Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34241
Dynamics and Large Deviations for Fractional Stochastic Partial Differential Equations with Lévy Noise
Ver/Abrir: SIMA2024.pdf
649,12 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Dynamics and Large Deviations for Fractional Stochastic Partial Differential Equations with Lévy Noise |
Autor : Xu, Jiaohui Caraballo, Tomás Valero, José |
Editor : Society for Industrial and Applied Mathematics |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2024 |
URI : https://hdl.handle.net/11000/34241 |
Resumen :
This paper is mainly concerned with a kind of fractional stochastic evolution equations driven by L\'evy noise in a bounded domain. We first state the well-posedness of the problem via
iterative approximations and energy estimates. Then, the existence and uniqueness of weak pullback
mean random attractors for the equations are established by defining a mean random dynamical system. Next, we prove the existence of invariant measures when the problem is autonomous by means
of the fact that H\gamma (\scrO ) is compactly embedded in L2
(\scrO ) with \gamma \in (0, 1). Moreover, the uniqueness of this invariant measure is presented, which ensures the ergodicity of the problem. Finally, a
large deviation principle result for solutions of stochastic PDEs perturbed by small L\'evy noise and
Brownian motion is obtained by a variational formula for positive functionals of a Poisson random
measure and Brownian motion. Additionally, the results are illustrated by the fractional stochastic
Chafee--Infante equations.
|
Palabras clave/Materias: Fractional Laplacian operator Lévy noise Brownian motion weak mean random attractors invariant measures ergodicity large deviation principle |
Área de conocimiento : CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1137/22M1544440 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.