Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34240

Dynamics and Wong-Zakai Approximations of Stochastic Nonlocal PDEs with Long Time Memory


no-thumbnailVer/Abrir:

 QTDS2024.pdf



866 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Dynamics and Wong-Zakai Approximations of Stochastic Nonlocal PDEs with Long Time Memory
Autor :
Xu, Jiaohui
Caraballo, Tomás
Valero, José
Editor :
Springer
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2024-07-02
URI :
https://hdl.handle.net/11000/34240
Resumen :
In this paper, a combination of Galerkin’s method and Dafermos’ transformation is first used to prove the existence and uniqueness of solutions for a class of stochastic nonlocal PDEs with long time memory driven by additive noise. Next, the existence of tempered random attractors for such equations is established in an appropriate space for the analysis of problems with delay and memory. Eventually, the convergence of solutions of Wong-Zakai approximations and upper semicontinuity of random attractors of the approximate random system, as the step sizes of approximations approach zero, are analyzed in a detailed way.
Palabras clave/Materias:
Long time memory
Wong-Zakai approximation
Dafermos transformation
Random attractors
Upper semicontinuity
Área de conocimiento :
CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1007/s12346-024-01080-2
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.