Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34241

Dynamics and Large Deviations for Fractional Stochastic Partial Differential Equations with Lévy Noise


no-thumbnailVer/Abrir:

 SIMA2024.pdf



649,12 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Dynamics and Large Deviations for Fractional Stochastic Partial Differential Equations with Lévy Noise
Autor :
Xu, Jiaohui
Caraballo, Tomás
Valero, José
Editor :
Society for Industrial and Applied Mathematics
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2024
URI :
https://hdl.handle.net/11000/34241
Resumen :
This paper is mainly concerned with a kind of fractional stochastic evolution equations driven by L\'evy noise in a bounded domain. We first state the well-posedness of the problem via iterative approximations and energy estimates. Then, the existence and uniqueness of weak pullback mean random attractors for the equations are established by defining a mean random dynamical system. Next, we prove the existence of invariant measures when the problem is autonomous by means of the fact that H\gamma (\scrO ) is compactly embedded in L2 (\scrO ) with \gamma \in (0, 1). Moreover, the uniqueness of this invariant measure is presented, which ensures the ergodicity of the problem. Finally, a large deviation principle result for solutions of stochastic PDEs perturbed by small L\'evy noise and Brownian motion is obtained by a variational formula for positive functionals of a Poisson random measure and Brownian motion. Additionally, the results are illustrated by the fractional stochastic Chafee--Infante equations.
Palabras clave/Materias:
Fractional Laplacian operator
Lévy noise
Brownian motion
weak mean random attractors
invariant measures
ergodicity
large deviation principle
Área de conocimiento :
CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1137/22M1544440
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.