Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34240
Dynamics and Wong-Zakai Approximations of Stochastic Nonlocal PDEs with Long Time Memory
Ver/Abrir: QTDS2024.pdf
866 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Dynamics and Wong-Zakai Approximations of Stochastic Nonlocal PDEs with Long Time Memory |
Autor : Xu, Jiaohui Caraballo, Tomás Valero, José |
Editor : Springer |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2024-07-02 |
URI : https://hdl.handle.net/11000/34240 |
Resumen :
In this paper, a combination of Galerkin’s method and Dafermos’ transformation is first
used to prove the existence and uniqueness of solutions for a class of stochastic nonlocal
PDEs with long time memory driven by additive noise. Next, the existence of tempered
random attractors for such equations is established in an appropriate space for the
analysis of problems with delay and memory. Eventually, the convergence of solutions
of Wong-Zakai approximations and upper semicontinuity of random attractors of the
approximate random system, as the step sizes of approximations approach zero, are
analyzed in a detailed way.
|
Palabras clave/Materias: Long time memory Wong-Zakai approximation Dafermos transformation Random attractors Upper semicontinuity |
Área de conocimiento : CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1007/s12346-024-01080-2 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.