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Abstract 
 

One of the main goals of visual neuroscience is to understand how the early 

visual pathway (EVP) works, that is, what are the operations that it performs and 

why. For this, structure, function and behavior must be related. However, relating 

structure to function in a coherent way is not so easy. Even though connectomics is 

a growing and promising field, in many cases, it can give an excess of information 

that we do not know yet how to interpret or relate to cortical function. To have a 

complete map of the synapsis of a cortical structure does not necessary mean that it 

is possible to understand how the weights are distributed across the circuit and 

therefore how the functional architecture is built. 

In this work I will show how a comparative neurobiology approach 

(Pettigrew 2004) is really useful to build models of cortical function. It enables to 

identify the basic parameters that may constrain the development of cortical 

circuits, which gives the basis to generate hypothesis of the operations the visual 

system is performing, and to proof them using computational models. 

In the first place, I present an extension of our previous statistical wiring 

model (Martinez et al 2014) that, using a single coverage optimization principle, 

maximizes the transfer of visual information from the retina to the primary visual 

cortex (V1), and accounts for the functional and topological differences found at the 

level of V1 across the mammalian phylogenetic tree. In particular, the model 

reproduces the experimentally derived differences in cortical magnification factor, 

which we express in terms of relative retina-to-V1 cortical area; it describes the 

existence of a continuum of different divergence-convergence ratios (DCr) between 

the retina and V1 through the lateral geniculate nucleus of the thalamus (LGN); and 

finds a developmental threshold, based on the extent of the emergent local 

correlations, that explains the transition between the decorrelated V1 salt-and- 

pepper cortical structures typical of rodents, and the topologically organized 

cortical orientation-preference maps (OPMs) characteristic of carnivores and 

primates. The model correctly predicts the cortical structure of all mammalian 
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species that have been experimentally explored, and makes clear testable 

predictions about how the cortical topology of other transition species, those that 

are right at the threshold of continuous distribution, should be. 

In the second place, since retinotopy is the most present and relevant 

functional constraint across mammalian species. A mathematical model of the 

development of correctly oriented topographic maps in visual cortex is presented 

that takes into account the synchronization between the two retinas mediated by 

retino-retinal (R-R) connections, to explain the role of molecular and activity 

dependent mechanisms in the establishment of retinotopic maps across phylogeny. 

Demonstrating that the presence or absence of R-R connections across different 

species is completely related to their different DCr values through phylogeny. 

In third place, we present a set of experimental results where V1 of a strain 

of mutant mice (Brn3b-Zic2) that have a larger proportion of ipsilateral fibres, was 

characterized using optical imaging of intrinsic signals. This manipulation alters the 

input that reaches V1 and, therefore, increases the DCr of the ipsilateral fibres 

through the EVP. As a result, Brn3b-Zic2 mice develop Ocular Dominance (OD) 

columns that resemble those presented in Ocular Dominance maps (ODM) of 

carnivores and primates, which emphasizes the role that the DCr plays in the 

development of V1 functional structure. 
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Resumen 
 

Uno de los objetivos de la neurociencia visual es comprender cómo funciona 

la vía visual temprana, es decir, cuáles son las operaciones que está realizando y por 

qué. Para ello, es fundamental relacionar estructura, función y comportamiento. Sin 

embargo, relacionar la estructura con la función de manera coherente no es tan fácil. 

Aunque la conectómica es un campo en crecimiento y prometedor, en muchos casos 

puede dar un exceso de información que aún no sabemos interpretar o relacionar 

con la función cortical. Tener un mapa completo de la sinapsis de una estructura 

cortical no significa necesariamente que sea posible comprender cómo se 

distribuyen los pesos a lo largo del circuito y, por tanto, cómo se construye la 

arquitectura funcional. 

En este trabajó demostraré como un enfoque de neurobiología comparada 

(Pettigrew 2004) es realmente útil para construir modelos de función cortical. Por 

un lado, esta aproximación permite identificar los parámetros básicos que pueden 

estar constriñendo el desarrollo de los circuitos corticales. Por otro lado, una vez 

identificados, estos mismos parámetros sirven como cimientos para generar 

hipótesis sobre las principales operaciones que realiza el sistema visual temprano y 

su comprobación mediante modelos computacionales. 

En primer lugar, presento una extensión de nuestro modelo de cableado 

estadístico anterior (Martinez et al 2014) el cual, partiendo de un único principio de 

optimización de cobertura, maximiza la transferencia de información visual desde 

la retina a la corteza visual primaria (V1) y explica las diferencias funcionales y 

topológicas encontradas al nivel de V1 en el árbol filogenético de mamíferos. En 

particular, el modelo reproduce las diferencias derivadas experimentalmente en el 

punto de magnificación cortical, que expresamos en términos de área cortical 

relativa de retina a V1; describe la existencia de un continuo de diferentes ratios de 

divergencia-convergencia (RDC) entre la retina y V1 través del núcleo geniculado 

lateral del tálamo; y encuentra un umbral de desarrollo, basado en el alcance de las 

correlaciones locales emergentes, que explica la transición entre las estructuras 
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corticales decorrelacionadas de sal y pimienta en V1 típicas de los roedores, y los 

mapas de orientación organizados topológicamente, característicos de los 

carnívoros y primates. El modelo predice correctamente la estructura cortical de 

todas las especies de mamíferos que se han explorado experimentalmente y hace 

predicciones claras y comprobables sobre cómo debería ser la topología cortical de 

otras especies en transición, es decir, aquellas que están justo en el umbral de la 

distribución continua. 

En segundo lugar, dado que la retinotopía es la constricción funcional más 

preservada y relevante en mamíferos, se muestra un modelo matemático del 

desarrollo de mapas topográficos correctamente orientados en V1, que tiene en 

cuenta la sincronización entre las dos retinas mediada por conexiones retino- 

retinianas (R-R), para explicar el papel de los mecanismos moleculares y 

dependientes de actividad en el establecimiento de mapas retinotópicos a través de 

la filogenia. Concluyendo, finalmente, que la presencia o ausencia de conexiones R- 

R entre diferentes especies, está completamente relacionada con las diferentes RDC 

a lo largo del árbol filogenético. 

En tercer lugar, presentamos un conjunto de resultados experimentales 

donde V1 de una cepa de ratones mutantes (Brn3b-Zic2) que tienen una mayor 

proporción de fibras ipsilaterales, se caracterizó mediante imágenes ópticas de 

señales intrínsecas. Esta manipulación altera la entrada que llega a V1 y, por tanto, 

aumenta la RDC de las fibras ipsilaterales a través de la vía visual temprana. Como 

resultado, los ratones Brn3b-Zic2 desarrollan columnas de dominancia ocular 

similares a las presentes en mapas de dominancia ocular de carnívoros y primates, 

lo que enfatiza el papel que juega la RDC en el desarrollo de la estructura funcional 

de V1. 
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Technical summary 
 

Neurons in V1 of mammals respond only to a restricted set of stimulus 

orientations (Heimel et al 2005, Hubel & Wiesel 1962, Kaas 2012a, Kaschube et al 

2010, Ringach et al 2016, Van Hooser 2007). However, the functional aspects of the 

circuit are different between carnivores, rodents and primates. In carnivores and 

primates, V1 cells with similar orientation preferences tend to cluster together in an 

orderly fashion giving rise to the renowned cortical orientation-preference maps 

(OPMs) (Blasdel 1992a, Blasdel 1992b, Bonhoeffer & Grinvald 1991, Kaschube 

2014, Kaschube et al 2010, Ohki et al 2006, Van Hooser 2007). On the other hand, in 

rodents and lagomorphs these clusters of cells are more decorrelated and smaller, 

giving rise to a “salt and pepper” configuration in V1 (Jimenez et al 2018, Liang et al 

2018, Ohki et al 2005, Ohki & Reid 2007, Van Hooser 2007). 

Since OPMs of carnivores and primates have a highly conserved functional 

structure through evolution it has been proposed that these mammals share 

common developmental rules based on cortical self-organization (Kaschube et al 

2010). In contrast, rodents and lagomorphs, more closely related to primates than 

to carnivores (Kaschube et al 2010, Springer et al 2004, Weigand et al 2017b), lack 

this type of cortical organization. On the one hand, this can suggest a completely 

different set of developmental mechanisms. On the other hand, it could imply similar 

developmental and optimization principles under different biological constraints, 

which in turn generates a distinct type of columnar disposition of neurons in V1. 

There is an intense debate concerning the homogeneity or heterogeneity of 

the cortex across mammalian species. This is quite paradoxical since, if the cortical 

structure is so different (DeFelipe et al., 2002; Herculano-Houzel, Collins, Wong, 

Kaas, & Lent, 2008) how can completely identical OPMs develop in primates and 

carnivores? In contrast, if the V1 structure is so similar, (Carlo & Stevens, 2013; 

DeFelipe et al., 2002; Rockel, Hiorns, & Powell, 1980) how can the functional 

architecture be so different between primates and rodents and so similar in 

primates and carnivores? 
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This suggests that there might be underlying functional and anatomical 

constraints shared among these species that may explain these similarities and 

differences. At this point, comparative functional and anatomical data is crucial to 

identify the biological constraints that are governing the structure and the function 

of the circuit. Which, in turn, enable to build a computational model to test the 

importance of these parameters in cortical function. 

The mechanisms involved in the functional topology of V1 are much debated. 

On the one hand, feedforward models propose that the functional topology of V1 

comes from the convergence and integration of inputs from the lateral geniculate 

nucleus of the thalamus (dLGN) (Hubel & Wiesel 1962, Kremkow & Alonso 2018, 

Martinez et al 2014, Paik & Ringach 2011, Ringach 2004, Ringach 2007, Soodak 

1987). On the other hand, intracortical models suggest the interconnectivity of V1 

neurons as the organization mechanism involved in the formation of this functional 

maps (Kaschube et al 2010, Martinez & Alonso 2003, Swindale 1996). The 

experimental and modelling data that validate or refute each theory is controversial 

(Alonso & Martinez 1998, Alonso et al 2001, Jin et al 2011, Kaschube et al 2010, 

Schottdorf et al 2015). 

However, there is a clear preserved homology across all mammals and that 

is the retinotopic map over which the rest of functional maps of V1 emerge. Because 

the retinotopic map is clearly inherited from the input, we chose a linear 

feedforward model (Martinez et al 2014, Paik & Ringach 2011, Ringach 2004, 

Ringach 2007, Schottdorf et al 2015, Soodak 1987) to investigate up to what point 

the developmental and functional mechanisms related with the retinothalamic input 

are involved in the formation of the mammalian early visual pathway. Then we 

identified the parameters that we though can be constraining the cortical function 

across phylogeny, which we summarized as the divergence-convergence ratio (DCr) 

across layers. This ratio relates the relative size of the different layers in EVP and 

the connections between them. Since the thalamacortical convergence reported for 

carnivores and rodents is high, of around 20-80 connections per neuron (Alonso et 

al 2001, Lien & Scanziani 2018), we explored how this different anatomical and 

functional constraints modify the functional topology of V1 to understand the main 
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computations V1 is performing. The model can account for many features of the 

different cortical organizations of V1 across evolution. As a result, a simple wiring 

principle is able to generate many important characteristics of V1 neurons and we 

can confirm that the retinothalamic input drives the development of V1 functional 

structure. 

In summary, our model indicates that the divergence - convergence 

mechanisms related to cortical expansion are tuned in mammalian species to 

recover as much information as possible and, as a consequence of the biological 

constraints mediated by the uneven V1 overexpansion respect to that of the retina 

across phylogeny (Table 1), OPMs or salt and pepper configurations are formed. 

Since topographic retinal maps are a common feature of all mammals and are 

clearly constraining the functional topology of V1 when related to the different DCrs 

across species, the mechanisms by which retinotopy is formed and maintained 

throughout development are extremely important. Furthermore, retinotopic maps 

need to be congruent across both hemispheres in V1, that is, to generate a 

continuous representation of the visual field in V1 in both hemispheres. Taking this 

into account, I developed a model to understand the basic mechanisms involved in 

the correct formation of retinotopic maps. 

The mechanisms implied in generating retinotopic maps can be summarized 

in two large groups: genetic or molecular mechanisms (Herrera et al 2019, 

Huberman et al 2008, Swindale 1996) and activity-dependent mechanisms. It is 

assumed that the initial topography is due to molecular mechanisms while the 

refinement of the map is mediated by activity-dependent mechanisms (Ackman et 

al 2012, Crair et al 1997, Huberman et al 2006). Until recently there was no evidence 

of what guided these activity-dependent mechanisms acting before eye opening. 

Crair, however (Ackman et al 2012), has shown that retinal waves generated 

spontaneously in the retina are transmitted to the postsynaptic layers (superior 

colliculus, dLGN and V1) synchronously in both hemispheres governing their 

spontaneous activity. 
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Additionally, retino-retinal (R-R) projections have been seen in many 

species at the beginning of development (Murcia-Belmonte et al 2019). These fibers 

seem a good candidate for the synchronization of the activity of both retinas since 

there are no other functional connections between hemispheres at the level of the 

dLGN or superior colliculus (SC). With this model, what we are trying to understand 

is the role played by the synchronous activity of both retinas mediated by R-R 

connections in the correct formation of continuous and congruent retinotopic maps 

in both hemispheres. To do this, the problem has been addressed using a Kohonen 

self-organization model (SOM), where we explore how the synchronization of the 

activity and the specificity of the molecular mechanisms modulate the formation of 

these maps. 

Our model indicates that the role of the R-R connections is to synchronize the 

spontaneous activity across both hemispheres to generate retinotopic maps 

correctly oriented on both hemispheres in species with high DCrs. However, species 

with low DCrs, that is, with a small postsynaptic target compared to the presynaptic 

area, can develop congruent maps without synchronous activity dependent 

mechanisms. So the appearance of R-R connections across phylogeny is related to 

an increase in the DCr through phylogeny. Thus, species with a similar size for their 

presynaptic and postsynaptic target (low DCr) can rely only on molecular guidance 

cues and do not have R-R connections. However, as the postsynaptic targets increase 

(high DCr) across phylogeny, species develop R-R connections to synchronize their 

spontaneous activity as a complement to the molecular guidance mechanisms 

enabling the development of correctly oriented retinotopic maps in both 

hemispheres. 

Finally, I will present experimental data, supporting these modelling results. 

We used optical imaging of intrinsic signals (Grinvald et al 1999) to show that a 

strain of mutant Brn3b-Zic2 mice that artificially overexpress Zic2 (Herrera 2018, 

Herrera et al 2003, Herrera et al 2019) and hence have a larger proportion of 

ipsilateral fibers, do indeed develop ODMs such as those present in carnivores and 

primates (Van Hooser 2007, Weigand et al 2017a). This result is fully consistent 

with our model’s predictions and contrasts sharply with the single binocular region 
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that characterizes WT mice (Cang et al 2005a, Sato & Stryker 2008). Our results 

further support the idea that ODMs, as well as OPMs, are nothing but a consequence 

of the different DCr found across phylogeny, which reflect the different 

overexpansion of V1 found across mammals, as the visual system design maximizes 

visual space coverage and acuity through convergence of retinal and thalamic 

inputs, while preserving their retinotopy. 
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Abbreviations 
 

- EVP: Early visual pathway. 

- dLGN: Dorsolateral geniculate nucleus. 

- V1: Primary Visual Cortex. 

- RGC: Retinal ganglion cell. 

- SC: Superior colliculus. 

- SGS: Stratum griseum superficiale. 

- R-R: Retino-retinal. 

- DCr: Divergence-convergence ratio. 

- SOM: Self-organizing model. 

- Cmag: Cortical magnification factor. 

- OBias: Orientation Bias. 

- RF: Receptive field. 

- OPM: Orientation preference map. 
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Introduction 
 

The survival of a living organism depends on its ability to extract and 

integrate the most relevant signals from the world fast and efficiently adapting to 

changes in the environment. If we have learned anything as human beings, is that 

nature is harsh and unforgiving, only the best adapted survive. Therefore, and 

thanks to millions of years of evolution, the arms race focused on exploiting our 

environment better than our neighbor, what in many cases is to end him before he 

ends us, has promoted the evolution of sensory systems of various kinds: from the 

quorum sensing of bacteria, the myocytes of sponges, the appearance of neurons in 

the coelenterates, to the nervous system of a squid (from which we have learned so 

much), to the ability to perceive our own existence, in other words, consciousness, 

something which makes us think we are special, but sorry, we are not. 

In any case, for many living beings, having the ability to detect visible light is 

essential for the development of their functions. Again, we can have simple 

organisms with cells with photo pigments that respond to light, which generates 

positive or negative tropisms. To the appearance of an organ that came to stay, the 

eye and the visual system, which for many species has become the most important 

sense for their survival. 

The early visual pathway (EVP) is formed by the retina, the dorsolateral 

geniculate nucleus (dLGN) and the primary visual cortex (V1). The information from 

different parts of the visual world is extracted by separate channels of retinal 

ganglion cells (RGCs) that transmit this information in parallel through the dLGN to 

finally reach V1 where everything starts to merge. From this stage, the visual 

information travels to two different separate pathways in the brain. The “what” 

pathway related to object recognition in the temporal part of the brain and the 

“where” pathway to recognize the position of an object in visual space. 

In this work I will explore computational models that explain the main 

operations V1 is performing and the basic mechanisms that guide the correct 

development of the characteristic functional properties of V1. To understand and 
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extract the most important parameters of these models, it has been completely 

necessary to adopt a comparative biology approach to identify the common and 

different components of EVP processing in mammals, and unravel the functional and 

anatomical constraints governing the functional architecture and operations 

performed in V1. 

In the following pages I will describe the EVP using a comparative approach 

mostly based on mammals, focusing mainly in differences between carnivores, 

primates and rodents. 
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The eye 
 

It should be noted that the great complexity of the eye was and will continue 

to be for some, irrefutable proof of an intelligent design (Paley 2009). Even Darwin 

found it difficult to assume the slight gradations of natural selection as the 

underlying mechanism constructing the eye. Hudges in 1977 (Hughes 1977) begins 

his book with this quote from Darwin; 

to suppose that the eye with all its inimitable contrivances ... could have been formed 

by natural selection, seems, I freely confess, absurd in the highest degree. 

But, 
 

when I think of the fine known gradations, my reason tells me I ought to conquer the 

cold shudder. 

The basic parts of the eye are reflected in the following diagram (Figure 1.1). 

Light passes through the lens whose shape is changed by the ciliary muscles to 

accommodate the image projected onto the retina, which in turn sends the 

information through the optic nerve to the brain. 
 

Figure 1.1. Sagittal section of a human eye, adapted from (Helga Kolb & Ralph 
2007). 
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B 

As a rule of thumb, eye size increases with body size and larger eyes promote 

a better visual acuity, although there are other factors that may affect eye size across 

different species (Figure 1.2). Thus, in small species eye size increases more rapidly 

with body weight than in larger species, and there are overall differences in size 

across different vertebrate classes (Howland et al 2004, Hughes 1977), 

It can also be established that the greater the axial axis of the eye, the larger 

the retinal image, which in turn implies an increase in visual acuity, understood as 

the ability of an animal to resolve static spatial details (Caves et al 2018, Veilleux & 

Kirk 2014). As the focal length increases, the size of the image projected to the retina 

becomes larger which increases the area, and therefore, the number of neurons in 

the retina devoted to process the visual signal. Therefore, visual acuity, measured in 

cycles per degreee (cpd), that is, the number of black and white bands that an 

organism can discriminate within a single degree of visual angle, increases with eye 

size (Figure 1.3). 
 

Figure 1.2. Eye size grows with body weight. A. Log of axial eye (mm) against body weight 
(Kg) for different species, adapted from (Hughes 1977). B. Log of axial eye (mm) against log 
body weight (Kg) for different vertebrates, adapted from (Howland et al 2004). 
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The eye is a very complex organ and it is possible to relate many anatomical 

specializations to the biological needs determined by the ecological niche of each 

specie. Animals that are fast and require a high visual acuity have larger eyes, as it 

can be observed, birds have overall larger eyes compared to other species (Figure 

1.2) (Ross & Kirk 2007, Veilleux & Kirk 2014). Another example is the cheetah, the 

fastest carnivore has also large eyes in relation to its body weight. Within this order 

of ideas, nocturnal animals tend to have larger eyes and even anatomical 

specializations such as the tapetum lucidum to reflect light internally and absorb as 

many photons as possible (Dyer et al 2009, Hughes 1977). A clear example of eye 

size adaptation is found in the transition from day to night life in monkeys from the 

new world of the Aotus genus. Coming from a diurnal ancestor, they lack tapetum 

lucidum, but have developed larger eyes and retinal areas compared to their closest 

suborder relatives (Dyer et al 2009). 
 
 
 

Figure 1.3. Axial eye diameter and retinal image. A. Retinal image increases 
with eye size ,adapted from (Veilleux & Kirk 2014). B. Log of visual acuity (cpd) 
against log of eye diameter (mm) for different species, adapted from (Caves et 
al 2018). 
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The eye is not the only structure that determines how the visual world around us is 

perceived. In fact, animals with similar eye sizes can have very different visual 

acuities (Figure 1.3), so there are certainly other elements implied in the processing 

of visual information. 

In the case of visual acuity, these elements are the degree of binocular vision, 

the size of the thalamus and V1. On the one hand, animals with a higher degree of 

binocular view have higher visual acuities at the expense of reducing the overall size 

of their lateral vision (Figure. 1.4) (Kremkow & Alonso 2018, Mazade & Alonso 

2017). On the other hand, as the processing capacity in higher stages is increased, 

that is, the number of neurons in thalamus and V1, visual acuity increases (Figure. 

1.4; table 1). The fact that some primates have a higher neuron density in V1 also 

explains the improved visual acuity ( y = 5,4645x0,3171 R² = 0,99), respect to other 

species (y=0,6266x0,4085 R² = 0,79) (Collins et al 2010, Srinivasan et al 2015). Thus, 

the EVP influences heavily how the world is perceived, and may adapt to fulfill each 

species requirements. 

 
 

The Retina 
 

The retina can be considered a fairly stereotyped structure made up of 5 

different types of neurons: photoreceptors, horizontal cells, amacrine cells, bipolar 

cells, and retinal ganglion cells (RGCs) (Wassle 2004). The photosensitive pigment 

of the photoreceptors detects the incident light and transmits that information to 

the other components of the retina. According to their different sensitivity to light, 

photoreceptors can be classified in rods and cones. Rods are more sensitive to light, 

and are present in a greater proportion in nocturnal and twilight animals. Cones, 

however, have different photo pigments less sensitive to light (which makes them 

more suitable for diurnal animals), but specialized in the detection of different 

wavelengths. Thus, it is possible to differentiate L cones (large wavelength), M cones 

(middle wavelength) and S cones (short wavelength) that respond to red, green and 

blue light respectively. The different combination in intensities of the primary colors 
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red, green and blue (RGB) allows to detect practically all the colors that are part of 

the visible light spectrum. Primates are the only trichromatic mammals, while the 

rest are dichromic (L and S cones) whose cones’ L sensitivity varies from red to 

green across species. Curiously, many other diurnal vertebrates such as bone fish, 

reptiles, and birds are tetrachromic, in other words, they have up to four different 

photo pigments (Helga Kolb & Ralph 2007, Peichl 2005, Wassle 2004, Wassle et al 

1981a). 
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Figure 1.4. Biological constraints that determine visual acuity. A. Binocular 
and peripheral visual field varies between mammalian species, adapted from 
(Kremkow & Alonso 2018). B. Log of visual acuity (cpd) against V1 area (mm2) 
for different species, data from (Table 1). 
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Once the light is detected, as its name suggests, by the photoreceptors, the 

information is processed by the circuit of horizontal, bipolar and amacrine neurons 

that end up generating different functional types of RGCs whose axons go to the 

thalamus forming the optic nerve (Figure 1.5). Horizontal cells interact with 

photoreceptors and bipolar cells in the outer plexiform layer (OPL). The information 

then travels from the bipolar to the RGCs where they interact with the amacrines in 

the inner plexiform layer (IPL). The operations that all of these circuit components 

perform to produce functionally different RGCs are widely diverse and beyond the 

scope of this work. More information is available in the following references (Demb 

& Singer 2015, Masland 2012, Nassi & Callaway 2009, Wassle 2004). 

 

Figure 1.5. Scheme of a segment of mouse retina and of the peripheral part 
of a human retina. IPL (Inner plexiform layer), OPL (Outer Plexiform layer). 
Bipolar cells (yellow), horizontal cells (orange), amacrine cells (violet), retinal 
ganglion cells (dark blue). Adapted from (Baden et al 2020). 

 
 

The different interactions between the neurons of the retina end up 

generating RGCs with different feature selectivities, that is, neurons which respond 

preferentially to a certain type of stimuli. So, the greater or lesser degree of response 
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of a RGC is due to the conformation of its receptive field (RF) and to the 

characteristics of the stimulus it receives for which it is more or less selective. 

A receptive field (RF) is defined generically as "the portion of the sensory 

territory of an animal where a certain stimulus generates a response in the nervous 

system" (Gerhard 2013). In Hartline's 1938 recordings of individual axons of the 

optic nerve of frogs and other cold-blooded vertebrates (Hartline 1938), he 

observed how some nerve fibers responded to increases of light, others to 

decreases, and others that responded only to changes in light intensity. It was at this 

time that the term RF was coined as “the region of the retina which must be 

illuminated in order to obtain a response in any given fiber”. Thus, the response of 

any given fiber of the optic nerve depends on the specific stimulation of its RF and 

on its different selectivity for the visual stimulus it receives. 

Later, the recordings from RGCs in frogs made by Barlow 1953 (Barlow 

1953a, Barlow 1953b) and in cats by Kuffer (Kuffler 1953), showed that the 

different responses to stimuli of different polarity, that is, "On" (bright spots), "Off" 

(black spots) and "On-Off" (contrast changes) are due to the RFs having a concrete 

center-surround spatial structure segregated in concentric subregions with 

opposite responses, excitation or inhibition, for a stimuli of a certain polarity (Figure 

1.6). The center always has an opposite response than the periphery. In such a way 

that if the center is On, (a bright spot produces an excitation and a dark spot 

inhibition) the periphery is Off (a dark spot causes excitation and a bright spot 

inhibition) and vice versa. This excitation inhibition configuration is usually 

referred to as a Push-Pull arrangement, push for the excitation and pull for the 

inhibition. In the intermediate zone, we find an On-Off region that responds to 

contrast changes in one direction or the other. As a consequence, RGCs can be 

classified depending on their response to different parameters of the visual 

stimulation they receive on their RFs. Such as the polarity (On or Off) of the center, 

average luminance, stimulus size, temporality of the response... etc. Thus, the feature 

selectivity of a RGC, that is, its specialization to respond to a certain stimulus, its 

completely related to the structure of its RF. 
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This center-periphery arrangement gives RFs the property to respond to 

changes in contrast regardless of the average luminance present in the environment. 

The most accepted model to describe them is the DOG (difference of gaussian 

model). The center has more sensitivity than the surround, however, the area of the 

surround is larger, so that when the entire RF is illuminated homogeneously, the 

response is similar for different light intensities. The largest response occurs as the 

difference between the center and the periphery increases (Masters 2014). This 

ability to adapt and to generate responses depending on the context, that is, the 

ability of the system to operate in different light intensities is crucial for the survival 

in an environment where the average luminance throughout the day changes 

constantly. 
 
 

 
 

 
Figure 1.6. Retinal ganglion cell RF properties. A. Kuffer’s recording of a center- 
surround RF from a cat On center RGC. The central region responded to increments in light 
intensity. The intermediate region (horizontal lines) had On-Off responses and the 
surround region (oblique lines) presented Off responses, adapted from (Kuffler 1953). B. 
Responses of a turtle cone photoreceptor at different light intensities – color coded in the 
figure from dark (purple) to bright (yellow) (adapted from (Carandini & Heeger 2011)). 
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The ability of photoreceptors and RGCs to normalize their response relative 

to their context is a canonical operation that appears to be performed by various 

regions of the brain called divisive normalization. (Carandini & Heeger 2011, 

Sakmann & Creutzfeldt 1969). When comparing the percentage of response of 

photoreceptors and RGCs at different degrees of luminance, it can be seen how the 

response curves shift their midpoints of response to the point of average luminance, 

adapting their dynamic range to different light intensities (Figure 1.6). 

In addition to a more diverse set of spatial structures, RFs can also add a 

temporal dimension that allows them to generate a great diversity of feature 

selectivities to different stimuli. The most modern definition of RF is provided by 

Martínez, who defines it as a spatio-temporal filter that determines how the input is 

analyzed by each element of the visual system (Martinez, 2006). Therefore, RGCs 

can be classified according to their response to different types of stimuli. So, as noted 

before, according to their response to a stimuli of certain polarity, they can be 

classified as On, Off, or On-Off RFs. Regarding the temporal dimension, it is possible 

to differentiate between transient or sustained responses. Sustained RFs respond 

continuously through the duration of a stimulation while the transient RFs produce 

short duration responses at the beginning and with the withdrawal of the stimulus. 

Sustained responses are characteristic of carnivore X cells and primate 

parvocellular cells (P). With small center-surround RFs, they act as small spot or 

pixel detectors related to fine vision (Nelson & Kolb, 2004). On the other hand, 

transient responses are characteristic of carnivore Y cells and the primate 

magnocellular (M) cells; with bigger RFs, they are considered movement detectors 

(Masters 2014). X/P and Y/M cells are the classic and more studied retinal RFs, since 

there are prominently very present in the retinas of these animals (Mazade & Alonso 

2017, Nassi & Callaway 2009, Seabrook et al 2017, Wassle 2004, Wassle et al 1981a, 

Wassle et al 1981b). However, the diversity of RFs does not end there, there are 

other feature selectivities for other signal components such as direction or 

orientation that intermingle to give 32 functionally different RGCs in mice (Baden et 

al., 2016) respect to the 20 functionally different RGCs found in primates (Dacey, 

1999; Peng et al., 2019). 
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RGCs are optimally arranged to sample the environment forming functionally 

independent hexagonal mosaics, so that each mosaic is specialized in processing a 

certain feature of the visual field (Dhande et al 2015, Wassle 2004, Wassle et al 

1981a, Wassle et al 1981b). Cat X cells are subdivided in two antagonistic and 

spatially independent On and Off tiles (Figure 1.7, A). XOn mosaics respond to bright 

spots and XOff mosaics respond to dark spots, both mosaics tile de retina 

hexagonally to cover visual space optimally. From the spatial statistical analysis of 

these mosaics several conclusions can be drawn. First, mosaics are quasi-hexagonal, 

not entirely stereotypical or crystalline structures. This implies that it is possible to 

predict the distance at which we will probably find the closest neuron, however, the 

exact position at greater distances is impossible to predict, so these tiles lack 

correlations at long distances. Second, the position and final structure of the mosaic 

is due to homotypic interactions between neurons (of the same mosaic) whose 

dendrites and somas compete for space (Diggle 2013, Eglen et al 2005, Wassle et al 

1981a, Zhan & Troy 2000). As we will see later, this functional constraint related to 

optimal space coverage of two independent On and Off information channels has 

important consequences on the functional structure present in V1. 

The types of RGCs and their arrangement along the retina varies across 

species whose RFs have specialized in detecting certain characteristics of the 

environment based on the ecological niche they occupy to extract the most relevant 

signals for their survival. The increased density of RGCs in different areas of the 

retina serves to emphasize the extraction of the most relevant information from 

their habitat (Figure. 1.7, B). Animals that live in plains, in open spaces, tend to have 

visual streak, that is, a denser strip of RGCs along the dorsal temporal axis of the 

retina, allowing them to oversample the horizon. This is the case of the rabbit, the 

cow, the agouti and the deer among other examples (Collin 2008, Hughes 1977). On 

the other hand, animals whose behaviors require greater visual acuities, such as 

chasing prey, making precise jumps, climbing trees…etc. Tend to have a higher 

density of concentric RGCs at some point (usually corresponding to the central axis 

of the visual field). Carnivores like wolves, in addition to visual streak, have an 

accumulation of receptors in the temporal part of the retina. Cats, on the other hand, 
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present an accumulation of RGCs in the central part of the retina called foveola, 

where the convergence between photoreceptors to RGCs is low (1: 3). Animals with 

a very high visual acuity such as primates and birds of prey have fovea, that is, a high 

concentration of RGCs in the central part of the retina where the convergence from 

photoreceptors to RGCs is 1:1, therefore, each RGC receives information from only 

one photoreceptor, which generates very small RFs, with great capacity of 

discrimination, favoring a high visual acuity (Baden et al 2020, Collin 2008, Hughes 

1977). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.7. RGCs distribution in the retina. A. Functionally different RGCs form 
independent quasi-regular mosaics, adapted from (Dhande et al 2015). B. RGC density 
distribution in different species, adapted from (Baden et al 2020). 

 
 
 

The proportion of different RGC types that tile the retina is also related to the 

environment of each specie. The W2 RGCs are the most numerous RGCs in mouse 

retina and are characterized for having fast responses to vertical stimuli. Very dense 

in the ventral part of the retina, they receive information from the upper visual field 

allowing to detect and escape quickly from aerial predators (Zhang et al 2012). On 
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the other hand, carnivores and primates have predominately X/P neurons sampling 

the central visual field and Y/M sampling the periphery. Their better visual acuity 

respect to mouse is also due to their overall smaller size of their X RFs compared to 

the functionally homologous XRFs of mice (Mazade & Alonso 2017, Nassi & Callaway 

2009, Seabrook et al 2017, Wassle 2004, Wassle et al 1981a, Wassle et al 1981b). 

In summary, we have different types of sensors (RGCs) distributed 

differently across the retina, specialized in extracting different components from the 

environment depending on the ecological needs of each specie. 

 
 

On and Off channels 

 
In many cases, the information transmitted by the RGCs is antagonic, that is, 

they extract a similar component from the environment (direction, spot detectors, 

orientation…etc), but of opposite light polarity (On or Off). As an example, X/P or 

Y/M cells can be divided in, Xon, Xoff, Yon, Yoff; forming four independent mosaics 

of information transmission. This is conserved across many species, including 

invertebrates, and the need for this split remains controversial (Gjorgjieva et al 

2017, Gjorgjieva et al 2019, Gjorgjieva et al 2014, Schiller 1992, Westheimer 2007), 

however it is possible to find a simple and very plausible explanation to this 

problem. 

The advantage of having antagonistic channels for a similar feature of visual 

space is to increase the dynamic range of the system due to the physical limitations 

of information transmission in neurons through the nervous system. Neuron axons 

are not good electrical transmitters; electrical signals cannot propagate passively a 

distance larger than 1mm. In such a way, that the information in the nervous system 

is processed differently at short and long distances. When information is passively 

integrated at short distances, it is done by excitatory or inhibitory graded potentials, 

where continuous information is integrated on-site. Thus, the neurons of some small 

invertebrates such as C. elegans (which do not measure more than 1 mm) and some 

areas of the nervous system whose components are very close to each other, such 
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as the retina, communicate through graded potentials. Furthermore, this is the only 

mechanism by which the dendrites of a neuron at any place of the nervous system 

can integrate the information of presynaptic excitatory and inhibitory axons. 

On the other hand, the need to send fast and lossless information over long distances 

in larger species is done actively, consuming energy, through action potentials. The 

continuous information, that is, excitatory and inhibitory potentials, is integrated, 

and transformed into a discrete and homogeneous signal (action potentials or 

spikes), to send this information over long distances through its axons. However, 

action potentials have a clear disadvantage; they only transmit depolarizations 

through the axons. This means that most of the neurons of the nervous system 

receive information about the global level of activation of the presynaptic neuron, 

but the graduated inhibitory signals that have modulated the spikes get lost 

throughout the code. In other words, a neuron cannot transmit information in 

opposite directions (excitation and inhibition) through long distances, which 

obviously decreases its sensibility and dynamic range of information capacity and 

transmission. This is probably one of the main reasons why inhibition is generated 

de novo through interneurons at each stage of the EVP. 

Since neurons can only transmit information in one direction it is easy to understand 

the benefits of sending similar information in channels that respond to an opposite 

polarity. Let us do a simple mental experiment to demonstrate this and introduce 

some basic concepts of information theory. Imagine a neuron of a very small 

organism that detects different luminance levels in a world where all the possible 

values of luminance are equally probable and discrete, ranging from 1 to 10. 1 for 

completely dark, 5 for gray and 10 for maximum brightness. Using Shannon´s 

information theory equation (Barlow 1961, Rieke et al 1996, Shannon 1948) we can 

easily quantify the information understood as the logarithm (in base 2) of all the 

possible states the system can occupy. 
 

𝑘𝑘 
𝑖𝑖=1 𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖 (bits) S= − ∑ 
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Where pi is the probability of appearance of each luminance value and K is the 

number of possible states the system can occupy. So in our case K=10 and the 

probability of appearance of each luminance value pi (ranging from 1 to 10) is 

equally probable so pi=1/K. That said: 

S= − ∑𝑘𝑘 1 ( ) log 1 ( ) = log 𝐾𝐾 (bits) 
𝑖𝑖=1 𝐾𝐾 2 𝐾𝐾 2 

 
 

Where one bit is the information required to choose from two equally likely 

alternatives. So in our world the total amount of information is log2(10) =3.32 bits. 

At the beginning our neuron could send 10 different messages (3.32 bits) 

based on a exciatory-inihibtory code. Excitatory (very bright=10), inhibitory (very 

dark=1) and silent (gray=5). However, as the organism grew the need to send 

information at long distances through action potentials appeared. At this point, 

regardless of the type of code that our imaginary neuron uses, that is, if it is a rate 

code or a temporal code (Rieke et al 1996), because the spikes are homogeneous, 

the sensitivity of my detection system will be determined by the maximum number 

of action potentials that can be sent in a reasonable amount of time so that the 

information can be processed as quickly as possible and does not harm the survival 

of the organism. Even neglecting this time constraint, the fact now is that it can only 

send excitatory information, which reduces the capacity of our neuron by half, to 5 

different messages, that is log2(5) = 2.32 bits. So clearly the system will miss a lot of 

details of the outside world. To overcome this problem our organism now evolves 

and instead uses two neurons, one specialized in detecting low levels of luminance 

from 1 to 5 (2.32 bits) and another one for high levels, from 6 to 10 (2.32 bits), 

exceeding the information capacity of the outside world (4.64 bits). 
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Projections of the optic nerve 

 
The axons of the RGCs form the optic nerve and leave the retina reaching the 

optic chiasm. At this point many fibers cross to the other side (contralateral fibers), 

while others stay on the same side (ipsilateral fibers) (Herrera et al 2003, Herrera 

et al 2019). Once passed the optic chiasm, the contralateral and ipisilateral 

information projects to about 46 different nuclei (Dhande et al 2015). The functions 

of these nuclei can be related to the type of information they receive from the RGCs 

and they can be divided into two large groups. Firstly, the non-image forming 

pathways responsible for circadian rhythms, control of pupillary and lens reflexes, 

and retinal image stabilization. Secondly, the image forming pathways, formed 

mainly by the superior colliculus (SC)-pulvinar pathway and the dorsolateral 

thalamus pathway (dLGN)-V1, responsible for object recognition and correct spatial 

navigation in the environment (Petry & Bickford 2019, Seabrook et al 2017). In 

summary, visual information travels to different nuclei of the nervous system 

specialized in processing different components of the visual environment due to the 

combination of afferents received from different types of RGCs (Figure 1.8). 
 
 
 

Figure 1.8. Central projections of RGCs in humans, adapted 
from (Gerhard 2013). 
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Crossed and uncrossed fibers 
 

The percentage of RGC with contralateral and ipsilateral axons crossing the 

optic quiasm is directly proportional, at least in mammals, to the degree of binocular 

vision of each species. Primates, whose degree of binocular vision is superior to 

carnivores and rodents, are the ones with the most ipsilateral RGCs. In humans, the 

ratio of contra and ipsi fibers is 60:40, whether in mice is 97:3 (Figure. 1.9). Other 

species with a more panoramic vision such as zebrafish or chicken, totally lack 

ipsilateral fibers (Herrera 2018, Herrera et al 2003, Seabrook et al 2017). The 

information from each eye is transmitted segregated until it reaches V1 where it 

integrates to form binocular neurons. 
 
 

 

 
 

Figure 1.9. Relationship between the degree of binocular visual field and the 
proportion of contralateral or ipsilateral projecting RGCs. A. Mouse visual field. 
B. Distribution of contralateral (green) and ipsilateral (red) RGCs in primates, 
carnivores and rodents. Adapted from (Seabrook et al 2017). 
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The reason why axons cross the chiasm to finally connect with the opposite 

hemisphere in the cortex is an important question to address, due to the great 

metabolic cost of developing longer axons. First of all, it should be noted that in the 

vertebrate nervous system there are numerous decussations, the information from 

the extremities crosses to the opposite side in the medulla, and so does the motor 

information. In such a way that the left hemisphere governs the extremities on the 

right side and vice versa. Around 98% of animal species show bilateral symmetry 

(Herrera 2018), that is, their body organization is more or less symmetrical and 

many of the components of the nervous system are duplicated. It is a highly 

successful evolutionary trait, since it defines an axis of movement in animals and 

favors cephalization. 

Bilateral symmetry together with the appearance of extremities that receive 

independent information throughout evolution, may explain the presence of the 

many decussations found in the vertebrate nervous system, since, at some point, the 

information of those duplicate components needs to be integrated (Banihani 2010, 

Herrera 2018). If all the connections of the nervous system were ipsilateral, we 

would have two separate nervous systems, our body would be governed by two 

independent brains with no communication between them (Banihani 2010). The 

multiple decussations throughout the nervous system and the large bundle of fibers 

that form the corpus callosum connecting both hemispheres highlight the 

importance of correctly integrating bilateral information in the nervous system. 

However, this explanation is insufficient to understand the reason for a higher 

percentage of contralateral fibers in the EVP. Since there are no connections 

between the left and right dLGN, the information is not integrated until it reaches 

the cortex. Therefore, what is the reason for decussating the information of each eye 

in the optic chiasm and sending it to the opposite hemisphere, with the consequent 

energy cost? In other words, why not send everything ipsilaterally, save wire and 

integrate in the cortex? 

A convincing hypothesis already proposed by Cajal and refined by other 

authors (Capozzoli 1995) is that the visual system has exerted pressure in this 
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direction due to the inversion of the retinal image, caused by the appearance of eyes 

with lenses and pupil throughout the evolution, characteristic of many chordates 

and invertebrates. These types of eyes impose a functional constriction that the 

visual system faces from the beginning, that is, the inversion of the retinal image 

when light passes through. The retinal image is inverted 180º, so in order to have 

congruent retinotopic maps, that is, continuous in the two hemispheres of V1, it is 

necessary for the information to cross. If not, there would be a discontinuity of the 

visual projection in both hemispheres (Figure 1.10). Therefore, this cross is 

responsible for a continuous and ordered image in V1 easier to process. Thus, this 

functional constriction imposed by the visual system invited the rest of the sensory 

and motor systems to adapt. If the visual information arrives crossed, the motor 

information must cross to activate the extremity closest to the eye that informs it, 

just as the sensory fibers of the extremities must cross to send the corresponding 

information to the extremity closest to the eye. Thus, integrating sensory and motor 

information in the same hemisphere, reduces reaction times, which will favor the 

survival of an individual by being able to respond quicker to changes in the 

environment. 

Topographic maps, that is, continuous and ordered maps of sensory 

information, are a constant in the nervous system (Chklovskii & Koulakov 2004, 

Gerhard 2013): there are tonotopic (sound), somatotopic (tactile), retinotopic 

(visual)…etc. The importance of having maps of organized information may be due 

to different factors as we will see later. What is clear is that they are present in all 

the mammals studied, so it is obvious that it is a functional constraint for the proper 

functioning of the nervous system. 

Finally, it is important to add that fiber crossing in the quiasm it is not the 

only way of integrating information in the cortex. In moles the independent 

information of each nostril integrates through interhemispheric connections and it 

is imperative for them to use this finer odor activation temporal keys to detect 

correctly the exact position of their food (Catania 2013). Following this line of 

thought, in the visual system, the corpus callosum and the anterior commissure also 
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seem to have an implication in synchronizing both hemispheres for the 

development of binocular vision (Olavarria 2001, van Meer et al 2016). 

 
       

 

 

 
 
 

 

 

 

Figure 1.10. Importance of contralateral crossing fibers in the Early Visual Pathway. 
A. Visual field input received by the eye. The red box represents the left visual field, the 
blue box the right visual field and in yellow the binocular visual field. As the light crosses 
the lens and the pupil, the retinal image that gets to the left and the right retina is inverted 
180º. B. Congruent and continuous retinotopic map when fibers cross to the opposite 
hemisphere. C. Discontinuous retinotopic map if all fibers where ipsilateral. 
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The Superior colliculus and the dorsal thalamic nucleus 

 
The superior colliculus (SC) is a multilayered structure located below V1, 

derived from the optic tectum of reptiles, amphibians, and birds. (Dhande et al 

2015). In the SC, the integration of ordered sensory information in each of it layers 

(auditory, visual…etc) is related to controlling the orientation of the head and eyes, 

to saccades and to rapid evasion behaviors among others functions (Dhande et al 

2015, May 2006). In contrast, sensory integration in the EVP, requires more 

processing stages and it is done in the associative areas of the cortex. 

The SC-pulvinar pathway provides general information about the 

environment. It serves to locate and orient respect to objects in the visual field. On 

the other hand, the dLGN-V1 pathway is in charge of computing specific details of 

the environment and serves the function of object identification and conscious 

development of sight (Petry & Bickford 2019). These two separate functions become 

clear in " Blindsight" patients. Here patients with lesions in V1 can respond to the 

presence of objects without being conscious of their presence (Stoerig & Cowey 

1997). 

As previously mentioned, there is a direct relationship between the size of 

the dLGN and V1 and the degree of visual acuity (Figure. 1.4; Table 1). Thus, 

mammals whose behavior requires a high visual acuity, such as carnivores and 

primates, have a larger size of V1 and dLGN in relation to their weight compared to 

rodents. Rodents, on the other hand, are more collicular animals, they do not focus 

their processing so much on solving fine details of the visual field, but on quickly 

detecting changes in the environment and generating rapid movements of evasion 

against predators (Dhande et al 2015, Mazade & Alonso 2017, Seabrook et al 2017). 

Thus, for example, the most numerous RGCs in mice (W3 RGCs), related to evasive 

behavior against aerial predators, projects mainly to SC and not to dLGN (Baden et 

al 2016, Roman Roson et al 2019, Zhang et al 2012). This is a big difference 

compared to carnivores and primates, where the retina is mainly made up of 

concentric RFs to solve fine details and where most of the projections go to dLGN 

(Alonso et al 2001, Nassi & Callaway 2009). 
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Another example that shows the different specialization of SC-pulvinar and 

dLGN-V1 can be observed when comparing the relative size of V1 and the SC across 

different species with different degrees of visual acuity (Table 2). The tree shrew, a 

prosimian of the order scadentia, has a Striatum griseum surface (SGS) - that is, the 

most superficial layer of the SC that together with the immediately inferior layer 

called stratum opticum receives all the retinal eferents-, whose volume is half the 

size of its V1 and 6 times greater than its dLGN. In comparison, a monkey's dLGN is 

5 times the size of its SGS (Petry & Bickford 2019). Animals that put emphasis on 

their visual acuity have emphasized the dLGN-V1 pathway in comparison to the SC- 

pulvinar pathway. 

 
 

Structure-function-ecological niche relationship 

 
I would like to briefly emphasize the close relationship seen until know 

between the size and function of the different components that process visual 

information and the ecological needs of each specie. Up to know there are clear 

examples such as eye size, retinal area, RGCs types, dLGN and SC size. Throughout 

the text we will find other examples, demonstrating the important information that 

comparative neurobiology can provide us about the visual system. 

The size of the different sensory areas in the cortex is clearly related to the 

biological needs of each specie (Figure 1.11). Carnivores and primates have clearly 

bigger visual areas in relation to their somatosensory areas compared to mice, that 

clearly devote their energy to their somatosensory areas. However, highly visual 

rodents such as the squirrel have a much bigger visual cortex. Even closely related 

species show clear differences due to their different lifestyles. Thus, the arboreal 

tree squirrel has more cortex devoted to visual areas than the terrestrial ground 

squirrel which in turn has larger somatosensory areas than the tree squirrel. 
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Figure 1.11. Size of primary and secondary areas across different species, 
adapted from (Krubitzer et al 2011). 

 

Even differences between animals from the same species have been reported. The 

Norway laboratory rat has a bigger somatosensory cortex compared to a wild 

Norway rat which in turn has a bigger auditory cortex (Campi et al 2011, Campi & 

Krubitzer 2010, Krubitzer 1995, Krubitzer et al 2011). 

These observations clearly highlight two points. First of all, the cortex is very 

plastic and can evolve and change swiftly. Second, these changes are not free and 

always come at a cost, so increasing the computation power of a sensory area is 

always done at the expense of another cortical region. 
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The lateral geniculate nucleus 

 
The dLGN has 3 basic functions: First, by converging and diverging the 

information from various RGCs it generates more complex and diverse RFs. Second, 

by feedforward inhibition it retrieves the inhibitory information that cannot be 

transmitted through the axons of the RGCs. Third, it modulates the relevance of the 

visual information transmitted to V1. 

The information from the different types of RGCs travels in parallel, with little 

crosstalk between functionally different channels until it reaches the visual cortex. 

In the dLGN the overall level of compartmentalization is higher in carnivores and 

primates compared to rodents. On the one hand, there is a marked citoarchitectonic 

segregation of the ipsilateral and contralateral fibers, that forms very marked and 

precise layers in carnivores and primates. Rodents, in comparison, have a laxer 

layering with two simple subdivisions, the shell where ipsilateral and contralateral 

axons arrive, and the core that only receives contralateral afferents. In fact, unlike 

carnivores or primates binocular cells that respond to both eyes can be found in the 

dLGN of mice (Rompani et al 2017). 
 
 

 

Figure 1.12. Citoarquitecture of the dLGN A. macaque, B. cat and C. mouse. 
Parvocelular (P), Magnocelular (M) and Koniocelular (K). Adapted from 
(Seabrook et al 2017). 
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On the other hand, the functional types of RGCs (X/P, Y/M…etc) that 

innervate dLGN are also compartmentalized in marked cytoarchitectonical layers 

(Figure 1.12). The macaque has a clear lamination of its main RGCs, that is, a 

parvocellular (P), magnocellular (M) and koniocellular (K) layers. (Gerhard 2013, 

Nassi & Callaway 2009) - the latter related to trichromatic vision of primates-. In 

cats there are fewer layers, although they are still very marked and segregated for 

its main RGCs types. Layers A and A1 receive most of the X RGCs and some Y RGCs. 

Layer C receives mainly Y RGCs and W RGCs (all those RGCs that have RFs different 

from X or Y cells are classified as W) (Martinez & Alonso 2001). Despite the weak 

lamination observed anatomically in mice, the different types of RGCs are arranged 

in separated layers, this can be functionally checked by the fact that each lamina of 

functionally different RGCs has its own retinotopic map (Seabrook et al 2017). 

The crosstalk between different excitatory RGCs types in the dLGN is 

practically null in carnivores and primates, whereas there is convergence between 

different types of RGCs in rodents. In cats, the X RGC: dLGN convergence ratio is 1:3, 

that is, each neuron of the dLGN receives an average of 3 contributions from similar 

X RGCs (Martinez et al 2014) . In mice, however, the convergence ratio is 1:5. The 

response of a dLGN neuron can be modulated as a combined response of 5 different 

RGCs types (Roman Roson et al 2019). Furthermore, it is possible to differentiate in 

mouse between relay mode neurons, which receive inputs of the same type of RGCs, 

and combination mode neurons that mix information from different types of RGCs 

(Liang et al 2018). However, the convergence between excitatory X cells of the same 

polarity in cat generates a richer diversity of RFs that improves coverage of visual 

space, visual acuity and signal-to-noise ratio. Thus the linear interpolation of inputs 

from RFs with similar functional properties can improve information transmission 

in the EVP (Martinez et al 2014). In summary, both the greater diversity of RGC 

types in rodents, together with their lower specificity of connections to the 

thalamus, generates a greater diversity of RFs in the dLGN compared to carnivores 

and primates (Figure.1.13), that instead have a lower diversity of RFs in the retina 

where most RFs are concentric, small and with transient or sustained responses 
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(X/P, Y/M), as an evolutionary strategy to develop high visual acuities (Nassi & 

Callaway 2009, O'Brien et al 2002, Rathbun et al 2016). 
 
 

 

Figure 1.13. Organization of Visual Streams in Different Species. Mouse has a higher 
diversity of RFs types in the retina and the dLGN in comparison to the cat and macaque. 
Adapted from (Chen et al 2016). 

 
 
 
 

dLGN inhibition 
 

As the Pull cannot be transmitted along the axon, the inhibition must be 

generated de novo in each EVP station, that is, in the dLGN and in the cortex by 

means of feedforward inhibition. To generate a new push-pull structure of the RF 

using feedforward inhibition, it is very useful to have two similar channels with 

antagonistic information whose RFs of different polarities overlap in space and 

sample the space in a regular way. Thus, in cat, XOn and XOff RGCs, can once again 

generate a push-pull structure in the relay cells by crosstalk between the On and Off 

pathways mediated by interneurons. The push, is transmitted directly and parallel 

to the dLGN. From here the interneurons of the dLGN connect with the relay neurons 

of opposite sign but with overlapping RFs in visual space resulting in a closed push- 

pull circuit (Hirsch et al 2015, Martinez et al 2014) (Figure 1.14). The push-pull 
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structure has the function of increasing the dynamic range of the signal, to enhance 

visual sharpening and to reduce the redundancy of the message (Hirsch et al 2015). 
 
 
 
 

 

Figure 1.14. Scheme of push-pull circuit in the dLGN for a relay off neuron (Toff). Numbers 
represent the mean convergence from RGCs to excitatory relay cells and interneurons (Ion) of 
opposite sign. Adapted from (Martinez et al 2014). 

 
 
 

Finally, the dLGN can modulate the way the signal is transmitted as a function 

of the behavioral state. Thus, the dLGN can switch between tonic and bursting mode. 

In tonic mode, the neurons of the dLGN fire replicating the signal from the RGC input. 

On the other hand, high-frequency action potential trains are called bursts. This type 

of modulation is related to the transition between sleep (bursting mode) and 

wakefulness (tonic mode), or to accurately signal and transmit relevant changes in 

an individual's visual field through bursts (Hirsch et al 2015, Sherman 2016, 

Sherman & Guillery 1998). 
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Driver and Modulatory synapsis 
 

In the retinothalamic circuity and in other parts of the nervous system, 

synapsis can be classified as drivers or modulators. Sherman (Sherman & Guillery 

1998) defines as drivers the inputs that define the basic RFs properties of a 

postsynaptic cell, while modulators alter the probability of certain aspects of 

transmission. In the case of the visual system, the inputs from the RGCs innervating 

the dLGN act as drivers, while the modulating inputs can come from layer 5 and 6 of 

the cortex, the reticular nucleus of the thalamus, and other nuclei of the nervous 

system. Modulatory synapses make up the bulk of the circuit while RGC drivers 

generate only 7% of all synapses. However, it is the drivers that have more weight 

in the transmission of the function to V1 because their synapsis are located closer to 

the soma. Thus, inactivation of small areas of the dLGN can silence V1 activity, 

despite the fact that most of the modulatory connections are still intact (Martinez & 

Alonso 2001). 

 
 
 
 

The Primary Visual Cortex 

 
The primary visual cortex combines and integrates sensory information 

generating RFs with new spatio-temporal characteristics. This is achieved thanks to 

the increase in the number and diversity of excitatory and inhibitory neurons as well 

as a greater interconnectivity between the components. 

 
 

Anatomy 
 
 

The mammalian telencephalon is made up of 80% of excitatory neurons and 

20% of inhibitory cells (Harris & Shepherd, 2015). Unlike the quasi-regular 

structure of the retina, the cortex is intrinsically more variable, with many 

differences across species and between different cortical areas. Furthermore, it is 
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made up of a great diversity of excitatory and inhibitory neurons whose 

morphological, genetic, functional and connectivity criteria are broad and difficult 

to define (Binzegger, Douglas, & Martin, 2004; DeFelipe et al., 2013; Harris & 

Shepherd, 2015) which makes it quite impenetrable to have a clear drawing of it. 

However, despite this high complexity, its anatomical structure can be described by 

the location of each of these components and their connections. Its structure, despite 

varying between different species and orders, has certain common features that are 

repeated throughout the phylogeny. 

First of all, most excitatory neurons are glutamatergic, have a pyramidal 

morphology (basal short dendrites in the soma and a long apical dendrite) and 

generate local and long-range connections. On the other hand, interneurons are 

GABAergic and tend to have a more local and nonspecific degree of connectivity. 

(Harris & Mrsic-Flogel, 2013). 

Secondly, there is a clear columnar and laminar structure. Vertically and 

within a radius of about 50 um, we find strongly connected neurons forming 

minicolumns (DeFelipe et al 2002, Kaas 2012a). Each of these small columnar units 

repeat and clump together, generating fundamental processing units throughout the 

cortex. On the other hand, the different neurons, inputs and outputs of the 

minicolumns are distributed in a stereotypical way, allowing them to be generically 

grouped in 6 layers along the horizontal and vertical axis (Douglas & Martin 2004). 

Layer 4, also called granular layer, is very characteristic of primary sensory areas 

such as V1 and is the main thalamorecipient layer (J. A. Hirsch & Martinez, 2006b; 

Kremkow & Alonso, 2018; Smith & Populin, 2001). It is made up of essentially two 

types of excitatory neurons; pyramidal and stellates (Harris & Mrsic-Flogel, 2013; 

Smith & Populin, 2001). Stellates are more compact and are generated from 

pyramidals that lose their apical dendrites during development (Callaway & Borrell, 

2011). The proportion and total amount of these neurons varies depending on the 

cortical area and across species. Primate and carnivores’ V1 layer 4 is populated by 

stellate cells, while rodent layer 4 is made up of pyramidal cells (Smith & Populin, 

2001). In addition, layer 4 varies a lot across different species due to the different 
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ways it integrates the thalamic afferents, with clear distinctive anatomical features 

between species and across different regions of the cortex. 

Third, there is a stereotyped flow of excitatory information between layers 

in carnivores, rodents and primates (Figure 1.15). The dLGN fibers innervate mainly 

layer 4 and 6. Layer 4 neurons, in turn, send information to layer two 2/3 (J.-M. 

Alonso & Martinez, 1998). From there, layer 2/3 neurons send long-range 

connections to other layer 2/3 neurons, to other cortical areas and to layer 5. From 

layer 5 information flows to other layer 5 neurons, to layer 2/3, to diverse 

subcortical nuclei and to layer 6. Layer 6 sends feedback connections to the 

thalamus and to the other cortical layers. For more details, see (Douglas & Martin, 

2004; Harris & Mrsic-Flogel, 2013; S. D. Van Hooser, 2007). 

 

 

Figure 1.15. Flow of information from main types of cortical excitatory 
neurons. The width of the arrows relates to the more dominant connections. 
Adapted from (Harris & Mrsic-Flogel 2013). 

 
 

Despite this series of distinctive features, there are differences in the 

lamination pattern and width of each of these layers between different species. So, 

on the one hand, there are certainly differences in the anatomical subdivisions of 
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each layer across different mammalian orders and suborders (Figure 1.16). 

(DeFelipe et al., 2002; Kaas, 2012b). On the other hand, the relative width of each 

layer is different in carnivores, rodents and primates and variations can be observed 

even across different cortical areas. Thus, for example, the sensory areas that 

receive a greater amount of thalamic input have a larger layer 4 size compared to 

motor regions (DeFelipe et al., 2002; Hutsler, Lee, & Porter, 2005). 
 
 
 

 

Figure 1.16. Different lamination patters from different primate species. 
Adapted from (Kaas 2012b). 

 
 
 

There is an intense debate regarding the homogeneity or heterogeneity of the 

cortical structure in different mammalian species. The question is not trivial at all 

and the answer has very important consequences to explain if the differences 

between function and behavior of each species are due to a different cortical 

assembly or rather to an increase or decrease in the number of neurons grouped in 

stereotyped functional blocks (columns). 

On the one hand, there are experiments that maintain that the total number of 

neurons under 1 mm2 of cortex remains stable in mammals, whereas what increases 

the thickness of the cortex in different species is the number glial cells (Carlo & 

Stevens, 2013; DeFelipe et al., 2002; Rockel, Hiorns, & Powell, 1980). This uniformity 

supports the direct relationship between the total number of neurons and the speed 

by which information is transmitted along the axons with the level of intelligence of 
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each specie (Roth & Dicke, 2005). It also relates to evolutionary theories that 

postulate that the evolution of the neocortex is due to the radial addition of similar 

functional modules, that is, of columns (Rakic, 1988). 

On the other hand, other studies, contradict this uniformity regarding the number 

of neurons and the degree of connectivity between them. The number of neurons 

under 1 mm2 of cortex may be different across mammalian species (DeFelipe et al., 

2002; Herculano-Houzel, Collins, Wong, Kaas, & Lent, 2008), which totally 

contradicts the previously mentioned studies. 

Also, the ratio between white matter and gray matter is higher in rodents compared 

to primates. Rodents have a greater amount of fibers interconnecting the 

components of the cortex while primates, on the other hand, save wire and manage 

to compact a greater number of neurons in a smaller volume (Ventura-Antunes, 

Mota, & Herculano-Houzel, 2013). This has consequences in the overall organization 

of the circuit. Rodents are organized as uniform or dense networks, where all 

components tend to be connected to each other. While primates are organized as 

small world networks, with a majority of short-distance connections and sparser 

long-range connections (Kaschube, 2014; van den Heuvel, Bullmore, & Sporns, 

2016; Ventura-Antunes et al., 2013). 

Finding similarities and differences in the cortex of different species is 

essential to describe the basic elements and the connections that compose it. The 

biggest problems when extracting the canonical elements from the cortical circuitry 

come from the difficulty of classifying the great diversity of its components, as well 

as their intrinsic variability. To classify it, it is essential to distinguish between 

variability and real differences. For this, it is necessary to observe the cortex at 

different scales and determine what level of detail is adequate to explain a certain 

phenomenon. It is very difficult, if not impossible, to describe and classify the 

elements of the cortex anatomically without taking function into account. Relating 

the anatomical structure with the electrical response of the neurons allows to 

distinguish between variability and clear anatomical differences, making it possible 

to generate models that explain the basic computations that the system is carrying 
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out. It is in these search of these differences, where we can find answers to what is 

common and describe how the cortical circuit works. 

 
 

Parallel pathways in rodents, carnivores and primates 
 

The great diversity of RFs can be classified into 3 large parallel and 

homologous routes of information transmission that reach V1; The P, M and K 

pathways in primates, related to the X, Y and W pathways in carnivores and rodents 

(Kremkow & Alonso 2018, Van Hooser 2007). The X/P and Y/M pathways are made 

up of concentric RFs with transient or sustained responses respectively. The W/K 

has neurons with RFs that respond to a much more diverse set of feature 

characteristics. They can range from RGCs selective to direction and/or orientation 

to blue opponent cells related to primate trichromatic vision (Seabrook et al 2017, 

Van Hooser & Nelson 2006). These pathways are different between species because 

they clearly have a different diversity and proportion of RFs. However, there are 

certain neurochemical and functional homologies that allow them to be grouped 

into 3 well-defined homologous groups (Kremkow & Alonso 2018, Seabrook et al 

2017). 

On the one hand, despite the lower lamination of the dLGN in mice, the Core receives 

concentric RFs (larger than those from carnivores and primates) with transient and 

sustained responses. This allows to group these channels into the X/P and Y/M 

pathways (Roman Roson et al 2019, Seabrook et al 2017). In all mammals, the axons 

of these pathways lead mainly to V1’s layer 4 and to a lesser extent to layer 6. In 

carnivores there is a large part of Y fibers that project directly to V2, which makes 

some authors to consider it a primary visual area (Van Hooser & Nelson 2006, White 

et al 1999). 

On the other hand, the tremendously diverse W/K pathway in mouse projects to the 

dLGN shell and relates to the C and K layers of the dLGN of carnivores and primates 

respectively (Baden et al 2016, Chen et al 2016, Roman Roson et al 2019, Seabrook 

et al 2017, Van Hooser & Nelson 2006). The W/K, unlike the X/P and Y/M, projects 
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to the upper layers of the cortex (Layers 2 and 3). In carnivores and primates these 

afferents form dense “blobs” rich in cytochrome oxidase, while in rodents these 

projections to the superficial layers are more diffuse (Van Hooser 2007). 

Finally, layer 4 shows certain differences in how it segregates its inputs. In 

primates, there is a clear segregation of the M afferents that project to a more 

superficial zone of layer 4 (4Cα), while the P afferents project to deeper zones (4Cβ). 

In carnivores there is some X/Y segregation, but it is clearly more diffuse. In tree 

shrews there is no segregation of the M or P pathways, but there is a clear 

segregation in On/Off polarity neurons. Off cells occupy the deepest layer and On 

cells the upper layer 4. (Hirsch & Martinez 2006b, Van Hooser 2007). In rodents, on 

the other hand, there are no marked segregations, which is consistent with a greater 

crosstalk between pathways already present at the dLGN level. 

 
 

V1 function 
 

When classifying the components of the cortex functionally, we are faced 

with the same problems as when doing it from an anatomical perspective. That is, 

deciding which criteria we to use to describe them to correctly define the relevant 

differences between neurons. 

Kuffler's (Kuffler 1953) studies related the functional microstructure of the 

RFs, obtained using simple stimuli, that is, small points of light, with the overall 

function of the neuron when faced with more complex visual stimuli. Following this 

line of thought, in 1962 Hubel and Wiesel mapped the cat´s V1 RFs (Hubel & Wiesel 

1962) with simple stimuli and saw that the RFs functional structure was different 

from the concentric RFs present in the dLGN. These new RFs form elongated 

subregions of On and Off polarities that gives them a new feature selectivity, the 

ability to respond to a preferred orientation (Figure 1.17). In such a way, that the 

strongest response appears when stimulating the RF with a bar positioned over the 

subregion with a similar polarity. So, for example, a white bar triggers the firing of 

the neuron when positioned over the elongated On subregion of the RF and 
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decreases the activity when positioned over the elongated Off subregion of the RF. 

Thus, the RFs respond to a bar of a certain orientation located in a concrete region 

of visual field, and the response decreases when the stimulus moves away from that 

orientation. They named these neurons "simple cells", since their response could be 

predicted from their RFs functional structure. 
 
 
 

Figure 1.17. Mapped receptive fields in the dLGN and V1. The receptive fields are shown in 
two ways: First, as contour plots where brightness indicates response strength. Second, 
response averages of the corresponding responses to small dark (black traces) and bright (gray 
traces) squares. Red represents On subregions and blue represents Off subregions. A. dLGN 
neuron RF. B. Simple cell. C. Complex cell that fires for both bright and dark stimuli. D. Complex 
cell where dark but not bright squares excite the cell, adapted from (Hirsch & Martinez 2006a). 

 
 
 

On the other hand, they found many other neurons whose response patterns 

could not be predicted from the spatial structure of their RF, which they named 

"complex cells". These cells no longer have elongated RFs of different polarity, 

however they respond to a preferred orientation regardless of the specific position 
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of the bar covering the RF, in other words, the polarity of the bar (black or white) 

does not affect the degree of response. 

These facts reveal two basic principles that condition the way we approach 

our understanding of visual information processing in V1. First of all, it is a 

hierarchical system where as we move up, neurons develop more specific feature 

selectivities. As a consequence, the functional classification of neurons has to be 

done with increasingly complex stimuli and the description we make ultimately 

depends on the stimulus we use for their classification. Thus, in addition to simple 

and complex cells, neurons can be classified by another series of feature selectivities 

such as response to direction, preferred frequency, eye preference, polarity, 

modulation by the periphery and the linearity of the response, among others. 

As expected, at this point in the text, the distribution of the different types of 

RFs varies through the cortical layer (Figure 1.22) and across different species, 

however, there are certain shared common design features. 

First, the complexity of RFs increases at higher processing layers compared to the 

thalamorecipient layer. In all species we find RFs in layer 4 whose response can be 

predicted from their spatial structure. Thus, in carnivores and rodents most layer 4 

neurons are simple. In primates like the macaque, the functional topolology is 

different. The 4Cα magnocellular layer has simple RFs, while the parvocellular 4Cβ 

has concentric RFs similar to those of dLGN. The trew shrew, on the other hand, 

lacks simple RFs and the segregated On and Off RFs in layer 4 are concentric like in 

the dLGN. As we follow the flow of information to other layers, RFs selective to more 

complex characteristics appear (Heimel et al 2005, Hirsch & Martinez 2006a, Hirsch 

& Martinez 2006b, Martinez 2006, Martinez & Alonso 2001, Martinez & Alonso 

2003, Van Hooser 2007). 

Second, all mammals have RFs that respond to a preferred spatial frequency. Here, 

clear niche specializations can be observed. Those animals whose behavior requires 

a high visual acuity have smaller RFs in retina, dLGN and cortex, in addition to RFs 

that respond to higher spatial frequencies in V1 (Heimel et al 2005, Mazade & Alonso 

2017). On the other hand, mice have RFs that respond to a higher spatial frequency 
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in the retinotopic portion of V1 corresponding to the upper visual field, probably to 

defend themselves from aerial predators (Zhang et al 2015, Zhang et al 2012). 

Third, there is a columnar organization for certain feature selectives such as the 

response of one eye or the other, orientation selectivity and a clear retinotopic 

organization. 

 
 

Orientation columns 
 
 

All mammals have columns of bigger or smaller diameter whose response to 

orientation is similar on the vertical axis (Heimel et al 2005, Hubel & Wiesel 1962, 

Kaas 2012a, Kaschube et al 2010, Ringach et al 2016, Van Hooser 2007). However, 

the columnar organization on the horizontal axis varies across species. In carnivores 

and primates, V1 cells with similar orientation preferences tend to cluster together 

in an orderly fashion giving rise to the renowned cortical orientation-preference 

maps (OPMs) (Blasdel 1992a, Blasdel 1992b, Bonhoeffer & Grinvald 1991, Kaschube 

2014, Kaschube et al 2010, Ohki et al 2006, Van Hooser 2007). On the other hand, in 

rodents and lagomorphs these clusters of cells are more decorrelated and smaller, 

giving rise to a “salt and pepper” configuration in V1 (Figure. 1.18) (Jimenez et al 

2018, Liang et al 2018, Ohki et al 2005, Ohki & Reid 2007, Van Hooser 2007, Van 

Hooser et al 2005). 

Classical electrophysiology techniques, where able to describe how 

orientations change gradually and continuously along the horizontal axis in OPMs 

(Clarke & Whitteridge 1976, Hubel & Wiesel 1962, Kremkow et al 2016). Later, the 

development of the technique of optical imaging of intrinsic signals allowed to 

record the joint activity of large areas of the cortex, elucidating the global columnar 

organization of OPMs. This technique relates oxygen consumption to neuronal 

activity. With a high resolution camera, large cortical areas of up to 2 cm2 can be 

recorded, where the activity of the cells appears as dark spots as hemoglobin is 

transformed into deoxyhemoglobin, which absorbs the incident light of a 

determined wavelength (Blasdel 1992a, Blasdel 1992b, Bonhoeffer & Grinvald 
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1991, Grinvald et al 1999, Kalatsky & Stryker 2003). Finally, calcium imaging 

revealed the microstructure of OPMs at the cellular level (Ohki et al 2005, Ohki et al 

2006, Ohki & Reid 2007). 
 
 

Figure 1.18. Cortical functional topology is different across mammals. A.Scheme of the 
different functional topologies found in V1 across mammalian species (salt and pepper in red; 
OPM in green; for the rest of species there is no available functional data). B. Ferret OPM 
obtained in the laboratory using optical imaging. C. Functional microstructure of the cortex of 
a cat (OPM) and a mouse (salt and pepper), adapted from (Ohki & Reid 2007). 

 
 

Kaschube (Kaschube et al 2010) analyzed the OPMs of various species 

demonstrating that the maps of carnivores and primates follow common design 

standards preserved throughout the phylogeny (Figure 1.19). Thus, orientation 

columns are distributed continuously and periodically. The change from one 

orientation to another occurs gradually and the columns that respond to a similar 

orientation (isoorientation) are separated by a fixed average distance (Schottdorf et 

al 2014). Furthermore, these quasiregular patterns are interrupted by two types of 

singularities, where the orientations change rapidly; linear zones and pinwheels. A 



60  

linear zone is straight strip in the map with an abrupt change in orientation. 

Pinwheels are regions of rapid orientation change arranged in a circular fashion 

rotating clockwise or counterclockwise. Interestingly, although the mean size of the 

orientation columns varies between species as well as the number of 

pinwheels/mm2, if a hypercolumn (λ) is described as the mean area between iso- 

orientation columns, dividing the pinwheels/mm2 by λ results in a dimensionless 

magnitude named pinwheel density (ρ), constant in all species with OPMs and 

whose value is 3.14 (Kaschube 2014, Schottdorf et al 2015). 

 

Figure 1.19 Quantification of computationally obtained OPMs. Pinwheels can rotate 
clockwise (white) or counter clockwise (black). Once calculated the mean column spacing (λ) 
the pinwheel density (ρ) can be computed. OPMs color coded for orientation as in Figure 1.18. 

 
 

Ocular dominance columns 
 
 

The inputs of each eye innervate layer 4, giving rise to neurons that respond 

preferentially to the contralateral, ipsilateral eye or to both (binocular neurons). The 

percentage of contralateral and ipsilateral RGCs in each specie clearly relates to the 

topological function observed in V1. In carnivores and primates, there is a clear 

segregation of neurons that respond preferentially to one eye or the other, giving 

rise to so-called ocular dominance maps (ODMs) (Binzegger et al 2004, Blasdel 

1992a, Swindale et al 2000, White et al 1999). Mice, on the other hand, lack ODMs 
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since the majority of fibers reaching the cortex are contralateral and only a minority 

are ipsilateral, therefore, they have a big area of contralateral response, and a small 

region of binocular response (see results; Figure 3.20; Figure 3.22, for examples) 

(Cang et al 2005a, Kelly et al 2014, Sato & Stryker 2008). Unlike OPMs, ODMs are 

not so stereotyped and their topological arrangement varies widely across species 

(Weigand et al 2017a). Thus in cats, ferrets, and primates there is a fairly marked 

modular organization in columns, but much more stereotyped and defined in 

primates (Muller et al 2000, Weigand et al 2017a). In ferrets, however, the final 

region of V1 and all of V2 is completely monocular, so the columnar organization 

disappears in the V1/V2 border completely and, instead, two big irregular regions 

of ipsilateral neurons form V1 and a big band of contralateral neurons that form all 

of V2 populate de cortex (White et al 1999). Recall that in carnivores, unlike other 

species, the Y path innervates with great force V2, so that carnivores can be 

considered to have two primary visual areas (Hirsch & Martinez 2006b, Van Hooser 

2007, White et al 1999). In the case of ferrets, a fully monocular V2 representing the 

central part of the visual field could be related to the detection of rapid movements, 

not as associated with the precision required for binocular vision, which is 

preferentially computed in V1. 

 
 

Retinotopic maps 
 
 

Retinotopy is a functional constriction present in all mammals studied up to 

date. The development of topologically ordered RFs tiling the visual space may be 

due to several factors. 

First, the “minimum wiring” principle postulates that the brain tries to use as less 

wire length as possible to reduce the metabolic cost. The retinotopic disposition of 

RFs forces neurons that encode similar spatial information to be close to each other 

and, therefore, saving wire when connected (Chklovskii & Koulakov 2004, 

Chklovskii et al 2002). 



62  

Second, it is important to have a continuous and congruent map of visual 

information in both hemispheres. (Murcia-Belmonte et al 2019). Disruptions in this 

congruence cause deficits in behavior (Sperry 1943). 

Third, for multisensory integration it seems reasonable to have sensory information 

topographically organized. Thus, for example, in the SC where the sensory 

information of the retina and ear is integrated in its different layers, an ordered 

tonotopy and retinotopy may be essential to integrate the information correctly 

enabling to relate a noise with a certain region of the visual field. (May 2006, 

Seabrook et al 2017). Likewise, for depth perception it is essential for RFs to be 

retinotopically aligned to receive slightly different information from each eye and 

develop binocular disparity (Parker 2007). 

Fourth, noise reduction. Biological information channels have extrinsic noise, due to 

the properties of the signal, such as photon noise (Masters 2014) and other intrinsic 

ones due to the neurons themselves. RFs that receive similar spatial information 

increase the redundancy of the system making it possible to average the signal and 

reduce noise. So, the same mechanism the RGCs use in the retina, that is averaging 

the signal from several photoreceptors to eliminate photonic noise (Faisal et al 

2008), might be used in the cortex in the same way, especially in the fovea of 

primates where the photoreceptor:RGC convergence is 1:1. Thus, increasing 

redundancy is a good way to increase the signal to noise ratio of the visual system. 

Certain ecological needs can be associated with the anisotropy of the 

retinotopic maps present in V1. Retinotopy is not homogeneous throughout V1. The 

cortical magnification factor (Cmag), understood as the mm of V1 dedicated to a 

certain area of the cortical visual field (Schottdorf et al 2014, Swindale 1996), varies 

throughout the cortex and in different species. Such is the case of carnivores and 

primates, whose high visual acuity in the central portion of the visual field relates to 

the fact that the number of RFs dedicated to central vision is much higher compared 

to the periphery. In mice and rabbits, on the other hand, the Cmag factor is higher in 

the upper axis of the visual field where the need to discriminate objects at larger 

distances is greater (Kremkow & Alonso 2018, Swindale 1996). 



63  

Retinotopy implies that the quasiregular arrangement of RGCs is exerting a 

clear functional constriction in the RFs that form in the cortex. Moreover, differences 

in cortical retinotopy can be associated with differences in the density of RFs that 

anisotropically sample different regions of the visual field in the retina, like the fovea 

of primates for example (Baden et al 2020, Kremkow & Alonso 2018, Liang et al 

2018). This functional constraint that the retina imposes on the cortex has clear 

implications for developing models that explain the emergence of the characteristic 

functional topologies of V1. 

 
 
 
 

Models of cortical functional topology 

 
Knowing the transformations that RFs undergo at each station of the EVP is 

essential to develop models that explain the emergence of new feature selectivities 

and, therefore, explain the basic mechanisms that the EVP may use to process 

information. Of all the functional characteristics present in V1, the ones that have 

received the most attention, due to their high prevalence in the mammalian cortex, 

are the emergence of orientation-selective RFs and the mechanisms required to 

orderly wire such a large number of neurons to develop stable retinotopic maps. 

 
 

Orientation selectivity models 
 

Models describing the emergence of orientation preference can be classified 

in two different groups; hierarchical models or intracortical (or recurrent) models. 

Hierarchical models are based on adaptations and updates of the model proposed 

by Hubel and Wiesel in their influential 1962 paper (Hubel & Wiesel 1962). Each 

layer 4 neuron receives an average of 20-80 afferents from thalamic neurons with 

concentric RFs and different On or Off polarity (Alonso et al 2001, Lien & Scanziani 

2018). The combined integration of this information generates RFs with two 

elongated sub regions of different polarity (Hirsch & Martinez 2006a, Martinez 
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2006, Martinez 2011), which gives these neurons a new feature selectivity, the 

ability to respond to an edge with a certain orientation in the visual field (Figure 

1.20). In turn, complex cells are formed by integrating single cell inputs, which gives 

them the property of response regardless of the polarity of the stimulus (Alonso & 

Martinez 1998). Highlighting an ascending and therefore hierarchical flow of 

information from the thalamoreceptor layers to the more superficial layers. 

The classical version of the model proposed by Hubel and Wiesel required 

greater determinism and order in the afferents that reached layer 4. So that to 

generate simple RFs, it is necessary for the connections of different polarity arriving 

from the dLGN to be aligned in visual space. The most modern version of the model 

does not require so much specificity in the connections. It is based on experimental 

data supporting that the orientation of a V1 column can be predicted from the 

population field of the thalamus of retinotopically aligned neurons in the visual field 

(Jin et al 2011, Martinez 2011). Therefore, if the orientation of a column in V1 is 

determined by a retinotopically aligned pool of RFs of different polarity, where does 

the structure of the thalamic population RF come from? How can the characteristic 

periodic structure of OPMs emerge? 
 

Figure 1.20. Hierarchical model hypothesis. A. Classical model by Hubel and Wiesel 
(Hubel & Wiesel 1962), simple cells are generated from dLGN neurons aligned in visual 
space. B. Modern view, simple cells are generated from a large pool of dLGN afferents that 
together form the dLGN population RF, adapted from (Martinez 2011). 
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The On and Off concentric RFs that reach layer 4 are arranged in the retina 

forming independent hexagonal mosaics (Eglen et al 2005, Wassle et al 1981a). The 

spatial statistics of these mosaics favors that the closest neighbor of a RGC neuron is 

another one of opposite polarity, giving rise to dipoles that, by linear sum of their 

RFs, can generate neurons selective to orientation in V1 (Figure 1.21). This 

statistical property of the mosaics is enough to bias the development orientation 

selectivity without depending on very strict connectivity rules (Soodak 1987), 

which finally derived in the Ringach´s model of statistical connections (Ringach 

2004, Ringach 2007). Here the neurons of the retina connect to the cortex following 

a Gaussian function, in such a way that, the closer they are to each other in the circuit, 

the greater the probability of connection between them will be. This simple rule is 

capable of generating many of the qualitatively relevant features of OPMs. However, 

the long range correlations that are generated are not as strong as in experimentally 

obtained maps, since the retinal mosaics from which they come from lack long range 

correlations (Diggle 2013, Eglen et al 2005, Wassle et al 1981a, Zhan & Troy 2000). 

Because spatial data on retinal mosaics is scarce, if the mosaic structure were more 

regular than experimentally reported, marked long range correlations can emerge 

with a simple statistical connection model (Paik & Ringach 2011). The main 

criticisms that hierarchical models receive are that none of them are capable of 

generating OPMs quantitatively similar to those reported experimentally (Kaschube 

et al 2010, Schottdorf et al 2015), that retinal dipoles cannot generate the typical 

circular correlation profile characteristic of OPMS (Schottdorf et al 2014), and that 

to generate strong long range correlations one would have to start from retinal 

mosaics whose spatial statistics are not supported by experimental data (Figure 

1.21). 

Contrary to such a simple approach to the emergence of orientation, there is 

an undeniable need of intracortical connections to generate many of the 

characteristics of V1 RFs. When mapping RFs with bright and dark spots along the 

different cortical sheets, simple neurons of the thalamorecepient layers (4 and 6) 

respond with a depolarization to a stimulus (push) and with a hyperpolarization to 

a stimulus of opposite polarity (pull) in each of its subregions. This inhibition (pull) 



66  

is generated de novo in V1 (Figure 1.22). It is developed by mechanisms mediated 

by cortical interneurons and is essential for neurons to remain selective to contrast. 

Clearly, the linear sum of RFs in the hierarchical model cannot explain the 

mechanisms of contrast invariant tuning (the capacity to maintain orientation 

selectivity regardless of the strength of the stimulus contrast) present in V1(Hirsch 

& Martinez 2006a, Hirsch & Martinez 2006b, Martinez 2006). 
 
 

 

Figure 1.21. Dipole model. A. Simple cells are generated from retinal dipoles. B. Dipole 
mosaic replicating the exact spatial location from the real RGC mosaic from (Wassle et al 
1981a) , ϑ= Maximum distance for the formation of dipoles. C. Circular correlation function 
for de retinal dipoles mosaic and for a computer simulated OPM. 

 
 

Also, the fact that only approximately 10% of the synapsis in V1 belong to the 

connections arriving from the dLGN (Martinez & Alonso 2003), supports 

intracortical models in which the inputs of the thalamus are considered to have little 

strength in the cortex, instead intracortical interactions are responsible of 

amplifying these weak thalamic signals endowing the RFs with orientation 

selectivity (Kaschube 2014, Kaschube et al 2010, Martinez & Alonso 2003). 

However, most of layer 4 and layer 2/3 cortical activity disappears by 

silencing a small region of the dLGN (Martinez & Alonso 2001), which reveals a 

similar relationship between drivers and modulators in the retinothalamic and 

thalamocortical circuits, where a minority of excitatory synapses are responsible of 
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the basic characteristics of the RFs (Sherman & Guillery 1998). This highlights again 

the difficulty of relating structure to function if only the total number of connections 

are taken into account. 
 

Figure 1.22. Laminar distribution of spatio-temporal mapped RFs in cat visual cortex. 
Note that simple cells (oval shape) respond positively to a stimuli of positive contrast and 
with a hyperpolarization for a stimuli of opposite polarity, push-pull arrangement. On the 
other hand, many complex cells have a push-push arrangement, they respond equally for 
stimuli of the same polarity (purple). Blue (complex neurons that respond exclusively to one 
contrast), white (complex neurons that do not respond simple spatial stimuli). Black and 
white lines correspond to the intracellular response to bright and dark spots respectively, 
adapted from (Hirsch & Martinez 2006a). 

 
 
 

Retinotopy Models. 
 
 

The spatially ordered arrangement of RFs in V1 is essential to obtain a 

consistent and congruent image of the visual field in the two hemispheres (Cang et 

al 2008, Godement et al 1984, Lemke & Reber 2005), and it is the basis on which the 

rest of the functional topologies of V1 emerge. In order to understand the 

mechanisms by which such a large number of connections are arranged so precisely, 

it is important to understand the phases in the development of the EVP. 
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The development of the main functional maps in V1 occurs in a staggered 

way. First, the retinotopic map is established in the dLGN and later in V1. The 

geniculocortical afferents do not go directly to layer 4, they are maintained and 

remodeled in the subplate until it degrades, enabling connections to layer 4 and 6. 

In addition, the afferents of the contralateral eye arrive first and later come those of 

the ipsilateral eye, establishing an initial continuous retinotopic binocular map in 

space (Huberman et al 2008, Kremkow & Alonso 2018). 

In second place, the strengthening of the contralateral and ipsilateral 

connections ends up segregating the inputs according to the eye, giving rise to 

neurons with a contralateral, ipsilateral and binocular response. Finally, 

conformational changes in the inner plexiform layer of the retina allow information 

to be segregated into antagonistic On/Off channels, causing orientation-selective 

neurons to emerge in V1 (Figure 1.23) (Huberman et al 2008, Kremkow & Alonso 

2018). 

The mechanisms that allow the correct development of retinotopic maps are 

molecular guidance cues for the initial establishment of connections and gross 

retinotopy, followed by activity dependent mechanisms that refine them. The 

molecular guidance cues work thanks to Eph receptors gradually and differentially 

expressed in different RGCs that, in turn, interact with an ephrin gradient that is also 

gradually expressed in the target tissue to which they are directed (Herrera et al 

2003, Herrera et al 2019, Huberman et al 2008, Swindale 1996). Once the gross 

retinotopic map is established, the activity-dependent mechanisms come into play. 

Activity dependent mechanisms change the weights of the connections of the circuit 

following hebbian rules (Hebb 1949). Hebbian plasticity is based on the fact that 

when two neurons fire synchronously they tend to strengthen their weights. 

Moreover, the synchronous or asynchronous firing between two neurons can induce 

changes in their internal structure, increasing or decreasing neurotransmitter 

release and thus, strengthening or weakening their weighs through activity 

dependent mechanisms (DeFelipe et al 2013, Markram et al 1997). 
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There are mainly two types of activity dependent mechanisms that take part 

for the development of retinotopy. On the one hand, there are those that occur by 

the spontaneous activity mediated by retinal waves, which take place before the 

photoreceptors are fully formed and, therefore, are prior to the visual experience. 

(Ackman et al 2012, Crair et al 1997, Huberman et al 2006). On the other hand, after 

the eye opening, the so-called critical period is entered and a finer remodeling of the 

axons occurs. It is important to note that the retinotopic map is already formed prior 

eye opening, and therefore, its formation is independent of the visual experience 

(Huberman et al 2008, White et al 2001, White & Fitzpatrick 2007). 
 
 
 

 
Figure 1.23. Phases in the development of the Early visual pathway development. 

 
Until recently there was no evidence of what guided the activity-dependent 

mechanisms acting before eye opening. However, Crair (Ackman et al 2012) has 

shown that retinal waves generated spontaneously in the retina are transmitted to 

the postsynaptic layers (superior colliculus, dLGN and V1) synchronously in both 

hemispheres governing their spontaneous activity. On the other hand, Retino- 

retinal (R-R) connections have been seen in many species at the beginning of 

development, these fibers seem a good candidate for the synchronization of the 
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activity of both retinas since there are no functional connections between 

hemispheres at the level of the dLGN or the SC (Murcia-Belmonte et al 2019). 

Many theoretical and computational models have been applied to 

understand how activity dependent mechanisms shape the formation of retinotopic 

map development (Eglen & Gjorgjieva 2009, Hjorth et al 2015). A particular class of 

models, that is, input driven self-organization models, introduced initially by 

Willshaw and von der Marlsburg (Willshaw & von der Malsburg 1976) with the 

modifications introduced by Kohonen, give a clear and beautiful answer to how 

these mechanisms work (Kohonen 1982, Kohonen 2013b). 
 
 

 

Figure 1.24. Kohonen algorithm used to classify a short interval of natural speech. 
Each circle represents a neuron whose RF is specialized in detecting a precise speech 
interval. Note how they are arranged in topographical order, adapted from (Kohonen 
1998). 

 
 

The self-organizing model (SOM) elaborated by Kohonen proposes that the 

weight of the connections of a neural layer can be self-organized by the input and a 

function that propagates the activity in the surrounding neighborhood following 

simple hebbian rules. Thus, when two neurons fire synchronously in the developing 

circuit they strengthen their weights. As the neuronal layer keeps receiving 

different types of input, their weights update over time specializing in the detection 

of a certain stimuli. This simple rules make neurons that are close in the circuit to 
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develop RFs that respond to similar features, generating ordered retinotopic maps 

where each neuron´s RF is specialized in detecting the position of a stimulus in 

visual space. In other words, neurons develop RFs with feature selectivities for a 

precise stimuli using a self-organizing algorithm based in a simple hebbian rule, a 

function that enables the propagation of the activity of the activated neurons to their 

neighbors, and some degree of plasticity to allow the actualization of their weights 

over time. The SOM algorithm was initially built to explain the correct development 

of ordered retinotopic maps in the visual system. However, this algorithm is so 

powerful that it is still used nowadays to process and classify any multidimensional 

signal in a topographical order (Figure 1.24) (Kohonen 1998, Kohonen 2013a). 

 
 
 
 

What do receptive fields do? 

 
So far we have described the structure of the EVP and have made an effort 

to relate the feature selectivity of the RFs to the ecological needs of each specie. In 

fact, there is a clear relationship between feature selectivity and the topological 

disposition of the RFs, with the ecological niche that each species occupies. 

Therefore, comparative biology is a useful approach for finding common and 

uncommon elements between species and generating hypotheses about the 

fundamental operations that the EVP is performing. 

To test these hypotheses, computational models can be used in which 

the way the system physically performs the operations as well as the specific 

algorithm it uses to carry them out is left aside, to instead focus on the main 

operation that it has to carry out (Marr & Poggio 1976). In computer science, is 

perfectly known that, different algorithms can arrive to the same solutions (Van 

Hooser 2007). So, it should be noted that all theoretical hypothesis must be carried 

out under the important premise that, despite the fact that the underlying 

machinery/algorithm that carries out this operation may be different, the resulting 

functional architecture to solve the problem will be similar. This allows to confirm 
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or not a certain hypothesis when comparing modeling results with experimental 

data. 

Extracting the most relevant components of the environment for the survival 

of an individual marries the efficient coding hypothesis postulated by Barlow in 

1961 (Barlow 1961). Shannon’s “Information Theory” (Shannon 1948) was born out 

of the need to minimize the cost of sending information over long distances with the 

lowest possible energy cost in artificial systems. Following these line of thinking, 

Barlow understands sensory systems as communication channels whose main 

characteristic is to extract the most relevant information from the environment with 

the lowest energy cost. Sensory systems act as filters that maximize the entropy of 

the message to be transmitted in the system, eliminating its redundant components. 

The criterion to optimize is, therefore, the reduction of redundancy and the way to 

do it biologically is through spatiotemporal filters (RFs) that extract the most 

important components (or those with more information) from the environment. 

This hypothesis relates with the fact that natural images are highly 

redundant, that is, highly correlated and with a 1/f statistic. This basically means 

that if you divide an image into small pixels the probability that a pixel is similar to 

its neighbor is very high (Simoncelli & Olshausen 2001). Thus, the elements that 

contain more information are those where there is a rapid change of contrast, in 

other words, a border. Therefore, the edges of an image are the elements that 

contain the most information from the statistics of a natural environment. 

Neuroscience has been applying many of the principles of information theory 

with more or less success (Rieke et al 1996). Starting from the premise of efficient 

coding, computational models based on "sparse coding" have been developed. They 

work by searching for a series of base functions that minimize the dimensionality of 

the signal and that describe it with the least number of components (neurons) as 

possible (Babadi & Sompolinsky 2014, Martinez-Garcia et al 2017, Olshausen & 

Field 1996, Olshausen & Field 1997, Rehn & Sommer 2007, Simoncelli & Olshausen 

2001). These base functions can be extracted using different optimization 

algorithms such as ICA, PCA, TICA …etc. (Beyeler et al 2019, Martinez-Garcia et al 
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2017). Curiously, these types of algorithms are capable of generating the 

characteristic simple RFs present in V1(Olshausen & Field 1996), indicating that V1 

in part, and not totally as we will see, is maximizing the transmission of the most 

relevant information from the environment. 

However, experimental data does not fit totally with the hypothesis of 

complete redundancy reduction (Rehn & Sommer 2007, Ringach 2002). There are 

low spatial frequency RFs in V1 increasing redundancy, therefore there is an 

overcomplete set of RFs that filter the information of the environment (Olshausen & 

Field 1997). In other words, there are more spatio-temporal filters than those 

required if the main operation carried out by the system is redundancy reduction. 

Furthermore, the population response of the neurons varies between the different 

cortical layers, where the thalamorecepient layer has a denser code compared to the 

sparser code of the superficial layers (Faisal et al 2008) . 

Why does the EVP need to be redundant? Redundancy can be essential, 

among other reasons, to increase the signal-to-noise ratio in the SVT. Thus, 

averaging the activity of several neurons that receive a similar input eliminates 

noise (Faisal et al 2008). Also, coming from Barlow himself (Barlow 2001), it 

becomes especially relevant when we think of the brain as a Bayesian decoder that 

handles probability distributions to make its decisions. In this context, because we 

live in a constantly changing environment, adaptation consists on the ability to 

generate robust probability distributions of the environment. For this, it is 

necessary to understand the statistics of the redundant components of each new 

environment encountered by an individual. 

In summary, the application of certain principles of information theory for 

the transmission of information in artificial sensory channels has had relative 

success in neuroscience. However, the EVP is not optimizing only this problem of 

channel capacity, there are other tradeoffs that it has to assume and that remain to 

be discovered. 
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Aims 

 
Understanding the developmental rules that give rise to a cortical structure 

through evolution is useful to identify the basic elements and their interactions in 

the formation of a system. Many computational models are able to simulate the 

development of several features of V1 neurons (Kaschube 2014, Kaschube et al 

2010, Schottdorf et al 2015, Swindale 1996, Weigand et al 2017b). However, to 

understand the role the structure has in the system we have to move a step further 

and relate these interacting elements to a concrete function or objective that the 

cortex has to achieve (Marr & Poggio 1976). To these end I have focused in resolving 

the following questions: 

 
 

- What are de main operations performed by V1? 

- What can we learn from the early visual system with the available functional 

data in mammalian species? 

- Do these species share common developmental wiring rules? If so, are they 

optimizing or solving the same problem? Do they solve it in the same way? 

- Are the functional differences due to different biological constraints? 

- What are the advantages of these connection strategies for information 

processing in the brain? 

- What is the relationship, if any, between the functional architecture and the 

main operations the system is performing? In other words, do OPMs serve a 

specific function or operation V1 performs? 

- Can we extract any canonical features governing the development of 

cortical circuits and function? 
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Materials and methods 
 

Statistical Wiring Model of the Early Visual Pathway. 
 

A Feedforward 3-Layered Neural network of the excitatory part of the early 

visual pathway was constructed based on previous experimental and theoretical 

work (Martinez et al 2014, Ringach 2004, Ringach 2007, Schottdorf et al 2015, 

Wassle et al 1981a). However, because the size of V1 differs between species (Table 

1), a parameter was added that enables to increase or decrease the area of V1 with 

respect to the retina, that is, to explore the different divergence-convergence ratios 

(DCr) between species. The area of the dLGN was considered to be the same as the 

retina, and the density of the excitatory relay cells was 1.5 times bigger than the 

RGCs density. Our retinal and thalamic mosaics each simulate a square patch of 

tissue of 15mm2, that is, the area of a mouse retina (Table 1). To avoid boundary 

effects, only those relay cells that were separated from the edges of the mosaic by at 

least 100 microns, were considered for further analysis. 

 
 

Divergence-convergence Ratios (DCr) between layers 
 
 

We defined the convergence-divergence ratio between two consecutive layers as 

[1]: 
 
 
 

(1) 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑 
𝐷𝐷𝐷𝐷𝐷𝐷 = = 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 
 

Where 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 are the number of postsynaptic and presynaptic neurons 

respectively, and div and conv represent the average divergence and convergence 

connectivity between layers. 
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The number of cells in each layer is given by the product of the cell density 

and the area of the corresponding layer. From this we can derive that [2], 
 
 
 

(2) 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 ∗ 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑 
𝐷𝐷𝐷𝐷𝐷𝐷 = = 

𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 ∗ ѡ ∗ 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 
 
 

Where 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 are the density of neurons (cells/mm2) in the retina 

and V1 layer 4 respectively. 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 represent the area (mm2) for each layer. 

The factor ѡ represents the upsampling of the LGN (nº of LGN neurons/nº RGC 

neurons) in the model. 

 
 

Retinal Layer 
 
 

To simulate the spatial statistics of the position of RGCs of the retina we used 

the pairwise interaction point process (PIPP) algorithm (Eglen et al 2005, Schottdorf 

et al 2014), to simulate a RGC mosaic that resembled the distribution reported for 

the cat using the parameters from (Schottdorf et al 2014) for the w81S1 mosaic by 

(Wassle et al 1981a). The density of the RGCs was fixed to 98 Off cells/ mm2 and 90 

On cells/mm2 for 7° of eccentricity as in cat (Wassle et al 1981a). 

 
 

dLGN Layer 
 
 

Thalamocortical cells were regularly distributed forming a hexagonal 

compact mesh of sensors that covers a surface of the same size as the thalamic layer. 

The area of the LGN was the same as the one used for the retina and only the density 

of cells was varied by a factor ѡ = 1.5 respect to the number of RGCs. The polarity 

(On or Off) of each thalamocortical neuron was inherited from its nearest neighbor 

in the antecedent RGC mosaic, following a minimum wiring paradigm (Chklovskii et 

al 2002). 
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Arrangement of layer 4 cortical cells 
 
 

The cortical neurons were arranged as in the dLGN but with a higher density, 

2200 cells/mm2. However, to simulate the different DCr across species, the 

coordinates of the peak RFs of the neurons of the previous layer were re centered 

and proportionally expanded or compressed to fill the postsynaptic layer following 

equation [3] before connecting the neurons from the next layer, 
 
 
 
 

(3)   𝑥𝑥 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚   𝑥𝑥 − 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚  
𝑟𝑟(𝑥𝑥, 𝑦𝑦) = [1 + , 1 + ] 𝜅𝜅 

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 
 
 
 

Where x and y are the coordinates for the neurons position and 𝜅𝜅 is the factor that 

expands or compresses the coordinates conserving the retinotopy in the final layer. 

Xmin, Xmax, Ymin,, Ymax,, stand for the minimum and maximum x and y coordinates. 

 
 

Connectivity between layers 
 
 

The probability of connection between layers (Pr) was modelled as a 

Gaussian function of the x-y distance. Where x is the coordinate of a neuron in the 

previous layer and y the coordinate of a neuron of the next layer from x. 

The weight of connections was also assumed to be a Gaussian function of the 

distance between the receptive-field centers. The function for both connection 

probability and strength was as in [4], 
 
 
 
 

(4) ‖𝑥𝑥−𝑦𝑦‖2 𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑞𝑞 ∗ exp (− ) , 1} 
2∗𝜎𝜎𝑙𝑙

2 
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The area of influence of each neuron is determined by 𝜎𝜎l (simulating dendrite 

and axonal coverage) and the strength of each connection could be varied changing 

the free parameter 𝑞𝑞. The connections between the retinal and thalamic layer where 

done between same sign neighbors however V1 neurons inherited a combined 

polarity pooling from the On and Off pathways. 

The connections also followed a winner takes all mechanism (Kohonen 2013b, 

Willshaw & von der Malsburg 1976). In the sense that the connection with the bigger 

strength inherited the activity of the RF from the previous layer and the rest of 

possible connections are then calculated from this new peak of activity. That said, to 

connect each layer with the next the following steps were always made: 

1) Calculate the probability of connections between all neurons from the pre 

and postsynaptic layer. 

2) Connect to the neuron with the strongest weight, that is, the “winner neuron”. 

3) The “winner neuron”, inherits the activity of the RF of the previous layer. 

4) The probability of the rest of possible connections is calculated from this new 

coordinate of peak activity. 

5) The weights for each neuron are normalized so that the sum of all the weights 

of each neuron is equal to 1. In other words, all neurons have the same weight 

in the model. 

 
Due to the different convergence ratios between layers in the model, a small number 

of unconnected presynaptic cells are sometimes present. To overcome this problem 

those neurons were connected to their nearest neighbor and the strength of their 

connection was obtained with the same function as in [4]. 

To summarize, this way of performing the connections assumes that all neurons 

in the circuit have the same weight and it assures a “fire together, wire together” 

hebbian mechanism favoring the connections of neurons with similar RFs, that is, 

with RFs that respond to similar regions of visual space, rather than just connecting 

according to the spatial coordinates of their soma. 
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Model RFs 
 
 

RGCs and the excitatory part of thalamic RFs where modelled as in (Martinez et al 

2014). The RFs of V1 layer 4 cells where constructed by linearly combining all their 

pooled thalamic inputs [5], weighted with the same Gaussian function we used [4] 

to calculate connection probability 
 
 
 
 

(5) 𝑅𝑅𝑅𝑅 = ∑ 𝑃𝑃𝑃𝑃𝑖𝑖 ∙ 𝑅𝑅𝑅𝑅𝑖𝑖 
𝑖𝑖𝑖𝑖𝑖𝑖 

 
 

Where 𝑃𝑃𝑃𝑃 is the weight of each RF from the previous layer that receives a total of N 

different connections. 

 
 

Population receptive field 
 

To obtain the structure of the thalamic population receptive field we 

computed the On-Off linear combination of all thalamocortical receptive fields (Jin 

et al., 2011), following equation [6]. The results are shown as color maps in which 

areas where On and Off responses are coded in red and blue, respectively. 
 
 
 
 

(6) 𝑁𝑁 
1 

𝑐𝑐𝑐𝑐𝑐𝑐 = ∑ 𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅𝑖𝑖 𝑁𝑁 
𝑖𝑖=1 
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Preferred Orientation and spatial frequency 
 
 

The preferred orientation, spatial frequency and tuning curve for each layer 4 RF 

was computed based on the Fourier spectrum of the RF (𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓)) as in (Ringach 

2007, Schottdorf et al 2015). 
 
 
 
 
 

µ = 
∬ 𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓) 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 

 
 
 

Where the preferred orientation is 
 
 
 
 
 

(8) 𝜗𝜗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = arg(µ)/2 
 
 

And the preferred spatial frequency was obtained using the Center-of- Mass Method 

(Ringach 2007) 
 
 
 
 

(9) 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = |µ| 
 
 

Tuning curves and orientation selectivity index 
 
 

For each layer 4 RF its tuning curve (TC) and orientation selectivity index 

(OSI) where calculated as in (Ringach 2007, Schottdorf et al 2015). Where the TC for 

a given spatial frequency (𝑘𝑘) and a given orientation (𝜗𝜗) is 
 
 
 
 

(10) 𝑇𝑇𝑇𝑇(𝜗𝜗, 𝑘𝑘) = |𝑅𝑅𝑅𝑅(𝑘𝑘 cos(𝜗𝜗), 𝑘𝑘 sin(𝜗𝜗))| 

(7) ∬ 𝑅𝑅𝑅𝑅(𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓) 𝑒𝑒2𝑖𝑖 atan(𝑓𝑓𝑓𝑓/𝑓𝑓𝑓𝑓) 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 
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and where the TC was extracted for the 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of each RF, 
 
 
 

(11) 𝑇𝑇𝑇𝑇(𝜗𝜗, 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = |𝑅𝑅𝑅𝑅(𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝cos(𝜗𝜗), 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 sin(𝜗𝜗))| 
 
 
 

𝜗𝜗 took values from 0 to 2π. As seen in Figure 2.1 the model returned neurons poorly 

tuned, that is, broadly selective to orientation, and others more selective to a specific 

orientation, as denoted by the shape of their tuning curves. 
 
 
 

 
 
 
 

𝜗𝜗 𝜗𝜗 𝜗𝜗 

 

Figure 2.1. Tuning curves from model V1 RFs. Example of a broadly tuned neuron (left) 
and two orientation selective neurons (middle and right). Seen as the degree of response 
(Resp) for each orientation (𝜗𝜗), given a preferred spatial frequency (𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). 

 
 

Once obtained the TC the OSI was calculated as 
 
 
 
 

(12) 2𝜋𝜋 
| ∫ 𝑇𝑇𝑇𝑇(𝜗𝜗, 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑒𝑒2𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 | 

𝑂𝑂𝑂𝑂𝑂𝑂 = 0 2𝜋𝜋 
∫0 𝑇𝑇𝑇𝑇(𝜗𝜗, 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝑑𝑑𝑑𝑑 
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𝒌𝒌𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 

to describe how narrow or broad the tuning curves are for the RF of each V1 

neuron, in other words, how selective is a neuron to its 𝜗𝜗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . As reported by 

(Ringach 2007), there is a clear relationship between 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . The more 

selective a neuron is to a 𝜗𝜗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 the higher the 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Figure 2.2). 

 
 
 

Figure 2.2. Orientation selective increases with preferred spatial frequency. 
Neurons with a high 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 tend to have a high OSI. Each color represents a different V1 
neuron. 

 
 
 
 

Cortical magnification factor and local connectivity matrix 
 
 

The Cmag was understood and computed as the area of V1 that receives 

information from a similar RF. Taking into account formulas [1,4], the Cmag is 

completely related to the levels of thalamocortical divergence and, therefore, 

completely linked to the DCr. Thus, the final levels of divergence are computed as 

the area of the resulting connectivity Gaussian function (Pr) which in turn depends 
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on the value of 𝜎𝜎𝑙𝑙 from [4]. In summary, as the DCr value increases, so does the size 

of (Pr), the levels of divergence, the Cmag and vice versa (Figure 2.3) 

 

 

 

 

Figure 2.3. Connectivity Gaussian functions (Pr) for different DCr. The area occupied 
by the extent of the mean thalamocortical divergence determines Cmag. The extent of 
local connections between V1 neurons is determined by a local connectivity matrix 
whose area is thresholded at 70% of peak response from Pr. 

 
 
 
 

V1 local connections 
 

Local connections between V1 neurons were simulated using a thresholded 

Gaussian filter convolution where the local connectivity matrix (Lc) used to simulate 

the extent of local connections was determined as the area of Pr>0.7. In other words, only 

those neurons whose probability of shared response was above 70 % where considered to 

form local connections (Figure 2.3). 
 
 
 
 

(13) ‖𝑥𝑥 − 𝑦𝑦‖2 
𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 1 ∗ exp (−  ) > 0.7 

2 ∗ 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 
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Where 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜎𝜎𝑙𝑙 (as in [4]) so that the size of the filter is completely related to the 

levels of divergence required to reach a fixed value of convergence, for each DCr 

value between layers. 

Once obtained the Lc, the coordinates of the neurons selective to orientation 

(OSI>0.25) where transformed to form an image f(x,y), that was convoluted using 

the Lc as the mask for the convolution [14], 
 
 
 
 

(14) 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 𝐿𝐿𝐿𝐿 ∗ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = ∑𝑎𝑎 ∑𝑏𝑏 𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑)(𝑓𝑓(𝑥𝑥 + 𝑑𝑑𝑑𝑑, 𝑦𝑦 + 𝑑𝑑𝑑𝑑)𝑒𝑒2𝑖𝑖𝑖𝑖) 
𝑑𝑑𝑑𝑑=−𝑎𝑎 𝑑𝑑𝑑𝑑=−𝑏𝑏 

 
 

Where g(x,y) is the OPM obtained interpolating the orientation from the influencing 
local connections and −𝑎𝑎 ≤ 𝑑𝑑𝑑𝑑 ≤ a and −𝑏𝑏 ≤ 𝑑𝑑𝑑𝑑 ≤ b. 

 
 

Circular Correlation 
 

The circular correlation between al pairs of neurons with an OSI>0.25 was 

computed as a function of increasing concentric circles, as in (Schottdorf et al 2014) 
 
 
 
 

(15) 𝐶𝐶(𝑟𝑟) = cos(2(𝜗𝜗(𝑥𝑥) − 𝜗𝜗(𝑦𝑦)))(𝑟𝑟−𝑏𝑏/2)≤|x−y|≤(r+b/2) 
 
 

Where r are the values of increasing radius up to a rmax of 1.8mmc (mmc for 

mm of cortex) and b= rmax/80. So that the total length of the maximum radius is 

divided into 80 independent bins where the circular correlation is computed. The 

same function can be used for calculating the correlation between dipoles of the 

retina or the dLGN. However, in this case, b=rmax/17 and rmax=1.8 mm/Cmag. 

Where the Cmag= 1.7 mmc/mmr (mmr for mm of retina) as for the w81S1 mosaic 

by (Schottdorf et al 2014, Wassle et al 1981a). 
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Once 𝐶𝐶(𝑟𝑟) is computed a series of parameters where extracted to describe 

the circular correlation function across models with different DCr. First, the local 

column diameter of OPMs was extracted as the first point in the function that 

reaches a value of 0. Furthermore, the anticorrelation point was extracted searching 

for the next inflexion point after the local column diameter point. The hypercolumn 

size (λ), that is, the mean distance between isoorientation domains (Kaschube et al 

2010), was estimated as the position of the highest peak of positive correlation after 

the function reaches a value of 0. The strength of the periodicity, termed as 

periodicity robustness, was calculated as the area of positive correlation under λ 

(Figure 2.4). 
 
 

 

 

Figure 2.4. Parameters extracted from the circular correlation function. For 
each circular correlation function calculated, the local column diameter, anticorrelation, 
hypercolumn size (λ) and periodicity robustness where extracted. 
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Orientation Bias 
 
 

Orientation Bias (OBias) was calculated as in (Molano-Mazon 2013, Ringach 

2007) by reconnecting each neuron of the circuit 20 independent times and 

calculating the resulting dispersion in the orientation of the resultant vectors in the 

unitary circle, as in eq [16], 
 
 

(16) 𝑁𝑁 
1 

𝑂𝑂𝑂𝑂 = ∑ 𝑒𝑒2𝑖𝑖𝑖𝑖 
𝑁𝑁 

𝑖𝑖=1 

 
 

Where N=20 independent connections and ϑ is the orientation obtained for 

each Ni independent iteration. So, for each OPM, the orientation can be predicted 

through the thalamic population RFs. One the one hand, clear stable regions, with a 

high orientation bias, where present at locations with a high contrast change in the 

thalamic population RF. On the other hand, regions of low stability, where located at 
 
 
 
 

 
Figure 2.5. OBias computation. A. Population RF computed as in eq [6]. B. Example of 
20 independent reconnections and OBias values from two different regions of the 
population RF map. C. OBias map of the whole region. 
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low contrast locations. Finally, an Obias map can be computed where it is possible 

to see how stable regions intermingle with low stability regions (Figure 2.5). 

 
 

RF coverage of visual space and redundancy 
 

Coverage of visual space in V1 was computed as in (Martinez et al 2014) for 

a square window of 2.25 mm2. The area of visual space covered by the RFs in V1 

was calculated independently for the On and Off pathways and the area covered by 

each RF was computed as the region of the RF whose response was above a 

threshold of 90% of its peak response. 

Redundancy was calculated as in [17] and defined as the proportion of 

overlapping RFs covering visual space for the same window where coverage was 

computed. 
 
 
 

(17) 1 ∑𝑁𝑁  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑁𝑁 𝑖𝑖=1 𝑅𝑅𝑅𝑅𝑖𝑖 

̅𝑃̅̅𝑃𝑒̅𝑒𝑎̅̅𝑎𝑘̅̅̅̅̅̅𝑘 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

 
 

Where the mean population response of all RF peaks covering V1 is summed and 

divided by the individual mean response of a single RF peak. 
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SOM model 

 
We used a simplified and modified version of the self-organizing map (SOM) 

as described by (Kohonen 1982, Kohonen 2013b, Willshaw et al 1976). The 

topography of the RGCs is represented by a regular square mesh of size 11 by 11 

with the cells in the nodes. Those cells project to a postsynaptic layer of the same 

size, initially with synapses between all the cells in a non-specific manner. A 

representation of the location of the center of mass (CM) of the normalized weights, 

w, of the synaptic connections results in a mesh contained in a unit square. 

By stimulating the retina with different stimuli the synaptic weights change in 

according to a Hebbian rule, so that they are changed according to the expression 

[18], 
 
 
 
 

(18) 𝑡𝑡 (𝑋𝑋−𝑥𝑥𝑤𝑤)2+(𝑌𝑌−𝑦𝑦𝑤𝑤)2 𝛿𝛿𝛿𝛿 = 𝜆𝜆 ∙ 𝑒𝑒− ∙ 𝑒𝑒− 2 ∙ (𝑟𝑟 − 𝑤𝑤 ) 
𝑖𝑖 𝜏𝜏 2𝜎𝜎 𝑠𝑠 𝑖𝑖 

 
 
 

Where δwi is the change in the i synaptic weight wi. λ is the weight decay term, t 

is the time expressed in number of iterations. τ is the time constant for the λ decay. 

X and Y are the arrays holding the coordinates of retinal cells. xw and yw are the 

coordinates of closest cell to the stimulus location, i.e., the coordinates of the winner. 

σ gives the extent to which the activation propagates to neighbouring cells, and 

finally, rs is the vector position of the stimulus. 

 
Figure. 2.6 shows the development of a map over time. Starting from a 

condition in which all cells are connected with almost equal weights, thus the 

position of all CM is very close to the center, the stimuli make it to deploy in a way 

that by the end of 12000 iterations the synaptic connections have been greatly 

refined and the receptive fields of each post-synaptic cells is centred around the 

position of the topographically corresponding retinal cell. 
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Figure 2.6. The SOM model generates topographic maps. A. Top row: position the receptive field 
centre for each postsynaptic cell. Bottom row: position of the CM of synaptic connections. Left panel: 
initially, at time 0, all synaptic weights are distributed equally, so that postsynaptic neurons 
response is unspecific. Centre panel: at time 100 postsynaptic responses and weights become more 
specific. Right panel: at time 12000 an ordered topographic map has been generated. B. The model 
returns different final results after 12000 iterations. Top: the postsynaptic sheet develops the same 
orientation as the presynaptic sheet, as indicated by the location of the coloured corners. Centre: 
the map unfolds but with incorrect orientation, different from the retina. Bottom: The postsynaptic 
weights did not unfold properly (the retinotopic map is disrupted). 

 
 
 

On the other hand, another parameter allowed us to study how the strength of 

the Ephrin gradient or other molecular mechanisms are involved in the formation of 

topographic maps. Molecular guidance was modelled as a Gaussian function which 

increased the strength of the initial weights in the model based on the proximity of 

the presynaptic and postsynaptic neurons [19], 
 
 
 

(19) 2 
 ‖(𝑟𝑟𝑝𝑝𝑟𝑟𝑒𝑒+𝑟𝑟𝑛𝑛𝑜𝑜𝑖𝑖𝑖𝑖𝑒𝑒1)−(𝑟𝑟𝑝𝑝𝑜𝑜𝑠𝑠𝑡𝑡+𝑟𝑟𝑛𝑛𝑜𝑜𝑖𝑖𝑖𝑖𝑒𝑒2)‖ − 𝑀𝑀𝑀𝑀 = 𝑒𝑒 2∙𝜎𝜎2

 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

A 



90  

Where MG is the weight of the molecular gradient for each presynaptic neurons 

respect to all of the postsynaptic neurons, σmolecular determines the specificity or 

strength of the molecular gradient and rnoise introduces a level of normally 

distributed noise between connections, with mean 0 and standard deviation σnoise. 

The final synaptic strength for each presynaptic neuron Ni is the normalized 

average of all of its weighted connections. 
 
 

 
Figure 2.7. Effect of molecular gradient and positional noise in the development of 
retinotopic maps. Initial maps for all combinations of σmolecular  ⋲ [0.1, 0.5, 1] and σnoise 

⋲ [0, 0.03, 0.06]. 
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The effect of the model parameters σmolecular and σnoise is illustrated in Figure.2.7. A 

low value of dispersion in the molecular gradient and noise level gives an initial 

mesh very close to a perfectly deployed topographic map (upper left panel in 

Figure.2.7). Furthermore, an increasing the value of σnoise (going from the front top 

to bottom in Figure.2.7) produces more disorganized initial maps. And increasing 

the value of σmolecular (going left to right in Figure.2.7) produces less predetermined 

initial maps, with receptive fields for all cells very close to a uniform response, 

therefore with the positions of the center of mass of the weights close to the center. 

 
 

The different types of retinal activity used are shown in Figure 2.8. First, 

random patterns activate each retina with a sequence of independent uniform 

random stimuli. This stimulus class models the emergence of retinotopic 

topography in the absence of R-R projections. Second, locally coupled stimuli 

activate synchronously a small subset of RGCs retinotopically matched in both 

retinas for the first few iterations (100) of the model. Afterward, the activation of 

both retinas followed a sequence of independent uniform random stimuli as in the 

previous scenario. Last, binocularly matched retinal waves were triggered near the 

center of a retinal mesh and travel toward the periphery at the same speed in both 

retinas. The radius of the wave of stimulation increased at a rate of 2 10-4 (per 

iteration), and stimuli were applied randomly around that radius following a 

Gaussian distribution of mean 0 and sigma 0.04. In each case, the final synaptic 

strength onto each postsynaptic neuron Ni is the normalized average of all of its 

weighted connections. 

 
 

By modeling the development of the right and left postsynaptic targets 

simultaneously, we were able to study how the presence or absence of R-R 

connections, and the different patterns of coordinated activity that they afford, could 

affect the establishment of bilaterally congruent retinotopic maps in visual 

structures receiving direct retinal inputs (Figure 2.8. C). The model returns correct 

results, i.e., perfectly matched left and right retinotopic layouts, only when the 

unfolding and orientation of both postsynaptic sheets is the same as the orientation 



92  

in the presynaptic RGC layer. On the other hand, incorrect results could come in the 

form of different orientations between pre and postsynaptic sheets or incorrect 

unfolding, which produce disruptions on the topographic map. Model parameters 

used are provided in Table 2. 
 
 

 

Figure 2.8. Effect of molecular and activity-dependent mechanisms on the development 
of bilaterally congruent topographic maps. A. A gradient of different guidance molecules 
instructs initial targeting in the postsynaptic layer. B. Left panel: To model the absence of R- 
R connections, a set of completely random stimuli was applied. Center and right panels: The 
presence of R-R connections was modeled in two different ways: Local coupling - an initial 
region of stimulation (shown in blue) is followed by random activity. Local coupling + retinal 
waves - local coupling followed by a retinal wave traveling at a constant velocity. C. 
Retinotopic maps in mice have bilateral congruency, thus both topographic maps are 
arranged in the same orientation. By modelling the development of the right and left 
postsynaptic targets simultaneously, we were able to study the role of molecular guidance 
cues and synchronous activity in the development of bilateral congruency. Examples of two 
simulations. Left: Correct bilateral congruency, i.e., left (L) and right (R) postsynaptic layers 
develop the same orientation as the presynaptic sheet as indicated by the order of the colored 
dots in the corners. Right: Incorrect bilateral congruency, in which, neither of the 
postsynaptic sheets coincides with the orientation of the retina nor coincide with each other 
as indicated by the order of colored dots. 
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SOM parameters 
 

Table 2: Numerical values of model parameters. 
 

Parameter Description Value 
Λ Weight decay term 0.1 
Τ Time constant of λ decay 5555 
Σ Lateral interaction influence decay 2 
Nn 
Nt 

Number of cells 
Number of iterations 

11 × 11 
1200 

σnoise Standard deviation (SD) of position noise [0,0.21] 

σmolecular SD of the molecular gradient gradient [0.1,10] 

 
 
 

Experimental procedures 
 

A total of 9 Brn3b-Zic2 and 11 WT mice were anesthetized with isoflurane 

(4-5%) and supplemented with chlorprothixene (2mg/kg s.c) to gain stability in the 

OI signal (Kelly et al 2014). Atropine (0.3-0.5 mg/kg s.c) was also used to reduce 

secretions. Temperature was maintained at 38º through the whole surgery and 

lactate 5% glucose (10ml/kg/h S.C) was infused to avoid dehydration. For imaging 

ISO levels where lowered to 1 - 0.75%. Mice were treated according to Spanish and 

European Union regulations, and experimental protocols were approved by the 

Institutional Animal Care and Use Committee of the University. 

For visual stimulation, a high refresh tv monitor (Mitsubishi Diamond Pro 

2070sb) was placed in front of the mouse and separated by 25 cm. The stimulation 

protocol consisted of trials of drifting square gratings oriented at 0, 90, 45 and 135, 

panned back and forth in both directions at a frequency of 1Hz. The total duration 

of the stimulation was of 4 seconds preceded by a 1 second baseline (a grey screen) 

and data was acquired in trials of 10 seconds binned in 500ms frames followed by 

another 10 seconds of inter stimulus interval, allowing the hemodynamic values of 

the cortex to return to baseline levels. Separated contralateral or ipsilateral 

stimulation was done by plugging each eye with a sterile patch.  Finally, 
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experimental data was averaged over 10 trials to increase signal to noise ratio 

(SNR). 

 
Data analysis 

 
A digital image can be considered as a function f (x, y) where x, y and f (x, y) are finite 

and discrete (Gonzalez & Faisal 2019).The signal, binned as 500 ms data frames, was 

divided by the mean of the first 1.5s of prestimulus frames following equation [1], 
 
 
 
 
 

(1) 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑖𝑖 
𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑖𝑖 = ∑3 𝑓𝑓(𝑥𝑥, 𝑦𝑦)

 
𝑖𝑖=1 ⁄ 

3 
 
 

To reduce high frequency noise, images where convoluted by a 5 by 5 median 

filter and frames between 2.5 and 6 seconds (frame 7 and 12) after the onset of the 

signal where collapsed and averaged for each orientation for further processing. 

This range of frames (2,5 - 6 seconds) was constantly selected for two reasons; First, 

due to characteristics of the OI signal, the SNR in those frames is at its peak (Figure 

2.9). Second, this range of frames contains the accumulated temporal information of 

the cortical response for the two directions of the stimulation of each grating. 

The SNR was computed as in eq [2], 
 
 
 
 

(2) 𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
𝑆𝑆𝑆𝑆𝑆𝑆 = 

𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
 
 
 

Where sig is the signal, back is the response of the prestimulus frames and 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 the 

standard deviation of the background prestimulus frames. Only experiments with a 

mean global response for the 4 orientations above 2std from the background where 

used for further processing. 
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Once this collapsed image was computed ocular dominance response regions 

of activity for contralateral and ipsilateral eye stimulation were segmented and 

delimited at a threshold of 70% of their maximum peak response as in (Sato & 

Stryker 2008). 

Finally, the ODI was calculated using a contrast index as in (Cang et al 2005a, Sato & 

Stryker 2008) following eq [3], 
 
 
 

(3) 𝐶𝐶 − 𝐼𝐼 
𝑂𝑂𝑂𝑂𝑂𝑂 = 

𝐶𝐶 + 𝐼𝐼 
 
 

Where C and I correspond to the contralateral and ipsilateral regions of response 

respectively. 
 
 

 

Figure 2.9. SNR timecourse of an OI experiment. C1, C2, C3, C4 correspond to 0 
90 45 and 135 degrees of response respectively. 

 
Mann Whitney test where performed for area of response comparisons and an 

ANOVA o control the confounding influence of weight against different response 

areas. All simulations and statistical analysis where performed with Matlab, Python 

or Graphpad softwares. 
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Results 

Compression-Decompression Feedforward Network Model generates 
neurons with a preferred orientation 

 

To study the wiring rules and operations the early visual pathway performs 

we built a compression-decompression feedforward network model that allows to 

explore the different functional topologies that emerge in V1 as the divergence- 

convergence ratios (DCr) between layers change. As it can be observed in Figure 3.1, 

neurons are connected between layers following a Gaussian function, so the closer 

two neurons are in the circuit the most probable the connections will be. The On and 

Off information travels in parallel from the RGCs to the dLGN and it finally converges 

the information from both pathways in layer 4 of V1, generating the classical RF that 

responds to a preferred orientation. 

The connectivity between layers for a fixed value of 𝜎𝜎𝑙𝑙, that determines the width 

of the Gaussian function, is determined by the 𝐷𝐷𝐷𝐷𝐷𝐷 formula (see methods). The 

degree of thalamocortical divergence is correlated with the Cmag and computed as 

the thalamocotical divergence area. As a final step, intralayer short range 

connections between neurons in layer 2/3 are simulated following a Gaussian 

thresholded local connectivity matrix (at 70 % of peak response from the global 

Gaussian connection matrix). In other words, the strength and area of local 

connections are determined by the size of the Gaussian field required for a fixed 

level of convergence of inputs in the cortex and the 𝐷𝐷𝐷𝐷𝐷𝐷 across layers. That way we 

can differentiate from the raw input that reaches layer 4 neurons and the output, in 

which the size of local connections, which interpolate the final orientation, is 

constrained by the 𝐷𝐷𝐷𝐷𝐷𝐷. So as the 𝐷𝐷𝐷𝐷𝐷𝐷 increases, so does the number of neurons 

that share a common input as well as the size of the local connectivity matrix. 

Finally, different functional topologies of orientation selective neurons can be 

explored by modifying the 𝐷𝐷𝐷𝐷𝐷𝐷 across layers. 



 

9
 

 

Figure 3.1. Compression-Decompression Statistical Neural Network Model. 
Connections between the retina (A), the dLGN (B) and V1 (C) are able to generate 
simple RFs that respond to a preferred orientation in V1. At the first stage (A), the 
on/off RGCs are placed following the PIPP algorithm simulating the spatial 
statistics of real data (see methods). In the second stage (B) the dLGN neurons are 
arranged as a hexagonal regular mesh of sensors and only neurons that share the 
same polarity are connected with the previous layer. The third step, (C) 
corresponds to converging connections from both polarities (On and Off) from the 
thalamic layer, that are able to generate the classical receptive field of a layer 4 
cortical neuron that responds to a preferred orientation. As a final step, a local 
connectivity matrix thesholded at 70% of the peak response from the final layer 
connection matrix, determines the intralayer short range connections between V1 
neurons. 
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Thalamocortical convergence modulates the structure of OPMs and 
receptive fields 

 

High values of convergence are necessary to generate the characteristic RFs 

and topographic layouts of oriented neurons of V1. As the convergence values 

increase from 4 to 60 connections per neuron as reported by experimental results 

(Alonso et al 2001, Lien & Scanziani 2018), the proportion of neurons with a high 

OSI increases (Figure 3.2). 
 
 

 

Figure 3.2. Thalamocortical convergence modifies the proportion of OSI neurons of 
V1. As thalamocortical convergence increases the proportion of neurons with high OSI 
values rises. Bellow, example RFs for different OSI values. 

 
 

This high values of convergence allow to predict the orientation of a V1 

neuron by looking at the thalamic population RF, that is, the sum of all the On and 
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Off spatially distributed receptive fields (RFs) of the neurons. When the 

convergence values are low neurons clearly selective to orientation (OSI>0.25) are 

clustered in small domains dispersed randomly over the cortex. However, as 

convergence increases, OSI neurons start to cluster in the borders of the thalamic 

RF population map, making it possible to predict the orientation of a V1 neuron by 

visual inspection of the thalamic population RF (Figure 3.3). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3. Thalamocortical convergence increases the correlation between the 
thalamic population RF response and the topological disposition of orientation 
selective neurons in V1. A. Low values of thalamocortical convergence generate small 
random clusters of orientation selective neurons in V1 that do not follow any apparent 
order respect to the thalamic population RF map. B. High values of convergence make OSI 
neurons to cluster in the borders of the thalamic population RF map. Thalamic population 
RF maps are represented as the superimposed activity of all On RFs (red) and Off responses 
(blue). Superimposed neurons selective to orientation are color coded as a function of their 
preferred response to orientation. 

 
 

Finally, this high values of convergence seed the typical circular correlation 

signature of OPMs (Schottdorf et al 2014). When measuring the circular correlation 

at concentric circles of increasing radius from all neurons strongly tuned for 

orientation  (OSI>0.25),  the  typical  circular  correlation  signature  of  OPMs, 
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characterized by strong local correlations, intermediate distance anticorrelations 

and long range correlations, emerges (Figure 3.4). Thus, high values of 

thalamocortical convergence are important for the functional topology of layer 4 V1 

neurons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.4. Circular correlation as a function cortical distance. In blue a model obtained 
with low convergence values from 4-5 connections per cortical neuron. In red high convergence 
model with a mean 60 connections per cortical neuron. 

 
 
 
 
 

Divergence-Convergence ratios are tuned to recover as much visual 
information as possible and as a consequence the proportion of 
orientation selective neurons in V1 increases 

 
What is the role of this high convergence values taking into account the high 

metabolic cost required? The conclusion that we can extract from the model is that 

the function these high values of convergence have is to recover the maximum level 

of spatial information as possible from On and Off RGCs through interpolation of 

inputs. To explore the maximum level of spatial information, understood as the 
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coverage of space with different degrees of convergence, we took the final On or Off 

RFs of all V1 neurons, cut the RFs at 90% of their peak response and calculated the 

area that they covered, normalized respect to the initial area covered by the RGCs 

in the retina. With the density of V1 neurons fixed, we varied the number of V1 

neurons by increasing or decreasing V1 area and the degree of thalamocortical 

convergence (Figure 3.5). 
 
 

 
 

Figure 3.5. Coverage of visual space as a function of retinothalamic convergence. A. 
Coverage of the visual field is analyzed by cutting the On or the Off RFs at 90 % of their peak 
response for different DCr values at different thalamocortical convergence values and V1 areas. 
If the size of V1 increases so does the divergence and the Cmag across layers and viceversa. B. 
Coverage of visual space in V1 as a function of convergence for On RFs. C. Coverage of visual 
space in V1 as a function of convergence for Off RFs. Blue rectangle, optimal coverage values 
for different DCrs. Different DCr values are color coded. 
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There is an optimal thalamocortical convergence value of around 20-60 

connections per layer 4 cortical neuron depending on the final size of V1 (or to the 

final DCr) in which the maximum percentage of normalized covered visual field is 

reached respect to the initial coverage of the retina. This means that the joint 

distribution of On and Off convergence values generates high overall values of 

convergence which in turn increase the number of OSI neurons present in V1 

(Figure 3.2). Thus, there is an optimal coverage of visual space principle operated 

in V1 by interpolation of inputs through high values of thalamocortical convergence. 

As noted by the DCr formula, as 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 or V1 area increases, the levels of 

divergence required to reach a fixed value of convergence also increases. Which in 

turn implies that the levels of divergence required to reach the optimal values of 

coverage of visual space also increase with the DCr (Figure 3.6). As we will see later, 

these different levels of divergence will have clear consequences in the overall 

topological function of V1 cortical neurons. 
 
 
 

 

 

Figure 3.6. Divergence-converge ratios relationships for V1 Off neurons. A. Divergence as 
a function of convergence and different DCrs. B. Normalized covered visual field as a function 
of divergence (in logarithmic scale) and different DCr. Different DCr values are color coded. 
Similar results are obtained for On RFs. 
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Also, as 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 increases in V1, due to an increasing V1 area, so does de DCr 

and the maximum covered visual field reached for the optimal thalamocortical 

convergence value, as there are more neurons computing information in the final 

layer (Figure 3.7). However, when DCr>2 the coverage effectiveness mediated by 

interpolation of inputs starts to diminish and stabilizes at a plateau following an 

exponential function (𝑦𝑦 = 1.42 (1 − 𝑒𝑒.1,71𝑥𝑥)). Thus, there is a maximum level of 

coverage that can be reached, that cannot be surpassed by increasing more the 

number of neurons in the final layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.7. Maximum normalized coverage of visual field as a function of V1 divergence- 
convergence ratios. 

 
 

Finally, it is important to mention that this increase in coverage is not simply 

mediated by an increase in size of V1 layer 4 RFs, it is reached at an intermediate 

point where the increase in RF size is combined with the final position occupied in 

space by the RFs. 

First, as thalamocortical divergence and convergence increases so does the final 

area of each On or Off RF (mm2) that each cortical neuron develops (Figure 3.8). The 

different levels of DCr do not affect the final size of the RF, however, as noted earlier 

in the DCr formula, as the DCr increases the divergence levels must increase to reach 

a determined value of RF size and thalamocortical convergence. 

 
 

𝒚𝒚 = 𝟏𝟏. 𝟒𝟒𝟒𝟒 (𝟏𝟏 − 𝒆𝒆.𝟏𝟏,𝟕𝟕𝟕𝟕𝟕𝟕) 
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Figure 3.8. Off RF size as a function of DCr. A. RF area (mm2) as function of convergence and 
different DCr. B. RF area (mm2) as function of divergence (in logarithmic scale) and different 
DCr. Different DCr values are color coded. Similar results are obtained for On RFs. 

 
 
 

An increase in RF size will certainly decrease visual acuity because as RFs grow 

bigger the discrimination between two different elements close in the visual field 

becomes more difficult. As noted by (Hirsch et al 2015, Martinez et al 2014), this 

upsampling and interpolation of RFs will certainly cause image blurring, however 

inhibitory circuits may compensate this mechanism enhancing contrast borders 

and reducing the blur. Nevertheless, RF size increase due to interpolation of inputs 

it is not the only the factor that increases coverage in visual space, in fact, the RFs 

peaks reallocate in visual space so that the region maximum coverage its obtained 

at an intermediate level of RF size (Figure 3.9). However, for very high levels of 

thalamocortical convergence the RFs peaks cluster in very defined points of visual 

space decreasing coverage in favor a highly redundant message. 
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Figure 3.9. Normalized coverage of visual field for Off RFs as a function of RF area. 
Small boxes are examples of RF population peaks covering a cortical area of 2.25 mm2 

(scale bar 1mm), normalized by the population maximum response. Different DCr 
values are color coded. Similar results are obtained for On RFs. 

 
 
 

In fact, by measuring redundancy, understood as the proportion of RF peaks 

overlapping similar regions of the visual field (see methods), it can be seen how as 

divergence and convergence levels increase as well as the final size of V1, 

redundancy increases since the proportion of neurons sharing similar RFs rises 

(Figure 3.10). And, more importantly, that optimum values of coverage of visual 

space are reached at intermediate redundancy levels. Thus, RFs do increase their 

overlapping at increasing DCrs, however as the optimal thalamocortical levels of 

convergence are surpassed, RFs start to cluster in definite points of visual space, 

increasing redundancy, but decreasing coverage of visual space (Figure. 3.11). 
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Figure 3.10. Redundancy as a function of divergence-convergence ratios for On V1 RFs. 
A. Redundancy as function of convergence and different DCr. B. Redundancy as function of 
divergence and different DCr. Plots are in logarithmic scale and different DCr values are color 
coded. Similar results are obtained for Off RFs. 

 
 
 

 

Figure 3.11. Normalized coverage of visual field for On RFs as a function of V1 redundancy 
levels. Redundancy axis is in logarithmic scale and different DCr values are color coded. Similar 
results are obtained for Off RFs. 

 
 
 

These simulations demonstrate that the main operation that V1 layer 4 

neurons are performing is to interpolate information from the On and Off pathways 
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to recover as maximum information as possible through convergence of 

thalamocortical inputs to optimally cover visual space with intermediate levels of 

redundancy. As the convergence increases, RFs realocate in visual space enhacing 

coverage, and as the DCr increases (bigger V1 size) smaller RFs tile better the visual 

field which will certainly enhance visual acuity. Finally, these high convergence 

values are the cause for the high proportion of orientation selective neurons in V1 

due to the integration of On and Off inputs to optimally cover visual space. 

 
 
 

Cortical functional topology is consequence of a universal coverage 
optimization principle and different biological constraints determined 
by the DCr 

 

The fact that different functional topologies appear across different 

mammalian orders, salt and pepper in rodents and lagomorphs and OPMs in 

carnivores, primates, scadentia and cetarciodactyla, together with the antagonistic 

view of some authors that consider similar the cortex across mammalian species 

(Carlo & Stevens, 2013; DeFelipe et al., 2002; Rockel, Hiorns, & Powell, 1980), while 

others claim that is clearly different (DeFelipe et al., 2002; Herculano-Houzel, 

Collins, Wong, Kaas, & Lent, 2008). Suggests some kind of common biological 

constraints, that may be dominating the development of the cortical circuitry 

through evolution causing differences in closely related species (primates and 

rodents) and similarities in more dissimilarly related species (carnivores, primates, 

cetarciotactila) (Figure 3.12. A). 

If we now assume that all these species follow the same coverage 

optimization principle, the convergence value of the DCr formula can be fixed to 

high values of around 40 to 60 of mixed On and Off inputs per layer 4 neuron as 

experimentally reported (Alonso et al 2001, Lien & Scanziani 2018) to explore the 

different functional topologies that may emerge at different DCr values. 
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Figure 3.12. Cortical functional topology as a function of Divergence - Convergence ratios. 
A. Scheme of the different functional topologies found in V1 across mammalian species (salt 
and pepper in red; OPM in green; for the rest of species there is no available functional data). 
B. DCr values for a fixed connectivity profile determine the salt and pepper or OPM 
configuration found across phylogeny. 

 
 

The model predicts that when the number of neurons in V1 is low enough, to 

maintain the optimum levels of convergence, the divergence lowers to a value of 

around 4-10 efferents per LGN neuron, following the DCr formula (Figure 3.13). 

This in turn generates low local correlations (>50 µm) and small Cmags (< 0.1 mm2) 

giving birth to a salt and pepper decorrelated functional topology (Figure 3.12. B). 

On the other hand, when the number of neurons in V1 is big enough, to 

maintain the optimal levels of convergence, the divergence values need to be really 

high (>100 afferents per neuron), which in turn increases the cortical magnification 

factor (>0.1 mm2), as well as the size of the local correlation domains (>150 µm), 
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thus creating an OPM (Figure 3.12. B, figure 3.13). So when the DCr >2 an OPM 

starts to emerge. 

 

 

Figure 3.13. Parameter relationships for high convergence values and different DCrs. A. 
As DCr increases so does the thalamocortical divergence, which in turn increases the Cmag 
(Cortical magnification factor) understood as the mm2 of V1 devoted to a similar RF. B. 
Relationships for L4 divergence, cortical magnification factor and 𝜎𝜎𝑙𝑙. In green OPM threshold. 

 
 
 

These results can be summarized by looking at the circular correlation 

function at increasing DCr values (Figure 3.14). As DCr increases, local correlations, 

anticorrelations and long range correlations also increase. In other words, the 

larger the DCr value, the larger the mean diameter of the cortical columns present 

in V1 as well as hypercolumn size (λ), determined by the long rage correlation peaks 

(see methods). 

To test the hypothesis that the functional topology of V1 is mainly due to the 

biological constraints generated by the difference in size of V1 respect to the retina 
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and a common optimization principle of coverage, we compared our results to 

anatomical data (Fig. 5 and Table 1). 

 

 

Figure 3.14. Circular correlation function for different values of DCr as indicated in the 
labels. A. The circular correlation function obtained for the RAW thalamocortical input. B. 
Same graph but zoomed in to see more clear the long range correlation peaks. 

 
 

Anatomical data shows that species with a salt and pepper configuration 

have a lower V1 area/retinal area compared to others that develop OPMs (Figure 

3.15). On the one hand, even though the area of the retina and V1 scales with brain 

weight, there is a clear overexpansion of V1 respect to the retina. This can be seen 

by the bigger logarithmic slope of V1 area respect to the retinal area as brain weight 

increases, (Figure 3.15. A, B). On the other hand, it is clear that most of the rodents 

tend to have a smaller brain weight in comparison to carnivores and primates 

(Figure 3.15. A, B). Finally, there is also a tendency for rodents to have a bigger 

retina in comparison to their V1 area (Figure 3.15 C). The ferret and the rabbit have 

a similar brain weight and V1 size, however the retina of the rabbit is much bigger 

promoting a salt and pepper topology. The tree shrew has also a bigger V1 and 

smaller retina than other rodents of similar brain weight, promoting an OPM. 

The data in Figure 3.15. D shows a threshold at a V1 area/ Retina area under which 

all animals should have a salt and pepper configuration and over an OPM. For 

species that are just in the threshold point such as larger rodents, the capybara (the 

largest rodent), the agouti and the marsupial Quokka, the model predicts that they 
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should develop at least stronger local correlations in comparison with animals at 

the left of threshold that clearly have a salt a pepper configuration. 

These results show that a coverage optimization principle shared across 

mammals and the biological constraints determined by the different size of V1 

across species can explain the different functional topologies found across the 

mammalian orders. 
 

 
Figure 3.15. Anatomical data confirms that the different functional topologies found across 
mammals are due to different Divergence- Convergence ratios. A. Retina area scales with 
brain weight (R2=0.845) (OD, ocular dominance; NA; No data available; OPM; orientation 
preference map). B. V1 area scales with brain weight (R2=0.872). C. V1 area scales with retina area 
(R2=0.779). D. V1 area against V1/Retina area. The data clearly separates mammals with a salt and 
pepper configuration with those with an OPM by taking into account the V1 area/Ret area ratio 
(OPMthr; threshold for the appearance of an OPM). Animals with a small ratio develop a salt and 
pepper configuration, while those with a high ratio develop an OPM. 
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Local and long range correlations appear at different DCr thresholds 

 
OPMs are quasiperiodic structures that have a typical circular correlation 

signature (Figure 3.17 A, B). Strong local correlations, followed by anticorrelations 

and long range correlations. The long range correlation peak determines the size of 

the hypercolumn, and the robustness, that is, the area beneath peak indicates the 

strength of the periodicity (see methods). The strength and distance of each of these 

characteristic points was quantified for an optimized coverture of On and Off inputs 

(convergence=60) and different DCr following anatomical data for the raw input or 

output of local V1 connections maps (Figure 3.17 A, B). Thus, we can study the 

topological disposition of neurons at different DCr values, that is, against different 

V1 areas, to see at what point an OPM appears. 

As the size of V1 increases the structure of an OPM starts to emerge, just by 

looking at the raw input that reaches layer 4, local clusters of similar oriented 

neurons (OSI>0.25) emerge (Figure 3.16; Figure 3.17). Each of the circular 

correlation parameters for the raw input, in black, was compared against a control, 

in gray, in which the position of the orientation selective neuron was conserved but 

the orientation and the OSI was randomized (Wilcoxon test p<0.05). For each DCr 

or Area ratio bin there are 20 independent models with their standard deviation. 

For each parameter, the green band shows the threshold in which each of the 

variables is statistically significant respect to the initial DCrs (Friedman Test 

p<0.05) (Figure 3.17 D-H; Appendix 1, S3). 

Local correlations increase abruptly and stabilize when DCr>0.1 (Figure 

3.16; Figure 3.17. D) and the size of the local correlations columns increases steadily 

as the DCr increases (Figure 3.16; Figure 3.17. E). For both parameters when the 

DCr>0.1 they become statistically different from low DCr conditions. The 

hypercolumn and anticorrelation values, also increase as the DCr increases with a 

threshold value reached when DCr>2 (Figure 3.16; Figure 3.17. F, G). 

The periodicity robustness suggests that for a DCr<1 the long range 

correlations are indistinguishable from a completely random map. However, when 
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the DCr > 2, the map starts to become periodic (Figure 3.17. H; Figure 3.16). 

However, it is important to mention that these long range correlations are weak 

when compared to real data. It is necessary to apply some kind of band bass filtering 

to enhance these long range correlations to match experimental values (Schottdorf 

et al 2015) . 
 
 

 
Figure 3.16. Local and long range correlations as a result of different DCr values. A. For 
high convergence values optimizing coverture of visual space (40-60 connections per layer 4 
neuron) local correlations and column size increase with DCr. B. Long range correlations emerge 
for a DCr > 2. C. Examples of low and high DCr functional topologies in V1. In the first row for the 
raw thalamocortical input that layer 4 neurons receive. Second row shows the structure after 
applying local connections from orientation selective neurons to the rest of neurons in V1(Scale 
bar 0.5 mm). 
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Figure 3.17. Development of local and long range correlations as a function of DCr and 
optimum coverage. A. Circular correlation can be calculated for the raw input from the LGN or 
after taking into account short range interactions in the cortex (see methods). B. Parameters 
extracted from the circular correlation signature for each model. C. Topological structure of 
orientation selective neurons for: Top: low DCr, middle: intermediate DCr and bottom: high DCr 
D-H. Threshold value in green for each circular correlation signature parameter extracted for 
the model (in black), hypercolumn size, anticorrelation point, local column diameter, first local 
correlation point and periodicity robustness respectively, and for a randomized orientation 
control (grey), Asterisks mark significance differences Wilcoxon test (p<0.05). Thresholds 
determined using the Friedman Test (p<0.05) n=20 models per each DCr or area ratio bin. 
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In fact, as noted Figure 3.18 when applying the same band pass filter, that is, 

the fermi filter used by (Kaschube et al 2010) for processing experimental data; the 

local, anti and long range correlations suffer an enhancement. The ferret data 

showed is from a very good experiment in which the circular correlation signature 

is present already without filtering. In the model however, the raw input plus the 

local correlations do generate clearly the local correlations, that is, the mean column 

size of the OPM, however the anticorrelations and long range correlations are very 

subtle, and to see them properly it is necessary to zoom in as in Figure 3.14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.18. Effect of band pass filtering in real data and computational model maps. A. Raw 
OPM and band pass filtered OPM for ferret data obtained with optical imaging. B. Raw OPM and 
band pass filtered OPM for the feedforward statistical wiring model. C. Circular correlation as a 
function of convergence for raw and filtered models and ferret data. The Raw ferret data is from 
the ferret in A. For the filtered ferret function (n=8). For the raw and filtered models (n=5). Bars 
represent the standard deviation. Scale bars 1 mm. 
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In summary, the basic functional topology of V1 is determined by the raw 

thalamocortical input levels of divergence, since it clearly determines the width of 

the orientation columns, and therefore subdivides the salt and pepper topology 

from the OPM characteristic of carnivores and primates. The mean column size will 

also determine the long range correlation peak and therefore the size of the 

hypercolumn (λ) of each specie. Species with larger columns such as the cat will 

have a bigger λ than the tree shrew whose columns are smaller (Schottdorf et al 

2015). Therefore, the raw input constrained by the different DCrs gives the basic 

blueprint for the functional topology of each specie. However, there are limits up to 

what a purely feedforward model can explain, indeed, the fact that the 

anticorrelation and long range correlations are subtle when compared to real data 

suggests some kind of intracortical processing to generate qualitatively similar 

OPMs in the model. 

 
 

The SOM model demonstrates that the different DCrs determine de 
different activity dependent mechanisms required to develop correct 
and congruent retinotopic maps 

 
Since topographic retinal maps are a common feature of all mammals the 

mechanisms by which retinotopy is formed and maintained throughout 

development are extremely important. Furthermore, retinotopic maps need to be 

congruent across both hemispheres in V1, that is, to generate a continuous 

representation of the visual field in V1 in both hemispheres. 

Taking into account that the retinotopic map and the different DCrs along 

different species govern the posterior cortical functional structure. On the one hand, 

we wanted to investigate how these DCrs influence or not the activity-dependent 

and molecular mechanisms necessary to develop a correct and congruent 

retinotopic map. Specifically, we wanted to answer if the coordinated activity 

dependent mechanisms between both retinas transmitted to the postsynaptic 

layers, are necessary for the correct development of retinotopy. On the other hand, 

R-R projections have been seen in many species at the beginning of development, 
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these fibres seem a good candidate for the synchronization of the activity of both 

retinas since their connections between hemispheres at the level of LGN or superior 

colicle are non-existent. With this model, what we are trying to understand is the 

role played by the synchronous activity of both retinas in the formation of 

retinotopic maps and so to try and dilucidate the role of R-R connections during 

development. To do this, the problem has been addressed using a Kohonen self- 

organization model. Where we explore how the synchronization of the activity and 

the specificity of the molecular mechanisms modulate the formation of these maps 

(see methods). 

The SOM model shows that, when the sizes of the pre- (retina) and 

postsynaptic (SC, tectum, dLGN or V1) layers are similar (low σ-molecular values), 

congruent retinotopic maps, that is, correctly oriented on both hemispheres, can 

emerge by just molecular guidance cues. However, when the postsynaptic layer is 

larger than the retina (high σ-molecular values), activity dependent mechanisms 

need to complement molecular guidance cues, in order to avoid topological errors 

and develop correct topographic maps with bilateral symmetry. The simulation of 

different types of retinal activity, clearly indicates that the coordination of activity 

patterns between both retinas is the best way to avoid topological defects. 

Therefore, it would not be surprising that this synchronization of the stimulus in 

form of waves is provided by the R-R connections of certain species. 

Figure 3.19. A. Shows the effect of random and independent stimulation in 

both retinas and it can be seen how the percentage of correct orientations decreases 

rapidly with the σ-molecular. It also shows that when there is an initial period of 

initial synchrony (local coupling) the formation of correct map improves clearly. 

Finally, the percentage of topographically correct oriented maps is better when the 

stimuli takes the form of a synchronized retinal wave (local coupling + waves), with 

values greater than 80% even in the worse conditions (high σ-molecular and high 

initial connection noise, σ-noise). 
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Figure 3.19. Results of the SOM model as function of different activity dependent 
mechanisms and molecular guidance. A. Percentage of maps with the correct orientation in 
both eyes (as a function of molecular gradients, σ-molecular), for the three types of stimuli 
(random stimulus that corresponds to no R-R connection (red), local coupling stimulus (blue) 
and local coupling plus retinal wave stimulus (green)). Noise levels are represented with 
different shades of the same color and correspond to σ noise: 0, 0.03 and 0.06. B. Percentage of 
maps with topological defects or unfolding errors as a function of the molecular gradient for the 
three types of stimuli and the three different noise levels. 

 
 
 

A particularly striking topological defect is observed when the map is twisted 

around any of the axis, thus given rise to an unfolded map (see methods). This 

particular defect is less common but more dramatic. Its occurrence again depends 

on σ-molecular, the initial noise level and the pattern of stimulation. Figure 3.19.B. 

shows the results of the percentage of unfolding errors as a function of the variables 

mentioned above. For a completely random stimulation (no R-R connections), the 

number of errors increases with σ-molecular but is not much dependent on the 

initial noise level, σ-noise. Finally, the percentage of unfolding errors is markedly 

reduced by local coupling of the stimuli and is almost completely eliminated by the 

retinal wave pattern of stimulation. 

Our model indicates that the role of the R-R connections is to synchronize the 

spontaneous activity across both hemispheres to generate retinotopic maps 

correctly oriented on both hemispheres in species with high DCrs. However, species 

with low DCrs, that is, with a small postsynaptic target compared to the presynaptic 
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area, can develop congruent maps without synchronous activity dependent 

mechanisms. So the appearance of R-R connections across phylogeny is related to 

an increase in the DCr through phylogeny. Thus, species with a similar size for their 

presynaptic and postsynaptic target (low DCr) can rely only on molecular guidance 

cues and do not have R-R connections. However, as the postsynaptic targets increase 

(high DCr) across phylogeny, species develop R-R connections to synchronize their 

spontaneous activity as a complement to the molecular guidance mechanisms, 

enabling the development of correctly oriented retinotopic maps in both 

hemispheres. 

 
 

Predictions of the DCr model for binocular vison: Experimental test 
 

A strain of mutant mice (Brn3b-Zic2) with a larger amount of ipsilateral 

fibers due to an artificial overexpression of Zic2 was functionally characterized 

measuring V1 cortical activity through optical imaging of intrinsic signals. Results 

show that the change in the incoming input, that is, the large amount of 

retinothalamic ipsilateral projections, generates a larger patch of ipsilateral activity 

that takes over the activity regions that would normally be colonized by a binocular 

region, where contralateral and ipsilateral activity regions should normally overlap. 

The percentage of ipsilateral projecting RGCs is directly proportional to the 

frontalization of the eyes across vertebrates (Seabrook et al 2017). In mammals with 

a larger binocular visual field, such as humans, the ratio of contra and ipsi fibers is 

60:40 respectively. However, in mice, due to the lateralization eyes and a greater 

panoramic field of view, this ratio is 97:3 (Figure. 1.9). The information from each 

eye is transmitted segregated until it reaches V1 where it integrates to form 

binocular and monocular neurons. The topological disposition of these neurons 

varies across mammalian species; carnivores and primates have Ocular Dominance 

Maps (ODMs), which means that ipsilateral and contralateral neurons are disposed 

in quasi regular patterns of Ocular Dominance (OD) columns (Van Hooser 2007, 

Weigand et al 2017a). Mice on the other hand, lack this kind of organization, their 

V1 in organized in a large contralateral region that contains a smaller binocular 
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region where a small proportion of ipsilateral fibers arrive (Cang et al 2005a, Sato & 

Stryker 2008). 

The characterization of the visual cortex (V1) with optical imaging (OI) 

(Grinvald et al 1999) of a strain of Brn3b-Zic2 mutant mice that has a larger 

proportion of ipsilateral RGCs in the ventro-temporal part of the retina due to 

overexpression of Zic2 transcription factor (Herrera 2018, Herrera et al 2003, 

Herrera et al 2019), which is also maintained at the level of the dLGN (unpublished 

anatomical data), is a good opportunity to test the predictive power and explanatory 

role of the divergence-convergence ratio (DCr) principle in the emergence of the 

different functional architectures found across mammalian phylogeny. In fact, 

Br3nb-Zic2 mice develop ODMs similar to those present in carnivores and primates. 

 
 

Zic2 mice develop a strong ipsilateral area that takes over the 
contralateral response region of normal binocular overlap 

 
For each animal ocular dominance (OD) response regions where segmented 

(Figure 3.20, see methods) so that, from the total response area of each mouse 

(grey), the binocular, contralateral and ipsilateral areas of response where extracted 

as colour coded in Figure 3.20. A-C. So, from the total contralateral response (blue) 

and the total ipsilateral response (yellow), the other 3 OD areas of interest could be 

extracted. That is, the binocular region (green) where the total ipsilateral and 

contralateral response overlap, and the isolated contralateral and ipsilateral areas 

(with no overlap) in red and purple respectively. Once these regions are delimited, 

from a qualitative perspective, it can be observed that WT have OD regions 

dominated by a large contralateral zone that overlap the ipsilateral region 

conforming a binocular area (Figure 3.20.D, left), as experimentally reported by 

other authors (Cang et al 2005a). Mutants, however, tend to have the contralateral 

and ipsilateral regions segregated, therefore developing a purely ipsilateral area of 

response that WT mice lack completely. This segregation varies from animals, some 

have a partial and others a more complete segregation, which recalls the OD map 
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WT Brn3b-Zic2 

structure of carnivores and primates with clearly distinct eye preference sub 

regions (Weigand et al 2017a, White et al 1999) (Figure 3.20.D). 
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Figure 3.20. Ocular dominance response regions obtained for mutant and WT 
mice. A. From the raw contralateral and ipsilateral response obtained 
experimentally, the total contralateral (blue), ipsilateral (yellow) and total 
response (grey) can be delimited. B. OD map obtained from the ipsi and contra 
response regions from A. C. Colour coded OD response regions obtained for each 
optical imaging experiment; contralateral region (red), binocular region (green) 
and ipsilateral region (purple). D. Examples of optical imaging phenotypes obtained 
for WT and mutant Brn3b-Zic2 mice. Scale bar 1mm. 
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F 

Indeed, a closer quantification clearly remarks that the overall binocular area 

in mutant mice decreases (Figure 3.21. A; p=0.0049, Mann Whitney test) respect to 

WT at expense of an increasing isolated ipsilateral region (Figure 3.21.C; p=0.003, 

Mann Whitney test), without changes in the proportion of the separated and isolated 

contralateral area (Figure 3.21.B). Furthermore, the fact that the total ipsilateral 

response does not increase significantly respect to WT (Figure 3.21.D), indicates 

that the ipsilateral region grows at expense of taking over the area that would 

normally be occupied by binocular neurons and, therefore, displacing contralateral 

neurons (Figure 3.21.E; p=0.003, Mann Whitney test), which reduces the total 

contralateral response of mutants. This can also be viewed by normalizing the 
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Figure 3.21. Quantification of ocular dominance response regions for mutant and WT 
mice. A. Binocular area normalized by the total response area (p=0.0049). B. Contralateral 
area normalized by the total response area. C. Ipsilateral area normalized by the total 
response area (p=0.003). D. Total ipsilateral area normalized by the total response area. 
E. Total contralateral area normalized by the total response area (p=0.003) F. Binocular 
area normalized by the total ipsilateral area (p=0.0011). Two tailed Man Whitney test for 
all statistically significant plots. Data from the right hemisphere of 11 WT and 9 mutants. 
(* p<0.05; ** p<0.01; *** p<0.001). 
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binocular area by the total ipsilateral area where the proportion of binocular 

neurons is reduced clearly in mutants (Figure 3.21. F; p=0011, Mann Whitney test). 

In other words, the proportion of each OD response region normalized by the total 

response area, shows a 12% reduction of the binocular region in mutant’s respect 

to WT, and this reduction is, in turn, compensated by the appearance a purely 

ipsilateral region in mutants. 

Finally, it is important to mention that mutants have a significant smaller 

contralateral response area compared to WT. When looking at the data without any 

kind of normalization the overall take home message remains the same; the 

binocular region in mutants decreases and is replaced by a segregated ipsilateral 

region, therefore it not surprising to find a significant reduction in the contralateral 

response area (Figure S1; Appendix 1). However, there is a significant decrease in 

the total contralateral response area in mutant mice that does not correspond only 

to the overlapping binocular field of view but also to the purely isolated 

contralateral response region (Figure S1, C, F; Appendix 1). What is causing this 

difference? Weight difference between both groups, even though not significant, 

could be a possible explanation since mutants tend to be smaller (Figure S2; 

Appendix 1), but further statistical analysis does not reveal any covariate 

dependency of the weight and the total response, contralateral and isolated 

contralateral area (ANOVA tests; p=0.906, p=0,949, p= 0,667 respectively) or any 

other response region. 

Another good explanation comes from the fact that the there are fewer 

contralateral fibers for the mapped region, because they have become ipsilateral in 

the other eye, and that the gain of ventro-temporal ipsilateral RGCs is not completely 

symmetric in both retinas. This irregularity can certainly cause disruptions in the 

independent contralateral area if the gain of ipsi RGCs is not completely symmetric 

in both retinas. 
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Brn3b-Zic2 mutant mice develop clear Ocular Dominance Columns 
similar to those present in animals with Ocular Dominance maps 
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Figure 3.22. ODI for a WT and Brn3b-Zic2 mice. A. Raw contralateral response, 
top WT, bottom mutant. B. Raw ipsilateral response, top WT, bottom mutant. C. ODI 
obtained from the contralateral and ipsilateral response, top WT, bottom mutant, 
computed as ODI= C-I/C+I (see methods). D. ODI histogram of the whole response 
region for the WT and mutant mice from C. E. Joint normalized ODI distribution 
histogram for all experiments. F. ODI histogram from just the binocular region for 
the WT (left) and mutant mouse (right). Scale bar (1mm). 
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A closer pixel by pixel quantification using the Ocular Dominance Index (ODI, 

see methods) reveals that Brn3b-Zic2 mutants develop clear contralateral and 

ipsilateral segmented regions. First, the ODI of the whole response region shows a 

bimodal histogram with two clear different peaks of response, below and above 0 in 

mutants with qualitatively clear isolated OD columns (Figure 3.22. A-D), while WT 

have a unimodal ODI histograms centered at a positive peak value, indicating a clear 

preponderance of the contralateral response overlapping the ipsilateral (Figure 

3.22. A-D) and, therefore, the presence of a clear binocular region as experimentally 

reported (Cang et al 2005a, Sato & Stryker 2008). In addition to the disposed 

examples, a normalized joint distribution histogram of all of the experiments 

performed shows how the WT and mutant profile is maintained over different 

animals (Figure 3.22, E) and that the mean ODI of the whole response region is 

significantly lower in mutants (0.08) respect to WT (0.19), (Figure 3.23. A; 

p=0.0402, Mann Whitney test), indicating a clear increase in strength of the 

ipsilateral signal in Brn3b-Zic2 mice. 
 
 
 
 

 

Figure 3.23. Quantification of ODI for WT and mutant mice. A. ODI for the whole 
response region (p=0.0402). B. ODI for binocular region (p=0.0138). Points 
represent median values of the ODI distribution of each mouse. Two tailed Man 
Whitney test for all statistically significant plots. (* p<0.05) 

 

Furthermore, the ODI of the binocular region in these animals also indicates 

an increase in ipsilateral strength respect to WT.  WT animals have a binocular 



126  

region with an ODI~0.15, which implies a clear dominance of the contralateral 

response in the binocular area as experimentally reported (Sato & Stryker 2008), 

while mutants have a significantly lower ODI (0.02), (Figure 3.23, B; p=0.0138; 3 

mutants with very segregated areas and therefore with a binocular area <0.1 mm2 

where excluded from the analysis). It is important to mention that the ODI value 

reported for WT is lower than the ODI~0.22 reported by these authors (Cang et al 

2005a, Sato & Stryker 2008). This difference is surely due to the OI technique used 

in our study. While they use fast OI (Kalatsky & Stryker 2003) we use the classical 

OI setup (Bonhoeffer & Grinvald 1991, Grinvald et al 1999) which implies a greater 

acquisition time and therefore more vascular changes through the experiment that 

may affect the contra and ipsi signal stability when comparing pixel intensities. 

However, our ODI distributions for the whole area and the binocular region are 

stable, except for a few outliers, validating the stability and reliability of our 

experimental procedures. 

B 

   
0.5 

 
 

0 
 
 

-0.5 
A 

L 

0.5 
 
 

0 
 
 

-0.5 

 
 
 
 
 
 
 
 
 
 

Figure 3.24. Brn3b-Zic2 mice develop a proper Ocular Dominance Map. A. Top, ferret 
ODM viewed as the ODI pixel by pixel. Bottom ODI histogram of the region in red. B. Top, 
WT and Brn3b mouse ODM viewed as the ODI pixel by pixel. Bottom ODI histograms of 
the whole response regions. Scale bar (1mm). 
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Finally, OD columns of Brn3b-Zic2 mice resemble those found in animals with 

ODMs such as ferrets, therefore developing a proper ODM. Ferrets have ODMs, 

where the V1/ V2 border is delimited by two large and patchy contralateral (V1) 

and ipsilateral (V2) regions (White et al 1999). Since the binocular region is difficult 

to see experimentally (and if seen its signal is masked by the strong V1/V2 border 

bands), an area of around 1mm2, similar in size to the response area of mice, that 

contained a similar proportion of these two strong opposite monocular regions was 

delimited for comparison (Figure 3.24.A). It is clear, that Brn3b-Zic2 develop proper 

OD columns with bimodal ODI histograms similar to those found in ferrets (Figure 

3.24). 

 
 
 

Discussion 
 

The functional constraint of developing retinotopic maps that optimally 

cover the visual field imposes a series of connectivity rules between layers that have 

to accommodate to the different DCrs found across mammalian species. This in turn, 

causes the different OPM or salt and pepper functional topologies found across 

mammalian phylogeny and determines the molecular and activity depend 

mechanisms required for the correct development of congruent retinopic maps. 

Our feedforward statistical wiring model predicts that the main computation 

the early visual pathway performs, is to interpolate as much information as possible 

through convergence of inputs from the dLGN based on a simple developmental 

wiring rule that minimizes wiring metabolic cost. This optimization principle, 

common for all mammals, realized by high convergence of thalamocortical inputs, 

increases the percentage of OSI neurons in V1 and determines the contrasting levels 

of divergence across mammals, which explains that the different topological 

architectures found across phylogeny are a consequence of the biological 

constraints determined by the relative size of V1 respect to the area of the retina. 
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Furthermore, the SOM model indicates that the appearance of R-R 

connections its associated with an increase in the DCr across mammalian phylogeny, 

as a mechanism to generate coordinated retinal waves to assure the wiring and 

development of congruent retinotopic maps in both hemispheres. 

 
 

The role of the Early visual pathway 
 

There are many models that try to explain the main computation the early 

visual pathway performs. In most of the cases these models are related to different 

optimization principles related with coding efficiency and sparseness (Babadi & 

Sompolinsky 2014, Beyeler et al 2019, Ganguli & Sompolinsky 2012, Martinez- 

Garcia et al 2017, Olshausen & Field 1996, Olshausen & Field 1997, Rehn & Sommer 

2007), cortical-self organization (Kaschube et al 2010, Kohonen 2013b, Willshaw & 

von der Malsburg 1976) or feedforward architectures that can generate complexity 

at higher stages (Martinez & Alonso 2003, Martinez et al 2014, Paik & Ringach 2011, 

Ringach 2004, Ringach 2007, Schottdorf et al 2015). 

The fact that V1 interpolates information from previous layers was proposed 

by Barlow (Barlow 1981) 40 years ago. This interpolation enables neurons to 

generate a higher diversity of response and adaptability to different stimuli 

(Martinez et al 2014). Following this line of though, the model assumes that the main 

operation the EVP is performing is the interpolation of thalamocortical inputs to 

maximize the coverage of visual space. In other words, the main operation the EVP 

is performing is to recover the maximum amount of information as possible after 

the initial compression of information from fotorreceptors to RGCs in the retina 

(Babadi & Sompolinsky 2014, Ganguli & Sompolinsky 2012, Martinez et al 2014, 

Schottdorf et al 2015), through thalamocortical convergence. 

Thus, we propose that layer 4 V1 neurons follow a coverage optimization 

principle mediated by an optimal value of convergence of thalamocortical inputs 

and intermediate levels of redundancy -that may help to enhance the retinal 

message and reduce noise (Faisal et al 2008, Martinez et al 2014, Molano-Mazón et 
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al 2017)-, and that orientation selectivity may be nothing more than an emergent 

property of these cortical neurons trying to recover the maximum degree of On and 

Off information as possible (Figures 3.5-11). In other words, orientation selective 

neurons are not the cause but the side consequence of the main operation that V1 

is performing. This does not necessarily mean that the response to a preferred 

orientation does not have any advantageous computational power in visual 

processing, but that it is clearly a byproduct of an initial and clearly more important 

operation V1 is performing. 

 
 

All mammals share the same common developmental feedforward 
wiring rules 

 
The fact that the degree of convergence reported experimentally oscillates 

between 30 to 80 connections per neuron in cats and rodents respectively (Alonso 

et al 2001, Lien & Scanziani 2018), that the model requires high values of 

convergence (40-60 connections per V1 neuron) to increase the proportion of OSI 

neurons (Figure 3.2), that this high convergence values are necessary to predict the 

orientation of retinotopically aligned V1 neurons from the thalamic population 

receptive field of the dLGN (Figure 3.3) as experimentally reported by (Jin et al 

2011), and that this high convergence seeds the generation of long range 

correlations (Figure 3.4) characteristics of OPMs (Schottdorf et al 2014), supports 

the hypothesis that there is an optimal thalamocortical convergence of around 40- 

80 connections per V1 neuron, conserved across species with different DCrs (Figure 

3.15; Table 1) that optimizes coverage by interpolation of inputs. 

Thus, the independent interpolation of On and Off inputs that together sum 

high thalamocortical convergence values is conserved across species with different 

DCrs. This might imply that it is important to optimally cover the visual field with 

two separated On and Off antagonistic channels integrating the information in V1, 

to increase as high as possible the dynamic range of the system (Gjorgjieva et al 

2017, Gjorgjieva et al 2019, Gjorgjieva et al 2014, Schiller 1992, Westheimer 2007). 
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An OPM or a salt and pepper functional topology in V1 is consequence 
of a coverage optimization principle and the anatomical constraints 
imposed by the different DCr across phylogeny 

 
The parameters that modify the functional topology of V1 are the area of pre 

and postsynaptic layers and the degree of connectivity between layers. The DCr 

formula summarizes these two parameters perfectly (see methods) and, together 

with the functional constriction that we can extract from the experimental data, it 

can be concluded that the uneven overexpansion of V1 respect to the retina across 

phylogeny associated with different degrees of divergence, determine the presence 

of a salt and pepper or OPM topology. 

The model indicates that the different functional architectures found across 

mammals follow the DCr formula (Figure 3.1, see methods). When the DCr > 1 strong 

isoorientation domains appear and when DCr > 2 an OPM starts to emerge (Figure. 

3.16-17). Since the level of convergence is fixed to optimally cover visual space, the 

main appearance of an OPM or a salt and pepper depends on the different levels of 

divergence required to achieve this optimal convergence values. Therefore, the DCr 

formula clearly indicates that when the size of V1 is small respect to the retina the 

levels of divergence must be low and as the V1 size increases the divergence value 

must raise to connect all neurons as required. Therefore, the degree of divergence 

determines the Cmag, that is, the proportion of neurons that share similar RFs. 

Consequently, divergence and Cmag values establish the size of the local correlation 

domains, very small and decorrelated for a salt and pepper and clearly present for 

an OPM. 

Supporting these results, we have the fact that neurons in layer 2/3 of mice 

have a maximum of seven overlapping RFs (Smith & Hausser 2010). This implies 

that the divergence in mice must be low, as indicated by the model. Taking also into 

account the high thalamocortical convergence values in mice and cats (Alonso et al 

2001, Lien & Scanziani 2018) and the ratio of pos and presynaptic neurons derived 

from the Table 1 and the DCr formula, the only way to achieve the optimal level of 



131  

convergence for the correct coverage of space is with low divergence values for 

rodents and high values for carnivores and primates. 

The optimal thalamocortical convergence principle for coverage of visual 

space that we propose enables to fix the convergence value in the formula and 

explore different functional architectures due to the different size of the retina and 

V1 across mammalian orders (Table 1). Thus, the presence or absence of OPMs in 

mammals near the threshold for which we lack functional information will depend 

in the number of postsynaptic and presynaptic neurons. 

Some studies suggest that the density of neurons under 1 mm2 of cortex is 

stable across mammals, while it is the glial cells who increase their number (Carlo 

& Stevens 2013), except in primate’s V1 where the density of neurons in V1 is 2.5 

times higher (Collins et al 2010, Srinivasan et al 2015). Others, however, suggest 

that the number of neurons does vary across mammalian species (Herculano- 

Houzel et al 2008). 

Let us assume that the density of neurons in V1 remains constant in rodents, 

marsupials and carnivores (2200 cells/ mm2) (Carlo & Stevens 2013). The 

functional topology will now depend on the number of presynaptic neurons 

projecting to V1, in other words, the distinct number of functionally different RGCs 

mosaics in the dLGN that project to V1. A parameter named as wmos from now on. 

Let us also assume a fixed density of RGCs of about 100 neurons per mm2 for 7º of 

eccentricity (Wassle et al 1981a). Even if the density of RGCs varies as a function of 

the RGC type and across species (Baden et al 2020), for DCr values < 0.2 their V1 

area should have to be a lot smaller than what anatomical data suggests (Fig. 3.15). 

However, in rodents about 75% of RGCs project to the dLGN and the whole 

functional diversity of RGCs is present in the dLGN (Roman Roson et al 2019). If 

there are around 32 independent RGCs mosaics in the rodent retina (Baden et al 

2016), that leaves us with approximately 24 mosaics in the dLGN. Curiously if wmos 

=24 the density of pos and pre synaptic cells becomes similar, what makes the DCr 

to depend, in this case, on the quotient between V1 and retina area which is equal to 

0.15, indicating the importance of the % of different RGCs projecting to the dLGN in 
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different species to predict the functional topology of V1. It is relevant to mention 

that the same DCr=0.15 for mouse is obtained by dividing 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛, understood as the 

mouse V1 area times V1 density (2200 cells/ mm2), by de total number of RGCs 

suggested by the literature; 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛= 50000 RGCs from (Baden et al 2020), multiplied 

by 0,75, that is, the % of RGCs projecting to the LGN in mouse (Roman Roson et al 

2019). This indicates precision and robustness of our estimates and the model. 

That said, this contrasts with the fact that the diversity of RGCs in the dLGN 

of carnivores and primates is much lower and that the information encoded by the 

RGCs is transmitted more segregated and less intermingled to V1 (Chen et al 2016). 

Supporting this we have the fact the number of RGCs mosaics in primates is 

estimated in 20, that most part of cat RGCs (86%) are implicated in the response of 

X and Y neurons in the dLGN (Rathbun et al 2016), and that most part of dLGN RFs 

of cats and primates are concentric with a classic center-surround response. 

Thereby, a low wmos in the DCr formula in carnivores and primates enables the 

emergence of strong isoorientation domains and the formation of OPMS. 

Taking all this into account, what functional topology should we expect for 

large rodents and marsupials of Figure 3.15? The ratio of V1/retina area for the 

capybara, the agouti and the quokka are 0.28, 0.35, 0.39 respectively, although we 

might be underestimating the V1 area of the capybara (see Table 1). Assuming that 

the % of different projecting RGCs is similar in rodents and marsupials (wmos ~=24), 

the DCr would more or less equal the area ratios. This in turn, implies that we should 

at least expect an increase in size and strength of local correlations (Figure 3.16- 

3.17) with respect to their companions of smaller size. However, if wmos turns to be 

smaller, the effect would be more enhanced. 

It is important mention that recently, some authors have published similar 

results where they also consider that the salt and pepper and OPM topology in 

mammals is also due to the different overexpansion of V1 across mammals and 

convergence of feedforward inputs through statistical wiring (Jang et al 2020). 

However, they predict an abrupt change due to nyquist sample theorem from a salt 

and pepper to an OPM instead of a continuum different species, and fail to give a 
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practical meaning for the need of high and different convergence and divergence 

values across mammalian species. 

Finally, other authors have suggested that the transition from the more 

unstructured to a structured V1 is due to increasing intracortical connectivity 

profiles due to the increase of the global number of V1 neurons without changing 

connection selectivity in V1(Weigand et al 2017a). For these authors, since the total 

number V1 neurons in the agouti is higher than in the ferret it should develop a clear 

OPM. We propose that this is unlikely if the nº of RGCs projecting to V1 is similar 

across rodents. Also, if the density of V1 neurons is constant in carnivores and 

rodents (Carlo & Stevens 2013) it is difficult to explain why rabbits and ferrets with 

a similar V1 area and the tree shrew with an even smaller V1 have different V1 

architectures. However, the DCr in our model clearly separates the development of 

OPMs in shrews and ferrets from the salt and pepper topology of rabbits. Thus the 

DCr predicts intermediate functional topologies for animals lying close to the 

threshold. 

Finally, this model can explain why the threshold of a fully developed OD map 

is more shifted to the right than the threshold of a fully developed OPM (Figure 4.1), 

following the criteria from (Weigand et al 2017a). If we take into account the input 

from both eyes 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 will be doubled which decreases local correlations. This 

obviously also depends on the different degrees of binocularity, higher in carnivores 

and primates than in rodents and lagomorphs (Kremkow & Alonso 2018). However, 

overall the model fits perfectly with the fact that primates with a fully developed 

OD have a bigger 𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 and that the density of neurons in V1 is 2.5 times bigger in 

primates than in the rest of species (Srinivasan et al 2015), which overall increases 

𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛, favoring stronger local correlations and a more developed OD map (Weigand 

et al 2017b). 

In conclusion, ODMs, OPMs or salt and pepper configurations are not the 

cause but the consequence of the V1 trying to recover the maximum amount of 

information as possible and the uneven overexpansion V1 respect to the retina 

across mammalian species. This, determines a continuum of different topologies 
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across species instead of a completely different and binary set of topological 

architectures. 
 
 
 
 

Figure 4.1. A general developmental rule. A. As divergence values increase local correlations 
increase giving birth to well stablished cortical columns of OPMs. B. The presence or absence of 
OPM depends of the DCr ratio of each specie. This same principle might be applied to the 
emergence of OD maps. In green and gray the threshold for fully developed OPM and OD maps 
respectively following the criteria from (Weigand et al 2017a). 
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DCr levels determine the functional topology of early visual targets 

 
The model proposes that in a canonical way the size of the functional blocks 

in the early visual system is given by the level of divergence between the pre and 

postsynaptic layers. However, when looking at other visual pathways it is easy to 

see how a more rigid structure of the input may clearly affect the function of the 

circuit. 

This can be seen when comparing the low divergence levels of the SC 

compared to V1 found in mice and the size of the local activity domains reported. 

The axon spread of the thalamic cells in cortex is about 500 µm while in the SC it is 

of 100 µm. However, the spread of activity patches in V1 area is of 43 µm compared 

to the 80 µm in the SC. Indeed, it has been reported that the SC is organized in 

orientation columns (Feinberg & Meister 2015). Yet, if the divergence is lower in the 

SC, how can there be orientation columns? Unlike V1, the SC does not cover the field 

of view uniformly with all orientations, instead orientation selective neurons are 

arranged concentrically around the center of the field of view in mouse (Ahmadlou 

& Heimel 2015). RFs that respond to different orientations have very little overlap 

(Feinberg & Meister 2015) and this preference for orientation seems to come from 

the retina (Dhande et al 2015). This indicates that the input received by the retinal 

SC is very different from that received by V1. Thus, while V1 is related to fine vision 

the SC is related to escape, visuomotor coordination and other complex behaviors 

unrelated to fine vision (Dhande et al 2015, Seabrook et al 2017). 

Taking all this into account, the heterogeneous topographic disposition of 

different RGCs related to the ecological niche of each species (Baden et al 2020, 

Zhang et al 2012), the radial symmetry in the retina of oriented RGCs found in other 

mammals like the cat (Levick & Thibos 1982), together with the fact that most DS 

RGCs project to the SC and not the dLGN in mice (Baden et al 2016, Roman Roson et 

al 2019), can perfectly explain the great difference between the input received by 

the SC and the dLGN, which generates completely different functional topologies on 

both postsynaptic layers. This constitutes a clear example of how the fine structure 
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of the input can govern the functional topology of the postsynaptic layers in addition 

to the DCr. 

 
 

Emergence of orientation selectivity in the early visual pathway 
 

Because there are described routes in the mouse where direction-selective 

(DS) RGCs project to the shell and from there directly to the surface layers of V1 

(Seabrook et al 2017), one might argue that the presence of a salt and pepper is due 

to the arrival of these inputs to V1. 

However, recent studies suggest direction selectivity arises de novo in V1 by 

convergence of thalamic inputs with concentric RFs and, thereby, with low direction 

selectivity but with a combination of different spatial-temporal responses. In 

addition, the same study indicates that the slight selectivity in the direction of 

thalamic neurons does not match with that developed by layer 4 cells, suggesting 

that the retina has a minor role in the generation of orientation selectivity in V1 

(Lien & Scanziani 2018). Also, another recent study in rabbits shows that the DS 

input of dLGN neurons to layer 4 and 6 is a powerful driver of layer 4 cells, the DS 

inputs that arrive directly to layer 1 act as modulators, in other words, they are not 

strong enough to generate a response in superficial layers (Bereshpolova et al 

2019). 

In conclusion, although it is possible that direction and orientation selective 

neurons project directly to the cortex generating a more random disposition, 

everything seems to indicate that the main mechanism to generate orientation 

selective neurons is more or less conserved in mammals, being other feedforward 

connections modulators of the functional circuit. 
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Comparisons with other models of V1 organization 
 

We have explored the limitations of a purely feedforward model to 

understand up to what point a stable retinotopy and different Cmag affect the final 

functional topology of V1. Yet, there are several differences of concept of our model 

respect to others. 

In the first place, if the circular correlation function is calculated directly 

from the retinal dipoles, no local or long range correlations can emerge from the 

dipoles of the retina (Schottdorf et al 2014). However, the high thalamocortical 

convergence values of our model pool the RFs of many RGCs which makes it possible 

to seed the circular correlation signature of OPMs and to predict the orientation of 

a V1 neuron by visual inspection of the thalamic population RF (Molano-Mazon 

2013) (Figure 3.3). This in turn, implies that it is possible to predict the orientation 

of a V1 neuron by looking at the retino-topically aligned thalamic neurons as 

experimentally reported (Jin et al 2011). It is important to take this difference into 

account, since the take home message is clearly different. The circular correlation 

analysis of the dipoles implies a local point of view of the circuit that fails to account 

for the main characteristic of OPMs. Instead, a broader population code that can be 

viewed as the sum of all the On and OF RFs of the thalamic RFs, mediated by a high 

thalamocortical convergence, indicates that the cortical circuit is favoring this 

broader coding. 

Taking all this into account, we are measuring the circular correlation of the 

thalamic population of RFs that are highly selective to orientation (OSI>0.25), that 

emerge at high thalamocortical convergences, which are necessary for an optimum 

coverage of On and Off RFs of visual space. As a consequence, the structure of the 

raw input generates strong isoorientation domains and long range correlations for 

high DCr values when taking into account the global population code (thalamic 

population RF map), in contrast to the more local information from the dipoles of 

the retina. So, even though, long range correlations are absent in RGCs mosaics 

(Eglen et al 2005, Wassle et al 1981a, Zhan & Troy 2000), long range correlations 

may emerge when considering the population code of all the RFs covering visual 
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space. This is also a main difference against authors that consider the RGC mosaic as 

an moiré interference pattern of On and Off neurons that generate clear and very 

strong local and long range correlations (Paik & Ringach 2011). 

It is also important to mention that the model fails to generate long range 

correlations as strong as those compared to real data (Schottdorf et al 2014), 

indicating that the initial structure is guided by the raw input, but some degree of 

intracortical interactions are also occurring. As noted by (Schottdorf et al 2015), to 

obtain OPMs from feedforward inputs that give stronger long range correlations 

some kind of band pass filtering is needed (Figure 3.18). This implies that some 

degree of more complex intracortical connectivity (other than just local 

interpolation) is necessary to achieve the universality structure of OPMs as reported 

by (Kaschube et al 2010). 

Overall, the model gives a simple explanation of how the basic functional 

topologies are seeded across different mammalian orders and accounts for the 

limitation of a purely feedforward drive in the development of OPMs. 

 
 

Drivers and modulators of V1 functional topology 
 

The mechanisms that prevail in the emergence of V1’s characteristic 

functional structure are under intense debate. On the one hand, feedforward models 

propose that the functional topology emerges due to the convergence and 

integration of inputs coming from the thalamus. On the other hand, intracortical 

models propose connectivity between V1 neurons as a self-organizing mechanism 

in the formation of functional maps. There is experimental work that supports one 

model or another, for review see (Martinez 2006). 

Recent work suggests that thalamic or retinal input is not necessary to 

generate the characteristic activity patterns of OPMs (Smith et al 2018). These 

authors silence the activity of the thalamic input at p21 (in ferret) and see that the 

patterns of spontaneous activity characteristic of OPMs are still present, proposing 
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local anisotropic intracortical interactions as a model of cortical organization. 

However, this does not exclude at all that the structure of these activity patterns is 

influenced by the input at early stages of development, since, in spite of having the 

regions of localized activity preserved, the levels of spontaneous activity decrease 

drastically when the thalamic input is silenced, and at p1-p10 the thalamocortical 

connections, that may shape cortical activity, already reach layer 4 and the subplate 

(Huberman et al 2008). So, to demonstrate that the cortex organizes itself without 

the influence of the input these experiments should be performed at earlier stages 

of development. 

Furthermore, spontaneous activity of the retina is important for the correct 

development of retinotopic and OD maps (Cang et al 2005b, Huberman et al 2006). 

Retinal waves occur approximately up to the EO (eye opening) (p30) in ferrets and 

even a few days after the EO in mice (p10-p20) (Huberman et al 2008). Recent 

studies show that retinal waves are transmitted to dLGN, SC (superior colliculus) 

and V1 (Ackman et al 2012, Weliky & Katz 1999). However, the activity of V1 

becomes independent from the retinal waves near EO (Chiu & Weliky 2001, Gribizis 

et al 2019). The results of these studies seem to clearly indicate that the input has a 

clear influence at the beginning of the development and acts as a modulator at later 

stages. This is consistent with the fact that OPMs are present at the moment of the 

EO (Chapman et al 1996), and visual experience is not a determining factor in the 

qualitative structure of the OPM, although the maturation of orientation selectivity 

depends on the presence of lateral connections (White et al 2001). 

Finally, it is important to remember that molecular guidance cues are as 

important, or more important than, activity-dependent mechanisms in the 

organization of inputs from pre-synaptic to postsynaptic layers (Huberman et al 

2008, Swindale 1996). In a recent study we described the appearance of retinal 

waves as a complement to molecular cues in species with retino-retinal connections, 

to generate coordinated activity patterns necessary for the formation of congruent 

retinal maps between both hemispheres (Murcia-Belmonte et al 2019). Another 

example of the great importance of molecular guidance cues is the fact that there are 

clusters of OD in enucleated ferrets (Crowley & Katz 1999). This calls into question 
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the role of the retina as a driver in the formation of cortical circuitry and the 

importance of molecular cues in the arrangement of ordered afferences between pre 

and post-synaptic layers across the early visual pathway. 

 
 

DCr influence the degree of visual acuity across mammalian species 
 

The DCr can also explain differences in visual acuity across mammalian 

species and may suggest why the levels of convergence reported for cat are lower 

than those reported for mouse. As noted in the introduction, visual acuity cannot be 

solely determined by the retina, there are other factors such as the degree of 

binocular visual field or the number of neurons in V1 that also influence acuity. 

On the one hand, the model shows how as the processing capacity in higher stages 

is increased, that is, the number of neurons in 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 , visual acuity increases - 

understood as the maximum coverage of On and Off RFs cut at 90% of their peak 

response (Figure 3.5) - , until it reaches it a plateau where increasing the number of 

neurons in V1 does not increase coverage of visual space (Figure 3.7). This agrees 

with experimental data reported by other authors (Collins et al 2010, Srinivasan et 

al 2015), where there is a clear relationship between V1 size and neuron density 

with visual acuity in mammalian species (Figure. 1.4; table 1). 

On the other hand, the model predicts that the thalamocortical convergence 

required for optimal coverage of visual decreases as the DCr increases and that 

divergence increases with the DCr (Figure 3.5-3.6). In other words, species with a 

higher DCr should require lower thalamocortical convergence than species with a 

smaller DCr. Looking at figure 3.5 it is easy to see a tendency for the peak of 

maximum coverage moving to the left as the DCr increases. Especially when 

comparing species with a low DCr (DCr< 0.2), such as mouse where the convergence 

required is of about 70-80 connections per cortical neuron, with species with high 

values DCr (DCr>2), where the convergence can range from 25-50 connections. 

Furthermore, this fits perfectly with the only available data for thalamocortical 
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convergence values in mammals. Cats that have a reported thalamacortical 

convergence of around 30 connections per cortical neuron (Alonso et al 2001), 

whether mice have around 80 connections per cortical neuron (Lien & Scanziani 

2018). 

Finally, the mean RF size is another parameter that expands the definition for 

visual acuity and that depends on the DCr, in fact, as the DCr values increase the 

mean size of the RFs optimally covering visual space decreases. Indeed, it is possible 

to argue that coverage of visual space is not perfect for describing acuity, since the 

capacity of the system to resolve fine spatial detail also depends on the individual 

size of each RF. Taking this into account, the acuity is clearly enhanced if the mean 

size of the RFs covering visual space is small. In Figure 3.9 there is a tendency for 

the peak of maximum coverage moving to the left as the DCr increases. Especially 

when comparing species with a low DCr (DCr< 0.2), such as mouse where the mean 

RFs is of about 0.02 mm2, with species with high values DCr (DCr>2), where the size 

is around 0.015 mm2. This is not surprising, since the mean RF size scales with 

convergence independently of the DCr value (Figure 3.8), and therefore the lower 

the degree of convergence necessary to optimally cover visual space, the smaller the 

RFs will be. Therefore, similar values of RF size can be extrapolated from Figure 3.8, 

if the convergence is high as in mouse, 0.02 mm2, and for lower convergence values 

as in cat, 0.015 mm2. 

In summary, RF size decrease adds up the to the better coverage of visual 

space as the DCr ratio increases, to explain why visual acuity increases with V1 size 

(Figure. 1.4; table 1). Although there are other factors such as the degree of 

binocular vision, the size of the dLGN and retinal specializations that may enhance 

acuity (Caves et al 2018, Mazade & Alonso 2017, Srinivasan et al 2015, Veilleux & 

Kirk 2014). It is remarkable how species with a similar V1 size, but different DCr 

have similar acuities (rabbit, ferret, tree shrew). Even more remarkable is the case 

of the squirrel, which has an even smaller V1 area than those mentioned above and 

a DCr similar to the rabbit. However, it is a highly visual rodent with an acuity slighly 

higher than the rest. This certainly implies the importance of other parameters that 

may compensate and help to process acuity other than the EVP. In fact, the EVP is 
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not the only route for visual information processing and there are parameters other 

than V1 size than may contribute to enhance acuity. 

 

Evolution of V1 and SC, functional consequences 

 
The EVP is not the only rout of transmission of visual information. Apart from 

many other visual nuclei, the SC-pulvinar pathway is responsible for object 

recognition and correct spatial navigation (Petry & Bickford 2019, Seabrook et al 

2017), that is clearly favored in rodents and prosimians in comparison to carnivores 

and primates (Table 2). To reach this conclusion, data of the relative size of the SC 

was extracted by measuring coronal sections of the SGS, that is, the most external 

part of the sensory SC that together with the stratum opticum receives all retinal 

afferents (May 2006). Since the SGS receives a good majority of the retinal input, I 

have considered its relative size respect to V1 a good measure of the weight of the 

SC-pulvinar in visual processing compared to the dLGN-V1 across mammalian 

species. 

However, the SGS does not scale homogenously across mammals. It is clear that the 

increase in brain size has not been associated with a substantial increase in the size 

of the SGS in carnivores and primates when compared to rodents and the tree shrew 

(Figure 4.2. A). Furthermore, the scaling of V1 size respect to the SGS follows two 

different paths; carnivores and primates tend to have a smaller SGS compared to 

their V1 size whether rodents and shrews have a clearly bigger SGS (Figure 4.2 B). 

This becomes clear when comparing the relative size of the SGS/V1 and the SGS/ret 

respect to the size of V1 (Figure 4.2 C-D). Overall, as V1 increases the SGS decreases 

abruptly, and rodents tend to have the retina-SGS pathway enhanced at expense of 

the retina-V1 pathway promoted by carnivores and primates (Figure 4.2 E). The 

shrew, as a prosimian, lies in an interesting point in the threshold for the emergence 

of OPMs due to its V1/ret divergence ratio but with a clearly bigger SGS, similar to 

rodents. Finally, as visual acuity increases with V1 size (Figure 1.4) and V1 

increments at expense of the SGS, in other words, as the SC-pulvinar pathways 

reduces its weight across mammals, visual acuity increases (Figure 4.2 F). It is 
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Figure 4.2. Evolution of the primary and secondary visual pathways. A. SGS area as a function 
of brainweight. B. V1 area as a function SGS area. C. SGS/V1 as function of V1. D. SGS/ret as a 
function of V1. E. SGS/V1 as a function of V1. F. SGS/V1 as a function of acuity (cpd). 
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important to mention, the unusual size of the squirrel SGS compared to its V1, and 

its outstanding acuity when compared to other mammals with a bigger V1 like the 

shrew and the galago. 

Across mammalian evolution the size of each neocortical area and subcortical 

structure and their relationships determine the behavior and specialization of each 

specie to its ecological niche (Herculano-Houzel et al 2008, Kaas 2005, Kaas 2012a, 

Kaas 2013, Krubitzer 1995, Krubitzer et al 2011). Mammals from the superorder of 

the Euarchontoglires (primates and rodents) and Laurasitheria (carnivores, 

ungulates), have overall evolved a large neocortex with clearly differentiated 

sensory areas compared to the small neocortex characteristic of more primitive 

ancestors (Kaas 2013). However, there are clear differences in size of sensory 

regions even across similar species raised in different environmental conditions 

(Campi et al 2011, Campi & Krubitzer 2010, Krubitzer 1995, Krubitzer et al 2011). 

Across these superorders, different biological constraints associated with the 

ecological needs of each species may have determined the weight of the SC-pulvinar 

against the dLGN-V1 pathway. 

On the one hand, rodents have in general promoted bigger retinas and the SC- 

pulvinar pathway because their behavior is mostly associated with looming and 

rapid reflex responses (Dhande et al 2015, Mazade & Alonso 2017, Seabrook et al 

2017), whether other species such as carnivores, and primates have promoted their 

visual acuity through the dLGN-V1 pathway. 

On the other hand, the size of each specie is also a parameter to take into account 

(Keil et al 2012), since the expansion of the neocortex comes at a high energy cost 

(Kaas 2013). Smaller animals have smaller brains and an increase in neocortex size 

might come at a higher cost that an increase in size of a more primitive subcortical 

structure such as the SC. 

This said, rodents, due to their biological constraints, have a much more developed 

SGS with respect to the size of V1. Having and overall smaller size may be associated 

with the fact that they cannot rely all the bulk of their operations on V1 and therefore 
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they do so on the SC. This may be the reason why the squirrel has a much larger SGS 

than normal, due to the need to develop a greater visual acuity which allows to have 

a higher acuity with relative smaller V1. 

Following this line of thought, the larger size of carnivores and primates, together 

with the advantages of projecting to the cortex, have clearly promoted the 

delegation of many of their functions to V1. Interestingly, the complete 

segmentation of operations from the first and second visual pathways has probably 

been gradual throughout the evolution. Therefore, a small mammal like tree shrew 

who like the squirrel had the pressure to develop a good acuity due to its arboreal 

way of life, lies in an intermediate point where its V1 is larger than rodents but its 

SGS is bigger compared to carnivores and primates. Furthermore, loss of function 

experiments demonstrate that shrews without a functional V1 can relearn to 

recognize objects throughout the SC-pulvinar pathway, while primates are 

completely unable to recover their normal function (Petry & Bickford 2019, Stoerig 

& Cowey 1997). 

So, as V1 expands at expense of the more primitive SC-pulvinar pathway, 

each pathway gradually specializes and visual acuity increases, therefore, the 

emergence of a salt and pepper or OPM is consequence of increasingly devoting the 

processing capacity to V1 due to cortical expansion through phylogeny. 

 

Divergence-convergence ratios may modify the structure of the cortex 
required for information processing 

 
So far we have seen how the early visual system adapts its levels of 

divergence and convergence to optimize a certain function, that is, the optimum 

coverage of the visual field. If that is the case, does the structure of the primary 

sensory areas relate to the different DCr found across primary sensory areas? In 

other words, does the type of thalamacortical input predict the cortical structure 

required to integrate the information? As we will see, the structure of the main 

thalamorecipient layer (layer 4) can be related to the different DCr across sensory 

areas and species. 
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The proportion of spiny or pyramidal layer 4 neurons may be related to the 

different DCr found across sensory layers. Spiny stellate neurons develop from 

pyramidal neurons that lose their apical dendrites during development (Callaway & 

Borrell 2011) and the proportion of these neurons varies across species and sensory 

layers. Layer 4 of V1 and S1 non rodent mammals is predominantly populated by 

stellate neurons, however rodents have stellates in S1 and pyramids in V1 (Smith & 

Populin 2001). 

Following this line of though, one can hypothesize the different proportion 

of neurons might be due to how the input reaches layer 4 (the levels of divergence) 

and on the levels of integration required to perform a certain computation 

(convergence). Indeed, some authors hypothesize that the morphology of stellates 

to the need of a greater integration of inputs. As an example, for convergence, cats’ 

auditory cortex (A1), unlike V1, is populated by pyramidal neurons because the 

convergence of input from the two ears occurs in the brainstem, therefore the levels 

of integration required in A1 cortex might me lower in comparison to V1. 

On the other hand, the levels of divergence may also instruct the type of 

neurons required to handle the fibers reaching the cortex. The fact that the degree 

of convergence in primates, carnivores and rodents in V1 are high, but that 

divergence is much lower in rodents, might explain why the latter do not require 

stellate neurons. This could be because stellate neurons, apart from favoring 

integration, could also be related to the need for a better differentiation of the input 

if the there is a high amount of fibers reaching layer 4. Therefore, the low divergence 

values in rodents’ V1 should not require stellate neurons. However, the more 

developed S1 of rodents might establish a high DCr which in turn demands a higher 

proportion of stellate neurons. Supporting this view is the fact that binocular 

enucleated ferrets do not develop a normal proportion of stellate neurons. This 

neurons instead remain pyramidal during development (Callaway & Borrell 2011), 

which shows how altering the input, and therefore the DCr, that reaches the cortex, 

shapes the structure of the neurons in layer 4. 
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The dLGN stabilizes the retinal message 
 

So far I have not stressed the computations the dLGN might be exerting in the 

EVP, and certainly more anatomical data and further modelling is required to reach 

a proper conclusion. The comparative biology approach is useful to identify the main 

parameters that might be constraining the function of the system across different 

species. However, for the dLGN this approach was not as fruitful since there are clear 

anatomical, connectivity and functional differences in the dLGN of carnivores, 

rodents and primates that added too many parameters to the model and, 

furthermore, comparative data is not as clear and extensive as for V1. Species like 

the cat and the ferret have an upsampling of around x2.5 and x1.5 respectively, 

whether for mice and primates this numbers seem to be lower (Kremkow & Alonso 

2018, Martinez et al 2014, Mazade & Alonso 2017). Furthermore, the anatomical 

structure of a the dLGN of a carnivore and a primate is completely different (Kaas 

2013). Therefore, more clear anatomical studies are required to identify and 

quantify exactly, the main parameters that might describe the proper differences in 

the dLGN found across mammals. 

Taking this into account, for the model the area of the dLGN was considered to be 

the same as the retina, with an upsampling of 1.5 respect to the retina across all DCr 

values explored for different species. This value was used because there is clear 

work in cat that highlights the importance of upsampling and some degree of 

convergence (1:3), from the retina to the dLGN, for a better coverage of visual space 

and noise reduction in the dLGN (Martinez et al 2014, Molano-Mazon 2013). 

Furthermore, the degree of convergence and crosstalk between different RGCs is 

different across species. Rodents seem to have a higher degree of convergence from 

the retina with more crosstalk between different RGCs (1:5), whether carnivores 

and primates have a lower diversity of RGCs and a lower crosstalk and convergence 

between layers (Liang et al 2018, Nassi & Callaway 2009, O'Brien et al 2002, 

Rathbun et al 2016, Roman Roson et al 2019). Therefore, 3 different levels of 

retinothlamic convergence where explored 1:1, 1:3 1:9 in the model that really did 
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not exert many major changes in the functional topology of orientation selective 

neurons present in V1. 

However, the presence of the dLGN is crucial to stabilize the retinal message 

as it can be seen in Figure 4.3 when calculating the orientation bias (see methods) 

on models with and without dLGN. This results we reproduced as in (Molano-Mazon 

2013), and basically indicate how the irregular upsampling, due to statistical wiring, 

generates local clusters that enhance contrast borders in the dLGN stabilizing the 

appearance of orientation selective neurons in the On-Off contrast borders. On the 

contrary, models without dLGN are more decorrelated and it is more difficult to 

predict the orientation of a V1 cortical neuron from the thalamic population RF. This 

means that the dLGN is necessary in order to predict the orientation of a V1 neuron 

from retinotopically aligned V1 neurons as experimentally reported by (Jin et al 

2011). Also, this becomes more patent at increasing thalamocortical convergences, 

necessary to optimally cover visual space, where the Obias of models without dLGN 

approximate the values of a completely random control (0.2), whether models with 

dLGN maintain a high Obias at increasing thalamocortical convergence values 

(Molano-Mazon 2013). 
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Figure 4.3. Thalamus stabilizes retinal message. A. OPM of a model without dLGN (Left) and 
with dLGN (right). B. Orientation Bias as a function of 3 different levels of thalamocortical 
convergence for models with and without dLGN (error bars std). 
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DCr determine the developmental mechanisms for correct topographic 
ordering 

 
The different DCrs across mammalian species are the cause of the activity 

dependent mechanisms required for the development of correct and congruent 

retinotopic maps in both hemispheres. The SOM model when stimulated random 

and uniformly produces postsynaptic maps that reproduce the geometry of the 

presynaptic layer but are not correctly orientated (Hjorth et al 2015). In fact, there 

are 4! ways in which two square grids can be orientated relative to each other and 

only one of these orientations is the topologically correct one, thus the probability 

of getting a correct mapping is 1/24 ≈ 4%. If we consider furthermore that two 

retinas have to be mapped correctly at the same time, then the probability drops to 

1/242 ≈ 0.02%. 

The SOM model shows that as the DCr increases across mammals, due to an 

increase in postsynaptic target, the concurrent contribution of the gradients of 

molecular guidance cues and the bilateral coordination of retinal activity afforded 

by a R-R projection, helps avoid such an orientation error which enables the correct 

development of bilateral symmetry. 

The retina and the postsynaptic layers (tectum, dLGN, V1) of lower 

vertebrates like the zebrafish, have similar sizes and is established with strong 

molecular guidance cues, without much further axonal refinement (McLaughlin & 

O'Leary 2005) (Figure 4.4). In contrast, the postsynaptic layer is larger than the 

retina higher order vertebrates (chicken, mouse, carnivores, primates), in other 

words, the DCr is higher, and a higher level of axonal refinement is necessary to 

establish the final retinotopic map (McLaughlin & O'Leary 2005) (Figure 4.4). This, 

refinement is realised by retinal waves (Huberman et al 2008), and the SOM model 

indicates that, the synchronization of this activity, presumably done by the presence 

of R-R connections, is crucial to develop correct and congruent retinotopic maps. 

Thus, the SOM model seeds a clear evolutionary explanation for the 

emergence of R-R connections as the size of the postsynaptic layers increased across 
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phylogeny as a need to improve the complexity and computational power of the 

visual system. 

 

 

Figure 4.4. The presence of R-R connections as a function of DCr through evolution. A. In 
species where the size of the postsynaptic layer (tectum, dLGN) respect to the retina is small 
(low DCr), correct retinal topography in both hemispheres relies on molecular guidance cues. B. 
In species where the size of the visual target is bigger than the retina (high DCr), correct 
retinotopy relies on a molecular guidance cues and activity dependent mechanisms. The 
emergence of R-R connections could allow to synchronize the activity from both retinas to 
develop congruent retinotopic maps in both hemispheres. Adapted from (Murcia-Belmonte et al 
2019). 

 
 
 

A change in the DCr through phylogeny determined the appearance of 
ODMs 

 

As noted in equation [1] from materials and methods (main text), the DCr is 

equal to, 
 

 
𝐷𝐷𝐷𝐷𝐷𝐷 = 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 
 

 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 

𝑑𝑑𝑑𝑑𝑑𝑑 
= 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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Where 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the number of postsynaptic and presynaptic neurons 

respectively, and div and conv represent the divergence and convergence 

connectivity between layers. 

The Brn3b manipulation does not modify the total number of RGCs or dLGN 

neurons, but the proportion of ipsilateral and contralateral RGCs in the retina. 

Therefore, if retinotopy and divergence is maintained for the contralateral and 

ipsilateral inputs, but the diversity of convergent inputs from the ventrotemporal 

part of the retina is reduced, the DCr rises increasing local correlations for the 

ipsilateral inputs and generating segregated OD columns as those found in 

carnivores and primates. 

In other words, the total proportion of neurons remains constant, so a diminution 

of contralateral neurons in both retinas translates in an increase of ipsilateral 

neurons in both retinas (Figure 4.5). In such a way that, the increase in the 

proportion of ipsi fibers on one side that reach the dLGN is combined with the fact 

that the contralateral fibers of the binocular region also decrease, which favors the 

appearance of a monocular retinotopic region of the frontal visual field in V1 of 

mutant mice. 

Finally, the fact that the total ipsilateral response area is not increased in 

mutant mice, and therefore, that an increase in the binocular region is not seen, 

indicates, on the one hand, that the molecular mechanisms that determine that RGCs 

differentiate to ipsi RGCs are specific to the ventro-temporal part of the retina 

(Herrera 2018, Herrera et al 2003) and, therefore, to the binocular visual field of 

view. On the other hand, it also indicates the Brn3b-Zic2 mice, are at least roughly 

or completely replicating the retinotopic map of the retina in V1. Since retinotopy 

develops before OD this is not surprising (Herrera et al 2019, Huberman et al 2008, 

Kremkow & Alonso 2018, Swindale 1996). 

All these results determine the importance of the input and the preservation 

of retinotopy as keys for understanding the cortical functional topology present in 

V1 across phylogeny. These experiments support the idea that ODMs are nothing 

but a consequence of the different DCr found across phylogeny. The idea that the 
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single overexpression of Zic2 in RGCs is able to generate proper ODMs in Brn3b-Zic2 

mice, together with the fact that a the different levels of expression of Zic2 across 

phylogeny determine the degree of binocular visual field across different species 

(Herrera 2018, Herrera et al 2003), implies that the levels of expression of a single 

gene can regulate different visual specializations, cortical wiring and functional 

topology across phylogeny by modifying the DCr in primary sensory areas. 
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Conclusions/Conclusiones 

 
This work highlights the power of a comparative biology approach combined 

with mathematical modelling as a useful tool to relate structure with function and 

to generate hypothesis of the main operations a certain region of the brain is 

performing. This approximation enabled to summarize in a mathematical 

expression, the DCr, the main anatomical parameters that we hypothesized to be 

responsible for the cortical functional topology observed across the mammalian 

phylogenetic tree. 

Thus, the DCr expression helped as a framework to explore how the size of 

each layer of the EVP and different connectivity rules may alter the function of V1 

and to generate and confirm hypothesis of the main computations the EVP is 

performing, applying different computational models of cortical connectivity and 

development. 

On the one hand, a feedforward statistical connectivity model highlights that 

the fundamental operation the EVP performs is to develop a retinotopic map that 

optimally covers visual space, through a series of common thalamocortical 

connectivity rules, that determine the different levels of divergence across 

mammalian species as a result of the contrasting Divergence-Convergence ratios 

found through phylogeny due to the different degree of overexpansion of V1. This 

gives a clear answer to why functional columns in V1 have astonishing different 

sizes in rodents and lagomorphs compared to carnivores and primates. 

On the other hand, the SOM model shows how the different divergence- 

convergence ratios across mammalian phylogeny determine the type of molecular 

and activity dependent mechanisms required for the correct development of 

congruent retinotopic maps in both hemispheres, which sheds light on role for the 

emergence of R-R connections in species with high divergence-convergence ratios, 

as a way of synchronizing activity in both hemispheres to avoid topological defects. 
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Finally, the experimental manipulation that increases the DCr of the 

ipsilateral fibres through the EVP shows that the presence or absence of Ocular 

Dominance maps (ODM) across mammals is nothing but a consequence of the 

different DCr found across phylogeny guided by a similar coverage optimization 

principle to optimally sample visual space. 

In summary, Divergence-Convergence ratios govern functional circuitry and 

developmental mechanisms across mammalian species as they accommodate to the 

imposed biological constraint of developing congruent and correct retinotopic maps 

that optimally cover the visual field. 
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Este trabajo destaca la ventaja de combinar un enfoque de biología 

comparada con modelos matemáticos como una herramienta útil para relacionar la 

estructura con la función y generar hipótesis acerca de las principales operaciones 

que realiza una determinada región del cerebro. De tal manera que, esta 

aproximación, permitió resumir en una expresión matemática, la ratio divergencia- 

convergencia, los principales parámetros anatómicos responsables de la topología 

funcional observada en el árbol filogenético de los mamíferos. 

Así, la expresión de la ratio divergencia-convergencia sirvió como marco para 

explorar cómo el tamaño de cada capa del sistema visual temprano y diferentes 

reglas de conectividad, pueden alterar la función de V1, lo que permitió desarrollar 

y confirmar hipótesis de las principales operaciones que está realizando V1, 

aplicando diferentes modelos computacionales de conectividad y desarrollo 

cortical. 

Por un lado, el modelo feedforward de conectividad estadística demuestra 

que la principal operación que realiza el sistema visual temprano es desarrollar un 

mapa retinotópico que cubra de forma óptima el espacio visual. Todos los 

mamíferos siguen una serie de reglas de conectividad tálamocorticales comunes y, 

como resultado de las diferentes ratios de divergencia-convergencia debido al 

diferente grado de sobre expansión de V1 a lo largo de la filogenia, los mamíferos 

presentan distintos niveles de divergencia que determinan la topología funcional 

presente en V1. Damos así, una respuesta clara a por qué las columnas funcionales 

en V1 tienen tamaños tan diferentes en roedores y lagomorfos en comparación con 

los carnívoros y primates. 

Por otro lado, el modelo SOM muestra cómo las diferentes relaciones de 

divergencia-convergencia en la filogenia de mamíferos determinan el tipo de 

mecanismos dependientes de actividad y moleculares necesarios para el correcto 

desarrollo de mapas retinotópicos congruentes en ambos hemisferios. Dando una 

posible función a la aparición de conexiones R-R, en especies con altas relaciones 

divergencia-convergencia, como mecanismo para sincronizar la actividad en ambos 

hemisferios y evitar defectos topológicos. 
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Finalmente, la manipulación experimental que aumenta la DCr de las fibras 

ipsilaterales a través del EVP muestra que, la presencia o ausencia de mapas de 

dominancia ocular en mamíferos no es más que una consecuencia de las diferentes 

ratios de divergencia-convergencia encontradas en la filogenia, constreñidas por un 

principio similar de optimización de cobertura para muestrear de manera óptima el 

espacio visual. 

En resumen, las relaciones de divergencia-convergencia gobiernan la 

topología funcional y los mecanismos de desarrollo cortical en mamíferos, al 

acomodarse y generar cambios por la imposición biológica de desarrollar mapas 

retinotópicos congruentes y correctos que cubren de forma óptima el campo visual. 
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S1. Quantification of ocular dominance response regions for mutant and WT mice. A. Total 
response area (p=0.0402). B. Binocular area (p=0.0227). C. Contralateral area (p=0.0482). D. 
Ipsilateral area (p=0.0049). E. Total ipsilateral response area. F) Total contralateral response area 
(p=0.0098). Two tailed Man Whitney test for all statistically significant plots. Data from the right 
hemisphere of 11 WT and 9 mutants. 

 
 
 
 

 
S2. Effect of the weight in the final response area of experimental mice. A. Weight (g) for 
WT and mutant mice. B. Total response area (mm2) as a function of weight. Data from the right 
hemisphere of 11 WT and 9 mutants. 
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S3. Friedman test for each of the circular correlation function parameters for the Raw 
input reaching layer 4. A-E. Each row shows one of the parameters extracted from the circular 
correlation function; that is, hypercolumn size, anticorrelation size, local column diameter, first 
local correlation point and periodicity robustness respectively. The first and second columns 
represent each of these parameters as a function of DCr and the V1/Retina area ratio 
respectively. The Friedman test for each variable is represented in the third and for fourth 
columns against the DCr and the V1/Retina area respectively. (Green points p<0.05, blue points 
p>0.05). The place where the green points start to appear is where the threshold is placed for 
each of the variable. 



 

 
 
 
 
 
 

Animal Body weight (g) Brain weight (g) Retina area (mm2) AD (mm) V1 area (mm2) Cpd MT Body weight ref Brain weight ref Retina area ref AD ref V1 area ref Cpd ref 
Human (Homo sapiens) 72340 1350 1012 24,52 2399,00 64 B [1] [2] [1] 35,36,37,38 [1] 35 

Macaque (Macaca mulata) 4613 90 670 17,6 1269,00 53,6 B [8] [34] [14] 35,36,37,38 [34] 35 
Cat (Felis catus)a 3050 25 473,5 21,94 380,00 8,85 B [1] [2] [1,3]b 35,36,37,38 [1] 35 

Tree shrew (Tupaia belangueri) 120 3,4 120 8,07 63,00 2,4 B [1] [5] [1] 35,36,37,38 [1,4]b 35 
Ferret (Mustela putorius)c 990 8 84 7,5 80,00 3,57 B [1,6] [7,8] [1] 35,36,37,38 [1] 35 

sheep (Ovis aries)a 35000 157,5 1572,5 26,113 700,00 5,61 B [9,8] [2,8]b [9,10]d 35,36,37,38 [9] 35 
owl monkey (Aotus trivirgatus)e 966 18,37 595 19,9 287,00 10 B [8] [8]f [14,13] 35,36,37,38 [4] 35 

Squirrel monkey (Saimiri sciureus)g 817,97 23,86 352 15,5 637,00 40,5 B [17]h [11,13]i [14]j 35,36,37,38 [4]k 35 
Greater galago (Otolemur)l 957 11,64 344 16,3 172,50 4,8 B [8]o [8]p [18]m 35,36,37,38 [19,4]n 35 

Rabbit (Oryctolagus cuniculus) 2720 11 498 18,07 80,00 3 B [1] [8] [1] 35,36,37,38 [1] 35 
Mouse (Mus musculus) 30 0,4 15 5,28 2,50 0,5 B [1] [8] [1] 35,36,37,38 [1] 35 
Rat (Rattus novergicus) 508,3 1,83 68 5,58 8,50 1,6 B [8] [22]x [21]q 35,36,37,38 [22]r 35 

Gray squirrel (Sciurus carolinensis) 635 6,46 206 11,8 40,00 3,9 B [23] [23]x [24]s 35,36,37,38 [23]t 35 
Capybara (Hydrochoerus hydrochoerus) 40000 71 1039 21,04 286,92 5,8 A [17] [28]v [3] 35,36,37,38 [28]u 35 

Guinea Pig (Cavia porcelus) 476 4,83 159 10 30,00 NA NA [8] [8] [28,29] 35,36,37,38 [28]u NA 
Agouti (Dasyprocta primnolofa)w 2900 21,62 521 13,3 180,00 6,21 A [8] [8] [3] 35,36,37,38 [30,31]y 35 

Golden Hamster (Mesocricetus auratus) 98,6 NA NA 6,32 NA 0,5 B 17 8 NA 35,36,37,38 NA 35 
Anubis baboon (Papio anubis)z 17728,56 201 793 21 3742,00 NA NA 17 14 14 35,36,37,38 19 NA 

Horse (Equus caballus) 40359,5 693 2444 42 NA 23,3 B 17 8 3 35,36,37,38 NA 35 
Brown capuchin (Cebus apella) 2589 61,6 565 14,1 1344,00 54,75 A 8 14 14 35,36,37,38 32 35 

Marmoset (Callithrix jacchus) 347,45 7,8 206 11,3 205,00 30 A 8 14 14 35,36,37,38 34 35 
Midas Tamarin (Saguinus midas niger) 563 9,2 258 12,2 NA 24,87 A 8 14 14 35,36,37,38 NA 35 
Black howler monkey (Alouatta caraya) 5012,5 49,5 444 16,2 NA 59,61 A 8 14 14 35,36,37,38 NA 35 
Green monkey (Cercopithecus aethiops) 4099 59,8 707 17,3 NA 55,23 A 36 14 14 35,36,37,38 NA 35 

Quokka (Setonyx brachyurus) 3250 13,9 237,5 10,4 92,00 4 A 8 8 41 35,36,37,38 39 35 
Dunnart (Sminthopsis crassicaudata) 15 0,36 36 5,08 5,60 2,36 B 8 8 40 35,36,37,38 39 35 
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a. Unidentified breed. 
b. Mean from both references. 
c. Data from specie and subspecies intermingled (Mustela putorius furo). And from special 

breeds (Marshall BioResources, North Rose, NY). 
d. Mean from whole mount measurements using Matlab from Figure 6 in (9) and Figure 4. B in 

(10). 
e. Until 1983 all ten species of the genus Aotus where considered subspecies of Aotus trivirgatus 

(12, 13). To generalize data from different papers we will consider Aotus azarae and Aotus 
Trivirgatus the same species. Take also into account that the axial diameter of the eye is 
exactly the same for both species (35). 

f. Mean from data of Aotus Trivirgatus and Aotus Azarae from (8). 
g. The classification of the species of the genus Saimiri has changed over time (15, 16). We will 

integrate data from Saimiri Sciureus and Saimiri Ustus. Both species have similar brain 
weights (11, 13). 

h. Mean body weight of Saimiri Sciureus and Saimiri Ustus. 
i. Mean brain weight from both species; mean of 4 subjects in Table 1 (13) and data from (11). 
j. Retinal area from Saimiri ustus. 
k. V1 area from Saimiri sciureus. 
l. Values for species of greater galagos Otolemur crassicaudatus and Otolemur garnetti 

intermingled. Garnetti are smaller (764 g) compared to crassicaudatus (1150 g) and were 
once considered a subspecie of craussicatus (20). However, their mean brain weight is quite 
similar, 11.5 g and 11.77 g respectively. 

m. The study reports no differences in the retinal area between a lesser galago (Galago 
senegalensis) and a greater galago (Otolemur crassicaudatus). 

n. There is quite a discrepancy in the area reported by (19) 139 mm2 and data from (4) 206.649 
mm2. The mean from both values was included in the table. 

o. Body weight is the mean of Otolemur garnetti and Otolemur crassicaudatus. 
p. Brain weight as the mean of Otolemur garnetti and Otolemur crassicaudatus. 
q. Data for Long Evans strain, rest of data for Norway rat strain. 
r. Data extracted from Figure 6 and Table 3. 
s. Measured from whole mount in figure 20 using Matlab. Also indirect measurements of whole 

mounts in (25, 26) for California ground squirrel (Spermophilus beecheyi) also give a similar 
value of around 200 mm2. 

t. Data extracted from table 3 (% of dorsolateral cortex devoted to V1) and Figure 7 in (27). 
u. Indirect measurement of visual cortex area from figure 6. 
v. Electrophysiological data is from young males. With their body weight ranging from 4.5-15.4 

kg and the brain weight ranging from 42.5-64.0 g. Because a complete adult capybara can 
weight about 50 kg we must look carefully at this data, there is a possibility of 
underestimating V1 area. 

w. Also known as Dasyprocta Aguti or Dasyprocta Aguti (30). 
x. Brains weighted without he LGN 
y. Measurements with Matlab from Figure 3. A-B (136-150 mm2) (30) and from Figure 3. C 

(307.57 mm2) (31) differed substantially. Because there is a discrepancy in the scales 
between Figure 3. A-B (30) and Figure 2. A (31) of about 6mm. Taking also into account that 
anteroposterior length of V1 is of about 20mm in Figure 3.C (31) in comparison to 26.5 mm 
in Figure 3.B (31). For the total area we have multiplied the maximum anteroposterior length 
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of V1 20.47mm by the mean medio-lateral distance~=8.5mm from Figure 3 A-B (30). We 
assume that the area is around 180 mm2. This contradicts the data of 280 mm2 from (38). 

z. Data from different species of the genus Papio. 
aa. From references (6, 35-37). Dasyprocta primnolopha mean from references (35, 37). 
bb. Cpd: all from reference [35] mixture of behavioural and anatomic visual acuity data. 
cc. Saguinus midas and agouti data from species of the same genus 



171  

Table 2 
 
 

Animal Retina area SGS area (mm2) V1 area (mm2) Brainweight (g) cpd 
Guinea Pig 159 1,81 30 4,83 NA 

Gray squirrel 206 8,91 40 6,46 3,9 
Macaque 670 3,57 1269 90 53,6 

Cat 473,5 2,78 380 25 8,85 
Galago 344 1,06 172,5 11,64 4,8 

Tree shrew 120 3,65 63 3,4 2,4 
Mouse 15 0,39 2,5 0,4 0,5 

 
The area of the stratum griseum superficiale (SGS) for the guinea pig, gray squirrel, 

macaque, cat and galago was extracted measuring coronal sections using Matlab from Figure 1 
in [42]. The area of the SGS for the tree shrew was measured from a coronal section from Figure 
2. A in [43], and for the mouse the a representative coronal section of the Allen Brain Atlas was 
used [44]. The rest of the data was obtained from the same references as in table 1. 
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Abstract— The problem of sending information at long 
distances, without significant attenuation and at a low cost, 
is common to both artificial and natural environments. In 
the brain, a widespread strategy to solve the cost-efficiency 
trade off in long distance communication is the presence of 
convergent pathways, or bottlenecks. In the visual system, 
for example, to preserve resolution, information is acquired 
by a first layer with a large number of neurons (the 
photoreceptors in the retina) and then compressed into a 
much smaller number of units in the output layer (the retinal 
ganglion cells), to send that information to the brain at the 
lowest possible metabolic cost. Recently, we found 
experimental evidence for an optimal compression- 
decompression algorithm in the early visual pathway that 
reproduces the strategies used in digital image processing. 
Our results bear strong consequences for our current 
understanding of the development and function of the visual 
thalamus and cortex. 

 
 

INTRODUCTION 
 
 

The problem of acquiring, communicating, and 
processing high-dimensional information at long 
distances, without significant attenuation and at a low 
cost, is common to both artificial and natural settings. 
Thus, sending and processing large amounts of data 
through wireless networks of finite capacity poses a 
comparable challenge to that faced by the visual system 
of our brain when extracting information from 
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images containing millions of pixels. In the brain, a 
widespread strategy to solve the cost-efficiency trade off 
in long distance communication is the presence of 
convergent pathways, or bottlenecks, in which 
information is acquired by a first layer with a large 
number of neurons and then compressed into a much 
smaller number of units in the output layer. A classic 
example is the retinothalamic connection where the 
information captured by 10e8 photoreceptors undergoes a 
100-fold convergence and is carried onto the thalamus by 
only 10e6 retinal axons. Visual information is then 
expanded again in a two-step process starting in the 
thalamus and continuing in the primary visual cortex, 
which hosts several orders of magnitude more neurons 
than the number of retinal ganglion cells. 
We have recently provided experimental evidence for a 
convergent neural circuit that allows efficient 
communication despite drastic reductions in the 
dimensionality of neural representations through 
information bottlenecks. 

 
METHODS AND RESULTS 

 
We explored how the lateral geniculate nucleus (LGN) of 
the thalamus contributes to visual processing, by 
combining computational tools with electrophysiological 
data. We developed a detailed computational model of the 
early visual pathway based on experimental data obtained 
from a large population of retinal, lgn and first order 
cortical neurons in layer 4. We next investigated how the 
retinal input is transformed into orientation selective 
receptive fields and periodic maps by thalamocortical 
circuits. 
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First, we have shown that retinothalamic convergence, 
combined with the increase in cell number in the LGN, 
provides an interpolated map of visual space that 
heightens the LGN’s capacity to resolve a visual stimulus 
more readily than the retina is able to do. We 
demonstrated that neighboring relay cells in the LGN 
process information independently, even if some of their 
input derives from a common retinal source. This 
independence reduces redundancy in the sampling of the 
retinal mosaics and supports the view that visual 
processing in the thalamus serves to recode information 
efficiently (Barlow, 1981). The benefits of interpolation 
come at a cost, however. Interpolation blurs the image, 
reducing local contrast to degrade edge perception. Our 
results also point to a solution to this problem. We have 
found that relay cells and interneurons in the LGN are 
spatially correlated producing physiological 
arrangements of excitation and inhibition in the 
thalamic receptive field (RF) centers that effectively 
boost contrast borders and increase the dynamic range 
of the visual message that the LGN sends to cortex. 
Thus, the retino-thalamic circuit operates like 
techniques manmade devices employ to improve the 
appearance of visual images (Martinez et al., 2015; 
Hirsch et al., 2015). 

 
Second, we have demonstrated that our two-step model 
produces cortical receptive fields and orientation maps 

that perfectly fit those obtained in the experiments. 
Third, we have also shown that these cortical features 
are already encoded in the LGN population activity. 
Finally, we have found that the structure of this LGN 
population activity is essential to maintain the stability 
of cortical orientation maps even in the presence of the 
relatively large levels of thalamocortical convergence 
that have been reported experimentally. 

 
CONCLUSION 

 
 

The simple, two-steps developmental rule based on 
statistical connectivity and wiring optimization we have 
reported could have the potential to profoundly shape not 
only information coding strategies but also the emergence 
of diverse receptive fields, precise local circuits and maps 
anywhere in the nervous system. 
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Neurons in the primary visual cortex (V1) of most mammals respond only to a 

restricted set of stimulus orientations. However, the cortical organization of these 

neurons differs between species. In carnivores and primates, V1 cells with similar 

orientation preferences tend to cluster together in an orderly fashion giving rise to 

the renowned cortical orientation preference maps (OPMs). On the other hand, in 

rodents these clusters of cells are more decorrelated and smaller giving birth to a 

“salt and pepper” configuration in V1. Since these different types of cortical 

organization are present and highly preserved in closely related phylogenetic 

clades, it is important to understand if there are common developmental rules that 

can account for their differential emergence across mammalian species. 

To study the developmental and functional mechanisms involved in the formation 

of the mammalian early visual pathway we have built a feedforward statistical 

connectivity model linking the retina to V1 through the lateral geniculate nucleus of 

the thalamus (LGN). Our model accounts for many features of the different 

mammalian V1 organizations across evolution, including the presence or absence of 

a regular map structure, and the diversity of orientation selectivity profiles and 

receptive field lay-outs. Finally, the model indicates that the retino-thalamo-cortical 

divergence-convergence mechanisms related to cortical expansion are tuned 

similarly in the different species in order to recover as much information as possible 

through the retinothalamic bottleneck (Martinez et al., 2014); as a consequence, 

OPMs or salt and pepper configurations are established according to a 

developmental threshold relating retinal and V1 areas. 
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Neurons in the primary visual cortex (V1) of most mammals respond only to 

a restricted set of stimulus orientations. Furthermore, in some species but not in 

others, V1 cells with similar orientation preferences tend to cluster together in an 

orderly fashion giving rise to the renown cortical orientation preference maps 

(OPMs). Over the years, contrasting models emphasizing the role of feedforward vs. 

intracortical connectivity have been proposed to explain the emergence and 

function of this salient feature of cortical organization. Still highly debated, both 

types of developmental models have, nonetheless, in common that they largely 

neglect the potential role that the thalamus (lateral geniculate nucleus, LGN) plays 

in this process. Recently, we have demonstrated that the retinothalamic circuit is 

optimized to increase the resolution of the retinal output on its way to V1 through a 

straight process of information upsampling and interpolation occurring at the level 

of the LGN (Martinez et al., 2014). Here, we use a similar approach to show that the 

probabilistic, convergent connectivity from retina to LGN required to increase visual 

resolution significantly transforms the thalamic representation of the retinal 

mosaics generating partially segregated thalamic domains of On- and Off-center 

receptive fields cells arranged in locally correlated clusters of dipoles with different 

orientations. We further demonstrate that this new thalamic structure has the same 

properties as those previously shown in cortical orientation maps and suggest that 

it might be essential for their emergence and stability: First, our results revealed 

that the structure of the emergent cortical maps perfectly correlates very well with 

the arranging of the thalamic ON and OFF domains. Second, the periodicity and 

stability of the cortical orientation map depend critically on the biological constraint 

imposed by the upsampling and interpolation procedure performed in the LGN. 

Finally,  the  retinothalamic  rewiring  allows  to  maintain  large  values  of 



 

thalamocortical convergence, and still conserving the stability of the map, without 

requiring complex developmental rules or very precise patterns of spontaneous or 

visually driven feedforward activity. 
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. 
Neurons in the primary visual cortex (V1) of most mammals respond only to 

a restricted set of stimulus orientations. Furthermore, in some species but not in 

others, V1 cells with similar orientation preferences tend to cluster together in an 

orderly fashion giving rise to the so called cortical orientation preference maps 

(OPMs). The developmental rules underlying the emergence of cortical receptive 

fields and maps are highly debated. Over the years, contrasting intracortical and 

feedforward models have been proposed to explain the emergence and function of 

this salient feature of cortical organization. Both types of models, however, have in 

common that they largely neglect the potential role that the thalamus plays in this 

process. Recently, we have used a powerful combination of experimental and 

computational techniques to demonstrate that the retinothalamic circuit is 

optimized to increase the resolution of the retinal output on its way to V1 through a 

straight process of information upsampling and interpolation (Martinez et al., 

2014). Here, we use a similar approach to show that the probabilistic, convergent 

connectivity from retina to LGN required to increase visual resolution transforms 

significantly the thalamic representation of the retinal mosaics generating partially 

segregated thalamic domains of On- and Off-center cells. We demonstrate that this 

new thalamic structure is essential for the emergence and stability of cortical 

receptive fields and orientation maps: First, our results revealed that these cortical 

features perfectly correlate with the arranging of the thalamic ON and OFF domains. 

Second, they also show that the periodicity and stability of the cortical orientation 

map depend critically on the biological constraint imposed by the upsampling and 

interpolation performed in the thalamus. Finally, the retinothalamic rewiring allows 

to maintain large values of thalamocortical convergence, without requiring complex 

developmental rules or very precise patterns of spontaneous or visually driven 

activity. 



 

 



 

 


	Thesis Director:
	Co-director:
	Agradecimientos / Acknowledgements.
	Abstract
	Resumen
	Technical summary
	Abbreviations
	Introduction
	The eye
	The Retina
	On and Off channels
	S= − ∑𝑘
	( ) log
	( ) = log
	Projections of the optic nerve
	Figure 1.10. Importance of contralateral crossing fibers in the Early Visual Pathway.

	The Superior colliculus and the dorsal thalamic nucleus
	Structure-function-ecological niche relationship
	The lateral geniculate nucleus
	The Primary Visual Cortex
	Models of cortical functional topology
	Figure 1.23. Phases in the development of the Early visual pathway development.

	What do receptive fields do?



	Aims
	Materials and methods
	Statistical Wiring Model of the Early Visual Pathway.
	SOM model
	Experimental procedures
	Data analysis

	Results
	Compression-Decompression Feedforward Network Model generates neurons with a preferred orientation
	Thalamocortical convergence modulates the structure of OPMs and receptive fields
	Divergence-Convergence ratios are tuned to recover as much visual information as possible and as a consequence the proportion of orientation selective neurons in V1 increases
	Figure 3.7. Maximum normalized coverage of visual field as a function of V1 divergence- convergence ratios.
	Figure 3.10. Redundancy as a function of divergence-convergence ratios for On V1 RFs.

	Cortical functional topology is consequence of a universal coverage optimization principle and different biological constraints determined by the DCr
	Figure 3.12. Cortical functional topology as a function of Divergence - Convergence ratios.

	Local and long range correlations appear at different DCr thresholds
	The SOM model demonstrates that the different DCrs determine de different activity dependent mechanisms required to develop correct and congruent retinotopic maps
	Predictions of the DCr model for binocular vison: Experimental test
	Zic2 mice develop a strong ipsilateral area that takes over the contralateral response region of normal binocular overlap
	Brn3b-Zic2 mutant mice develop clear Ocular Dominance Columns similar to those present in animals with Ocular Dominance maps
	B
	E F


	Discussion
	The role of the Early visual pathway
	All mammals share the same common developmental feedforward wiring rules
	An OPM or a salt and pepper functional topology in V1 is consequence of a coverage optimization principle and the anatomical constraints imposed by the different DCr across phylogeny
	DCr levels determine the functional topology of early visual targets
	Emergence of orientation selectivity in the early visual pathway
	Comparisons with other models of V1 organization
	Drivers and modulators of V1 functional topology
	DCr influence the degree of visual acuity across mammalian species
	Evolution of V1 and SC, functional consequences
	C D
	Divergence-convergence ratios may modify the structure of the cortex required for information processing
	The dLGN stabilizes the retinal message
	No LGN LGN

	DCr determine the developmental mechanisms for correct topographic ordering
	A change in the DCr through phylogeny determined the appearance of ODMs


	Conclusions/Conclusiones
	References
	Appendix 1: Supplementary Figures
	Table 2
	Table 1 & 2 References

	Appendix 2:
	The Brain’s Camera. Optimal Algorithms for Wiring the
	The brain’s camera. Optimal algorithms for wiring the eye to the brain shape how we see
	Summary of the following congress communications:
	A developmental threshold relating retinal and V1 areas predicts the structure of V1 Orientation Preference Maps.
	Thalamic influence on the statistical wiring of visual cortical receptive fields and maps
	STATISTICAL WIRING OF VISUAL CORTICAL RECEPTIVE FIELDS AND MAPS



