Revised: 2 December 2018

ORIGINAL PAPER

Bounded sets structure of $C_p(X)$ and quasi-(DF)-spaces

Juan Carlos Ferrando¹

Saak Gabriyelyan² Jerzy Kakol^{3,4}

¹Centro de Investigación Operativa, Edificio Torretamarit, Avda de la Universidad, Universidad Miguel Hernández, E-03202 Elche (Alicante), Spain

²Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, P.O. 653, Israel

³Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznan, Poland

⁴Institute of Mathematics Czech Academy of Sciences, Prague, Czech Republic

Correspondence

Saak Gabriyelyan, Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, P.O. 653, Israel. Email: saak@math.bgu.ac.il

Funding information

GAČR, Grant/Award Number: 16-34860L; RVO, Grant/Award Number: 67985840

Abstract

For wide classes of locally convex spaces, in particular, for the space $C_p(X)$ of continuous real-valued functions on a Tychonoff space X equipped with the pointwise topology, we characterize the existence of a fundamental bounded resolution (i.e., an increasing family of bounded sets indexed by the irrationals which swallows the bounded sets). These facts together with some results from Grothendieck's theory of (DF)-spaces have led us to introduce quasi-(DF)-spaces, a class of locally convex spaces containing (DF)-spaces that preserves subspaces, countable direct sums and countable products. Regular (LM)-spaces as well as their strong duals are quasi-(DF)-space not being a (DF)-space. We show that $C_p(X)$ has a fundamental bounded resolution if and only if $C_p(X)$ is a quasi-(DF)-space if and only if the strong dual of $C_p(X)$ is a quasi-(DF)-space if and only if X is countable. If X is metrizable, then $C_k(X)$ is a quasi-(DF)-space if and only if X is a σ -compact Polish space.

KEYWORDS

bounded resolution, class (DF)-space, free locally convex space, pointwise topology, quasi-(DF)-space

MSC (2010) 46A03, 54A25, 54D50

1 | INTRODUCTION

Several recent and earlier results involving the concepts of bounded and compact resolutions (see definitions below), especially developed for spaces $C_p(X)$ of continuous real-valued functions on a Tychonoff space X with the pointwise topology, combined with Grothendieck's ideas about (DF)-spaces, and Cascales–Orihuela concept of the class \mathfrak{G} , have motivated us to introduce the class of *quasi-(DF)-spaces* strictly containing (DF)-spaces. We refer the reader to the papers of Talagrand [47], Tkachuk [48], Cascales–Tkachuk–Orihuela [11], Dow–Guerrero Sanchez [12], Mercourakis–Stamati [34] (see also [30, Chapters 3–11] and references therein), where a number of locally convex spaces with certain types of resolutions have been studied both from the point of view of topology and functional analysis.

The important class of (DF)-spaces, introduced by Grothendieck in [28] (we refer also to monographs [29,36,40] for details), is defined as follows.

Definition 1.1. A locally convex space E is called a (DF)-space if

(1) E has a fundamental sequence of bounded sets, and

(2) *E* is \aleph_0 -quasibarrelled, i.e. every bornivorous (= absorbing each bounded set) closed absolutely convex subset of *E* which can be represented as the intersection of a sequence of closed absolutely convex neighbourhoods of zero is itself a neighbourhoods of zero, see [40].

Countable inductive limits of normed spaces (hence normed spaces) are (DF)-spaces, as well as strong duals of metrizable locally convex space (lcs for short). Also, the strong dual of a (DF)-space is a metrizable and complete lcs (see [40, Theorem 8.3.9, Proposition 8.3.7]). The concept of (DF)-spaces has been generalized by Ruess [42,43] (under the name (gDF)-spaces) and has also intensively studied by Noureddine [38,39], who called them D_b -spaces. Their papers provide also some information about those spaces which in [29] are called (df)-spaces. Next, Adasch and Ernst [1,2] provided another line of research around (DF)-spaces in the setting of general topological vector spaces. Note however that all known generalizations of (DF)-spaces Ekept up the condition (1) on E to have a fundamental sequence of bounded sets while some variations of the weak barrelledness condition (2) on E have been assumed. If $\{B_n\}_{n\in\mathbb{N}}$ is a fundamental sequence of bounded subsets of an lcs E and for each $\alpha = (n_k) \in \mathbb{N}^{\mathbb{N}}$ we set $B_\alpha := B_{n_1}$, the family $\mathcal{B} = \{B_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ satisfies the following conditions:

- (i) every set B_{α} is bounded in *E*;
- (ii) \mathcal{B} is a resolution in E (i.e., \mathcal{B} covers E and $B_{\alpha} \subseteq B_{\beta}$ if $\alpha \leq \beta, \alpha, \beta \in \mathbb{N}^{\mathbb{N}}$);
- (iii) every bounded subset of E is contained in some B_{α} .

If an lcs *E* is covered by a family $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}\$ of bounded sets satisfying conditions (i) and (ii) [and (iii)] we shall say that *E* has a [*fundamental*] *bounded resolution* (see also [32] for more details). Let us recall that every metrizable lcs *E* has a fundamental bounded resolution (see, for example, Corollary 2.3 below), while *E* has a fundamental sequence of bounded sets if and only if *E* is normable.

In the present paper, starting with a preliminary study of the structure of a fundamental bounded resolution for an lcs E and, in particular, for the space $C_p(X)$, we propose another very natural generalization of the concept of (DF)-space by replacing the quite strong and demanding condition on E to have a fundamental sequence of bounded sets by the weaker one to have a fundamental bounded resolution and assuming a natural extra property on the weak*-dual of E (which holds for (DF)-spaces), see Definition 1.3. Our definition of a quasi-(DF)-space involves also the following concept due to Cascales and Orihuela (see [10]).

Definition 1.2 (Cascales–Orihuela). An lcs *E* belongs to *the class* \mathfrak{G} if there is a resolution $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ in the weak*-dual $(E', \sigma(E', E))$ of *E* such that each sequence in any A_{α} is equicontinuous.

Particularly, every set A_{α} is relatively $\sigma(E', E)$ -countably compact. The class \mathfrak{G} is indeed large and contains "almost all" important locally convex spaces (including (DF)-spaces and even dual metric spaces). Furthermore the class \mathfrak{G} preserves subspaces, completions, Hausdorff quotients, countable direct sums and countable products, every precompact set in an lcs in the class \mathfrak{G} is metrizable (see [10] or [30]).

Being motivated by the aforementioned concepts and results we are ready to define quasi-(DF)-spaces.

Definition 1.3. An lcs E is called a *quasi-(DF)-space* if

- (i) *E* admits a fundamental bounded resolution;
- (ii) E belongs to the class \mathfrak{G} .

The most evident examples of quasi-(DF)-spaces not being (DF)-spaces are metrizable non-normable lcs; less trivial examples are provided by the strong dual of strict (LF)-spaces (which need not to be (DF)-spaces as shown in [8]); consequently the space $D'(\Omega)$ of distributions over a nonempty open subset Ω of \mathbb{R}^n provides a very concrete example of a quasi-(DF)-space not being a (DF)-space, see Example 4.5. Although the conditions (1) and (2) from Definition 1.1 may lack for quasi-(DF)-spaces, an essential property of (DF)-spaces: *metrizability of precompact sets* is still kept up for quasi-(DF)-spaces.

Observe that conditions (i) and (ii) are independent in the sense that there exist lcs E in the class \mathfrak{G} without a fundamental bounded resolution, and there exist lcs E not being in the class \mathfrak{G} but having a fundamental bounded resolution, see Examples 4.2 and 4.3 below. In addition, the above definition seems to be optimal because the class of quasi-(DF)-spaces preserves subspaces, countable direct sums and countable products (see Theorem 4.1), while infinite products of (DF)-spaces are not of that type.

The detailed organization of the paper goes as follows. Section 2 provides a dual characterization of lcs with fundamental bounded resolutions, see Theorem 2.7. This result nicely applies to show that every regular (LM)-space (for the definition see below) has a fundamental bounded resolution.

Main two results of Section 3 (which have motivated us to introduce the class of quasi(DF)-spaces) state that $C_p(X)$ has a fundamental bounded resolution if and only if X is countable if and only if the strong dual of $C_p(X)$ has a fundamental bounded resolution, and $C_k(X)$ is metrizable if and only if $C_k(X)$ is Fréchet–Urysohn and has a fundamental bounded resolution, see Theorem 3.3 and Proposition 3.10.

Last section collects together some properties of quasi-(DF)-spaces (see Theorem 4.1) and extends a result of Corson in [35]. The previous sections apply to conclude that $C_p(X)$ is a quasi-(DF)-space if and only if $C_p(X)$ has a fundamental bounded resolution if and only if X is countable if and only if the strong dual of $C_p(X)$ is a quasi-(DF)-space. The latter result combined with Theorem 3.3 shows that, for spaces $C_p(X)$, both conditions (i) and (ii) from Definition 1.3 fail for uncountable X. Recall here that $C_p(X)$ is a (DF)-space only if X is finite (see [46]). On the other hand, if X is a metrizable space, then $C_k(X)$ is a quasi-(DF)-space if and only if X is a Polish σ -compact space, see Proposition 4.9. This shows also an essential difference between quasi-(DF)-spaces and (DF)-spaces $C_k(X)$. Moreover, it is well known that a linear map ξ on a (DF)-space E to a Banach space F is continuous provided the restriction of ξ to any bounded set of E is continuous. However, in Example 4.10 we construct a quasi-(DF)-space E such that there exists a discontinuous linear functional whose restriction to any bounded set of E is continuous. We provide many concrete examples in order to highlight the differences among some properties or between the concepts of (DF)-spaces and quasi-(DF)-spaces. For instance, concrete examples of lcs having a bounded resolution but not admitting a fundamental bounded resolution will be examined. Open questions are also provided.

2 | [FUNDAMENTAL] BOUNDED RESOLUTIONS AND &BASES; GENERAL CASE

In what follows we shall denote by *E* a locally convex space over the field of real or complex numbers and represent by $C_p(X)$ or $C_k(X)$ the space C(X) of all continuous real-valued functions on a Tychonoff space *X* endowed with the pointwise topology or the compact-open topology, respectively.

In this section we obtain dual characterizations of the existence of a [fundamental] bounded resolutions in a lcs E.

Let *I* be a partially ordered set. A family $\mathcal{A} = \{A_i\}_{i \in I}$ of subsets of a set Ω is called *I*-increasing (*I*-decreasing) if $A_i \subseteq A_j$ ($A_i \supseteq A_j$, respectively) for every $i \le j$ in *I*. We say that the family \mathcal{A} swallows a family \mathcal{B} of subsets of Ω if for every $B \in \mathcal{B}$ there is an $i \in I$ such that $B \subseteq A_i$. An $\mathbb{N}^{\mathbb{N}}$ -increasing family of subsets of Ω is called a *resolution* in Ω if it covers Ω . A resolution in a topological space X is called *compact* (respectively, *fundamental compact*) if all its elements are compact subsets of X (and it swallows compact subsets of X, respectively).

We start with the following general observation.

Proposition 2.1. If a lcs E admits an I-decreasing base at zero, then E has an \mathbb{N}^I -increasing bounded resolution swallowing bounded subsets of E. Consequently E'_{β} has an \mathbb{N}^I -decreasing base at zero.

Proof. Let $\mathcal{U} := \{U_i : i \in I\}$ be an *I*-decreasing base at zero in *E*. For every $\alpha \in \mathbb{N}^I$, set

$$B_{\alpha} := \bigcap_{i \in I} \alpha(i) U_i,$$

and set $\mathcal{B} := \{B_{\alpha} : \alpha \in \mathbb{N}^{I}\}$. Clearly, \mathcal{B} is \mathbb{N}^{I} -increasing bounded resolution in E. To show that \mathcal{B} swallows the bounded sets of E, fix a bounded subset B of E. For every $i \in I$, choose a natural number $\alpha(i)$ such that $B \subseteq \alpha(i)U_{i}$ and set $\alpha := (\alpha(i)) \in \mathbb{N}^{I}$. Clearly, $B \subseteq B_{\alpha}$.

In [9] the following important subclass of the class (9) is introduced and studied.

Definition 2.2. An lcs *E* is said to have a \mathfrak{G} -base if *E* admits a base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of neighborhoods of zero such that $U_{\alpha} \subseteq U_{\beta}$ for all $\beta \leq \alpha$.

In [9, Lemma 2] it is proved that a quasibarrelled lcs *E* has a \mathfrak{G} -base if and only if *E* is in class \mathfrak{G} . However, under $\aleph_1 < \mathfrak{b}$ there is a (DF)-space (hence belonging to the class \mathfrak{G}) which does not admit a \mathfrak{G} -base (see [30] or Example 4.6 below). Note also that every (LM)-space *E* has a \mathfrak{G} -base, so *E* is in the class \mathfrak{G} .

Since a metrizable lcs has an ℕ-decreasing base, Proposition 2.1 implies:

Corollary 2.3. If *E* is a metrizable lcs, then *E* has a fundamental bounded resolution and hence the space E'_{β} has a \mathfrak{G} -base.

Example 2.4. For every uncountable cardinal κ , the space \mathbb{R}^{κ} does not have bounded resolution. Indeed, assuming the converse we obtain that the complete space \mathbb{R}^{κ} has a fundamental bounded resolution by Valdivia's theorem [30, Theorem 3.5]. But then the closures of the sets of this latter family compose a fundamental compact resolution. Now Tkachuk's theorem [30, Theorem 9.14] implies that κ is countable, a contradiction.

Next proposition gathers the most important stability properties of spaces with a fundamental bounded resolution.

Proposition 2.5. *The class of locally convex spaces with a fundamental bounded resolution is closed under taking (i) subspaces, (ii) countable direct sums, and (iii) countable products.*

Proof. (i) is clear. To prove (ii) and (iii) we shall use the following encoding operation of elements of $\mathbb{N}^{\mathbb{N}}$. We encode each $\alpha \in \mathbb{N}^{\mathbb{N}}$ into a sequence $\{\alpha_i\}_{i\in\mathbb{N}}$ of elements of $\mathbb{N}^{\mathbb{N}}$ as follows. Consider an arbitrary decomposition of \mathbb{N} onto a disjoint family $\{N_i\}_{i\in\mathbb{N}}$ of infinite sets, where $N_i = \{n_{k,i}\}_{k\in\mathbb{N}}$ for $i \in \mathbb{N}$. Now for $\alpha = (\alpha(n))_{n\in\mathbb{N}}$ and $i \in \mathbb{N}$, we set $\alpha_i = (\alpha_i(k))_{k\in\mathbb{N}}$, where $\alpha_i(k) := \alpha(n_{k,i})$ for every $k \in \mathbb{N}$. Conversely, for every sequence $\{\alpha_i\}_{i\in\mathbb{N}}$ of elements of $\mathbb{N}^{\mathbb{N}}$, we define $\alpha = (\alpha(n))_{n\in\mathbb{N}}$ setting $\alpha(n) := \alpha_i(k)$ if $n = n_{k,i}$.

(ii) Let $E = \prod_{i \in \mathbb{N}} E_i$, where every E_i has a fundamental bounded resolution $\{B_{\alpha}^i : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. For every $\alpha \in \mathbb{N}$, we define $B_{\alpha} := \prod_{i \in \mathbb{N}} B_{\alpha_i}^i$ and set $\mathcal{B} := \{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. Since a subset of *E* is bounded if and only if its projection onto E_i is bounded in E_i for every $i \in \mathbb{N}$, it is easy to see that \mathcal{B} is a fundamental bounded resolution in *E*.

(iii) Let $E = \bigoplus_{i \in \mathbb{N}} E_i$, where every E_i has a fundamental bounded resolution $\{B_{\alpha}^i : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. For every $\alpha \in \mathbb{N}^{\mathbb{N}}$, set $\alpha^* := (\alpha(k+1))_{k \in \mathbb{N}}$ and $B_{\alpha} := \prod_{i=1}^{\alpha(1)} B_{\alpha_i^*}^i$. Since every bounded subset of *E* is contained and bounded in $\bigoplus_{i=1}^m E_i$ for some $m \in \mathbb{N}$ (see Proposition 24 of Chapter 5 of [41]), we obtain that the family $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a fundamental bounded resolution in *E*.

Example 2.6. Let *E* be an infinite-dimensional Banach space and let *B* be the closed unit ball of *E*. Then its dimension is uncountable. Choose a Hamel basis $H = \{x_i^* : i \in I\}$ from its topological dual E'. Then the map $x \to (x_i^*(x))$ from E_w into \mathbb{R}^H is an embedding with dense image. Since *E* is a Banach space, the sequence $\{nB\}_{n\in\mathbb{N}}$ is a fundamental bounded sequence in E_w . However, since *H* is uncountable, the completion \mathbb{R}^H of E_w does not have even a bounded resolution by Example 2.4. Hence, the completion of a lcs with a fundamental bounded resolution in general does not have a bounded resolution.

For a subset A of an lcs E, we denote by A° the polar of A in E'. Below we give a dual characterization of lcs with a fundamental bounded resolution. Recall that a lcs E is a *quasi-(LB)-space* [49] if E admits a resolution consisting of Banach discs of E. Recall also that an lcs E is *locally complete* if every closed disc A in E is a Banach disc, i.e., the space E_A is a Banach space, see [7, Definition 2.10.16] or [37].

Theorem 2.7. For an lcs E the following assertions are equivalent:

- (i) E has a fundamental bounded resolution;
- (ii) the strong dual E'_{β} of E has a \mathfrak{G} -base;
- (iii) the weak* bidual $(E'', \sigma(E'', E'))$ is a quasi-(LB)-space.

If in addition the space E is locally complete, then (i)-(iii) are equivalent to

- (iv) E has a bounded resolution;
- (v) E is a quasi-(LB)-space.

Proof. (i) \Rightarrow (ii) Let $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}\$ be a fundamental bounded resolution. Then, as easily seen, the family $\{A_{\alpha}^{\circ} : \alpha \in \mathbb{N}^{\mathbb{N}}\}\$ is a \mathfrak{G} -base of neighborhoods of the strong topology on E'.

(ii) \Rightarrow (i) If $\{V_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a \mathfrak{G} -base of neighborhoods of $\beta(E', E)$, the polars $\{V_{\alpha}^{\circ} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of the sets V_{α} in the bidual E'' of E compose a compact resolution on E'' for the weak* topology. Setting $B_{\alpha} := V_{\alpha}^{\circ} \cap E$ for every $\alpha \in \mathbb{N}^{\mathbb{N}}$, we can see that the family $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a bounded resolution for $(E, \sigma(E, E'))$, hence for E. If Q is a closed absolutely convex bounded subset of E, the polar Q° of Q in E' is a neighborhood of the origin in $\beta(E', E)$ and consequently there exists $\beta \in \mathbb{N}^{\mathbb{N}}$ such that $V_{\beta} \subseteq Q^{\circ}$. This implies that $Q^{\circ\circ} \subseteq V_{\beta}^{\circ}$, the polars being taken in E''. Hence

$$Q = \overline{Q}^{\sigma(E,E')} = Q^{\circ\circ} \cap E \subseteq B_{\beta},$$

which means that the family $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ swallows the bounded sets of *E*.

(i) \Rightarrow (iii) If $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a fundamental bounded resolution of *E*, it is clear that

$$E'' = \bigcup \{A_{\alpha}^{\circ \circ} : \alpha \in \mathbb{N}^{\mathbb{N}}\}.$$

Since each $A^{\circ\circ}_{\alpha}$ is absolutely convex and weak* compact, it is a Banach disc. So $(E'', \sigma(E'', E'))$ has a resolution consisting of weak* compact Banach discs, which means that the weak* bidual $(E'', \sigma(E'', E'))$ is a quasi-(LB)-space.

(iii) \Rightarrow (i) If $(E'', \sigma(E'', E'))$ is a quasi-(LB)-space, then, by [30, Theorem 3.5], there is a resolution $\{D_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ for $(E'', \sigma(E'', E'))$ consisting of Banach discs that swallows the Banach discs of $(E'', \sigma(E'', E'))$. If Q is a bounded subset of E, then $Q^{\circ\circ}$ is a weak* compact Banach disc in $(E'', \sigma(E'', E'))$. Hence, there is $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $Q^{\circ\circ} \subseteq D_{\gamma}$, so that $Q \subseteq D_{\gamma} \cap E$. Setting $B_{\alpha} := D_{\alpha} \cap E$ for each $\alpha \in \mathbb{N}^{\mathbb{N}}$, the family $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a fundamental bounded resolution for E.

Assume that *E* is locally complete. Clearly, (i) implies (iv). Let us show that (iv) implies (v). Since *E* is locally complete, the absolutely convex closed envelope of any bounded set of *E* is a Banach disc by Proposition 5.1.6 of [40]. Thus the space *E* is a quasi-(*LB*)-space.

 $(v) \Rightarrow (i)$ By Valdivia's theorem [30, Theorem 3.5], there exists another quasi-(LB)-representation $\mathcal{B} = \{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of *E* swallowing all Banach discs of *E*. Since each bounded set of *E* is contained in a Banach disc and each Banach disc is bounded, we obtain that \mathcal{B} is a bounded resolution which swallows all bounded sets of *E*.

Below we apply Theorem 2.7 to function spaces $C_k(X)$ and $C_p(X)$.

Corollary 2.8. Let X be such that $C_k(X)$ is locally complete (for instance, X is a $k_{\mathbb{R}}$ -space). Then the following assertions are equivalent:

- (i) $C_k(X)$ has a bounded resolution;
- (ii) $C_k(X)$ has a fundamental bounded resolution.

If in addition X is metrizable, then (i)-(ii) are equivalent to

- (iii) $C_p(X)$ has a bounded resolution;
- (iv) X is σ -compact.

Proof. The equivalences (i)–(ii) follow from Theorem 2.7. The equivalence (iii) \Leftrightarrow (iv) is Corollary 9.2 of [30], and the implication (i) \Rightarrow (iii) is trivial. The implication (iv) \Rightarrow (i) follows from Corollary 2.10 of [22] which states that $C_k(X)$ has even a fundamental compact resolution.

Corollary 2.9. Let X be such that $C_k(X)$ is locally complete. If X has an increasing sequence of functionally bounded subsets which swallows the compact sets of X, then the strong dual of $C_k(X)$ has a \mathfrak{G} -base.

Proof. By Theorem 3.1(ii) of [14], there is a metrizable locally convex topology \mathcal{T} on C(X) stronger than the compact-open topology, and hence $(C(X), \mathcal{T})$ has a fundamental bounded resolution by Corollary 2.3. So $C_k(X)$ has a bounded resolution and Corollary 2.8 applies.

Recall that a lcs E is called *quasibarrelled* if every closed absolutely convex bornivorous subset of E is a neigbourhood of zero, see [40] or [7,29]. Trivially, every metrizable lcs, as well as, any (LM)-space is quasibarrelled.

We supplement Theorem 2.7 with the following fact. Recall that *E* is *dual locally complete* if $(E', \sigma(E', E))$ is locally complete, see [45]. Note that a los *E* is barrelled if and only if *E* is a quasibarelled dual locally complete space, [40].

Proposition 2.10. The following statements hold true.

- (i) Let E be dual locally complete. If E has a \mathfrak{G} -base, then E'_{β} has a fundamental bounded resolution.
- (ii) Let E be a quasibarrelled space. Then the strong dual E'_{β} of E has a fundamental bounded resolution if and only if E has a \mathfrak{G} -base.

Proof. (i) Let $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a \mathfrak{G} -base in E. Then the polar sets $W_{\alpha} := U_{\alpha}^{\circ}$ are weakly*-compact and absolutely convex, hence Banach discs, so $(E', \sigma(E', E))$ is a quasi-(LB)-space. Again Valdivia's theorem [30, Theorem 3.5] applies to get that $(E', \sigma(E', E))$ has a fundamental resolution $\mathcal{B} = \{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ consisting of Banach discs. As $(E', \sigma(E', E))$ is locally complete, every $\sigma(E', E)$ -bounded set B is included in a Banach disc by Proposition 5.1.6 of [40]. Since Banach discs also are $\beta(E', E)$ -bounded, the family \mathcal{B} is a fundamental bounded resolution.

(ii) Assume that E'_{β} has a fundamental bounded resolution. Then the strong bidual space E''_{β} of *E* has a \mathfrak{G} -base by Theorem 2.7. Since *E* is quasibarrelled, *E* is a subspace of E''_{β} by Theorem 15.2.3 of [37]. Therefore *E* has a \mathfrak{G} -base. Conversely, assume that *E* has a \mathfrak{G} -base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. Then the polar sets $W_{\alpha} := U^{\alpha}_{\alpha}$ are weakly*-compact and absolutely convex, and hence W_{α} are $\beta(E', E)$ -bounded by Theorem 11.11.5 of [37]. To show that $\{W_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a fundamental bounded resolution in E', fix a strongly bounded subset *B* of *E'*. Since *E* is quasibarrelled, W_{α} is equicontinuous by Theorem 11.11.4 of [37]. So there is $\alpha \in \mathbb{N}^{\mathbb{N}}$ such that $B \subseteq W_{\alpha}$.

A subset A of a Tychonoff space X is b-bounding if for every bounded subset B of $C_k(X)$ the number $\sup\{|f(x)| : x \in A, f \in B\}$ is finite. The space X is called a W-space if every b-bounding subset of X is relatively compact.

Corollary 2.11. Let X be a W-space (for example, X is realcompact). Then the strong dual E of $C_k(X)$ has a fundamental bounded resolution if and only if X has a fundamental compact resolution.

Proof. Note that $C_k(X)$ is quasibarrelled by Theorem 10.1.21 of [40]. Therefore, by Proposition 2.10, *E* has a fundamental bounded resolution if and only if the space $C_k(X)$ has a \mathfrak{G} -base. But $C_k(X)$ has a \mathfrak{G} -base if and only if *X* has a fundamental compact resolution by [16].

By an (LM)-space $E := (E, \tau)$ we mean a lcs which is the countably inductive limit of an increasing sequence (E_n, τ_n) of metrizable lcs such that $E = \bigcup_n E_n$ and $\tau|_{E_n} \le \tau_n$ for each $n \in \mathbb{N}$. The inductive limit topology τ of E is the finest locally convex topology on E such that $\tau|_{E_n} \le \tau_n$ for each $n \in \mathbb{N}$. If each step (E_n, τ_n) is a Fréchet lcs, i.e. a metrizable and complete lcs, we call E an (LF)-space. Moreover, if additionally $\tau_{n+1}|_{E_n} = \tau_n$ for each $n \in \mathbb{N}$ the inductive limit space E is called *strict*. The latter case implies that every bounded set in E is contained and bounded in some E_n . Recall that (LM)-spaces enjoying this property are called *regular*. We refer the reader to [40, Definition 8.5.11] or to [29] for details.

Next Proposition 2.12 provides fundamental bounded resolutions for regular (LM)-spaces.

Proposition 2.12. Let *E* be an (*LM*)-space. Then *E* has a bounded resolution. If in addition *E* is regular, then *E* has a fundamental bounded resolution, and consequently, E'_{β} has a \mathfrak{G} -base.

Proof. Let (E_i, τ_i) be an increasing sequence of metrizable lcs generating the inductive limit space $E = (E, \tau)$, i. e., $\tau_{i+1}|_{E_i} \leq \tau_i$ and $\tau|_{E_i} \leq \tau_i$ for any $i \in \mathbb{N}$. For each $i \in \mathbb{N}$, let $\{U_k^i\}_{k \in \mathbb{N}}$ be a decreasing base of neighbourhoods of zero for E_i . For every $i \in \mathbb{N}$ and $\alpha \in \mathbb{N}^{\mathbb{N}}$, set $W_{\alpha}^i := \bigcap_{k \in \mathbb{N}} \alpha(k)U_k^i$. Any W_{α}^i is bounded in τ_i , consequently in τ too. It is easy to see that the family $\{W_{\alpha}^i : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a fundamental bounded resolution in E_i . Now, for every $\alpha = (\alpha(k)) \in \mathbb{N}^{\mathbb{N}}$, set $\alpha^* := (\alpha(k+1))$ and $B_{\alpha} := W_{\alpha^*}^{\alpha(1)}$. Clearly, the family $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a desired bounded resolution in E.

Assume that *E* is regular. Then every τ -bounded set is contained in some E_i and is τ_i -bounded. Therefore the bounded resolution $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is fundamental. Finally, the space E'_{β} has a \mathfrak{G} -base by Theorem 2.7.

Corollary 2.13. Let *E* be a locally complete lcs which is an image of an infinite-dimensional metrizable topological vector space under a continuous linear map. Then every precompact set in E'_{β} is metrizable.

Proof. Let *T* be a continuous linear map from a metrizable tvs *H* onto *E*. It is well-known that *H* has a bounded resolution $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ (cf. the proof of Theorem 2.1). Then $\{T(B_{\alpha}) : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a bounded resolution on *E*. Now Theorem 2.7 implies that E'_{β} has a \mathfrak{G} -base. Therefore every precompact set in E'_{β} is metrizable by Cascales–Orihuela's theorem, see [30]. \Box

Remark 2.14. Analysing the proof of Proposition 1 in [15] one can prove the following result: A lcs *E* has a bounded resolution if and only if E_w is *K*-analytic-framed in \mathbb{R}^{κ} for some cardinal κ , that is there exists a *K*-analytic space *H* such that $E \subseteq H \subseteq \mathbb{R}^{\kappa}$.

Remark 2.15. Christensen's theorem [30, Theorem 6.1] states that a metrizable space X has a fundamental compact resolution if and only if X is Polish. Therefore every *separable* infinite-dimensional Banach space E has a fundamental compact resolution, and this resolution is not a fundamental bounded resolution (otherwise, the closed unit ball B of E would be compact). On the other hand, every *nonseparable* infinite-dimensional metrizable space E has a fundamental *bounded* resolution by Corollary 2.3, but E does not have a fundamental *compact* resolution since the space E is not Polish.

3 | MORE ABOUT [FUNDAMENTAL] BOUNDED RESOLUTIONS FOR SPACES $C_p(X)$ AND $C_k(X)$ AND THEIR DUALS

Tkachuk proved (see [30, Theorem 9.14]) that the space $C_p(X)$ has a fundamental compact resolution if and only if X is countable and discrete. Hence, if for an infinite compact space K, the space $C_p(K)$ is K-analytic, then $C_p(K)$ has a compact resolution but it does not have a fundamental compact resolution. Also, if we consider the case C([0, 1]), then $C_w([0, 1])$ does not have a fundamental compact resolution, see [34, Corollary 1.10]. Below we prove an analogous result for $C_p(X)$ having a fundamental bounded resolution.

Let X be a Tychonoff space. Denote by $\mathfrak{F}(X)$ and $\mathcal{K}(X)$ the families of all finite subsets and all compact subsets of X, respectively. For $\mathcal{T} = \tau_p$ or $\mathcal{T} = \tau_k$, we denote by $C_{\mathcal{T}}(X)$ the space $C_p(X)$ or the space $C_k(X)$ and set $\mathcal{T}(X) = \mathfrak{F}(X)$ or $\mathcal{T}(X) = \mathcal{K}(X)$, respectively. We need the following notion. For every $\alpha \in \mathbb{N}^{\mathbb{N}}$ and each $k \in \mathbb{N}$, set

$$I_k(\alpha) := \left\{ \beta \in \mathbb{N}^{\mathbb{N}} : \ \beta(1) = \alpha(1), \dots, \beta(k) = \alpha(k) \right\}.$$

Let \mathcal{B} and \mathcal{C} be two families of subsets of a set Ω . We shall say that \mathcal{B} swallows \mathcal{C} if for every $\mathcal{C} \in \mathcal{C}$ there is a $\mathcal{B} \in \mathcal{B}$ such that $\mathcal{C} \subseteq \mathcal{B}$.

Definition 3.1. Let *X* be a Tychonoff space and $\mathcal{T} \in \{\tau_p, \tau_k\}$. A family $\{U_{\alpha,n} : (\alpha, n) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}\}$ of closed subsets of *X* is called \mathcal{T} -framing if

- (1) for each $\alpha \in \mathbb{N}^{\mathbb{N}}$, the sequence $\{U_{\alpha,n} : n \in \mathbb{N}\}$ is increasing and swallows $\mathcal{T}(X)$,
- (2) for every $n \in \mathbb{N}$, $U_{\beta,n} \subseteq U_{\alpha,n}$ whenever $\alpha \leq \beta$.

Recall that a family \mathcal{N} of subsets of a topological space X is called a cs^* -network at a point $x \in X$ if for each sequence $\{x_n\}_{n\in\mathbb{N}}$ in X converging to x and for each neighborhood O_x of x there is a set $N \in \mathcal{N}$ such that $x \in N \subseteq O_x$ and the set $\{n \in \mathbb{N} : x_n \in N\}$ is infinite; \mathcal{N} is a cs^* -network in X if \mathcal{N} is a cs^* -network at each point $x \in X$, see [6].

Proposition 3.2. Let X be a Tychonoff space and let $\mathcal{T} \in \{\tau_p, \tau_k\}$. If the space $C_{\mathcal{T}}(X)$ has a fundamental bounded resolution, then $C_{\mathcal{T}}(X)$ has a countable cs^* -network at zero.

Proof. Let $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a fundamental bounded resolution in $C_{\mathcal{T}}(X)$. We prove the proposition in four steps. First we note the following simple observation.

Step 1. A subset Q of $C_{\mathcal{T}}(X)$ is bounded if and only if there exists an increasing sequence $\{V_n : n \in \mathbb{N}\}$ consisting of closed subsets of X and swallowing $\mathcal{T}(X)$ such that

$$\sup_{f \in Q} |f(x)| \le n \text{ for all } x \in V_n.$$

Indeed, assume that Q is a bounded subset of $C_{\mathcal{T}}(X)$. For every $n \in \mathbb{N}$, set

$$V_n = \left\{ x \in X : \sup_{f \in Q} |f(x)| \le n \right\}.$$

Clearly, all V_n are closed, $V_n \subseteq V_{n+1}$ for each $n \in \mathbb{N}$, and $\sup_{f \in Q} |f(x)| \le n$ for all $x \in V_n$. If $K \in \mathcal{T}(X)$, the \mathcal{T} -boundedness of Q implies that there is an $m \in \mathbb{N}$ such that $Q \subseteq [K; m] := \{f : |f(x)| < m$ for all $x \in K\}$, so that $K \subseteq V_m$. This shows that $\{V_n : n \in \mathbb{N}\}$ swallows $\mathcal{T}(X)$.

The converse assertion is clear.

Step 2. There exists a \mathcal{T} -framing family $\{U_{\alpha,n} : (\alpha, n) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}\}$ in X enjoying the following property: if $\{V_n : n \in \mathbb{N}\}$ is an increasing sequence consisting of closed subsets of X and swallowing $\mathcal{T}(X)$, then there exists a $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $U_{\gamma,n} \subseteq V_n$ for all $n \in \mathbb{N}$.

Indeed, for each $\alpha \in \mathbb{N}^{\mathbb{N}}$ and every $n \in \mathbb{N}$, set

$$U_{\alpha,n} = \left\{ x \in X : \sup_{f \in B_{\alpha}} |f(x)| \le n \right\}.$$

Then, for each $\alpha \in \mathbb{N}^{\mathbb{N}}$, the family $\{U_{\alpha,n} : n \in \mathbb{N}\}$ is an increasing sequence consisting of closed subsets of X and such that $U_{\beta,n} \subseteq U_{\alpha,n}$ whenever $\alpha \leq \beta$, and in addition $\sup_{f \in B_{\alpha}} |f(x)| \leq n$ for every $x \in U_{\alpha,n}$ and $n \in \mathbb{N}$. By Step 1, the sequence $\{U_{\alpha,n} : n \in \mathbb{N}\}$ swallows $\mathcal{T}(X)$. Therefore the family $\mathcal{U} := \{V_{\alpha,n} : (\alpha, n) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}\}$ is framing.

We claim that \mathcal{U} satisfies the stated property. Indeed, fix an increasing sequence $\{V_n : n \in \mathbb{N}\}$ consisting of closed subsets of X and swallowing $\mathcal{T}(X)$. Set

2609

$$P := \left\{ f \in C(X) : \sup_{x \in V_n} |f(x)| \le n \text{ for all } n \in \mathbb{N} \right\}.$$

Then *P* is a bounded subset of $C_{\mathcal{T}}(X)$ by Step 1. Since $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a fundamental bounded resolution for $C_{\mathcal{T}}(X)$, there exists $\delta \in \mathbb{N}^{\mathbb{N}}$ such that $P \subseteq B_{\delta}$. To prove the claim we show that $U_{\delta,n} \subseteq V_n$ for every $n \in \mathbb{N}$. Take arbitrarily $x \in U_{\delta,n}$. Then

$$\sup_{f \in P} |f(x)| \le \sup_{f \in B_{\delta}} |f(x)| \le n.$$

Now if $x \notin \overline{V_n} = V_n$, there is $h \in C(X)$ with $0 \le h \le n+1$ such that h(x) = n+1 and h(y) = 0 for every $y \in V_n$. By construction of h and since $\{V_n\}_n$ is increasing, we have $|h(y)| \le n$ for every $n \in \mathbb{N}$ and each $y \in V_n$. Therefore $h \in P \subseteq B_{\delta}$. So we have at the same time that $x \in U_{\delta,n}$ and |h(x)| = n+1 with $h \in B_{\delta}$, a contradiction. Thus $U_{\delta,n} \subseteq V_n$ for every $n \in \mathbb{N}$.

Step 3. For every $n \in \mathbb{N}$ and each $\alpha \in \mathbb{N}^{\mathbb{N}}$, set $M_n(\alpha) := \bigcup_{\beta \in I_n(\alpha)} B_\beta$ and

$$K_n(\alpha) := \bigcap_{\beta \in I_n(\alpha)} U_{\beta,n} = \left\{ x \in X : \sup_{f \in M_n(\alpha)} |f(x)| \le n \right\}.$$

Then all $K_n(\alpha)$ are closed (but can be empty) and satisfy the following conditions:

- (i) $K_n(\alpha) \subseteq K_{n+1}(\alpha)$ for every $n \in \mathbb{N}$ and each $\alpha \in \mathbb{N}^{\mathbb{N}}$;
- (*ii*) $K_n(\alpha) \supseteq K_n(\beta)$ for every $n \in \mathbb{N}$ whenever $\alpha \leq \beta$;
- (iii) for each $\alpha \in \mathbb{N}^{\mathbb{N}}$, the sequence $\{K_n(\alpha)\}_{n\in\mathbb{N}}$ swallows $\mathcal{T}(X)$;
- (iv) for every increasing sequence $\{V_n : n \in \mathbb{N}\}$ consisting of closed subsets of X and swallowing $\mathcal{T}(X)$ there exists $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $K_n(\gamma) \subseteq V_n$ for all $n \in \mathbb{N}$.

Moreover, the family $\mathcal{K} := \{K_n(\alpha) : n \in \mathbb{N}, \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is countable.

Indeed, (i) and (ii) are clear. To prove (iii), suppose for a contradiction that there are $\alpha \in \mathbb{N}^{\mathbb{N}}$ and $K \in \mathcal{T}(X)$ such that $K \notin K_n(\alpha)$ for every $n \in \mathbb{N}$. For every $n \in \mathbb{N}$, choose $\beta_n \in I_n(\alpha)$ and $x_n \in K$ such that $x_n \notin U_{\beta_n,n}$. Set $\gamma := \sup\{\beta_n : n \in \mathbb{N}\}$. Then, for every $n \in \mathbb{N}$, $\beta_n \leq \gamma$ and hence $x_n \notin U_{\gamma,n}$ since $U_{\gamma,n} \subseteq U_{\beta_n,n}$ by the definition of a \mathcal{T} -framing family. Therefore $K \notin U_{\gamma,n}$ for every $n \in \mathbb{N}$, a contradiction. Thus (iii) holds. Now we prove (iv). By Step 2, there is a $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $U_{\gamma,n} \subseteq V_n$ for all $n \in \mathbb{N}$. Then $K_n(\gamma) \subseteq V_n$ since $K_n(\gamma) \subseteq U_{\gamma,n}$ for all $n \in \mathbb{N}$. Finally, the family \mathcal{K} is countable since, by construction, the set $K_n(\alpha)$ depends only on $\alpha(1), \ldots, \alpha(n)$.

Step 4. For every $m, n \in \mathbb{N}$ *and each* $\alpha \in \mathbb{N}^{\mathbb{N}}$ *, set*

$$N_{mn}(\alpha) := \left\{ f \in C(X) : |f(x)| \le \frac{1}{m} \text{ for all } x \in K_n(\alpha) \right\}$$

(if $K_n(\alpha)$ is empty we set $N_{mn}(\alpha) := \{0\}$). We claim that the family

$$\mathcal{N} := \left\{ N_{mn}(\alpha) : m, n \in \mathbb{N} \text{ and } \alpha \in \mathbb{N}^{\mathbb{N}} \right\}$$

is a countable cs^* -network at $0 \in C_{\mathcal{T}}(X)$.

Indeed, the family \mathcal{N} is countable because the family \mathcal{K} is countable. To show that \mathcal{N} is a cs^* -network at $0 \in C_{\mathcal{T}}(X)$, let $S = \{g_n : n \in \mathbb{N}\}$ be a null-sequence in $C_{\mathcal{T}}(X)$ and let U be a standard neighborhood of zero in $C_{\mathcal{T}}(X)$ of the form

$$U = [F, \varepsilon] := \{ f \in C(X) : |f(x)| < \varepsilon \text{ for all } x \in F \},\$$

where $F \in \mathcal{T}(X)$ and $\varepsilon > 0$. Fix arbitrarily an $m \in \mathbb{N}$ such that $m > 1/\varepsilon$. For every $n \in \mathbb{N}$, set

$$T_n := \bigcap_{i \ge n} R_i, \text{ where } R_i := \left\{ x \in X : |g_i(x)| \le \frac{1}{m} \right\}.$$

It is clear that $\{T_n\}_{n\in\mathbb{N}}$ is an increasing sequence of closed subsets of X. Moreover, since $g_n \to 0$ in $C_{\mathcal{T}}(X)$ we obtain that the sequence $\{T_n\}_{n \in \mathbb{N}}$ swallows $\mathcal{T}(X)$. Therefore, by (iv) of Step 3, there is a $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that

$$K_n(\gamma) \subseteq T_n \text{ for every } n \in \mathbb{N}.$$
 (3.1)

Now, by (iii) of Step 3, choose an $l \in \mathbb{N}$ such that $F \subseteq K_l(\gamma)$. Then (3.1) implies

$$g_i\}_{i\geq l}\subseteq N_{ml}(\gamma)\subseteq U=[F,\varepsilon].$$

Thus \mathcal{N} is a countable cs^* -network at zero of $C_{\mathcal{T}}(X)$.

Now we are ready to prove the main result of this section.

Theorem 3.3. Let X be a Tychonoff space.

- (i) The space $C_p(X)$ is metrizable if and only if $C_p(X)$ admits a fundamental bounded resolution (so exactly when X is countable).
- (ii) The space $C_k(X)$ is metrizable if and only if $C_k(X)$ is Fréchet–Urysohn and admits a fundamental bounded resolution.

Proof. (i) If X is countable, the space $C_n(X)$ has a fundamental bounded resolution by Corollary 2.3. If $C_n(X)$ has a fundamental bounded resolution, then X is countable by Proposition 3.2 and [44] (or [21], recall that $C_p(X)$ is b-Baire-like for every Tychonoff space X).

(ii) The necessity follows from Corollary 2.3. To prove sufficiency we note that every Fréchet–Urysohn group with countable cs^* -character is metrizable by [6] and Proposition 3.2 applies.

Remark 3.4. (1) Note that the condition on $C_k(X)$ of being Fréchet–Urysohn in (ii) of Theorem 3.3 is essential. Indeed, $C_k(\mathbb{Q})$ has a fundamental bounded resolution by (iv) of Corollary 2.8, but $C_k(\mathbb{Q})$ is not metrizable.

(2) The metrizability of $C_k(X)$ for the case when $C_k(X)$ is Fréchet–Urysohn and admits a fundamental sequence of bounded sets (S_n) can be proved shorter. Indeed, since every Fréchet–Urysohn lcs is bornological, see [30, Lemma 14.4.3], the original topology of $C_k(X)$ (as easily seen) is the inductive limit topology of the increasing sequence of normed spaces (generated by the liner span of each S_n endowed with the Minkowski norm topology). But then $C_k(X)$ is in class \mathfrak{G} , see [30, p. 244] and [30, Theorem 15.1.3] applies to get the metrizability of $C_k(X)$.

Example 3.5. Let X be an uncountable pseudocompact space. Then the space $C_n(X)$ has a bounded resolution but it does not have a fundamental bounded resolution. Indeed, as X is pseudocompact, the sets $B_n = \{f \in C(X) : |f(x)| \le n \text{ for all } x \in X\}$ form a bounded resolution (even a bounded sequence) in $C_p(X)$. The second assertion follows from Theorem 3.3.

For *P*-spaces we obtain even a stronger result.

Proposition 3.6. Let X be a P-space. Then $C_n(X)$ has a bounded resolution if and only if X is countable and discrete.

Proof. Assume that $C_p(X)$ has a bounded resolution. Since X is a P-space, $C_p(X)$ is sequentially complete (equivalently locally complete) by [18]. So, by Valdivia's theorem [30, Theorem 3.5] there is a fundamental bounded resolution (consisting of Banach disks) in $C_p(X)$. Consequently, by Theorem 3.3 the space X is countable. But every countable P-space is discrete. The converse is obvious.

Remark 3.7. Proposition 3.2 suggests the following question posed by the referee: Assume that an lcs L has a fundamental bounded resolution (or is a quasi-(DF)-space). Has L a countable cs*-network at zero? We remark the following:

(1) Let E be the James tree space and let $L := E_{w}$. Clearly, L has even a fundamental bounded sequence. But since E does not contain a subspace linearly isomorphic to ℓ_1 and E' is not separable, the space L does not have countable cs^* -character by Theorem 1.8 of [25].

(2) If E is a quasibarrelled quasi-(DF)-space, then E has a countable cs^* -network at zero. Indeed, since a quasibarrelled space in the class & must have a &-base (see [30, Lemma 15.2]), the assertion follows from Theorem 3.12 of [26] which states that every topological group with a \mathfrak{G} -base has a countable cs^* -network at the identity.

Recall (see [35]) that a Tychonoff space X is called a *cosmic space* (an \aleph_0 -space) if X is an image of a separable metric space under a continuous (respectively, compact-covering) map.

Theorem 3.8. *Let* $E = C_k(C_k(X))$ *. Then:*

- (i) If X is metrizable, then E has a \mathfrak{G} -base if and only if X is σ -compact. In this case E is barrelled.
- (ii) If X is an \aleph_0 -space, then the strong dual E'_β of E has a \mathfrak{G} -base if and only if X is finite. In particular, if X is infinite, then E is not a regular (LM)-space.
- (iii) If X is a μ -space and E'_{β} has a \mathfrak{G} -base, then X has a fundamental compact resolution, so that $C_k(X)$ has a \mathfrak{G} -base. But the converse is not true in general.

Consequently, if X is an infinite metrizable σ -compact space, then E is a barrelled space with a \mathfrak{G} -base whose strong dual E'_{β} does not have a \mathfrak{G} -base.

Proof. (i) If *E* has a \mathfrak{G} -base, then $C_k(X)$ has a fundamental compact resolution by Theorem 2 of [16]. Therefore *X* is σ -compact by Corollary 9.2 of [30]. Conversely, if *X* is σ -compact, then $C_k(X)$ has a fundamental compact resolution by Corollary 2.10 of [22]. Once again applying Theorem 2 of [16], we obtain that *E* has a \mathfrak{G} -base.

To prove the last assertion we note that any metrizable σ -compact space is an \aleph_0 -space, and hence $C_k(X)$ is Lindelöf by [35]. So $C_k(X)$ is a μ -space and the space E is barrelled by the Nachbin–Shirota theorem.

(ii) Assume that the strong dual of $C_k(C_k(X))$ has a \mathfrak{G} -base. Then, by Theorem 2.7, the space $C_k(C_k(X))$ and hence also $C_p(C_k(X))$ have a bounded resolution. Since $C_k(X)$ is also cosmic by Proposition 10.3 of [35], Corollary 9.1 of [30] implies that the space $C_k(X)$ is σ -compact. Therefore $C_p(X)$ is also σ -compact. Now Velichko's theorem [30, Theorem 9.12] implies that X is finite. Conversely, if X is finite and |X| = n, then $E = C_k(\mathbb{R}^n)$ is a Fréchet space and Theorem 2.7 applies.

The last assertion follows from this result and Proposition 2.12.

(iii) Let $M_c(X)$ be the topological dual of $C_k(X)$. Denote by \mathcal{T}_k and \mathcal{T}_β the compact-open topology induced from E and the strong topology $\beta(M_c(X), C(X))$ on $M_c(X)$, respectively. Clearly, $\mathcal{T}_k \leq \mathcal{T}_\beta$. Set $G := (M_c(X), \mathcal{T}_k)'$ and $F := (M_c(X), \mathcal{T}_\beta)'$. Then $C(X) \subseteq G \subseteq F$, algebraically. Hence every $\sigma(M_c(X), F)$ -bounded subset of $M_c(X)$ is also $\sigma(M_c(X), G)$ -bounded, and therefore

$$\beta(F, M_c(X))|_G \le \beta(G, M_c(X)). \tag{3.2}$$

Observe that $C_k(X)$ is barrelled by the Nachbin–Shirota theorem, and hence, by Theorem 15.2.3 of [37], the space $C_k(X)$ is a subspace of its strong bidual space $(F, \beta(F, M_c(X)))$. Therefore

$$\tau_k = \beta \left(F, M_c(X) \right) |_{C(X)}. \tag{3.3}$$

As $(M_c(X), \mathcal{T}_k)$ is a closed subspace of E we obtain $G = (M_c(X), \mathcal{T}_k)' = E'/M_c(X)^{\perp}$, algebraically. Denote by \mathcal{T}_q the quotient topology of the strong dual E'_{β} of E on G. We claim that the strong topology β $(G, M_c(X))$ on G is coarser than \mathcal{T}_q . Indeed, if j is the canonical inclusion of $(M_c(X), \mathcal{T}_k)$ into E, the adjoint map j^* is strongly continuous, see [37, Theorem 8.11.3]. Then the claim follows from the fact that j^* is raised to the continuous map from the quotient $E'_{\beta}/M_c(X)^{\perp}$ to the strong dual of $(M_c(X), \mathcal{T}_k)$. Now the claim and (3.2) and (3.3) imply

$$\tau_k = \beta \big(F, M_c(X) \big) |_{C(X)} \le \beta \big(G, M_c(X) \big) |_{C(X)} \le \mathcal{T}_a |_{C(X)}.$$
(3.4)

Suppose for a contradiction that E'_{β} has a \mathfrak{G} -base. Then the quotient topology \mathcal{T}_q and hence $\mathcal{T}_q|_{C(X)}$ also have a \mathfrak{G} -base. Therefore, by (3.4), there exists a locally convex topology $\mathcal{T} := \mathcal{T}_q|_{C(X)}$ with a \mathfrak{G} -base on C(X) such that $\tau_k \leq \mathcal{T}$. According to [14, Corollary 2.3] applied to the family $\mathcal{S} = \mathcal{K}(X)$ of all compact subsets of X and C(X), we obtain that X has a functionally bounded resolution swallowing the compact sets of X. Finally, since X is a μ -space, it follows that X admits a fundamental compact resolution.

Observe that for $X = \mathbb{R}$ the space X is even hemicompact, but E'_{β} does not have a \mathfrak{G} -base by (ii).

Following Markov [33], the *free lcs* L(X) over a Tychonoff space X is a pair consisting of a lcs L(X) and a continuous mapping $i : X \to L(X)$ such that every continuous mapping f from X to a lcs E gives rise to a unique continuous linear operator $\overline{f} : L(X) \to E$ with $f = \overline{f} \circ i$. The free lcs L(X) always exists and is unique. The set X forms a Hamel basis for L(X), and the mapping i is a topological embedding. Denote by $L_n(X)$ the free lcs L(X) endowed with the weak topology.

Following [4], a Tychonoff space X is called an Ascoli space if every compact subset \mathcal{K} of $C_k(X)$ is equicontinuous (see [20]). By Ascoli's theorem [37], each k-space is Ascoli. The following proposition complements [22, Theorem 3.2] and [5, Theorem 6.5]. In fact the equivalence between (i) and (iii) below has been proved in [5, Theorem 6.5] (see also [20, Theorem 1.2]). The essential part is the direct proof of the implication (i) \Rightarrow (ii).

Proposition 3.9. For an Ascoli space X the following assertions are equivalent:

- (i) L(X) has a \mathfrak{G} -base;
- (ii) $C_k(X)$ has a fundamental compact resolution;
- (iii) $C_k(C_k(X))$ has a \mathfrak{G} -base.

In particular, any item above implies that every compact subset of X is metrizable.

Proof. (i) \Rightarrow (ii) Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a \mathfrak{G} -base in L(X). Then the family $\mathcal{U}^{\circ} = \{U_{\alpha}^{\circ} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$, where the polars are taken in the dual space L(X)' of L(X), is a compact resolution of $(L(X)', \sigma(L(X)', L(X)))$. It is well-known and easy to see that the dual space L(X)' of L(X) can be identified with the space C(X) under the restriction map (recall that X is a Hamel base for L(X))

 $L(X)' \ni \chi \mapsto \chi|_{\chi} \in C(X).$

It is clear that the weak* topology $\sigma(L(X)', L(X))$ on L(X)' induces the pointwise topology τ_p on C(X). Therefore, for every $\alpha \in \mathbb{N}^{\mathbb{N}}$, the set $K_{\alpha} := \{\chi |_X : \chi \in U_{\alpha}^{\circ}\}$ is closed also in the compact-open topology τ_k on C(X). We claim that K_{α} is a compact subset of $C_k(X)$. For this, by the Ascoli theorem [37, Theorem 5.10.4], it is sufficient to check that K_{α} is pointwise bounded and equicontinuous. Clearly, K_{α} is pointwise bounded. To show that K_{α} is equicontinuous fix an $x \in X$. Then for every $y = x + t \in (x + U_{\alpha}) \cap X$ (recall that X is a subspace of L(X)), we obtain

$$|\chi|_{\chi}(y) - \chi|_{\chi}(x)| = |\chi(t)| \le 1, \quad \text{for all } \chi|_{\chi} \in K_{\alpha}.$$

Thus K_{α} is a compact subset of $C_k(X)$. Consequently, the family $\mathcal{K} := \{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a compact resolution in $C_k(X)$.

Take arbitrarily a compact subset K of $C_k(X)$. Then the polar K° of K in $C_k(C_k(X))$ is a neighborhood of zero in $C_k(C_k(X))$. Since X is Ascoli, the space L(X) is a subspace of $C_k(C_k(X))$ by Theorem 1.2 of [20]. So there is $\alpha \in \mathbb{N}^{\mathbb{N}}$ such that $U_\alpha \subset K^\circ \cap L(X)$. Hence $K \subseteq K^{\circ\circ} \subseteq U_\alpha^\circ$. Thus \mathcal{K} swallows the compact sets of $C_k(X)$.

(ii) \Rightarrow (iii) follows from Theorem 2 of [16], and (iii) implies (i) since L(X) is a subspace of $C_k(C_k(X))$ by Theorem 1.2 of [20].

The last assertion follows from the fact that X is a subspace of L(X) and Cascales–Orihuela's theorem [10, Theorem 11] (which states that every compact subset of an lcs with a \mathfrak{G} -base is metrizable).

The previous theorem may suggest the following problem: Characterize in terms of X those spaces $C_k(X)$ with a fundamental bounded resolution.

We propose also the following

Proposition 3.10. The following assertions are equivalent:

- (i) The strong dual space $L(X)_{\beta}$ of $C_p(X)$ has a bounded resolution.
- (ii) $L(X)_{\beta}$ has a fundamental bounded resolution.
- (iii) X is countable.

Proof. (i) \Rightarrow (iii) Assume that $L(X)_{\beta}$ has a bounded resolution $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. Since $C_{p}(X)$ is quasibarrelled, its strong dual $L(X)_{\beta}$ is feral, see p. 392 of [17] (recall that following [31], a lcs *E* is called *feral* if every bounded set of *E* is finite-dimensional). If *X* has an uncountable number of points, some set B_{α} of the resolution would contain infinitely many points of *X* by [30, Proposition 3.7]. Since *X* is a Hamel basis for L(X), the set B_{α} would be infinite-dimensional, a contradiction. Thus *X* must be countable.

(iii) \Rightarrow (ii) If X is countable, $C_p(X)$ is metrizable. Thus E has a fundamental bounded resolution by Proposition 2.10. Finally, the implication (ii) \Rightarrow (i) is trivial.

The following item characterizes those μ -spaces X for which the weak^{*} dual $L_p(X)$ of $C_p(X)$ has a fundamental bounded resolution. Recall also that the topology of $L_p(X)$ coincides with the weak topology of the free lcs L(X).

Proposition 3.11. Let X be a μ -space. Then X has a fundamental compact resolution if and only if $L_p(X)$ has a fundamental bounded resolution.

Proof. Denote by $\delta : X \to L_p(X)$ the canonical embedding map and let *E* be the topological dual of $C_k(X)$. First we observe that if *X* is a μ -space, then $C_k(X)$ is the strong dual of $L_p(X)$. Indeed, since *X* is a μ -space, the barrelledness of $C_k(X)$ yields $\tau_k = \beta(C(X), E)$. Since clearly $\tau_k \leq \beta(C(X), L(X)) \leq \beta(C(X), E)$, it follows that $\tau_k = \beta(C(X), L(X))$.

2613

We claim that if A is a bounded subset of $L_p(X)$, there is a compact set K in X and $n \in \mathbb{N}$ such that $A \subseteq n \cdot \overline{\operatorname{acx}(\delta(K))}^{L_p(X)}$. Indeed, by the previous observation, if A is a bounded set in $L_p(X)$ there are $n \in \mathbb{N}$ and a compact subset K of X such that

$$\left\{ f \in C(X) : \sup_{x \in K} |f(x)| \le n^{-1} \right\} \subseteq A^{\circ}.$$

So, if u_f denotes the (unique) continuous linear extension of f to $L_p(X)$, we have

$$\delta(K)^{\circ} = \left\{ f \in C(X) : \sup_{x \in K} \left| \left\langle \delta_x, u_f \right\rangle \right| \le 1 \right\} \subseteq nA^{\circ}.$$

Hence $A \subseteq A^{\circ\circ} \subseteq n \,\delta(K)^{\circ\circ}$, where the bipolar is taken in *E*. Thus $A \subseteq n \cdot \overline{\operatorname{acx}(\delta(K))}^{L_p(X)}$.

Assume that X has a fundamental compact resolution $\mathcal{K} = \{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. For every $\alpha = (\alpha(i)) \in \mathbb{N}^{\mathbb{N}}$, set $\alpha^* := (\alpha(i+1))$ and

$$B_{\alpha} := \alpha(1) \cdot \overline{\operatorname{acx}(\delta(K_{\alpha^*}))}^{L_p(X)}$$

Clearly the family $\mathcal{B} := \{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ consists of bounded sets in $L_p(X)$ and satisfies that $B_{\alpha} \subseteq B_{\beta}$ whenever $\alpha \leq \beta$. Moreover, according to the claim and the fact that the family \mathcal{K} is fundamental, we obtain that \mathcal{B} is a fundamental bounded resolution for $L_p(X)$.

Conversely, let $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a fundamental bounded resolution for $L_p(X)$. For each $\alpha \in \mathbb{N}^{\mathbb{N}}$, set $M_{\alpha} := A_{\alpha} \cap \delta(X)$. Then $\{M_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a resolution for $\delta(X)$ consisting of functionally bounded sets that swallows the functionally bounded subsets of $\delta(X)$. Since X is a μ -space, then the family $\{\overline{\delta^{-1}(M_{\alpha})}^X : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a fundamental compact resolution for X.

The condition that X is a μ -space cannot be removed from Proposition 3.11, as the following example shows.

Example 3.12. Let *X* be the ordinal space $[0, \omega_1)$, where ω_1 is the first uncountable ordinal, and set $Y := [0, \omega_1]$. Since *X* is pseudocompact, the restriction map $Tf = f|_X$ maps continuously $C_p(Y)$ onto $C_p(X)$. Consequently, $L_p(X)$ is topologically isomorphic to a linear subspace of $L_p(Y)$. Since *Y* is a compact set, according to Proposition 3.11 the space $L_p(Y)$ has a (countable) fundamental bounded resolution, which implies that $L_p(X)$ also has a fundamental bounded resolution. However, under $MA + \neg CH$ the space $X = [0, \omega_1)$ even does not have a compact resolution [48, Theorem 3.6]. Observe that *X* is not a μ -space.

Next example shows that there is no natural relationship between the existence of fundamental bounded resolutions for different natural topologies.

Example 3.13. If X is an uncountable Polish space, then the strong dual of $C_p(X)$ does not have a fundamental bounded resolution by Proposition 3.10, but the weak* dual of $C_p(X)$ has a fundamental bounded resolution by Proposition 3.11 and Christensen's theorem (see, [30, Theorem 6.1]). On the other hand, if X is a countable but non-Polish metrizable space (for example, $X = \mathbb{Q}$), then the strong dual of $C_p(X)$ has a fundamental bounded resolution by Proposition 3.10, however the weak* dual of $C_p(X)$ does not have a fundamental bounded resolution by Proposition 3.10, however the weak* dual of $C_p(X)$ does not have a fundamental bounded resolution by Proposition 3.11 and Christensen's theorem.

$4 \mid QUASI-(DF)$ -SPACES

In the Introduction we formally defined the class of quasi-(DF)-spaces. The previous sections apply to gather a few fundamental properties of quasi-(DF)-spaces. We refer the readers to corresponding facts dealing with (DF)-spaces, see [29] and [40]. Note however that quasi-(DF)-spaces are stable by taking countable products although this property fails for (DF)-spaces.

Theorem 4.1. The following statements hold true.

- (i) Every regular (LM)-space E is a quasi-(DF)-space. In particular, every infinite-dimensional metrizable non-normable lcs E is a quasi-(DF)-space not being a (DF)-space.
- (ii) The strong dual E'_{β} of a regular (LM)-space is a quasi-(DF)-space.
- (iii) Countable direct sums of quasi-(DF)-spaces are quasi-(DF)-spaces.
- (iv) A subspace of a quasi-(DF)-space is a quasi-(DF)-space.
- (v) A countable product E of quasi-(DF)-spaces is a quasi-(DF)-space.
- (vi) Every precompact set of a quasi-(DF)-space is metrizable.

Proof. (i) Every (*LM*)-space belongs to the class \mathfrak{G} , see [30, Section 11.1]. Being regular, *E* has a fundamental bounded resolution by Proposition 2.12. Thus *E* is a quasi-(*DF*)-space. In particular, if *E* is an infinite-dimensional metrizable non-normable lcs, then *E* is a quasi-(*DF*)-space which is not a (*DF*)-space.

(ii) Since *E* is regular, the space E'_{β} has a \mathfrak{G} -base by Proposition 2.12. Therefore E'_{β} is in the class \mathfrak{G} (recall that every lcs *E* with a \mathfrak{G} base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ belongs to the class \mathfrak{G} since the family of polars $\{U^{\circ}_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a \mathfrak{G} -representation of *E*). As *E* has a \mathfrak{G} -base and is quasibarrelled (*E* is even bornological, see [29, Corollary 13.1.5]), the space E'_{β} has a fundamental bounded resolution by Proposition 2.10. Therefore E'_{β} is a quasi-(*DF*)-space.

(iii)–(v) follow from [30, Proposition 11.1] and Proposition 2.5, and (vi) follows from [30, Theorem 11.1].

Next two examples show the independence of conditions (i) and (ii) appearing in Definition 1.3 of quasi-(*DF*)-spaces.

Example 4.2. There exist lcs *E* not being in class \mathfrak{G} but having a fundamental bounded resolution. Indeed, if *E* is an infinitedimensional Banach space, then E_w is not in class \mathfrak{G} (see [30]) although E_w has a fundamental sequence of bounded sets: Assume E_w is in class \mathfrak{G} . Then, as E_w is dense in \mathbb{R}^X for some *X*, the Baire space \mathbb{R}^X belongs also to the class \mathfrak{G} . Now the main theorem of [32] applies to deduce that *X* is countable, a contradiction (since then E_w would be metrizable implying the finite-dimensionality of *E*).

Example 4.3. Let X be a non σ -compact Čech-complete Lindelöf space (for example, $X = \mathbb{N}^{\mathbb{N}}$). Then $C_k(X)$ has a \mathfrak{G} -base (hence is in the class \mathfrak{G}) and is barrelled but it does not have even a bounded resolution. Consequently, $C_k(X)$ is not a quasi-(DF)-space and the strong dual of $C_k(X)$ does not have a \mathfrak{G} -base.

Proof. Since X has a fundamental compact resolution by (see Fact 1 in the proof of Proposition 4.7 in [24]), the space $C_k(X)$ has a \mathfrak{G} -base by [16]. As X is a μ -space, $C_k(X)$ is barrelled. On the other hand, assume that $C_k(X)$ has a bounded resolution. Then $C_p(X)$ has a bounded resolution too. Since X is Čech-complete and Lindelöf, there exists (well known fact) a perfect map T from X onto a Polish space Y. As X is not σ -compact, then Y is also not σ -compact. Since T is onto, the adjoint map $T^*: C_p(Y) \to C_p(X), T^*(f) = f \circ T$, of T is an embedding. Therefore $C_p(Y)$ has a bounded resolution. But this is impossible, since then Y would be σ -compact by Corollary 9.2 of [30]. The last assertion follows from Theorem 2.7.

In [35] it is proved that if E is a Banach space whose strong dual is separable, then E_w is an \aleph_0 -space. In [23, Corollary 5.6] it was shown that a Banach space which does not contain an isomorphic copy of ℓ_1 has separable dual if and only if E_w is an \aleph_0 -space. Next theorem extends this result to quasi-(*DF*)-spaces.

Theorem 4.4. Let E be a quasi-(DF)-space.

- (i) If the strong dual E'_{β} is separable, then E_w is cosmic.
- (ii) If the strong dual E'_{β} is separable and barrelled, then E_w is an \aleph_0 -space.
- (iii) If E is a strict (LF)-space such that E'_{β} is separable, then E_{w} is an \aleph_{0} -space.

Proof. (i) By Theorem 2.7, the space E'_{β} has a \mathfrak{G} -base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. Hence its polar $\{U_{\alpha}^{\circ} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ forms a compact resolution in $E''_{w} := (E'', \sigma(E'', E'))$. Since E'_{β} is separable, $\sigma(E'', E')$ admits a weaker metrizable topology, and hence the space E''_{w} is analytic by [10, Theorem 15] (i.e. E''_{w} is a continuous image on $\mathbb{N}^{\mathbb{N}}$). Therefore E''_{w} is a cosmic space. As E_{w} is a subspace of E''_{w} , the space E_{w} is cosmic as well.

(ii) As in (i), the space E''_w has a compact resolution $\{U^{\circ}_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. We show that E''_w has a fundamental compact resolution. Indeed, Theorem 2.7 and the fact that E''_w is locally complete (since E'_{β} is barrelled) imply that E''_w has a fundamental bounded resolution. Now, by the barrelledness of E'_{β} , the space E'_{β} has a \mathfrak{G} -base $\mathcal{U} = \{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$. Therefore the family

 $\mathcal{U}^{\circ} := \{U_{\alpha}^{\circ} : \alpha \in \mathbb{N}^{\mathbb{N}}\}\$ is a resolution for E''_{w} consisting of compact subsets. To check that \mathcal{U}° swallows the compact sets, let K be a compact subset of E''_{w} . As E'_{β} is barrelled, K is equicontinuous. So there is an $\alpha \in \mathbb{N}^{\mathbb{N}}$ such that $K \subseteq U_{\alpha}^{\circ}$, and hence \mathcal{U}° swallows the compact sets. On the other hand, E''_{w} is submetrizable since E'_{β} is separable. Now Theorem 3.6 of [11] yields that E''_{w} is an \aleph_{0} -space, so E_{w} is an \aleph_{0} -space, too.

(iii) Any strict (LF)-space E, being regular, is a quasi-(DF)-space by (i) of Theorem 4.1. Note also that any (LM)-space is quasibarrelled (even bornological). Thus to apply (ii) it is sufficient to show that E'_{β} is barrelled. Let $\{E_n\}_{n\in\mathbb{N}}$ be a defining sequence of Fréchet lcs for E. For each $n \in \mathbb{N}$, the strong dual $(E_n)'_{\beta}$ of E_n is a (DF)-space. Since E is a strict limit, the dual E'_{β} is linearly homeomorphic with the projective limit of the sequence $\{(E_n)'_{\beta}\}_{n\in\mathbb{N}}$ of complete (DF)-spaces, see [8, Preliminaries]. Therefore E'_{β} is also complete. On the other hand, E'_{β} is continuously mapped onto each $(E'_n)_{\beta}$, so any $(E'_n)_{\beta}$ is separable. By [40, Proposition 8.3.45], any E_n is distinguished. Hence applying again [8, Preliminaries (c)], the space E'_{β} is quasibarrelled. Since any complete quasibarrelled space is barrelled (see [29, Proposition 11.2.4]), the space E'_{β} is barrelled.

Below we provide more concrete examples which clarify the fundamental differences between (DF)-spaces and quasi-(DF)-spaces.

Example 4.5. The space of distributions $D'(\Omega)$ over an open non-empty subset Ω of \mathbb{R}^n has the following properties:

- (i) $D'(\Omega)$ is a quasi-(DF)-space.
- (ii) $D'(\Omega)$ is a weakly \aleph_0 -space.
- (iii) $D'(\Omega)$ is not a (DF)-space.
- (iv) $D'(\Omega)$ is not a weakly Ascoli space.

Proof. Recall that the space $D'(\Omega)$ is the strong dual of the space $D(\Omega)$ of test functions which is a complete Montel (hence barrelled) strict (LF)-space of a sequence of Montel–Fréchet lcs. Therefore $D'(\Omega)$ is a quasi-(DF)-space by (ii) of Theorem 4.1. Since $D'(\Omega)$ is a Montel quasi-(DF)-space whose strong dual $D(\Omega)$ is separable and barrelled, $D'(\Omega)$ is a weakly \aleph_0 -space by (ii) of Theorem 4.4. As $D'(\Omega)$ does not have a fundamental bounded sequence (otherwise $D(\Omega)$ would be metrizable), $D'(\Omega)$ is not a (DF)-space. Finally, Theorem 1.6 of [20] states that if E is a barrelled weakly Ascoli space, then every weak*-bounded subset of E' is finite-dimensional. Thus $D'(\Omega)$ is not weakly Ascoli since $D(\Omega)$ has an infinite-dimensional compact sets.

Example 4.6 (Under $\aleph_1 < \mathfrak{b}$). The space $C_k(\omega_1)$ is a (*DF*)-space by Theorem 12.6.4 of [29] which is not barrelled (recall that the ordinal space $w_1 = [0, \omega_1)$ is pseudocompact). However, $C_k(\omega_1)$ does not have a \mathfrak{G} -base by Proposition 16.13 of [30].

As we mentioned above, it is known that the space $C_p(X)$ is a (DF)-space if and only if X is finite. Indeed, although always $C_p(X)$ is quasibarrelled, see [29, Corollary 11.7.3], the space $C_p(X)$ admits a fundamental sequence of bounded sets only if X is finite, see [30]. For quasi-(DF)-spaces $C_p(X)$ the corresponding situation looks even more striking as the following theorem shows.

Theorem 4.7. For $C_p(X)$ the following assertions are equivalent:

- (i) $C_p(X)$ is a quasi-(DF)-space.
- (ii) $C_p(X)$ has a fundamental bounded resolution.
- *(iii)* X is countable.
- (iv) $C_p(X)$ is in the class \mathfrak{G} .
- (v) $C_p(X)$ has a \mathfrak{G} -base.

Proof. (ii) follows from (i) by the definition. (iii) follows from (ii) by Theorem 3.3. The implication (iii) \Rightarrow (iv) is trivial. Since $C_p(X)$ is always quasibarrelled (see again [29, Corollary 11.7.3]), the implication (iv) \Rightarrow (v) follows from [9]. Finally, if $C_p(X)$ has a \mathfrak{G} -base, it is metrizable again by [9].

Theorem 4.7 suggests the following question:

Question 4.8. For which Tychonoff space X, the space $C_k(X)$ is a quasi-(DF)-space?

We know already from Theorem 3.3 that for Fréchet–Urysohn spaces $C_k(X)$ the existence of a fundamental bounded resolution implies metrizability of $C_k(X)$. Below we obtain a complete answer to Question 4.8 for metrizable spaces X.

Proposition 4.9. Let X be a metrizable space. Then $C_k(X)$ is a quasi-(DF)-space if and only if X is a Polish σ -compact space. In particular, if X is a Polish σ -compact but non-compact space, then $C_k(X)$ is a quasi-(DF)-space which is not a (DF)-space.

Proof. Assume that $C_k(X)$ is a quasi-(DF)-space. Since $C_k(X)$ has a fundamental bounded resolution, Corollary 2.8 implies that X is a σ -compact space. On the other hand, as $C_k(X)$ is barrelled, $C_k(X)$ belongs to the class \mathfrak{G} if and only if it has a \mathfrak{G} -base, see Lemma 15.2 of [30]. Therefore X has a fundamental compact resolution by [16]. Thus X is Polish by the Christensen theorem [30, Theorem 6.1].

Conversely, if X is a Polish σ -compact space, then $C_k(X)$ has a \mathfrak{G} -base by [16] and has a fundamental bounded resolution by Corollary 2.8. Thus $C_k(X)$ is a quasi-(DF)-space.

If the Polish σ -compact X is not compact, it has a countable non relatively compact subset. Thus $C_k(X)$ is a (DF)-space by Theorem 10.1.22 of [40].

Recall that $C_k(X)$ is a (*DF*)-space if and only if any countable union of compact subsets of X is a relatively compact set, see [40, Theorem 10.1.22].

Let us recall two important properties which hold for any (DF)-space. The first property is the following: If E is a (DF)-space with its fundamental sequence of bounded sets $\{S_n\}$, then a linear map ξ on E to a Banach space F is continuous provided the restriction $\xi | S_n$ is continuous for any $n \in \mathbb{N}$, see [40, Corollary 8.3.3]. Recall that a lcs E is *bornological* if for every Banach space F any linear map $\xi : E \to F$ which transforms bounded sets to bounded sets is continuous, [40]. It is clear that if E is a bornological space with a fundamental bounded resolution $\{B_\alpha : \alpha \in \mathbb{N}^N\}$, then any linear map $\xi : E \to F$ such that each $\xi | B_\alpha$ is continuous is continuous on the whole space E. This fact refers to a large class of quasi-(DF)-spaces including all regular (LM)-spaces. This suggests the following question:

(A) Does there exist a quasi-(DF)-space E with its fundamental bounded resolution $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ and a discontinuous linear functional ξ on E such that each $\xi | B_{\alpha}$ is continuous?

Let's mention here the following remarkable result of Drewnowski [13] which also motivates the above question: If *E* and *F* are metrizable and complete lcs and *E* has a resolution $\{E_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of subsets of *E*, then a linear map $\xi : E \to F$ is continuous provided each $\xi | E_{\alpha}$ is continuous.

The second property characterizes quasibarrelled (DF)-spaces: A (DF)-space E is quasibarrelled if and only if E has countable tightness, see [30, Proposition 16.4 and Theorem 12.3]. This may suggest also the following question:

(B) *Is a quasi-(DF)-space with countable tightness quasibarrelled?*

Next example answers both Questions (A) and (B) in the negative (recall that every cosmic space is even hereditary countably tight, see [35]):

Example 4.10. There exists a countably-dimensional locally convex space E such that:

- (i) E is a quasi-(DF)-space but not a (DF)-space;
- (ii) E has a fundamental bounded sequence which is also a fundamental compact sequence;
- (iii) there exists a discontinuous linear functional χ on E which is continuous on every bounded subset of E;
- (iv) the strong bidual E''_{β} of E is a (DF)-space;
- (v) E is cosmic and non-quasibarrelled.

Proof. Let $A(\mathbf{s})$ be the free abelian topological group over the convergent sequence $\mathbf{s} = \{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$. Then $A(\mathbf{s})$ is algebraically the direct sum $F := \bigoplus_{n \in \mathbb{N}} \mathbb{Z}$ of the group \mathbb{Z} and has a \mathfrak{G} -base by Theorem 4.16 of [26]. Denote by G the group F, endowed with the metrizable group topology τ whose neighborhood base at zero consists of the subgroups $2^k F$, $k \in \mathbb{N}$. Being metrizable the topological group G has a \mathfrak{G} -base. Therefore the diagonal group Δ of the product $A(\mathbf{s}) \times G$ also has a \mathfrak{G} -base, see [26, Proposition 2.10]. Moreover, as it is shown in Example 4.1 of [19], the group Δ is a non-discrete countable abelian group whose compact sets are finite. Let $\Delta = \{x_n : n \in \mathbb{N}\}$ be an enumeration of Δ . Define $E := L(\Delta)$. Let us show that E satisfies (i)–(v).

The space *E* has a \mathfrak{G} -base by [5]. Clearly, Δ is a μ -space and it has a fundamental compact sequence. Since $L(\Delta)$ and $L_p(\Delta)$ have the same bounded sets, *E* has a fundamental bounded resolution by Proposition 3.11. Thus *E* is a quasi-(*DF*)-space.

Every bounded subset of $E = L(\Delta)$ is finite-dimensional. Indeed, bearing in mind that the strong dual of any space $C_p(X)$ is feral (see [17]), then each $\beta(L(\Delta), C(\Delta))$ -bounded set B of $L(\Delta)$ is finite-dimensional. The space $C_p(\Delta)$ is barrelled by the

Buchwalter–Schmets theorem, see [30, Proposition 2.17], so if *B* is a bounded set of the free locally convex space $L(\Delta)$, then it is bounded in $L_p(\Delta)$. Hence *B* is $\beta(L(\Delta), C(\Delta))$ -bounded. This shows that *B* finite-dimensional. Therefore, the sequence

$$\left\{ [-n,n]x_1 + \dots + [-n,n]x_n : n \in \mathbb{N} \right\}$$

is a fundamental bounded sequence which is also a fundamental compact sequence in E. This proves (ii).

Take arbitrarily $\chi = (a_n) \in \mathbb{R}^{\mathbb{N}}$ such that $\chi \notin C(\Delta)$, such a χ exists since Δ is not discrete. Since $E' = C(\Delta)$, χ is a discontinuous linear functional on *E*. On the other hand, the finite-dimensionality of bounded sets in *E* implies that χ is continuous on every bounded subset of *E*. This proves (iii). Corollary 8.3.3 of [40] implies that *E* is not a (*DF*)-space.

As Δ is a μ -space, the strong dual of $E = L(\Delta)$ is $C_k(\Delta)$ (see the first paragraph of the proof of Proposition 3.11). But since Δ does not have infinite compact subsets we obtain that $C_k(\Delta) = C_p(\Delta)$ is a metrizable space. Thus E''_{β} is a (DF)-space and (iv) is proved. Finally, (v) follows from Corollary 5.20 and Theorem 6.4 of [27].

Note that the space Δ is not an Ascoli space by Proposition 5.12 of [4].

It is clear that the strong bidual of a (DF)-space is a (DF)-space. This and the previous example suggest the following

Question 4.11. Is it true that the strong bidual of a quasi-(DF)-space is again a quasi-(DF)-space?

Surely such an example cannot be quasibarrelled by Proposition 2.10. Note that Proposition 2.10 together with Theorem 2.7 imply that for a quasibarrelled space *E* the strong dual E'_{β} is a quasi-(*DF*)-space if and only if *E* is a quasi-(*DF*)-space.

ACKNOWLEDGEMENTS

The authors are grateful to the referee for valuable comments and remarks. The third named author was supported by GAČR Project 16-34860L and RVO: 67985840.

REFERENCES

- [1] N. Adasch and B. Ernst, Lokaltopologische Vektorräume, Collect. Math. 25 (1974), 255–274 (German).
- [2] N. Adasch and B. Ernst, Lokaltopologische Vektorräume II, Collect. Math. 26 (1975), 13–18 (German).
- [3] A. V. Arhangel'skii, Topological function spaces, Math. Appl., vol. 78, Kluwer Academic Publishers, Dordrecht, 1992.
- [4] T. Banakh and S. Gabriyelyan, On the Ck-stable closure of the class of (separable) metrizable spaces, Monatsh. Math. 180 (2016), 39-64.
- [5] T. Banakh and A. Leiderman, ω^{ω} -dominated function spaces and ω^{ω} -bases in free objects in topological algebra, Topology Appl. 241 (2018), 203–241.
- [6] T. Banakh and L. Zdomskyy, The topological structure of (homogeneous) spaces and groups with countable cs*-character, Appl. Gen. Topol. 5 (2004), no. 2004, 25–48.
- [7] V. I. Bogachev and O. G. Smolyanov, Topological vector spaces and their applications, Springer Monogr. Math., 2017.
- [8] J. Bonet and S. Dierolf, A note on biduals of strict (LF)-spaces, Results Math. 13 (1988), 23–32.
- [9] B. Cascales, J. Kakol, and S. A. Saxon, Metrizability vs. Fréchet-Urysohn property, Proc. Amer. Math. Soc. 131 (2003), 3623-3631.
- [10] B. Cascales and J. Orihuela, On compactness in locally convex spaces, Math. Z. 195 (1987), 365–381.
- [11] B. Cascales, J. Orihuela, and V. Tkachuk, *Domination by second countable spaces and Lindelöf* Σ -property, Topology Appl. **158** (2011), 204–214.
- [12] A. Daw and D. Guerrero Sánchez, Domination conditions under which a compact space is metrizable, Bull. Austr. Math. Soc. 91 (2015), 502–507.
- [13] L. Drewnowski, Resolutions of topological linear spaces and continuity of linear maps, J. Math. Anal. Appl. 335 (2007), 1177–1195.
- [14] J. C. Ferrando, S. Gabriyelyan, and J. Kakol, Metrizable-like locally convex topologies on C(X), Topology Appl. 230 (2017), 105–113.
- [15] J. C. Ferrando and J. Kakol, A note on spaces $C_{\rho}(X)K$ -analytic-framed in \mathbb{R}^{X} , Bull. Austr. Math. Soc. 78 (2008), 141–146.
- [16] J. C. Ferrando and J. Kakol, On precompact sets in spaces C_c (X), Georgian Math. J. 20 (2013), 247–254.
- [17] J. C. Ferrando, J. Kakol, and S. Saxon, *The dual of the locally convex space* $C_p(X)$, Funct. Approx. Comment. Math. **50** (2014), 389–399.
- [18] J. C. Ferrando, J. Kakol, and S. Saxon, *Characterizing P-spaces X in terms of C_n(X), J. Convex Anal.* 22 (2015), 905–915.
- [19] S. Gabriyelyan, Topologies on groups determined by sets of convergent sequences, J. Pure Appl. Algebra 217 (2013), 786-802.
- [20] S. Gabriyelyan, On the Ascoli property for locally convex spaces, Topology Appl. 230 (2017), 517–530.
- [21] S. Gabriyelyan and J. Kakol, *Metrization conditions for topological vector spaces with Baire type properties*, Topology Appl. **173** (2014), 135–141.
- [22] S. Gabriyelyan and J. Kakol, Free locally convex spaces with a small base, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 207 (2017), 136–155.
- [23] S. Gabriyelyan, J. Kakol, W. Kubiś, and W. Marciszewski, Networks for the weak topology of Banach and Fréchet spaces, J. Math. Anal. Appl. 432 (2015), 1183–1199.
- [24] S. Gabriyelyan, J. Kakol, A. Kubzdela, and M. Lopez-Pellicer, On topological properties of Fréchet locally convex spaces with the weak topology, Topology Appl. 192 (2015), 123–137.
- [25] S. Gabriyelyan, J. Kakol, and A. Leiderman, On topological groups with a small base and metrizability, Fund. Math. 229 (2015), 129–158.

THEMATISCHE 2617

2618 MATHEMATISCHE

- [26] S. Gabriyelyan, J. Kakol, and L. Zdomskyy, On topological properties of the weak topology of a Banach space, J. Convex Anal. 175 (2017), 571–586.
- [27] S. Gabriyelyan and S. A. Morris, Free topological vector spaces, Topology Appl. 223 (2017), 30-49.
- [28] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil. Math. 3 (1954), 57–123 (French).
- [29] H. Jarchow, Locally convex spaces, B.G. Teubner, Stuttgart, 1981.
- [30] J. Kakol, W. Kubiś, and M. Lopez-Pellicer, Descriptive topology in selected topics of functional analysis, Dev. Math., Springer, 2011.
- [31] J. Kakol and M. Lopez-Pellicer, Compact covering for Baire locally convex spaces, J. Math. Anal. Appl. 332 (2007), 965–974.
- [32] J. Kakol, S. A. Saxon, and A. R. Todd, Weak barrelledness for C(X) spaces, J. Math. Anal. Appl. 297 (2004), 495-505.
- [33] A. A. Markov, On free topological groups, Dokl. Akad. Nauk SSSR 31 (1941), 299-301.
- [34] S. Mercourakis and E. Stamati, A new class of weakly K-analytic Banach spaces, Comment. Math. Univ. Carolin. 47 (2006), 291-312.
- [35] E. Michael, 8, -spaces, J. Math. Mech. 15 (1966), 983-1002.
- [36] R. Meise and D. Vogt, Introduction to functional analysis, Oxford University Press, New York, 1997.
- [37] L. Narici and E. Beckenstein, Topological vector spaces, Second Edition, CRC Press, New York, 2011.
- [38] K. Noureddine, Nouvelles classes d'espaces localement convexes, Publ. Dept. Math. Lyon 10-3 (1973), 259-277 (French).
- [39] K. Noureddine, Notes sur les espaces D_b, Math. Ann. 219 (1976), 97–103 (French).
- [40] P. Pérez Carreras and J. Bonet, Barrelled locally convex spaces, North-Holland Math. Stud., vol. 131, Amsterdam, 1987.
- [41] A. P. Robertson and W. J. Robertson, Topological vector spaces, second edition, Cambridge University Press, 1964.
- [42] W. Ruess, Halbnorm-Dualität und induktive Limestopologien in der Theorie lokalkonvexer Räume, Habil. schr. Univ. Bonn. 1976 (German).
- [43] W. Ruess, On the locally convex structure of strict topologies, Math. Z. 153 (1977), 179–192.
- [44] M. Sakai, Function spaces with a countable cs*-network at a point, Topology Appl. 156 (2008), 117–123.
- [45] S. A. Saxon and L. M. Sánchez Ruiz, Dual local completeness, Proc. Amer. Math. Soc. 125 (1997), 1063–1070.
- [46] J. Schmets, Espaces de fonctions continues, Lecture Notes in Math., vol. 519, Springer-Verlag, Berlin, New York, 1976.
- [47] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. (2) 110 (1979), 407–438 (French).
- [48] V. V. Tkachuk, A space $C_p(X)$ is dominated by irrationals if and only if it is K-analytic, Acta Math. Hungar 107 (2005), 253–265.
- [49] M. Valdivia, Quasi-(LB)-spaces, J. London Math. Soc. (2) 35 (1987), no. 1, 149-168.

How to cite this article: Ferrando JC, Gabriyelyan S, Kakol J. Bounded sets structure of $C_p(X)$ and quasi-(*DF*)-spaces. *Mathematische Nachrichten*. 2019;292:2602–2618. https://doi.org/10.1002/mana.201800085