Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34243

Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion


no-thumbnailVer/Abrir:

 JDE2022.pdf



393,17 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion
Autor :
Xu, Jiaohui
Caraballo, Tomás
Valero, José
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2022-08-05
URI :
https://hdl.handle.net/11000/34243
Resumen :
In this paper, the asymptotic behavior of a semilinear heat equation with long time memory and nonlocal diffusion is analyzed in the usual set-up for dynamical systems generated by differential equations with delay terms. This approach is different from ones used in the previous published literature on the long time behavior of heat equations with memory, which is carried out by the Dafermos transformation. As a consequence, the obtained results provide complete information about the attracting sets for the original problem, instead of the transformed one. In particular, the proved results also generalize and complete previous literature in the local case.
Palabras clave/Materias:
Non-local partial differential equations
Long time memory
Dafermos transformation
Global attractors
Área de conocimiento :
CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.jde.2022.04.033
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.