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Abstract

A common strategy to reduce the cost of a filter is to use a manufacturing technique with an
intermediate accuracy and use tuning elements to compensate for the manufacturing errors.
However, including tuning elements in the final EM simulations, and tuning the filters after
manufacturing, can be quite challenging. In this context, therefore, we review in this paper
two powerful filter design procedures based on Aggressive Space Mapping (ASM), and two
semi-automatic tuning techniques. As a validation, we describe in detail the design and tuning
of two types of filters that are commonly used for both space and ground applications,
namely, a six-pole inductive filter in rectangular waveguide, and a more complex five-pole
filter based on dual-mode resonators.

Introduction

The increasing demand for more advanced communication systems with wider channel band-
widths has recently motivated space companies to explore the use of higher frequency bands
(such as Ku, K, and Ka) that can easily accommodate higher transmission rates [1].

However, the use of higher frequency bands poses a series of mechanical problems when
manufacturing waveguide devices in general, and in particular with respect to waveguide
filters. It is, in fact, well known that as the frequency increases, the wavelength decreases,
and the physical size of the components becomes smaller. As a result, the devices become
much more sensitive to errors in the manufacturing processes. A practical solution to compen-
sate for the errors without greatly increasing the cost of the filters is to use a manufacturing
technique with an intermediate accuracy, like milling, and to use tuning elements to recover
the desired response.

This, in turn, introduces a complication, namely, the manual tuning of the filter after
manufacturing. Adjusting manually the tuning elements of a filter is, in fact, a complex and
time-consuming task that, in general, requires extensive tuning experience [2].

Furthermore, the use of milling and tuning elements introduces two more challenges.
The first one is that using milling we inevitably introduce rounded corners in the hardware.
The rounded corners must then be included in the electromagnetic (EM) simulations, and
this can significantly increase the required computational effort. The second challenge is
that the presence of tuning elements must also be taken into account, and this can increase
even further the computational effort. In this context, we must also remember that most
microwave filter structures are currently designed using optimization procedures that normally
require a large number of repeated EM simulations. A small increase in the time required for
the EM simulation can therefore have a very significant negative effect.

Fortunately, however, the field of EM-based optimization of complex structures has
recently made very significant progress due to the introduction of Space Mapping (SM) [3]
and Aggressive Space Mapping (ASM) [4–15]. SM uses two simulation spaces, or models.
A fast and low accuracy model, the so-called coarse model, and a precise but time-consuming
model, the so-called fine model. The basic idea behind SM (and ASM) is that most simulations
are performed using the coarse model, and the fine model is only used to verify the perform-
ance of the device in the various stages of the optimization process.

Significant effort has also been devoted in the past to the development of advanced CAD
filter tuning procedures. Examples are the use of fuzzy logic [16], and machine learning [17,
18], to cite a few. A significant recent development in this area has been the use of SM to
develop very efficient and effective CAD tuning procedures [19, 20].

In this context, therefore, the objective of this contribution is to provide, in a single paper,
detailed information about the use of advanced SM techniques for both filter design and tun-
ing. In addition to theory, we discuss in detail the design and tuning process of two types of
filters that are commonly used for both ground and for space applications, namely, an induct-
ive rectangular waveguide filter, and a more complex dual-mode filter.

The remainder of the paper is organized as follows. In Section “Design techniques”, we dis-
cuss in detail the design of the filters. In Section “Tuning techniques”, we show the most
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adequate tuning strategy to be used in each case. Finally, in
Section “Conclusions”, we conclude the paper with a summary
of the results that we have obtained.

Design techniques

In this section, we show how to design an inductive filter in rect-
angular waveguide and a compact filter based on dual-mode reso-
nators. For each case, we compare the performances of two
ASM-based design procedures [11, 12].

Inductive filter

Inductive filters in rectangular waveguide are very commonly
used for both ground and space applications. In this section, we
describe the design procedure for the six-pole filter shown in
Fig. 1 (top). The center frequency of the filter is 11 GHz, and
the bandwidth is 500 MHz. In order to reduce production costs,
the filter will be manufactured using H-plane milling with an
intermediate accuracy, namely, between 50 and 100 μm. As a con-
sequence, all concave corners will be rounded in the final hard-
ware. The filter will also use tuning elements (with 1.6 mm
radius) both in the cavities and in the coupling irises. In the
design process, all the tuners will be set to a penetration of
2 mm. This value is chosen to allow for future bidirectional
adjustments.

The design process starts with a distributed model based on
transmission lines and inverters that produce the desired
Chebyshev response, i.e. the target of our design. Once we have
obtained the distributed model, we can apply the design proced-
ure described in [21] in order to obtain the initial ideal waveguide
model of the filter shown in Fig. 1 (bottom). If we use a
Multimode Equivalent Network (MEN) simulator, such as
FEST3D, with a low accuracy setting, the EM analysis will require
a very short time, and we will be able to rapidly optimize the
structure and obtain the desired target performance.

At this point, the most time-consuming part of the design
begins: we need to include all non-ideal elements, namely, the
tuning elements and the rounded corners, and optimize the
final filter structure with a high accuracy simulator. We could
decide, for instance, to use FEST3D in a high accuracy setting,
or a finite-element method solver, like CST or HFSS. In any
case, the time required to carry out this step will be significant.
We will now show how ASM can be very effectively exploited
to reduce very significantly the computational effort.

OS-ASM
As already mentioned, the idea behind any SM-based optimiza-
tion method is to use two simulations models: a fast model, called
the coarse model (or space), and a precise but time-consuming
model, the fine model. The key assumption behind SM (and
ASM) is that the two spaces are related by the following linear
equation (or mapping):

xf = B · xc + C (1)

where xf and xc are the dimensions of the fine (Fig. 1, top) and
coarse (Fig. 1, bottom) models, respectively. Furthermore, if we
call the performances in the two spaces Rf(xf) and Rc(xc), respect-
ively, we can write:

Rf (xf ) = Rc(xc) (2)

to state that we have the same identical response in the two spaces.
This is, in fact the objective that we want to obtain, namely, a set
of dimensions for a filter structure that when manufactured and
measured gives the same exact response of our ideal filter.

The matrix B in (1) is the so-called mapping matrix between
the two spaces, and C is a vector of constants. In the traditional
ASM optimization procedure [4], B is first set to be equal to
the identity matrix, and it is then updated after each iteration.
At the end of the process, when we reach the condition stated
in (2), we can say that the coarse and fine models are perfectly
aligned, and the matrix B correctly maps both spaces.
Furthermore, it can be demonstrated mathematically that this
optimization process will converge in a number of iterations
that is proportional to the number of variables involved in the
process.

Furthermore, recent research on ASM [11] indicates that the
matrix B has the following, very important property. If the
geometry of the coarse model is exactly identical to the geometry
of the fine model, and the only difference between the two spaces
is the accuracy of the computations, the correct value of B is, in
fact, the identity matrix, and the ASM optimization process con-
verges in just one step. This is, indeed, the origin for the name
One-Step ASM (OS-ASM) in [11].

In the case we are discussing now, however, the coarse and
the fine models are not exactly identical, as we can see in
Fig. 1. The OS-ASM optimization process will therefore not be
able to converge in one single step. However, the results obtained
in [11] indicate that, using the identity matrix as the mapping
matrix will result in a faster convergence with respect to the ori-
ginal ASM procedure described in [4].

The OS-ASM design process of the six-pole filter under exam-
ination is detailed next.

(i) Obtain first the (optimum) dimensions of the coarse model
of the filter using, for instance, the procedure described in
[21].

(ii) Set the initial dimensions of the fine model to the optimum
dimensions of the coarse model (i.e. xf1 = xcopt), and add all
non-ideal elements. Next carry out the first high accuracy
simulation. Naturally, the electrical response that we obtain
(Rf(xf1)) will be (strongly) detuned (Rf(xf1)≠ Rc(xcopt)).

Fig. 1. Inductive six-pole filter. Top: Fine model of the filter. Bottom: Ideal coarse
model of the filter.



(iii) Optimize one instance of the coarse model until the perform-
ance of the fine model is matched, that is Rc(xc1) = Rf(xf1).

(iv) The next step is to compute the following differences:

D = xcopt − xc1 (3)

(v) We then update the dimensions of the fine model using the
following equation:

xf2 = xf1 − D (4)

and perform another fine model simulation.
(vi) At this point we have completed the first iteration. We can

therefore evaluate the error betweenRf(xf2) and the desired tar-
get response. If the error is acceptable, we have concluded our
process. If it is not acceptable, we goback to the second step and
perform another iteration using xf2 as a starting point.

Applying to our filter the procedure just described, the coarse
and fine models give essentially the same response after only four
iterations. Table 1 shows the evolution of the design parameters in
the OS-ASM process.

Efficient ASM
A more efficient alternative is to use the approach described in
[12]. This second method combines the segmentation strategy
of [21] with the power of OS-ASM. Instead of trying to optimize
all design parameters simultaneously, the filter is designed step by
step as follows:

(i) Obtain first the (optimum) dimensions of the low accuracy
model of the filter.

(ii) Simulate the first three elements of the low accuracy model,
namely, the first cavity with the relative input and output
irises (see Fig. 2(a)). This model provides the first target
that the equivalent high accuracy model of the filter (see
Fig. 2(b)) must match.

(iii) Perform an OS-ASM iteration with the reduced coarse and
fine models (shown in Figs 2(a) and 2(b)) until the reduced
fine model produces the desired target response. Note that
since we are dealing with reduced models, there are only
three parameters to optimize, namely, the widths of the
first two apertures and the length of the first cavity.

(iv) Add the next cavity of the filter to the reduced coarse model
and obtain the second target. Add that same cavity to the

fine model (including rounded corners and all tuners, as
shown in Fig. 2(d)). We now perform another set of ASM
iterations with the reduced coarse model shown in Fig. 2(c).
It is important to note that, since the first three elements of
the filter have already been obtained, we only need to optimize
the newly added parameters (the length of the second cavity,
and the width of the output aperture). For some filters, a
final optimization of all five parameters may be required to
obtain a very good final agreement with the target response,
however, this is not the case for our inductive filter.

(v) This procedure is repeated until we reach the center of the
filter (see Fig. 2(f)).

(vi) We now have obtained a very good starting point for all the
dimensions of our filter since the structure is symmetric
(Fig. 1 top). At this point,wewill performa finalOS-ASMopti-
mization using all design parameters to obtain the desired final
performance. This step is normally very fast, since the response
of the filter is already very close to the target performance.

Table 2 shows the evolution of the design parameters in the
Efficient ASM process. As it can be seen, only two or three

Table 1. Evolution of the design parameters for the inductive six-pole filter in the OS-ASM process. The design variables are the widths of the apertures (their
thickness is fixed to 3.5 mm) and the lengths of the resonators (their heights and widths are set to 9.525 and 19.95 mm). All dimensions are in mm

Coarse
Fine

Parameter Optimum Iter. 0 Iter. 1 Iter. 2 Iter. 3 Iter. 4

i1 6434FC 12.1369 6434FC 12.1369 11.9197 11.9526 11.9587 11.9289

l1 6434FC 13.8491 6434FC 13.8491 13.5647 13.4252 13.4502 13.4960

i2 6434FC 9.0745 6434FC 9.0745 8.9056 8.8446 8.9010 8.8816

l2 6434FC 16.2220 6434FC 16.2220 15.8992 15.8932 15.8904 15.8452

i3 6434FC 8.3179 6434FC 8.3179 8.1048 8.1183 8.0983 8.1331

l3 6434FC 16.6566 6434FC 16.6566 16.3419 16.3229 16.3354 16.3272

i4 6434FC 8.1931 6434FC 8.1931 8.0575 7.9744 7.9603 7.9995

Fig. 2. Filter models used in the first stage of the Efficient ASM: (a) coarse model; (b)
fine model. Filter models used in the second stage: (c) coarse model; (d) fine model.
Filter models used in the third stage: (e) coarse model; (f) fine model.



variables are optimized in each step. Once we have designed half
of the filter, we can duplicate it obtaining a very good perform-
ance. The last ASM iteration (which considers all design vari-
ables) is very fast, since all elements are very close to their
target. Figure 3 shows the performance of the final fine model
compared to the measurements of the hardware. As we can see,
the agreement is indeed excellent. The Efficient ASM just
described is 1.83 times faster than OS-ASM described in the pre-
vious section [12] (see Table 3 for the details).

Dual-mode filter

The second application example that we discuss is a more com-
plex five-pole dual-mode filter [22]. The dual mode resonator
exploits the resonance of a metallic post, together with the reson-
ance of the rectangular cavity that contains the post. The filter is

centered at 10 GHz, and has a bandwidth of 300MHz. Figure 4
(top) shows the ideal coarse model of the filter.

As already mentioned, there are two modes resonating in both
the first and last cavities. The two resonances are the second res-
onance of the (re-entrant) post and the first resonance of the rect-
angular metallic enclosure. The dimensions of both the post and
the metallic enclosure are chosen so that the two resonances occur
at the same frequency (degenerate modes). The filter will again be
manufactured using milling. The fine model must, therefore,
include rounded corners (2 mm radius). In addition, it must
also include tuning elements (0.9 mm radius) set at a fixed
depth of 1 mm. Figure 4 (bottom) shows the fine model of the
filter. The design parameters are the lengths of the cavities, the
widths of the inductive irises (their thickness is fixed at 2 mm),
together with the additional design variables shown in Fig. 5,

Table 2. Evolution of the design parameters for the inductive six-pole filter in the Efficient ASM process. The design variables are the widths of the apertures (their
thickness is fixed to 3.5 mm) and the lengths of the resonators (their heights and widths are set to 9.525 and 19.95 mm). All dimensions are in mm

Coarse
Fine

Parameter Optimum Iter. 0 Iter. 1 Iter. 2 Iter. 3 Iter. 4

i1 6434FC 12.1369 6434FC 12.1369 11.9096 11.9096 11.9096 11.9226

l1 6434FC 13.8491 6434FC 13.8491 13.4777 13.4777 13.4777 13.4883

i2 6434FC 9.0745 6434FC 9.0745 8.9043 8.9043 8.9043 8.8863

l2 6434FC 16.2220 333333 – 6434FC 16.2220 15.8688 15.8688 15.8929

i3 6434FC 8.3179 333333 – 6434FC 8.3179 8.1321 8.1321 8.1316

l3 6434FC 16.6566 333333 – – 6434FC 16.6566 16.3198 16.3202

i4 6434FC 8.1931 – 333333 – 6434FC 8.1931 8.0245 8.008

Fig. 3. Measured and simulated response of the six-pole inductive filter.

Table 3. Performance of both design methods for the in-line six-pole inductive waveguide filter

OS-ASM Efficient ASM

TC 0.23 s. TC1 0.1 s. TF1 19 s. I1 56

TF 61 s. TC2 0.11 s. TF2 33 s. I2 71

NI 4 TC3 0.13 s. TF3 41 s. I3 78

AI 424 TC4 0.26 s. TF4 61 s. I4 212

Total 11min. 35 s. Total 6 min. 20 s.

Fig. 4. Top: Coarse model of the five-pole filter with sharp corners, and without tun-
ing elements (Fig. 1 from [22]). Bottom and center: Fine model of the filter with
rounded corners and tuning elements (Fig. 26 from [22]).



namely, the height of the re-entrant post (hs), the height and off-
set of the cylinder that couples the two degenerate modes (ha and
la), the offset of the input/output coaxial port of the filter (lc), and
the length of the connection from the coaxial port to the post (lp).

The coarse model is again simulated with FEST3D. However,
in order to simulate the re-entrant post, FEST3D uses a module
based on the well-known 3D Boundary Integral-Resonant Mode
Expansion (BI-RME) method [23]. As a result, the simulation is
not as fast as theoneof the inductive filterwediscussed in theprevious
section.Thehighprecisionmodel is simulated, in thiscase,usingCST.
In order to achieve numerical convergence, we increased the density
of CST’s default initial mesh and let the adaptive mesh perform 24
iterations (using around 1 500 000 tetrahedrons).

OS-ASM
The first step in the design process is to obtain the dimensions of
the coarse model (low accuracy) in Fig. 4 (top) that produces the
desired response. This can be done, for instance, following the
approach described in [21]. Due to the complexity of the hard-
ware, however, it is more convenient to start directly with a two-
pole rather than with a one-pole structure. Once the low accuracy
two-pole structure is optimized, the complete filter can be
assembled, and the central cavity optimized to get the desired
response. A global optimization is also necessary to obtain a per-
fectly compliant set of dimensions for the coarse model.

Once the coarse model has been fully defined, we can start the
OS-ASM design of the fine model. In this case, however, it is more
convenient to proceed in two stages: in the first one we consider
the tuning elements, and in the second one we add the rounded
corners. The complete procedure is as follows:

(i) Add first the tuning elements to the fine model (see Fig. 6)
using, at the start of the procedure, the structural dimension
of the coarse model. After three ASM iterations, both models
provide a very similar response (see Fig. 7). It is important to
note that, if we had included at this stage also the rounded
corners, the initial performance of the fine model would
have been too different from the target, and the coarse

model would have required a significantly longer time to
recover the performance of the fine model.

(ii) We can now add the rounded corners to the fine model,
obtaining the structure shown in Fig. 4 (bottom). After
three more ASM iterations, the fine model gives the desired
target response (see Fig. 8).

The overall time required to design the five-pole dual-mode fil-
ter using this approach can be computed as:

Time =
∑Stages
i=1

TCi · AIi · NIi + (NIi + 1) · TFi (5)

Time = 19 h 22min 28s (6)

where TCi and TFi are the computation times of the coarse and
fine models, NIi is the number of ASM iterations performed,
and AIi is the average number of simulations it takes a simplex
algorithm to recover each of the fine model responses.

Efficient ASM
In this case, the segmentation of the problem into smaller opti-
mization spaces is more challenging. This is because the first cav-
ity includes already six out of the total eight design variables. And,
furthermore, the six variables are not completely independent.
However, the segmentation strategy can still increase significantly
the efficiency of the design process with respect to the one
described in the previous section. The proposed approach is as
follows:

(i) The first step is again to generate a coarse model of the com-
plete first cavity, including the coaxial input, the first cavity
(with all its elements) and the first iris (see Fig. 9 left). This
model can be rapidly optimized to obtain the desired two-
pole performance.

(ii) The next step is to build the fine model of the first cavity
including all tuning elements and rounded corners (see
Fig. 9 right).

(iii) We can now use the OS-ASM method to align the coarse
and the fine models. After two ASM iterations, both models
provide the same performance (see Fig. 10). It is important

Fig. 6. Fine model of the filter that includes tuning elements.

Fig. 5. Dimensions that are optimized in the design process (Fig. 15 from [22]).

Fig. 7. ASM process to recover the desired performance of the fine model that
includes tuning elements.



to note that, even if we are optimizing seven parameters (all
the dimensions from Fig. 9), the reduced coarse model is
twice as fast as the coarse model of the complete filter.

(iv) We then add the central cavity to the coarse model and opti-
mize the structure to obtain the required three-pole
performance.

(v) Add next the central resonator and iris to the fine model,
obtaining the second fine model shown in Fig. 11 (bottom).
Perform one ASM iteration optimizing, primarily but not
exclusively, the newly added elements. Figure 12 shows the
performances of the fine and coarse models after the ASM
process.

(vi) Finally, duplicate the first dual-mode cavity of the fine model
to obtain the complete structure of the filter (Fig. 4, bottom).
After only one ASM iteration with all the design parameters,
the high precision model gives the desired performance
(see Fig. 13).

The overall time required to design the five-pole band-pass
filter is computed as:

Time =
∑Stages
i=1

TCi · AIi · NIi + (NIi + 1) · TFi (7)

Time = 3 h 37min 58s (8)

This is 5.3 times faster than the method described in the pre-
vious section. Table 4 shows the time parameters of each proced-
ure. It is therefore clear that, using the step-by-step approach
based on partial models of the filter can always reduce very sig-
nificantly the overall time required to obtain the desired target
performance with the fine model. Table 5 shows the optimal
dimensions for the coarse and fine models.

Tuning techniques

Having successfully designed high precision models of our filters,
we now need to move to the next phase, namely, tuning the filters

Fig. 8. ASM process to recover the desired performance in the fine model including
both tuning elements and rounded corners.

Fig. 9. First reduced model of the filter. Left: coarse model. Right: fine model.

Fig. 10. ASM process to recover the desired performance in the first reduced fine
model.

Fig. 11. Top: Second coarse models of the filter. Bottom: Second fine model of the
filter.

Fig. 12. ASM process to recover the desired performance in the second reduced fine
model.



after they have been manufactured. In this context, we first discuss
a robotic tuner that we have developed to facilitate the tuning
process. We then discuss two different tuning procedures: an
ASM-based technique, and another approach that is based on
available tuning knowledge.

Tuning robot

One issue that is important to note is that, in order to tune a filter,
we must be able to control very precisely the motion and the
position of all tuning elements. To do that, in a controllable
and systematic way, we have built a simple precision robotic
tuner, as shown in Fig. 14. The robotic tuner has three parts: a
movable X-Y table to which the filter is fastened, a precision rotat-
ing arm with an actuator that can be coupled to the tuning
elements, and three drivers connected to a PC to control the tun-
ing process. The rotating arm is driven by a stepper motor with
800 steps for revolution. In addition, there is a 1:30 reduction
gear. The resulting theoretical (minimal) uncertainty is 0.015
degrees. However, we have observed that, in practice, the angular
accuracy of the system is about one degree. Taking into account
that the pitch of the tuning elements is 0.397 mm, this results
in a penetration accuracy of about one μm. This is enough to
tune a large variety of filters.

ASM-based tuning procedure

The first tuning procedure is based on ASM [19]. As usual, this
technique uses two simulation models: the fine model shown in

the top of Fig. 1, and the coarse model shown in the bottom of
Fig. 1, respectively. The starting point of the tuning procedure
is, in fact, what we know at the end of the filter design process,
namely, that both the coarse and the fine model are aligned
with the desired performance (Fig. 15). Furthermore, in the vicin-
ity of the alignment point, we know that relation between the two
models (or spaces) is given by (1), where it is important to recall
that:

• xf refers to the penetrations of the tuners in the fine model
shown in Fig. 1 (top).

Table 4. Performance of both design methods for the five-pole filter based on dual-mode coaxial resonators

One-step ASM

TC1 15.74 s TF1 371 s AI1 729 NI1 3

TC2 15.74 s TF2 386 s AI1 684 NI1 3

Total 19 h 22 min 28 s

Efficient ASM

TC1 8.07 s TF1 123 s AI1 251 NI1 2

TC2 8.23 s TF2 176 s AI2 204 NI2 1

TC3 15.74 s TF3 386 s AI3 372 NI3 1

Total 3 h 37 min 58 s

Fig. 13. Final performance of the fine model compared to its target.

Table 5. Optimum dimensions for the design variables of the coarse and fine
models of Fig. 4. All dimensions are in mm. Figure 5 shows a drawing with
the meaning of the variables. wiris and lcavity2 are, respectively, the width and
length of the inductive iris and central cavity

Parameter Coarse Fine

wiris 6434FC 7.663 8.092

ha 6434FC 1.6 1.697

hs 6434FC 2.547 2.815

l 6434FC 19.143 18.821

la 6434FC 9.75 9.956

lc 6434FC 4.771 4.801

lcavity2 6434FC 20.396 19.798

lp 6434FC 3.5011 3.3236

Fig. 14. Precision robotic tuner that we have built to control the tuning process.



• xc refers to the waveguide dimensions of the coarse model
shown in Fig. 1 (bottom).

To proceed, we now need to compute the B matrix in (1). To do
that, we now modify, one at the time, the penetration of each
tuner of the fine model (indicated by xfi) and optimize instances
of the coarse model to recover the fine model performances (xci).
After doing that, following the procedure detailed in [20], we can
easily compute the elements of the matrix B that relates the filter
dimensions of the coarse model with the penetrations of the tun-
ing elements. Now that we have a good estimation of the B matrix
at the point of alignment, we can proceed with the tuning process,
as follows:

(i) Once the filter is manufactured, set the tuners at their design
penetration (given by x1). This will provide, in our case, the
response shown in Fig. 16, which we will refer to as Rm(x1).

(ii) Optimize an instance of the coarse model until we recover
the same performance, namely:

Rc(xcm) = Rm(x1) (9)

(iii) Set the tuners of the filter to:

x2 = x1 + B · (xcopt − xcm) (10)

(iv) Go back to step (i) and repeat this process until the filter is
completely tuned.

After four ASM iterations, our filter is successfully tuned as
shown in Fig. 17.

A knowledge-based approach

The ASM-based technique we just discussed could also be used
for tuning the dual-mode filter. However, due to the relatively
long simulation time that is required in this case (about 15 s for
a single run), and the expected number of coarse simulations in
each ASM iteration (about 600–700), the use of the ASM-based
tuning technique would require a total of about 10–11 h.

We therefore propose to apply a different knowledge-based
tuning approach. Our objective has been, in fact, to develop a
semi-automatic tuning approach that is based on the manual tun-
ing procedure that is widely used in the industrial environment.
A key step in this context is to use Matlab to read the
measurements of a VNA so that they can be further processed
to support the tuning process. The resulting procedure is then
as follows:

(i) Define first the S11 and S21 tuning masks. In this case, the
return loss between 9.85 and 10.15 GHz should be lower
than − 30 dB, and the S21 at 9.6 and 10.53 GHz should
have minimum attenuation level of − 40 dB. The S11 error
at each point is then computed using the following
expression:

es11
(i) = RLgoal − RL(i), if RL(i) , RLgoal

0, otherwise

{
(11)

and the S21 error is defined as:

es21
(i) = ILgoal − IL(i), if IL(i) , ILgoal

0, otherwise

{
(12)

The total error is then computed as:

E = w1

n1

∑n1
i=1

es11
(i) + w2

n2

∑n2
i=1

es21
(i), (13)

where w1 and w2 are the weights for the S11 and S21 terms,
and n1 and n2 are the number of points used in each mask.

(ii) The next step is to set all tuners to the design penetration.

Fig. 16. Performance of the filter when all tuning elements are set to the design
depth.

Fig. 15. Aligned performances of the coarse and fine models of the inductive filter. Fig. 17. Filter performance after every ASM iteration.



(iii) We can then start the actual tuning procedure that consists of
finding the penetration of each tuning element that minimizes
the total error that we have just defined. A key step is now to
define the order in which the tuners must be modified.

(iv) Following the guidelines from [24], we will first act upon the
tuners in the cavities and then we will adjust the tuners that
control the couplings. After each tuner movement, the error
is recomputed using Matlab to decide if the movement must
be kept or discarded (i.e., to return to the original position).

(v) This process is repeated until the filter is tuned, and all
masks are satisfied.

Figure 18 shows the performance of the filter at the end of the
tuning process. As we can see, the performance that we have
obtained is good but is not in perfect agreement with the simula-
tions. Further investigations indicated that this disagreement is
due to the dimensional errors introduced by the manufacturing
process, in particular, with respect to the input and output cou-
plings [22]. Our tuning procedure, however, was able to obtain,
with a very reasonable effort, the best possible performance that
the hardware could give. Finally, it is important to note that the
successful use of the procedure just described does not require
any previous tuning experience.

Conclusions

To reduce the costs of microwave filters, it is common practice to
use a manufacturing technique that can deliver an intermediate
(low cost) accuracy, like milling for instance, together with tuning
elements that can be adjusted after manufacturing in order to
obtain the desired filter performance. An inevitable consequence
of this choice is that the presence of rounded corners and tuning
elements must be included in the design process. This, in turn,
can result in a significantly increased EM simulation effort. In
this context, therefore, we have discussed in this paper two effi-
cient design strategies that can be used to significantly decrease
the computational effort to design microwave filters commonly
used for both ground and space applications. In addition to filter
design strategies, we have also discussed two systematic proce-
dures to support the filter tuning stage.

The value of this contribution is, in our opinion, that the
material discussed can, in fact, be considered as an end-to-end
guide enabling young engineers to deliver compliant microwave
filter designs with a minimum of previous experience.
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