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RESUMO

MOREIRA, E. M. Variações não-locais e quasilineares do problema de Chafee-Infante .
2022. 152 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Neste trabalho, desenvolvemos alguns resultados sobre variações não-locais e quasilineares do
problema de Chafee-Infante. No caso quasilinear não-autônomo, vamos demonstrar a existência
de soluções especiais conhecidas como “equilíbrios não-autônomos”. No caso quasilinear
autônomo, vamos exibir a existência de uma sequência de bifurcação de equilíbrios, analisaremos
sua estabilidade e hiperbolicidade. Também exibiremos a estrutura do atrator para um caso
particular. No último capítulo vamos construir um conceito de bloco isolante para problemas
multivaluados e fazer uma aplicação de tal conceito.

Palavras-chave: Problemas não-locais, problemas de Chafee-Infante, problemas quasilineares,
hiperbolicidade, estrutura de atrator, bifurcação.





ABSTRACT

MOREIRA, E. M. Nonlocal quasilinear variations of the Chafee-Infante problem. 2022.
152 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2022.

In this work, we developed some results on nonlocal quasilinear variations of the Chafee-Infante
problem. In the non-autonomous quasilinear case, we will show the existence of special solutions
known as “non-autonomous equilibria”. In the autonomous quasilinear case, we will exhibit the
existence of a sequence of bifurcation of equilibria, for which we will analyze the stability and
hyperbolicity. We will also exhibit the attractor of the global attractor for a particular case. In
the last chapter, we will construct a concept of isolating block for multivalued problems and we
will make an application of such concept.

Keywords: Nonlocal problems, Chafee-Infante problems, quasilinear problems, hyperbolicity,
structure of the attractor, bifurcation.





RESUMEN

MOREIRA, E. M. Variações não-locais e quasilineares do problema de Chafee-Infante .
2022. 152 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

En este trabajo desarrollamos algunos resultados sobre variaciones cuasilineales no-locales del
problema de Chafee-Infante. En el caso cuasilineal no-autónomo, vamos a demostrar la existencia
de soluciones especiales conocidas como “equilibrios no-autónomos”. En el caso cuasilineal
autónomo, vamos a exhibimos la existencia de una secuencia de bifurcación de equilibrios, para
los cuales analizaremos su estabilidad e hiperbolicidad. También exhibiremos la estructura del
atractor para un caso particular. En el último capítulo, vamos a construir un concepto de bloque
aislante para problemas multivaluados y hacer una aplicación de tal concepto.

Palabras clave: Problemas no locales, problemas de Chafee-Infante, problemas cuasilineales,
hiperbolicidad, estructura del attractor, bifurcación.
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CHAPTER

1

INTRODUCTION

The study of the inner structure of attractors for scalar semilinear parabolic problems
with local diffusivity is considerably well understood and many very interesting results are
available in the literature (see, for example, (CARVALHO; LANGA; ROBINSON, 2013) and
references therein). The description of the inner structure for non-local models is much less
exploited. Our aim is to provide some techniques to unravel the dynamics of such non-local
models in both autonomous and non-autonomous frameworks.

Related to the inner structure of attractor, we wish to understand properties that are robust
under Lipschitz perturbations such as hyperbolicity (in the autonomous context) or exponential
dichotomy (in the nonautonomous setting). A lot of the geometric theory for nonlinear dynamical
systems can be found in (HENRY, 1981). Another approach to find answers for the inner structure
is using topological theory such as homology and connection matrix theories. In this thesis, we
will consider both approaches.

We will explore problems in the one-dimensional bounded domain. In this situation, we
have more information about the spectral theory of linear operators, that is because we will use
the fact we understand very well the so-called Sturm-Liouville operators, see (SAGAN, 1961)
for more details.

The theory of semigroup and evolution process has been developed intensively from the
last century until now. We can find several problems for which there is a semigroup or process
related to them. In fact, we can also find examples for which there is a compact set (or a family
of compact sets), which is called an attractor, that describes the dynamics of the problem.

There is a particular class of semigroups, called gradient semigroups, that interest us
most. In fact, if the number of equilibria is finite, we can say that the attractor of a gradient
semigroup, if it exists, is the set of global bounded solutions that connects two distinct equilibria
(that is, stationary points under the action of the semigroup). Thus, it is important to understand
the behavior of the solutions near each equilibrium. To be more precise, we search for aspects of



20 Chapter 1. Introduction

the dynamics which are robust under perturbation.

After understanding how the semiflow acts close to each equilibrium, the following
question would be to understand the semiflow restricted to the attractor. For instance, it is
interesting to see if we have transversality.

The best well-understood attractor is the one associated with the Chafee-Infante problem.
This problem is a one-dimensional scalar semilinear problem depending on a parameter l > 0
and it generates a gradient semigroup, whose number of equilibria depends on the position of
the parameter l > 0. Also, the Chafee-Infante problem firstly appeared in the literature in the
seventies, see (CHAFEE; INFANTE, 1974; CHAFEE; INFANTE, 1974/75), but the description
of its attractor was finalized much later, after contributions of several authors along the years.
We will explore more about this problem later and we will give references for the ones who wish
to pursue a further study on it.

Figure 1 – Representations of the attractor for the Chafee-Infante problem, l 2 (0,16). Figures inspired
by (HENRY, 1981, p. 5)

There are some topological theory developed in order to obtain local information inside
the attractor of a semigroup. Several authors collaborated in this subject, such as C. Conley, K.
Rybakowski, H. Kurland, R. Franzosa and many others.

Conley in (CONLEY, 1978) defines the concept of homology index (today known as
“Conley index”) of an isolated invariant set of a flow acting in a compact space. The Conley
index basically associates an invariant set, satisfying additional properties, with a topological
pointed space defined by a special neighborhood of the invariant set. In (RYBAKOWSKI, 1987),
Rybakowski has generalized the concept of Conley index for semiflows acting in non-locally
compact metric spaces.

The Conley index can be applied to study bifurcations of equilibria and existence of
connections. This concept is also robust under perturbations.

Now, R. Franzosa (see (FRANZOSA, 1986; FRANZOSA, 1988; FRANZOSA, 1989)
has developed the concept of connection matrix for a flow admitting a Morse decomposition. The
author has defined a matrix, such that each entry is a boundary map for a long exact sequence
defined by two distinct elements of the Morse decomposition. If an entry of a connection matrix
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is non-zero, then it exists of a connection between two elements of the Morse decomposition. It
is important to mention that there may exist more than one connection matrix associated with a
Morse decomposition.

All of these geometry and topological properties commented above are in the content of
univalued semiflow, that is, problems for which we do have uniqueness of solutions. But in this
thesis, we are also interested in exploring the multivalued case.

Since the beginning of the last century, several authors (see e.g. (ARRIETA; RODRÍGUEZ-
BERNAL; VALERO, 2006; BALL, 2000; DASHKOVSKIY; KAPUSTYAN; PERESTYUK,
2021; MELNIK; VALERO, 1998; ZGUROVSKY et al., 2012) and the references therein among
many others) have been studying attractors in this context, which is a very challenging subject.
Even if the attractor exists, it is not clear how to understand its structure, since we lack a definition
of hyperbolicity on the multivalued case. Differently from the univalued case, we cannot expect
the multivalued semiflow to be injective inside its attractor, which could be helpful in the local
analysis.

It has been a clear development in the topological theory for the study of attractors in the
multivalued case. For instance, there are many definitions of homology index in this context, see
for instance (DZEDZEJ; GABOR, 2011; MROZEK, 1990). On the other hand, we have not seen
any construction of isolating blocks, special bounded sets such that each point of the boundary is
oriented under the action of the semiflow.

The isolating block sets are directly related with the definition of Conley’s index unival-
ued case. Thus, understanding such concepts in the multivalued setting may help us to analyze
local information in the attractor.

In this thesis, we present results related to two nolocal problems studied by this author
and her collaborators.

First, we consider this non autonomous problem
8
>><

>>:

ut�a(kuxk2)uxx = lu�b (t)u3, x 2 (0,p), t > s,

u(0, t) = u(p, t) = 0, t > s,

u(·,s) = u0(·) 2 H1
0 (0,p),

with a 2C1(R+) and b : R! [b1,b2] is a globally Lipschitz function, b2 > b1 > 0.

We will show the existence of a sequence of bifurcation of global solutions known as
non-autonomous equilibria.

We also consider this the autonomous problem
8
>><

>>:

ut = a(kuxk2)uxx +l f (u), x 2 (0,p), t > 0,

u(0, t) = u(p, t) = 0, t > 0,

u(0) = u0 2 H1
0 (0,p).
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for a function a 2C1(R+) and f 2C2(R) with other convenient conditions. We will analyze the
existence of solutions, bifurcations of equilibria and the inner structure of the attractor. If the
term a(kuxk2) 6= constant, we have a nonlocal quasilinear problem.

We will consider the problem above when a(·) is increasing and we will show that we
can have results analogous to the ones for the Chafee-Infante problem. Without this monotonicity
assumption, we will show that we may also have an infinity of equilibria, which includes the
possibility of having a continuum of equilibria.

This thesis is organized as follows: In the second chapter, we present basic concepts and
results of nonlinear dynamical systems. That includes the abstract theory of attractors in the
autonomous and non-autonomous setting and also some abstract results for semilinear problems.
In chapter three, we will consider the Chafee-Infante problem and its following variations,
including its non autonomous version presented in (CARVALHO; LANGA; ROBINSON, 2012).
In the next chapters, the reader can found results that were developed during my PhD, by this
author and her collaborators. In Chapter four, we will analyze the non-autonomous nonlocal
problem commented before. See the reference (LI et al., 2020). In Chapter five, we will consider
its autonomous version. You can also find these results in (CARVALHO; MOREIRA, 2021),
(MOREIRA; VALERO, 2022b) and the paper submitted for publication (ARRIETA et al., 2022).
Finally, in Chapter six, we will construct isolating blocks for multivalued semiflows and give an
application in differential inclusions, see (MOREIRA; VALERO, 2022a).
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CHAPTER

2

ABSTRACT THEORY OF ATTRACTORS

In this thesis, we are interested in the study of the inner structure of attractors. To
introduce the results, we need to present abstract results for autonomous and non-autonomous
problems. For instance, results on the existence of global solutions and the continuity with
respect to initial conditions. Also, we are interested in identifying important subsets under the
action of the dynamics.

This chapter is divided into three parts. First, we will approach the abstract autonomous
theory, which includes topics of existence of local and global solutions, the concepts of semigroup
and global attractors. We will also present abstract geometric and topological theories that can
be used to characterize the inner structure of attractors.

In the second part, we present basic results on the existence of global solutions for
non-autonomous problems, the concept of process and pullback attractor, and conditions to
guarantee their existence. We will present the definition of non-autonomous equilibria (first
defined in (CARVALHO; LANGA; ROBINSON, 2012)).

In the last part, we will consider the class of semilinear problems and present the concepts
of saddle-node property and exponential dichotomy.

2.1 The autonomous problem

In this section, we will present basic results on the existence of global solutions for a
autonomous problem and the concept of semigroups. There is a special class of semigroups we
are interested in characterizing their attractors, the so-called gradient semigroup. Later, we will
make a brief exposition of the topological techniques, such as Conley’s index and connection
matrix. The results we present here are just the basics in order to understand the applications that
come from the next chapters. For a profound study of the theory of semigroups, we recommend
(PAZY, 1983; CHOLEWA; DLOTKO, 2000; LADYZHENSKAYA, 1991) and for the topological
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theory see (CONLEY, 1978; RYBAKOWSKI, 1987; FRANZOSA, 1989).

Consider X a Banach space and denote by C(X) the set of all continuous functions from
X to itself, and by L (X) as the subset of C(X) given by the linear operators.

Definition 2.1.1. We say that a family {T (t) : t � 0}⇢C(X) is a semigroup if it satisfies

i) T (0) = IX , where IX denotes the identity operator in C(X);

ii) T (t + s) = T (t)T (s), for all t,s 2 R+;

iii) The map R⇥X 3 (t,x) 7! T (t)x is continuous.

Definition 2.1.2. We say that x : R! X if a global solution for {T (t) : t � 0} if x (s+ t) =
T (t)x (s), for all t � 0 and s 2 R.

Definition 2.1.3. We say that B⇢ X is positively (resp. negatively) invariant for {T (t) : t � 0} if
T (t)B⇢ B (resp. B⇢ T (t)B), for all t � 0.

If B is positively and negatively invariant, we say that B is invariant. In this case, T (t)B =

B, for all t � 0.

If for some x⇤ 2 X , the set {x⇤} is invariant for {T (t) : t � 0}, x⇤ is called an equilibrium
of {T (t) : t � 0} .

Definition 2.1.4. A set A ⇢ X is the global attractor of {T (t) : t � 0} if

i) A is compact;

ii) A is invariant, that is, T (t)A = A , for all t � 0;

iii) A attracts bounded sets under the action of {T (t) : t � 0}: for each bounded set B⇢ X ,
we have that

lim
t!+•

sup
b2B

d(T (t)b,A ) = 0.

When A exists, it can be characterized as

A = {The space of all the bounded global solutions of {T (t) : t � 0}}.

In this thesis we are mostly interested in studying the structure of the attractor. In order
to pursue this subject, we will first present sufficient conditions to guarantee the existence of the
attractor.

Later we will define a special class of semigroups, the so-called gradient semigroups.

After this presentation, we will also explore the topological knowledge involving the
theory of attractors.
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Definition 2.1.5. A semigroup {T (t) : t � 0} is called bounded dissipative if there is a non-
empty bounded set D⇢ X that attracts all the bounded sets of X . In other words, for each B⇢ X
bounded, we have

lim
t!+•

sup
b2B

d(T (t)b,D) = 0.

Definition 2.1.6. A non-empty bounded subset D⇢ X absorbs bounded subset of X , if for each
bounded subset B⇢ X , there is a tB � 0, such that

T (t)B⇢ D, for all t � tB.

This set D is called an absorbing set of X .

It can be shown that a semigroup {T (t) : t � 0} is bounded dissipative if and only if it
admits a non-empty bounded absorbing set.

Definition 2.1.7. We say that {T (t) : t � 0} is asymptotically compact if given sequences
{tn}n2N 2 R+, {xn}n2N 2 X such that tn ! +• and the sequence {xn}n2N bounded, then
{T (tn)xn}n2N has a convergent subsequence.

Definition 2.1.8. Consider a semigroup {T (t) : t � 0} and a bounded subset B of X . We define
the w-limit of w(B) as the set

w(B) =
\

t�0

[

t�t
T (t)B.

Theorem 2.1.9. A semigroup {T (t) : t � 0} has a global attractor A if, and only if, {T (t) : t � 0}
is dissipative and asymptotically compact.

Moreover, for B = {B⇢ X : B 6= /0 and B is bounded in X},

A =
[

D2B
w(D).

Definition 2.1.10. Consider a semigroup {T (t) : t � 0}. We say that E ⇢ X is an isolated
invariant set of {T (t) : t � 0} if it is the maximal invariant set of Od (E) := {x 2 X : kx� ekX <

d , for some e 2 E}.

A family of sets E = {E1, . . . ,En}, n 2 N, is called a disjoint family of isolated invariant
sets if E j is an isolated invariant set, for j = 1, . . . ,n, and there is d > 0 for which Od (E j)\
Od (Ek) = /0, for j 6= k.

A semigroup {T (t) : t � 0} is called gradient with respect to a disjoint family of isolated
invariant sets E = {E1, . . . ,En}, n 2 N, if can find a continuous function V : X ! R satisfying
the following:

(i) For each x 2 X , the map [0,+•) 3 t 7!V (T (t)x) is non-decreasing;
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(ii) If, for some x 2 X , V (T (t)x) =V (x), for all t � 0, then x 2
Sn

j=1 E j.

As a consequence of the definition, a gradient semigroup {T (t) : t � 0} satisfies the
following properties:

(G1) For each bounded global solution x : R ! X , with x (R) 6⇢ Sn
k=1 Ek, there are i, j 2

{1, . . . ,n}, i 6= j, such that

E j
t!�• � x (t) t!+•�! Ei.

(G2) There is no homoclinic structure. That means, we cannot find a k  n, a subset {Ei j : 1
j  k}⇢ E and global solutions x j : R! X such that

Ei j+1
t!�• � x j(t)

t!+•�! Ei j , for 1 j  k and Eik+1 = Ei1 .

Remark 2.1.11. The authors in (CARVALHO; LANGA, 2009) define the class of gradient-like
(or dynamically gradient) as the class of semigroups satisfying (G1) and (G2). Initially, they
believed the class of such semigroup was larger than the class of gradient semigroups. It was
shown in (COSTA et al., 2011, Theorem 1.1) that any dynamically semigroup is also gradient,
which means both classes coincide.

Theorem 2.1.12. (CARVALHO; LANGA; ROBINSON, 2013, Theorem 2.43) Suppose that
{T (t) : t � 0} has a global attractor A , with a disjoint family of isolated invariant sets E =

{E1, . . . ,En}, n 2 N. Then we have

A =
n[

k=1
W u(Ek),

where W u(Ek) = {x 2 X : there is a global solution x : R! X such that d(x (t),Ek)! 0
as t!�•}.

The interest in studying gradient semigroups arrives from the fact that they are robust
under perturbation. That is, for semigroups sufficiently close (in a sense that it will be clear later)
to a gradient semigroup are also gradients.

Definition 2.1.13. We say the family of semigroups {Th(t) : t � 0}h2[0,1] is continuous at h = 0
if the map

Th : R+⇥X ! X

(t,x) 7! Th(t)x

converges uniformly on compact sets as h ! 0+. In other words, if K ⇢ X is a compact set and
T 2 R+, we have lim

h!0+
sup
x2K

sup
t2[0,T ]

d(Th(t)x,T0(t)x) = 0.
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Definition 2.1.14. We say that a family {Ah : h 2 [0,1]} of subsets of X is upper semicontinuous
(resp. lower semicontinuous) as h ! h0 if

lim
h!h0

sup
x2Ah

d(x,Ah0) = 0

 
resp. lim

h!h0
sup

x2Ah0

d(x,Ah) = 0

!
.

Theorem 2.1.15. Consider a family of semigroups {Th(t) : t 2 R}h2[0,1] continuous at h = 0.
Assume that {Th(t) : t � 0} admits a global attractor Ah , for each h 2 [0,1]. Additionally,
assume that

S
h2[0,1]Ah is a compact set.

Then {Ah : h 2 [0,1]} is upper semicontinuous at h = 0.

Definition 2.1.16. We say that the family {Th(t) : t � 0}h2[0,1] is collectively asymptotic compact
at h = 0 if: given sequences {hn}n2N 2 [0,1], {tn}n2N 2 R+, {xn}n2N bounded sequence in X ,
for which hn! 0 and tn!+•, as n!+•, then {Thn(tn)xn}n2N has a convergent subsequence.

Theorem 2.1.17. (COSTA et al., 2011, Theorem 4.3) Consider a family of semigroups {Th(t) :
t � 0}h2[0,1] ⇢C(X) satisfying the following:

(i) The family {Th(t) : t � 0}h2[0,1] is continuous at h = 0 and it also collectively asymptoti-
cally compact.

(ii) For each h 2 [0,1], the semigroup {Th(t) : t � 0} has a global attractor Ah . Also,
S

h2[0,1]Ah is a bounded set of X .

(iii) There is a p 2N, for each h 2 [0,1], there is a disjoint family of isolated invariant bounded
sets Eh = {Eh

1 , . . . ,E
h
p } under the action of {Th(t) : t � 0}.

Additionally, for each k = 1, . . . , p the family {Eh
k }h2[0,1] is continuous at h = 0.

(iv) The semigroup {T0(t) : t � 0} is dynamically gradient with respect to the family E0.

(v) There is a d > 0 such that Eh
k is the maximal invariant set of {Th(t) : t � 0} inside Od (E0

k ),
for k = 1, . . . , p.

Under these conditions, there exists h0 2 (0,1] such that {Th(t) : t � 0} is dynamically
gradient with respect to the family Eh , for h 2 [0,h0].

In some applications, it will be necessary to order (in some sense) invariant sets inside
the attractor.

Definition 2.1.18. Let {T (t) : t � 0} be a semigroup with attractor A .

We say that a subset /0 6= A ⇢ A is a local attractor if there is a d > 0 such that
w(Od (A)) = A. We define the repeller of A as the set A⇤ = {x 2A : w(x)\A = /0}.
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Definition 2.1.19. Let {T (t) : t � 0} be a semigroup with attractor A . Consider the family
/0 = A0 ⇢ A1 ⇢ · · ·⇢ An ⇢ An+1 = A , where each A j is a local attractor, j = 1, . . . ,n. For each
j 2 1, . . . ,n, define the sets M( j) = A j\A⇤j�1.

The ordered n-upla (M(1),M(2), . . . ,M(n)) is called a Morse decomposition of A .

Remark 2.1.20. Given a Morse decomposition of A , we can constructed an associate disjoint
family of isolated invariant sets. Under possible reordering, it can be show that given an isolated
family of invariant sets, we also define a Morse decomposition of A . See (COSTA et al., 2011,
Lemma 2.16) and comments after it.

Remark 2.1.21. Instead of indexing the Morse sets in an “interval” of N, we can index it in any
set that admits a partial order. Consider the ordered pair (P,<) such that P is a set and < is a
partial order defined in P. I ⇢ P is an interval if a,b 2 I and c 2 P such that a < c < b implies
that c 2 I. Given two partial orders <0 and < in P, we say that <0 is an extension of < if, for
a,b 2 P, a < b implies a <0 b.

2.1.1 Conley index and connection matrix theories

The Conley index was introduced in (CONLEY, 1978) in the context of flows on locally
compact metric spaces. Later, the concept was extended to metric spaces for semiflows on not
necessarily locally compact spaces by (RYBAKOWSKI, 1987). The Conley index is a concept
that gives a topological description for a neighborhood of an isolated invariant set (in our case,
simply an isolated equilibrium). In his book, Conley state the following:

“Every flow on a compact space is uniquely represented as an extension of a chain
recurrent flow by a strongly gradient-like flow; that is the flow admits a unique subflow which is
chain recurrent and such that the quotient flow is strongly gradient-like”(CONLEY, 1978, p. 17).

Conley’s idea was identifying the chain recurrent set and taking the flow defined on the
quotient space X over the recurrent set, which should be a gradient flow.

Later, the topological theory applied to nonlinear dynamical systems has flourished.
Several authors generalized the concept and the results for more general spaces or more general
semiflows.

In this subsection we will make a brief exposition of the subject focused on our appli-
cations. The definitions and results (such as their proofs) can be found in (RYBAKOWSKI,
1987).

Consider a semigroup {T (t) : t � 0} 2 C(X). A closed set N ⇢ X is an isolating
neighborhood of K if K 2 int(N) (the interior of N) and K is closed and the largest invari-
ant set in N. In that case, K is called an isolated invariant set.

Let Y,N be subsets of X with Y ⇢ N. We say that Y is N-positively invariant if for given
x 2 Y and t � 0 such that T (s)x 2 N, for all s 2 [0, t], it follows that T (s)x 2 Y , for all s 2 [0, t].
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Definition 2.1.22. We say that a pair of sets hN1,N2i is an index pair in N if satisfies:

i) N1,N2 are closed subsets of N which are N-positively invariant;

ii) K 2 int(N1 \N2);

iii) If for some y 2 N1 we find t0 2 R+ such that T (t0)y /2 N, then there is t 2 [0, t0] for which
T ([0,t])y⇢ N and S(t)y 2 N2.

Given Y ⇢ X and s 2 R+, define the set

Y s = {x 2 X : there is y 2 Y with T ([0,s])y⇢ Y and T (s)y = x}.

Definition 2.1.23. We say that a pair of sets hN1,N2i is a quasi-index pair in N if it satisfies:

i) There are Ñ1 ⇢ X and t 2 R+ such that N1 \N2 ⇢ Ñ1, Ñt
1 ⇢ N1 and

⌦
Ñ1,N2

↵
is an index

pair in N.

ii) Either N1 is N-positively invariant or else there is M1 ⇢ X which is a N \N2-positively
invariant closed subset, with M1 \N2 ⇢ Ñ1 and Ms

1 = N1, for some s 2 R+.

The existence of a quasi-index pair is assured in the case where N is an admissible
set (see (RYBAKOWSKI, 1987)): for all sequences {xn}n2N ⇢ N, {tn}n2N ⇢ R+, tn ! +•,
satisfying T ([0, tn])xn 2 N, for all n 2 N, we find a convergent subsequence of {T (tn)xn}n2N.

Given two closed subsets Y,A⇢ X , we define the relation

x 2 A\Y =) x⇠ y, for all y 2 A\Y,

x 2 Y \A and x⇠ y () y = x
.

So, the pointed space


Y
A
, [A]

�
= {[y] : y 2 Y and [y] = {x 2 Y : x⇠ y}}

is in fact a topological pointed space, with a topology induced by Y .

For an isolated invariant set K that admits an admissible neighborhood N, we define the
Conley index I(K,S(·)) (or just I(K)) as the topological space given by

h
N1
N2
, [N2]

i
, for a quasi-

index pair hN1,N2i in N. The concept is well-defined, see Theorem I.9.4 in (RYBAKOWSKI,
1987). The Conley index can be calculated in situations in which the Morse index cannot. But,
when both are defined, they are related.

Example 2.1.24. Suppose that f is a hyperbolic equilibrium of a semigroup {T (t) : t � 0} and
such that dimW u(f) = n, n 2 N. Then we have

I({f}) = Sn (the n-sphere).
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Another important characteristic of the Conley index is its continuation property. We
will be more precise below.

Consider the family of semigroups {Tt(t) : t � 0}, for t 2 [0,1]. Define the set

T (X) =
[

t2[0,1]
{(Kt ,Tt(·)) : Kt is an isolated invariant set for Tt(·)}.

Definition 2.1.25. A function a : [0,1]!T (X) is called T -continuous if, for any t0 2 [0,1],
we find an open neighborhood W ⇢ [0,1] of t0 and a closed set N ⇢ X such that:

i) For any t 2W , N is an isolating neighborhood for Kt , where Kt represents the largest
invariant set in N under the action of {Tt(t) : t � 0}.

ii) For all sequences {tn}n2N ⇢W with tn! t0, {tn}n2N ⇢R+, tn!+•, {xn}n2N ⇢N with
Ttn([0, tn])xn ⇢ N, n 2 N, the sequence {Ttn(tn)xn}n2N has a convergent subsequence.

iii) Consider {tn}n2N,t0 2 [0,1] with tn! t0. Then, the family of semigroups {Ttn(t) : t �
0}n2N is continuous, that is, given {tn}n2N, t0 ⇢ R+ and {xn}n2N 2 N,x0 with

tn! t0 and xn! x0, as n!+•,

we have Ttn(tn)xn! Tt0(t0)x0 as n!+•.

Remark 2.1.26. In our context, item ii) is satisfied if we assume for instance that {Tt(t) : t � 0},
for t 2 [0,1], is collectively asymptotically compact.

One important characteristic of the Conley index is its continuation property.

Theorem 2.1.27 (Theorem I.12.2, (RYBAKOWSKI, 1987)). Suppose that a : [0,1]!T (X) is
T -continuous. Then I(Kt ,Tt(·)) is constant, for all t 2 [0,1].

For our purposes, we need to present the concept of a connection matrix for a Morse
decomposition. This theory was developed by Franzosa in (FRANZOSA, 1986; FRANZOSA,
1989). Later, the author also developed a concept of transition matrix, see (FRANZOSA, 1988;
FRANZOSA; MISCHAIKOW, 1998). In essence, the connection and transition matrices appear
as a topological approach in order to respond to whether there are connections between Morse
sets in a Morse decomposition.

Consider a semigroup {T (t) : t � 0} and consider K, an isolated invariant set of X .

Suppose that we find a Morse decomposition {M(q) : q 2 P} for some isolated set
K under the action of {T (t) : t � 0}. The partial order < defined in P gives rise to what we
call admissible order in K: we say that q < q 0 if M(q) appears before M(q 0) in the Morse
decomposition. We say that a subset I ⇢ P is an interval if q 0,q 00 2 I implies q 2 I, for all q 2 P
with q 00 < q < q 0.
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For q ,q 0 2 P, we say q <F q 0, if there are q j 2 P and global solutions x j : R! X such
that

M(q j+1)
t!�• � x j(t)

t!+•�! M(q j), 0 j  n+1,

q0 = q and qn+1 = q 0, for some n 2 N.

Now, <F is called the flow order. Also, any admissible order is an extension of the flow
order.

We will present the concept of connection matrix applied to our context. For more details
on the general theory of connection matrices and the fact that we can specify it as we will do,
see (FRANZOSA, 1989).

Consider a Morse decomposition M = {M(p) : p 2 P} related to a partial order <.
Denote by {H⇤(p)}p2P a collection of graded modules, where H⇤(p) represents the homology
chain of the Z-modules associated to M(p), p 2 P. Recall that the connection matrix is a linear
map defined on the graded modules generated by the sum of the elements in {H⇤(p)}p2P such
that the homology index braid generated by D is isomorphic to the homology index braid of the
Morse decomposition. Hence, we define the linear map

D :
M

p2P
H⇤(p)!

M

p2P
H⇤(p),

which can be written as a matrix operator D =
�
Dp,p 0

�
p,p 02P. In (FRANZOSA, 1989) it is proved

that such a connection matrix always exists. In addition, it satisfies the following properties:

i) D is an upper triangular matrix, that is, Dp,p 0 = 0 if p 0 < p .

ii) D is a boundary map, that is, D2 = 0 and D has degree �1.

iii) If < is the flow order <F , Dp,p 0 6= 0 and {p,p 0} is an interval, there is a global solution
x : R! X satisfying

M(p 0) t!�• � x (t) t!+•�! M(p).

If we denote by DI the restriction of the map D to any interval I, then all the above
properties are also satisfied. In the sequel, we will always refer to a connection matrix related to
the flow order.

Assume that Z is locally compact space and G is locally path connected.

Definition 2.1.28 (Definition 4.1,(FRANZOSA, 1988)). A product parameterization of the local
flow X ⇢ G is a homeomorphism f : Z⇥G! X such that for each l 2 G, f(Z⇥{l}) is a local
flow.

We denote f
��
Z⇥{l} = fl and its image by Xl .
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Definition 2.1.29 (Definition 4.2,(FRANZOSA, 1988)). The space of isolated invariant sets for
the product parameterization is the set

S = S (f) = {(Sl ,Xl ) : Sl is an isolated invariant set in Xl}.

Definition 2.1.30 (Definition 4.9, (FRANZOSA, 1988)). The space of Morse decompositions
(indexed by P) for the product parameterization f is the set

MP = MP(f) = {’
p2P

Ml (p)⇥Sl 2’
P

S (f)⇥S (f) : {Ml (p)}p2P is a Morse

decomposition of Sl}

with the topology inherited as a subspace of the product space ’P S (f)⇥S (f).

Definition 2.1.31 (Definition 2.2, (FRANZOSA, 1988)). A (<�ordered) Morse decomposition
of S is a collection M = M(S) = {M(p)}p2P of mutually disjoint compact invariant subsets of S
such that if g 2 S\[p2PM(p), then there is p < p 0 with g 2C(M(p 0),M(p)).

Definition 2.1.32 (Definition 4.10,(FRANZOSA, 1988)). The space of < �ordered Morse
decompositions for the product parameterization f is the set

M< = M<(f) = {’
p2P

Ml (p)⇥Sl 2MP : {Ml (p)}p2P is a <�ordered Morse

decomposition of Sl}

with the topology inherited as a subspace of the product space MP.

Definition 2.1.33 (Definition 4.15, (FRANZOSA, 1988)). Let Ml = {Ml (p)}p2P and Mµ =

{Mµ(p)}p2P be Morse decompositions of isolated invariant sets Sl ⇢ Xl and Sµ ⇢ Xµ , respec-
tively. We say that Ml and Mµ are related by continuation or are continuations of each other if
there is a path c in MP from ’p2P Ml (p)⇥Sl to ’p2P Mµ(p)⇥Sµ . If, furthermore, Ml and
Mµ are <�ordered and the path c is in Ml , then we say that the associated admissible orderings
are related by continuation or are continuations of each other.

Theorem 2.1.34 (Theorem 5.5,(FRANZOSA, 1988)). If the admissible orderings <l of Ml and
<µ of Mµ are related by continuation, then the set of connection matrix defined for l and µ are
the same.

Corollary 2.1.35. (FRANZOSA, 1988, Corollary 5.6) If the flow ordering of Ml is related by
continuation to an admissible ordering of Mµ then the set of connection matrices of Mµ is a
subset of the set of connection matrices of Ml .

2.2 Non-autonomous problems
In this Section, we will be interested in studying the results for problems that have

explicit dependency on the time-variable. We will have a new sense of invariance, which affects
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our analysis. References for this section are (HENRY, 1981) and (CARVALHO; LANGA;
ROBINSON, 2013).

Definition 2.2.1. An evolution process {S(t,s) : (t,s) 2P} ⇢C(X) is a family of maps that
satisfies the following conditions:

i) S(t, t) = IX , for all t 2 R, where IX denotes the identity map in C(X);

ii) S(t,s)S(s,t) = S(t,t), for all t,s,t 2 R with t > s > t;

iii) P⇥X 3 (t,s,x) 7�! S(t,s)x 2 X is a continuous map.

In order to further describe the results, we need to introduce the notions of pullback and
uniform attractor for evolution processes.

Definition 2.2.2. We say that a family {B(t) : t 2 R} is positively (resp. negatively) invariant for
the process {S(t,s) : (t,s)2P} if S(t,s)B(s)⇢ B(t) (resp. B(t)⇢ S(t,s)B(s)), for all (t,s)2P .

We say that {B(t) : t 2 R} is invariant if S(t,s)B(s) = B(t), for all (t,s) 2P .

Definition 2.2.3. A family {A(t) : t 2R}⇢ X is the pullback attractor of {S(t,s) : (t,s) 2P} if

i) A(t) is compact, for each t 2 R;

ii) S(t,s)A(s) = A(t), for all t > s;

iii) The family {A(t) : t 2 R} pullback attracts bounded sets of X , that is, for each bounded
B⇢ X , we have, for each t 2 R,

sup
b2B

inf
a2A(t)

kS(t,s)b�akX �! 0 as s!�•;

iv) {A(t) : t 2 R} is the minimal family of closed sets that satisfies condition iii).

Definition 2.2.4. A set A is the uniform attractor of {S(t,s) : (t,s) 2P} if it is a compact subset
of X with the property that

sup
t2R

sup
b2B

inf
a2A

kS(t + t,t)b�akX
t!•�! 0

for any B⇢ X bounded.

For more details about evolution processes and their attractors, see (CARVALHO;
LANGA; ROBINSON, 2013).

A global solution of the process {S(t,s) : (t,s) 2P} is a function x : R �! X such
that S(t,s)x (s) = x (t), 8(t,s) 2P. Additionally, x is called a bounded solution if the set
{x (t) : t 2 R} is bounded in H1

0 (0,p).



34 Chapter 2. Abstract theory of attractors

If we assume that
S

s2RA(s) is bounded in X , then we have the following characterization
for the pullback attractor:

A(t)=
�

x (t) : x : R! X is a bounded global solution of {S(·, ·)}
 
.

Definition 2.2.5. Let {S(t,s) : t � s} be a semigroup and consider a bounded set B ⇢ X . For
t 2 R, we define the w-limit of B at time t as the set

w(B, t) =
\

st

[

rs
S(t,r)B.

Definition 2.2.6. Consider an invariant family {B(t) : t 2R} of S(·, ·). We define the unstable set
of E(·) as the family {W u(B(·))(t) : t 2R}, where W u(B(·))(t) = {x2R : there is a solution h :
R! X of S(·, ·) with h(t) = x and d(h(s),B(s))! 0 as s!�•}.

In the conditions above, if the invariant family is bounded and the process S(·, ·) admits
a pullback-attractor {A(t) : t 2 R}, then W u(B(·))(t)⇢ A(t), for all t 2 R.

Definition 2.2.7. A set D⇢ X pullback absorbs bounded sets a time t 2 R if given a bounded
set B⇢ X we find sB < t such that S(t,s)B⇢ D, for all s sB.

Definition 2.2.8. We say that a process {S(t,s) : (t,s) 2P} is pullback asymptotically compact
if, for any t 2R, and sequence {sn}n2N 2R, with t � sn!�•, and a bounded set {xn}n2N 2 X ,
we have the sequence {S(t,sn)xn}n2N has a convergent subsequence.

Definition 2.2.9. A process {S(t,s) : (t,s) 2P} is strongly pullback asymptotically compact
if: for each t 2 R and sequences {sn}n2N,{tn}n2N, with t � tn � sn and tn� sn ! +• as
n!+•, and a bounded sequence {xn}n2N 2 X , it follows that the sequence {S(tn,sn)xn}n2N

has a convergent subsequence.

Theorem 2.2.10. Suppose that a process {S(t,s) : (t,s) 2P} can be written as

S(t,s) = L(t,s)+U(t,s), for all (t,s) 2P,

with the following properties:

i) there is a function k : R+⇥R+! R where, for each r > 0, k(·,r) is non-increasing and
k(s ,r)! 0 as s !+• and for x 2 BX(0,r),

kL(t,s)xk  k(t� s,r), for all (t,s) 2P.

ii) {U(t,s) : t � s} is a strongly compact family of continuous maps (not necessarily a
process): for each t 2 R and bounded set B⇢ X , we find a constant TB � 0 and a compact
set K ⇢ X , for which

U(t,s)B⇢ K,

as long as s t  t and t� s� TB.
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In these conditions, the process {S(t,s) : (t,s)2P} is strongly pullback asymptotically compact.

Definition 2.2.11. A process {S(t,s) : (t,s) 2P} is strongly pullback bounded dissipative if
there is a family of bounded sets {B(t) : t 2 R} that pullback attracts bounded sets of X . In other
words, if we consider t 2 R, for each t  t and bounded set D⇢ X , we have

lim
s!�•

sup
x2D

d(S(t,s)x,B(t)) = 0.

Theorem 2.2.12. Suppose that a process {S(t,s) : t � s} is pullback asymptotically compact
and strongly pullback bounded dissipative. Let {B(t) : t 2 R} be the family of bounded sets that
pullback attracts bounded sets of X .

In this conditions, {S(t,s) : t � s} has a pullback attractor {A (t) : t 2 R} and, for each
t 2 R, A (t) = w(B(t), t).

Additionally, for each t 2 R, the set
S

st A (s) is bounded in X .

2.3 Semilinear problems
Consider the problem (

ẋ = Ax+ f (t,x)

x(0) = x0

for A : D(A) ⇢ X ! X a linear operator and f 2C1(U,X), for a subset U ⇢ R+⇥X . We will
study conditions for which the problem above admits a process with a pullback attractor.

2.3.1 The linear theory

Before that, let us define the concept of resolvent and spectrum of a linear operator A.
Denote the set R(A) = {Ax 2 X : x 2 D(A)} and we called it the image of A. Also, denote by
A�1 the inverse of A, if it exists. If D(A) = X (the closure of D(A) is equal to X), we say that A
is densely defined.

We define the resolvent of A, r(A), as the set
n

l 2C : l �A is injective, R(l �A) = X and (l �A)�1 : R(l �A)⇢ X!D(A) is bounded
o
.

The set s(A) = C\r(A) is called the spectrum of A.

Suppose that A is a closed operator, that is, given a sequence xn 2 D(A) and points
x,y 2 X such that xn! x and Axn! y, we find x 2 D(A) and y = Ax. In this case, the spectrum
can be divided in three distinct types s(A) = sp(A)[sr(A)[sc(A), which are

• The set sp(A) is called the point spectrum and it is given by the set of eigenvalues of A,
that is,

sp(A) = {l 2 C : l �A is not injective}
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• The residual spectrum is the set

sr(A) = {l 2 C : l �A is injective and R(l �A) 6= X}

• The continuous spectrum is given by

sc(A) = {l 2 C : l �A is injective, R(l �A) = X but (l �A)�1 is not bounded}.

Definition 2.3.1. We say that a linear operator A : D(A)⇢ X ! X has compact resolvent if we
find l0 2 r(A) for which (l0�A)�1 is a compact operator. In other words, (l0�A)�1BX(0,1)
is relatively compact, where BX(0,1) represents the ball in X centered at 0 and with radius 1.

Definition 2.3.2. A linear operator A : D(A)⇢ X ! X is said to be of positive type with constant
M � 1 if it is closed, densely defined and such that, for all s 2 R+ we have s 2 r(�A), with

k(s+A)�1k  M
1+ s

.

Definition 2.3.3. Consider A : D(A)⇢ X ! X . We say that �A is sectorial if there are constants
M 2 R+, q 2 (p

2 ,p) such that Sq = {l 2 C : |arg(l )| q}[{0}⇢ r(A) and, for all l 2 Sq ,
we have that

||(l �A)�1||L (X) 
M

|l |+1
.

It can be shown that any positive operator A is also sectorial, see Remark 1.3.3 in
(CHOLEWA; DLOTKO, 2000). Therefore, we can find a sector S inside r(A).

Suppose that A is sectorial. Since {0} 2 r(A) and the resolvent of A is open, we can
find r > 0 such that BX(0,r) ⇢ r(A). Now, consider the curve G defined by the boundary of
Sq \BX(0,r) oriented in a way that the imaginary part is increasing, as in the Figure 2.

Figure 2 – Example of a curve G.

Then, for each a 2 C, with Rea < 0 (Real part of a less than 0), we may define the
operator

Aa =
1

2pi

Z

G
(�l )a(l +A)�1dl .

We do not intend to profoundly explore the operators Aa , with Rea < 0, but we will
summarize some of the well-known problems of the operators. One can find the proof of these
properties in (HENRY, 1981).
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Lemma 2.3.4. (i) For a,b 2 C with Rea, Reb < 0 we have AaAb = Aa+b .

(ii) For each a 2 C, with Rea < 0, the operator Aa is injective.

As a consequence of the lemma, for b 2 C, with Reb > 0 we are able to define Ab :
D(Ab )⇢ X ! X , where D(Ab ) = R(A�b ) and

Ab u = (A�b )�1u, for all u 2 D(Ab ).

We can define a norm in D(Aa) given by kuka := kAaukX .

Definition 2.3.5. We define the space of fractional power of A as Xa := (D(Aa),k · ka), for
a 2 C, Rea > 0.

The spaces of fractional powers develop an essential role in the proof of existence of
solutions for a semilinear problem (with a positive operator A as its principal part) and also the
regularity of such solutions. Useful properties are described in the below theorem.

Theorem 2.3.6. The fractional powers of the operator A satisfies the following properties:

(i) If a,b 2 C, Rea,Reb > 0, then AaAb = Aa+b .

(ii) For a,b 2 C, with Reb > Rea > 0, we have D(Ab )⇢ D(Aa) and the space of fractional
powers satisfies

Xb ,! Xa ,! X ,

where the symbol “,!” represents a continuous inclusion.

Moreover, Xb is also dense in Xa .

(iii) Additionally, if A has a compact resolvent, then the inclusions above are compact.

Theorem 2.3.7. Suppose that A : D(A)⇢ X! X is a densely defined sectorial operator. Then�A
generates a strongly continuous semigroup {e�At : t � 0}, that is, {e�At : t � 0} is a semigroup
for which limt!0+ e�Atx = x, for all x 2 X .

Theorem 2.3.8. Suppose that A is a sectorial operator and consider w 2 (0,Res(A)). Then we
find M > 0 such that

ke�Atuk Me�wtkuk, for all t > 0 and u 2 X ,

ke�AtukXg Mt�ge�wtkuk, for all t > 0 and u 2 X .
(2.1)

Theorem 2.3.9. Suppose A : D(A)⇢ X ! X is a densely defined sectorial operator which has
compact resolvent. Then the following is valid:

i) For t > 0 such that the operator e�At is a compact;



38 Chapter 2. Abstract theory of attractors

ii) For all t � 0, s(e�At)\{0}= ets(�A) = etsp(�A).

The above theorem is a consequence of Theorems 3.13.2 and 6.2.2 in (CARVALHO,
2017).

Theorem 2.3.10. Consider a strongly continuous semigroup {T (t) : t � 0}⇢ L(X). Suppose that,
for some t0,a 2 R+, s(T (t0))\{l 2 C : |l |= eat0}= /0. Then, there is a projection P 2 L(X),
P2 = P, PT (t) = T (t)P for all t � 0, such that for X� = R(P) and X+ = N(P), the restrictions
T (t)

��
X±

are in L(X±) and

s(T (t)
��
X�
) = s(T (t))\{l 2 C : |l |< eat} and

s(T (t)
��
X+
) = s(T (t))\{l 2 C : |l |> eat}.

Moreover, there are M � 1, d > 0 such that

kT (t)
��
X�
kL(X�) Me(a�d )t , 8t � 0;

{T (t)
��
X+

: t � 0} can be extended by a group in L(X+), T (t)
��
X+

= (T (�t)
��
X+
)�1 for t < 0, and

kT (t)
��
X+
k(X+) Me(a+d )t , 8t  0.

For the proof of the above theorem, see (HENRY, 1981, Theorem I 19.2) or (CAR-
VALHO, 2017, Theorem 6.1.1).

Remark 2.3.11. Suppose that we are in the conditions of Theorem 2.3.9 and that s(A)\{l 2
C : Rel = 0} = /0. By Theorem 2.3.9, it follows that s(eA)\ {l 2 C : |l | = 1} = /0. Thus,
{e�At : t � 0} satisfies the conditions of Theorem 2.3.10 for t0 = 1 and a = 0. Therefore, there
exists a projection P 2 L(X) and constants M � 1 and d > 0 such that

ke�At(I�P)kL(X) Me�d t , for t � 0,

ke�AtPkL(X) Med t , for t < 0.

In this thesis, we will usually work with semilinear problems with principal part given
by the Laplacian operator defined on H2(0,p)\H1

0 (0,p)⇢ L2(0,p). In the example below we
will present properties of such operators.

Example 2.3.12. Consider A : D(A)⇢ L2(0,p)! L2(0,p) the operator given by Au = uxx, for
u 2 D(A) = H2(0,p)\H1

0 (0,p).

Define the problem 8
>><

>>:

ut = Au, x 2 (0,p), t > 0,

u(t,0) = u(t,p) = 0, t � 0,

u(0, ·) = u0 2 H1
0 (0,p).
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The operator �A is sectorial with (0,+•)⇢ r(A). Also, the operator �A has positive resolvent,
that is, for all element u0 2 L2(0,p) with u0 > 0 we have

(l +A)�1u0 > 0, 8l > 0.

The above problem defines a semigroup {eAt : t � 0}⇢L (X), for X = L2(0,p). We can
consider X g , g 2 (0,1], as the fractional powers defined by �A (see Section 6.4.2, (CARVALHO;
LANGA; ROBINSON, 2013), for more details). We also have the following inequalities:

keAtukXg  e�tkukXg , for all t � 0,

keAtukXg  t�ge�tkuk, for all t � 0.
(2.2)

For the Laplacian operator, we can also describe Xa , for a 2 (0,1) \ {1/2}, using
interpolation theory, see (TRIEBEL, 1995).

2.3.2 Existence of solution for the semilinear problem

Here, we will explore the properties that we need to ask in order to find solutions for the
problem (

ẋ = Ax+ f (t,x)

x(0) = x0
. (2.3)

We will consider (2.3) satisfying the conditions:

1) �A is a sectorial operator. Then we can define the fractional power spaces of A, {(Xa ,k ·
ka) : a > 0}.

2) Let a 2 [0,1). We assume
f : R⇥Xa ! X

is Hölder continuous in the variable t and locally Lipschitz continuous in the x-variable.
That is, for each B⇢ R⇥Xa , there is C =C(B)> 0 and q > 0 such that

k f (t,x)� f (s,y)k C(|t� s|q +kx� yka),

for (t,x),(s,y) 2 B.

In this section, we will present the basic definitions and results that allow us to study
semigroups. If not said otherwise, the results presented here, such as their demonstrations, were
taken from (HENRY, 1981).

Definition 2.3.13. (HENRY, 1981, Definition 3.3.1) We say that x : [t0, t1)! X1, t1 > t0, is
a solution of (2.3) if x(t0) = x0 and for t 2 (t0, t1) we have x(t) 2 D(A), dx

dt (t) exists and the
functions t 7! f (t,x(t)) is locally Hölder continuous and

R t0+d
t0 k f (t,x(t))kdt <• for some d > 0

and x(·) satisfies (2.3).
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Definition 2.3.14. We say that x : [t0, t1]! Xa , t1 > t0, is a mild solution of (2.3) if x(t0) = x,
x 2C([t0, t1],Xa) and for t 2 (t0, t1), x(t) satisfies the variation of constants formula

x(t) = eA(t�t0)x0 +
Z t

t0
eA(t�s) f (s,x(s))ds.

The relation between the definitions are given in the following result.

Lemma 2.3.15. Consider x2C([t0, t1],Xa). Suppose that, for some d > 0,
R t0+d

t0 k f (t,x(t))kdt <
+•. Under these conditions, if x(·) is a mild solution, then x(·) is a solution.

See (HENRY, 1981, Lemma 3.3.2) for the proof of the above lemma.

Lemma 2.3.16 (Singular Gronwall Lemma). Suppose that we have a function u2 L1(0,+•,R+)

that satisfies the following inequality almost for all t 2 R+

u(t) c+d
Z t

0
(t� s)�au(s)ds

for c,d 2 (0,+•), a 2 [0,1). Then, for some constant K 2 R+ we have

u(t) 2ceKt ,

for almost all t 2 R+. We can express the value of K = (2dG(1�a))
1

1�a .

Theorem 2.3.17. Consider the problem (2.3). We have the following:

(i) For each (t0,x0)2R+⇥Xa , there is a t > t0 and a solution x : [t0,t)!X of (2.3) satisfying
x(t0) = x0.

(ii) If there are two solutions x( j) : [t0,t j)! X of (2.3), with x( j)(t0) = x0, j = 1,2, then we
have x(1)(t) = x(2)(t), for t 2 [0,min{t1,t2}). Consequently, for each (t0,x0) 2 R+⇥Xa ,
there is a maximal solution of (2.3)

Proof. Let (t0,u0)2R+⇥Xa . For T > t0 and R> 0, define the space B⇢ (C([t0,T ];Xa), ||| ·k|),
where |||u||| := supt2[t0,T ] kukXa , satisfying |||u� u0|||  R for u 2 B. It is easy to see that
(B, ||| · |||) is a complete metric space.

Define the function G : B!B by

G (u)(t) = eA(t�t0)u0 +
Z t

t0
eA(t�s) f (s,u(s))ds, t 2 [t0,T ].

We want to show that choose T � t0 sufficiently small such that G defines a contraction.
Denote B = supt2[t0,T ] k f (t,u0)k. Since A is sectorial, we find M,w > 0 as in (2.1).
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Let u(·) 2B. We can see using the continuity of the variation of constant formula that
G (u)(·) 2C([t0,T ],Xa). Now, for t 2 [t0,T ],

kG (u)(t)�u0kXa  k[eA(t�t0)� I]u0kXa +
Z t

t0
keA(t�s) f (s,u0)kXa ds

+
Z t

t0
keA(t�s)[ f (s,u(s))� f (s,u0)]kXa ds

Me�wtk[eA(t�t0)� I]u0kXa +MB
Z t

t0
e�w(t�s)(t� s)�ads

+
Z t

t0
e�w(t�s)(t� s)�ak f (s,u(s))� f (s,u0)kds

Me�wtk[eA(t�t0)� I]u0kXa +MB
Z t

t0
e�w(t�s)(t� s)�ads

+MC
Z t

t0
e�w(t�s)(t� s)�aku(s)�u0kXa ds

Me�wt0k[eA(t�t0)� I]u0kXa +M(B+CR)(T � t0)1�a
Z 1

0
e�wrr�adr.

We may assume that T � t0 was chosen small enough so that kG (u)(t)�u0kXa  R, for
all t 2 [t0,T ]. In this condition, G maps B to itself.

Now, consider u,v 2 C and t 2 [t0,T ]. We have the following

kG (u)(t)�G (v)(t)kXa 
Z t

t0
keA(t�s)[ f (s,u(s))� f (s,v(s))]kXa ds

M
Z t

t0
e�w(t�s)(t� s)�ak f (s,u(s))� f (s,v(s))kds


✓

MC
Z t

t0
e�w(t�s)(t� s)�ads

◆
|||u� v|||

(2.4)

Now, we may also assume that T�t0 is chosen small enough such that MC
R t

t0 e�w(t�s)(t�
s)�ads n < 1 and then

|||G (u)�G (v)||| n |||u� v|||.

Hence, G defines a contraction map from B to itself. As a consequence, there is a u 2B

with G (u) = u. By Lemma 2.3.15, u is a solution of (2.3) and item i) is proved.

Observe that item ii) is also valid as a consequence of construction of solutions in terms
of fixed points from a contraction map.

The above results assure that for (t0,x0) 2U we can define

tmax = tmax(t0,x0) = sup{t > t0 : there is x : [t0,t)! X with x(t0) = x0}.

So, for each n 2 N, we can find a solution x(n) : [t0,tn)! X with x(n)(t0) = x0, such that t0 <
tn! tmax as n!+•. Then, we define the maximal solution x⇤ : [t0,tmax)! X as x⇤(t) = x(n)(t),
if t 2 [t0,tn).
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Theorem 2.3.18. In the conditions of the above Theorem, we have the following: For each
(t0,x0) 2U , if its maximal solution is bounded, it follows that tmax =+•.

Theorem 2.3.19. (HENRY, 1981, Corollary 3.3. 5) Suppose that, for t 2 R, f is Holder
continuous in t and Locally Lipschitz in the second variable. Additionally, f satisfies the
following

k f (t,x)k  K(t)(1+kxka), t 2 (t,+•)

where K(·) is continuous on (t,+•). Then, for any t0 2 (t,+•) and u0 2 Xa , it follows that
u(·, t0,u0) exists for all time greater than t0.

Suppose that for a semilinear problem as (2.3) we have the global existence and the
continuity of initial data. If u(·,s,u0) denotes the solution of (2.3) that passes through u0 at the
time s, we can define a process {S(t,s) : t � s} given by S(t,s)u0 = u(t,s,u0), for t � s.

2.3.3 Comparison results

Usually, it is relevant for the asymptotic analysis of solutions to compare a problem to
another one. This is possible for some semilinear problem defined in a Banach ordered space.
We decided to present the results restrict to the ordered space X = H1

0 (0,p) or X = Lp(0,p),
p 2 [2,+•], which admit the following partial ordering

u > v in X , u(x)> v(x) a. e. for x 2 (0,p).

Denote by CX = {u 2 X : u > 0}, the associated positive cone and by BX(0,r) the open ball of
radius r around 0 in X .

We consider the following problem
(

u̇ = Au+ z(t,u), t > s,

u(s) = u0(·) 2 H1
0 (0,p)

(2.5)

where

(1) A : D(A) ⇢ L2(0,p) �! L2(0,p) is the linear operator defined in D(A) = H2(0,p)\
H1

0 (0,p) and given by Au = uxx, u 2 D(A).

(2) The nonlinearity z :R⇥H1
0 (0,p)�! L2(0,p) satisfies: For each r > 0 there exists g(r)> 0

such that, for all t 2 [t0, t1] and u 2 CH1
0 (0,p)

\BH1
0 (0,p)

(0,r), gu+ z(t,u) is positive.

Denote by uz(t,s,u0) the solution of (2.5) at the time t � s. The following theorem
provides the comparison result that we are seeking.

Theorem 2.3.20. (CARVALHO; LANGA; ROBINSON, 2013, Theorem 6.41) Consider a linear
operator A as above and the problem (2.5) for z = f ,g,h, functions that satisfy (2).
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(i) If for every r > 0 there is a constant g = g(r) > 0 such that f (t, ·) + gI is increasing
in BH1

0 (0,p)
(0,r), for all t 2 [s, t1] and u0,u1 2 H1

0 (0,p) with u0 > u1, then u f (t,s,u0) >
u f (t,s,u1) as long as both solutions exist.

(ii) If f (t, ·)> g(t, ·) for all t 2 R and u0 2 H1
0 (0,p) then u f (t,s,u0)> ug(t,s,u0) as long as

both solutions exist.

(iii) If f ,g are such that for every r > 0 there exist a constant g = g(r)> 0 and an increasing
function h(t, ·) such that, for every t 2 [s, t1]

f (t, ·)+ gI > h(t, ·)> g(t, ·)+ gI

in BH1
0 (0,p)

(0,r) and u0,u1 2 H1
0 (0,p) with u0 > u1, then u f (t,s,u0)> ug(t,s,u1) as long

as both exist.

This comparison result will be necessary to show the existence of special non-autonomous
solutions for a non-autonomous problem in Chapter 4.

Definition 2.3.21. A global solution x :R!H1
0 (0,p) of {S(t,s) : (t,s)2P} is a non-autonomous

equilibrium if the zeros of x (t) are finite and are the same for all t 2R; also, x is non-degenerate
as t!±•, that is, we can find f 2 H1

0 (0,p) such that |x (t)(x)|> f(x)> 0, for all t 2 R and
for all x 2 (0,p) such that x (t)(x) 6= 0.

The definition of non-autonomous equilibria was inspired by the scenarios of perturba-
tions of structurally stable problems. If we make a sufficiently small and regular perturbation of
a structurally stable autonomous problem, the structure will remain “the same”. In this case, it is
easy to construct examples for which the non-autonomous equilibria develop an important role.

In the next Chapters, we will see two examples of non-autonomous problem (that are not
necessarily perturbations) for which we can construct the non-autonomous equilibria.

2.3.4 Stability and of equilibria

We have seen that the equilibria develop an important role in describing the attractor of a
gradient semigroup. Now, we will explore what local information can be obtained by studying
neighborhoods of equilibria.

Denote by {S(t,s) : (t,s) 2P} the evolution process associated to (2.3).

Definition 2.3.22. Suppose that f is an equilibrium of (2.3). We say that f is stable if, given
e > 0, we find d > 0 for which ku0�fka < d implies kS(t,s)u0�fka < e for t � s. Otherwise,
f is called unstable.

We say that f is uniformly asymptotically stable if there is an e > 0 such that ku0�fka <

e implies that, kS(t,s)u0�fka ! 0 as t� s!+•.
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We will summarize Theorems 5.1.1 and 5.1.3 from (HENRY, 1981) on the following
result.

Theorem 2.3.23. Suppose that f is an equilibrium of (2.3) for which

f (t,f +h) = f (t,f)+Bh+g(t,h)

where B : Xa ! X is a bounded operator and kg(t,h)k= o(khka) as khka ! 01.

Then we have the following:

(Stability) If s(�A�B) ⇢ {z 2 C : Rez > b} for some b > 0, then f is uniformly asymptotically
stable in Xa .

(Instability) Additionally, suppose that g(t,0) = 0, g is locally Lipschitz in the second variable: that
is, for each r > 0 there is a C = C(r) > 0 such that kg(t,u)� g(t,v)k  Cku� vka for
kuka ,kvka < r.

If s(�A�B)\ {z 2 C : Rez < 0} 6= /0 then f is unstable. To be more precise, there is
e0 > 0 and a sequence {un

0}n2N 2 Xa converging to f , for which

sup
t�s
ku(t,s,un

0)�fka � e0 > 0,

for all n 2 N.

This theorem says a semilinear problem behaves near an equilibrium similarly to a linear
problem close to 0. Consequently, study the stability of f for (2.3) can be made by studying the
stability of 0 for the approximation linear problem ut = Au+ fx(t,f)u, t > s.

2.3.5 Local information near an equilibrium of (2.3)

Now, we will explore the saddle-point property. An equilibrium has the saddle-point
property if we can distinguish the directions that go from the equilibrium such as the ones that
leave a neighborhood of that equilibrium as time evolves. The result we will present here can be
found in (HENRY, 1981).

Theorem 2.3.24 ((HENRY, 1981)). Consider x0 an equilibrium of (2.3). Assume

f (t,x0 +h) = Ax0 +Bh+g(t,h)

where

(i) B : Xa ! X is a bounded linear operator;

(ii) g(t,0) = 0, kg(t,h)k= o(khka) as khka ! 0;
1 kg(t,h)k goes to zero faster than khka as khka ! 0
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(iii) For each r > 0, we find r(r)> 0, with r(r)! 0 as r! 0, such that

kg(t,z1)�g(t,z2)k  r(r)kz1� z2ka

for kz jka  r, j = 1,2;

(iv) Denote L = A+B and assume that s(L)\{z 2 C : Rez = 0}= /0. Then we can construct
projections E1,E2 in a way X = X1�X2 where X1 corresponds to the spectral sets s1 =

s(L)\{l 2 C : Rel > 0} and s2 = s \{l 2 C : Rel < 0}.

In these conditions, there are M � 1 and r > 0 for which we can define the local stable
and unstable manifolds

W s
loc(x0) = {u0 : kE2u0ka  r

2M and ku(t; t0,u0)ka  r, for t � t0}

and

W u
loc(x0) = {u0 : kE1u0ka  r

2M for which there is a solution u : R! X satisfying

ku(t; t0,u0)ka  r, for t  t0}.

Remark 2.3.25. We have taken the operator L as the opposite operator to the one in Theorem
5.2.1 in (HENRY, 1981).

2.3.6 Hyperbolic solutions

Consider X a Banach space. Denote the space of bounded linear operators from X to
itself by L(X).

Definition 2.3.26. We say that a linear evolution process {L(t,s) : t � s}⇢ L(X) has exponential
dichotomy if there are M � 1, b > 0 and a family of projections {Q(t) : t 2 R} such that

(i) L(t,s)Q(s) = Q(t)L(t,s), for all t � s,

(ii) For t � s, L(t,s)
��
R(Q(s)) : R(Q(s))! R(Q(t)) is an isomorphism (and its inverse will be

denoted by L(s, t) : R(Q(t))! R(Q(s)).

(iii) The following inequalities hold

kL(t,s)(I�Q(s))kL(X) Me�b (t�s), for all t � s

kL(t,s)Q(s)kL(X) Meb (t�s), for all t < s.

Exponential dichotomy is a very interesting subject. To see more details about this topic,
we recommend reading (HENRY, 1981; CARVALHO; LANGA; ROBINSON, 2013; COPPEL,
1978). An important aspect about the exponential dichotomy is its robustness under perturbation:
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Theorem 2.3.27. Suppose that {L(t,s) : (t,s)2P} is a linear evolution process that admits expo-
nential dichotomy, with projections {Q(t) : t 2R} and constants M � 1 and b > 0. Additionally,
assume that

sup
0t�s1

kL(t,s)kL(X) <+•.

Then, for each pair M̃ > M and b̃ < b , we find e > 0 for which any given linear evolution
process {S(t,s) : (t,s) 2P}, satisfying

sup
0t�s1

kS(t,s)�L(t,s)kL(X)  e,

has exponential dichotomy with constant M̃ and exponent b̃ and a family of projections {Q̃(t) :
t 2 R} with

sup
t2R
kQ̃(t)�Q(t)kL(X) 

2M̃2

1� e�b̃
e.

Now, we will present the concept of hyperbolicity of a solution x : R! X of (2.3).

Definition 2.3.28. Assume that f : R⇥X ! X is continuously differentiable. We say that
x : R! X is a hyperbolic solution of (2.3) if it is a solution of (2.3) and the linear process
{L(t,s) : (t,s) 2P} given by

Lx (t,s) = eA(t�s) +
Z t

s
eA(t�r)Dx f (r,x (r))Lx (r,s)dr (2.6)

has an exponential dichotomy. Here Dx f (r,x (r)) represents the Fréchet derivative of f at the
point (r,x (r)).

The hyperbolic solutions are very interesting, because they locally characterize the
behavior of the process near them. We can show that they are also robust under perturbation.

Theorem 2.3.29. Consider x : R! X a global solution of (2.3). We will assume the following:

1. The solution x is bounded in X , that is, we find B > 0 such that kx (t)kX  B, for all t 2R.

2. The solution x is hyperbolic, that is, the process {L(t,s) : (t,s) 2P} defined in (2.6) has
exponential dichotomy with constant M � 1 and exponent b > 0.

3. It is also valid that

sup
t2R

sup
kukXB+1

k f (t,u)kX +kDx f (t,u)kL(X) <+•

and, for each e > 0 ,

sup
t2R

sup
kukXe

k f (t,x (t)+h)� f (t,x (t))�Dx(t,x (t))hkX1 <
be
4M

.
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In these conditions, if g : R⇥X ! X is a continuously differentiable function satisfying

sup
t2R

sup
kukXB+1

k f (t,u)�g(t,u)kX +kDx f (t,u)�Dxg(t,u)kL(X) <
be
4M

,

then the process {Sg(t,s) : (t,s) 2P}, given by

Sg(t,s) = eA(t�s) +
Z t

s
eA(t�r)g(r,S(r,s))dr,

admits a unique hyperbolic global solution h : R! X and

sup
t2R
kx (t)�h(t)kX < e.

The above theorem says that hyperbolic solutions are robust under perturbation, that is,
it is a property that is preserved for close problems.

Now, we will explore the properties associated with the unstable and stable sets of a
hyperbolic global solution x of (2.3). Recall the definitions of the unstable and stable sets of x :

W u(x )(t) = {x 2 X : there is a solution h : R! X of (2.3) with h(t) = x and

lim
s!�•

kh(s)�x (s)kX = 0}

and

W s(x )(t) =
⇢

x 2 X : lim
r!+•

kS(r, t)x�x (r)kX = 0
�
.

It can be shown that W u
loc(x )(·) and W s

loc(x )(·) can be written as graphs of a Lipschitz
map. Here, we will give a sketch of the proof and, for more details, we recommend consulting
on Chapter 8 of (CARVALHO; LANGA; ROBINSON, 2013).

In order to do that, we make a translation. Suppose that u is a global bounded solution
of (2.3) close to x . Then, we may write u(t) = x (t)+ x(t), t 2 R, and we can show that u(·)
satisfies

u(t) = Lx (t,s)u(s)+
Z t

s
Lx (t,r)[ f (r,u(r))�Dx f (r,x (r))u(r)]dr.

Now, using the notation of Definition 2.3.28, there exist a constant M � 1 and b > 0 and
a family of projection {P(t) : t 2 R} such that

kLx (t,s)(I�P(s))kL(X) Me�b (t�s), t � s,

kLx (t,s)P(s)kL(X) Meb (t�s), t < s.

First, it is shown the existence of the unstable sets as a graph. To show that, we consider for
t 2 R+ and x 2 X ,

F(t,x) = f (t,x+x (t))� f (t,x (t))�Dx f (t,x (t))x.
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Since F(t,0) = 0 and DxF(t,0) = 0, for all t 2R. Now, since F is continuously differen-
tiable on the second variable (uniformly on t), then for each e > 0, there is a r = r(e)> 0 such
that for x,y 2 X with kxk,kyk  e ,

sup
t2R
kF(t,x)k  r and sup

t2R
kF(t,x)�F(t,y)k  rkx� yk. (2.7)

We can consider the following global Lipschitz extension G : R⇥X ! X , with

G(t,x) =

8
<

:
F(t,x), if kxk  e

F(t, ex
kxk), if kxk> e.

This extension allows us to study the unstable and stable sets of graphs when we consider G.
Therefore, the result is valid for W u

loc(0) and W s
loc(0). Recall that we are consider the translation

to 0.

Consequently, x(·) = u(·)�x (·) satisfies

x(t) = Lx (t,s)x(s)+
Z t

s
Lx (t,r)[ f (r,x (r)+ x(r))� f (r,x (r))�Dx f (r,x (r))x(r)]dr. (2.8)

For t 2R, denote p(t) =P(t)x(t), Q(t) = I�P(t) and q(t) =Q(t)x(t). From the equation
above, we obtain the following system

p(t) = Lx (t,s)p(s)+
Z t

s
Lx (t,r)P(r)F(r, p(r)+q(r))dr

q(t) = Lx (t,s)q(s)+
Z t

s
Lx (t,r)Q(r)F(r, p(r)+q(r))dr

(2.9)

Now, q is given in (2.9) and we can use the exponential dichotomy and the uniform
boundedness of the integral to rewrite q as

q(t) =
Z t

�•
Lx (t,r)Q(r)F(r, p(r)+q(r))dr, t 2 R.

We want to prove that there is a Su : R⇥P(t)X ! Q(t)X such that

W u(0)(t) = {p+Su(t, p) : p 2 P(t)X}.

For D,L > 0, define the metric space

Lipu(D,L) = {S :R⇥X ! X : S(t, ·) : P(t)X ! Q(t)X ,sup
x2X

sup
t2R
kS(t,P(t)x)kX  D and

kS(t,P(t)x)�S(t,P(t)y)kX  LkP(t)x�P(t)ykX}.

It can be shown that Lipu(D,L) is a complete metric space.

Define the contraction map T : Lipu(D,L)! Lipu(D,L) given by

T (S)(t,z ) =
Z t

�•
Lx (t,r)Q(r)F(r, p(r)+S(r, p(r)))dr, t 2 R.
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Now, using the exponential dichotomy of {Lx (t,s) : t � s} and the limitations on F , we
are able to choose r > 0 in (2.7) sufficiently small such that T defines a contraction. The result
is summarized in the following.

Theorem 2.3.30. (CARVALHO; LANGA; ROBINSON, 2013, Theorem 8.4) Consider the
{L(t,s) : (t,s)2C } defined as in (2.6). We assume that this process has an exponential dichotomy
with constant M � 1 and exponent b > 0 for a family of projections {P(t) : t 2 R}. Denote
Q(t) = (I�P(T )), t 2 R. Fix D > 0, L > 0 and n 2 (0,1) and consider r > 0 in (2.7) such that

rM
b
D,

rM(1+L)
b

 n < 1,
rM3(1+L)

b �rM(1+L)
 L,

2brM+r2M3(1+L)
2b �rM(1+L)

< (1�n)b .

Then, there exists a map S 2 Lipu(D,L) such that the unstable manifold W u(0) of (2.8)
is given by

W u(0)(t) = {p+Su(t, p) : p 2 P(t)X}, t 2 R.

Now, if x(·) is a solution of (2.8), for t � t0, then x(t) = p(t)+q(t) where p(t) and q(t) is given
in (2.9). In this conditions, there are constants N � 1 and g > 0 such that

kq(t)�Su(t, p(t))kX  Ne�g(t�t0)kq(t0)�Su(t0, p(t0))kX , t � t0.

Now, if x(·) is defined for all t 2 R, then

kp(t)kX  Ne[b�rM(1+L)](t�t)kp(t)kX , for t  t.

In fact, we can also describe W s(0) as graph. Using the previous notation, for D,L > 0,
we define

Lips(D,L) = {S : R⇥X ! X : S(t, ·) : Q(t)! P(t), with sup
t2R

sup
x2X
kS(t,Q(t)x)kX  D and

kS(t,Q(t)x)�S(t,Q(t)y)kX  LkQ(t)x�Q(t)ykX , x,y 2 X}

and the map
T

s : Lips(D,L)! Lips(D,L)

given by

T
s(S)(t,z ) =�

Z +•

t
Lx (t,r)Q(r)F(r,q(r)+S(r,q(r)))dr, t 2 R.

Theorem 2.3.31. (CARVALHO; LANGA; ROBINSON, 2013, Theorem 8.5) Under the same
assumptions of Theorem 2.3.30, there is a Ss 2 Lips(D,L) (which is the fixed point of T

s) such
that the stable manifold W s(0) of (2.8) is given by

W s(0) = {q+Ss(t,q) : q 2 Q(t)X , t 2 R}.

Consider x(·) is a global solution of (2.8), x(t) = p(t)+ q(t), t 2 R, then there exist
N � 1 and g > 0 such that

kp(t)�Ss(t,q(t))kX  Neg(t�t0)kp(t0)�Ss(t0,q(t0))kX , for t, t0 2 R, t  t0
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and
kq(t)kX  Nkq(t)kX e�(b�rM(1+L)(t�t), t � t.

The above inequality is also true if x(·) is only defined on [t,+•).
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CHAPTER

3

THE CHAFEE-INFANTE PROBLEM AND ITS
NON-AUTONOMOUS VARIATION

In this chapter, we will give a general overview on the Chafee-Infante problem, which
will be useful for us throughout the next chapters.

Denote by Ck(R) the set of continuous functions f : R! R which admits k derivatives
which are continuous, for k 2 N.

The Chafee-Infante problem, which appeared in the literature for the first time in 1974
(see (CHAFEE; INFANTE, 1974) and (CHAFEE; INFANTE, 1974/75)), can be represented by
the following initial boundary value problem,

8
>><

>>:

ut�uxx = l f (u), x 2 (0,p), t > 0,

u(0, t) = u(p, t) = 0, t > 0,

u(·,s) = u0(·) 2 H1
0 (0,p).

(3.1)

where l > 0 is a parameter and f 2C2(R) satisfies f (0) = 0, f 0(0) = 1 and

s f 00(s)< 0, for s 6= 0, and limsup
|s|!+•

f (s)
s

< 0. (3.2)

This is the infinite dimensional model for which the asymptotics is the most well-
understood. We know that it is gradient, has a finite number of equilibria and, along a connection
between two equilibria, the stable and unstable manifolds intersect transversely (see (HENRY,
1985; ANGENENT, 1986)). Moreover, we also know precisely the diagram of connections
between equilibria (see (FIEDLER; ROCHA, 1996)) and that this diagram is stable under
autonomous and non-autonomous perturbations (see (HENRY, 1985; ANGENENT, 1986;
BORTOLAN et al., 2021; BORTOLAN; CARVALHO; LANGA, 2020)).

Let C(H1
0 (0,p)) be the space of continuous functions from H1

0 (0,p) to itself. It is
well known that the problem (3.1) is globally well-posed. Denote by {T (t) : t > 0} its solution



52 Chapter 3. The Chafee-Infante problem and its non-autonomous variation

operator, that is, if R+ 3 t 7! u(t,u0)2H1
0 (0,p) is the global solution of (3.1), we write T (t)u0 =

u(t,u0). The family {T (t) : t > 0}⇢C(H1
0 (0,p)) is a gradient semigroup with Liapunov function

V : H1
0 ! R given by

V (u) =
1
2

Z p

0
u2

x(x) dx� 1
2

Z p

0

Z u(x)

0
f (s) ds dx.

for all u 2 H1
0 (0,p), that is,

i) V is continuous;

ii) [0,•) 3 t 7!V (T (t)u) 2 R is non-increasing;

iii) V (T (t)u) =V (u) for all t > 0 implies that u is an equilibrium of (3.1).

Also, this semigroup has a global attractor A which, due to the gradient structure, is
given by A =W u(E ), where E is the set of equilibria and W u(E ) its unstable set.

In what follows, we will present some of the results in the literature about this well-
known problem. We are interested in the finer structure of its global attractor. We will present
the bifurcation of equilibria and the structure of the attractor. In the last section, we will also
offer a topological criteria to identify problems whose global attractor is semi-conjugated to the
global attractor of (3.1).

3.1 The bifurcation of the Chafee-Infante problem
In this section, we are interested in investigating the equilibria of (3.1), that is, solutions

that are not time-dependent. In other words, we search for solutions of
(

uxx +l f (u) = 0, x 2 (0,p),

u(0) = u(p) = 0.

The interest in no time-dependent solutions come from their role in describing the
dynamics of gradient systems. Here, we will present the analysis made by Chafee and Infante in
order to construct the sequence of bifurcation of equilibria from 0.

For l 2 ( j2,•), let f±
j,l be the solutions of (3.1) with j+1 zeros in the interval [0,p]

and k(f k
j,l )
0(0)> 0, k 2 {+,�}, they are solutions of the initial value problem

(
uxx +l f (u) = 0, x > 0

u(0) = 0, u0(0) = v0
(3.3)

where v0 6= 0 is suitably chosen in such a way that u(p) = 0. By (3.2), there are a� < 0 < a+

such that f (a±) = 0 and f (s)s > 0 for s 2 (a�,a+)\{0}. Now, denote by F(s) =
R s

0 f (r)dr.
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For a given v0 let E =
v2

0
2 2 [0,min{F(a+),F(a�)}], and note that a solution of (3.3)

must satisfy
u0(x)2

2
+lF(u) = lE.

Let U+(E)> 0 and U�(E)< 0 be defined by F(U±(E)) = E. Then, if

tk
l (E) = k

✓
2
l

◆ 1
2 Z Uk (E)

0
(E�F(u))�

1
2 du, k 2 {+,�}, (3.4)

define, for j odd,

T
+

l (E) =
j+1

2
t+l (E)+

j�1
2

t�l (E), T
�

l (E) =
j+1

2
t�l (E)+

j�1
2

t+l (E)

or, for j even,

T
±

l (E) =
j
2

t+l (E)+
j
2

t�l (E).

The choices of E that gives us the solutions f+
j,l are T

+
l (E+

j,l ) = p . It can be shown that:

- For k 2 {+,�}, the map (0,F(ak)) 3 E! tk
l (E) is strictly increasing;

- For k 2 {+,�}, as E! F(ak), tk
l !+•;

- as E! 0, t±l !
p

2
p

l
.

As a consequence, we have the following result:

Theorem 3.1.1. (CHAFEE; INFANTE, 1974) If N2 < l 6 (N +1)2, for some 0 < N 2 N, then
(3.1) has 2N +1 equilibria f+

j ,f
�
j , 0 6 j 6 N, where:

(i) f+
0 = f�0 = 0;

(ii) f+
j and f�j have j+1 zeros in [0,p], 1 6 j 6 N;

(iii) (f+
j )
0(0)> 0 and (f�j )0(0)< 0.

(iv) There is no other equilibrium of (3.1).

All equilibria of the Chafee-Infante problem appear as
0 passes by a supercritical pitchfork bifurcation.

Remark 3.1.2. In the case that f is an odd function, the equilibrium f+
j vanishes exactly at

{k p
j : 06 k 6 j}, 16 j 6N; f�j =�f+

j , f+
j (x)> 0 for x2 (0, p

j ), 16 j 6N; f j(x) = f j(
p
j �x),

x 2 (0, p
j ) and f j(x) =�f j(x� p

j ), x > p
j , 1 6 j 6 N.

The following result synthesizes the spectral properties of the linearized operator
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Lemma 3.1.3. The spectrum of the operator
8
>><

>>:

Lf
0 : D(Lf

0 )⇢ L2(0,p)! L2(0,p),

D(Lf
0 ) = H2(0,p)\H1

0 (0,p),

Lf
0 v = v00+l f 0(f)v, v 2 D(Lf

0 ).

(3.5)

satisfies

i) If f(x) 6= 0 in (0,p), then Lf
0 has only negative eigenvalues.

ii) If f(x) = 0, for some x 2 (0,p), then Lf
0 has at least one positive eigenvalue.

iii) 0 is always in the resolvent of Lf
0 .

Proof. Parts i) e ii) were proved by (CHAFEE; INFANTE, 1974/75) and can also be found in
(HENRY, 1981, Section 5.3). We will give an idea of the proof of iii), which is a consequence of
the results in (SMOLLER, 1994, Section F of Chapter 24).

We prove only the hyperbolicity of f+
j,l , the other case is similar. We consider the family

u(·,E) of solutions of the problem
(

u00(x)+l f (u(x)) = 0,

u(0,E) = 0, u0(0,E) =
p

2lE and u(t+l (E)) = 0.
(3.6)

Consequently, h = (f+
j,l )x and y = ∂u

∂E (x,E)
��
E=E+

j (l )
are solutions of

v00(x)+l f 0(f+
j,l )v(x) = 0 (3.7)

with h(0) 6= 0, h 0(0) = 0 and y(0) = 0, y 0(0) =
p

lq
2E+

j (l )
6= 0. This proves that h and y are

linearly independent and any solution (3.7) must be of the form

w = c1h + c2y.

Let us show that if w(0) = w(T +
l (E+

j (l ))) = 0 then, necessarily, w ⌘ 0. In fact, y(0) = 0,
h(0) 6= 0 and c1h(0)+ c2y(0) = 0 implies c1 = 0. Now, since u(T +

l (E),E) = 0 for all E, we
have that 0 = ∂u

∂x (T
+

l (E),E)(T +
l (E))0(E)+ ∂u

∂E (T
+

l (E),E). It is clear that ∂u
∂x (T

+
l (E),E) 6= 0

and since (T +
l (E))0(E) 6= 0 (see (CHAFEE; INFANTE, 1974/75)), we have y(T +

l (E+
j (l ))) =

∂u
∂E (T

+
l (E+

j (l ),E
+
j (l )) 6= 0. Hence, we also have that c2 = 0 and the only solution w of (3.7)

which satisfies w(0) = w(p) = 0 is w ⌘ 0. This proves that 0 is not in the spectrum of the
linearization around f .

Theorem 3.1.4. Under the same notation used in Theorem 3.1.1, we have the following:
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Stability If l 2 (0,1], then 0 is the only equilibrium of (3.1) and it is stable. If l > 1, then f+
1

and f�1 are stable and the other equilibria are unstable.

Hyperbolicity All equilibria of (3.1) are hyperbolic, with the exception of the equilibrium 0
for values l = a(0)N2, N 2 N.

Proof. Suppose that f is an equilibrium of (3.1). Since f 2C2(R), we have for h 2 H2(0,p)\
H1

0 (0,p),

f (f +h) =
�fxx

l
+Bf h+g(h)

where Bf h = f 0(f)h, gf (h) = f (f +h)� f (f)� f 0(f)h.

We can see that

(i) Bf : Xa ! X is a bounded linear operator;

(ii) g(0) = 0, kg(h)k= o(khka) as khka ! 0, since f 2C2(R).

Now, for r > 0, consider h1,h2 2 BH1
0 (0,p)

(0,r). We have

kg(h1)�g(h2)k= k f (f +h1)� f (f +h2)+ f 0(f)(h1�h2)k

= k f 0(f +q1h1 +(1�q1)h2)(h1�h2)� f 0(f)(h1�h2)k

 k f 0(f +q1h1 +(1�q1)h2)� f 0(f)kkh1�h2k

 k f 00(f +q2[q1h1 +(1�q1)h2])(q1h1 +(1�q)h2)kkh1�h2kH1
0 (0,p)

,

where the existence of functions q1,q2 : [0,p]! [0,1] is assured by the regularity of f . Now,
since f 2C2(R), there is a M > 0 for which

k f 00(f +q2[q1h1 +(1�q1)h2])kkq1h1 +(1�q1)h2k M
⇣
kh1kH1

0 (0,p)
+kh2kH1

0 (0,p)

⌘
 2Mr.

Now, take r(r) = 2Mr. We have that

kg(h1)�g(h2)k  r(r)kh1�h2kH1
0 (0,p)

and r(r)! 0 as r! 0.

Now, we can apply Theorems 2.3.23 and 2.3.24 and Lemma 3.1.3 and the result follows.

For l > j2, j 2 N, k 2 {+,�}, denote by f k
j,l the equilibrium of (3.1) that has j+ 1

zeros in [0,p] and k(f+
j,l )
0(0)> 0.

Theorem 3.1.5. For each positive integer j, and k 2 {+,�}, the function ( j2,•) 3 l 7! f k
j,l 2

H1
0 (0,p) is continuously differentiable and consequently the function ( j2,•)3 l 7! k(f k

j,l )xk2 2

(0,•) is strictly increasing, continuously differentiable and k(f k
j,l )xk2 l!•�! •.
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Proof. To show that ( j2,•) 3 l 7! f k
j,l 2 H1

0 (0,p) is continuously differentiable at a point l0

we recall that, for each l 2 ( j2,•) we already know that f k
j,l is hyperbolic. Hence, to obtain the

differentiability at l = l0 2 ( j2,•) we recall that, for l near l0, f k
j,l is the only fixed point of

the map

T k
j,l v :=�f k

j,l0
� (Ll0,k

j )�1
⇣

l f (v+f k
j,l0

)�l0 f 0(f k
j,l0

)v�l0 f 0(f k
j,l0

)f k
j,l0

⌘

in a small neighborhood of zero in H1
0 (0,p). Now, since ( j2,•) 3 l 7! T k

j,l 2 C (H1
0 (0,p)) is

continuously differentiable we have that ( j2,•) 3 l 7! f k
j,l 2 H1

0 (0,p) is continuously differen-
tiable and the result follows.

The map ( j2,•) 3 l 7! k(f k
j,l )xk2 2 (0,•) is strictly increasing and k(f k

j,l )xk2 l!•�! •.
Both results follow from (CABALLERO et al., 2021, Lemma 5) and from the analysis done
next.

It has been shown in (CHAFEE; INFANTE, 1974/75) that the time maps t±l (·), defined
in (3.4), are strictly increasing functions. Also, for a fixed E, clearly l 7! t±l (E) is strictly
decreasing. Hence, since T

+
l (E+

j,l ) = p , from (3.4), must have that kUk(Ek
j (l )), k 2 {+,�},

is strictly increasing.

It follows that

g(l ) :=
Z t+l (E±

j (l ))

0
((f±

j,l )x)
2dx =

p
2l

Z U+(E±
j (l ))

0

q
E±

j (l )�F(v)dv

and Z U+(E±
j (l ))

0

q
E±

j (l )�F(v)dv

are strictly increasing functions of l . Consequently, g(l ) l!•�! • and we must have that
k(f k

j,l )xk2 l!•�! •, completing the proof.

Remark 3.1.6. The same reasoning can be used to show that ( j2,•) 3 l 7! f k
j,l 2 H1

0 (0,p) is
twice continuously differentiable, k 2 {+,�}.

3.2 Structure of the attractor and Morse Smale semigroup
Now, we will present an interesting effect that occurs for some linear one-dimensional

problems. Basically, we will see that for some problems, the number of zeros (“lap-number”) of
the solution decreases a.e. as time evolves. This study was presented by Matano (see (MATANO,
1982)) and it will be very useful in the next chapters. Here, we will present a version from
(HENRY, 1981, Theorem 6).

Lemma 3.2.1. Consider the following problem
(

vt = p(t,x)vxx +q(t,x)vx + r(t,x)v, x 2 (0,p), t > 0,

v(t,0) = v(t,p) = 0, t � 0,
(3.8)
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where we assume that

(i) there is an interval [0, t0], for which the functions p,q and r are well-defined in [0, t0]⇥ [0,p].
Also p > 0 in this domain.

(ii) there exist a continuous function v solution of (3.8), where vx is continuous on (0, t0]⇥
[0,p], vt and vxx are continuous on (0, t0]⇥ (0,p).

In these conditions, we can show that the number of components of

{x : 0 < x < p and v(t,x) 6= 0}

decreases with time on 0 t  t0.

Remark 3.2.2. The Lemma above is a particular case of (HENRY, 1985, Theorem 6).

Although the lemma above does not seem to be related to our semilinear problem, it can
be used in order to understand the dynamics of (3.1).

Lemma 3.2.3. Consider u : R! H1
0 (0,p) a global bounded solution of (3.1). Suppose that

f t!�• � u(t) t!+•�! y,

where f and y are two distinct equilibria of (3.1).

Then, either f = 0 and y 6= 0 or f 2 {f+
j,l ,f

�
j,l} and {f+

k,l ,f
�
k,l}, for k, j 2 N, with

j2 < k2 < l .

Proof. Since the semigroup associated to (3.1) is gradient, it is clear that if f = 0, then y 6= 0.

Now, suppose that f 6= 0. Recall that the nonlinearity f in (3.1) is C2(R) and also
f (0) = 0. Consequently,

f (u) = f (0)+ f 0(0)u+o(|u|) = u+o(|u|)

where o(|s|)
|s| ! 0 as s! 0+. Consequently, f (u) = g(u)u, for some g 2C2(R) with g(0) = 1.

Then, the solution u : [0,+•)! H1
0 (0,p) of (3.1) is also a global solution of

(
ut = uxx + r(t,x)u,

u(t,0) = u(t,p) = 0,
(3.9)

where r(t,x) = lg(u(t,x)) is continuous and well-defined in R+⇥ [0,p]. Then f 2 {f+
k,l ,f

�
k,l},

for some k 2 N\ (0,
p

l ).

Since u(t)! fk as t ! �• and this convergence is in C1(R), we find t0 2 (�•,0]
such that the set {x 2 [0,1] : u(t0,x) 6= 0} has k components. Similarly, we find a t1 2 (t0,+•)

sufficiently large such that the set {x 2 [0,p] : u(t1,x) 6= 0} has j components.
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Now, by applying Lemma 3.2.1 to (3.9), it follows that k � j. In fact, this inequality is
strict. Otherwise, if k = j, then either f = f+

j,l and y = f�j,l or f = f�j,l and y = f+
j,l .

When j 2N is even, property f�j (·) = f+
j (p� ·) and then, E(f�j (·)) = E(f+

j (·)). Since
our problem is gradient, this cannot happen.

When j 2 N is odd, we make use of the lap-number property given in Theorem 3.2.1.
For a global solution u(·) let

Q+ (t) = {x 2 (0,1) : u(t,x)> 0},

Q� (t) = {x 2 (0,1) : u(t,x)< 0}.

In the proof of Theorem 6 in (HENRY, 1985) it is shown that if t1 > t0, then there is an injective
map for the connected components of Q+ (t1) (Q� (t1)) to connected components of Q+ (t0)
(Q� (t0)). Let, for example, u(·) be a global solution such that u(t) !

t!�•
f�j , u(t) !

t!+•
f+

j .

Since we have convergence in C1([0,p]), there are t0 < t1 such that the number of components
of Q+ (t0) is equal to ( j�1)/2 and the number of components of Q+ (t1) is equal to ( j+1)/2.
This contradicts the existence of the above injective map. Thus, such heteroclinic connection is
impossible. A similar argument (but using Q� (t)) is valid for the connection from f+

j to f�j .

In (FIEDLER; ROCHA, 1996), the authors pictured the connections in the attractor Al

as this nice diagram, where the oriented paths determined by the arrows imply the existence of
connections between the initial and the final equilibria of the path:

f+
N

//

��

f+
N�1 . . . // f+

2
//

��

f+
1

{0}

>>

  

. . .

""

<<

f�N

@@

// f�N�1 . . . // f�2 //

AA

f�1

.

Now, fix n 2 N and define the sets Dn = {x = (x1, . . . ,xn) 2 Rn : x2
1 + · · ·+ x2

n  1} and
Sn�1 = {x = (x1, . . . ,xn) 2 Rn : x2

1 + · · ·+ x2
n = 1}. Consider the following problem

(
q̇ = Qq �hQq ,qiq , q 2 Sn�1,

ṙ = r(1� r), r 2 [0,1],
(3.10)

for

Q =

2

66664

1 0 . . . 0
0 1

2
... . . .
0 1

n

3

77775
.
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It can be shown that problem (3.10) defines a flow yn : R⇥Dn! Dn.

For l 2 (n2,(n+1)2), n 2 N, it has been proved in (MISCHAIKOW, 1995, Theorem
1.1) that the dynamics inside the attractor of (3.1) is conjugated to the dynamics defined by yn

on Dn.

3.3 Identifying the structure of a global attractor
In (MISCHAIKOW, 1995), the author shows that problems satisfying some conditions

have an attractor with the same structure of the Chafee-Infante problem. The conditions for such
problems are the following:

(A1) Consider a sequence {ln}n2N 2 R+, with ln < ln+1, for all n 2 N. Suppose that
we can define a continuous parameterized family of semiflows jl : R+⇥X ! X , for l 2 R+.

For each l > 0, we also assume that jl has a global attractor Al and the map

jl : R⇥Al !Al

defines a flow.

(A2) For each l 2 (ln,ln+1), the attractor Al admits a Morse decomposition

Ml (Al ) = {Ml ( j?) : j 2 {0, . . . ,N�1},? 2 {+,�}}[{Ml (n)} .

Ml (n) represents the zero equilibrium for l 2 (ln,ln+1). Moreover,

j± < k± for j,k 2 {0, . . . ,N�1} () j < k in N,
j± < N, for all j 2 {0, . . . ,N�1}.

is an admissible order.

(A3) We assume that we have the following homology index, for l 2 (ln,ln+1):

Hk(Ml ( j?))'

8
<

:
Z, if k = j,

0, otherwise,
and Hk(Ml (n))'

8
<

:
Z, if k = n,

0, otherwise,

for j 2 {0, . . . ,n�1} and ? 2 {+,�}.

(A4) For l 2 (ln,ln+1), the connection matrix is given by

Dl =

2

66666664

0 Dl
1 0 . . . 0

0 Dl
2

. . . ...
... . . . . . . 0

0 Dl
n

0 . . . 0

3

77777775
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where the submatrices

Dl
j : H j(Ml ( j�))�H j(Ml ( j+))! H j�1(Ml (( j�1)�))�H j�1(Ml (( j�1)+))

can be written as Dl
j =

"
1 1
�1 �1

#
and

Dl
n : Hn(Ml (n))! Hn�1(Ml ((n�1)�))�Hn�1(Ml ((n�1)+))

can be written as Dl
n =

"
1
�1

#
.

In order to obtain the structure of the global attractor for the problem (5.1), we will
present Theorem 1.2, (MISCHAIKOW, 1995). In order to do that, we need to define an auxiliary
problem. Fix n 2 N. Denote by k ·kRn and h·, ·i the norm and inner product, respectively, of the
Euclidean space Rn. Consider the subsets

Dn = {x = (x1, . . . ,xn) 2 Rn : kxkRn  1},

Sn�1 = {x = (x1, . . . ,xn) 2 Rn : kxkRn = 1}

and, for j = 1, . . . ,n, define e±j = (d±
1 j, . . . ,d

±
n j) with d j j =±1 and d±

k j = 0, if k 6= j. Moreover,
we have the following result

Theorem 3.3.1 (Theorem 1.2, (MISCHAIKOW, 1995)). Assuming (A1)-(A4) and l 2 (ln,ln+1),
there exists a flow j̃l given by a time-reparameterization of jl and a continuous surjective map
gl : Al !Dn, satisfying M( j±) = g�1

l ({e±j+1}), for 0 j  n�1, and M(n) = g�1
l ({0}), such

that the following diagram commutes:

R⇥Al

j̃l
✏✏

IR⇥gl // R⇥Dn

yn

✏✏
Al

g
// Dn

where IR represents the identity in R.

3.4 A non-autonomous Chafee-Infante problem
In this section, we will describe some results on the structure of a non-autonomous

parabolic problem. This problem was the object of study in (CARVALHO; LANGA; ROBINSON,
2012; CARVALHO; LANGA; ROBINSON, 2013; BROCHE; CARVALHO; VALERO, 2019).

Although this problem is not close to an autonomous problem, we can also find non-
autonomous equilibria for it.

The study of the structure of the attractor for non-autonomous problems is a very difficult
subject. Part of the challenge is that,unlike what occurs in the autonomous case, we do not always
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know how to identify invariant sets that play an essential role in the dynamics. For instance, the
existence of equilibria or periodic solutions is possible, but we do not expect the dynamics to
depend only on these particular types of solutions.

Thinking about that, the authors in (CARVALHO; LANGA; ROBINSON, 2012) consid-
ered the following non-autonomous equation

8
>><

>>:

ut = uxx +lu�b (t)u3, x 2 (0,p), t > s,

u(t,0) = u(t,p) = 0, t � s,

u(0, ·) = u0(·) 2 H1
0 (0,p)

(3.11)

where l > 0 is a parameter and b : R! [b1,b2] is a globally Lipschitz function and b2 > b1 > 0.
The authors (CARVALHO; LANGA; ROBINSON, 2012) have shown that we have a process
{Sb (t,s) : t � s}⇢C(H1

0 (0,p)) related to (3.11) which admits a pullback attractor {A (t) : t 2
R}.

When b (·) ⌘ b, for some b > 0, we have the Chafee-Infante problem, presented in
Chapter 3. If b (·) is sufficiently close to a constant, the result of Theorem 3.4.2 was already
known, see (BORTOLAN; CARVALHO; LANGA, 2020).

The idea to show the existence of the non-autonomous equilibria is to use comparison
between the solutions of (3.11) and (3.11) with b (·) replaced by g1(·) = b1 and g2(·) = b2. For
j = 1,2, denote by {Tj(t) : t � 0} the semigroup related to

8
>><

>>:

ut = uxx +lu�b ju3, x 2 (0,p), t > s

u(t,0) = u(t,p) = 0, t � s

u(0, ·) = u0(·) 2 H1
0 (0,p).

In this case, we have the following comparison result:

Theorem 3.4.1. For u0  u1  u2 in H1
0 (0,p), we have

Tj(t)u0  Tj(t)u1, for all t > 0, ( j = 1,2)

T2(t� s)u0  S(t,s)u1  T1(t� s)u2, for all t > s.

For i 2 N and j = 1,2, denote by f+
i,b j

(resp. f�i,b j
) the equilibrium of {Tj(t) : t � 0} that

satisfies (f+
i,b j

)0(0)> 0 (resp. (f�i,b j
)0(0)< 0) and has i+1 zeros in [0,p]. It can be easily seen

that f+
i,b1

=
⇣

b2
b1

⌘ 1
2 f+

i,b2
and f�i,b1

=
⇣

b2
b1

⌘ 1
2 f�i,b2

.

For i 2 N, we define the sets

X+
i =

8
<

:
u 2 H1

0 (0,p) :min{f+
i,b1

,f+
i,b2

} umax{f+
i,b1

,f+
i,b2

}, u(x) =�u(x� p
i ), x 2

⇥p
i ,p

⇤
,

and u(x) = u(p
i � x), x 2

⇥
0, p

i
⇤

9
=

;
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and

X�i =

8
<

:
u 2 H1

0 (0,p) :min{f�i,b1
,f�i,b2

} umax{f�i,b1
,f�i,b2

}, u(x) =�u(x� p
i ), x 2

⇥p
i ,p

⇤

and u(x) = u(p
i � x), x 2

⇥
0, p

i
⇤

9
=

; .

Using the comparison theorem above, we can show that the sets X±
i are nonempty if l > i2.

In fact, we have S(t,s)X+
i ⇢ X+

i and S(t,s)X�i ⇢ X�i , for all t � s. Since X±
i are bounded and

positively invariant, the restriction of {S(t,s) : t � s} to X±
i guarantees the existence of invariant

sets {A+
i (t) : t 2 R}⇢ X+

i and {A�i (t) : t 2 R}⇢ X�i . Even more, it can also be show that, for
each t 2 R, A+

i (t) = {x+
i (t)} and A�i (t) = {x�i (t)}, where x+

i : R! X (resp. x+
i : R! X) is a

global solution of {S(t,s) : t � s} in X+
i (resp. X�i ). Thus we have the following result

Theorem 3.4.2. (CARVALHO; LANGA; ROBINSON, 2012, Theorem 8)

For l 2 (N2,(N +1)2], the problem (3.11) admits 2N non-zero non-autonomous equi-
libria.

3.5 Further comments and open problems
In this chapter, we have presented the results on the Chafee-Infante problem and its

non-autonomous variation. The Chafee-Infante problem was a revolutionary example in the area,
since it has allowed pursuing further investigations on the inner structure. This is usually a very
difficult subject and there are no clear techniques that work generally.

There are several studies inspired by the articles (CHAFEE; INFANTE, 1974) and
(CHAFEE; INFANTE, 1974/75). This problem was an inspiration on the development of the
topological and the geometrical theory of several other articles and was the object of interest of
many authors.

As we have seen, the lap-number property is essential to understand the dynamics inside
the attractor. But this property is restricted to problems in the one-dimensional setting. Thus, the
study of bifurcation of equilibria of a model such Chafee-Infante in an open domain W⇢ Rn,
n� 2, is far from being a clarified problem.

Now, the construction of the non-autonomous equilibria of (3.11) is made by using
invariant regions determined by autonomous Chafee-Infante problems. In fact, the result of
(CARVALHO; LANGA; ROBINSON, 2012) is more complete than we have mentioned. For
instance, the authors proved that if n2 < l  (n+1)2, for some n 2N, the problem (3.11) admits
exactly 2n non-autonomous equilibria. In fact, the authors in the cited publication have shown
that x k

j (·) is the only global solution of (3.11) inside Xk
j , for 1 j  n and k 2 {+,�}.

In the project of my PhD, we described our interest in understanding better the local
properties of the non-autonomous equilibria of (3.11). To be more precise, it is one of our
interests to show that all the non-autonomous equilibria are hyperbolic. In the case that b (·) is
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very close to a positive constant (and far from zero), the hyperbolicity of these global solutions
are known. But generally we do not know the answer yet.

We have developed, with other collaborators, a work on inertial manifolds (see (CAR-
VALHO; LAPPICY; OLIVEIRA-SOUSA, 2021)) that may be useful in the study of hyperbolicity
for non-autonomous equilibria. So far, we were not able to obtain the desired result. We expect
to continue our investigation on this subject.

In the next chapters, we will consider problems inspired by the Chafee-Infante prob-
lem: a non-autonomous nonlocal quasilinear version (see Chapter 4), an autonomous nonlocal
quasilinear version (see Chapter 5) and a multivalued problem (see Chapter 6).
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CHAPTER

4

A NON-AUTONOMOUS PARABOLIC
PROBLEM

The study of non-autonomous problems can be very challenging and they differ from the
autonomous in several aspects. When we consider the attractor for a non-autonomous problem,
we also have to take in account the effects caused on the time dependence. For instance, the
structure of the attractor is more difficult since we may not have stationary points that characterize
the dynamics.

Although we can find several results in the literature about the existence of pullback
attractor or results on stability, we cannot find many results on the finer structure of a pullback
attractor. The authors in (CARVALHO; LANGA; ROBINSON, 2012) proposed a concept called
“non-autonomous equilibria” which will be a special class of solutions that behave such as the
equilibria in the autonomous gradient systems.

The inspiration to define the non-autonomous equilibria (see Definition 2.3.21) had
come from the fact that autonomous gradient dynamical systems are robust under small non-
autonomous perturbations. In this context, the appearance of these classes of solutions is natural.
In (CARVALHO; LANGA; ROBINSON, 2012), the authors were able to show the existence of
such a class of solution even when we do not consider a small Lipschitz perturbation.

In this chapter, we will explore a non-autonomous and nonlocal quasilinear problem
8
>><

>>:

ut�a(kuxk2)uxx = lu�b (t)u3, x 2 (0,p), t > s,

u(0, t) = u(p, t) = 0, t > s,

u(·,s) = u0(·) 2 H1
0 (0,p),

(4.1)

where kuxk2 =
Z p

0
|ux(x)|2dx (usual norm of the Hilbert space H1

0 (0,p)), l 2 (0,•) is a param-

eter, a : R+ ! [m,M] is a locally Lipschitz function, 0 < m < M, and b : R+ ! [b1,b2] is a
globally Lipschitz function, for 0 < b1 < b2.
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If we consider a(·)⌘ 1, we find the non-autonomous Chafee-Infante problem that we
presented previously (see Section 3.4). In what follows we will comment about the differences
we find in considering (4.1) with non-constant a(·).

We will show this problem is globally well-posed and admits non-autonomous equilibria.

4.1 A non-autonomous and nonlocal parabolic problem
In this section, we will show that (4.1) is globally well-posed and it defines a process.

First, consider the following
8
>>>><

>>>>:

wt =wxx+
1

a(kwxk2)


lw�b

✓
s+

Z t

s

1
a(kwx(·,q)k2)

dq
◆

w3
�
, x2(0,p), t >s,

w(0,t) = w(p,t) = 0, t > s,

w(·,s) = u0(·) 2 H1
0 (0,p)

(4.2)

with the same assumptions of (4.1).

Lemma 4.1.1. The problem (4.2) is locally well-posed in H1(0,p).

Proof. Consider the linear operator A : D(A) ⇢ L2(0,p)! L2(0,p), for D(A) = H2(0,p)\
H1

0 (0,p) and Au = uxx, for u 2D(A). The operator A is self-adjoint and it has compact resolvent.
In particular, the operator �A is sectorial and we may define the fractional power spaces
{Xq : q > 0}, where X = L2(0,p) and X1 = H2

0 (0,p)\H1
0 (0,p). Consequently, X

1
2 = H1

0 (0,p).

Consider a pair (t0,u0) 2 R+ ⇥ X
1
2 . For T > t0 and R > 0, define the space B ⇢

(C([t0,T ];H1
0 (0,p)), ||| ·k|), where |||u||| := supt2[t0,T ] kukH1

0 (0,p)
, satisfying |||u�u0||| R for

u 2B. It is easy to see that (B, ||| · |||) is a complete metric space.

Define the function
f : B!C([t0,T ];L2(0,p))

w(·) 7! f (w)(·)
given by

f (w)(r) =
lw(r)�b (tw(r))w3(r)

a(kwx(r)k2)
,

where tw(r) = t0 +
R r

t0 a(kwxk2)�1ds, r 2 [t0,T ].

For each v 2C([t0,T ],H1
0 (0,p)) and r,s 2 [t0,T ], s > r,

k f (v)(s)� f (v)(r)k  l
a(kvx(s)k2)

kv(s)� v(r)k+
✓

l
a(kvx(s)k2)

� l
a(kvx(r)k2)

◆
kv(r)k

+kb (tv(s))[v3(s)� v3(r)]k+k[b (tv(s))�b (tv(r))]v3(r)k

 l
m
kv(s)� v(r)k+

✓
l [a(kvx(r)k2)�a(kvx(s)k2)]

m2

◆
kv(r)k

+b2kv3(s)� v3(r)k+ |b (tv(s))�b (tv(r))|kv3(r)k.
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Now, denote by La (resp. Lb ) the Lipschitz constant of a(·) (resp. b (·)) in B
X

1
2
(0,R). We

have the following

|a(kvx(r)k2)�a(kvx(s)k2)| La(kvx(r)k2�kvx(s)k2) 2LaR2kvx(r)� vx(s)k,

kv3(s)� v3(r)k  3||v||2L•(0,p)kv(s)� v(r)k  3||v||2L•(0,p)kv(s)� v(r)kH1
0 (0,p)

,

kb (tv(s))�b (tv(r))k  Lb |tv(s)� tv(r)| Lb

Z s

r
a(kvx(l)k2)�1dl 

Lb |r� s|
m

.

From the above inequalities and using the Sobolev’s inequalities, we find a C =C(R)> 0
such that

k f (v)(s)� f (v)(r)k C(R)
⇣
|s� r|+kv(s)� v(r)kH1

0 (0,p)

⌘
.

By similar calculations, we can show that there is a C(R)> 0 for which

k f (v)(r)� f (w)(r)k C(R)kv(r)�w(r)kH1
0 (0,p)

, r 2 [t0,T ],

for all v,w 2B.

Define the function G : B!B by

G (u)(t) = eA(t�t0)u0 +
Z t

t0
eA(t�s) f (s,u(s))ds, t 2 [t0,T ].

We are able to show, under the same techniques applied on the proof of Theorem 2.3.17
that, by proper choices of T and R, the map G : B!B is a contraction.

In other words, there is a w(·) = w(·, t0,u0) 2C([t0,T (t0)];H1
0 (0,p)) satisfying

u(t) = eA(t�t0)u0 +
Z t

t0
eA(t�s) f (s,u(s))ds.

Hence, using Lemma 2.3.15, w is a solution of (4.2) with w(t0) = u0.

4.2 Global well-posedness
In this section, we will use the knowledge we have of (4.2) in order to obtain the global

well-posedness of solutions for the quasilinear problem (4.1). Even more, we will show that the
problem also generates an evolution process.

Proposition 4.2.1. Problem (4.2) is globally well-posed in H1
0 (0,p).

Proof. Let (t0,u0) 2 H1
0 (0,p). Using Lemma 4.1.1, there is a solution u : [t0,T )! H1

0 (0,p),
T > t0, of (4.2). By the variation of constants formula, a solution of (4.2) with u(t0) = u0 satisfies

u(t) = eA(t�t0)u0 +
Z t

t0
eA(t�s)

✓
lu(s)�b (tu(s))u3(s)

a(kux(s)k2)

◆
ds
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as long as the solution exists. Then, for t 2 (t0, t0 + t], we have

ku(t)k
X

1
2
 e�(t�t0)ku0k

X
1
2
+C

Z t

t0
e�(t�s)(t� s)�

1
2ku(s)k

X
1
2
ds

since f is locally Lipschitz continuous. If we denote y(s) = e(s� t0)ku(s)k
X

1
2
, s 2 [t0, t], we

have the following

y(t) ku0k
X

1
2
+C

Z t

t0
(t� s)�

1
2 y(s)ds.

Applying the Singular Gronwall’s Lemma (Lemma 2.3.16) to we are able to conclude that

sup
t2[t0,t0+t)

ku(t)k
X

1
2
<+•.

Consequently, the solution u(·, t0,u0) exists for all time, by Theorem 2.3.18. This is a consequence
of the fact that the variation of constants formula is well-defined as long as the solution is
bounded.

Theorem 4.2.2. Problem (4.1) is continuous with respect to initial data, that is, for each e > 0,
there is a d 2 (0,e) such that ku1�u2kH1

0 (0,p)
< d , we have that the solutions u(·,s,u j) of (4.1)

with u(s,s,u j) = u j, j = 1,2, satisfy ku(t,s,u1)�u(t,s,u2)kH1
0 (0,p)

< e , for t 2 [s,s+d ).

Proof. Fix e > 0 and (s,u1). Just for simplicity, denote u j(·) = u(·,s,u j), for j = 1,2. Define
the following function t j(t) = s+

R t
s a(k(u j(l))xk2)dl, for t > s, j = 1,2.

For j = 1,2 and w j(t j(t)) = u j(t), t > s, we have the following

w j(t j(t)) = eA(t j(t)�s)u j +
Z t j(t)

s
eA(t j(t)�r) f (r,w j(r))dr.

We will show that, for each T > 0, there is a constant C =C(T )> 0 such that

kw1(t)�w2(t)kH1
0 (0,p)

Cku1�u2kH1
0 (0,p)

, for t 2 [s,T ].

In fact,

kw1(t)�w2(t)k
X

1
2
 keA(t�s)[u1�u2]k

X
1
2
+k

Z t

s
eA(t�r)[ f (r,w1(r))� f (r,w2(r))]drk

X
1
2

 e�(t�s)ku1�u2k
X

1
2
+
Z t

s
e�(t�r)(t� r)�

1
2k f (r,w1(r))� f (r,w2(r))kdr

 e�(t�s)ku1�u2k
X

1
2
+
Z t

s
e�(t�r)(t� r)�

1
2Cf kw1(r)�w2(r)k

X
1
2
dr,

where Cf represents the Lipschitz constant of f in solutions of (4.2) (the solutions are uniformly
bounded, by previous results). For r 2 [s,t], define y(r) = er�skw1(r)�w2(r)kH1

0 (0,p)
. By the

previous inequality, we have

y(t) ku1�u2kH1
0 (0,p)

+Cf

Z t

s
(t� r)�

1
2 y(r)dr,
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and, by the Singular Gronwall’s Lemma (Lemma 2.3.16) we find y(t) 2ku1�u2kH1
0 (0,p)

eKt ,
for K = 4pC2

f . Thus

kw1(t)�w2(t)kH1
0 (0,p)

 2e(K�1)(t�s)ku1�u2kH1
0 (0,p)

. (4.3)

The above inequality shows that problem (4.2) is continuous with respect to initial data.

Observe that, for i = 1,2

ti(t)� s =
Z t

s
a(k(ui)x(r)k2)dr M(t� s), for t � s. (4.4)

Then, for i 2 {1,2},

kw1(ti(t))�u1kH1
0 (0,p)

 k[eA(ti(t)�s)� I]u1kH1
0 (0,p)

+
Z ti(t)

s
keA(ti(t)�r) f (r,w1(r))kH1

0 (0,p)
dr.

By the previous theorem, there is a C > 0 such that supr�s kw1(r)kH1
0 (0,p)

C. Hence,

kw1(ti(t))�u1kH1
0 (0,p)

 k[eA(ti(t)�s)� I]u1kH1
0 (0,p)

+C
Z ti(t)�s

0
e�l l�

1
2 dl, i 2 {1,2}. (4.5)

Choose a d1 > 0 such that

sup
r2[0,Md1]

k[eAr� I]u1kH1
0 (0,p)

+C
Z Md1

0
e�l l�

1
2 dl <

e
3
. (4.6)

Also choose d2 > 0 such that

2max{e(K�1)Md1 ,1}d2 <
e
3
. (4.7)

Let d = min{d1,d2}> 0. We want to show that

ku1(t)�u2(t)kH1
0 (0,p)

< e,

if t 2 [s,s+d ) and ku1�u2kH1
0 (0,p)

< d .

In fact, for t 2 [s,s+d ) and u2 2 H1
0 (0,p) with ku1�u2kH1

0 (0,p)
< d , we have

ku1(t)�u2(t)kH1
0 (0,p)

= kw1(t1(t))�w1(t2(t))kH1
0 (0,p)

 kw1(t1(t))�u1kH1
0 (0,p)

+kw1(t2(t))�u1kH1
0 (0,p)

+kw2(t2(t))�w1(t2(t))kH1
0 (0,p)

.

Combining (4.5), (4.4) and (4.6), we can easily see that, for i = 1,2,

kw1(ti(t))�u1kH1
0 (0,p)

 sup
r2[0,M(t�s)]

k[eAr� I]u1kH1
0 (0,p)

+C
Z M(t�s)

0
e�l l�

1
2 dl <

e
3
.

Note also that, for (4.3), (4.4) (4.7), we have

kw2(t2(t))�w1(t2(t))kH1
0 (0,p)

 2max{eM(K�1)(t�s),1}ku1�u2kH1
0 (0,p)

<
e
3
.

Therefore, the result follows.
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Consider {U(t,s) : t > s}⇢C(H1
0 (0,p)) evolution process associated with (4.2).

Theorem 4.2.3. Problem (4.1) defines a process {S(t,s) : t � s}⇢C(H1
0 (0,p)).

Proof. Let u0 2 H1
0 (0,p) and s 2 R. By Proposition 4.2.1, there is a solution w : [s,+•)!

H1
0 (0,p) of (4.2) satisfying w(s) = u0. Now, for t 2 [s,+•), consider u(t) = w(t), where

t = tw(t) = s+
R t

s
1

a(kwx(r)k2)
dr, t � s. It is easy to see that u is a solution of (4.1) with u(s) = u0.

Now, consider v : [s,+•)! X solution of (4.1) with v(s) = u0. We want to show that
v(t) = u(t), for all t � s. With this objective, consider z : [s,+•)! H1

0 (0,p) the solution of
(4.2) with z(s) = u0. By (4.3), it follows that z(t) = v(t), for all t 2 [s,+•). As consequence,
we have

tz(t) = s+
Z t

s

1
a(kzx(r)k2)

dr = s+
Z t

s

1
a(kvx(r)k2)

dr = tv(t), t 2 [s,+•).

Therefore, we have u(t) = v(t), for all t � s.

The continuity of (4.1) with respect to the initial data was proved on Theorem 4.2.2.

4.3 Existence of pullback attractor
In this section, we will show that {U(t,s) : t � s} and {S(t,s) : t � s} admit a pullback

attractor.

Lemma 4.3.1. The process {U(t,s) : t � s} is pullback asymptotically compact.

Proof. Consider t 2 R, a bounded sequence {xn}n2N 2 X and {sn}n2N 2 R with t � sk!�•
as k!+•.

We want to show that for t  t , the sequence {S(t,sn)xn}n2N is precompact in H1
0 (0,p).

Consider again the operator A given in Example 2.3.12 and its family of fractional powers
{X g : 0 < g < 1}. For g 2 [1

2 ,1), we have

kS(t,sn)xnkXg  keA(t�sn)xnkXg +
Z t

sn
keA(t�r) f (r,S(r,sn)xn)kXg dr

 e�(t�sn)(t� sn)
�(g� 1

2 )kxnkH1
0 (0,p)

+
Z t

sn
e�(t�r)(t� r)�gk f (r,S(r,sn)xn)kdr

 e�(t�sn)(t� sn)
�(g� 1

2 )kxnkH1
0 (0,p)

+C
Z t

sn
e�(t�r)(t� r)�gkS(r,sn)xnkH1

0 (0,p)
dr

for some constant C̃ > 0, where we have used that X g ,! X
1
2 = H1

0 (0,p).

If we consider g = 1
2 , it is easy to see that we can apply the Singular Gronwall’s Lemma

(Lemma 2.3.16), to find sup{kS(t,sn)xnkH1
0 (0,p)

: n 2 N}< M, for some M > 0.



4.3. Existence of pullback attractor 71

Now, if g > 1
2 , for n 2 N,

kS(t,sn)xnkXg  e�(t�sn)(t� sn)
�(g� 1

2 )kxnkH1
0 (0,p)

+CM
Z t�r

0
e�(t�r)(t� r)�gdr

 e�(t�sn)(t� sn)
�(g� 1

2 )kxnkH1
0 (0,p)

+CMG(1� g).

and we conclude that {S(t,sn)xn}n2N is bounded on X g and precompact in H1
0 (0,p).

Now, we want to show that we have a comparison of (4.1) with versions of a Chafee-
Infante problem. Our aim is to show the existence of nonempty positively invariant regions.
Consider the auxiliary initial boundary value problems

8
>>><

>>>:

zt = zxx +
l
m

z� b1
M z3, x 2 (0,p), t > 0

z(0, t) = z(p, t) = 0, t > 0,

z(·,0) = z0(·) 2 H1
0 (0,p),

(4.8)

and 8
>><

>>:

vt = vxx +
l
M v� b2

m v3, x 2 (0,p), t > 0

v(0, t) = v(p, t) = 0, t > 0,

v(·,0) = v0(·) 2 H1
0 (0,p).

(4.9)

Both problems are globally well-posed and define a semigroup, see Chapter 3. Denote
by {T1(t) : t > 0} the semigroup associated with (4.8) and by {T2(t) : t > 0} the semigroup
associated with (4.9). Now, denote by {U(t,s) : (t,s) 2P} the evolution process associated
with (4.2).

Recall that H1
0 (0,p) is a pre-ordered space by the relation: for u,v 2 H1

0 (0,p), u  v
if u(x)  v(x) a. e. in (0,p). Define the set C = {u 2 H1

0 (0,p) : u � 0}, which we call it the
positive cone of H1

0 (0,p).

Theorem 4.3.2. With the above notation, if u0 6 u1 6 u2 in H1
0 (0,p), then

T2(t� s)u0 6U(t,s)u1 6 T1(t� s)u2, 8(t,s) 2P. (4.10)

Proof. Observe that, given R > 0 there exists g(R)> 0 such that for t 2R, g 2R+ and 0 6 u 6 R,

06gu+
l
M

u� b2

m
u36gu+

lu�b (t)u3

a(n2)
6gu+

l
m

u�b1

M
u3 (4.11)

with gu+ lu
M �

b2
m u3 and gu+ lu

m �
b1
M u3 being increasing functions in the variable u in the interval

[�R,R].
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Now let us compare solutions of (4.2), (4.8) and (4.9). To that end, we define

g1(t,u)(x) =
lu(x)�b (s+

R t
s a(kux(·,q)k2)�1dq)u3(x)

a(kuxk2)

h1(t,u)(x) = f1(t,u)(x) =
l
m

u(x)� b1

M
u3(x)

f2(t,u)(x) =
lu(x)�b (s+

R t
s a(kux(·,q)k2)�1dq)u3(x)

a(kuxk2)

g2(t,u)(x) = h2(t,u)(x) =
l
M

u(x)� b2

m
u3(x)

(4.12)

Noticing that H1
0 (0,p) is embedded in L•(0,p) and using (4.11), Theorem 2.3.20, item

iii) can be applied twice to obtain the result of Theorem 4.3.2.

Lemma 4.3.3. The process {U(t,s) : t � s} is strongly pullback bounded dissipative.

Proof. Consider t 2 R and a bounded set B ⇢ H1
0 (0,p). We want to show that, for all t  t ,

lims!�• supx2B(S(t,s)x,B(t)) = 0. Even more, it can be proven that there exists a bounded set
of L•(0,p) that pullback absorbs bounded sets of {S(t,s) : t � s}.

By Theorem 4.3.2, it follows that {S(t,s) : t � s} is bounded from below and above for
the semigroups {T2(t) : t � 0} and {T1(t) : t � 0}, respectively. Then, for each u0 2 B, it follows
that

T2(t� s)u0 U(t,s)u0  T1(t� s)u0.

As s!�•, t� s!+•. Now, using that {Ti(t) : t � 0}, i = 1,2, admit a pullback absorbing
set, it follows that we can find a R > 0 (independent of B) such that, as s!�•,

kS(t,s)u0kL+•  R, for |s| sufficiently large.

This shows that {S(t,s) : t � s} is pullback bounded dissipative in L•(0,p). Finally, using
that k ·kH1

0 (0,p)
 pk ·kL• , it is clear that {S(t,s) : t � s} is also pullback bounded dissipative in

H1
0 (0,p).

4.4 Non-autonomous equilibria
We will use the comparison result of Theorem 4.3.2 to construct the non-autonomous

equilibria of (4.1).

Now, note that, by Theorem 3.1.1, if l > M, we can find a positive equilibrium f+
1,b1

of
(4.8) and a positive equilibrium f+

1,b2
of (4.9). Using Theorem 4.3.2 and the fact that {T1(t) : t >

0} is gradient, we have

f+
1,b2

= T2(t)f+
1,b2

6 T1(t)f+
1,b2

t!+•�! y,
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for some positive equilibrium y of (4.8). By the uniqueness of the positive equilibrium of (4.8),
we conclude that y = f+

1,b1
and, consequently, f+

1,b2
6 f+

1,b1
. Define the set

X+
1 =

n
u 2 H1

0 (0,p) : f+
1,b2

(x)6 u(x)6 f+
1,b1

(x), u(x) = u(p� x) in (0,p)
o
.

Recall that a “positive solution” is a global solution x such that x (t) 2 C for all t 2 R. If there
exists a f 2 C \{y 2C1(0,p) : y 0(0) ·y 0(p)< 0} and t0 2 R such that f 6 x (t) for all t 6 t0
(for all t > t0) then x will be called non-degenerate as t!�• (as t!+•).

Note that, a positive global solution x of {U(t,s) : t � s} which is non-degenerate as
t!±• is non-autonomous equilibrium (see Definition 2.3.21).

To construct a positive non-autonomous equilibrium, we will prove that X+
1 is positively

invariant, which means U(t,s)X+
1 ⇢ X+

1 , for all (t,s) 2P. Given u0 2 X+
1 , for x 2 (0,p) we

have
f+

1,b2
(x)6 T2(t� s)u0 6U(t,s)u0 6 T1(t� s)u0 6 f+

1,b1
(x),

where we used the comparison result of Theorem 4.3.2 and that Ti(t� s)f+
1,bi

= f+
1,bi

, for all
(t,s) 2P , i = 1,2.

Since u0(x) = u0(p� x) for x 2 (0,p), if u(t,s,u0)(x) :=U(t,s)u0(x), then both maps
(s,+•) 3 t 7! u(t,s,u0)(·) and (s,+•) 3 t 7! u(t,s,u0)(p� ·) 2 H1

0 (0,p) are solutions of (4.2)
with u(s,s,u0)(·) = u0(·) = u0(p� ·) = u(s,s,u0)(p� ·). By uniqueness of solutions, we con-
clude that u(t,s,u0)(x) = u(t,s,u0)(p� x), for all x 2 (0,p).

Theorem 4.4.1. Suppose l > M. Then the process {U(t,s) : (t,s) 2P} restricted to X+
1 admits

a pullback attractor. In particular, there exists a non-autonomous equilibrium in C .

Proof. The positive invariance follows from the reasoning that preceded the theorem. The fact
that {U(t,s) : (t,s) 2P} has a pullback attractor in H1

0 (0,p) ensures that it also has a pullback
attractor when restricted to X+

1 .

Now, any global solution in the pullback attractor of {U(t,s) : (t,s) 2P} restricted to
X+

1 is a non-autonomous equilibrium.

f+
1,b2

f+
1,b1

p0

Figure 3 – Representation of the set X+
1

Theorem 4.4.2. Consider l > MN2, for some N 2 N,. Then, for j = 1, . . . ,N, the process
{U(t,s) : (t,s) 2P} restricted to X+

j admits a pullback attractor.
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In particular, for each j = 1, . . . ,N, there exists a non-autonomous equilibrium x+
j that

has j+1 zeros in [0,p].

Proof. By the previous theorem, since l > M, it follows the existence of x+
1 . Now, we want to

construct positively invariant regions (far from zero a.e. in (0,p)).

From Theorem 3.1.1, there is an equilibrium f+
j,bi

with j+1 zeros in [0,p], 1 6 j 6 N,
for the semigroup {Ti(t) : t > 0}, i = 1,2.

Now, if 1 < j 6 N, we consider the set X+
j = Y+

j \Z j, where

Y+
j =

n
u 2 H1

0 (0,p) : min
⇣

f+
j,b1

(x),f+
j,b2

(x)
⌘
6 u(x)6 max

⇣
f+

j,b1
(x),f+

j,b2
(x)

⌘
,0 6 x 6 p

o

and

Z j =
n

u 2 H1
0 (0,p) : u(x) = u

⇣
p
j �x

⌘
,0<x< p

j , and u(x)=�u
⇣

x� p
j

⌘
, x > p

j

o
.

Let us prove that these sets are positively invariant.

We will start with j = 2.

f+
2,b2

p

f+
2,b1

p
20

Figure 4 – A representation of the region X+
2

Consider u0 2 X+
2 then we know u0 2 Z2 which means that u0(x) = �u0(p � x), for

x 2 [0,p]. And by the uniqueness of solution, we have u(t,s,u0)(x) =�u(t,s,u0)(p� x), for all
x 2 [0,p] and t > s. With this we proved that u 2 Z2. In particular, u(t,s,u0)(

p
2 ) = 0 for t > s.

Now we can use comparison restricted to the subintervals [0, p
2 ] and [p

2 ,p]:
8
<

:
0 6 T2(t� s)u0 6U(t,s)u0 6 T1(t,s)u0 in [0, p

2 ]

T1(t� s)u0 6U(t,s)u0 6 T2(t,s)u0 6 0 in [p
2 ,p].

Since f+
2,bi

is an equilibrium of {Ti(t) : t > 0}, i = 1,2 and 0 6 f+
2,b2

6 u0 6 f+
2,b1

in [0, p
2 ]

and f+
2,b1

6 u0 6 f+
2,b2

6 0 in [p
2 ,p], we can write

8
<

:
0 6 f+

2,b2
6U(t,s)u0 6 f+

2,b1
in [0, p

2 ]

f+
2,b1

6U(t,s)u0 6 f+
2,b2

6 0 in [p
2 ,p].



4.4. Non-autonomous equilibria 75

Therefore, X+
2 is positively invariant.

Before proving the case X+
3 , we will prove the positive invariance for X+

4 . Just observe
that if u0 2 X+

4 then u0(x) =�u0(p�x), for all x 2 (0,p) and, in particular, u(t,s, p
2 ) = 0. Now,

we can analyze the following problem
8
>>>><

>>>>:

ut = uxx +
lu�b (s+

R t
s

1
a(2|||ux|||2)

dq)u3

a(2|||ux|||2)
, x 2 (0, p

2 ), t > s

u(0, t) = u(p
2 , t) = 0, t > s

u(·,s) = u0(·) 2 H1
0 (0,

p
2 )

(4.13)

where |||ux|||2 =
R p

2
0 u2

x(s)ds. Moreover, using the uniqueness of solution for (4.13), we conclude
that

u(t,s,u0)(x) =�u(t,s,u0)(
p
2 � x), for x 2 [0, p

2 ]

and
u(t,s,u0)(x) =�u(t,s,u0)(p� x) for x 2 [0,p].

In particular, u(t,s,u0,
p
4 ) = 0 for all t > s and u(t,s,u0,

3p
4 ) =�u(t,s,u0,

p
4 ) = 0.

With this, we can prove that u lies in Z4. Now, we can use comparison to prove that X+
4

is positively invariant.

To prove the invariance of X+
3 , we define the following set

W+
4 =

�
u0 2 H1

0
�
0, 4p

3
�

: u0(x) =�u0
�4p

3 � x
�

in
⇥
0, 4p

3
⇤

and u0 |[0,p]2 X+
3
 

and consider the problem (4.2) in the interval
⇥
0, 4p

3
⇤

and with a(·) = a(3
4 ·).

We have that u(t,s,u0,
2p
3 ) = 0 and we can use the same idea as in X+

4 to prove that
u(t,s,u0,

p
3 ) = 0. The comparison in [0,p] follows similarly to the previous cases.

Therefore X+
3 is invariant under the action of {U(t,s) : t > s}, since it is a restriction of

W+
4 to the interval [0,p].

For the other cases, u0 2 X+
j , just observe that the invariance of Z j can be obtained

using the reasoning applied in the previous cases and then we conclude that u(t,s,u0)(
kp
j ) = 0,

k = 0, . . . , j, for all t � s.

Now, for all (t,s) 2P , we have the following comparison:

0 6 (T2(t� s)u0)(x)6 (U(t,s)u0)(x)6 (T1(t� s)u0)(x), x 2 [0, p
j ]

and (U(t,s)u0)(x)=�(U(t,s)u0)(x� p
j ) and (Ti(t � s)u0)(x)=�(Ti(t � s)u0)(x� p

j ), x > p
j ,

i = 1,2.

With this, we conclude that U(t,s)u0 2 X+
j for all (t,s) 2P . Therefore, X+

j is positively
invariant under the action of {U(t,s) : (t,s) 2P}.
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Remark 4.4.3. Note that if l > 2N2M, for each 1 6 j 6 N, there exists an equilibrium f�j,bi
of

{Ti(t) : t > 0}, i = 1,2, with j+ 1 zeros in [0,p]. Then, we can define the set X�j = Y�j \Z j,

where

Y�j =
n

u 2 H1
0 (0,p) : min

⇣
f�j,b1

(x),f�j,b2
(x)

⌘
6 u(x)6 max

⇣
f�j,b1

(x),f�j,b2
(x)

⌘o
.

We can also prove that U(t,s)X�j ⇢ X�j , for all (t,s) 2P.

Observe that the whole construction was carried out for solutions of (4.2). Recall that
the change of variables only affects t, hence we have also constructed a set of bounded non-
autonomous equilibria of (4.1). We can summarize the result in the following

Theorem 4.4.4. Suppose that l > 2N2M, for 0 < N 2 N. The problem (4.1) has at least 2N
non-autonomous equilibria.

4.5 Some remarks and open problems for further investi-
gations

In this chapter, we have treated the quasilinear parabolic problem (4.1). We would like to
mention that there is a developed theory of quasilinear problems (see for instance (LUNARDI,
1995)). In our case, it can be shown that we need to ask more assumptions on a(·) to apply the
usual quasilinear theory.

Semilinear problems are very well-known and then we were able to provide the results
on existence of global solutions and the pullback attractor for the semilinear problem (4.2),
which are transferable to (4.1). Although the relation between (4.1) and (4.2) is dependent of
any solution (not a uniform change of variable), we do not have loss or gain of information since
a(·) is bounded above and below for positive constants.

Now, if a(·)⌘ 1, (4.1) is in fact (3.11) and we are able to obtain a very sharp comparison
result. That means, we are able to determine the parameters for which bifurcations of the
non-autonomous equilibria happen at 0.

The comparison result we have obtained for (4.1) can be improved. For instance, we have
compared (4.1) with Chafee-Infante problems. For that reason, we were not able to determine
the parameters of bifurcation at 0. We have only provided values for those we can guarantee the
existence of the non-autonomous equilibria. Although it is yet to be proved, we would guess that
the bifurcation at zero happens for the parameters a(0)N2, for N 2 N.

Another difference between the results of (4.1) and (3.11) relies on the fact that we are
not able to determine the exact number of non-autonomous equilibria. To be more precise, if
l 2 (MN2,M(N +1)2), for N 2 N, there are at least 2N non-autonomous equilibria for (4.1).
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CHAPTER

5

THE AUTONOMOUS NONLOCAL
PARABOLIC PROBLEM

In this chapter, we will explore an autonomous nonlocal quasilinear problem. First, we
will show that the problem admits a sequence of bifurcations from zero under suitable conditions.
We will also show results on stability and hyperbolicity of the equilibria. Later, we will apply
topological techniques to show the connection between equilibria inside the attractor. This
chapter is a summarized collection of results, made with collaborators in the works (LI et al.,
2020; CARVALHO; MOREIRA, 2021; MOREIRA; VALERO, 2022b; ARRIETA et al., 2022).

Consider now the autonomous non-local problem
8
>><

>>:

ut = a(kuxk2)uxx +l f (u), x 2 (0,p), t > 0,

u(0, t) = u(p, t) = 0, t > 0,

u(0) = u0 2 H1
0 (0,p).

(5.1)

with f satisfying (3.2). We will assume that a 2C1(R+), with a(R+)⇢ [m,M] for 0 < m < M.
We will see that (5.1) is globally well-posed. We will show that this problem admits generates a
gradient semigroup with a Lyapunov function V : H1

0 (0,p)! R given by

V (u) =
1
2

Z kuxk2

0
a(s)ds�

Z p

0
lF(u(x))dx, (5.2)

where F(s) =
R s

0 f (r)dr.

The problem (5.1) was based on the Chafee-Infante problem (see Chapter 3). One can
be mislead to think the additional nonlocal term would not affect much the dynamics of the
problem, since the function a has a positive lower and upper bound. In this chapter, we will show
that, in fact, surprising and unexpected behavior may happen according to our choice of a.

With the additional assumption of a being increasing, we will show that (5.1) and (3.1)
have similar dynamics, in terms of the number of equilibria and their connections.
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5.1 Existence of the attractor
First we will show the following

Proposition 5.1.1. The map V : H1
0 (0,p)!R given by V (u) = 1

2
R kuxk2

0 a(s)ds�
R p

0 lF(u(x))dx,
for u 2 H1

0 (0,p), is a Lyapunov function for (5.1).

Proof. First, it is clear that V is continuous, since it is defined in terms of continuous functions.
Consider u,h 2 H1

0 (0,p). We have

V (u+h)�V (u)
khxk

=
Z kux+hxk2�kuxk2

0
a(s)ds�

Z p

0
l [F(u(x)+h(x))�F(u(x))]dx


Z khxk(khxk+2kuxk)

0
a(s)ds+

Z p

0
l [ f (u(x)+q(x)h(x))u(x)]dx,

for q(x) 2 (0,1), x 2 [0,p] where we have used the Hölder’s inequality and the Mean Value
Theorem. As khxk! 0+, we can see that V (u+h)�V (h)! 0. Thus, V is continuous.

Suppose that u : [0,T )! H1
0 (0,p), T > 0 is a solution of (5.1). We want to show that V

is decreasing along solutions u(t) as t increases. To see that, we will calculate V̇ (u).

V̇ (u) =
a(kuxk2)

2
d
dt
kuxk2�

Z p

0
l f (u(x))ut(x)dx

=�a(kuxk2)
Z p

0
uxx(s)ut(s)ds�

Z p

0
l f (u(x))ut(x)dx

=�
Z p

0
[a(kuxk2)uxx +l f (u)]utdx =�kutk2  0.

Thus, V is decreasing along solutions of (5.1). Now, if V is constant on the solution u, we have
0 = V̇ (u) = �kutk2, for all t 2 R+. Consequently, ut = 0, for all t � 0, and u 2 E (the set of
equilibria of (5.1)).

Therefore, V is a Lyapunov function for (5.1).

The existence of the semigroup follows by using the same arguments applied to the
non-autonomous case in Chapter 4. That is, we consider the semilinear problem

8
>>>><

>>>>:

ut = uxx +
l f (u)

a(kuxk2)
, t > 0,

u(t,0) = u(t,p) = 0, t � 0,

u(·) = u0 2 H1
0 (0,p)

(5.3)

with a and f with the same conditions required by (5.1). We show the global well-posedness of
this problem together with the continuity related to the initial data for the problem above. We use
this information to prove the same properties for (5.1). In particular, we have that both problems
share the same equilibria and, moreover, the global attractor.
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In (CABALLERO et al., 2021), the authors have explored the problem (5.1) for f 2C(R).
They applied Galerkin approximations in order to do so. In that case, the problem generates a
multivalued semiflow. Additionally, they have shown the existence of the attractor and answered
some questions about its structure.

Theorem 5.1.2. There is a semigroup associated to (5.1) that admits a global attractor A .

Proof. Here, we will apply an argument to show the existence of a global solution by using its
Lyapunov function, which is given by (5.2). The existence of a local solution can be made using
the same arguments applied to (4.1) in Chapter 5.

Recall that, for each e > 0, there is a constant Me > 0 such that f (r)r  er2+Me , for all
r2R. It also can be shown that, for each e > 0, there is a Ne > 0 such that F(r) er2+Ne , r2R.

Consequently, for each solution of (5.1), we have

kuxk2  2
m

V (u)+
2l
m

Z p

0
F(u)ds 2

m
V (u)+

2l
m

Z p

0
(eu2(s)+Ne)ds

 2
m

V (u)+
2le
m
kuk2 +

2Nep
m

.

Hence, using Poincare’s inequality and that V is a Lyapunov function, we can choose e > 0
sufficiently small such that, for t � 0, as long as exists, the solution satisfies

kux(t)k2  4
m
[V (u(0))+Nep].

Therefore, the solution must exist for all t � 0.

The continuity with respect to initial data also follows analogously to the result for
(4.1). Moreover, the existence of a global attractor follows as consequence of the existence of a
pullback attractor for (4.1). In fact, we can take b (·)⌘ constant in (4.1) and the results follow
for f (u) = lu�bu3, b > 0, as well for f satisfying our conditions.

5.2 Equilibria of the autonomous problem
In this section we construct the equilibria for (5.1). In order to do that, we will construct

auxiliary functions. The construction we present here was developed with collaborators in
(ARRIETA et al., 2022).

Let us now define an auxiliary function which will allow us to see the equilibria of (3.1)
as equilibria of a nonlocal problem.

Let i 2 {+,�} and j 2 N. For l > j2, denote by f i
j,l the solution of

(
uxx +l f (u) = 0

u(0) = u(p) = 0,
(5.4)
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that has j+1 zeros in [0,p] and with i
⇣

f i
j,l

⌘0
(0)> 0. As we have seen in Theorem 3.1.5, for

each positive integer j and i 2 {+,�}, the function ( j2,•) 3 l 7! f i
j,l 2 H1

0 (0,p) is contin-
uously differentiable and ( j2,•) 3 l 7!

R p
0 ((f i

j,l )x(s))2ds 2 (0,•) is strictly increasing and
continuously differentiable, with k(f i

j,l )xk!+• as l !+•.

Definition 5.2.1. For each positive integer j and i 2 {+,�} and r � 0, let l i
j,r 2 [ j2,•) be

the unique l such that
R p

0 ((f i
j,l)x)2 = r. Let ci

j : [0,•)! [ 1
j2 ,•) be the function defined by

ci
j(r) =

1
l i

j,r
, for each r � 0.

It is easy to see that ci
j(·) is strictly decreasing and continuously differentiable with

limr!0 ci
j(r) =

1
j2 .

Now, consider the following ‘nonlocal’ problem
(

ci
j(kuxk2)uxx + f (u) = 0

u(0) = u(p) = 0.
(5.5)

We have the following result:

Lemma 5.2.2. Let i 2 {+,�} and j 2 N. The family {f i
j,l : l 2 [ j2,+•)} is a set of solutions

of (5.5).

Proof. This follows by definition of ci
j. In fact, for each l 2 [ j2,+•), we have ci

j(k(f i
j,l )xk2) =

1
l and ci

j(k(f i
j,l )xk2)(f i

j,l )xx + f ((f i
j,l )x) = 0.

Let us study the sequence of bifurcation for the nonlocal problem (5.1). In order to do
that, consider, for any r 2 [0,+•), the problem

8
>><

>>:

ut = a(r)uxx +l f (u), x 2 (0,p), t > 0,

u(0, t) = u(p, t) = 0, t � 0,

u(·,0) = u0(·) 2 H1
0 (0,p).

(5.6)

Now, we present the result of the existence of equilibria for (5.1).

Theorem 5.2.3. For each positive integer j and i2 {+,�}, consider ci
j(·) the map defined above.

For n > 0 and r > 0, (5.1) with l = n has an equilibrium y , with j+ 1 zeros in the interval
[0,p] such that i(y)x(0)> 0 and kyxk2 = r if and only if nci

j(r) = a(r).

Proof. If y is an equilibrium of (5.1), with j+1 zeros in the interval [0,p] such that iyx(0)> 0
and kyxk2 = r, then y = f i

j,l i
j,r

and nci
j(r) = a(r). On the other hand, since f i

j,l i
j,r

is a solution

of (5.5) with k(f i
j,l i

j,r
)xk2 = r and since nci

j(r) = a(r), y = f i
j,l i

j,r
is an equilibrium of (5.1).
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Now, suppose that nci
j(r) = a(r). Since ci

j is strictly decreasing and ci
j(0) =

1
j2 , we have

that n
a(r) > j2. Consequently, there exists an equilibrium f of (5.6), for l = n , with if 0(0)> 0

and that has j+1 zeros in [0,p]. In other words, f satisfies

(
a(r)fxx +n f (f) = 0

f(0) = f(p) = 0.

Hence, if ci
j(r) =

1
lr

, applying the hypothesis, we conclude that

fxx +lr f (f) = 0,

which by the definition of ci
j implies f = f i

j,lr
and kfxk2 = r. Therefore, f is an equilibrium of

(5.1).

Corollary 5.2.4. For each positive integer k and i 2 {+,�}, if n > k2a(0) there are at least
2k+1 equilibria of the non-local problem (5.1), with l = n .

Moreover, for l 2 (a(0)k2,a(0)(k+1)2], k 2 N, if a is non-decreasing, then (5.1) has
exactly 2k+1 equilibria.

Proof. That is an immediate consequence of the fact that the functions ci
j : [0,•)! [ 1

j2 ,•) are

continuous, nci
j(0) =

n
j2 > a(0), c j(r)

r!•�! 0, 1 j  k, and a : [0,•)! [m,M] is continuous.

In particular, if a is non-decreasing we have exactly 2k+1 equilibria of (5.1).

Remark 5.2.5. One can make different approaches to construct the equilibria of (5.1). For
instance, in (LI et al., 2020) the authors construct a positive (and negative) equilibrium by using
variational methods. The other equilibria are constructed using the symmetries of the problem,
assuming that a is increasing and f odd. In (CABALLERO et al., 2021), the authors construct
the equilibria for f not necessarily odd. In (CARVALHO; MOREIRA, 2021), the authors proved
the following result:

Theorem 5.2.6. Assume that a is increasing and that f is odd. If a(0)N2 < n  a(0)(N +1)2,

then there are 2N + 1 equilibria of the equation (5.3); {0}[
n

f±
j : j = 1, . . . ,N

o
, where f+

j

and f�j have j+1 zeros in [0,p] and f�j (x) =�f+
j (x) for all x 2 [0,p] and f+

j (x)> 0 for all
x 2 (0, p

j ). The sequence of bifurcation given above satisfies:

Stability: If n  a(0), 0 is the only equilibrium of (3.1) and it is stable. If n > a(0),
the positive equilibrium f+

1 and the negative equilibrium f�1 are stable and any other
equilibrium is unstable.

Hyperbolicity: For all n > 0, the equilibria are hyperbolic with the exception of 0 in the
cases n = a(0)N2, for N 2 N⇤.
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The proof of the above theorem in (CARVALHO; MOREIRA, 2021) strongly uses the
symmetries of the problems. Such proof is long and it is very interesting how the symmetries
were used. Although we think such proof is worth seeing, here we will present a more general
and simple proof of the hyperbolicity of equilibria of (5.1).

5.3 Hyperbolicity of the equilibria of (5.3)

As we have mentioned before, problems (5.1) and (5.3) have exactly the same equilibria.
As in (CARVALHO; MOREIRA, 2021), the spectral analysis of the self-adjoint operator associ-
ated to the linearization of (5.3) around an equilibria y will determine its stability and if it is
hyperbolic.

Proposition 5.3.1. The linearization of (5.3) around an equilibrium y is given by the equation

vt = Lv

where D(L) = H2(0,p)\H1
0 (0,p) and

Lv = v00+
n f 0(y)

a(kyxk2)
v� 2n2a0(kyxk2)

a(kyxk2)3 f (y)
Z p

0
f (y)v, v 2 D(L). (5.7)

Proof. Consider h 2 H2(0,p)\H1
0 (0,p). Then, we have the following

(f +h)00+n f (f +h)
a(k(f +h)0k2)

�f 00 �n f (f)
a(kf 0k2)

= h00+n f (f +h)� f (f)
a(k(f +h)0k2)

+n f (f)
✓

a(kf 0k2)�a(k(f +h)0k2)

a(k(f +h)0k2)a(k(f 0k2)

◆

= Lh+ r1(h)+ r2(h)+ r3(h)

where

r1(h) = n f (f +h)� f (f)� f 0(f)h
a(k(f +h)0k2)

+n f 0(f)h
✓

1
a(k(f +h)0k2)

� 1
a(kf 0k2)

◆

and

r2(h) =
n f (f)

a(k(f +h)0k2)a(kf 0k2)

�
a(k(f 0k2)�a(k(f +h)0k2)+2a0(f)hfx,hxi

�

and

r3(h) =�
2na0(f)

a(k(f +h)0k2)a(kf 0k2)
hfx,hxi f (f)+ 2n2a0(kfxk2)

a(kfxk2)3 f (f)h f (f),ui .

Now, for Cf = sup{ f 0(f(x)) : x 2 [0,p]}, we have

kr1(h)k 
n
m
k f (f +h)� f (f)� f 0(f)hk+

Cf n
p

p|a(kf 0k2)�a(k(f +h)0k2)|
m2 khk.
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Now, for Df = sup{ f (f(x)) : x 2 [0,p]},

kr2(h)k 
nDf
m2 ka(k(f

0k2)�a(k(f +h)0k2)�2a0(f)hfx,hxik

Finally, using integration by parts and the fact that f is a solution of (5.1), we have

kr3(h)k=
����

2n2a0(f) f (f)h f (f),hi
a(kfxk2)2


1

a(kfxk2)
� 1

a(kfx +hxk2)

�����


2n2a0(f)Df |a(kfx +hxk2)�a(kfxk2)|

m3 khk.

By the limitations above, it is clear that

lim
khkX1!0+

k(f +h)00+ n
a(k(f+h)0k2)

f (f +h)�f 00 � n
a(kf 0k2)

f (f)�Lhk
khkX1

= 0.

Given an equilibrium y 6= 0 of (5.3), a positive integer k and a symbol i 2 {+,�}
such that, y vanishes k + 1 times in the interval [0,p] and iyx(0) > 0. Let r = kyxk2 and
choose l i

k,r = (ci
k(r))

�1. Then y = f i
k,l i

k,r
where f i

k,l i
k,r

is the solution of (5.4) with l = l i
k,r. For

simplicity of notation we will write c(·) instead of ci
k(·), lr instead of l i

k,r and flr instead of
f i

k,l i
k,r

for the remainder of this section.

Remark 5.3.2. Observe that, for each r 2 R+, we find lr 2 [ j2,+•) such that

(1.) r = k[flr ]xk
2;

(2.) [flr ]xx +
f (flr )
c(r) = 0.

Let y(r) = flr , r 2 R+. Differentiating (2.) with respect to r, and representing dy(r)
dr =

ẏ(r), we find

ẏxx(r)+
f 0(y(r))ẏ(r)

c(k(y(r))xk2)
� f (y(r))c0(k(y(r))xk2)

[c(k(y(r))xk2)]2
d
dr
k(y(r))xk2 = 0.

Denote (y(r))x = yx(r). Now, since

d
dr
kyx(r)k2 = 2hyx(r),(ẏ(r))xi=�2h(y(r))xx, ẏ(r)i= 2

c(kyx(r)k2)
h f (y(r)), ẏ(r)i ,

we may write

ẏxx(r)+
f 0(y(r))ẏ(r)
c(kyx(r)k2)

� f (y(r))c0(kyx(r)k2)

c(kyx(r)k2)2 � 2c0(kyx(r)k2) f (y(r))h f (y(r)), ẏ(r)i
c(kyx(r)k2)3 =0.

Now, consider Lc : D(Lc)⇢ L2(0,p)! L2(0,p) where D(Lc) = H2(0,p)\H1
0 (0,p) and

Lcv = v00+
l f 0(y(r))

c(k(y(r))xk2)
v� 2lc0(k(y(r))xk2)

c(k(y(r))xk2)3 f (y(r))
Z p

0
f (y(r))v, v 2 D(Lc).

Since ẏ(r) 2 H2(0,p)\H1
0 (0,p) and Lcẏ(r) = 0, it follows that 0 2 s(Lc).
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Theorem 5.3.3. Consider y an equilibrium of (5.3), for l = n , that has k+1 zeros in [0,p] and
with i(y)0(0)> 0, for some k 2 N and i 2 {+,�}. The equilibrium y of (5.3) is not hyperbolic
if, and only if, a0(kyxk2) = n(ci

k)
0(kyxk2).

Proof. Just for simplicity, denote ci
k(·) by c(·) and f i

k,lr
by flr

(() Suppose initially that a0(kyxk2) = nc0(kyxk2). Let r = kyxk2. In the notation above,
we have that y = f i

k,lr
.

Recall that, as we have seen it above, w = d
dr flr satisfies

wxx +
f 0(flr)

c(r)
w� 2c0(r)

c(r)3 f (flr)
Z p

0
f 0(flr)w = 0.

From Theorem 5.2.3, a(r) = nc(r). Since, kyxk2 = r, y = flr and a0(r) = nc0(r) we
have

wxx +
n f 0(y)

a(kyxk2)
w� 2n2a0(kyxk2)

a(kyxk2)3 f (y)
Z p

0
f 0(y)w = 0.

Therefore, 0 is an eigenvalue of L, which implies that y is not a hyperbolic equilibrium.

()) Assume that we find a 0 6= u 2 H2(0,p)\H1
0 (0,p) satisfying

uxx +
n f 0(y)u
a(kyxk2)

u� 2n2aa0(kyxk2)

a(kyxk2)3 f (y) = 0

for a =
Z p

0
f (y(s))u(s)ds. Now, since a(r) = nc(r) and flr = y , v = d

dr flr satisfies

vxx +
n f 0(y)

a(kyxk2)
v� 2n3bc0(kyxk2)

a(kyxk2)3 f (y) = 0,

for b =
Z p

0
f (y(s))v(s)ds.

Consequently, z = bnc0(r)u�aa0(r)v is the solution of
8
><

>:

zxx +
n f 0(flr)

a(kflrk2)
z = 0

z(0) = z(p) = 0.
(5.8)

It follows from Lemma 3.1.3 that z⌘ 0. Thus bnc0(r)u�aa0(r)ḟ = 0 and, by multiplying both
sides of equality by f (f) and integrating from 0 to p , we find

abnc0(r) = aba0(r).

Clearly, ab 6= 0. Otherwise, either u or v should be a solution of (5.8), that is, either
u = 0 or v = 0, which would be a contradiction.

Therefore, we conclude that a0(r) = nc0(r).
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Now we analyze what happens to the dimension of the unstable manifolds for the
equilibria of (5.3) as they bifurcate. This requires a deeper study of the spectrum of (5.7).

For e 2 R, define the operator Le : H2(0,p)\H1
0 (0,p)⇢ L2(0,p)! L2(0,p)

Leu(x) = u00+ p(x)u+ eq(x)
Z p

0
q(s)u(s)ds.

where p,q : [0,p]! R are continuous functions with q 6⌘ 0.

When e = 0, the operator L0u = u00+ p(x)u is a Sturm-Liouville operator. Hence, L0 is a
self-adjoint operator with compact resolvent and its spectrum consists of a decreasing sequence
of simple eigenvalues

s(L0) = {g j : j = 1,2,3 · · ·}

with, g j > g j+1 and g j �!�• as j!+•.

Note that, for all e 2 R, we can decompose Le as sum of two operators

Leu = L0u+ eBu

where Bu = q(x)
Z p

0
q(s)u(s)ds, for all u 2 H2(0,p)\H1

0 (0,p), is a bounded operator with
rank one. It is easy to see that Le is also self-adjoint with compact resolvent. Then, we write
{µ j(e) : j = 1,2,3, · · ·} to represent the eigenvalues of Le , ordered in such a way that, for
j = 1,2,3, · · · , the function R 3 e 7! µ j(e) 2 R satisfies µ j(0) = g j.

There are several works exploring spectral properties of operators such as Le (see, for
example, (FREITAS, 1994; CATCHPOLE, 1974; DAVIDSON; DODDS, 2006; DODDS, 2008)).
We will use, in an essential way, Theorems 3.4 and 4.5 of (DAVIDSON; DODDS, 2006), which
will be summarized in our next theorem.

Theorem 5.3.4. For e 2R, let Le and {µ j(e) : j = 1,2,3, · · ·} be as above. The following holds:

i) For all j = 1,2,3, · · · , the function R 3 e 7! µ j(e) 2 R is non-decreasing.

ii) If for some j = 1,2,3 · · · and e 2 R, µ j(e) /2 {gk : k = 1,2,3, · · ·}, then µ j(e) is a simple
eigenvalue of Le .

We wish to determine the Morse Index of the equilibria of (5.3) by looking carefully
to the points where the graphs of the functions a(·) and nc(·) intercept. That is, depending on
how these curves intersect we will be able to determine the Morse Index of an equilibrium. For
k 2 N, i 2 {+,�}, the intersection of the graphs of a(·) and nci

k(·) necessarily gives rise to an
equilibrium that changes sign k+1 times in [0,p] for (5.3). Hence, if that intersection happens
at a value of r which is not zero and prior to an intersection at r = 0. This would give rise to
saddle-node bifurcations.

This is the main result of this section:
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Theorem 5.3.5. Suppose that y is an equilibrium of (5.3), y 6= 0. Let k 2 N, i 2 {+,�},
r = kyxk2 and lr be such that y = f i

k,lr
. Denote ci

k(·) by c(·).

We have the following:

(i) If a0(kyxk2)> nc0(kyxk2), then y is hyperbolic and its Morse index is k�1.

(ii) If a0(kyxk2)< nc0(kyxk2), then y is hyperbolic and its Morse index is k.

Proof. The hyperbolicity follows from Theorem 5.3.3. Define the operator

Lev = v00+
n f 0(y)

a(ky 0k2)
v+ e f (y)

Z p

0
f (y)v, (5.9)

v 2 D(Le) = H2(0,p)\H1
0 (0,p), for each e > 0.

Note that, L0 is the linearization of (3.1) at y for the parameter n0 = n
a(kyxk2)

. The
spectrum of L0 is given by an unbounded ordered sequence {l j(0)} j2N of simple eigenvalues,
that is,

l1(0)> l2(0)> · · ·> lk�1(0)> lk(0)> lk+1(0)> .. .

Also, for ẽ =�2c0(kyxk2)
c(kyxk2)3 =�2n3c0(kyxk2)

a(kyxk2)3 , we have 0 2 s(Lẽ). Using the same reasoning
applied in the proof of the first part of Theorem 5.3.3, we can show that if 0 2 s(Le), then e = ẽ .
By Theorem 5.3.4, part ii), 0 is a simple eigenvalue of Lẽ .

Using Theorem 5.3.4, part i), we deduce that l j(e)> 0, j = 1, · · · ,k�1, for all e � 0.
Since 0 2 s(Le) if and only if e = ẽ > 0, we must have l j(e)> 0, j = 1, · · · ,k�1, for all e < 0.

By definition, lk(0)> l j(0), for all j > k. Since lk(·) is increasing and L0 does not have
an eigenvalue in the interval (lk(0),0], we must have lk(ẽ) = 0. Otherwise, l j(e) = lk(e) 2
(lk(0),0] for some j > k and e 2 (0, ẽ] which is not possible by Theorem 5.3.4, part ii). Since
0 /2 s(L0), l j(e)< 0 for all e 2 R and j > k.

As consequence of this, the number of positive eigenvalues of Le is k�1 if e < ẽ and k
if e > ẽ (see Figure 5).

Let e0 =�2n2a0(kyxk2)
a(kyxk2)3 . Then, if a0(kyxk2)> nc0(kyxk2), we have that e0 < ẽ and Le0 has

exactly k�1 positive eigenvalues and 0 /2 s(Le0). On the other hand, if a0(kyxk2)< c0(kyxk2),
we have that e0 > ẽ and Le0 has exactly k positive eigenvalues and 0 /2 s(Le0).

Therefore, for all e 2 R+, the number of elements of R+\s(Le) is at least k�1.

Remark 5.3.6. The spectrum analysis is simpler when y = 0. In fact, the linearization of (5.3)
at 0 is given by L0 : D(L0)⇢ L2(0,p)! L2(0,p), where D(L0) = H2(0,p)\H1

0 (0,p) and

L0u = uxx +
l

a(0)
u, u 2 D(L0).
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Figure 5 – Spectrum of Le

Above, we have used that f (0) = 0 and f 0(0) = 1. It is clear that s(L0) = {� j2 + l
a(0) : j 2 N}.

Hence, if l 2 (a(0)N2,a(0)(N +1)2), N 2 N, the equilibrium 0 is hyperbolic and

s(L0)\R+ =

⇢
� j2 +

l
a(0)

: j = 1, . . . ,N
�
.

Therefore, the Morse index of 0 is N.

Remark 5.3.7. Observe that the value a0(0) does not affect the hyperbolicity of 0. But it is
relevant to determine what kind of the bifurcation happens at 0. We will see about this in Section
5.5.

Corollary 5.3.8. Consider (5.3) with the additional assumption of a being nondecreasing. Then
all equilibria are hyperbolic. Moreover, if f is an equilibrium with k+1 zeros in [0,p], for some
k 2 N, we have that its Morse index is i(f) = k�1.

Proof. Since a is nondecreasing, a0(kfxk2)� 0 > c0(kfxk2), which, by Theorem 5.3.5, implies
that f is hyperbolic and its Morse index coincides with the number of zeros of f in (0,p).

5.4 Hyperbolicity of equilibria of the nonlocal quasilinear
problem (5.1)

The traditional theory of hyperbolicity for quasilinear problems, as presented in (LU-
NARDI, 1995), cannot be applied to (5.1). We are dealing with a quasilinear equation, which
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does not allow any approximation by a linear map as in Theorems 2.3.23 and 2.3.24. This
inspired us to develop a concept of hyperbolicity that is based on the geometry properties of an
hyperbolic equilibrium.

Definition 5.4.1 (Topological Hyperbolicity). We say that f is topologically hyperbolic if {f}
is an isolated invariant set. In other words, there exists a d > 0 for which any global solution
x : R! H1

0 (0,p), with supt2R kx (t)�fkH1
0 (0,p)

< d , satisfies x (t) = f , for all t 2 R.

As a consequence of that (see, (BORTOLAN; CARVALHO; LANGA, 2020)), any
solution h± : J±! H1

0 (0,p) of (5.1), with J+ = [t0,+•) or J� = (�•, t0], such that kh±(t)�
fkH1

0 (0,p)
< d for all t 2 J±, satisfies h±(t) t!±•�! f .

Definition 5.4.2 (Local Stable W s
loc(f) and Unstable Sets W u

loc(f)). Given a d�neighborhood
Od (f) = {u 2 H1

0 (0,p) : ku� fkH1
0 (0,p)

< d} of f , d > 0, the associated local stable and
unstable sets of f , respectively, are

W s,d
loc (f) = {u 2 H1

0 (0,p) : T (t)u 2 Od , for all t � 0, and T (t)u t!+•�! f},

W u,d
loc (f) = {u 2 H1

0 (0,p) : there exists a global solution x of {T (t) : t � 0} with x (0) = u,

x (t) 2 Od , for all t  0, and x (t) t!�•�! f}.

When f is topologically hyperbolic and W u,d
loc (f) = {f}, we say that f is asymptotically

stable. Otherwise, it is said to be unstable.

Definition 5.4.3 (Strict Hyperbolicity). We say that f is hyperbolic if there are closed subspaces
Xu and Xs of H1

0 (0,p) with H1
0 (0,p) = Xu�Xs such that

• {f} topologically hyperbolic.

• The local stable and unstable sets are given as graphs of Lipschitz functions qu : Xu! Xs

and qs : Xs! Xu, with Lipschitz constants Ls, Lu in (0,1), qu(0) = qs(0) = 0 and there
exists d0 > 0 such that, given 0 < d < d0, there are 0 < d 00 < d 0 < d with

{f+xu +qu(xu) :xu2Xu, kxukH1
0 (0,p)

<d 00}⇢W u,d 0
loc (f)

⇢{f+xu +qu(xu) :xu2Xu,kxukH1
0 (0,p)

<d}

{f+qs(xs)+ xs :xs 2 Xs, kxskH1
0 (0,p)

<d 00}⇢W s,d 0
loc (f)

⇢{f+qs(xs)+ xs :xs2Xs,kxskH1
0 (0,p)

<d}.

Theorem 5.4.4. An equilibrium f of (5.1) is hyperbolic in the sense of Definition 5.4.3 if f is
hyperbolic for (5.3)

Proof. Suppose that f is hyperbolic in the sense of (5.3). Consider Lcf as in (5.9) for cf =
�2l 2a0(kfxk2)

a(kfxk2)3 . Then, by Remark 2.3.11, there exist a projection P 2 L(X) and constants M � 1
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and g > 0 such that
kLcf (I�P)kL(X) Me�gt , for t � 0,

kLcf (I�P)kL(X) Megt , for t < 0.

Denote by W u,d
loc (f) the local unstable set of f of (5.3). Thus, we can apply Theorem

2.3.30 and we find such d0 > 0, such that for each d 2 (0,d0), there is a function q s : (I�
P)H1

0 (0,p)! PH1
0 (0,p) and 0 < d 00 < d 0 < d such that

{f + x+q s(x) : x 2 (I�P)H1
0 (0,p), kxkH1

0 (0,p)
< d 00}⇢W s,d 0

loc (f)

⇢ {f + x+q s(x) : x 2 (I�P)H1
0 (0,p) : kxkH1

0 (0,p)
< d}.

Denote by W̃ s,d
loc (f) the local stable set of f given by (5.1). We can also see that W̃ s,d

loc (f)=
W s,d

loc (f).

Therefore, the result follows.

Corollary 5.4.5. Consider (5.1) with the additional assumption of a being non-decreasing. Then
all equilibria of (5.3) are hyperbolic, with the exception of 0 when l = a(0)n2, n 2 N.

The proof of the Corollary above is made in (CARVALHO; MOREIRA, 2021), with
the additional assumption of f being odd. In section 5.6, we will see that we can drop such
assumption and the claim remains valid.

In the next section, we will make an analysis based on the graphs for which we can study
the bifurcation and hyperbolicity of equilibria.

5.5 Bifurcation of equilibria for a few examples
As we have seen in the previous Sections, for the hyperbolicity of equilibria of (5.3), and

consequently of (5.1), it is important to know the value of the derivative of a in the H1�norm in
that point.

There is one exception, when the equilibrium is 0, for which the hyperbolicity is deter-
mined only by the value of the parameter l > 0. But we will see that in fact, understanding the
value of a0(0) may help us to understand the local bifurcation at 0.

Proposition 5.5.1. Consider j 2 N, i 2 {+,�} and n0 = a(0) j2. We have the following:

(i) If a0(0)> n0(ci
j)
0(0), then we have a supercritical bifurcation at 0 for equilibrium of type

f i
j. That is, an equilibrium bifurcates at 0 as n > n0 increases.

(ii) If a0(0)< n0(ci
j)
0(0), then an equilibrium of type f i

j collapses at 0 as n < n0 increases.
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Proof. We will prove item (i) and the item (ii) will follow analogously.

(i) Since a(0) = n0ci
j(0) and a0(0) > n0(ci

j)
0(0) there is a R > 0 such that a(r) > n0(ci

j)(r)
and a0(r)> n0(ci

j)
0(r), for r 2 (0,R]. For simplicity, denote ci

j(·) by c(·).

It is clear that for n 2 (0,n0), a(r) � n0(ci
j)(r) > n(ci

j)(r), for all r 2 [0,R]. Hence, for
n 2 (0,n0), there does not exist any equilibrium of type f i

j near 0.

Let n̄ > n0 be such that a(R) > n̄ci
j(R). Note that n̄c(0) > n0c(0) = a(0). Since c is

continuous and by the Intermediate Value Theorem, it is clear that there is r̄ 2 (0,R) such
that n̄c(r̄) = a(r̄).

Recall that a0(r)�n0c0(r)> 0, for r 2 (0,R]. Consequently, using that c is strictly decreas-
ing, we have, for all n

a0(r)�nc0(r)> 0, for all r 2 (0,R]. (5.10)

For n 2 (n0, n̄), it follows that nc(0)> n0c(0) = a(0) and c(r̄)< n̄c(r̄) = a(r̄). Again, by
the Intermediate Value Theorem and (5.10), we can choose a unique rn 2 (0, r̄) such that

a(rn) = nc(rn) and a(r)< nc(r), for r 2 (0,rn).

Consider the map
g : (n0, n̄)! (0, r̄)

given by g(n) = rn . We will show that g is continuous.

Take ñ 2 (n0, n̄). For all e > 0, we want to show that there is a d > 0 such that, for
n 2 (n0, n̄), 0 < |n� ñ |< d implies |rn � rñ |< e .

We can always suppose that we choose e sufficiently small such that 0 < r1 = rñ � e <

r2 = rñ + e < r̄. Now, we have

a(r1)> n0c(r1) and a(r1)< ñc(r1), since r1 < rṽ,

and
a(r2)> n0c(r2) and a(r2)< n̄c(r2), since r2 < r̄.

Then, there are n1 2 (n0, ñ) and n2 2 (n0, n̄) such that a(r1) = n1c(r1) and a(r2) = n2c(r2).
Now, it is clear that, for j = 1,2,

a(r j)> nc(r j), for all n 2 (n0,n j),

a(r j)< nc(r j), for all n 2 (n j,+•),
(5.11)

and, by (5.10), r j = rn j .

We can see that ñ�n1 > 0 by (5.11). Also n2� ñ > 0. In fact, we have

n2c(rñ)> n2c(r2) = a(r2)> a(rñ) = ñc(rñ),
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which implies n2� ñ > 0.

Take d = min{ñ�n1,n2� ñ}> 0. Then, it follows that rn 2 (rñ � e,rñ + e).

Therefore, g is continuous. In particular, as n ! n0, it follows that rn ! 0.

Remark 5.5.2. When the nonlinearity f is odd we have c+j (·) = c�j (·), for all j 2N. In particular
the number of positive and negative equilibria are the same.

Denote by cL
j,±(·), L > 0, j 2N, the function c±k (·) related to the solutions that have j+1

zeros in [0,p] of (
uxx +l f (u) = 0, x 2 (0,L),

u(0) = u(L) = 0
(5.12)

for l > 0 a parameter.

Recall that the following holds:

Lemma 5.5.3. If f is as before, for all j 2N, j� 2, if f j an equilibrium of (3.1) with j�1 zeros
in (0,p), then f2 j is p

j periodic. In addition, if f is odd then f j(
p
j + x) =�f j(

p
j � x), x 2 [0, p

j ].
Additionally, for k = 1, . . . , j�1,

f2 j(x) = f2 j(x+ k p
j ), for all x 2 [0, ( j�k)p

j ].

Proposition 5.5.4. If f is as before then,

(i) cL
j,±(r) =

� L
p
�2 cp

j,±(
Lr
p ), for all r 2 R+, j = 1,2,3 · · · .

(ii) For all r 2 R+, cL
2(r) = ( L

p )
2cp

2 (
Lr
p ).

(iii) For all r 2 R+, cp
2 j,±(r) =

1
j2 cp

2,±(
r
j2 ).

If we also assume that f is odd then,

(iv) cL
j,+(·) = cL

j,�(·) and cp
j,±(r) = c

p
j

1,±(
r
j ), for all r 2 R+ and j 2 N.

(v) cL
j,+(·) = cL

j,�(·) and cp
j,±(r) =

1
j2 cp

1,±(
r
j ), for all r 2 R+ and j 2 N.

Proof. The proof follows by a simple change of variables.

(i) Fix r 2 R+. In what follows we fix one of the symbols + or � and omit it in the notation.
If cL

j (r) =
1
lr

, then there is a f 2C2[0,L], with kfxk2 = r, such that f 6= 0 in (0,p) and
satisfies (5.12) with l replaced by lr.

For x 2 [0,p], define y(x) = f(Lx
p ). Then y satisfies

yxx(s) =
✓

L
p

◆2
fxx

✓
Ls
p

◆
=�

✓
L
p

◆2
lr f

✓
f
✓

Ls
p

◆◆
.



92 Chapter 5. The autonomous problem

In other words, y is a solution of (5.12) with L replaced by p and l replaced by
� L

p
�2 lr.

Also,

kyxk2 =
Z p

0
(yx(s))2ds =

Z p

0

✓
L
p

◆2
fx

✓
Ls
p

◆2
ds =

L
p

Z L

0
fx(u)2du =

Lr
p
.

Hence, by definition of cp
j , we conclude that cp

j (
Lr
p ) = (p

L )
2 1

lr
.

Therefore, cL
j (r) =

1
lr

=
� L

p
�2 cp

j (
Lr
p ). Since r 2 R+ is arbitrary, the result follows.

(ii) Fix r > 0. By definition, cL
2(r) =

1
lr

implies that there is a f is a solution of (5.12) with l
replaced by lr, f changes sign one time in (0,L) with kfxk2 = r.

Define y(x) = f(Lx
p ), for x 2 [0,p]. Then y satisfies

yxx = ( L
p )

2fxx(
Ls
p ) =�( L

p )
2lr f (f(Ls

p )).

Consequently, in (0,p),
yxx +lr(

L
p )

2 f (y) = 0.

Also, y(0) = y(p) = 0 and
Z p

0
(yx(s))2ds =

Z p

0
( L

p )
2(fx(

Ls
p ))2ds = L

p

Z L

0
(fx(u))2du = Lr

p .

Thus, cp
2 (

Lr
p ) = (p

L )
2 1

lr
= (p

L )
2cL

2(r).

(iii) Once again, we fix one of the symbols + or � and omit it in the notation. Fix r � 0 and
j 2 N, j � 2. By the definition, cp

2 j(r) =
1
lr

implies that there is a f , with 2 j�1 zeros in
(0,p), equilibrium of (3.1) when l = lr and satisfying kfxk2 = r.

By Lemma 5.5.3, we have that r =
R p

0 (fx(s))2ds = j
R p

j
0 (fx(s))2ds.

Hence y = fx
��
[0, p

j ]
is the solution of (5.12) that changes sing one time for L = p

j .

Therefore, c
p
j

2 (
r
j ) =

1
lr

= c2 j(r). By the previous item, it follows the desired result.

(iv) Fix j 2 N and r 2 R+. If cp
j (r) =

1
lr

, then there is f 2C2(0,p) with j�1 zeros in (0,p),
with kfxk2 = r, and satisfying (3.1). Since f is odd, f has a lot of symmetries and

r =
Z p

0
(yx(s))2ds = j

Z p
j

0
(yx(s))2ds.

Consider y = f
��
[0, p

j ]
. Then, we have y > 0 in (0,p), kyxk2 = r

j , and y satisfies (5.12)

for L = p
j and l = lr.

Hence, by the definition of c
p
j

1 , we find c
p
j

1 (
r
j ) =

1
lr

= cp
j (r).

(v) It follows from the previous items.
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Consider the problem (5.1) with the additional assumption of f is odd. In that case, we
are able to construct a relation for the functions c±k , k 2 R+. Remember that in this case, for all
k 2 N, c+k = c�k , so we will simply denote it by ck(·).

The result from Proposition 5.5.4 give provides a very good understanding of the bifur-
cations of equilibria for (5.1) with particular emphasis to the case of suitably large j 2 N. We
remark that, for large values of j the functions j2c j(±) are very slowly decreasing.

Next we exhibit a few pictorial examples of possible bifurcations that will happen
depending on our choice of the functions a and f .

Example 5.5.5. Consider in this example the function a = a1 as in Figure 6:

Figure 6 – Graphs of a1 (in gray) and nc±1 (in blue) for different choices of n

In that case, the bifurcation from zero is a supercritical pitchfork
bifurcation and four other saddle-node bifurcations occur, two
subcritical and two supercritical. The bifurcation curve looks like
this:

Example 5.5.6. Consider in this example the function a = a2, with a graph pictured in gray, in
Figure 7:

Figure 7 – Graphs of a2 and nc±1 (in blue) for different choices of n

In that case, the bifurcation from zero is a subcritical pitchfork
bifurcation and three other saddle-node bifurcations occur, two
supercritical and one subcritical. The bifurcation curve looks like
this:
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Example 5.5.7. Consider the function given by a = a3, with graph pictured in gray, as in Figure
8.

Figure 8 – Graphs of a3 (in gray), nc±1 (in blue) and nc±2 (in green) for different choices of n

The first bifurcation from zero is a supercritical pitchfork bifurca-
tion and the second bifurcation from zero is a supercritical saddle-
node bifurcation.
In this case, the diagram representing the two bifurcations from
zero is similar to the figure:

Suppose that n3 2 (n1,n5) is the moment for which the saddle-node bifurcation of the
equilibria that change sign one time in (0,p) appears. In this case, if f is odd, a pictorial
representation of the global attractor is given in Figure 9.

Figure 9 – Expected structure of the attractor, when n 2 (n3,n5).

For n 2 (n3,n5), it is also expected that the two more unstable equilibria collapses at 0
as n approaches 4a(0).

Example 5.5.8. Consider in this example the function a = a4 as in Figure 10:
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Figure 10 – Graphs of a4 (in gray) and nc±1 (in green) for different choices of n

In this case, for n < n2 = a(0), there are no equilibria of types f+
1 .

At n = n2, it appears infinite equilibria from a bifurcation at zero.
As n increases, there remains only one equilibrium.

Example 5.5.9. Consider in this example the function a = a5 as in Figure 11:

Figure 11 – Graphs of a5 (in gray) and nc±1 (in green) for different choices of n

In that case, the bifurcation from zero is supercritical and there
are no equilibria for n < n2. For n = n3, the non-zero equilibrium
bifurcates to an interval of equilibria, which collapses to one as n
increases.

Example 5.5.10. Consider in this example the function a = a6 as in Figure 12:

Figure 12 – Graphs of a6 (in gray) and nc±1 (in green) for different choices of n
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For n < n2, there are no equilibria of (5.1). At n = n2, there is a bi-
furcation with the appearance of an interval of equilibria (far from
zero). As n increases, this interval collapses in one equilibrium.

5.6 Structure of the global attractor for a non-decreasing

In this section, we will assume that a is non-decreasing and that f odd. We will prove
that, with the addition of both assumptions, we are able to fully describe the connections inside
the global attractor of (5.3) (and consequently, the global attractor of (5.1)).

To prove such result, we will show that (5.3) satisfies properties (A1) to (A4) described
in Section 3.3.

Lemma 5.6.1. Suppose that a(0)N2 < l < a(0)(N +1)2, N 2 N. Under the same notation of
Theorem 5.2.6, let f 2 {f+

N,l ,f
�
N,l} and, for t 2 [0,1], consider

8
>><

>>:

ut = at(kuxk2)uxx +l f (u), x 2 (0,p), t > 0,

u(t,0) = u(t,p) = 0, t � 0,

u(0, ·) = u0 2 H1
0 (0,p),

(5.13)

for at(s) = a(ts+(1�t)kfxk2), a : R+! [m,M] and f satisfying the same conditions imposed
in (3.2).

For t 2 [0,1], E
t will denote the set of equilibria of (5.13), t 2 [0,1]. Then E

t is a set
with 2N +1 elements, for all t 2 [0,1]. Moreover, we have continuity of equilibria at t = 0.

Proof. The function at : R! [m,M] given by at(s) = a(ts+(1�t)kfxk2) is globally Lipschitz
continuous and at is also a non-decreasing C1-function, for each t 2 [0,1]. So, these problems
are well-defined and we have a semigroup {St(t) : t � 0} related to (5.13), for all t 2 [0,1].

First, we will show that the cardinal number of E
t is the same for all t 2 [0,1]. Observe

that a(kfxk2)N2 < l , since f is an equilibrium for
8
>>><

>>>:

ut = uxx +
l

a(kfxk2)
f (u), x 2 (0,p), t > 0,

u(t,0) = u(t,p) = 0, t � 0,

u(0, ·) = u0 2 H1
0 (0,p).

Using that a is non-decreasing, for all t 2 [0,1], we have at(0)N2 = a((1�t)kfxk2)N2
a(kfxk2)N2 < l and, on the other hand, l  a(0)(N +1)2  at(0)(N +1)2.

Therefore, for each t 2 [0,1], the problem (5.13) has exactly 2N +1 equilibria.
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Now, suppose that {tn}n2N ⇢ [0,1] and tn! t0 as n!+•. Denote

E
tn =

n
f±

j,(n) : j = 0, . . . ,N
o

where f+
0,(n) = f�0,(n) = 0 and f i

j,(n) has j+1 zeros in [0,p], i(f i
j,(n))x(0)> 0, for i 2 {+,�} and

j = 0, . . . ,N. We will prove the continuity of E
t in terms of the parameter t 2 [0,1].

For that, fix a j 2 {0,1, . . . ,N} and denote by y(n) = f+
j,(n), n 2 N. For each n 2 N,

atn(k(y(n))xk2)(y(n))xx +l f (y(n)) = 0.

Multiplying the above equation by y(n), we find

k(y(n))xk2  1
a(0)

D
l f (y(n)),y(n)

E
C+

1
2
k(y(n))xk2,

for some C > 0, where we have used the conditions on f and Sobolev’s embeddings.

Therefore, this sequence is relatively compact in L2(0,p) and we may assume that it is
convergent to some y 2 L2(0,p). Since H1

0 (0,p) ⇢C([0,1]), the sequence {y(n)}n2N is also
bounded in C([0,1]) so as the sequence { f (y(n))}n2N, by the continuity of f .

Consequently,
k(y(n))xxk  l

a(0)k f (y(n))k<+•

and {y(n)}n2N is bounded in H2(0,p). Since H2(0,p) is compactly embedded in H1
0 (0,p), we

may assume that the sequence is convergent to some ỹ 2 H1
0 (0,p).

Now, H1(0,p)⇢ L2(0,p) and by the uniqueness of the limit, it follows that ỹ = y .

Observe that y(n)! y in C1([0,p]), since H2(0,p)⇢C1([0,1]) and such embedding is
compact. For any v 2 H1

0 (0,p) and n 2 N,

�atn(k(y(n))xk2)
D
(y(n))x,vx

E
+l

D
f (y(n)),v

E
= 0,

hence
�at0(kyxk2)hyx,vxi+l h f (y),vi= 0.

Now, using that y 2 H2(0,p) since f (n)! y weakly in H2(0,p), we conclude that

�at0(kyxk2)yxx +l f (y) = 0.

Therefore, y is an equilibrium of (5.13) for t = t0.

In the case f (n) = f+
0,(n) = 0, for all n 2 N, we find y = 0 and we are done. So, suppose

j 6= 0. We only need to show that y 6= 0. For that, consider b = infn2Nl [atn(k(y(n))xk2)]�1 > 0.
For any l̄ > N2, let jl̄ satisfying

jl̄
xx + l̄ f (jl̄ ) = 0
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with jl̄ having j+1 zeros in [0,p] and jl̄
x (0)> 0. One important result is that the function

(n2,+•) 3 l̄ 7! kjl̄
x k

is increasing, see (CABALLERO et al., 2021).

In particular, 0 < kjb
x k  kjrn

x k for rn = l [atn(k(y(n))xk2)]�1, n 2N. Since jrn
x = y(n),

n 2 N, and y(n)! y , we find 0 < kjb
x k  kyxk.

We conclude that y = f t0
j,+ by the C1 convergence and we have the continuity of equilib-

ria.

The case y(n) = f�j,(n), n 2 N, is similar, thus it will not be treated.

Lemma 5.6.2. For any t 2 [0,1], denote by {St(t) : t � 0} the semigroup related to (5.13). This
family of semigroups is continuous, that is, given sequences {tn}n2N,t0 2 [0,1], {u(n)0 }n2N,u0 2
H1

0 (0,p), {tn}n2N, t0 2 R+ satisfying

u(n)0 ! u0 in H1
0 (0,p), tn! t0, and tn! t0, as n!+•, (5.14)

we have kStn(tn)u
(n)
0 �St0(t)u0kH1

0 (0,p)
! 0 as n!+•.

Proof. For any t > 0, denote u(t) = St0(t)u0 and un(t) = Stn(t)u
(n)
0 , n 2 N.

Consider Au = uxx, u 2 H2(0,p)\H1
0 (0,p), see Example 2.3.12. By the formula of

variation of constants,

un(t) = eAtu(n)0 +
Z t

0
eA(t�s) f (un(s))

atn(k(un)x(s)k2)
ds, n 2 N,

and
u(t) = eAtu0 +

Z t

0
eA(t�s) f (u(s))

at0(kux(s)k2)
ds.

We may assume, without loss of generality that {tn}n2N ⇢ [0,T ], for some T 2 R+ and
tn > t0 for n sufficiently large. We may define

Cf = sup
n=0,1,2,...

{| f (v(x))| : v 2 Stn([0,T ])un,x 2 [0,p]}<+•.

The uniform boundedness follows by using comparison between problems (5.3) with a(·)
replaced by atn(·), n 2 N, and (5.3) with f (·) replaced by g(·) = f (·)/m. See Theorem 2.3.20,
for the abstract comparison result.

Now,

ku(tn)�u(t0)kH1
0 (0,p)

 k(eA(tn�t0)� I)u(t0)kH1
0 (0,p)

+
Z tn

t0

����eA(tn�s) f (u(s))
at0(kux(s)k2)

����
H1

0 (0,p)
ds

 k(eA(tn�t0)� I)u(t0)kH1
0 (0,p)

+
Cf p 1

2

m

Z tn

t0
e�(tn�s)(tn� s)�

1
2 ds.
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We can see that, assuming |tn� t0|< 1, we find
Z tn

t0
e�(tn�s)(tn� s)�

1
2 ds =

Z tn�t0

0
e�uu�

1
2 du =2e�(tn�t0)(tn� t0)

1
2 +

Z tn�t0

0
2e�uu

1
2 du

 2(tn� t0)
1
2 +2(tn� t0).

Hence

ku(tn)�u(t0)kH1
0 (0,p)

 k(eA(tn�t0)� I)u(t0)kH1
0 (0,p)

+4
Cf p 1

2

m
(tn� t0)

1
2 . (5.15)

Also, for I(s) = |at0(kux(s)k2)�atn(k(un)x(s)k2)|,
����

f (un(s))
atn(k(un)x(s)k2)

� f (u(s))
at0(kux(s)k2)

����
at0(kux(s)k2)k f (un(s))� f (u(s))k+ I(s)k f (u(s))k

m2 .

Now, since a is globally Lipschitz, there is Ca > 0 such that

I(s) =
��a
�
t0kux(s)k2 +(1� t0)kfxk2��a

�
tnk(un)x(s)k2 +(1� tn)kfxk2���

Ca|t0kux(s)k2� tnk(un)x(s)k2 +(tn� t0)kfxk2|

Ca|t0� tn|
�
kux(s)k2 +kfxk2�+ tnk(un)x(s)�ux(s)k2.

Thus, for some constant C > 0,
����

f (un(s))
atn(k(un)x(s)k2)

� f (u(s))
at0(kux(s)k2)

����C
h
kun(s)�u(s)kH1

0 (0,p)
+ |tn� t0|

i
.

Finally, using that X
1
2 = H1

0 (0,p) and (2.2), we have

kun(r)�u(r)kH1
0 (0,p)

 keAr(u(n)0 �u0)kH1
0 (0,p)

+
Z r

0

����eA(r�s)


f (un(s))
atn(k(un)x(s)k2)

� f (u(s))
at0(kux(s)k2)

�����
H1

0 (0,p)
ds

 e�rku(n)0 �u0kH1
0 (0,p)

+C|tn� t0|
Z r

0
e�(r�s)(r� s)�

1
2 ds

+
Z r

0
Ce�(r�s)(r� s)�

1
2 kun(s)�u(s)kH1

0 (0,p)
ds.

Taking y(s) = es kun(s)�u(s)kH1
0 (0,p)

, we find

y(r) a+
Z r

0
C(r� s)�

1
2 y(s)ds,

for an = ku(n)0 �u0kH1
0 (0,p)

+CeT |tn� t0|G(1
2), where G(·) represents the Gamma function. By

(CARVALHO; LANGA; ROBINSON, 2013, Lemma 6.24), taking K = (2CG(1
2))

2, we have, for
all r 2 [0,T ],

y(r) 2aneKr.
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Hence, for all r 2 [0,T ],

kun(r)�u(r)kH1
0 (0,p)

 2C̄e(K�1)r
⇣
ku(n)0 �u0kH1

0 (0,p)
+ eT |tn� t0|G(1

2)
⌘
.

Now,

kun(tn)�u(t0)kH1
0 (0,p)

 ku(tn)�u(t0)kH1
0 (0,p)

+kun(tn)�u(tn)kH1
0 (0,p)

 ku(tn)�u(t0)kH1
0 (0,p)

+2C̄e(K�1)tnku(n)0 �u0kH1
0 (0,p)

+2C̄e(K�1)tneT G(1
2)|tn� t0|.

By (5.14) and (5.15), it follows that kun(tn)�u(t)kH1
0 (0,p)

! 0 as n!+•.

Remark 5.6.3. For l > 0, lemmas 5.6.1 and 5.6.2 are valid if you assume a(kfxk2) = lc(kfxk2)

and a0(kfxk2)> lc0(kfxk2), for all f 2 E .

But this hypothesis is very abstract and not truly applicable.

Remark 5.6.4. The assumption of f being odd is not necessary in the above result.

Theorem 5.6.5. Suppose that a is non-decreasing and a(0)N2 < l < a(0)(N +1)2, for N 2 N.
Under the same notation of Theorem 5.2.6, we have that the Conley index of f±

j of (5.3) is
well-defined and I({f+

j }) and I({f�j }) are pointed ( j� 1)�spheres, for j = 1, . . . ,N. Also,
I({0}) is a pointed N�sphere.

Proof. Consider the family of semigroups presented in Lemma 5.6.1 and j 2 {1, . . . ,n}. Just
to fix the notation, for each t 2 [0,1], denote by f+

j,t the equilibrium in E
t satisfying f+

j,t(0) =
f+

j,t(
p
j ) = 0 and f+

j,t(x)> 0 in (0, p
j ).

Observe that f±
j = f±

j,1. We will calculate I({f+
j }), for j = 1, . . . ,n. The cases f�j and 0

follow similarly.

Define
a : [0,1]!S (X)

t 7! a(t) = [{f+
j,t},St(·)].

We want to show that a is S -continuous.

For each t 2 [0,1], consider dt = 1
2 inf{kyx�jxk : y,j 2 E

t ,y 6= j} > 0, which is
well-defined since each equilibrium is isolated, for l 2 (a(0)N2,a(0)(N +1)2). Also define, for
each t 2 [0,1],

Nt = {u 2 H1
0 (0,p) : ku�f+

j,tkH1
0 (0,p)

 dt}

and

Vt = {(ct ,dt)\ [0,1] : t 2 (ct ,dt)\ [0,1] and Nt \E
s = {f+

j,s}⇢ int(Nt),

for all s 2 (ct ,dt)\ [0,1]}.
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The above sets are well-defined, by the continuity of the equilibria in the parameter t , see
Lemma 5.6.1. Thus, Nt is an isolating neighborhood of f+

j,s , for all s 2Vt , t 2 [0,1]. By Lemma
5.6.2, it only remains to show that Nt is admissible for every convergent sequence {tn}n2N 2Vt

in the sense of Definition 2.1.25, point ii), for all t 2 [0,1].

Consider sequences {tn}n2N 2 [0,1] with tn! t0 and {tn}n2N ⇢R+ such that tn!+•.
Suppose that, for each n 2 N, we find a solution yn : R+ ! X of {Stn(t) : t � 0} satisfying
yn([0, tn])⇢ Nt0 . We want to prove that {yn(tn)}n2N is a convergent subsequence.

For each n 2 N, we make the change of variable in order to find a solution wn(an(t)) =
yn(t) of (5.3), where an(t) =

R t
0 atn(k(yn)x(r)k2)dr, for t 2 [0, tn]. The function an depends

on yn and an(0) = 0, for n 2 N. Thus, wn([0,an(tn)]) ⇢ Nt0 . By the formula of variation of
constants,

wn(an(tn)) = eAa(tn)yn(0)+
Z an(tn)

0
e�A(a(tn)�s) l f (wn(s))

atn(k(wn)x(s)k2)
ds.

Then, for g 2 (1
2 ,1], we get

kwn(an(tn))kXg keAa(tn)yn(0)kXg+
Z an(tn)

0

l
���eA[a(tn)�s] f (wn(s))

���
Xg

atn(k(wn)x(s)k2)
ds

 [a(tn)]
1
2�gk(yn)x(0)k+

Z an(tn)

0

l [a(tn)�s]�g

atn(kwx(s)k2)
e�(a(tn)�s)k f (wn(s))kds.

Using that f is continuous, m atn(t), for all t 2 R, and H1
0 (0,p)⇢ L•(0,p), we find a

constant C > 0 such that

kw(an(tn))kXg  a(tn)
1
2�gd +

C
m

Z an(tn)

0
e�(a(tn)�s)[a(tn)� s]

1
2�gds

 a(tn)
1
2�gd +

C
m

Z +•

0
e�tt

1
2�gdt.

Since g� 1
2 > 0, we find M̃ > 0 such that

kw(an(tn))kXg  M̃, (5.16)

for all n 2N. Therefore, the sequence {w(an(tn)) = y(tn)}n2N is pre-compact in H1
0 (0,p). Now,

y(tn) 2 Nt0 , for all n 2 N, and Nt0 is closed, so we find a subsequence of {y(tn)}n2N which is
convergent to some point in Nt0 .

Therefore, a is S-continuous.

Using Theorem 2.1.27, for t = 0, we conclude that, for l 2 (a(0)N2,a(0)(N + 1)2),
I({0}) is a pointed N-sphere and I({f+

j }) and I({f�j }) are pointed ( j� 1)-spheres, for j =
1, . . . ,N.
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Proposition 5.6.6. The semigroup associated to (5.1) restricted to its global attractor A is
injective. In other words, if u : R! H1

0 (0,p) and v : R! H1
0 (0,p) are global solutions of (5.1)

with u(R)\ v(R) 6= /0, then u(R) = v(R).

Proof. Suppose that we find global bounded solutions ū and v̄ with ū(R)\ v̄(R) 6= /0.

By (CABALLERO et al., 2021) and (CARVALHO; MOREIRA, 2021), applying a
change of variable, we find u : R! H1

0 (0,p) and v : R! H1
0 (0,p) which are solutions of (5.3)

related, respectively, to ū and v̄. By construction, u(R)\ v(R) 6= /0. Without loss of generality,
we may assume that u(T ) = v(T ), for some T 2 R.

Define w : R! H1
0 (0,p) as w(t) = u(t)� v(t), for t 2 R. Our goal is to prove that

w(t) = 0, for all t 2 R. Suppose, by contradiction, that we can find t0 2 R for which w(t0) 6= 0.
Now, w satisfies

wt = wxx +h(t), (5.17)

where h(t) = l
h

f (u)
a(kuxk2)

� f (v)
a(kvxk2)

i
. Observe that

kh(t)k l
m2

��⇥a(kvxk2)�a(kuxk2)
⇤

f (u)+a(kuxk2)[ f (u)� f (v)]
��Ckwxk, (5.18)

for some constant C > 0. Hence, h(t) 2 L2(0,p), for all t 2 R. By the variation of constants
formula, we can see that the problem is locally well-posed. In particular, we find

t1 = sup{t 2 [t0,T ] : w(s) 6= 0 for s 2 [t0, t]},

with t1 > t0 and w(t1) = 0.

For t 2 [t0, t1), define the functions G(t) = kwx(t)k2

kw(t)k2 and g(t) = logkw(t)k�1. Then

1
2

d
dt

G(t) = h(wt)x,wxi
kwk2 � kwxk2

kwk4 hwt ,wi=
hwt ,�wxx�G(t)wi

kwk2

=
hwxx +G(t)w,�wxx�G(t)wi

kwk2 +
hh�G(t)w,�wxx�G(t)wi

kwk2

=�kwxx +G(t)wk2

kwk2 +
hh,�wxx�G(t)wi

kwk2

�1
2
kwxx +G(t)wk2

kwk2 +
1
2
khk2

kwk2 CG(t).

The last line is obtained by using the Young’s inequality. Hence, for all t 2 [t0, t1),

G(t) G(t0)+C(t� t0).

Now, by (5.18),

d
dt

g(t) =�1
2

d
dt

logkwk2 =�hwt ,wi
kwk2 =�hwxx,wi

kwk2 �
hh,wi
kwk2  G(t)+CG

1
2 (t) 2G(t)+C2.
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Thus, for all t 2 [t0, t1),

logkw(t)k�1  logkw(t0)k�1 +[2G(t0)+C2](t� t0)+C(t� t0)2 < •.

We have shown that g is uniformly bounded in [t0, t1), which is a contradiction with
w(t1) = 0. The contradiction comes from assuming that we find t0 2 R such that w(t0) 6= 0.

Therefore, u(t) = v(t), for all t 2R, hence ū(R) = u(R) = v(R) = v̄(R), as desired.

Observe that the semigroup associated to (5.3) is also injective restricted to its global
attractor.

Lemma 5.6.7. Suppose that a(·) is increasing. Then there cannot be an heteroclinic connection
between the equilibria f+

j and f�j of (5.3), for j = 1, ...,n.

Proof. The proof follows similarly to the last part of the proof of Lemma (3.2.3).

Remark 5.6.8. The same arguments can be applied, in the case of a(·) being not necessarily
increasing, to prove that there not exist a connection between two equilibria f and y of (5.3)
with the same number of zeros in [0,p] and for which f 0(0)y 0(0)< 0. The last assumption is
essential. That means, if f 0(0)y 0(0)> 0, then there may exist a connection between f and y .

The proof of Lemma 5.6.7 is also valid if we use the conditions on f and a given in
(CABALLERO et al., 2021), because Lemma (3.2.1) is valid for non-classical solutions as well
(see (CABALLERO et al., 2021, Theorem A3)).

In what follows, we will show that the properties (A1)-(A4) described in Section 3.3
are valid for (5.3), when we assume that a(·) is increasing and f is odd. Consequently, the
attractor of (5.1) can be well-described and it will have the same structure of the attractor of the
Chafee-Infante problem. For convenience, we will study the semilinear problem (5.3), since its
global attractor is also the global attractor for (5.1).

Consider the sequence {ln}n2N given by ln = a(0)n2, n 2 N. Suppose that a(0)n2 <

l < a(0)(n+1)2, n 2 N. We define the set

M = {M( ji) : j = 0, . . . ,N; i 2 {�,+} }[{M(n)}, (5.19)

where M(n) = {0} and M( j+) = {f+
j+1} and M( j�) = {f�j+1}, for j = 0, . . . ,n�1. Although

the Morse decomposition (5.19) depends on the parameter l , we made the choice of simplifying
the notation and not explicitly this dependency.

Observe that, for each l 2 (a(0)n2,a(0)(n+1)2), n 2 N, and t 2 [0,1], the semigroup
{St(t) : t � 0} associated to (5.13) admits a global attractor, which we will denote by A

t .
Again, we omit the dependence of l in the notation. Additionally, for t 2 [0,1], we can apply
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Proposition 5.6.6, to at(·) instead of a(·), and obtain that the semigroup {St(t) : t � 0} restricted
to its global attractor defines the flow

jt : R⇥A
t !A

t .

This shows that property (A1) is satisfied, for all t 2 [0,1], where {ln}n2N given by
ln = a(0)n2, n 2 N.

Lemma 5.6.9. The family {A t : t 2 [0,1]} is upper semicontinuous.

Proof. It is not difficult to see that
S

t2[0,1]A
t is a bounded set in X g , for some g 2 (1

2 ,1]. This
follows by the same reasoning applied to obtain (5.16) together with the non-degeneracy of a(·)
and the dissipativity condition (3.2). Hence,

[

t2[0,1]
A t is compact in H1

0 (0,p).

Now, the family of semigroups {St(t) : t � 0}, t 2 [0,1], is continuous in the sense of
Lemma 5.6.2. Finally, we apply Theorem 2.1.15 to obtain the upper semicontinuity of the global
attractors.

The result below shows that the property (A2) is also valid.

Lemma 5.6.10. For any a(0)N2 < l < a(0)(N + 1)2, N 2 N, M is a Morse decomposition.
Moreover,

j± < k± for j,k 2 {0, . . . ,N�1} () j < k in N,
j± < N, for all j 2 {0, . . . ,N�1}.

is an admissible order.

Proof. By Lemma 5.6.7, there cannot exist connections between equilibria with the same
number of zeros. Now, suppose that we have M(kĩ) and M( ji), for k, j 2 {0, . . . ,(N� 1),N},
i, ĩ 2 {{ /0},+,�} and a global solution x : R! X satisfying

M(kĩ)
t!�• � x (t) t!+•�! M( ji).

The solution x is called a connection from M(kĩ) to M( ji). We denote by C(M(kĩ),M( ji))

the set of all connections from M(kĩ) to M( ji).

By Lemma 3.2.1, we have k � j. Now, Lemma 5.6.7 excludes the case k = j. It follows
that k > j, as desired.

Therefore, M is a Morse decomposition and the described order is admissible.
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Property (A3) is a consequence of Theorem 5.6.5. The prove of property (A4) for (5.3) is
made using a ‘transition’ that relates such problem to a Chafee-Infante problem (which satisfies
(A4), see Section 3.3). Before we proceed, we will present tools that allow us to pass information
‘from one problem to another’. We will present results and definitions from (FRANZOSA, 1988),
in our context. For more details and a more general approach, we recommend the cited reference.

Define I = {I ⇢ X : I is an isolated invariant set of St(·), for some t 2 [0,1]}.

Given a compact N ⇢A[0,1] :=
S

t2[0,1]A
t , we may associate the maps

L(N) = {t 2 [0,1] : N is an isolating neighborhood in A
t}

and sN : L(N)!I given by sN(t) = St , where St is the largest invariant set of St(·) in N.

It is known, (FRANZOSA, 1988, Proposition 4.4), that I is a topological space with
the topology generated by the following basis

B =
[

N⇢A[0,1],
N compact

{sN(U)⇢ X : U is an open set with U ⇢ L(N)}.

Define the sets

MP =
[

t2[0,1]
{(M t ,A t) : M

t = {Mt(p) : p 2 P} is a Morse decomposition of A
t},

M< = {(M ,A ) 2MP : if M = {M(p) : p 2 P} and, for p,p 0 2 P, there is

g 2C(M(p),M(p 0)), then p 0 < p},

where < represents any partial order in P.

Thus, MP and M< are topological spaces with the topology induced as subspaces of
(’p2P I )⇥I .

Definition 5.6.11. The collection M = {M(p)}p2P is called a <�ordered Morse decomposition
of A if (M ,A )2MP and if g 2A \[p2PM(p), then there is p < p 0 with g 2C(M(p 0),M(p)).

Definition 5.6.12. Let M
t = {Mt(p)}p2P and M

t̃ = {Mt̃(p)}p2P be Morse decompositions
of A

t and A
t̃ , respectively.

We say that Mt and Mt̃ are related by continuation or are continuations of each other if
there is a path c in MP from ’p2P Mt(p)⇥A

t to ’p2P Mt̃(p)⇥A
t̃ . If, furthermore, Mt and

Mt̃ are <�ordered and the path c is in M<, then we say that the associated admissible orderings
are related by continuation or are continuations of each other.

Theorem 5.6.13 (Corollary 5.6, (FRANZOSA, 1988)). If the flow ordering of M is related
by continuation to an admissible ordering of M̃ then the set of connection matrices of M̃ is a
subset of the set of connection matrices of M .
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Fix l 2
⇣

a(0)N2,a(0)(N +1)2
⌘

, N 2N, and let {St(t) : t � 0}, t 2 [0,1], be the family
of semigroups from Lemma 5.6.1. Denote

E
t = {0}[

n
f+

j,t ,f
�
j,t : j = 1, . . . ,N

o
.

By the proof of Theorem 2.1.27, for any j = 1, . . . ,N, we may assume we find a bounded
and closed set N ⇢ H1

0 (0,p), such that N is an isolating neighborhood of f+
j,t , for all t 2 [0,1].

The proof for equilibria f�j,t and 0 are analogous.

Then M
t = {Mt(0+),Mt(0�) . . . ,Mt((N� 1)+),Mt((N� 1)�),Mt(N)} is a Morse

decomposition for Mt(N) = {0}, Mt( j+) = {f+
j+1,t} and Mt( j�) = {f�j+1,t} for j = 1, . . . ,N�

1. It is clear that property (A3) is satisfied by this family of Morse decomposition by Theorem
5.6.5 applied to (5.3) with a(·) replaced by at(·), t 2 [0,1].

We also have the following result:

Lemma 5.6.14. The map
c : [0,1]!MP

t 7! c(t) = (M t ,A t)
.

is a path in MP.

Proof. Consider t0 2 [0,1] and let V =
�
’k2{0±,...,(N�1)±,N}Vk

�
⇥Vt0 be an open set in MP that

contains c(t0). Hence, we have

Mt0(k)⇢Vk, for all k = 0±, . . . ,(N�1)±,N, and A
t0 ⇢Vt0 .

Since B is a basis for MP, we may assume, w.l.g, that we can find compact sets Nk,Nt0 ⇢ X
and open sets Uk ⇢ L(Nk), Ut0 ⇢ L(Nt0) such that Vt0 = sNt0

(Ut0) and Vk = sNk(Uk), k =

0±, . . . ,(N�1)±,N. Take

U =Ut0 \UN \

0

@ \

k=0,...,(N�1)

Uk+ \Uk�

1

A .

It is clear that U is a not empty open set of [0,1], by the continuity of the Morse decomposition
and the upper semicontinuity of the family of attractors. Then, for any t 2U , Mt(k) is the largest
invariant set in Nk, k = 0±, . . . ,(N� 1)±,N, and A

t is the largest invariant set in Nt0 . Hence
c(t) = (M t ,A t) 2 V , for all t 2U .

Therefore, c is a path in MP.

Theorem 5.6.15. For any l 2
⇣

a(0)N2,a(0)(N +1)2
⌘

, N 2N, the connection matrix associated
with the Morse decomposition (5.19) is as in property (A4).
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Proof. Observe that, for t = 0, we have the problem
8
>><

>>:

ut = āuxx +l f (u), x 2 (0,p), t > 0,

u(t,0) = u(t,p) = 0, t � 0,

u(0, ·) = u0 2 H1
0 (0,p),

(5.20)

for some constant ā > 0 (which is given by a(k(f±
N )xk2), under the same notation of Lemma

5.6.1). Since (5.20) is a Chafee-Infante problem, by (HENRY, 1985), the flow ordering <F of
j0 is given by

j± <F k± for j,k 2 {0, . . . ,N�1} () j < k,

j± <F N, for all j 2 {0, . . . ,N�1}.
(5.21)

By Section 3.3, the only connection matrix when t = 0 is given by

D =

2

66666664

0 D1 0 . . . 0

0 D2
. . . ...

... . . . . . . 0
0 Dn

0 . . . 0

3

77777775

(5.22)

as in (A4).

By Lemmas 5.6.1 and 5.6.10, it follows the continuity of the Morse decomposition.
Applying Lemma 5.6.10 to (5.13), we have, for any t 2 [0,1], the partial order <F , given in
(5.21),

0+ < 0� < · · ·< (N�1)+ < (N�1)� < N

and
0� < 0+ < · · ·< (N�1)� < (N�1)+ < N

is an admissible order for M
t . Consequently, the order <F is also an admissible order for M

t ,
for any t 2 [0,1]. Therefore, property (A2) is satisfied. Hence, c([0,1])⇢M<F , for the function
c presented in Lemma 5.6.14. Since M<F is open in MP (see (FRANZOSA, 1988, Proposition
4.14)), it follows that c is also a path in M<F .

By Theorem 5.6.13, for each t 2 [0,1], the set of connection matrices related to M
t is

unitary, whose element is given in (5.22). Now, we just need to observe that for t = 1 problem
(5.13) represents (5.1). Therefore, the condition (A4) is satisfied for (5.1), as desired.

Thus, for what it was shown in the section, together with Theorem 3.3.1, we conclude
the following

Theorem 5.6.16. The global attractor Al of (5.1), for a(0)N2 < l < a(0)(N+1)2, has the same
structure of the global attractor ˜A l

a(0)
of (3.1).
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Proof. Since problem (5.1) satisfies (A1)-(A4), by Theorem 3.3.1, the attractor Al has the same
structure of of the attractor for (3.10) for n = N. By (MISCHAIKOW, 1995, Theorem 1.1), this
is the same structure of the attractor of (3.1), for l 2 (N2,(N +1)2) .

Thus, for any global bounded solution x : R!H1
0 (0,p) (not in El ), we find f j,fk 2 El ,

f j 6= fk, such that
f j

t!�• � x (t) t!+•�! fk.

Also, either f j = {0} or f j has at least one more zero in [0,p] than fk, if x (·) is not an
equilibrium. If f j,fk 2 El and f j has at least one more zero in [0,p] than fk or f j = 0, then we
find a global bounded solution h : R! H1

0 (0,p) satisfying

f j
t!�• � h(t) t!+•�! fk.

5.7 Some remarks and further investigations
In (LI et al., 2020), we have constructed the sequence of bifurcation at zero for (5.1),

when considering a being non-decreasing and f being odd. Under the same assumptions, in
(CARVALHO; MOREIRA, 2021), we have shown that all the equilibria are hyperbolic, with the
exception of zero on the parameters of the bifurcations. Later, the structure of the attractor was
shown to contain the structure of the attractor of the Chafee-Infante problem, see (MOREIRA;
VALERO, 2022b).

In (CABALLERO et al., 2021), the authors made the proof of existence of the equilibria
of (5.1) dropping the assumption of f being odd. But their hyperbolicity was not known until
recently.

Finally, in (ARRIETA et al., 2022), we have offered a criteria to study the existence of
equilibria of (5.1) (when a is continuous and far from zero) and to study the hyperbolicity of
such equilibria (assuming also that a is differentiable). We can see that we may find cases of that
we have a continuum of equilibria depending on the choice of a.

Studying the attractor of (5.1) cannot be made altogether (without additional assumptions
on the behavior of a), since we have several types of possible bifurcations of equilibria. It is
clear that the lap-number property is always valid, hence the connections must come from an
equilibrium f to a y , with f having more or an equal number of zeros of y .

Related to the discussion presented in this Chapter, we consider that (5.1) is very well-
understood if a is non-degenerated. Now, we intend to consider the problem (5.1) assuming that
a might degenerate.
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CHAPTER

6

MULTIVALUED PROBLEMS

In this chapter, we will present some results on the multivalued setting. Multivalued
problems appeared in the literature in the last century, in the scenario of equations for which we
do not have uniqueness of solutions of the Cauchy problem.

In the last century, the authors started to create a new approach of seeking properties that
are robust under perturbations. In this sense, Conley offered us the concept of Conley’s index, a
way of studying a neighborhood of isolated invariant sets from a topological point of view. This
concept generalizes the concept of Morse index, which can be calculated only when we have a
good understanding of the geometric local asymptotic behavior.

The concept of Conley’s index appeared in (CONLEY, 1978), where it was defined
for compact isolated invariant sets under the action of semiflows defined on locally compact
metric spaces. Later, Rybakowski (RYBAKOWSKI, 1987) generalized the concept for semiflows
defined on metric spaces which are not necessarily compact. The importance of this topology
definition can be measured by the large amount of studies that followed the above references. Just
to cite a few of them, this concept was used in applications (see for instance, (RYBAKOWSKI,
1987; MISCHAIKOW, 1995)), it was also defined for flows on Hilbert spaces (see (NADA,
a; BŁaSZCZYK; GOŁĘBIEWSKA; RYBICKI, 2017; IZYDOREK et al., 2017)), for non-
autonomous semiflows on Banach spaces (JäNIG, 2019) and also for multivalued semiflows (see
(DZEDZEJ; GABOR, 2011; MROZEK, 1990)).

In the theory of Conley’s index developed in (RYBAKOWSKI, 1987), the concept of an
isolating block plays a fundamental role. This is a neighborhood of an isolated invariant set of
special kind, in which the boundaries are completely oriented in some sense, characterizing in
this way the stable and unstable subsets.

The concept of hyperbolicity is not clear in the multivalued context. Then we usually do
not have clear information about the local properties. For instance, we still have no tools to study
the local behavior of multivalued flows near equilibria, we cannot say much about connections
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inside the attractor.

As exposed in the previous chapters, one of the subjects studied during the thesis was the
topological theory applied to nonlinear dynamical systems. One of the main references was the
book of Rybakowski (see (RYBAKOWSKI, 1987)). During its reading we were wondering if we
could develop a similar construction of Conley’s index applied to the univalued case to construct
such a concept in the multivalued case.

There are several steps to construct the Conley’s index for a nonempty compact invariant
set in (RYBAKOWSKI, 1987). We will summarize the idea in three basic (and large) steps:

1. Construct an isolating block;

2. Show that the isolating block together with its boundary defines an index pair.

3. Define the Conley’s index as the topological figure defined by its index pairs.

All these procedures require several constructions, we preferred not to get into details for the
sake of simplicity.

Here, we will show that we are able to use a similar construction made by Rybakowski
in Step 1. to construct the isolating block for compact isolated sets in the multivalued problems.
The construction we will present here appeared first in (MOREIRA; VALERO, 2022a).

The following steps (2. and 3.) were not developed yet. Although we are interested in
such steps, there are available in the literature some variations of definitions of Conley’s index.
So far as we know, we cannot say the same about the isolating block. We have not found any
other construction of this nice neighborhood.

We will present here the definition of an isolating block in the univalued sense. In order
to do that, we need to present the concept of egress, ingress and bounce-off points of a closed set.

Consider X a metric space and a semigroup {T (t) : t � 0}. Let B be a closed subset X
and denote its boundary by ∂B and its interior (B\∂B) by int(B).

1. x 2 ∂B is an egress point of B if, for a solution s : [�e,+•)! X of {T (t) : t � 0}, e � 0,
x = s(0), the following hold:

There is e2 > 0 such that s((0,e2]) 6⇢ B.

If e > 0 then, for some e1 2 (0,e), s([�e1,0))⇢ int(B).

2. x 2 ∂B is an ingress point of B if, for any solution s : [�e,+•)! X of {T (t) : t � 0},
e > 0, with x = s(0), the following properties hold:

There is e2 > 0 such that s((0,e2])⇢ int(B).

If e > 0, then we find e1 2 (0,e), s([�e1,0)) 6⇢ B.
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3. x 2 ∂B is an bounce-off point of B if, for any solution s : [�e,+•)! X , e � 0, with
x = s(0), the following properties hold:

There is e2 > 0 such that s((0,e2]) 6⇢ B, for t 2 (0,e2];

If e > 0, then for some e1 2 (0,e), s((0,e1]) 6⇢ B.

Definition 6.0.1. Under the notation above, we say that a closed subset B⇢ X is an isolating
block under the action of {T (t) : t � 0} if satisfies the following

(i) ∂B is the union of the ingress points of B, the egress points of B and the bounce-off points
of B.

(ii) The union of the set of egress points of B with the set bounce-off points of B is closed.

Figure 13 – Isolating block of a saddle-point

Examples of sets that admit an isolating block are the saddle-point equilibria, see Figure
13. The up and down parts on the boundary (in blue) represent the area where we have the ingress
points. The left and right parts (in red) on the boundary are the egress points. The vertices of the
polygon are the bounce-off points.

In this chapter, we prove the existence of isolating blocks for multivalued semiflows
defined on metric spaces under rather general assumptions. This is not a mere generalization, as
there are many subtle details that are quite different in the multivalued situation. Later, we apply
this result to a differential inclusion generated by reaction-diffusion problems with discontinuous
nonlinearities and show that we can construct isolating blocks in each of its non-zero equilibria.

6.1 Basic definitions
Let (X ,d) be a metric space and denote P(X) = {B⇢ X : B 6= /0}, while C(R+,X) is the

set of all continuous functions from R+ into X . Consider a multivalued map G : R+⇥X! P(X),
that is, a function that associates each (t,x) 2 R+⇥X to the nonempty subset G(t,x)⇢ X .
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Definition 6.1.1. We say that G is a multivalued semiflow if:

i) G(0,x) = x for all x 2 X ;

ii) G(t + s,x)⇢ G(t,G(s,x)) for all x 2 X and t,s� 0.

The multivalued semiflow is strict if, moreover, G(t + s,x) = G(t,G(s,x)) for all x 2 X
and t,s� 0.

A function f : R! X is called a complete trajectory of G through x 2 X , if f(0) = x
and f(t + s) 2 G(t,f(s)), for all t,s 2 R with t � 0.

We define R ⇢C(R+,X) to be the set of functions that satisfy the following properties:

(K1) For any x 2 X , we find f 2R such that f(0) = x;

(K2) Translation property: If f 2R, then ft(·) = f(t + ·) 2R, for all t 2 R+.

(K3) Concatenation property: Given any f1,f2 2 R with f1(s) = f2(0) for some s � 0, the
function f 2C(R+,X) given by

f(t) =

8
<

:
f1(t), if t 2 [0,s],

f2(t� s), if t 2 (s,+•),

also belongs to R.

(K4) Let {fn}n2N ⇢R be a sequence with fn(0)! x 2 X . Then, we find f 2R, f(0) = x and
such that fn! f uniformly on compacts of R+.

The functions from R generate the strict multivalued semiflow G : R+⇥X ! P(X)

given by
G(t,x) = {y 2 X : y = f(t),f 2R,f(0) = x}.

The functions f 2R are called solutions.

Definition 6.1.2. A point x 2 X is a fixed point of R, if f 2R, where f(t) = x, for all t � 0.

A function f : R! X is a complete trajectory of R if, for any t 2R, f(t + ·)
��
[0,+•) 2R.

Remark 6.1.3. Any complete trajectory of R is a complete trajectory of G. The converse is true
when the trajectory is continuous, see (KAPUSTYAN; KASYANOV; VALERO, 2014).

When we are in the multi-valued case, there are many ways of defining invariance.

Definition 6.1.4. Consider a set A⇢ X . We say that:

1. A is invariant if G(t,A) = A, for all t � 0;
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2. A is negatively (resp. positively) invariant if G(t,A)⇢ A (resp. A⇢ G(t,A)), for all t � 0.

3. A is weakly invariant if, for all x 2 A, we find a complete trajectory f of R such that
f(0) = x and f(t) 2 A, for all t 2 R.

4. A is weakly positively invariant if for every x 2 A and t � 0 it holds that G(t,x)\A 6= /0.

We will present a list of propositions whose proofs can be found in (COSTA; VALERO,
2017).

Proposition 6.1.5. Suppose that conditions (K1) to (K4) are verified. For a closed subset A⇢ X ,
the following statements are equivalent:

i) A is weakly positively invariant;

ii) For each x 2 A, there is f 2R with f(0) = x and f([0,+•))⇢ A.

Proposition 6.1.6. Suppose that conditions (K1) to (K4) are verified. Let A⇢ X be a compact
set which is negatively invariant. Then, for each x 2 A, there is a complete trajectory f of R with
f(0) = x and f((�•,0])⇢ A.

Consider B⇢ X and f 2R. We define the w-limit set of B as

w(B) = {y 2 X : 9{tn}n2N 2 R+, tn!+• and {yn}n2N 2 X ,yn 2 G(tn,B) and yn! y}

and the w-limit set of f as

w(f) = {y 2 X : 9{tn}n2N ⇢ R+, tn!+• and f(tn)! y}.

Definition 6.1.7. A closed subset A⇢ X is called an isolated weakly invariant set if A is a weakly
invariant set and we find an open neighborhood U ⇢ X of A, such that A is the maximal weakly
invariant set in U .

Assume (K1)-(K4) and let K be a closed, isolated and weakly invariant set. Let O(K) be
an open neighborhood of K. For any f 2R,f(0) 2 O(K), denote

tf = sup{t : f([0, t])⇢ O(K)}.

For any f 2R, f(0) = x 2 O(K) and sequence xn! x, fn 2R, fn(0) = xn 2 O(K),
the convergence fn! f means that

fn(s)! f(s) uniformly on [0, t] for t < tf .

For what we are going to do, we need to ask an additional assumption for R:
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(K5) There exists an open neighborhood O(K) such that, for any x 2 O(K) and f 2R, with
f(0) = x and any sequence xn! x there exists a subsequence fnk 2R, fnk(0) = xnk such
that fnk ! f uniformly on compact sets of [0, tf ).

Example 6.1.8. Here is an example of an ordinary differential equation without uniqueness.

Let us consider the equation
x0 =

p
|x|. (6.1)

The phase space is R. For x(0) = x0 > 0 the unique solution

x+ (t) =
⇣ t

2
+
p

x0

⌘2
, t � 0.

For x(0) = 0, we have infinite solutions given by

x(t)⌘ 0,

xt (t) =

8
<

:
0, 0 t  t,
(t�t)2

4 , t � t,

for all t � 0. We observe that x0 (·) is the maximal solution for x0 = 0 and x(·) is the
minimal solution for x0 = 0.

Now, for x0 < 0 the solutions are given by the following

x� (t) =

8
<

:
�
�
� t

2 +
p
�x0

�2
, 0 t  2

p
�x0,

0, t � 2
p
�x0,

x�t (t) =

8
<

:
�
�
� t

2 +
p
�x0

�2
, 0 t  2

p
�x0,

xt(t�2
p
�x0), t � 2

p
�x0,

.

for all t � 0.

Now, consider x0 = 0 and a sequence {xn}n2N 2 R+. It is clear there only one solution
passing through xn given by

x+n (t) = (
t
2
+
p

xn)
2, t � 0,n 2 N.

Now, as xn! x0 as n!+•,

x+n (t)!
t2

4
, for all t � 0.

Consequently, there is no subsequence of {x+n (·)}n2N that converges to the solution x(·)
on compact subsets of R+.

Therefore, this problem does not satisfy (K5).
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6.1.1 A di�erential inclusion with Lipschitz nonlinearity

For a Banach space X let Cv(X) be the set of all non-empty, bounded, closed, convex
subsets of X .

Let us consider the boundary-value problem
8
>><

>>:

∂u
∂ t
�Du 2 f (u)+q, on W⇥ (0,T ),

u = 0, on ∂W⇥ (0,T ),
u(x,0) = u0(x) on W,

(6.2)

where W⇢ Rn is an open bounded set with smooth boundary and q 2 L2(W). We assume that
the multivalued map f satisfies the following assumptions:

( f 1) f : R!Cv(R).

( f 2) f is Lipschitz in the multivalued sense, i.e. there is C � 0 such that

distH( f (x), f (z))C |x� z| , 8x,z 2 R. (6.3)

Let us define the multivalued map F : D(F)⇢ L2(W)! P(L2(W)) given by

F(y(·)) = {x (·) 2 L2(W) : x = ex +q, ex (x) 2 f (y(x)) a.e. on W}. (6.4)

It is known (MELNIK; VALERO, 1998, Lemmas 11, 12) that:

(F1) F : L2(W)!Cv(L2(W));

(F3) F is Lipschitz with the same Lipschitz constant as f , that is,

distH(F(u),F(v))Cku� vkL2 , 8u,v 2 L2 (W) .

The operator A=�D : H2(W)\H1
0 (W) is maximal monotone in L2 (W). Hence, inclusion

(6.2) can be written in the abstract form
8
<

:

du
dt

+Au 2 F(u), t > 0,

u(0) = u0 2 L2 (W) ,
(6.5)

If we assume additionally the existence of M � 0, e > 0 such that

zs (l1� e) |s|2 +M, 8s 2 R,8z 2 f (s), (6.6)

where l1 is the first eigenvalue of �D in H1
0 (W), then this problem generates a strict multivalued

semiflow in L2 (W) having a global compact attractor A (MELNIK; VALERO, 1998).

Let us check that the solutions of (6.5) satisfy property (K5).
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The function u 2C([0,+•),L2 (W)) is a strong solution of problem (6.5) if there is a
selection h 2 L2

loc(0,+•;L2 (W)), h(t) 2 F(u(t)) for a.a. t, such that u(·) is the unique strong
solution of the problem 8

<

:

du
dt

+Au = h(t), t > 0,

u(0) = u0 2 L2 (W) ,
(6.7)

which means that u(·) is absolutely continuous on any compact subset of (0,T ), it is almost
everywhere (a.e.) differentiable on (0,T ), and u(·) satisfies the equation in (6.7) a.e. on (0,T ).
Denote the solution of problem (6.7) by u(·) = I(u0)h(·). It is known (BARBU, 1976) that for
any ui(·) = I(ui

0)hi(·), i = 1,2, the next inequality holds:

ku1(t)�u2(t)kL2  ku1(s)�u2(s)kL2 +
Z t

s
kh1(t)�h2(t)kL2 dt, t � s. (6.8)

If we fix T > 0, it is known (TOLSTONOGOV, 1992) that for any z(·) = I(z0)g(·) and
any u0 2 L2 (W) there exists a solution u(·) = I(u0)h(·) of problem (6.5) such that

ku(t)� z(t)kL2  x (t), 8t 2 [0,T ], (6.9)

kh(t)�g(t)kL2  r(t)+2Cx (t), a.e. on (0,T ), (6.10)

where
r(t) = 2dist (g(t),F(z(t))) ,

x (t) = ku0� z0kL2 exp(2Ct)+
Z t

0
exp(2C(t� s))r(s)ds.

Concatenating solutions we can easily obtain a solution satisfying these inequalities for any
T > 0.

Lemma 6.1.9. Let u(·) = I(u0)h(·) be a solution to problem (6.5). Then for any sequence
un

0! u0 in L2 (W) there exists a sequence of solutions un (·) = I(un
0)hn (·) of problem (6.5) such

that un! u in C([0,T ],L2 (W)) for every T > 0.

Proof. Since h(t) 2 F(u(t)) for a.a. t, we have

r(t) = 2dist (h(t),F(u(t))) = 0 for a.a. t,

so in view of (6.9) for each un
0 there exist solutions un (·) = I(un

0)hn (·) of problem (6.5) such that

ku(t)�un(t)kL2  ku0�un
0kL2 exp(2Ct), 8t � 0.

Then the result follows.

Corollary 6.1.10. Property (K5) is satisfied in L2 (W).

Lemma 6.1.11. Let u(·) = I(u0)h(·) be a solution to problem (6.5) with u0 2 H1
0 (W). Then

for any sequence un
0! u0 in H1

0 (W) there exists a sequence of solutions un (·) = I(un
0)hn (·) of

problem (6.5) such that un! u in C([0,T ],H1
0 (W)) for every T > 0.
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Proof. From Lemma 6.1.9 we obtain the sequence un (·) = I(un
0)hn (·). Since un

0! u0 in H1
0 (W)

we can prove in a standard way that un! u in C([0,T ],H1
0 (W)).

Corollary 6.1.12. Property (K5) is satisfied in H1
0 (W).

6.2 Existence of the isolating block in the multivalued
case

Given a set V ⇢ X , define the sets ∂V , clV and intV as, respectively, the boundary of V ,
the closure of V and the interior of V . To be more precise:

intV = {x 2V : there is an open subset U ⇢ X with x 2U ⇢V},

clV = {y 2 X : for all open subset U ⇢ X , with y 2U,U \V 6= /0},

∂V = clV \ cl(X \V ).

The definitions that we present below were taken from (RYBAKOWSKI, 1987).

Definition 6.2.1. Given a closed isolated invariant set A⇢ X , we say that a closed set N ⇢ X is a
related isolating neighborhood if A⇢ int(N) (the interior of N) and A is the maximal isolated
weakly invariant set in N.

Definition 6.2.2. Let B ⇢ X be a closed set and x 2 ∂B be a boundary point. We have the
following definitions:

1. x is an egress point if for every s : [�d1,+•)! X , sd1 := s(�d1 + ·) 2R, x = s(0),
with d1 � 0, the following hold:

There is e2 > 0 such that s(t) /2 B, for t 2 (0,e2];

If d1 > 0 then, for some e1 2 (0,d1), s(t) 2 B for t 2 [�e1,0).

The set of egress points of B is denoted by Be.

2. x is an ingress point if for every s : [�d1,+•)! X , sd1 2R, x = s(0), with d1 � 0, the
following properties hold:

There is e2 > 0 such that s(t) 2 int(B), for t 2 (0,e2];

If d1 > 0 then for some e1 2 (0,d1), s(t) /2 B, for t 2 [�e1,0).

The set of ingress points of B is denoted by Bi.

3. x is an bounce-off point if for every s : [�d1,+•)! X , sd1 2R, x = s(0), with d1 � 0,
the following properties hold:

There is e2 > 0 such that s(t) /2 B, for t 2 (0,e2];

If d1 > 0 then for some e1 2 (0,d1), s(t) /2 B, for t 2 [�e1,0).

The set of bounce-off points of B is denoted by Bb.
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We usually denote B� = Be[Bb and we call it the exit set of B.

Definition 6.2.3. Let K be a closed isolated weakly invariant set. An isolating block of K is a
closed set B⇢ X which is an isolating neighborhood of K with ∂B = B�[Bi and such that B�

is closed.

Consider the multivalued semiflows {Gn(t) : t � 0}, n 2 N, and {G(t) : t � 0}, which
are generated by the respective sets Rn, n 2N, and R. Assume that K is a closed set of X , which
is also an isolated weakly invariant set for the semiflow G. In this situation, we may ask for
additional assumptions.

(KK4) Let {fn}n2N be a sequence with fn 2Rn, n 2 N, and fn(0)! x, for some x 2 X . Then,
we find f 2R, f(0) = x and such that fn! f uniformly on compacts of R+.

(KK5) There exists an open neighborhood O(K) such that, for any x 2 O(K) and f 2R, with
f(0) = x and any sequence xn! x in X , there exists a subsequence fnk 2Rnk , fnk(0) = xnk

such that fnk ! f uniformly on compact sets of [0, tf ).

Observe that if we consider Rn ⌘R, n 2 N, satisfying (KK4) (resp. (KK5)), then R

satisfies (K4) (resp. (K5)).

Definition 6.2.4. A closed set N ⇢ X is called {Gn}�admissible if, given sequences {xn}n2N,
{tn}n2N 2 R+, where tn ! +•, and {fn}n2N for which fn 2 Rn, fn(0) = xn, fn([0, tn]) ⇢ N,
n 2 N, we have that {fn(tn)}n2N has a convergent subsequence. We say that N ⇢ X is G-
admissible if it is {Gn}�admissible, where Gn = G, for all n 2 N.

Remark 6.2.5. We can change the hypothesis of admissibility of the semiflows by the collectively
asymptotic compactness, if we restrict the analysis over bounded isolating neighborhoods N. In
fact, collectively asymptotic compactness is stronger than admissibility.

We recall that {Gn(t) : t � 0}n2N is collectively asymptotic compact if, given any se-
quences {tn}n2N and fn 2 Rn, such that {fn(0)}n2N is bounded and tn ! +•, we have that
{fn(tn)}n2N has a convergent subsequence.

In the multi-valued case, there is the possibility of having more than one solution passing
through a point and therefore, we need to adapt the results related to the existence of the isolating
block, which are not directly applicable.

In this section, we will follow the construction made by Rybakowski in (RYBAKOWSKI,
1987), with the necessary adaptations, in order to construct the isolating block. This means
that, although we do not have uniqueness of solutions, we are still able to construct a closed
neighborhood for which its boundary describes the entry and exit directions. This result is our
contribution and can be also seen in (MOREIRA; VALERO, 2022a).
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Consider K to be a closed isolated weakly invariant set and N to be a closed isolating
neighborhood of K. Denote U = int(N) and define the sets U = {f 2 R : f(0) 2 U} and
N = {f 2R : f(0) 2 N}. Observe that U ⇢N .

For the multivalued semiflow G generated by R, we denote by A+
G(N) the set of points

y2N for which we find a f 2R such that f([0,+•))⇢N and f(0) = y. Also, denote by A�G(N)

the set of points y 2 N for which we find a complete trajectory f of R such that f((�•,0])⇢ N
and f(0) = y. Obviously, K ⇢A+

G(N)\A�G(N). Using (K3), we obtain that the converse is also
true, so K =A+

G(N)\A�G(N).

The following result is analogous to Theorem 4.5 in (RYBAKOWSKI, 1987).

Proposition 6.2.6. Let N ⇢ X be closed and G,Gn be multivalued semiflows, n 2 N. Denote
by Rn the set of functions related to Gn, n 2 N, and by R the set of functions related to G, that
satisfy the properties (K1)-(K4) and collectively satisfy (KK4).

Consider x 2 X and {xn}n2N 2 X with xn! x as n!+•. Suppose that, for each n 2 N,
we find fn 2Rn and tn 2 R+ such that fn(0) = xn and fn([0, tn])⇢ N. It follows:

(a1) If tn ! +• and fn ! f uniformly on compact sets of R+, then we find f 2 R with
f(0) = x and f(t) 2 N, for all t 2 R+.

(a2) If tn! t0, for some t0 2 R+, and fn! f uniformly on compact sets of R+, then we find
f 2R with f(0) = x and f([0, t0])⇢ N.

Assume that N is {Gnm}�admissible for every subsequence of {Gn}n2N. Then,

(b1) If tn!+• as n goes to +•, every limit point of {f (n)(tn)}n2N belongs to A�G(N).

(b2) Denote by Kn the largest weakly invariant set for Gn in N, n 2N. If W ⇢ N with K ⇢ intW ,
then Kn ⇢ intW for n sufficiently large.

(b3) If N is G-admissible, the sets K and A�G(N) are compact.

Proof. We prove each statement separately.

(a1) By (KK4), we find a f 2 R such that fn ! f uniformly on compact sets of R+. By
contradiction, suppose that for some T > 0, f(T ) /2 N. Then we would find a e > 0 with
Oe(f(T )) ⇢ X \N, and n0 2 N sufficiently large such that fn(T ) 2 Oe(f(T )), for all
n� n0. Consequently, tn < T , for all n� n0. This is a contradiction, since tn!+• as n
goes to +•. Therefore, for all t 2 R+, we have f(t) 2 N.

(a2) By (KK4), there is a f 2 R for which fn ! f uniformly on compact sets of R+. For
any e 2 (0, t0), repeating the same argument above taking T = t0� e , it follows that
f([0, t0� e])⇢ N. Since N is closed, we conclude that f([0, t0])⇢ N.
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(b1) By the admissibility of N, we find a subsequence {f (0)
n (t(0)n )}n2N ⇢ {fn(tn)}n2N such

that f (0)
n (t(0)n ) ! x as n ! +•. We can apply the same arguments for the sequence

{f (0)
n (t(0)n � 1)}n�n0 , where n0 2 N is such that t(0)n � 1, for n � n0. Then, we extract a

subsequence {f (1)
n (t(1)n �1)}n�n0 ⇢ {f (0)

n (t(0)n �1)}n�n0 such that f (1)
n (t(1)n �1)! y1 2

N. We construct a function y(1) : [�1,+•)! X with y(1)(�1) = y1 and y(1)(0) = x,
y(1)(·�1) 2R and y(1)([�1,0])⇢ N using the same construction applied in the proof
of Lemma 5 from (COSTA; VALERO, 2017).

Applying this argument recursively, for k 2 N, we find a subsequence
n

f (k+1)
n (t(k+1)

n � k�1)
o

n2N
⇢
n

f (k)
n (t(k)n � k�1)

o

n2N

such that f (k+1)
n (t(k+1)

n � k� 1)! yk+1 and we use the construction applied in Lemma
5, (COSTA; VALERO, 2017), to construct a connection between yk+1 and yk and con-
catenation to construct y(k+1) : [�k�1,+•)! X , with yk+1(·� k�1) 2R such that
y(k+1)([�k�1,0])⇢N, y(k+1)(�k�1) = yk+1 and y(k+1)(0) = x. Moreover, yk+1(t) =
yk(t), for t ��k.

Then we can define y : R! X with y(t) = y(k)(t) if t � �k. By construction, y is
well-defined, y(0) = x and y(t) 2 N for all t 2 (�•,0]. Also, y is a complete trajectory
of R. Therefore, we conclude that x 2 A�(N), as desired.

(b2) Suppose that we cannot find n0 2 N in those conditions. Then, we can assume, w.l.g., that
we find xn 2 Kn\N \ intW , for all n 2 N. By definition of Kn and Propositions 6.1.5 and
6.1.6, we find a complete trajectory fn : R! X of Rn with fn(0) = xn and fn(R) ⇢ N.
Consider the sequence {tn}n2N 2 R+ such that tn!+•. Define yn : R+! X given by
yn(t) = fn(t� tn), for all t � 0. By construction, yn([0, tn])⇢ N and, by the admissibility,
we find that {yn(tn)}n2N = {xn}n2N has a convergent subsequence to a point x0 2 A�G(N),
by (b1).

By (KK4), since xn = fn(0)! x0, we may assume that we find a f 2R such that f(0) = x0

and fn(t)! f(t) for all t � 0. Now, since fn converges to f and N is closed, we easily
obtain that f(t) 2 N for all t � 0.

Hence, x0 2 A�G(N)\A+
G(N) = K. But, at the same time, xn! x0, x0 2 cl(N \ intW ) =

N \ intW , which is a contradiction, since K ⇢ intW . Therefore, Kn⇢ intW , for n sufficiently
large.

(b3) We want to show now that if N is G-admissible, then A�G(N) and K are compact.

Consider {xn}n2N 2 A�G(N). Take a sequence {tn}n2N 2 R+ with tn ! +• as n goes
to +•. By definition of A�G(N), for each n 2 N, we find a complete trajectory yn in
R with yn((�•,0]) ⇢ N and yn(0) = xn. For each n 2 N, denote xn : [0,+•)! X as
xn(·) = fn

��
[0,+•)(·� tn) 2R. Then we have that xn(tn) = xn and xn([0, tn]) ⇢ N, for all



6.2. Existence of the isolating block in the multivalued case 121

n 2 N. The compactness of A�G(N) will follow by applying item (b1) to the sequence
{x (tn)}n2N, in the particular case Gn ⌘ G, n 2 N.

Suppose now that {xn}n2N ⇢ K. We can assume that xn! x 2 A�G(N), since K ⇢ A�G(N)

and A�G(N) is compact. Our goal is to show that we can find f 2R such that f(0) = x and
f(t) 2 N, for all t � 0. We just observe that, for each n 2 N, we can find fn 2Rn such
that fn(0) = xn and fn(R+)⇢ N. Then, by the property (KK4), we find f 2R such that
f(0) = x and fn(t)! f(t), for all t � 0. Since N is closed, it follows that f(R+) ⇢ N,
hence x 2 A+

G(N). Therefore, x 2 K and K is compact.

Before presenting the main theorem of this section, we need to define auxiliary functions
that play an essential role in the definition of the block. So, we will fix a multivalued semiflow G,
the sets /0 6=U ⇢ N with U = intN and we will denote A�G(N) simply by A�(N). We recall that
U = {f 2R : f(0) 2U} and N = {f 2R : f(0) 2 N}.

Basically, we will construct two functions, one “identifying” the stable part inside the
neighborhood N and the other “identifying” the unstable part inside the neighborhood N. For
these functions, we will prove results of monotonicity and upper semicontinuity that will be
important to characterize the flow behavior close to the invariant set.

Define the functions:

1. s+ : N ! R[{•},
s+(f) = sup{t 2 R+ : f([0, t])⇢ N},

2. t+ : U ! R[{•},
t+(f) = sup{t 2 R+ : f([0, t])⇢U},

3. F : X ! [0,1], F(x) = min{1,d(x,A�(N))},

4. D : X ! [0,1], D(x) = d(x,K)
d(x,K)+d(x,X\N) ,

5. g+ : U ! R+,

g+(x) = inf
f2U ,f(0)=x

inf
⇢

D(f(t))
1+ t

: 0 t < t+(f)
�
,

6. g� : N! R+,

g�(x) = sup
f2N ,f(0)=x

sup

(
a(t)F(f(t)) :

0 t  s+(f), if s+(f)< •,

0 t <+•, otherwise

)
,

where a : [0,•)! [1,2) is a monotone increasing C•�diffeomorphism.
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Observe that the functions F and D are continuous since they can be written as composi-
tions of continuous functions. In that situation, we find the following result

Proposition 6.2.7. Assume (K1)-(K4). The function g+ is increasing along solutions as long the
orbits are in U . To be more precise, given x,y 2U , for which there are j 2R and t > 0, with
j(0) = x, y = j(t) and j([0, t])⇢U , it follows that g+(x) g+(y).

Moreover, if g+(x) 6= 0, then g+(x)< g+(y).

Proof. Consider x,y2U such that there are j 2R, t > 0, with j(0) = x, j(t) = y and j([0, t])⇢
U . We want to show that g+(x) g+(y).

In order to simplify, for any y 2U , define

f+(y) = inf
⇢

D(y(t))
1+ t

: 0 t < t+(y)

�

and the sets Uz = {f 2 U : f(0) = z}, for z = x,y. Then, for each f 2 Uy we can define a
y 2Ux as the concatenation of j and f , which is well-defined by (K3). The set of such functions
y will be denoted by Uxy. We will show that f+(y) f+(f). In fact,

f+(y) = inf
✓⇢

D(j(s))
1+ s

: s 2 [0, t]
�
[
⇢

D(f(s� t))
1+ s

: s 2 [t, t+(y))

�◆

 inf
⇢

D(f(s� t))
1+ s

: s 2 [t, t+(y))

�
= inf

⇢
D(f(u))
1+u+ t

: u 2 [0, t+(f))
�
 f+(f),

where we have used that t+(y) = t+(f)+ t, by construction.

Thus

g+(x) = inf
f2Ux

f+(f) inf
y2Uxy

f+(y) inf
f2Uy

f+(f) = g+(y).

Now, assume that g+(x) 6= 0. So, we find µ > 0 such that f+(ft)� f+(f)� µ , where
for ft(·) = f(t + ·), for all f 2Ux. Now, there is t = t(f)� t for which f+(ft) =

D(ft(t�t))
1+(t�t)) .

Hence,

f+(ft)� f+(f)
t

� 1
t

✓
D(f(t))

1+(t� t)
� D(f(t))

1+ t

◆
� D(f(t))

(1+ t)2 �
f+(f)
1+ t

� µ
1+ t

.

We claim that there is µ0 > 0 such that µ
1+t(f) � µ0, for all f 2 Uxy. If this were not

true, we would find a sequence f (n) 2Uxy and {tn}n2N 2 [t,+•) with tn!+• and such that

f+(f (n)
t ) = D(f (n)

t (tn�t))
1+(tn�t) . But then we would have

0 < g+(x) g+(y) = inf
f2Uxy

f+(ft) inf
n2N

f+(f (n)
t ) = inf

n2N
D(f (n)

t (tn�t))
1+tn�t  inf

n2N
1

1+tn�t = 0,

which is a contradiction. Therefore, we find µ0 > 0 which implies that g+(x)+µ0t  g+(y) and,
consequently, g+(x)< g+(y), as desired.
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The above proposition is the analogous to the item (2) in (RYBAKOWSKI, 1987,
Proposition 5.2) in the single-valued case. Further, we will show the monotonicity of g�.

Proposition 6.2.8. Assume (K1)-(K4). Let the closed set N be G-admissible. The function g� is
decreasing along solutions as long the orbits stay on N. To be more precise, if x,y 2 N and there
are j 2R and s > 0, with j(0) = x, y = j(s) and j([0,s])⇢ N, then g�(x)� g�(y).

Moreover, if g�(x) 6= 0, then g�(x)> g�(y).

Proof. Let x,y 2 N, j 2R and s 2 R+ be as in the hypothesis. Consider, for any f 2N ,

f�(f) = sup

(
a(t)F(f(t)) :

0 t  s+(f), if s+(f)< •,

0 t <+•, otherwise

)

and the sets Nz = {f 2N : f(0) = z}, for z= x,y, and Nxy = {f 2N : f(0) = x and f(s) = y}.
For each f 2Ny, by (K3), we can define a y 2Nxy as the concatenation of j with f . Similarly
to what was done to f+, it can be proved that f�(y)� f�(f).

Consequently,

g�(x) = sup
f2Nx

f�(f)� sup
y2Nxy

f�(y)� sup
f2Ny

f�(f) = g�(y),

that is, g�(x)� g�(y).

We want to show that, if g�(x) 6= 0, we have g�(y) < g�(x). By definition, g�(x) =
supf2Nx

f�(f), which implies that, for at least one f 2Nx, we have f�(f) 6= 0. In particular,
x = f(0) /2 A�(N) and F(x)> µ , for some µ > 0.

In order to obtain the desired result, we will show that there is d > 0 such that, for all
f 2Nx, we have f�(f)> d + f�(fs). If this can be proved, we may take supremum in both
sides and we would find, for y = f(s),

g�(x)� sup
f2Nxy

f�(f)� sup
f2Nxy

f�(fs)+d = g�(y)+d ,

which implies g�(x)> g�(y).

If there does not exist such d > 0, then, for each n 2 N, we would find f (n) 2Nx with

f�
⇣

f (n)
⌘
 f�

⇣
f (n)

s

⌘
+

1
1+n

.

By (K4), since {f (n)(0) = x}n2N is convergent, we may assume f (n)! f uniformly on
compacts of R+, for some f 2Nx. So, up to a convergent subsequence, we find

0 < µ  b := lim
n!+•

f�(f (n)) lim
n!+•

f�(f (n)
s ).

Now, for each n 2N, we find tn, rn,gn,hn 2R+ such that f�(f (n)) = a(tn)F(f (n)(tn))+
gn, f�(f (n)

s ) = a(rn)F(f (n)
s (rn)) +hn = a(rn)F(f (n)(rn + s)) +hn and gn,hn ! 0. Without
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loss of generality, we may assume that tn! t0 and rn! r0 as n goes to +•, for some t0,r0 2
R+[{+•}.

Suppose initially that tn!+• as n goes to +•. Since N is admissible and f (n)([0, tn])⇢
N, by Proposition 6.2.6 we find y 2 A�(N) such that, up to a subsequence, f (n)(tn)! y as n
goes to +•. Consequently, F(f (n)(tn))! F(y) = 0 and, since a(tn)! a  2, we conclude that
b = 0, which is a contradiction.

On the other hand, assume that tn! t0 <+•. Since b 6= 0, we also have rn! r0 <+•.
It follows that b = a(t0)F(f(t0)) a(r0)F(f(r0 + s)).

But now, for any n 2 N, by definition of tn, we have

a(rn + s)F(f (n)(rn + s)) a(tn)F(f (n)(tn))

and, by applying the limit, we find

a(r0 + s)F(f(r0 + s)) a(r0)F(f(r0 + s)) =) a(r0 + s) a(r0),

since F(f(r0 + s)) 6= 0. This is a contradiction with a being a strictly increasing function.

Therefore, we can find d > 0, as desired, and the assumption follows.

The above result is the analogous of the item (3) in (RYBAKOWSKI, 1987, Proposition
5.2) in the univalued case. Propositions 6.2.7 and 6.2.8 have shown the monotonicity of g± for
points in the same orbit.

The following result describes the role that g+ and g� have on identifying weakly
invariant regions.

Proposition 6.2.9. Assume (K1)-(K4). Let K 6= /0 be a closed isolated weakly invariant set.
Suppose that N is a closed isolating neighborhood of K. The following holds:

i) Consider x 2U . If g+(x) = 0, then x 2 A+(N).

ii) Consider x 2 N. We have that g�(x) = 0 if, and only if, x 2 A�(N).

If x 2 N and g�(x) = 0, it follows that g�(y) = 0 for all values y = f(t), where f 2R

with f(0) = x and t 2 [0,s+(f)).

Proof. Consider f+ and f� as given in the proof of the proposition above.

We first proof item i).

If g+(x) = 0, then, for each n 2 N, we find fn 2R, with fn(0) = x and f+(fn)<
1

1+n .
Consequently, for each n 2 N, we find tn 2 [0, t+(fn)) with

D(fn(tn))
1+ tn

<
1

n+1
. (6.11)
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We may assume, w. l. g., that as n goes to +•, fn! f uniformly on compact sets of R+, for
some f 2R, with f(0) = x, and tn! t0, for some t0 2R+[{+•}. In particular, by Proposition
6.2.6, we find f([0, t0))⇢ N. Now, if t0 =+•, then x 2 A+(N) follows. On the other hand, if
t0 <+•, by (6.11), we have that D(f(t0))

1+t0
= 0. This means that f(t0) 2 K. In particular, there is

y 2R with y(0) = f(t0) and y(R+)⇢ N. Consider h 2R, the concatenation between f and
y , which is well-defined by the property (K3). By construction, h (t) 2 N for all t � 0 and, then,
x 2 A+(N).

For item ii), suppose first that g�(x) = 0 for some x 2 N. Hence, for any f 2R, with
f(0) = x, we have f�(f) = 0. In particular, F(x) = 0, which implies that x 2 A�(N).

Consider now that x 2 A�(N) and f 2 R, with f(0) = x. Fix t 2 [0,s+(f)), and let
y= f(t). We want to show that y2A�(N). In fact, since x2A�(N), there is a complete trajectory
y of R with y(0) = x and y((�•,0])⇢ N. Using (K2) and (K3), we have the concatenation of
y and f , which is denoted by j , satisfies j((�•,0])⇢ N with j(0) = y. Consequently, for any
y 2 f([0,s+(f))), we have that y 2 A�(N) and f�(f) = 0, since t 2 [0,s+(f)) was arbitrary.
Therefore, g�(x) = 0, by definition.

The second part follows from the above, since we have shown that the points y 2 N such
as in the hypothesis are also in A�(N).

Lemma 6.2.10. Assume (K1) to (K4). Let K 6= /0 be a closed isolated weakly invariant set.
Suppose that N is a closed isolating neighborhood of K and that g+ is not lower semicontinuous
at x 2U = int N. Then we can find sequences {xn}n2N 2U , {fn}n2N 2R, {tn}n2N 2 R+ and
f 2Ux satisfying xn! x and fn! f , uniformly on compact sets of R+, as n!+• and, for all
n 2 N, fn(0) = xn, t+(f)< tn < t+(fn) and D(fn(tn))

1+tn < g+(x).

Proof. If g+ is not lower semicontinuous at x 2 U , we find µ > 0 and {xn}n2N 2 U with
g+(xn) < µ < g+(x), for all n 2 N, and xn ! x as n! +•. Then, for each n 2 N, we find
fn 2R, fn(0) = xn, and tn 2 (0, t+(fn)) such that

D(fn(tn))
1+ tn

< µ.

Now, by (K4), we may assume that fn ! f uniformly on compact sets of R+, for
some f 2 Ux. Observe that t+(f) < +•, since f+(f) � g+(x) 6= 0. Following the proof of
Proposition 6.2.6, {t+(fn)}n�n0 is bounded, for n0 sufficiently large, which assures that the
sequence {tn}n�n0 is also bounded. Without loss of generality, we may assume that there is a
t0 2 R+ for which tn! t0 as n!+•.

Since D(fn(tn))
1+tn ! D(f(t0))

1+t0
, as n!+•, it follows that D(f(t0))

1+t0
 µ . Necessarily, we must

have t0 > t+(f) and then tn > t+(f) for n sufficiently large.

Therefore, we just need to replace {xn}n2N, {fn}n2N and {tn}n2N by proper choices of
subsequences and the result follows.
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Now, we want to show that, if we restrict the domain of these functions to an appropriate
neighborhood of K, g+ and g� will be continuous functions.

Proposition 6.2.11. Assume (K1) to (K4). Let K 6= /0 be a closed isolated weakly invariant set.
Suppose N is a closed G-admissible isolating neighborhood of K. The following holds:

1) Suppose that we have {fn}n2N,f 2R with fn! f uniformly on compact sets of R+.
If t+(f) > µ , for some µ > 0, then there is n0 2 N such that t+(fn) > µ , for all n 2 N,
n� n0. If s+(f)< t , for some constant t > 0, then there is n0 2 N, such that s+(fn)< t ,
for all n 2 N, with n� n0.

2) Assuming (K5), we can prove that g+ is upper-semicontinuous in U \O(K). Also, the
map g+ is continuous in a neighborhood of K in O(K)\U .

3) The map g� is upper-semicontinuous in N. Assuming (K5), g� is continuous in any
neighborhood W of K in U \O(K) for which t+(f) = s+(f), for any f 2U with f(0) 2
W .

Proof. 1) Since µ < t+(f), we have f([0,µ]) ⇢U . Now, U is open and, by the uniform
convergence of {fn}n2N, we find n0 2 N, such that

fn([0,µ])⇢U, for all n 2 N, n� n0.

Hence µ < t+(fn), for all n � n0. The strict inequality comes from the fact that either
t+(fn) = +• or t+(fn)<+• and fn(t+(fn)) 2 ∂U .

For the second part, assume that there is a t > 0, such that s+(f)< t . Then, by definition
of s+(f), we can find T 2 (s+(f),t) for which f(T ) 2 X \N. The set X \N is open,
since N is closed. Hence, we find an open set W ⇢ X \N, such that f(T ) 2W . Since
fn(T )! f(T ) as n!+•, we find a n1 2N for which fn(T )2W , for all n� n1. Therefore,
s+(fn) T < t , for all n� n1.

2) Consider x0 2O(K)\U and µ > g+(x0). We want to show that we can find a neighborhood
W of x0 in O(K)\U such that, for each z 2W , we have g+(z)< µ . If this is not true, then
we would find a sequence {yn}n2N ⇢ O(K)\U such that yn! x0 and g+(yn)� µ .

Consider f 2 R, with f(0) = x0 and f+(f) < µ . Using (K5), we find a subsequence
ynk and fk 2R, with fk(0) = ynk and fk ! f uniformly on compact sets of R+. Since
f+(f)< µ , we find t0 2R+, t0 < t+(f) such that D(f(t0))

1+t0
< µ . By item 1), there is k0 2N

such that t0 < t+(fk) and D(fk(t0))
1+t0

< µ , for all k � k0. Hence, for k � k0, we have

µ  g+(ynk) f+(fk)
D(fk(t0))

1+ t0
< µ

which is a contradiction. Therefore, g+ is upper semicontinuous at any x0 2 O(K)\U .



6.2. Existence of the isolating block in the multivalued case 127

We also want to show that there is an open neighborhood W of K with W ⇢ O(K)\U
for which g+ is lower semicontinuous in W . In fact, if this result is not true, we find a
sequence {xn}n2N 2 O(K)\U such that

d(xn,K)! 0, as n goes to +•, (6.12)

and g+ is not lower semicontinuous at xn, for all n 2 N. By Proposition 6.2.6, the set K is
compact and we may assume that {xn}n2N converges to some x0 2 K as n goes to +•.

Using the Lemma 6.2.10, for each n 2 N, we find:

i) A sequence {xm
n }m2N ⇢ O(K)\U with xm

n ! xn as m goes to +•;

ii) A sequence of solutions f m
n 2R, with f m

n (0) = xm
n , m 2 N, and such that f m

n ! fn,
for some fn 2R with fn(0) = xn;

iii) A sequence {tm
n }m2N 2R+ with t+(fn)< tm

n < t+(f m
n ) and with D(f m

n (tm
n ))

1+tm
n

< g+(xn).

For each n 2 N, we denote yn = xmn
n , tn = tmn

n , yn = f mn
n , for some mn 2 N such that

d(yn,xn)< 2�n, d(yn(t+(fn)),∂U)< 2�n,

t+(fn)< tn < t+(yn) and with

D(yn(tn))
1+ tn

< g+(xn). (6.13)

We will show that {t+(fn)}n2N is bounded, hence fn(t+(fn))2 ∂U , n2N, and f m
n (t+(fn))!

fn(t+(fn)) as m goes to +•.

By contradiction, assume that t+(fn)!+• as n!+•.

For all n 2 N, set sn = t+(fn)
2 , and we have fn(sn) 2 N and sn ! +• as n goes to +•.

By the admissibility of N and Proposition 6.2.6, we may assume that fn(sn) converges
to some y0 2 A�(N). On the other hand, by (K4), we may assume that hn 2R given by
hn(·) = fn(sn + ·), n 2 N, converges to some h 2R with h(0) = y0. Arguing as above,
since t+(hn) = sn!+•, we have t+(h) =+• and h(R+)⇢N. Thus y0 2 A+(N), which
implies that y0 2 K.

By (6.13) and the definition of g+ we have, for each n 2 N,

D(yn(tn))<
(1+ tn)D(f(sn))

1+ sn
. (6.14)

Observe that our choice of yn implies that yn([0, t+(fn)])⇢ N, for all n 2N, and, since N
is admissible, we may assume that yn(t+(fn))! z0 2N as n goes to +•, and z0 2 A�(N),
by Proposition 6.2.6.

Now we have two other possibilities: either {tn� t+(fn)}n2N is bounded or not.
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– Suppose that {tn� t+(fn)}n2N is bounded and, without loss of generality, we may
assume that as n goes to +•, we have tn� t+(fn)! t0, for some t0 2 R+. Then

1+ tn
1+ sn

=
(1+ t+(fn))+ tn� t+(fn)

1+ t+(fn)
2

is uniformly bounded for n 2 N. Observe that D(fn(sn))! D(y0) = 0 as n! +•
and, then, by (6.14),

D(yn(tn))! 0 as n!+•. (6.15)

For each n 2N, define jn : R+! X given by jn(·) = yn(t+(fn)+ ·), which belongs
to R, by (K2). By (K4), we may assume that jn! j uniformly on compact sets of
R+, for some j 2R, with j(0) = z0. As a consequence, yn(tn) = jn(tn�t+(fn))!
j(t0) as n goes to +•. Using that D is continuous and (6.15), we have D(j(t0)) = 0
and, consequently, j(t0) 2 K. Also, j([0,t0])⇢ N, by jn([0, tn� t+(fn)])⇢ N and
by the argument in Proposition 6.2.6. It is easy to see that z0 2 A+(N), using property
(K3).

Therefore, z0 2 K\∂U = /0, which is a contradiction.

– If {tn�t+(fn)}n2N is unbounded, we may assume that tn�t+(fn)!+• as n!+•.

For each n 2 N, define jn 2R as above, hence jn([0, tn� t+(fn)])⇢ N. Again, by
(K4), we may assume that jn ! j uniformly on compact sets of R+, for some
j 2 R, with j(0) = z0. By the arguments in Proposition 6.2.6, we can conclude
that j(R+) ⇢ N. Therefore, z0 2 A+(N) and we arrive at a contradiction since
z0 2 A�(N)\∂U .

Thus, the only remaining possibility is that the sequence {t+(fn)}n2N is bounded. There-
fore, without loss of generality, we may assume that t+(fn)! t0, for some t0 2 R+.

We can also prove that {t+(yn)}n2N is bounded. In fact, if this is not true, by (K4), we
could assume that yn ! y uniformly on compacts of R+, for y 2 R, y(0) = x0 and
t+(y) = +•, by the argument in Proposition 6.2.6. Since x0 2 K, y([0,+•))⇢ N, and
K is the largest weakly invariant set in this neighborhood, we conclude, using (K3), that
y([0,+•)) ⇢ K. On the other hand, by the choice of yn 2 X , n 2 N, and the uniform
convergence of yn to y , we find y(t0) 2 ∂U. Hence, we have a contradiction.

Therefore, {t+(yn)}n2N is also bounded and it may be assumed to be convergent to a
point t 2 R+. Since t+(fn) < t+(yn), for all n 2 N, we have t0  t. As a consequence,
{tn}n2N is bounded and we may assume tn! t , for some t 2 [t0, t]. By (6.12), we have
that g+(xn)! 0 which, together with (6.13), implies D(y(t)) = 0.

We will show that y(t0) 2 A+(N)\A�(N) = K, but y(t0) 2 ∂U , and that will leads us to
a contradiction.
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It is easy to see that y(t0)2A�(N), since y(0)= x0 2K⇢A�(N) and y([0, t0])⇢N. Also
y(t) 2 K ⇢ A+(N), which means that we find y1 2R, y1(0) = y(t), and y1(R+)⇢ K.
Hence, by (K2) and (K3), the map x : R+! X given by

x (t) =

8
<

:
y(t0 + t), if t 2 [0,t� t0]

y1(t� t + t0) if t � t� t0

belongs to R, x (0) = y(t0) and x (R+) ⇢ N. Consequently, y(t0) 2 A+(N). Thus, we
have a contradiction.

Therefore, there exists an open neighborhood W of K with W ⇢ O(K)\U for which the
restriction of g+ to W is also lower semicontinuous.

3) Suppose, by contradiction, that g� is not upper semicontinuous in N. Then, for some x0 2N,
we could find µ > 0 and a sequence {xn}n2N 2N with xn! x0 and g�(x0)< µ < g�(xn),
for all n 2 N.

Then, for each n2N, we find fn 2R, fn(0)= xn, with f�(fn)> µ . We also find {tn}n2N 2
R+ such that tn 2 [0,s+(fn)) and a(tn)F(fn(tn))> µ , for all n 2 N. We may assume, w. l.
g., that fn! f , uniformly on compact sets of R+, for some f 2R with f(0) = x0.

There are two possibilities: {tn}n2N is bounded or tn!+• as n goes to +•.

In the first case, we may assume that tn converges to some t0 2 R+ as n goes to +•.
Thus, µ  a(t0)F(f(t0)). By the hypothesis, it follows that f�(f)< µ , hence t0 > s+(f).
Consequently, there is a T 2 (s+(f), t0) such that f(T ) 2 X \N. Since X \N is open,
fn(T )! f(T ) and tn! t0 as n goes to +•, we find n0 2 N sufficiently large such that
fn(T ) 2 X \N and T  tn0 < s+(fn0). But this is a contradiction with the definition of
s+(fn0).

Now, if we assume that tn ! +•, then s+(f) = +•. Taking a subsequence if nec-
essary, we have fn(tn) ! y, for some y 2 A�(N), by Proposition 6.2.6. As a conse-
quence, a(tn)F(fn(tn))! 0 as n!+•. But this is a contradiction with the hypothesis
µ < a(tn)F(fn(tn)), for all n 2 N.

Therefore, g� is upper semicontinuous in N.

Now, we want to show that g� is lower semicontinuous in any neighborhood W of K
in O(K)\U for which t+(f) = s+(f), for all f 2 R with f(0) 2W . Consider any
neighborhood W satisfying the required conditions. Assume, by contradiction, that there
is a x 2W , such that g� is not lower semicontinuous at x. Then, we can find µ > 0, x 2W
and a sequence {xn}n2N 2W with xn! x as n!+• and

g�(xn) µ < g�(x). (6.16)

Hence, we find f 2 R, f(0) = x such that µ < f�(f). By definition of f� and by
t+(f) = s+(f), we find t 2 (0,s+(f)) such that f([0,t]) ⇢ U and a(t)F(f(t)) > µ .
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Using (K5), we may assume that we find a sequence {fn}n2N 2R, with fn(0) = xn, n2N,
and such that fn! f uniformly on compact sets of R+. The continuity of F assures that
we can find n0 2 N, such that, for all n� n0, fn([0,t])⇢U and

a(t)F(fn(t))> µ.

On the other hand, by (6.16) it follows that

µ < a(t)F(fn(t)) f�(fn) g�(xn) µ,

which is a contradiction.

Lemma 6.2.12. Assume (K1)-(K4). Let K 6= /0 be a closed isolated weakly invariant set. Suppose
N is a closed G-admissible isolating neighborhood of K. Assume that we have a sequence
{xn}n2N 2U such that g+(xn)! 0 and g�(xn)! 0 as n! +•. Then we find a subsequence
{xnm}m2N and x 2 K such that xnm ! x as m!+•.

Proof. By the definition of g+, for each n 2 N, we can find fn 2Uxn , such that f+(fn)! 0 as
n!+•.

Now, by definition of g�, f�(fn)! 0 and, consequently, d(xn,A�(N)) = F(xn)! 0 as
n!+•. Since A�(N) is compact, by Proposition 6.2.6, we may assume that xn! x, for some
x 2 A�(N).

Now, we have two possibilities: Either {t+(fn)}n2N is bounded or it is unbounded.

i) Suppose that there exists a M > 0 such that t+(fn) < M for all n 2 N. Then, for each
n 2 N, we find tn 2 [0, t+(fn)] with

f+(fn)�
inf{D(fn(t)) : t 2 [0, t+(fn)]}

1+M
=

D(fn(tn))
1+M

. (6.17)

Without loss of generality we may assume that tn! t0 < •, as n!+•, for some t0 2R+.
By (K4) and Proposition 6.2.6, we may assume that there is f 2R with f(0) = x and
f([0, t0]) ⇢ N, for which fn! f uniformly on compact sets of R+. Since D(fn(tn))!
D(f(t0)) as n!+•, by (6.17), we obtain D(f(t0)) = 0 and f(t0) 2 K.

In particular, it follows that x 2 A+(N). Thus x 2 K.

ii) If {t+(fn)}n2N is unbounded.

We may assume that t+(fn)!+• and, by Proposition 6.2.6, we have x 2 A+(N).

Therefore, x 2 A�(N)\A+(N) = K, as desired.
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Lemma 6.2.13. Let K 6= /0 be a closed isolated weakly invariant set. Assume (K1)-(K5). Suppose
N is a closed G-admissible isolating neighborhood of K. Consider e > 0 and the set

He = {x 2U \O(K) : g+(x)< e, g�(x)< e}.

Then He is open in U \O(K). We can choose e > 0 small enough such that g+ is
continuous on clHe and clHe is an isolating neighborhood of K.

Proof. Since, by Proposition 6.2.11, both g+ and g� are upper semicontinuous in U \O(K), He

is open for every e > 0. Observe that K ⇢ He since g+(x) = g�(x) = 0, for all x 2 K.

Consider W ⇢U \O(K), an open neighborhood of K for which g+ is continuous in W ,
whose existence is assured by Proposition 6.2.11. We want to show that there is e > 0 such
that clHe ⇢W . If this was not true, then we would find sequences {en}n2N 2 R+, {yn}n2N 2 X ,
with yn 2 clHen \W , for all n 2 N, and en! 0 as n!+•. For each n 2 N, take xn 2 Hen with
d(xn,yn) < en. It follows that g+(xn) and g�(xn) go to 0 as n! +•. By Lemma 6.2.12, we
may assume that xn! x 2 K and then yn! x. We thus obtain that x 2 K but x 62W , which is a
contradiction since K ⇢W . Therefore, g+ is continuous in clHe .

Finally, as K ⇢ He ⇢ N, the largest weakly invariant subset of He contains K and it must
be inside N, hence it must be K.

Theorem 6.2.14. Let K 6= /0 be a closed isolated weakly invariant set. Suppose that R satisfies
(K1)-(K5) and that there is a closed isolating neighborhood N of K which is G-admissible. Then
there exists an isolating block B with K ⇢ B⇢ N.

Proof. Choose e0 > 0, the number provided in Lemma 6.2.13. For e = e0
2 , Ũ = He and Ñ =

clHe ⇢U \O(K).

Define the functions t̃+, s̃+ and g̃+, g̃� as before, with U (resp. N) replaced by Ũ (resp.
Ñ). Observe that all the previous results can be applied to these functions defined above. It is
also easy to see that Ñ is admissible.

We want to show that t̃+(f) = s̃+(f), for every f 2R, with f(0) 2 Ũ . Clearly, t̃+(f)
s̃+(f), for every f 2R, with f(0) 2 Ũ . Suppose, by contradiction, that we can find x 2 Ũ and
y 2R with y(0) = x and such that t̃+(y)< s̃+(y).

We have y = y(t̃+(y)) 2 ∂Ũ ⇢U \O(K). Hence, either g+(y)� e or g�(y)� e . Since
x 2 Ũ and g�(x) � g�(y), by Proposition 6.2.8, it follows that the last scenario above cannot
happen. So, necessarily g+(y)� e . Now as y2 ∂Ũ , we find a sequence {yn}n2N 2 Ũ with yn! y
as n!+•. Then g+(yn)< e and then, by the continuity of g+ in He0 , we have g+(y) = e .

Choose t 2 (t̃+(y), s̃+(y)). Then y([0, t])⇢ Ñ and we have g+(y(t)) e . On the other
hand, the strict inequality property of g+ along orbits in U implies that g+(y(t))> g+(y) = e ,
which is a contradiction.
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Therefore, t̃+(f) = s̃+(f), for all f 2R, with f(0) 2 Ũ . Consequently, by Proposition
6.2.11, we conclude that g̃� is continuous in Ũ .

Take d 2 (0,e) and define

B = clHd = cl{x 2 Ũ : g̃+(x)< d , g̃�(x)< d}.

Applying Lemma 6.2.13 to Ũ and Ñ we obtain d < e such that:

• H̃d is open in U \O(K), K ⇢ H̃d and clH̃d ⇢U \O(K);

• g̃+, g̃� are continuous on clH̃d .

Let us show that B⇢He . In fact, if x2B, then x2 Ũ and there is a sequence {xn}n2N 2Hd

with xn! x, as n! •. Hence g̃+(xn)< d and g̃�(xn)< d . The continuity of g̃+ and g̃� imply
that g̃+(x), g̃�(x) d < e .

Now, observe that ∂B = b�[b+[b?, where

b� = {x 2 ∂B : g̃+(x) = d , g̃�(x)< d},

b+ = {x 2 ∂B : g̃+(x)< d , g̃�(x) = d},

b? = {x 2 ∂B : g̃+(x) = d , g̃�(x) = d}.

Consider a point x 2 ∂B and a function f : [�t1,+•)! X such that f(·+ t1) 2R with
f(0) = x and f([�t1,t2])⇢ Ũ , for constants t1 � 0 and t2 > 0.

• Suppose that x 2 b�. By definition of b� and the monotonicity of g̃+ and g̃� along orbits
we have, for t 2 (0,t2],

g̃+(f(t))> g̃+(x) = d and g̃�(f(t)) g̃�(x)< d .

Then f((0,t2])⇢ X \B.

Now if t1 > 0, since g̃+ is continuous and f(·+ t1) 2R, we find s1 2 (0,t1) such that
g̃+(f(s1)) 6= 0. By the monotonicity of g̃+ along orbits on Ũ , we find g̃+(f(t))< g̃+(x) =
d , for all t 2 [�s1,0). The continuity of g̃� assures that there is a t 2 [�s1,0) for which
g̃�(f(t))< d , for all t 2 [t,0).

Hence, f([t ,0))⇢ intB.

Therefore, each point of b� is an egress point, see Definition 6.2.2.

• Suppose that x 2 b+. By the monotonicity of g̃� along orbits in Ũ , we have, for t 2 (0,t2],

g̃�(f(t))< g̃�(x) = d ,
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and, since g̃+(x)< d , by the continuity of g̃+, we find t 2 (0,t2] such that g̃+(f(t))< d
for t 2 (0,t]. Hence, f((0,t])⇢ intB.

Also, if t1 > 0, by the monotonicity of g̃� and g̃+ along orbits on Ũ , we have g̃+(f(t))
g̃+(x)< d and g̃�(f(t))> g̃�(x) = d , for t 2 [�t1,0). Then f([�t1,0))⇢ X \B.

That means each point of b� is an ingress point.

• Suppose that x 2 b?. By the monotonicity of g̃+ and g̃� along orbits in Ũ , we have, for all
t 2 (0,t2], d = g̃+(x)< g̃+(f(t)) and d = g̃�(x)> g̃�(f(t)).

Also, if t1 6= 0, d = g̃+(x)� g̃+(f(t)) and d = g̃�(x)< g̃�(f(t)), for all t 2 [�t1,0).

Thus f(t) 2 X \B, for all t 2 [�t1,0)[ (0,t2].

That means each point of b? is a bounce-off point.

Finally, it is clear to see that B�= b�[b? is closed. Therefore, B is an isolating block

Theorem 6.2.15. Let eR �R be sets of functions satisfying (K1)� (K4) and let G̃� G be their
associated multivalued semiflows. Assume that K is a closed isolated weakly invariant set for G
with the closed isolating G-admissible neighborhood N. Also, let eK be a closed isolated weakly
invariant set for eG such that K ⇢ eK and N is an isolating eG-admissible neighborhood for eK as
well. Moreover, we suppose that eR satisfies (K5) for eK. Then there is an isolating block B for K.

Proof. Since eR satisfies (K1)-(K5) for eK, the set M = N\O(eK) (where O(eK) is the neigh-
borhood from condition (K5)) is a closed isolating admissible neighborhood of eK. Hence, by
Theorem 6.2.14, eK has an isolating block B for G̃. Since any j 2R belongs to R̃, B is also an
isolating block of K for G.

6.3 Application
Let us consider the differential inclusion

8
>>><

>>>:

∂u
∂ t
� ∂ 2u

∂x2 2 H0(u)+wu, on (0,•)⇥W,

u|∂W = 0,
u(x,0) = u0(x),

(6.18)

where W = (0,1), 0 w < p2, and

H0(u) =

8
><

>:

�1, if u < 0,
[�1,1] , if u = 0,
1, if u > 0

is the Heaviside function, see Figure 14.
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Figure 14 – Representation of the Heaviside function

Differential inclusions of the type appear when we have a reaction-diffusion equation
with a discontinuous nonlinearity and we complete the image of the function at the points of
discontinuity with a vertical line. Equations of this type appear in models of physical interest
(see, for example, (FEIREISL; NORBURY, 1991), (NORTH; CAHALAN, 1981), (TERMAN,
1983), (TERMAN, 1985)).

In this section, we will prove the existence of isolating blocks for the fixed points (but 0)
of problem (6.18) by using the results of Section 6.2. Also, we will prove a uniqueness theorem
for initial conditions of certain type.

6.3.1 Previous results

We recall what is known about the dynamics of problem (6.18).

Problem (6.18) can be written in a functional form. Indeed, we define the following
proper, convex, lower semicontinuous functions y i : L2(W)! (�•,+•]:

y1 (u) =

(
1
2
R

W |—u|2 dx, if u 2 H1
0 (W) ,

+•, otherwise,

y2 (u) =

( R
W

⇣
w u2

2 + |u|
⌘

dx, if |u(·)| 2 L1 (W) ,

+•, otherwise.

It is known (see e.g. (BARBU, 1976)) that the subdifferentials ∂y1 and ∂y2 of these functions
are given by

∂y1(u) =
⇢

y 2 L2(W) : y(x) =�∂ 2u
∂x2 (x), a.e. on W

�
,

∂y2(u) =
�

y 2 L2 (W) : y(x) 2 H0 (u(x))+wu(x) , a.e. on W
 
.

Hence, problem (6.18) can be rewritten in the abstract form
8
<

:

∂u
∂ t

+∂y1(u)�∂y2(u) 3 0,

u(0) = u0.
(6.19)

We observe that |u|=
R u

0 H0 (s)ds and D
�
∂y1�= H2 (W)\H1

0 (W) , D
�
∂y2�= L2 (W).

Definition 6.3.1. For u0 2 L2 (W) and T > 0 the function u 2C([0,T ] ,L2(W)) is called a strong
solution of problem (6.18) on [0,T ] if:
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(i) u(0) = u0;

(ii) u(·) is absolutely continuous on (0,T ) and u(t) 2 D
�
∂y1� for a.a. t 2 (0,T );

(iii) There exist a function g 2 L2 �0,T ;L2 (W)
�

such that g(t) 2 ∂y2(u(t)), a.e. on (0,T ), and

du(t)
dt
� ∂ 2u(t)

∂x2 �g(t) = 0, for a.a. t 2 (0,T ), (6.20)

where the equality is understood in the sense of the space L2(W).

Remark 6.3.2. Alternatively, equality (6.20) can be written as

du(t)
dt
� ∂ 2u(t)

∂x2 �h(t) = wu(t) , for a.a. t 2 (0,T ), (6.21)

where h 2 L2 �0,T ;L2 (W)
�

and h(t,x) 2 H0(u(t,x)), for a.e. t > 0, x 2W.

From (VALERO, 2001, Theorem 4, Lemmas 1 and 2) we know the following facts. For
each u0 2 L2 (W) and T > 0 there exists at least one strong solution u(·) of (6.18) and each solu-
tion can be extended to the whole semiline [0,•), so that they are global. Moreover, any solution
u(·) belongs to the space C

�
(0,+•) ,H1

0 (W)
�

and, if u0 2H1
0 (W), then u 2C

�
[0,+•),H1

0 (W)
�
.

Let D (u0) be the set of all strong solutions defined on [0,+•) for the initial condition
u0 and let R = [u02L2(W)D (u0). Let G : R+⇥L2 (W)! P

�
L2 (W)

�
be the map

G(t,u0) = {u(t) : u 2D (u0)},

which is a strict multivalued semiflow. Moreover, properties (K1)� (K3) are satisfied for R.
Also, (K4) is shown to be true in (COSTA; VALERO, 2017, Lemma 31).

Concerning the asymptotic behavior of solutions in the long term, G possesses a global
compact invariant attractor A (VALERO, 2001, Theorem 4), which is characterized by the union
of all bounded complete trajectories. In addition, A is compact in W 2�d ,p (W) for all d > 0,
p� 1 and

distW 2�d ,p (G(t,B),A )! 0, as t!+•,

for any bounded set B (ARRIETA; RODRÍGUEZ-BERNAL; VALERO, 2006). It follows then
that A is compact in C1 ([0,1]) and distC1 (G(t,B),A )! 0 as t ! +•. Also, it is proved in
(VALERO, 2005) that A is a connected set.

The structure of the attractor was studied in detail in (ARRIETA; RODRÍGUEZ-BERNAL;
VALERO, 2006). We summarize the main results. Problem (6.18) has an infinite (but countable)
number of fixed points: v0 ⌘ 0, v+1 , v�1 , v+2 , v�2 , ..., which satisfy the following properties:

1. v±k possess exactly k�1 zeros in (0,1) and v+k =�v�k , for all k 2 N;

2. v+1 ,v
�
1 are asymptotically stable (so for u0 = v±1 the solution is unique);
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3. 0, v±k , k � 2, are unstable;

4. v±k ! 0 as k! •.

We define the continuous function E : H1
0 (0,1)! R by

E (u) =
1
2

Z 1

0

����
∂u
∂x

����
2

dx�
Z 1

0

⇣
|u|+ w

2
u2
⌘

dx = y1 (u)�y2 (u) . (6.22)

It is shown in in (ARRIETA; RODRÍGUEZ-BERNAL; VALERO, 2006) that E is a Lyapunov
function and then that for any u 2D (u0), u0 2 L2 (W), there is a fixed point z such that u(t)!
z as t ! +•. We note that by the regularity of the solutions, E (u(t)) : (0,+•)! R is a
continuous function. We note also that if u0 2 H1

0 (W), then E (u(t)) is continuous on [0,+•).
Also, if f is a bounded complete trajectory, then there is a fixed point z such that f (t)! z
as t!�•. Therefore, the global attractor is characterized by the set of stationary points and
their heteroclinic connections. In (ARRIETA; RODRÍGUEZ-BERNAL; VALERO, 2006), some
of these connections have been established, although the question of determining the full set
of connections is still open. The fixed points are ordered by the Lyapunov function E in the
following way:

E (v1) = E
�
v�1
�
< E (v2) = E

�
v�2
�
< ... < E (vk) = E

�
v�k
�
< ... < E (0) = 0.

In particular, this implies that heteroclinic connections from v±k to v±j with k  j are forbidden.
Finally, we observe that the fixed point 0 is special, because for any other fixed point z = v+k
(or v�k ) there exists a solution u(·) starting at 0 such that u(t)! z as t!+•. The conclusion
is two-fold: on the one hand, for the initial condition u0 = 0 there exists an infinite number of
solutions; on the other hand, for any z = v+k (or v�k ) there exists an heteroclinic connection from
0 to z.

6.3.2 Isolating block

In order to understand the dynamics inside of the global attractor it is important to know
what happens in a neighborhood of each fixed point. Reasoning as in (COSTA; VALERO, 2017,
p.32) we can establish that each v+k (or v�k ), k � 1, is an isolated weakly invariant set, for k 2 N.
The point 0 is not isolated since v±k ! 0 as k!+•. Applying the results of the previous section
we will obtain the existence of an isolating block for each v+k (v�k ), k � 1.

It is not possible to apply directly Theorem 6.2.14, because the solutions of (6.18) do not
satisfy condition (K5), as the following lemma shows.

Lemma 6.3.3. There exists a sequence {un
0}n2N and a solution u(·) 2D(0) such that un

0! 0
and there is no subsequence of solutions {unk (·)}k2N with unk(0) = unk

0 such that unk ! u (in the
sense of (K5)).
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Proof. Let un
0 2 V 2r, 3

4 < r < 1, where V 2r = D(Ar) and A, D(A) = H2 (W)\H1
0 (W), is the

operator � d2

dx2 with Dirichlet boundary conditions. For each n 2 N, we choose un
0 such that

d
dx

un
0 (0) > 0,

d
dx

un
0 (0) < 0, un

0 (x) > 0 for x 2 (0,1) (we observe that V 2r ⇢ C1 �W
�
) and

un
0 ! 0. Then by (VALERO, 2021, Lemma 13) there exists a unique solution un (·) 2 D(un

0)

which satisfies un (t,x) > 0 for any x 2 (0,1) and t � 0. Also, it converges to v+1 as t ! +•.
We know from (ARRIETA; RODRÍGUEZ-BERNAL; VALERO, 2006, Theorem 6.7) that there
exists a solution v(·) such that v(0) = 0 and v(t)! v�1 in C1(W) as t!+•. It is clear that no
subsequence of un (·) can converge to v(·), because un (t) is positive for any t � 0 but v(t) take
negative values for t large enough.

In order to apply Theorem 6.2.15, we need to define a semiflow eG containing G that
satisfies (K1)� (K5).

For this aim, for any e > 0, let us define the multivalued function ge given by

ge (u) =

8
>>>><

>>>>:

�1 if u�e,
[�1, 2

e u+1] if � e  u 0,
[2

e u�1,1] if 0 u e,
1 if u� e.

It is easy to see that the map fe (u) = ge (u)+wu satisfies conditions ( f 1) -( f 2) for problem
(6.2). Then problem (6.2) with f = fe and q = 0 generates, for each e > 0, a strict multivalued
semiflow Ge which contains the semiflow G for problem (6.18) (as every solution to problem
(6.18) is obviously a solution to problem (6.2)).

We denote by De (u0) the set of all strong solutions defined on [0,+•) for the initial
condition u0. Let Re = [u02L2(W)De (u0). It follows from the proof of Lemma 6 in (MELNIK;
VALERO, 1998) that (K1)� (K3) hold true. In view of Corollary 6.1.10, (K5) is satisfied. We
prove that (K4) holds as well.

Lemma 6.3.4. (K4) is satisfied.

Proof. Let un
0! u0. In view of (6.9), for any un (·) 2De

�
un

0
�

there exists un (·) 2De (u0) such
that

kun(t)�un(t)kL2  kun
0�u0kL2 exp(2Ct), 8t � 0. (6.23)

Fix T > 0. Let pT De (u0) be the restriction of De (u0) onto C([0,T ],L2(W)). Since the set
pT De (u0) is compact in C([0,T ],L2(W)) (MELNIK; VALERO, 1998, p.100), passing to a
subsequence we have that un! u 2De (u0) in C([0,T ],L2(W)). Thus, by (6.23) we obtain that
un! u in C([0,T ],L2(W)). By a diagonal argument we deduce that for some subsequence this is
true for any T > 0, proving property (K4) .
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From (MELNIK; VALERO, 1998) we know that Ge has a global compact invariant
attractor Ae , for all e > 0. It is clear that

A ⇢Ae1 ⇢Ae2 for all 0 < e1 < e2,

where A is the attractor for problem (6.18). Also, as (K1)� (K4) hold, Ae is characterized by
the union of all bounded global trajectories (KAPUSTYAN; KASYANOV; VALERO, 2014):

Ae = {f (0) : f is a bounded complete trajectory of Re}.

Lemma 6.3.5. If en! 0+, uen 2 Den

�
un

0
�

and un
0! u0, then up to a subsequence uen ! u 2

D (u0) uniformly on bounded sets of [0,+•).

Proof. We fix e0 > 0 such that en < e0. Since uen 2De0

�
un

0
�

for all n 2 N, by Lemma 6.3.4 we
obtain that up to a subsequence uen! u2De0 (u0) uniformly on bounded sets of [0,+•). Hence,
u(·) is a strong solution to problem (6.7) with h 2 L2

loc(0,+•;L2 (W)), h(t) 2 Fe0(u(t)) for a.a.
t, where Fe0 is the map (6.4) for fe0 .

In order to prove that u 2D (u0), it remains to show that h(t,x) 2H0 (u(t,x))+wu(t,x)
for a.a. (t,x).

The selections hn (·) corresponding to uen (·) in equality (6.7) are bounded by a constant
CT in each interval [0,T ]:

khn (t)kL2 CT for a.a. t 2 (0,T ).

In particular, this means that hn are integrably bounded in each interval and that up to a sub-
sequence hn! eh weakly in L2(0,T ;L2 (W)) for any T > 0. We need to check that eh = h. Let
vn (·) = I (u0)hn (·). Then by inequality (6.8) we have that vn! u in C([0,T ],L2 (W)) for any
T > 0. By Lemma 1.3 in (TOLSTONOGOV, 1992), we deduce that u(·) = I (u0)eh(·), which is
possible if and only if eh = h.

Denote g(t) = h(t)�wu(t) and gn (t) = hn (t)�wun (t), n 2 N. We need to prove that
g(t,x) 2 H0 (u(t,x)) for a.a. (t,x). For a.a. (t,x) there is N(t,x) such that gn(t,x) 2 H0 (u(t,x))
if n � N(t,x). Indeed, since un (t,x)! u(t,x) for a.a. (t,x), we define B as a set which com-
plementary Bc has measure 0 and such that un (t,x)! u(t,x) for u(t,x) 2 B. If u(t,x) 2 B
and u(t,x) > 0 (< 0), then there is N(t,x) such that un (t,x) > 0 (< 0) for n � N(t,x). Hence,
gn (t,x) 2 H0 (un(t,x)) = H0 (u(t,x)) = 1 (�1). If u(t,x) 2 B and u(t,x) = 0, then gn (t,x) 2
[�1,1] = H0 (u(t,x)) for all n. By (TOLSTONOGOV, 1992, Proposition 1.1) for a.a. t there is a
sequence of convex combinations

yn (t) =
Nn

Â
j=1

l jgk j (t) ,
Nn

Â
j=1

l j = 1, k j � n,

such that yn (t)! g(t) in L2 (W). Then, as H0 (u(t,x)) is closed and convex, g(t,x)2H0 (u(t,x))
for a.a. (t.x) .
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Corollary 6.3.6. If {fen}n2N is a sequence of bounded global trajectories of Ren and en! 0+,
then there exists a subsequence {fenk

}k2N and a bounded complete trajectory f of R such that

fenk
! f in C([�T,T ],L2 (W)) for all T > 0. (6.24)

Proof. Applying Lemma 6.3.5 and a diagonal argument we obtain a complete trajectory of R

and a subsequence such that (6.24) holds. Since for e0 > 0 the complete trajectory f belongs to
Ae0 and Ae0 is bounded, we obtain that f is a bounded complete trajectory of R.

We denote by Od (v0) = {v 2 X : kv� v0kL2 < d} a d -neighborhood of the point v0 2
L2(W).

We choose d > 0 such that v+k is the maximal weakly invariant set in Od
�
v+k
�
, so that

Od
�
v+k
�

is an isolating closed neighborhood of the stationary point v+k , k� 1 (for v�k the proof is
the same). For the semiflow Ge , we define a weakly invariant set associated to v+k in the following
way:

Ke = {f(0) : f(·) is a bounded complete trajectory of Re with f(t) 2 Od
�
v+k
�
, for all t 2 R}.

Lemma 6.3.7. The set Ke is compact.

Proof. Since Ke ⇢ Ae , it is clearly relatively compact. Thus, we just need to prove that it is
closed. Let yn ! y, where yn 2 Ke . Then yn = fn (0) for some bounded complete trajectory
fn, n 2 N. Corollary 6.3.6 implies that up to a subsequence fn! f in C([�T,T ],L2 (W)) for
all T > 0,where f is a bounded complete trajectory. Obviously, f (t) 2 Od

�
v+k
�
, for all t 2 R.

Hence, y 2 Ke .

Lemma 6.3.8. There is e0 > 0 such that Ke ⇢ Od/2
�
v+k
�

for all e  e0.

Proof. By contradiction, if this is not true, there is a sequence of bounded global trajectories
fen of Ren , where en! 0+, and times tn such that fen (R) ⇢ Od

�
v+k
�

and f (tn) 62 Od/2
�
v+k
�
.

Making use of Corollary 6.3.6 and the fact that v+k is the unique bounded complete trajectory
in Od

�
v+k
�

for R, we conclude that fen ! v+k in C([�T,T ],L2 (W)) for all T > 0. This implies
that the sequence {tn}n2N cannot be bounded. Indeed, suppose that a subsequence tends to +•.
Then we define the sequence ven (·) = fen (·+ tn), which again by Corollary 6.3.6 converges in
C([�T,T ],L2 (W)) to a bounded global trajectory f of R such that f (R) ⇢ Od

�
v+k
�
, so that

f = v+k . But then ven (0) = fen (tn)! v+k , which is a contradiction. But if {tn}n2N is bounded, by
a similar argument we obtain a contradiction.

Lemma 6.3.9. There is e0 > 0 such that Ke is the maximal weakly invariant set in Od
�
v+k
�

for
any e  e0. Hence, Od

�
v+k
�

is an isolating neighborhood for Ke .
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Proof. In view of Lemmas 6.3.7 and 6.3.8, Ke is closed and Od
�
v+k
�

is a neighborhood of
Ke such that Ke ⇢ int(Od

�
v+k
�
). It is obvious that Ke is the maximal weakly invariant set in

Od
�
v+k
�
.

Remark 6.3.10. Since the semiflows G, Ge possess a compact global attractor, it is clear that
any neighborhood (in particular Od

�
v+k
�
) is admissible.

We are now ready to prove the existence of an isolating block.

Theorem 6.3.11. The stationary points v±k , k � 1, possess an isolating block.

Proof. It is a consequence of Lemma 6.3.9, Remark 6.3.10 and Theorem 6.2.15.

6.3.3 Uniqueness of solutions

In this section we will prove a general result on uniqueness of solutions which allow us
to obtain that in a suitable neighborhood of the fixed points v±k , k � 1, the solutions are unique
while they remain inside it. In particular, the solutions starting at the fixed points v±k are unique.

The function v 2 H1
0 (W) is non-degenerate if there is C > 0 and a0 > 0 such that

µ({x 2 (0,1) : |v(x)| a})Ca for all a 2 (0,a0) , (6.25)

where µ stands for the Lebesgue measure in R. A strong solution u : [0,T ]! H1
0 (W) is said to

be non-degenerate if there are C > 0 and a0 > 0 (independent on t) such that

µ({x 2 (0,1) : |u(t,x)| a})Ca for all a 2 (0,a0) and t 2 [0,T ]. (6.26)

For z 2 R denote z+ = max{0,z}.

Lemma 6.3.12. Let u1,u2 2 L•(0,1) and let either u1 or u2 be non-degenerate. Then for any
z1,z2 2 L•(0,1) satisfying zi(x) 2 H0(ui(x)), for a.a. x 2 (0,1), i = 1,2, we have

Z 1

0
(z1(x)� z2(x))(u1(x)�u2(x))+dx 2D

��(u1�u2)
+
��2

L• ,

where D = max
n

C, 1
a0

o
, and C, a0 are the constants in (6.25) for u1.

Proof. If ku1�u2kL• � a0, then
Z 1

0
(z1(x)� z2(x))(u1(x)�u2(x))+dx 2

��(u1�u2)
+
��

L• 
2

a0

��(u1�u2)
+
��2

L• .

So let ku1�u2kL• < a0. We set

Ai = {x 2 (0,1) : ui(x) = 0},

Wi
+ = {x 2 (0,1) : ui(x)> 0},

Wi
� = {x 2 (0,1) : ui(x)< 0},

I = {x 2 (0,1) : u1(x)> u2(x)}.
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Hence, z1(x) = z2(x) for x 2 I2 = ((W1
+\W2

+)[ (W1
�\W2

�))\ I. Putting I1 = I\I2, we have
Z 1

0
(z1(x)� z2(x))(u1(x)�u2(x))+dx =

Z

I1
(z1(x)� z2(x))(u1(x)�u2(x))+dx

 2
��(u1�u2)

+
��

L• µ(I1).

We observe that I1 = (A1[A2[ (W1
+\W2

�))\ I. Since

0 u1(x) u2(x)+ku1�u2kL•  ku1�u2kL• for x 2 I1,

if u1 is non-degenerate, we obtain

µ(I1) µ({x : |u1(x)| ku1�u2kL•})Cku1�u2kL• .

In the same way, if u2 is non-degenerate, then

µ(I1) µ({x : |u2(x)| ku1�u2kL•})Cku1�u2kL• .

Hence,
Z 1

0
(z1(x)� z2(x))(u1(x)�u2(x))+dx 2Cku1�u2k2

L• .

Putting D = max
n

C, 1
a0

o
, the result follows.

Remark 6.3.13. Lemma 6.3.12 is true if we change (0,1) by an arbitrary interval (0,g), g > 0.

For z1,z2 2 H1
0 (W) we say that z1  z2 if z1 (x) z2 (x) for all x 2 [0,1].

Theorem 6.3.14. Let u0,v0 2 H1
0 (W), with u0  v0. If u,v : [0,T ]! H1

0 (W) are two strong
solutions and either u or v is non-degenerate on [0,T ], then u(t) v(t) for any t 2 [0,T ].

Proof. For instance, let u be non-degenerate. Multiplying (6.21) by (u(t)� v(t))+ we have

1
2

d
dt
��(u� v)+

��2
L2 +

��(u� v)+
��2

H1
0

=
Z 1

0
( fu(t,x)� fv(t,x))(u(t,x)� v(t,x))+dx+w

��(u� v)+
��2

L2 ,

where fu, fv 2 L•((0,T )⇥ (0,1)) and fu(t,x) 2H0(u(t,x)), fv(t,x) 2H0(v(t,x)) for a.a. (t,x) .
Let L• > 0 be such that kzkL•  L• kzkH1

0
for z 2 H1

0 (W). Hence, Lemma 6.3.12 and w < p2

imply that
1
2

d
dt
��(u� v)+

��2
L2  (K�b 2)ku� vk2

L• ,

where b = ( 1
L•
)
⇣

1� w
p2

⌘ 1
2 , K = 2D > 0 and D is the constant in (6.26) for the solution u.

If K  b 2, then the result follows immediately. Thus, assume that K > b 2.
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We introduce the rescaling y = gx, where g > 0. We put ug(t,y) := u(t,y/g), so
�
ug
�

yy (t,y) :=
�
ug
�

xx (t,y/g)/g2. Since

ut(t, y
g )�uxx(t, y

g ) = fu(t, y
g )+wu(t, y

g ), for a.a. t 2 (0,T ) , 0 < y < g,

we have
�
ug
�

t (t,y)� g2 �ug
�

yy (t,y) = fug (t,y)+wug(t,y), for a.a. t 2 (0,T ) ,0 < y < g,

where fug (t,y) := fu(t,y/g), and the same is true for vg(t,y) = v(t,y/g). Thus, ug ,vg : [0,T ]!
H1

0 (0,g) are strong solutions of the problem
8
>>><

>>>:

∂u
∂ t
� g2 ∂ 2u

∂x2 2 H0(u)+wu, on (0,•)⇥ (0,g),

u(t,0) = u(t,g) = 0,
u(x,0) = u0(x).

(6.27)

Let Ig = [0,g]. In what follows, we will use the notation

kvkH1(Ig ) =

vuutkvk2
L2(Ig )

+

����
dv
dx

����
2

L2(Ig )
.

If Cg is the constant in (6.26) for the solution ug , we need to analyze how it depends on
g . For the constant of nondegeneracy C of u we have

µ({x 2 (0,1) : |u(x)| a})Ca,

so
µ({y 2 (0,g) :

��ug(y)
�� a}) =

Z

|ug (y)|a
1 dy =

Z

|u(y/g)|a
1 dy

=
Z

|u(x)|a
g dx = gµ({x 2 (0,1) : |u(x)| a}) gaC =Cga, (6.28)

where Cg = gC.

We will prove the existence of L• (independent of g � 1) such that

kwkL•(Ig )  L• kwkH1(Ig ) , for any w 2 H1(Ig). (6.29)

By (BREZIS, 2011, Theorem 8.8), there is a positive constant C such that

kvkH1(R) �CkvkL•(R) for all v 2 H1(R).

By (BREZIS, 2011, Theorem 8.6), there exists a prolongation operator Pg : H1(Ig)!
H1(R) which satisfies

��Pgw
��

H1(R)  4
✓

1+
1
g

◆
kwkH1(Ig ) for all w 2 H1(Ig).
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Also, by the construction it follows that
��Pgw

��
L•(R) = kwkL•(Ig ). Hence, for g � 1, we have

kukH1(Ig ) �
g

4(1+ g)
��Pgw

��
H1(R) �

1
8
��Pgw

��
H1(R) �

C
8
��Pgw

��
L•(R) =

C
8
kwkL•(Ig ) ,

so (6.29) is true with L• = 8
C .

Multiplying by (ug(t)� vg(t))+ the equality

d
dt
�
ug � vg

�
� g2 ∂ 2 �ug � vg

�

∂x2 = fug (t)� fvg (t)+w
�
ug � vg

�
,

where fug , fvg 2 L•((0,T )⇥ (0,1)) are such that fug (t,x) 2H0(ug(t,x)), fvg (t,x) 2H0(vg(t,x))
for a.a. (t,x) , we obtain

1
2

d
dt
��(ug � vg)

+
��2

L2(Ig )
+ g2��(ug � vg)

+
��2

H1
0 (Ig )


Z g

0
( fug (t,x)� fvg (t,x))(ug(t,x)� vg(t,x))+dx+

wg2

p2

��(ug � vg)
+
��2

H1
0 (Ig )

.

Hence, by Remark 6.3.13 and (6.28) we have

1
2

d
dt
��(ug � vg)

+
��2

L2(Ig )
+ g2

⇣
1� w

p2

⌘��(ug � vg)
+
��2

H1(Ig )

 2max
⇢

gC,
1

a0

���(ug � vg)
+
��2

L•(Ig )
+ g2

⇣
1� w

p2

⌘��(ug � vg)
+
��2

L2(Ig )
,

so

1
2

d
dt
��(ug � vg)

+
��2

L2(Ig )

 g2
⇣

1� w
p2

⌘��(ug � vg)
+
��2

L2(Ig )
+

 
2Cg�

g2 �p2�w
�

L2
•p2

!
��(ug � vg)

+
��2

L•(Ig )

 g2
⇣

1� w
p2

⌘��(ug � vg)
+
��2

L2(Ig )
,

for g great enough. Thus,
��(ug � vg)

+(t)
��2

L2(Ig )
 ed t ��(ug � vg)

+(0)
��2

L2(Ig )
= 0,

for d = 2g2
⇣

1� w
p2

⌘
. Hence, ug(t) vg(t) and then u(t) v(t) for all t 2 [0,T ].

Corollary 6.3.15. If u,v : [0,T ]! H1
0 (W) are two strong solutions such that u(0) = v(0) = u0

and either u or v is degenerate on [0,T ], then u(t) = v(t) for all t 2 [0,T ].

Lemma 6.3.16. The fixed points v±k , k 2 N, are nondegenerate.

Proof. Let us consider first the point v+1 and denote
�
v+1
�0
(0) = g0 > 0. We choose 0 < x0 <

1
2

such that
�
v+1
�0
(x)� g0

2 for any x 2 [0,x0]. Then for 0 < a0  v+1 (x0), we have

v+1 (x)� a0, 8x 2 [x0,1� x0],
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v+1 (1� x) = v+1 (x) =
�
v+1
�0
(x)x� g0

2
x, 8x 2 [0,x0].

Hence, for 0 < a < a0 and x 2 [0,x0] such that v+1 (x) a we obtain that

g0

2
x a,

so by symmetry,

µ({x 2 (0,1) : v+1 (x) a}) 4
g0

a.

Therefore, v+1 is nondegenerate and then so is v�1 .

By symmetry, we easily deduce that, for all k 2 N,

µ({x 2 (0,1) :
��v+k (x)

�� a}) 4k
g0

a,

where
�
v+k
�0
(0) = g0 and x0, a0 are such that 0 < x0 <

1
2k ,

�
v+k
�0
(x) � g0

2 , for any x 2 [0,x0],

and 0 < a0  v+k (x0).

Thus, v±k are nondegenerate, for all k 2 N.

From the previous corollary and the fact that the fixed points v±k are nondegenerate,
k 2 N, we obtain the following result.

Corollary 6.3.17. For any k � 1, the solution u(·) with initial condition u(0) = v±k is unique on
[0,+•). That means, the solution starting at the nonzero equilibria are unique.

Finally, we will define a suitable neighborhood of the point v±k where all the solutions
are uniquely defined, for all k 2 N. We consider the space X =V 2r = D(Ar) with 3

4 < r < 1. We
know that X is continuously embedded into the space C1([0,1]). We denote by Od (v0) = {v 2
X : kv� v0kX < d} a d -neighborhood of the point v0 2 X .

Lemma 6.3.18. For any v±k , k 2 N, there exist d ,C,a0 > 0 such that

µ({x 2 (0,1) : |v(x)| a})Ca 8v 2 Od (v±k ).

Proof. We will analyze the function v�2 . The proof is rather similar for the other points.

Denote g0 =
�
v�2
�0
(0)> 0. Since X ⇢C1([0,1]), we can choose d > 0, 0 < x0 <

1
2 such

that any v 2 Od1(v
�
2 ) satisfies:

• v has only one zero xv in (0,1) and xv 2
�1

2 � x0,
1
2 + x0

�
;

• v0 (x)� g0
2 for all x 2 [1

2 � x0,
1
2 + x0];

• v0(x)� g0
2 for all x 2 [0,x0][ [1� x0,1];

• |v(x)|� a0 for all x 2 [x0,
1
2 � x0][ [1

2 + x0,1� x0],
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where a0 < v�2 (
1
2 + x0). Hence,

v(x) = v0(xv
1)(x� xv)�

g0

2
(x� xv), for x 2 [xv,

1
2
+ x0],

v(x) = v0(xv
2)(x� xv)

g0

2
(x� xv), for x 2 [

1
2
� x0,xv],

v(x) = v0(xv
3)x�

g0

2
x, for x 2 [0,x0],

v(x) = v0(xv
4)(x�1)� g0

2
(1� x), for x 2 [1� x0,1].

Therefore,
µ({x 2 (0,1) : |v(x)| a}) 8

g0
a.

Remark 6.3.19. This result means that the functions are uniformly nondegenerate in some
neighborhood Od (v±k ), k 2 N.

Let u0 2 Od (v±k ) and u(·) 2 D(u0), k 2 N. Let Tmax be the maximal time such that
u(t) 2 Od (v±k ) for all t 2 [0,Tmax). Then from Lemmas 6.3.15, 6.3.18 we deduce that u(·) is the
unique solution on [0,Tmax) (and if Tmax < •, it is the unique solution on [0,Tmax]).

Remark 6.3.20. For the semigroup defined on Od (v±k ), k 2 N, we could apply Theorem 5.1
from (RYBAKOWSKI, 1987) in order to obtain the existence of an isolating block.

6.4 Conclusion and next steps
We have presented an abstract result proving the existence of isolating blocks for mul-

tivalued semiflows. Hence, given an isolated weakly invariant set defined for a multivalued
semiflow satisfying (K1)-(K5), we can find a special neighborhood for which the boundaries
are completely oriented in some sense. We believe that our construction of isolating blocks for
multivalued semiflows is the first of its kind, so as the application to differential inclusions.

In the single-valued case, such a neighborhood of an isolated weakly invariant set is
essential and gives the inspiration for the definition of Conley’s index. It can be shown that the
isolating block together with its boundary has the cofibration property. In fact, the quotient space
defined by the isolating block over its boundary is the Conley index. This is also true in the
context of metric spaces which are not necessarily locally compact, see (RYBAKOWSKI, 1987,
Theorem 5.1).

Having the concept of isolating blocks a very close relation with Conley’s index, we
may wonder if we can define a homology index for multivalued semiflows. This is a subject for
further studies. It is important to say that there are already very nice and interesting works that
propose some definitions of Conley’s index in the multivalued setting, see e.g. (MROZEK, 1990)
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and (DZEDZEJ; GABOR, 2011). Once we will have a candidate for the definition of Conley’s
index, we will try to understand if we are able to present something new with that definition and
which is the relation of this new concept with the ones proposed in the previous works. We hope
to achieve an answer to these questions in the future.
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