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Abstract: This paper introduces a new methodology to include daylight information in short-term
load forecasting (STLF) models. The relation between daylight and power consumption is obvious
due to the use of electricity in lighting in general. Nevertheless, very few STLF systems include
this variable as an input. In addition, an analysis of one of the current STLF models at the Spanish
Transmission System Operator (TSO), shows two humps in its error profile, occurring at sunrise
and sunset times. The new methodology includes properly treated daylight information in STLF
models in order to reduce the forecasting error during sunrise and sunset, especially when daylight
savings time (DST) one-hour time shifts occur. This paper describes the raw information and the
linearization method needed. The forecasting model used as the benchmark is currently used at
the TSO’s headquarters and it uses both autoregressive (AR) and neural network (NN) components.
The method has been designed with data from the Spanish electric system from 2011 to 2017 and
tested over 2018 data. The results include a justification to use the proposed linearization over other
techniques as well as a thorough analysis of the forecast results yielding an error reduction in sunset
hours from 1.56% to 1.38% for the AR model and from 1.37% to 1.30% for the combined forecast.
In addition, during the weeks in which DST shifts are implemented, sunset error drops from 2.53%
to 2.09%.

Keywords: daylight; load forecasting; Power Demand

1. Introduction

Short-term load forecasting (STLF) is one of the key functions of a Transmission System
Operator (TSO) in maintaining technical viability of the system with low operational costs.
STLF includes forecasts made from one hour to several days ahead. It provides useful
information for system operators to guarantee the reliability of the system, for generators
to optimize schedules [1] and for market participants to generate market biddings on both
sides of the market.

STLF has been a subject of research for several decades. However, its relevancy has
not decayed [2–5]. Several techniques are used as forecasting engines: linear regressive
models [6–8], neural networks [6,9,10] and other sorts of artificial intelligence like fuzzy
logic [9,11], or evolutionary algorithms [11–14], and recurrent neural networks [15,16].
Recent advances in technology have freed the use of neural networks with more than
the typical three layers [17]. These deep neural networks (DNNs) have been applied
to load forecasting [18–20] and they have allowed researchers to reduce the workload
of hand-designed feature inputs, which makes them good candidates for smart grid
applications [21]. However, when forecasting large systems, the most relevant factor
or innovation may not be the forecasting engine but rather the selection and treatment
of the input information fed to these engines. Therefore, for a 40 GW system like Spain’s
inland network, it is still worth designing these stages specifically for the system.

There are several stages in input treatment and selection. The following paragraphs
review different techniques used to address this issue.
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Almost all models include temperature from one or more locations linearized either
piecewise or through another function like a 3rd degree polynomial. Several examples
can be found in [6,8,22–26]. Long term trends are usually captured by linear or quadratic
polynomials of time [10], but also can be modeled by a moving function of previous
loads [6] and it can even ignored for shorter period of time. The type of day and other
calendar factors (month, season . . . ) are normally included as dummy variables but its
definition can be as simplistic as using two or three categories [27], classifying by day of the
week and holidays [28] or as complex as using multiple categories depicting every feature
of many special day categories [6]. A thorough review of different special day forecast
approaches can be found in [29].

The relevance of electric lighting in the daily load profile is well established in numer-
ous studies about the effect of daylight savings time (DST) policies [30–33]. Nevertheless,
its use in STLF models is less documented than that of temperature. In [22], daylight
duration is used to determine two activity states (“active” and “rest”) and these states
are used to estimate the effect of temperature discriminating by this factor. However,
the model proposed does not include a long-term trend because it only uses two years
of training data and it only differentiates between working and non-working days. In
addition, the thresholds for each state seem to be fixed throughout the year, therefore, they
do not take into account daylight variation. In [34], daylight information is included to
forecast week-ahead load daily peaks. The number of hours from sunrise to sunset is used
as an input but the effect of daylight on each hour’s load is not analyzed, because only
peak load is forecasted. The duration of daylight as a variable is also presented in [35,36]
as part of a thorough analysis of the modeling of France and Germany’s load. The French
research dismisses the use of daylight variables due to its high correlation with temperature.
Nevertheless, the German study does find the variable significant. However, as both of
them use duration of daylight as variables, it is not possible for their models to capture the
effect of DST policies, which alter the times of sunrise and sunset but do not affect duration.

As part of the Spanish TSO’s plan to improve load forecasting, there have been several
attempts to improve accuracy by using a different focus of attention: In [37], the authors
analyzed the forecasting models working at REE (Red Eléctrica de España) in 2008 and
compared them to two external models built by an external organization. They concluded
that the existing models outperformed the challengers. In [6], a new model was proposed
and this time daylight information was included in the system. The new model focused on
days with extreme temperatures and holidays and special days. In [22], a first approach to
including daylight information is presented but only for modeling the load, not to forecast
it. More recently, in [38] another effort to improve the modeling of the non-linear effect
of temperature is proposed. The results from this last research are analyzed in the results
section as a benchmark. The latest analysis of the current forecasting system reveals that,
as can be seen in Figure 1, the error profile has two peaks near the sunrise and sunset times.
Furthermore, in the case of sunset, this error peak coincides with one of the load peaks and,
therefore, its accurate forecast is especially relevant.

This paper proposes a new methodology to include available daylight into STLF
models. The main contributions of this research work to the field are:

- The relation between sunrise and sunset times and hourly load is modeled.
- A valid linearization for this relation is presented so that it can be included in both

linear or non-linear models is presented.
- This new input is included in both types of models to reduce the forecasting error on

sunrise and sunset times, especially when sunrise and sunset times vary faster and
when DST time-shifts are implemented.

This paper is organized as follows. Section 2 describes the mathematical models tested,
the data used and a detailed description and justification of the linearization proposed. It
also includes a description of the different tests carried out in the design and assessment
phases. In Section 3, the results of each test are detailed, to guide the reader through the
design decisions and the assessment conclusions. Section 4 includes the conclusions and a
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recommendation to roll-out this methodology into the current forecasting system at the
Spanish TSO.

Figure 1. Average hourly error of the autoregressive model currently running at REE headquarters.
The figure shows two humps from 7 a.m. to 10 a.m. and from 6 p.m. to 10 p.m.

2. Materials and Methods

The main objective of this paper is to reduce forecasting error on hours near sunrise
and sunset times. To this end, the starting point for this research will be the forecasting
model currently at use by the Spanish TSO, which was designed by our team and is
thoroughly described in [6]. The most relevant characteristics of the data used by this
model and its mathematical features are explained in the following section to provide a
proper background to the reader. Nevertheless, the section will focus on the new additions
to this model: characteristics of the daylight variables, treatment and linearization of these
variables and modifications to the existing model. Further details about the input data
treatment, configuration of forecasting engines, combination of output and general data
flow in the original model, can be found in [6].

2.1. Model Structure

The model employs a hybrid technique in which two forecasting engines are used to
provide hourly forecasts for the day in course and the next 9 days. This paper will focus
on the forecast for the next day, as most papers do in order to provide a more comparable
result. One of the forecasting engines uses an autoregressive neural network (NARX)
while the other one uses a linear autoregressive model with errors (AR). The input analysis
carried out in this paper will focus on the autoregressive (AR) model because it allows
interpreting the effect of each variable. Still, the effect of the new input will be tested on
both engines.

The models consider each hour of the day individually. This means that to forecast
a full day, 24 models are used, each one having the same input structure. This allows for
a variation of each variable’s coefficient throughout the day but causes each hour to be
forecasted independently from the adjacent values.

The autoregressive part of the model significantly reduces the forecasting error by
using previous errors to capture effects that are not modeled by the predictors used. This
feature is beneficial in forecasting, but in modeling it may cover up the effect of the
predictors—both used and missing.

In order to overcome the issues described, the AR model is modified to better suit our
purposes. Firstly, the AR components are removed for the analysis of the input variables.
Nevertheless, the full model with AR components will be tested at the end, once the
variables are properly defined. Secondly, in order to understand how daylight affects
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load, it is not possible to limit each model to one hour because the variation of daylight
within one hour throughout the year is too short. Therefore, the daylight variables need to
be considered as global variables. The proposed model is, therefore, a linear regression
with exogenous variables that affect differently each hour but also with common variables
regarding daylight. It is described in (1):

Y1
...

Yh
...

Y24

 =



X1 0

0
. . .

0 . . . 0
...

0 . . .
...

Xh . . .
. . .

0
0

0 0 . . . 0 X24

·


Θ1
...

Θh
...

Θ24

+
[

Dup Ddown
]
·
[

Φup
Φdown

]
+



ε1
...

εh
...

ε24

 (1)

where Yh is a vector with the natural logarithm of the load values at hour h each day,
Xh is a matrix with the values of all exogenous variables for hour h each day, θh is the
vector of coefficients for each variable (the same variable has a different coefficient for each
hour), εh is a vector containing the residuals, Dup and Ddown are the matrices containing
the piecewise variables and ϕup and ϕdown are the vectors of coefficients for the daylight
variables linearization. The model described in (1) will be used to analyze the effect of the
daylight variables and design their proper pre-treatment. However, once these variables
have been designed, they will be introduced into the initial AR and NARX models.

2.2. Data Analysis
2.2.1. Load Data

The load data are used both as an input and as an output in the model. For this
research, hourly data from the Spanish inland system from 2011 to 2018 [39] have been
used. The use of large databases is important when using variables that repeat over long
periods of time (temperature, daylight or holidays). Otherwise, the modeled behavior may
be partial. In addition, databases may differ in predictability which increases the difficulty
of comparing and analyzing accuracy results [3,40]. To avoid this issue, Table 1 includes a
measure of approximate entropy (ApEn) as a measure of unpredictability. More details
about this metric and its parameters can be found in [41].

Table 1. Approximate entropy.

Embedded Dimension 1 4 8 12 16 20 24

ApEn 1.038 0.553 0.266 0.125 0.078 0.058 0.034

Time delay = 1; radius = 0.2 times the standard deviation of the load series

Load data are used as an input in two ways:

- Long-term trend: Economic growth is the main driver for long-term trends in electric-
ity demand in Spain. The base model uses a quadratic polynomial of time to model
these trends, but when larger periods of data are used for training this approach is no
longer valid. In order to use more training years, the linear and quadratic terms are
substituted by a 52-week moving average of the load.

- Recent trend: Load series are highly autocorrelated. Therefore, even if the most
relevant predictors are used, a recent value of the series has hidden information from
which accuracy of the model may benefit. To this end, the base model includes the
most recent known value at the time of the forecast as an input. Nevertheless, this
value will not be used in the design stage of our model because it may cover up part
of the effect of the variables to be analyzed.

Finally, as in most other models, the output of the model is calculated as the natural
logarithm of the load.
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2.2.2. Temperature Data

The temperature database that was used contains daily minimum and maximum
values for the same 2011–2018 period from 59 weather stations scattered throughout the
country [42]. Data series from each station are highly correlated to each other and carry
very similar information. The selection of the relevant stations, linearization of the variables
using the concept of heating degree days (HDD) and cooling degree days (CDD) and the
determination of the lags to use is done by empiric procedure described in [6]. The results
for location (Madrid-MAD, Barcelona-BCN, Seville-SEV, Zaragoza-ZAR and Bilbao-BIL)
and lags used that were significant at a 0.05 level are described in Table 2:

Table 2. Temperature variables significant at a 0.05 level.

Lag MAD BCN SEV ZAR BIL

0 HDD/CDD HDD/CDD HDD/CDD HDD/CDD —/CDD

1 —/— HDD/CDD —/— —/— —/—

2 —/— —/— —/— —/— —/—

2.2.3. Calendar Data

The type of day is a very important aspect that determines the load profile. The
classification system used is very complex and it is thoroughly defined in [29]. It uses
binary variables to categorize days considering the many different circumstances that affect
special days in Spain.

2.2.4. Daylight

In order to include variables that represent how the consumers’ behavior is affected
by available daylight at any given hour, literature suggests [43–45] that some hours are
affected by sunset time while others are affected by sunrise. Midnight and midday hours
are normally considered unaffected. In [46], sunrise and sunset time was used to quantify
the effect of daylight savings time in the Spanish systems. The following paragraphs
present a similar approach to include these variables in STLF models. Two raw variables
are considered to capture the influence of daylight: number of hours to sunrise and number
of hours to sunset, as described in (2).

DLup(d, h) =

{
tsunrise(d)− h, i f h ∈ (L1, L2)

0 otherwise

DLdown(d, h) =

{
tsunset(d)− h, i f h /∈ (L1, L2)

0 otherwise

(2)

where DLup and DLdown are the morning and evening variables, d is the date, h is the hour,
tsunrise(d) and tsunset(d) is the sunrise and sunset times for day d in Madrid and L1 and L2 are
the first and last hours of the morning interval.

The model will consider that all hours can be affected by one event, therefore all hours
are assigned one variable. The threshold that splits which hours are assigned to sunrise
and which are assigned to sunset will be determined empirically. In any case, it should not
be a critical parameter because hours adjacent to such threshold should not be affected by
either event. Sunrise and sunset times are calculated for the coordinates of Madrid.

In order to understand how the daylight information should be introduced in the
model, it is important to understand how it affects the load profile. The clock changes that
happen when DST is set on and off are a good opportunity to visualize this. Figure 2 shows
how load profile changes on a Sunday before and after the spring time shift. The evening
change is much more noticeable than the morning change and midday and midnight hours
seem to be unaffected. This means that the relation between load at a given hour and the
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number of hours to sunrise or sunset is not linear. Therefore, it is necessary to linearize the
variables before entering the model.

Figure 2. Normalized profiles of the Sunday before and after the daylight savings time (DST) time
shift in March.

2.3. Linearization of Daylight Variables

In order to linearize the relation between load and our daylight variables, we need to
visualize the effect that they have on the load. To this end, a piecewise linearization is a
good starting point to understand the relation among variables:

2.3.1. Piecewise Linearization

Piecewise linearization is used to separate each variable in intervals in which the
relation between variables could be assumed to be linear and continuous among intervals.
The span of sunset and sunrise intervals is separated into n intervals (INT1 . . . n) defined by
n + 1 thresholds (TH0 . . . n). The number of intervals is set empirically to an interval length
of 60 min after testing 15-, 30-, 60- and 120-min long intervals. Longer intervals caused
larger fitting errors while shorter intervals provoked overfitting.

The linearization is realized by creating two new variables (slope and intercept) for
each interval. Both initial variables DLup and DLdown are linearized so a total of 2 × n × 2 =
4n variables are created. These variables are described in (3):

Mup/dw,i(d, h) =

{
DLup/dw(d, h), DLup/dw(d, h), ∈ INTi

0, DLup/dw(d, h), /∈ INTi

Kup/dw,i(d, h) =

{
1, DLup/dw(d, h), ∈ INTi

0, DLup/dw(d, h), /∈ INTi
(3)

where Mup/dw,i Kup/dw,i are the slope and intercepts variables for the ith interval for either
the morning or evening function, respectively, and DLup/dw(d,h) is either the morning or
evening function.

These 2 times 2n variables provide a slope and an intercept for each of the intervals
defined. However, this does not imply continuity of the response. In order to force
continuity in the domain of the variables, it is necessary to introduce a series of restrictions
forcing each adjacent interval to have the same value at the shared threshold. These
restrictions are described in (4):

mi · THi + ki = mi+1 · THi + ki+1, i = 1, . . . , n− 1 (4)
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where mi and ki are the slope and intercept coefficients for the ith interval.
These restrictions reduce the number of variables because they restrict the value of

the coefficient. Each restriction subtracts one variable, so the new number of variables is 2
× (2n − (n − 1)) = 2 (n +1). These new variables are described in (5):

Vup/dw,n+1(d, h) = ∑n
1 Mup/dw,i(d, h)

Vup/dw,n(d, h) = Kup/dw,n(d, h) +
i−1
∑

j=1

Mup/dw,j(d,h)
THi−1

Vup/dw,i(d, h) = Kup/dw,i(d, h) + ∑i−1
j=1

Mup/dw,j(d,h)
THi−1

−∑i
j=1

Mup/dw,j(d,h)
THi

, i = 1, . . . , n− 1

(5)

where Vup/dw,i(d,h) is the ith variable of either the sunrise or sunset group. Each variable
takes a value of zero if the hour h does not belong to the corresponding group.

The model described in (1) allows us to interpret the effect that the daylight variables
have on electricity consumption. By isolating the part of the model that deals with daylight
variables it is possible to obtain the corresponding coefficient for each instant. These
coefficients are the response of the load to variations in available daylight and they are
described in (6):

Rt = exp
([

D′up D′down
]
·
[

Φup
Φdown

])
(6)

2.3.2. Sigmoid Linearization

The curves seen in Figure 3 show a stable coefficient for hours far before sunrise or
sunset; there is a steep change around each event and again a constant coefficient for hours
long after. This behavior can be approximated by the sigmoid function described in (7):

sgm(d, h) = b ·
(

1 +
L

1 + e−k·(DLup/dw(d,h)−DL0)

)
(7)

where b, L, k and DL0 are the parameters that determine the size of the step, its position on
both axes and the slope in the transition. These parameters have different values for the
sunrise and sunset linearizations and can be obtained from fitting the sigmoid response to
the piecewise response. The results are shown in (8):

k = 4·R′ t(DL0)
b·L ; L = Rt(∞)

b − 1;
DL0 = R−1

t

(
b ·
(

1 + L
2

))
; b = Rt(−∞);

(8)

where Rt(−∞) is the natural logarithm of the average value of the right side of the curve,
Rt(∞) is the natural logarithm of the average value of the left side and R’t represents
the slope.
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Figure 3 shows the comparison of both linearizations. The curves include the intervals
in which each hour may vary throughout the year. Due to the current DST policy, the time
to sunrise for any hour varies only two hours from winter to summer while the time to
sunset varies four hours throughout the year.

2.3.3. Validation of Linearized Variables

Both linearizations show a similar behavior but the sigmoid linearization requires
less variables. In order to assess the quality of each linearization, the modeling error of
each model will be compared. As a base reference, a third model without any information
regarding daylight will also be tested.

The test consists on an out-of-sample test using data from 2011 to 2017 in which data
from every other year is used to model each year. The results are shown in Table 3. Other
modeling and forecasting errors from the same database can be found in [6,37] for context.

Table 3. Modeling error for each time of day for out-of-sample tests.

Out-of-Sample 7
a.m.

8
a.m.

9
a.m.

Avg.
Sunrise

4
p.m.

5
p.m.

6
p.m. 7 p.m. 8 p.m. 9 p.m. 10 p.m. Avg.

Sunset
Avg.
Rest

w/o daylight 2.23% 2.91% 2.76% 2.63% 2.47% 2.50% 2.68% 3.65% 3.61% 3.55% 2.51% 2.86% 2.30%
piecewise 2.21% 2.52% 2.62% 2.45% 2.47% 2.49% 2.50% 2.44% 2.37% 2.24% 2.09% 2.40% 2.30%
sigmoid 2.21% 2.55% 2.61% 2.46% 2.47% 2.50% 2.51% 2.43% 2.35% 2.24% 2.08% 2.40% 2.30%

The results show that both linearizations provide a very similar result and that, as
expected, their use drastically reduces the modeling error at sunrise and sunset hours.
Considering that the sigmoid linearization matches the piecewise accuracy with a fraction
of the variables, the sigmoid linearization is chosen.

2.3.4. Other Modeling Improvements

The variations in load as available daylight changes is due to consumers’ behavior.
Still, it is arguable that their behavior will change in the same way, regardless of the day
of the week. In order to allow for this variation for different types of days, the model
includes a different set of daylight variables as described in (7) for each type of day. The
categories considered after testing other combinations are Mondays, Sundays and holidays,
Saturdays, and the rest of the weekdays.

2.4. Description of Tests

As it was aforementioned, the aim of the paper is to provide a methodology that
improves forecasting accuracy through the use of available daylight information. In order
to assess the different possibilities considered, several changes have been made from the
original forecasting model in the design and testing stages.

The metric used to compare results is the mean average percentage error (MAPE) as
described in (9). The simulation conditions are day-ahead predictions cast at 10 a.m. the
day before. For the design phase, the data used is from 2011 to 2017, and the model used
corresponds to the AR model stripped from its autoregressive components as described in
(1). In order to obtain out-of-sample results, each year is simulated using a model estimated
with the rest of the years. In that way, we obtain a 7-year-long period of results. The design
phase allows us to determine the best model, which is then tested in the assessment phase.

MAPEd =
24

∑
d=1

∣∣Fd,h − Ld,h
∣∣/Ld,h

24
(9)

where MAPEd is the MAPE for day d, Fd,h is the forecast for day d at hour h and Ld,h is the
actual load on day d and hour h.

In the assessment phase, both the AR and neural network (NN) models are used,
including all of their designed features. The testing data is a 1-year-long period of 2018,
and the model is estimated with the previous data (2011–2017).
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3. Results

This section presents the results not only for the final model but also for the design
phase, as a justification of the design decisions and a guide to the application of this
methodology to other databases. The benchmark used to compare the results of the model
is the current forecast used by the system TSO, as our proposed model is held to the
same computational restrictions and deals with the same database. Comparison across
techniques applied to different databases may hide differences in the predictability of each
data series and may lead to wrong conclusions about the quality of each technique [3]. The
computational burden of the proposed model is the same as that of the previous system.

3.1. Design Results

Six different input configurations were tested in this stage. The details of each config-
uration are included in Table 4.

Table 4. Description of the models tested in the design phase.

# Name Description Vars. Per Hour Period

1 Base w/o month Original model in which eleven binary
variables coding the month are removed. 87

2011–2017

2 Base Original model 98

3 Base + piecewise Original model with piecewise linearization
(n = 10) 108

4 Base + sigmoid Original model with sigmoid linearization 99

5 Base + piecewise by type of day Original model with piecewise linearization
for each type of day (n = 10). 138

6 Base + sigmoid by type of day Original model with sigmoid linearization for
each type of day. 103

The results for the out-of-sample tests are shown in Figure 4. Table 5 also shows the
results by grouping the different periods: sunrise, sunset, mid-day and mid-night.

Figure 4. Average modeling error by time of day with out-of-sample testing.
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Table 5. Modeling error for each time of day for 2018.

Model
Nr.

Sunrise
(7 a.m.–9 a.m.)

Mid-Day
(10 a.m.–5 p.m.)

Sunset
(6 p.m.–10 p.m.)

Mid-Night
(11 p.m.–6 a.m.)

All
Day

1 2.08% 2.01% 2.77% 1.81% 2.09%
2 1.92% 2.00% 2.14% 1.72% 1.91%
3 1.88% 2.00% 2.06% 1.72% 1.90%
4 1.89% 2.00% 2.07% 1.72% 1.90%
5 1.83% 1.97% 1.96% 1.65% 1.84%
6 1.84% 1.99% 1.96% 1.70% 1.86%

The results allow drawing similar conclusions:

- Midday and midnight hours are not improved significantly by the addition of avail-
able daylight information other than the month information. Midday and midnight
modeling errors vary in a range of barely 0.07 percentage points.

- Sunrise hours are improved from 1.92% to 1.83%.
- Sunset hours are more significantly improved, going from 2.14% to 1.96% in out-of-

sample test.

From Figure 4 it can be seen that in the sunrise and sunset intervals both linearizations
(traces 3 and 4) are essentially equivalent and that the first improvement comes from using
either one of them and then, a second increase in accuracy is obtained by discriminating by
type of day.

Considering that the model 5 uses 35 more variables than model 6, the piecewise
linearization is discarded for the assessment phase and the type of day discrimination is
found to be significant.

3.2. Assessment Results

The previous section presented the results that led to the selection of a sigmoid
linearization with type-of-day discrimination due to its accuracy and low number of
variables used. The errors presented were out-of-sample modeling errors. Nonetheless, the
actual assessment of this paper’s contribution is to compare the original forecasting model
used by the TSO with the proposed one in real conditions. To this end, the AR model is
restored to its original configuration and the new variables are added as input. The two
configurations are compared using new data from 2018.

Table 6 presents the forecasting errors of both models along with the forecasting error
of the NN model also used in the TSO’s ensemble. This NN model does not include
any information regarding daylight other than what was already included in the original
model. Table 6 also includes the results of the week after DST is implemented. This
particular week is especially sensitive to the modeled phenomenon and, therefore it is a
good reference value:

The results show that the inclusion of available daylight information causes a reduction
of the forecasting error in sunrise and sunset times of 0.12 and 0.18 percentage points
respectively. As expected, midday and midnight hours remain unaffected. This accuracy
improvement turns the AR model into the best performing model during sunset hours.
The overall result indicates that the new AR model is nearly as accurate as the NN model.
All these conclusions are even more obvious from the DST week results.
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Table 6. Forecasting error for each time of day for 2018.

Model Sunrise
(7 a.m.–9 a.m.) Mid-Day Sunset

(6 p.m.–10 p.m.) Mid-Night All Day

OVERALL
Original AR 1.33% 1.45% 1.56% 1.17% 1.35%
Proposed AR 1.21% 1.45% 1.38% 1.17% 1.30%
Original NN 1.18% 1.48% 1.43% 1.10% 1.29%

DST WEEK
Original AR 1.90% 1.85% 2.53% 1.44% 1.85%
Proposed AR 1.37% 1.80% 2.09% 1.42% 1.67%

Original NN[M1] 1.35% 1.83% 2.14% 1.38% 1.68%

Proposed Model vs. NN

The new variables have been introduced in the AR model in order to obtain a signifi-
cant improvement on sunrise and sunset hours. Table 6 includes results from the original
NN model as a comparison for both AR models. However, the question of whether the
NN can be improved remains.

Several attempts to include available daylight information into the NN model were
carried out. Considering the NN inherent ability to model non-linear behavior, the original
variables of the number of hours to sunrise and sunset were included. Also, on a separate
attempt, the linearized variables were also tested, yet, none of these tests yielded any
improvement in accuracy of the NN model.

Figure 5 shows the NN model’s result on 2018 compared to the AR models. It shows
how the NN model does not show the sunrise and sunset error humps that this paper
addresses. This behavior could be explained through the non-linear behavior of the NN
model and the high correlation between temperature (already in the model) and daylight.
The fact that the AR model became so much more similar to the NN model when the
available daylight information was introduced that it leads to thinking that while the NN
was able to model this behavior from its original variables, the AR model needed the
linearization provided to increase its accuracy.

Figure 5. Forecasting error by time of day of the original and proposed autoregressive (AR) models
and the neural network (NN) model.

The final forecast emitted by the system is a linear combination of both the AR and
NN models. Table 7 shows how the weight in the combination has shifted towards the AR
model and the final improvement of the overall system. Such combination is the result of
an algorithm implemented to minimize error based on the last 30 days. Further details of
this process can be found in [6].
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Table 7. Forecasting error of the benchmark and AR and NN models combined.

Model Sunrise
(7 a.m.–9 a.m.) Mid-Day Sunset

(6 p.m.–10 p.m.) Mid-Night All Day

Persistent (7-days) 4.64% 5.10% 5.18% 3.68% 4.58%
* Cancelo et Al [37] 1.48% 1.67% 1.70% 1.38% 1.56%

Original AR 37% + NN 63% 1.12% 1.36% 1.37% 1.04% 1.21%
* Caro et Al [38] 1.26% 1.33% 1.44% 1.06% 1.25%

Proposed AR 59% + NN 41% 1.09% 1.34% 1.30% 1.05% 1.20%

* Results refer to a forecast of data from 2006.

The results of Table 7 include other references as context for the provided results. All
the references used refer to the same electric system because comparing accuracy using
different databases can be misleading, as some systems are more predictable than others.
Nevertheless, the proposed model presents a clear advantage during sunrise and sunset
hours over all reported results.

All these results were obtained on an i7 2.2GHz PC with 16Gb of RAM under real-time
conditions. A ten-day forecast is emitted every hour with a computing time of 5.3 min on
average that includes reading input files, processing the forecast and writing output files.

4. Conclusions

The possible inputs for STLF models include previous loads, calendar variables, and
environmental variables like temperature, humidity or daylight. However, even though
the use of electric lighting depends directly on available daylight, its use is scarce in the
literature as its own variable.

This paper proposes a methodology for including available daylight information
into STLF models to achieve the goal of reducing forecasting error during sunrise and
sunset hours. It uses as raw variables the number of hours until sunrise and sunset, it
describes how sunrise and sunset hours are affected differently and how the non-linear
relation between load and the raw variables should be linearized through sigmoid functions
without over-complicating the model.

The methodology has been tested using out-of-sample data from 2018. The full-year
results are compared with other models currently running at the National Transmission
System Operator in Spain, proving that the followed approach leads to significant increase
in short-term load forecasting accuracy, especially focused on sunrise (1.33% to 1.21%) and
sunset (1.56% to 1.38%). The improvement is even more relevant on the weeks in which
DST is implemented and daylight changes suddenly: sunrise error falls from 1.90% to
1.37% and sunset error drops from 2.53% to 2.09%. The inclusion of this variables did not
cause any improvements in the forecasting model based on neural networks. However,
the linear combination of both models used reflected the sunrise and sunset improvement
(1.09% vs. 1.12% and 1.30% vs. 1.37%, respectively) and increased the weight of the new
AR model (from 37% to 59%).

The methodology described in this paper will be rolled out into the TSO’s forecasting
system in 2020 as it will help reduce forecasting error especially at peak hours like sunset,
in which inaccuracies are particularly costly to the system.
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