rm. On the other hand, gphFop

c

is no longer convex, although it is a finite union of convex polyhedral sets.
Indeed, let us show that Fop

c is a well-connected polyhedral mapping. To do
this, looking at the notation of Definition 2, the role of index set I will be
played by the following family:

Mc :=

{
D ⊂ T

∣∣∣∣
−c ∈ cone {at, t ∈ D} and D is
minimal w.r.t. the inclusion order

}
. (21)

Proposition 3 Let −c ∈ cone {at, t ∈ T} . Then Mc =
⋃

b∈domF Mc,b.

Proof. Inclusion ‘⊃’ is evident. On the other hand, for any D ∈ Mc we
have {D} = Mc,bD = Mc,bD (0n) , where bDt := 0 if t ∈ D and bDt := 1 if
t ∈ T\D.

Associated to each D ∈ Mc we consider

SD (b) =
{
x ∈ Rn : a′tx ≤ bt, t ∈ T\D; a′tx = bt, t ∈ D

}
. (22)

Observe that, recalling (13),

SD (b) = LD

(
b,−bD

)
, whenever b ∈ Rm.

Proposition 4 Assume that −c ∈ cone {at, t ∈ T} . Then, according to the
previous notation, we have:

(i)Fop
c =

⋃
D∈Mc

SD;
(ii)Fop

c |dom SD
= SD.

Accordingly, Fop
c is a well-connected polyhedral mapping.

Proof. Condition (i) comes directly from the well-known Karush-Kuhn-
Tucker conditions in linear programming, while condition (ii) can be derived
from Proposition 1. Specifically, if b ∈ domSD, then, it is clear that D ∈
Mc,b and, hence Proposition 1 yields

Fop(c, b) = LD (b,−bD) = SD (b) .

14



Moreover, it is clear that gphSD is a convex polyhedral set and that domSD

is a closed convex set as the projection of this convex polyhedral set, gphSD,
onto its first component. Consequently, Fop

c is a well-connected polyhedral
mapping.

Theorem 5 Let −c ∈ cone {at, t ∈ T} . One has

Hof Fop
c = max

b∈domF
LipuscFop (c, b)

= max
b∈domF

max
x∈Eop(c,b)

clmFop ((c, b) , x)

= max
D⊂S⊂T
D∈Mc

{d∗ (0n, end conv {at, t ∈ S; − at, t ∈ D})}−1 .

Proof. The first equality comes from Corollary 1. The second equality
comes from Theorems 2 and 3. To prove the third equality, according to
the mentioned theorems, and the fact that the inverse of the minimum of
positive numbers is the maximum of the inverses, it will be enough to prove
that, for each D ∈ Mc and each D ⊂ S ⊂ T, there exist bD,S ∈ domF and
xD,S ∈ Fop (c, bD,S) such that

d∗ (0n, end conv {at, t ∈ S; − at, t ∈ D})−1 = clmFop ((c, bD,S) , xD,S) ,

and for having this it suffices to prove that S = TbD,S
(xD,S) , which auto-

matically implies D ∈ Mc,bD,S
(because of D ∈ Mc). This can be done by

just taking

xD,S = 0n and bD,S (t) =

{
0 if t ∈ S,
1 if t ∈ T\S.

5 Break steps and directional behavior of the op-
timal set

This section is focused on some features of the optimal set along the seg-
ment determined by two elements b and b of its domain; i.e., on the be-
havior of Fop

c

(
b+ µ

(
b − b

))
, provided that b, b ∈ domFop

c and µ ∈ [0, 1].
Specifically, the main contribution of this section is to provide a way of
computing a subdivision 0 =: µ0 < µ1 < ... < µN := 1 together with a fam-
ily D1, ...,DN ∈ Mc connecting b with b. Recall that the existence of such
subdivision is guaranteed since Fop

c is a well connected polyhedral mapping
(recall Lemma 3).
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Lemma 4 Let b, b ∈ domF . Assume Mc,b = Mc,b 6= ∅. Then,

Mc,b+µ(b−b) = Mc,b for all µ ∈ [0, 1].

Proof. First observe that b + µ
(
b − b

)
∈ domF for all µ ∈]0, 1[ because

of the convexity of domF . Fix arbitrarily x ∈ Fop
c

(
b
)
and x ∈ Fop

c (b) and
consider the convex combination

(bµ, xµ) :=
(
b, x
)
+ µ

(
b − b, x − x

)
∈ gphF , µ ∈]0, 1[.

It is immediate from the definitions that

Tbµ (x
µ) = Tb (x) ∩ Tb (x) , for all µ ∈]0, 1[. (23)

Just observe that, for any t ∈ T,

a′tx
µ − bµt = (1 − µ)

(
a′tx − bt

)
+ µ

(
a′tx − bt

)
≤ 0, (24)

and equality holds if and only if a′tx − bt = a′tx − bt = 0. Take any µ ∈ ]0, 1[
and let us show that Mc,bµ = Mc,b.

Observe that any D ∈ Mc,b = Mc,b is contained in Tbµ (x
µ) because

of (23), and clearly D is minimal among the subsets of Tbµ (x
µ) satisfying

−c ∈ cone{at, t ∈ D}, since this minimality happens, for instance, in the
subsets of Tb (x) . In other words, D ∈ Mc,bµ .

In order to check the converse inclusion, take any D ∈ Mc,bµ , in par-
ticular D ∈ Tbµ (x

µ) and hence D ∈ Tb (x) . Moreover, the minimality of D
among the subsets of Tb (x) comes from the minimality over the subsets of
Tbµ (x

µ) .

Definition 4 Given b, b ∈ domF , b 6= b, we define the break step set
between b and b by :

B
(
b, b
)
:=
{
µ ∈]0, 1[

∣∣∣∃νr → µ , Mc,b+νr(b−b) $ Mc,b+µ(b−b) ∀r ∈ N
}
.

Remark 2 Because of Lemma 1, in the previous definitions we might re-
place ”$” with ”6=”.

Proposition 5 Given b, b ∈ domF , b 6= b, we have:
(i) B

(
b, b
)
is a finite set (possibly empty).

(ii) If B
(
b, b
)
= {µ1, µ2, ..., µN}, with 0 =: µ0 < µ1 < µ2 < ... < µN <

µN+1 := 1, then

µ 7−→ Mc,b+µ(b−b) is constant on ]µi−1, µi[ for any i = 1, 2, ..., N + 1.
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(Take N = 0 when B
(
b, b
)
= ∅, in which case we just have Mc,b+µ(b−b) =

Mc,b for all µ ∈ [0, 1]).

(iii) Let B
(
b, b
)
= {µ1, µ2, ..., µN}, with 0 := µ0 < µ1 < ... < µN <

µN+1 := 1 and, for each i = 1, ..., N + 1, fix any

Di ∈ Mc,b+µ(b−b), µ ∈]µi−1, µi[.

Then subdivision 0 := µ0 < µ1...µN < µN+1 = 1 together with the family
D1, ...,DN+1 ∈ Mc is connecting b with b.

Proof. (i) Reasoning by contradiction, assume that B
(
b, b
)
is infinite,

take a sequence of scalars {µr}r∈N ⊂ B
(
b, b
)
and consider the correspond-

ing sequence of subsets
{

Mc,b+µr(b−b)

}
r∈N

. Since Mc,b+µr(b−b) ⊂ Mc,

for all r, and Mc is finite, there exist infinitely many repeated subsets in{
Mc,b+µr(b−b)

}
r∈N

. In particular, we can take three break steps µr1 < µr2 <

µr3 with the same minimal KKT set of indices. Then, since Mc,b+µr1
(b−b) =

Mc,b+µr3
(b−b), applying the previous lemma (with b + µr1

(
b − b

)
and b +

µr3

(
b − b

)
playing the role of b and b), Mc,b+µ(b−b) = Mc,b+µr1

(b−b) for

all µ ∈ [µr1 , µr3 ], which contradicts the fact that µr2 is also a break step
between b and b.

(ii) Fix any i ∈ {1, ..., N +1} and let us see that Mc,b+µ(b−b) is constant

on ]µi−1, µi[. Arguing by contradiction, assume that there exist µ and µ̃ with
µi−1 < µ < µ̃ < µi such that Mc,b+µ(b−b) 6= Mc,b+µ̃(b−b). Define

α := sup
{
µ > 0 | Mc,b+µ(b−b) = Mc,b+µ(b−b)

}
.

Observe that α > µ since µ /∈ B
(
b, b
)
(which comes from the definition of

break step together with Remark ??). Indeed, α ≥ µi (contradicting the
existence of µ̃) since, if we had α < µi we would attain a contradiction by
distinguishing two cases:

Case 1 : If Mc,b+α(b−b) = Mc,b+µ(b−b) by definition of supremum, there

would exist a decreasing sequence of scalars νj ↓ α with Mc,b+νj(b−b) 6=
Mc,b+α(b−b). Then we would have α ∈ B

(
b, b
)
which represents a contradic-

tion (observe that µi−1 < α < µi).
Case 2 : If Mc,b+α(b−b) 6= Mc,b+µ(b−b), again by the definition of supre-

mum, there would exists an increasing sequence νj ↑ α with Mc,b+νj(b−b) 6=
Mc,b+α(b−b). Again, we would attain the contradiction α ∈ B

(
b, b
)
.
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(iii) is a direct consequence of (i) and (ii) together with Proposition 4.
Specifically, Fop

c =
⋃

D∈Mc
SD, subsets D1, ...,DN ∈ Mc and

b+ µ
(
b − b

)
domSDi for all µ ∈ [µi−1, µi],

since Di ∈ Mc,b+µ(b−b) for all µ ∈]µi−1, µi[, and taking the closedness of

domSDi (recall Definition 3).
The following result is a direct consequence of Theorem 4 and Proposi-

tions 4 and 5.

Theorem 6 Let b, b ∈ domF , b 6= b, and consider the set of break steps
B
(
b, b
)
= {µ1, µ2, ..., µN}, with 0 := µ0 < µ1 < µ2 < ... < µN < µN+1 := 1.

Then for every x ∈ Fop
c (b) one has

d
(
x,Fop

c

(
b
))

d
(
b, b
) ≤ max{LipuscFop

c

(
b+ µkd

)
| k = 0, ..., N}.

6 Conclusions, perspectives and examples

The main contributions of the current work are, on the one hand, to ensure
the fulfilment of the following equalities

Hof S = sup{LipuscS (b) | b ∈ domS} =sup{clmS (b, x) | (b, x) ∈ gphS},
(25)

provided that S be a well-connected polyhedral mapping, which is the case
of the argmin mapping Fop

c (under RHS perturbations). In this way, the
global Lipschitzian behavior of optimal solutions is characterized through
the local one. On the other hand, in the particular case when S = Fop

c we
can go further to derive a point based expression for such constant:

Hof Fop
c = max

D⊂S⊂T
D∈Mc

{d∗ (0n, end conv {at, t ∈ S; − at, t ∈ D})}−1 .

There is another type of Hoffman constants located at a fixed point of the
domain of the multifunction under consideration. Following the terminology
of [2], the Hoffman modulus of S at b ∈ domS is defined as

Hof S(b) := sup
(b,x)∈gphS

d(x,S(b))
d
(
b, b
) . (26)

It is clear that we can add the following equality to (25):

Hof S = sup
b∈dom S

Hof S(b).
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In the case when gphS is a convex polyhedral set Hof S(b) = LipuscS
(
b
)

(see [2, Theorem 4 ] for a more general framework where this equality holds),
which is the case of the feasible set mapping S. However, this is not the
case of a general, even well-connected, polyhedral mapping as the following
simple example shows.

Example 2 Consider the mapping S : R −→ R given by

S(y) =
{

0 if y ≤ 0
y if y > 0

Observe that

LipuscS (−1) = 0 while Hof S(−1) = Hof S =1.

Another feature about Hof S(b) is that the supremum in (26) may be
attained or not. In the previous example, it is not attained, while, for
instance, for the new mapping given by S̃(y) = 0, if y ≤ 0, S̃(y) = y, if
y ∈ [0, 1], S̃(y) = 1, if y ≥ 1, we have

Hof S̃ = 1 > Hof S̃(−1) =
|S (1) − S (−1)|

1 − (−1)
=

1

2
> Lipusc S̃ (−1) = 0.

Moreover, in contrast to Lipschitz upper semicontinuity moduli or to the
Hoffman constant, the Hoffman modulus Hof S̃(−1) cannot be expressed in
terms of calmness moduli, since the only possible calmness moduli in this
example are either 0 or 1.

All the previous situations may also happen in general for mapping
Fop
c . Specifically, Hof Fop

c (b) may be strictly in between LipuscFop
c

(
b
)
and

Hof Fop
c , and the supremum defining Hof Fop

c (b) may be attained or not.
Moreover, are not enough to express Hof Fop

c (b).
While we already have (Theorems 2 and 3) point-based formulae (only

involving the nominal data) for computing LipuscFop
c

(
b
)
and clmFop

c

(
b, x
)
,

the computation of Hof Fop
c (b) remains as open problem.
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