Indice de Figuras

CAPITULO 1: ANTECEDENTES				
1	Fases del sistema del yeso (Gomis Yagües, V. Universidad de Alicante) (Algiss)	11		
2	Deshidratación progresiva del Sulfato de calcio dihidrato hasta la formación de la Anhidrita II. (Del Río Merino, M. Tesis doctoral, 1999)	15		
3	Fabricación de yeso (Gomis Yagües, V. Universidad de Alicante) (Algiss)	28		
4	Horno discontinuo. (Fuente: Gomis Yagües, V. Universidad de Alicante. Factoría de Algiss)	30		
5	Familia de los yesos de construcción y conglomerantes a base de yeso para la construcción. (Fuente: Norma UNE EN 13279-1)	31		
6	Tipos de conglomerantes a base de yeso y de yesos para la construcción. (Fuente: Norma UNE EN 13279-1)	32		
7	Especificaciones para los yesos de construcción. (Fuente: Norma UNE EN 13279-2)	32		
8	Especificaciones para los yesos especiales para la construcción. (Fuente: Norma UNE EN 13279-2)	33		
9	Expansión del fraguado con relación al tiempo. (Fuente: G. Blanchere: Saber construir. Barcelona, 1967)	43		
10	(a) Poliuretano de celda abierta, (b) Polietileno de celda cerrada, (c) Níquel (d) Cobre, (e) Zirconio. (f) Midlite. (g) Vidrio, (h) Espumas de poliester con celdas abiertas y cerradas. (Fuente: (33) Gibson, L.J. 1997)	58		
11	Acción de moléculas aireantes sobre las partículas de cemento y árido fino (Fuente: Texsa 1974).	61		
12	La presencia de burbujas de aire en la pasta de cemento hidratada (a), origina un aumento de diámetro de los capilares existentes en el hormigón (b). (Fuente: Texsa 1.974).	61		
13	Fórmula del poliestireno	73		
14	Esquema de fabricación de Poliestireno Expandido. (Fuente: ANAPE, 2010)	75		
15	Gráfica de los valores alcanzados en resistencia mecánica, en función de la densidad aparente. (Fuente: ANAPE, 2010)	76		
16	Gráfica de los valores alcanzados en conductividad térmica, en función de la densidad aparente. (Fuente: ANAPE, 2010)	77		
17	Esquema de formación de un poliuretano. (Fuente: Bayer Material Science. Información técnica, 2004).	81		
18	Estructura de una celdilla de espuma. (Fuente: Bayer Material Science. Información técnica, 2004).	83		
19	Valores de resistencia a Flexión, Tracción y Compresión para el poliuretano en función de la densidad. (Fuente: ATEPA, 2010).	87		
20	Constitución celular del corcho. (Fuente: Giles, B. 1961)	90		
21	Conductividad térmica del aglomerado de corcho. (Fuente: Velasco, L. 1970).	93		

22	Material compuesto: a) Compuestos reforzados con partículas. B) Compuestos reforzados con fibras. (Fuente: Landa Avilés, G. Tesis Doctoral, 2002).	97					
23	Ordenamiento hexagonal de la red de átomos de Carbono	98					
24	Flujo de fabricación de materiales compuestos de fibra de carbono. (Fuente: HEXCEL FIBERS, S.L.)	99					
25	Micrografía de barrido electrónico de un tejido de mechas antes de la infiltración con resina. (Fuente: Hull, 1987)	100					
26	Micrografía de barrido electrónico de de un tejido de mechas antes de la impregnación con resinas. (Fuente: Hull, 1987)						
27	Fotogrametría de una sección pulida de un laminado de tejido de mechas paralelas a un conjunto de fibras. (Fuente: Hull, 1987)	101					
28	Curvas Tensión deformación de fibras. Las flechas verticales indican rotura completa. (Fuente: Hull, D. 1987).						
29	Fabricación de la Fibra de vidrio Tipo E (Antequera, P. 1991)						
30	Unidad estructural repetitiva de las fibras de Aramida	110					
31	Unidad estructural del poliéster	112					
32	Esquema de la línea de fabricación de Lana de roca. (Fuente: ISOVER)	119					
33	Monómero de celulosa	121					
34	Diagrama de flujo del proceso de producción de fibra cortada de viscosa. (Consumos en kg/100 kg de fibra acondicionada). (Rouette, Hans-Karl, 2001)	123					
CAPITULO 2: MATERIALES Y METODOS							
35	Ensayo normalizado de Dureza Shore C. Croquis de colocación de los pinchazos del durómetro. (UNE-EN-13279-2, 2006) (Fuente: Elaboración Propia, 2010)	164					
36	Ensayo normalizado (UNE-EN-13279-2, 2006). Croquis de colocación de rodillos. (Fuente: Elaboración Propia, 2010)	165					
37	Modelo matemático del ensayo a flexión como viga biapoyada.(Fuente: Elaboración Propia, 2010)	166					
38	Punto de medida para determinación del espesor.(Fuente: Elaboración Propia, 2010)	168					
39	Croquis de distribución de los ejes de una probeta de 40 x 40 x 40 mm para su ensayo a compresión. (UNE-EN-13279-2, 2006). (Fuente: Elaboración Propia, 2010)	169					
40	Croquis teórico de la Tracción Indirecta. Ecuaciones generadas de la resistencia de materiales. (Fuente: Elaboración Propia, 2010)	171					
41	Representación gráfica de las expresiones de Fuller y de Bolomey. (Fuente: Universidad de Alicante, 2009)	174					
42	Curvas granulométricas y de Bolomey. (Fuente: Elaboración Propia, 2009)	177					
43	Procedimiento por el método de los tanteos. (Fuente: Elaboración Propia, 2009).	180					

Tesis Doctoral Indice de Figuras		
LEMA DOCIONAL MAICE AE L'ISUFAS		

Evolución de las propiedades mecánicas de los morteros aditivados de yeso con vermiculita