Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/5173

Utilización de compost de lodo de depuradoras para la producción del cardo (Cynara cardunculus L.), como cultivo energético


Vista previa

Ver/Abrir:
 Tesis Lag Brotons, Alfonso José.pdf
3,11 MB
Adobe PDF
Compartir:
Título :
Utilización de compost de lodo de depuradoras para la producción del cardo (Cynara cardunculus L.), como cultivo energético
Autor :
Lag Brotons, Alfonso José
Tutor:
Gómez Lucas, Ignacio
Navarro-Pedreño, Jose  
Departamento:
Departamentos de la UMH::Agroquímica y Medio Ambiente
Fecha de publicación:
2014-07-18
URI :
http://hdl.handle.net/11000/5173
Resumen :
La conservación del recurso suelo, la gestión apropiada de los residuos generados por la actividad humana y la obtención de energía a partir de fuentes renovables son grandes retos en la actualidad para el ser humano. El presente trabajo de investigación se articula en torno a estas tres temáticas,...  Ver más
The conservation of the soil as a resource, the proper management of the residues derived from the human activity and the production of energy from renewable sources are great challenges that humanity is currently facing. The present research is based on these three topics, aiming to provide new scientific insights oriented towards sustainable development. Research within these fields is of the outmost importance, first of all, due to the urgent need of taking measures to protect and enhance the status of a fundamental nonrenewable resource such as the soil, especially in Mediterranean regions. Secondly, due to the economic, legal and, especially, environmental convenience of a proper management of wastewater treatment byproducts. Finally, due to the importance of energy production from renewable sources, so as to achieve energy sustainability, thus contributing to the reversion of climate change effects. The combination of these three thematic cornerstones motivates the purpose of the present thesis: to ascertain the effects of sewage sludge compost use for cynara (Cynara cardunculus L.) cultivation as energy crop. Cynara is a perennial herbaceous plant, considered as an energy crop for Mediterranean environments. In addition to its use for feeding, many other industrial uses have been attributed to cynara, standing out its use as biofuel, mainly solid or liquid. In spite that the cultivation of this crop can be initiated from seeds, the use of seedlings produced in seedbeds seems to facilitate plant establishment into the field. Within this context, peat is the most common seedbed substrate used, which involves great environmental impacts derived from the extraction of this nonrenewable resource from highly valuable ecological areas. Among the alternatives to peat use, sewage sludge compost is an option. In order to study the feasibility of this waste material for cynara seedlings production, a greenhouse experiment was carried out, using different proportions of sewage sludge compost and peat (D1- 0/100; D2-25/75; D3-50/50; D4-75/25; D5-100/0). The relative germination index, as well as the fresh weight, the dry weight, the number of leaves and the length of the roots of cynara seedlings were considered as variables. Even though high proportions of composted materials might impair plant germination and growth, due to salt or phytotoxic substances content, these effects were not observed in the experiment. Generally, the use of higher proportions of sewage sludge compost (D4-D5) did not significantly affect the studied variable, with the exception of plant weight, which slightly increased. Hence, under conditions similar to those in this study, sewage sludge compost can be used as peat substitute for cynara seedbeds. The effect of salinity on cynara, as an energy crop, is another aspect embodied within the present thesis. Whilst salinity has a great impact on plant growth and is a recurrent factor in Mediterranean environments, especially arid and semiarids ones, its effect on cynara are not totally assessed. Previous researchs on this topic elemenwere focused in the germination and in the first growth stages of cynara plants. Consequently, scarce information is available regarding the effect on cynara reproductive structure, which is the material mainly used for energetic purposes. Due to the previous considerations, a greenhouse pot experiment was carried out, during the first growing cycle of cynara plants (October-July), to ascertain the effect of saline irrigation on cynara growth and mineral composition. Saline irrigation treatments (predominance of NaCl) emulated the electrical conductivity (2 and 3 dS m-1) of the most common irrigation sources present in the south-east of Spain. Additionally, two Mediterranean soils, differing in their initial salt content, were selected so as to evaluate if this factor could influence cynara growth. The following variables were studied in each cynara fraction (stalk, caulicle leaves and inflorescences): dry weight, Nk, P, Ca, Mg, K, Na, Cl, Cu, Fe, Mn and Zn. In addition, several morphometric parameters (plant height, number of inflorescences and aboveground biomass yield) and the mineral content of cynara biomass were considered. Soil type scarcely affected cynara plants, being the principal effects observed in the levels of K, P and Mn. Concerning saline irrigation (3 dS m-1 versus 0.7 dS m-1), aboveground biomass yield was reduced in approximately one third, while seeds yield was reduced up to 57%. Growth impairment is a commonly observed effect in saline stressed plants. In addition, the concentration and the content of Cl and Na within the plant tissues increased paired with irrigation water salinity (the higher EC, the higher the concentration and content). Given that no nutritional disorders were observed and considering that cynara plants were able to complete inefiits growing cycle, the high Na and Cl presence in cynara biomass was assumed to be related with a salt resistance mechanism. In any case, the presence of these elements decreases the quality of cynara biomass for energy production. Other traits worth to mention were the high ability to absorb and accumulate K, which favoured high K levels in cynara biomass, and the sensitivity of Mg to salinity, decreasing its presence within cynara tissues. The observed effects (decrease of plant productivity and biomass quality) suggested that salinity may hinder the use of cynara as biofuel. Finally, the role of sewage sludge compost as organic amendment for the cultivation of cynara as an energy crop is the central axis of the present research. The application of composted materials generally enhances soil quality, favouring the protection and conservation of this resource. On the other hand, these by-products act as slow release organic fertilizers, characteristic that potentially promotes plant growth. Recently, within a context in need of energy production from renewable sources, these type of organic materials have been also studied, mainly on its effect over those plant species considered for bioenergy production. Among the waste materials that can be used as organic amendment, it can be found the sewage sludge produced in wastewater treatment, either in its composted form or uncomposted. Some of the advantages of sewage sludge use are: supply secured in the midterm, energetic and economical savings in crops fertilization cost, organic matter and nutrients addition to the soil-plant system and an efficient valorization of a residue. Considering that an excessive loading of this organic material implies an inefficient use, which may induce undesirable detriciente, pudiendo conllevar efectos negativos no deseados (ej. adición de metales pesados al suelo), queda patente la necesidad de optimizar las dosis de aplicación en función de las condiciones ambientales (ej. clima, características del suelo) y de la especie vegetal seleccionada. En el presente trabajo se escogió el cardo como cultivo energético por su elevada potencialidad en el ámbito mediterráneo y por la escasa investigación realizada sobre el efecto de la fertilización orgánica sobre la producción de esta especie. Fruto de estas consideraciones, surgieron dos experimentos de campo que se llevaron a cabo en distintas parcelas agrícolas de la provincia de Alicante, cuyos objetivos principales fueron determinar los efectos inducidos por el compost de lodo de depuradora en el suelo y en la planta, así como proponer una dosis de aplicación óptima para el cultivo del cardo. En el primero de los experimentos de campo, con duración inferior a un año y llevado a cabo en la estación agraria experimental del IVIA en Elche, se estudió el efecto sobre las propiedades del suelo y sobre las características de las plantas de cardo de las siguientes dosis de compost de lodo de depuradora (t ha-1): 0 (T0), 20 (T1), 40 (T2), 60 (T3) y 80 (T4). En las plantas de cardo se determinaron ciertas variables morfométricas (altura, número de inflorescencias, peso fresco y peso seco) y se analizó la composición mineral de las hojas (Nk, P, Ca, Mg, K, Na, B, Cu, Fe, Mn, Zn). En el suelo se analizaron las siguientes propiedades: pH, CE, Nk, PBurriel, Cox y cationes asimilables (Ca, Mg, K y Na, [acetato amónico] y Cu, Fe, Mn y Zn [DTPA]). La respuesta de las plantas de cardo ante la aplicación del compost fue muy limitada, mientras que en el suelo el efecto fue comparativamente mayor, mostrando diferencias significativas en el rango de aplicación de 40 a 80 t ha-1. Las variables morfométricas no presentaron diferencias significativas, mental effects (i.e. heavy metals loading into the soil), the optimization of compost application rates according to environmental conditions (i.e. climate, soil characteristics) and to the selected plant species is advisable. In the present research cynara was selected as an energy crop, due to its high potentiality in Mediterranean environments and due to the scarce research carried out testing the effects of organic fertilizers on the productivity of this crop. As a result of the previous reasoning, two field experiments were carried out in the province of Alicante, aiming to determine the effects induced by sewage sludge compost in the soil and in the plant, but also with the purpose to ascertain an optimum application rate for cynara cultivation. In the first of the field experiments, whose duration was inferior to one year and which was located in the agrarian experimental station of IVIA in Elche, it was studied the effect on soil properties and on the characteristics of cynara plants of the following sewage sludge compost doses (t ha-1): 0 (T0), 20 (T1), 40 (T2), 60 (T3) and 80 (T4). In cynara plants certain morphometric variables were measured (plant height, number of inflorescences, fresh weight and dry weight) and the mineral composition of the leaves was analyzed (Nk, P, Ca, Mg, K, Na, B, Cu, Fe, Mn, Zn). In the soil, the following properties were determined: pH, CE, Nk, PBurriel, Cox and available cations (Ca, Mg, K and Na, [ammonium acetate] and Cu, Fe, Mn and Zn [DTPA]). The response of cynara plants to compost application was scarce, while the effect in the soil was comparatively higher, showing significant differences within the application range of 40 to 80 t ha-1. Morphometric variables did not show any differences, producbeing its overall mean values per plant, 149 cm of height, 16 inflorescences, 7.9 kg (dry weight) and 1.3 kg (dry weight). Similarly, except for Fe concentration, the mineral composition was not affected by compost additions. Concerning soil effects, Cox, NK and PBurriel were the properties affected to a greater extent, yet Mg, Fe, pH and Zn also shown significant differences with respect to the control. The principal hypothesis underlying the lack of response of cynara plants to compost treatments was that nutritional requirements were meet in the plant, even in the control ones. On the other hand, the general increase of soil fertility was similar to that reported by several other authors under similar conditions (Mediterranean environments and organic residues use) The second field experiment occurred in the agrarian region of Algorós (Elche), during a 3-year period (2008-2011). In this case, the effect of sewage sludge compost was exclusively studied on cynara plants, being the treatments as follows (t ha-1): 0 (T0), 30 (T1), 50 (T2) and 70 (T3). Compost was applied as basal dressing, in substitution of the inorganic fertilization generally carried out previously to crop stablishment. Every year the available water for the plants was maintained at, approximately, 760 mm year-1, irrigating when necessary. In addition, a fixed fertilization rate of 50-80-100 kg ha-1 (N-P2O5-K2O) was applied yearly to replace nutrients extracted by the crop. Every year, in July and after taking some morphometric measures, cynara plants were sampled and processed according to the requirements of each analysis. More precisely, the variables that were considered were: plant height, number of inflorescences, number of stalks, dry weight of each cynara fraction, proportion of each cynara fraction on the total weight, aboveground biomass yield, seeds yield and 1000-seeds weight. The percentage of oil within the seeds and the higher heating value of the different cynara fractions (HHV0) were analyzed as well. From these data, the potential production of oil (oil yield) and energy (energy yield) were calculated. Linear mixed models were used to discriminate and quantify the effects derived from the experimental factors. A REML algorithm was applied to obtain the estimation of the parameters belonging to the significant models for sewage sludge compost treatments. An increase of aboveground biomass and seeds yield was observed, of 40% and 68%, respectively (comparison between T0 and T3; mean value for the 3 years trial), as a result of compost treatments. The behavior observed for oil and energy yield was similar. Models indicate that, for these variables, the differences due to compost application were significant (P≤0.05), mainly within the range of 50-70 t ha-1. The variables that were no influenced neither by compost nor by growing cycle, showed the following overall means: 22.3% (seeds oil percentage); 17.8 MJ m-2 (HHV0 value corresponding to aboveground biomass); 40 g (1000-seeds weight); 43% (stalks + leaves percentage on total biomass) and 57% (inflorescence percentage on total biomass). The fact that growing cycle affected, virtually, to the whole set of variables studied is considered to be related with: climatic conditions, sewage sludge compost mineralization dynamics and the physiology of the plant. Concerning sewage sludge compost, the positive effect observed in cynara´s growth is attributed to the enhancement of the nutritional status for the plant, directly through compost application and indirectly through soil properties improvement. The previous considerations lead to the conclusion that sewage sludge compost, applied at a rate of 50 t ha-1, improves cynara´s productivity and favours soil protection and conservation, potentially implying economical and energetic savings derived from an efficient management of an ubiquitous residue.
Palabras clave/Materias:
Flora mediterránea
Conservación de suelos
Eliminación de resíduos
Energía
Área de conocimiento :
CDU: Ciencias aplicadas: Agricultura. Silvicultura. Zootecnia. Caza. Pesca: Agricultura. Agronomía. Maquinaria agrícola. Suelos. Edafología agrícola
CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras: Ciencias del medio ambiente
Tipo de documento :
info:eu-repo/semantics/doctoralThesis
Derechos de acceso:
info:eu-repo/semantics/openAccess
Aparece en las colecciones:
Tesis doctorales - Ciencias e Ingenierías



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.