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A B S T R A C T

Stroke, one of the leading causes of death and disability around the
world, usually affects the motor cortex causing weakness or paralysis
in the limbs of one side of the body. Research efforts in neurorehabilita-
tion technology have focused on the development of robotic devices to
restore motor and cognitive function in impaired individuals, having
the potential to deliver high-intensity and motivating therapy.

End-effector-based devices have become an usual tool in the up-
per-limb neurorehabilitation due to the ease of adapting to patients.
However, they are unable to measure the joint movements during
the exercise. Thus, the first part of this thesis is focused on the de-
velopment of a kinematic reconstruction algorithm that can be used
in a real rehabilitation environment, without disturbing the normal
patient-clinician interaction. On the basis of the algorithm found in
the literature that presents some instabilities, a new algorithm is de-
veloped. The proposed algorithm is the first one able to online estimate
not only the upper-limb joints, but also the trunk compensation using
only two non-invasive wearable devices, placed onto the shoulder and
upper arm of the patient. This new tool will allow the therapist to per-
form a comprehensive assessment combining the range of movement
with clinical assessment scales.

Knowing that the intensity of the therapy improves the outcomes of
neurorehabilitation, a ‘self-managed’ rehabilitation system can allow
the patients to continue the rehabilitation at home. This thesis proposes
a system to online measure a set of upper-limb rehabilitation gestures,
and intelligently evaluates the quality of the exercise performed by
the patients. The assessment is performed through the study of the
performed movement as a whole as well as evaluating each joint
independently. The first results are promising and suggest that this
system can became a a new tool to complement the clinical therapy at
home and improve the rehabilitation outcomes.

Finally, severe motor condition can remain after rehabilitation pro-
cess. Thus, a technology solution for these patients and people with
severe motor disabilities is proposed. An intelligent environmental
control interface is developed with the ability to adapt its scan control
to the residual capabilities of the user. Furthermore, the system es-
timates the intention of the user from the environmental information
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and the behavior of the user, helping in the navigation through the
interface, improving its independence at home.
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R E S U M E N

El accidente cerebrovascular o ictus es una de las causas principales
de muerte y discapacidad a nivel mundial. Normalmente afecta a la
corteza motora causando debilidad o parálisis en las articulaciones del
mismo lado del cuerpo. Los esfuerzos de investigación dentro de la
tecnología de neurorehabilitación se han centrado en el desarrollo de
dispositivos robóticos para restaurar las funciones motoras y cogniti-
vas en las personas con esta discapacidad, teniendo un gran potencial
para ofrecer una terapia de alta intensidad y motivadora.

Los dispositivos basados en efector final se han convertido en una
herramienta habitual en la neurorehabilitación de miembro superior
ya que es muy sencillo adaptarlo a los pacientes. Sin embargo, éstos
no son capaces de medir los movimientos articulares durante la reali-
zación del ejercicio. Por tanto, la primera parte de esta tesis se centra
en el desarrollo de un algoritmo de reconstrucción cinemática que
pueda ser usado en un entorno de rehabilitación real, sin perjudicar a
la interacción normal entre el paciente y el clínico. Partiendo de la base
que propone el algoritmo encontrado en la literatura, el cual presenta
algunas inestabilidades, se ha desarrollado un nuevo algoritmo. El
algoritmo propuesto es el primero capaz de estimar en tiempo real
no sólo las articulaciones del miembro superior, sino también la com-
pensación del tronco usando solamente dos dispositivos no invasivos
y portátiles, colocados sobre el hombro y el brazo del paciente. Esta
nueva herramienta permite al terapeuta realizar una valoración más
exhaustiva combinando el rango de movimiento con las escalas de
valoración clínicas.

Sabiendo que la intensidad de la terapia mejora los resultados de la
recuperación del ictus, un sistema de rehabilitación ‘auto-gestionado’
permite a los pacientes continuar con la rehabilitación en casa. Esta
tesis propone un sistema para medir en tiempo real un conjunto de
gestos de miembro superior y evaluar de manera inteligente la calidad
del ejercicio realizado por el paciente. La valoración se hace a través del
estudio del movimiento ejecutado en su conjunto, así como evaluando
cada articulación independientemente. Los primeros resultados son
prometedores y apuntan a que este sistema puede convertirse en una
nueva herramienta para complementar la terapia clínica en casa y
mejorar los resultados de la rehabilitación.
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Finalmente, después del proceso de rehabilitación pueden quedar
secuelas motoras graves. Por este motivo, se propone una solución
tecnológica para estas personas y para personas con discapacidades
motoras severas. Así, se ha desarrollado una interfaz de control de
entorno inteligente capaz de adaptar su control a las capacidades
residuales del usuario. Además, el sistema estima la intención del
usuario a partir de la información del entorno y el comportamiento del
usuario, ayudando en la navegación a través de la interfaz, mejorando
su independencia en el hogar.
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1
I N T R O D U C T I O N

The human brain is a complex network of billions of neurons accom-
panied by glial cells that not only provide support and protection for
neurons, but also are involved in the active control of neuronal activity
and synaptic neurotransmission (Araque et al., 1999). Furthermore,
lifelong learning makes neural connections constantly formed and
reorganized. Moreover, adult hippocampal neurogenesis, the addition
of new neurons throughout life, has been recently detected in the
human brain by Moreno-Jiménez et al. (2019).

The brain serves as the center of the nervous system and, together
with the spinal cord, makes up the Central Nervous System (CNS).
However, an Acquired Brain Injury (ABI), i. e. a sudden brain damage
caused by events after birth, involves injury in the CNS leading a
permanent or temporary change in functioning, depending on the
affected area of the brain. ABI results from either traumatic brain
injury or non-traumatic injury, such as stroke, brain tumor, hypoxia or
ischemia, that can cause cognitive, physical, emotional, or behavioral
impairments. Over the past few years, stroke has become the second
world cause of death (Donnan et al., 2008); it is caused by a disturbance
in the blood supply to the brain either by a blockage, isquemic, or by
a rupture of a blood vessel, hemorrhagic. Within this thesis, rehabilit-
ation and assistance are focused on people who suffered from a stroke
affecting the motor cortex, usually presenting symptoms of weakness,
namely hemiparesis, or complete paralysis, namely hemiplegia, in one
entire side of the body.

From the onset of stroke, patients experience different mechanisms
of recovery involved with plasticity in the intact brain (Murphy and
Corbett, 2009). Furthermore, spontaneous behavioral recovery takes
an important role in the early stage of the injury, when the brain is
galvanized to initiate repair (Cramer, 2008). Even functional behavior
of stroke survivors are unlikely to be identical to pre-stroke patterns,
strategies promoting synapse and network level plasticity lead to an
important functional recovery (Taub et al., 2002; Kleim and Jones, 2008;
Kerr et al., 2011). Indeed, motor and cognitive rehabilitation aims to
improve the quality of life of patients through dedicated rehabilitative
strategies. These therapies enhance motor impairments, one of the
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2 introduction

main disabilities associated with stroke (Schaechter, 2004; Dimyan
and Cohen, 2011), through both physical and occupational therapy
exercises.

Robot-aided neurorehabilitation therapy, integrated into a multi-
disciplinary program, plays a significant role in motor and cognitive
recovery at different stages of stroke recovery: acute, subacute and
chronic phases (Volpe et al., 2000; Lo et al., 2010; Klamroth-Mar-
ganska et al., 2014). These robotic systems have the potential to deliver
high-intensity, challenging, motivating and reproducible therapy mak-
ing the training tasks and exercises meaningful and important for the
patient. Robotic devices for upper limb used in neurorehabilitation
can be divided in two main groups: exoskeleton-based and end-ef-
fector-based. Exoskeleton-based robots allow to accurately control the
kinematic configuration of the corresponding joints, while end-ef-
fector-based robots apply mechanical forces to the distal part of the
limb, as shown in Figure 1.1. The fusion of these kind of therapies
with new technologies, such as Virtual Reality (VR), functional elec-
trical stimulation, Brain-Computer Interface (BCI) or brain stimulation,
have demonstrated to be a poweful tool to maximize patient recovery
(Krebs et al., 1998; Alon et al., 2007; Bohil et al., 2011; Chaudhary et al.,
2016). Furthermore, this technology offers multiple objective data that,
together with clinical assessment scales, allows the therapist to get a
comprehensive assessment about the patient’s improvements.

Figure 1.1: Robotic devices for upper limb used in neurorehabilitation can be
divided in exoskeleton-based (left), and end-effector-based type
(right).

Finally, after rehabilitation process, most stroke survivors still ex-
perience significant motor limitations several months or years after
the incident (Kwakkel et al., 2003; Meyer et al., 2015). This affects
negatively their activities of daily living (ADL) in which they need
help with daily tasks or walking, decreasing their participation in
social activities. The improvement of smart devices and technology
are pushing research in the field of assistance to people with disabilit-
ies, including stroke survivors, moving technology from laboratories
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and controlled environments to homes, enhancing their independence
(Bradley and Poppen, 2003; Matarić et al., 2007).

1.1 motivation and objectives

About 6.8 million people in the world died in 2016 as a result of neu-
rological disorders, according to World Health Organisation (2018a),
and as the global population ages, an increase to 8 million is estim-
ated in 2030, according to World Health Organisation (2018b); this
effect results in a global and regional burden of stroke (Feigin et al.,
2014). Different studies show that patients who have impairments after
stroke and are expected to be able to return home, are likely to benefit
from inpatient rehabilitation. These improvements in movement and
language skills are possible at any time after stroke (Dobkin, 2005). In
addition, European Comission (2010) presented a strategy promoting a
barrier-free Europe and empowering people with disabilities, around
one in six people in the European Union, so they can enjoy their
rights and fully participate in society and economy. Only in Spain, the
cost of cerebrovascular disease is estimated in 6.000 millions of euros
per year (Mar et al., 2013) and 104.701 new cases of ABI occur every
year, according to Federación Española de Daño Cerebral (2016). The
Valencian Community is one of the first autonomous communities to
implement an strategy for attention to brain damage, in which the
robotic and virtual rehabilitation are included (Generalitat Valenciana,
2017).

As previously stated, robotics in the field of neurorehabilitation
has proved to be a powerful tool in upper-limb motor recovery for
stroke patients (Lum et al., 2002; Cameirão et al., 2012; Duret et al.,
2019). Robot-aided therapy enables highly repetitive, intensive, and
adaptive training and offers quantifiable physical data to the therapist,
complementing the clinical assessment scales, such as Fugl-Meyer
(Fugl-Meyer et al., 1975) or Asworth (Bohannon and Smith, 1987),
among others (Santisteban et al., 2016). Since the first end-effector-
based robot for upper limbs used in neurorehabilitation, the MIT-
Mannus (Hogan et al., 1992), these devices have become the most
used devices owing to the ease of attachment to the affected limb in
patients with different pathologies and their demonstrated positive
outcomes (Kwakkel et al., 2007; 2019). However, these devices are
unable to measure or control the ROM of the upper limb during the
rehabilitation tasks, a very important parameter in monitoring recov-
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ery progress during stroke rehabilitation (Hingtgen et al., 2006; Beebe
and Lang, 2009).

On the other hand, majority of the studies are focused on how
new technology can be used to enhance the rehabilitation process
at clinical environments but, nevertheless, just few approaches try
to offer a technology solution when stroke survivors have to return
home and deal with the residual motor impairments. In this field,
intelligent rehabilitation systems for upper limbs in home environ-
ments can enhance cognitive and motor recovery during and after
the rehabilitation process performed in the clinic. Furthermore, the
environmental information and the person behaviors at home enable
machine learning techniques to understand daily routines, offering
a powerful ‘assistance as needed’ tool and, therefore, favoring the
inclusion of the people with severe motor impairments in daily tasks
(Bradley and Poppen, 2003).

This thesis endeavors to develop an objective tool to measure, in real
time, the upper-limb joints in neurorehabilitation therapies assisted
by end-effector-based robots and validate it in a real rehabilitation
scenario. Furthermore, as the intensity of the therapy takes an impor-
tant part in stroke recovery, this thesis aims to propose an artificial
intelligent solution to fill the time interval between clinical sessions
and after therapy through a system for ‘self-managed’ rehabilitation.
Finally, to contribute to the assistance at home of people who suffer
from severe motor impairments after stroke rehabilitation, caused by a
neurodegenerative disease or Spinal Cord Injury (SCI), it is attempted
to develop an intelligent environment control interface (ECI) and test
it through people with different pathology in order to improve their
independence at home. Furthermore, it is intended to adapt the system
control to the residual user capabilities.

The focus on the neurorehabilitation is grounded on the firm belief
that objective data provided by robots are becoming an important
part in the assessment of the patient evaluation during the therapy, on
the one hand, and that intelligent solutions for home environments
can improve the recovery after stroke, on the other. Furthermore, help
in the performance of ADL has the capacity to offer independence
for people with severe motor impairments, decreasing their sense of
isolation (Bradley and Poppen, 2003).
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1.2 contributions

The work presented in this thesis provides the following contributions:

• It improves the previous upper-limb kinematic reconstruction
algorithm for robot-aided neurorehabilitation therapies, intro-
duced by Papaleo et al. (2015). It is based on the same technique,
the estimation of the seven joint variables through the augmen-
ted Jacobian (Kreutz-Delgado et al., 1990) for end-effector-based
devices, using only one accelerometer. The proposed method for
estimating the joint movements is more stable against undesired
shoulder movements, without losing precision. This problem is
further discuss in Section 3.8, reviling the necessity to measure
the trunk compensation during the rehabilitation exercise.

• It develops a novel technique to online measure not only the
upper-limb movements, but also the shoulder displacement in
robot-aided neurorehabilitation therapies. It uses only two wear-
able devices, one placed onto the upper arm and the other onto
the shoulder. Thus, it modifies the previous proposed method,
fixing the flexion-extension and the ulnar-radial deviation move-
ments of the wrist, tight by most end-effector-based robots. The
proposed algorithm is successfully tested in clinical environ-
ments, offering a new tool to assess the motor recovery of the
patients.

• It describes a novel upper-limb gesture assessment method that
fuses a machine learning classification model with the mea-
surement of the distance between the expert and patient joint
movements. The promising finding is that the applied technique
is able to online evaluate the quality of the movement performed
by the patient, deciding the next step in the rehabilitation exer-
cise. Thus, this system can become a new tool for ‘self-managed’
rehabilitation at home.

• It proposes an intelligent ECI that uses the environmental in-
formation and the user behaviors to detect the intention of the
users easing the navigation through it. Furthermore, it is able
to adapt to the residual capabilities of the users favoring its use
by people with many different motor or cognitive impairments.
Thus, this ECI enhances the independence of people with severe
motor impairments at home.



6 introduction

Appendix B lists and describes the publications derived from this
thesis.

1.3 thesis roadmap

This thesis is organized over six chapters followed by two appendix:

• Chapter 2 provides background that is relevant for the devel-
opments reported in the thesis. Specifically, it reports on robot
devices for upper limb neurorehabilitation, it provides an over-
view of motion capture systems for rehabilitation, and it intro-
duces works on intelligent technology solutions for rehabilitation
and assistance at home.

• Chapter 3 introduces an stable upper-limb kinematic reconstruc-
tion algorithm for robot-aided neurorehabilitation therapies, us-
ing only the information provided by an accelerometer placed
onto the upper arm. Furthermore, the validation of the algo-
rithm is performed in a simulated and real scenarios. Finally,
this algorithm is studied in a clinical environment with patients
demonstrating the improvements performed over the Papaleo
et al. algorithm.

• Chapter 4 solves the problem of the fixed shoulder assumption
presented in the previous chapter. It introduces a modification of
the algorithm in order to estimate not only the upper-limb joint
variables but also the shoulder displacements. Thus, this method
enables to measure the ROM and trunk compensation without
disturbing the patient-clinician interaction in real neurorehabil-
itation environments.

• Chapter 5 presents two applications of artificial intelligent solu-
tions, one for stroke rehabilitation of the upper-limbs at home,
the other for enhance the independence of people with severe
motor capabilities. The former proposed a system to measure
and classify a set of predefined gestures, and intelligently as-
sess the quality of the performed movement guiding the patient
through the rehabilitation exercise. The latter uses the informa-
tion acquired from the environment and the user behaviors to
detect the intention of the user and ease the navigation through
an intelligent ECI.
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• Finally, Chapter 6 summarizes this thesis and draws conclusions
based on the findings of the work reported here. In addition,
the chapter discusses potential directions for future research on
topics covered within this thesis.

• Appendix A describes the robots, sensors, and components that
were used along the different scenarios presented in this thesis.

• Appendix B presents the prints of the compendium of peer-re-
viewed publications, previously published in indexed journals
according to the last JCR.

1.4 publications

This section contains references and short summaries of all peer-re-
viewed publications made during the course of this PhD that form the
main work of the thesis, with the relevant chapters in which they are
contained:

Bertomeu-Motos, A.; Blanco, A.; Badesa, F. J.; Barios, J. A.; Zollo, L.
and Garcia-Aracil, N. (2018), ‘Human arm joints reconstruction
algorithm in rehabilitation therapies assisted by end-effector robotic
devices’, Journal of NeuroEngineering and Rehabilitation 15(1), p. 10,
doi: 10.1186/s12984-018-0348-0

• Validates a novel technique to online estimate the upper-limb
kinematic configuration for neurorehabilitation therapies with
end-effector-based robotic devices. It solves the instabilities that
the previous algorithm had when it was applied in clinical
environments.

• Chapter 3 is based on this article.

Bertomeu-Motos, A.; Lledó, L. D.; Díez, J. A.; Catalan, J. M.; Ezquerro,
S.; Badesa, F. J. and Garcia-Aracil, N. (2015b), ‘Estimation of Human
Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation
Tasks’, Sensors 15(12), pp. 30571–30583, doi: 10.3390/s151229818

• Presents and validates a novel algorithm to online estimate
not only the upper-limb kinematic configuration but also the
shoulder displacements, a very important information to per-
form a comprehensive assessment, for robot-aided neurorehabil-
itation therapies.

• Chapter 4 is based on this article.

https://dx.doi.org/10.1186/s12984-018-0348-0
https://dx.doi.org/10.3390/s151229818
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Bertomeu-Motos, A.; Ezquerro, S.; Barios, J. A.; Lledó, L. D.; Domingo,
S.; Nann, M.; Martin, S.; Soekadar, S. R. and Garcia-Aracil, N. (2019),
‘User activity recognition system to improve the performance of
environmental control interfaces: a pilot study with patients’, Journal
of NeuroEngineering and Rehabilitation 16(1), p. 10, doi: 10.1186/
s12984-018-0477-5

• Proposes a novel intelligent ECI for people with severe motor
disabilities able to estimate the user intention and assist in the
navigation and control through the interface. It uses a mul-
timodal system in order to exploit the residual motor capabilities
of the user, and learn from the user behavior and the relevant
environmental information.

• Section 5.2 is based on this article.

https://dx.doi.org/10.1186/s12984-018-0477-5
https://dx.doi.org/10.1186/s12984-018-0477-5


2
B A C K G R O U N D

Two main research fields inspired this thesis, the neurorehabilitation
therapies assisted by robots and the intelligent technology solutions
for people with motor and cognitive impairments. This chapter aims
to review the relevant articles from these fields that are significant to
later chapters of the thesis.

The chapter is organized as follows. In Section 2.1, the most com-
mon robotic devices used in neurorehabilitation therapies for upper
limbs are briefly introduced, with a particular emphasis on works
that demonstrate the effectiveness of these devices. Section 2.2 then
discusses studies that introduce different strategies to measure the
kinematic behavior of the body while the patient performs a rehabilita-
tion exercise. These strategies go from motion analysis to VR feedback
in rehabilitation games. Then, Section 2.3 presents a literature review
in the field of technology solutions for home environments and how
elderly, children, and people with disabilities benefit from it. Finally,
Section 2.4 summarizes the chapter.

2.1 robotic devices for upper-limb neurorehabilitation

therapies

After an ABI, neurorehabilitation therapy aims to recover the motor
and cognitive functions. It is known that repetitive and intensive train-
ing enhance the neuroplasticity of the brain improving the results
of the therapy (Krebs et al., 1998). These features can be exploited
by robots, reducing the workload of the therapists and offering a
new rehabilitation and assessment tool. In the last 30 years, multiple
projects and research studies are developing a wide variety of upper-
-limb robots for rehabilitation that, although they have proven their
effectiveness, their availability in clinical setting is limited and only
few rehabilitation robots can be found on the market. Comparing
the mechanical structure of the robotic devices found in literature,
two categories are considered and described in this section: end-ef-
fector-based and exoskeleton-based devices (Maciejasz et al., 2014),
even though there are many systems fusing both structures. The main

9
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difference between this two devices is how the movement is trans-
ferred from the device to the patient’s upper extremity. In addition,
both groups usually offer task-specific interactive virtual reality games
to promote motivation and the possibility of repeating the exercise
without the presence of the therapist.

2.1.1 End-effector-based Devices

The first upper-limb neurorehabilitation robot was developed by
Hogan et al., in 1992. It was an end-effector-based device where the
hand of the patient is attached to the end effector of the robot, actuat-
ing at the wrist joint and allowing to perform planar movements with
the arm. Furthermore, this robot offered different levels of assistance
to promote learning.

Table 2.1: End-effector-based devices for upper-limb rehabilitation.

System

name

Institution Supported

Movements

Studies

InMotion1 Bionik
Laboratories2

Shoulder and
elbow

Krebs et al. (1998),
Krebs et al. (2004)

iPAM University of
Leeds

Shoulder,
elbow and

wrist

Jackson et al. (2007),
Culmer et al. (2011)

Gentle/S University of
Reading

Shoulder,
elbow and

wrist

Loureiro et al.
(2003),

Amirabdollahian
et al. (2007),

Kwakkel et al.
(2007), Coote et al.

(2008)
MIME Standfor

University
Shoulder and

elbow
Burgar et al. (2000),
Lum et al. (2002),
Lum et al. (2006)

PUPArm Miguel
Hernández
University

Shoulder and
elbow

Llinares et al. (2013),
Lledó et al. (2016)

Since then, multiple end-effector-based robots have been developed
due to its simple mechanical structure and control algorithm. They
also offer an easy set-up, allowing their use by patients with many

1 Based on MIT-Manus (Hogan et al., 1992)
2 Resulting from research at the Newman Laboratory for Biomechanics and Human

Rehabilitation at the Massachusetts institute of technology
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different pathology. However, the control of the limb configuration
during the exercise is limited and it is difficult to isolate specific
movements of a particular joint. Table 2.1 presents the most relevant
end-effector-based rehabilitation robots and their clinical studies that
show its effectiveness in neurorehabilitation therapies.

2.1.2 Exoskeleton-based Devices

The exoskeleton-based devices aim to apply mechanical force at the
limb joints based in a structure that mirrors the skeletal structure
of the human limb. Thus, a particular joint of the limb is directly
moved through a particular joint of the device, and each segment of
the limb is attached to the corresponding segment of the device. This
structure allows independent and precise control of movements at
the desired joints. Lower limb exoskeleton have been widely used in
clinical environments since 1960s, improving the patient’s recovery
efficacy (Colombo et al., 2000; Veneman et al., 2007; Yan et al., 2015).
However, upper-limb exoskeletons have been only recently developed
and, in contrast to end-effector based devices, their effects are not
strongly demonstrated (Jarrassé et al., 2014). Indeed, at the end of 2011

the first upper-limb exoskeleton was released(Riener et al., 2011).

Table 2.2: Exoskeleton-based devices for upper-limb rehabilitation

System

name

Institution Supported

Movements

Studies

ARMin ETH Zurich Shoulder and
elbow

Nef et al. (2007),
Staubli et al. (2009)

T-WREX University of
California

Shoulder,
elbow and

wrist

Sanchez et al. (2004),
Housman et al.

(2007)
L-EXOS Scuola

Superiore
Sant’Anna

Shoulder and
elbow

Montagner et al.
(2007)

RUPERT Arizona State
University

Shoulder,
elbow and

wrist

He et al. (2005)

Unlike end-effector devices, exoskeletons need an individual ad-
justment of the length of the device segments according to the patient
limb in order to avoid injuries. Therefore, setting-up these devices for a
particular patients may take a significant amount of time. Furthermore,
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the rotation of the device joints must be aligned with the center of
rotation of the human limb and must be able to adapt according to the
changes of joint positions during movements, specially in the shoulder
joint (Kiguchi et al., 2003). For this reason, the complexity of the mech-
anical design and the control algorithm are usually higher than of
the end-effector-based devices, one of the possible reasons of the slow
development of these devices. The most relevant exoskeleton-based
devices and their clinical studies are presented in Table 2.2.

2.2 motion capture systems for rehabilitation

The motion capture aims to record the movement of a subject in real
life and translate it into digital data to perform an extensive bio-
mechanic analysis. This field is widely studied motivated by their
multiple application in athletic performance analysis, human-robot
interaction or activity monitoring (Aggarwal and Cai, 1999). In re-
habilitation, these systems offer an objective measurement tool to
assess motor recovery of stroke patients (Repnik et al., 2018). They are
being combined with clinical assessment scales, in which the ROM
of the limbs are subjectively evaluated (Santisteban et al., 2016). In
addition, the information provided by these systems is also used as an
input data in the development of VR-based games for rehabilitation
therapies, namely serious games. These games offer visual feedback
to the patient during the exercise, integrating the patient into the
virtual environment and optimizing the motivation and commitment
(Burke et al., 2009). Regarding the technology used to measure the
body motion, three categories are considered and described in this sec-
tion: optoelectronic, vision-based and wearable inertial-based device
systems (Zhou and Hu, 2008).

2.2.1 Optoelectronic Systems

The use of multiple cameras in controlled environments to estimate 3D
coordinates of retro-reflective markers from 2D cameras projections
has been extensively applied (Abdel-Aziz et al., 2015), firstly used for
motion tracking by Johansson (1975). This motion capture systems use
a set of markers attached onto the body or onto a specific body seg-
ment (Carse et al., 2013; Murphy et al., 2011), and they can be divided
in two groups: active and passive systems. Active systems usually
use infrared light emitting markers, mostly LEDs, which are then
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acquired by the cameras. Passive systems use retro-reflective markers
and infrared cameras to detect the incoming radiation provided by
the markers.

Optoelectronic systems, even they are usually expensive, are widely
used in biomechanical analysis due to the high precision presented
(Windolf et al., 2008). They calculate the joint centers and the seg-
ment orientations by optimizing skeletal parameters from the mark-
ers (Charlton et al., 2004). Thus, these systems are usually used as
a ‘ground truth’ to evaluate the motion measurements performed
through a different system(Zhou et al., 2006). However, they must
be used in a specific area, whenever the cameras can visualize the
markers, and in controlled environments, avoiding marker occlusions
(Wu and Boulanger, 2011; Federolf, 2013).

2.2.2 Vision-based Systems

This technique exploits cameras to track movement of human body,
identifying standard bony landmarks through computer vision al-
gorithms and overcoming the occlusion problem. These methods aim
to segment the image into regions and extract the subject information
from the acquired image, viewed as a single object or as an artic-
ulated motion. In 1999, Aggarwal and Cai reviewed work prior to
1998 concluding that the recognition of human motion was just in
its infancy. They used a taxonomy with three categories: body struc-
ture analysis, tracking and recognition. Then, Moeslund and Granum
introduced the functional structure of motion capture systems as a
subsequent processing phases: initialization, tracking, pose estimation,
and recognition, however, not all systems needed to include this four
processes.

In 2007, Poppe divided the human motion into modeling and esti-
mation phase, based on the new trends of research. Is in the estimation
phase, the process to find the most likely human pose with respect to
the human body model, where the neurorehabilitation takes advan-
tage. It uses this estimation to monitor the capabilities of the patients,
integrating them with VR-based games.

In the last decade, serious games have proven their effectiveness
in neurorehabilitation and they are becoming more popular due to
the low cost of high speed cameras, facilitating the development of
games in real time (Burke et al., 2009). These games also allow to
implement low-cost rehabilitation therapies at home and application
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in elderly care (Saini et al., 2012; Webster and Celik, 2014). Finally,
motion monitoring during rehabilitation exercises is used to correct
compensatory postures in real time, as well as cognitive assessment
(Taati et al., 2012; González-Ortega et al., 2014). Vision-based systems,
as well as optoelectronic systems, must deal with limited environments
and the potential obstruction of the cameras.

2.2.3 Wearable Inertial-based Device Systems

Unlike the systems previously described, inertial-based devices sys-
tems can be unobtrusively attached to the body limbs, monitoring
patient movements in both clinic and home contexts due to the devel-
opment of small sensors in the past decade. One of the first wearable
sensor used for detection of human movement was an inertial device,
studied by Saunders et al. in 1953. However, the use of inertial sensors
was not a popular choice for motion tracking systems until their
performance did not improve, being more compact and light. For
example, in 1996, Veltink et al. proposed a method to differentiate
static and dynamic activities using only an uniaxial accelerometer.
Then, in 1998, Bussmann et al. was able to quantify different physical
activities through four body-fixed accelerometers.

The following year, Bachmann et al. proposed a fusion of an accel-
erometer, a gyroscope and a magnetometer, namely magnetic angular
rate gravity (MARG), to determine the orientation of a body human
segment. Bachmann et al. solved the singularities associated with Euler
angles, that make them unsuitable for use in body tracking application,
introducing the quaternions as an alternative method of orientation
representation. However, MARG devices can suffer from a loss of
accuracy due to magnetic disturbances. Thus, in 2002, Mayagoitia et al.
proposed a combination of only an accelerometer and a gyroscope,
namely inertial measurement unit (IMU), as an alternative to optical
motion analysis systems becoming the most common wearable sensor
used for human motion capture.

From here, multiple research studies have developed systems capa-
ble of measuring the kinematic configuration of the lower-limb joints
(Cooper et al., 2009; Seel et al., 2014; Fong and Chan, 2010) and up-
per-limbs joints (Zhou et al., 2006; 2008; Pérez et al., 2010), as well as
systems that are able to classify motor activities (Novak et al., 2014;
Valero et al., 2016). These studies are based on the calculation of the
orientation associated with these devices using different types of fil-
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tration algorithms (Marins et al., 2001; Sabatini, 2006; Madgwick et al.,
2011; Mihelj et al., 2018). Finally, in the recent years, many studies
are developing algorithms to avoid the magnetic disturbances of the
MARG in order to increase its application areas (Šlajpah et al., 2017).

2.3 technology solutions for home environments

Technology, rehabilitation and assistance have a long individual history.
However, the first use of a fusion of clinical rehabilitation and techno-
logy, in the field of ABI, appeared in 1992, with the first therapeutic
arm robot, the MIT-Manus (Hogan et al., 1992). Thenceforth, many
research studies have demonstrated that the technology in this field
enhances the efficiency of neurorehabilitation therapies and provides
objective data to assess the recovery progress (Basteris et al., 2014).

On the other hand, in 1998, the Association of Assistive Technology
Act Programs introduced the Technology-Related Assistance for Indi-
viduals with Disabilities Act, motivating the scientific community to
improve the functional needs of individuals with disabilities through
assistive technology (AT). In this passage, AT device was defined as
“any item, piece of equipment, or product system, whether acquired
commercially, modified, or customized, that is used to increase, main-
tain, or improve functional capabilities of individual with disabilities”.
Since then, many studies provide technology solutions to assist people
with disabilities in many different areas, such as communication or
environmental control.

Thus, this section introduces a literature review of the technology
applied to both rehabilitation and assistance fields, that, in the recent
years, many technology solutions have left the laboratories caused by
the continuous evolution of scientific research.

2.3.1 Stroke Rehabilitation

Disability and dependence associated with reduced motor function
following stroke impact on the quality of life of patients, carers and
family (Nichols-Larsen et al., 2005), and national economies (Truelsen
et al., 2005). As said in Section 2.1, intense and repetitive therapy im-
proves the rehabilitation outcomes in which robot-aided rehabilitation
plays an important role in motor and cognitive recovery. However,
in 2013, Demain et al. reported a discontinuity between therapy in
hospital and at home, with long waits before home-based therapy.
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Furthermore, people with stroke and their families suggested the use
of new systems at home for ‘self-managed’ rehabilitation, after being
taught at hospital, to fill the gap between clinical sessions optimizing
functional recovery.

The home-based robotic systems must be safe to be used in home
environments, as well as being able to easily configure and use without
the therapist support. Furthermore, the therapist must remotely access
to the device, collect the data gathered and ensure that appropriate
therapy is being performed. Thus, in recent years, home-based sys-
tems for upper-limb rehabilitation are emerging owed to the good
results demonstrated in clinical environments, such as end-effector
based robots (Sivan et al., 2014; Nijenhuis et al., 2015), sensor-based
virtual reality (Wittmann et al., 2016), or collaborative tele-rehabil-
itation (Johnson et al., 2008; Dodakian et al., 2017), offering a set of
predefined exercises to be performed at home.

2.3.2 Assistance in Daily Activities

In the case of AT for assistance at home in ADL, different studies
agree that technology has potential for enhancing the capabilities of
people with physical disabilities. This technology aims to translate
the user intention into functional interaction for communication or
environmental control, among others (Tai et al., 2008). This translation
can be divided in access technology, devices and processes that ac-
quire and analyze the residual capabilities of the user and transform
them into control signals, and user interface, usually a display screen,
that shows the possible actions to be performed on the environment,
namely ECI. Thus, the measurement of the effectiveness of the AT
must consider the evaluation of this two elements.

There exist multiple access technology since this technology need
to be adapted to the residual capacities of each individual users. The
systems based on surface electromyography (sEMG) are non-invasive
systems that record the electrical activity generated by muscles. One of
the first systems was developed by Gryfe et al., in 1996, which enabled
users with amyotrophic lateral sclerosis and virtually no movement
to communicate and manipulate their environment with sEMG. Since
then, many different studies have demonstrated the use of sEMG for
Human-Computer Interaction (HCI) in patients with voluntary muscle
contraction (Chen et al., 2002; Merletti and Parker, 2004; Ahsan et al.,
2009).



2.3 technology solutions for home environments 17

In addition, eye movements are widely used for communication
systems using oculography in two different ways: eye tracking systems
and electrooculography (EOG) systems. Eye tracking systems compute
the gaze direction measuring the offset between corneal reflection and
pupil center through an infrared camera (Hansen and Ji, 2010). In
1998, Jakob described the first successful use of the eye movements
tracking as in input for HCI. After that, eye-based HCI has matured
considerably evolving from stationary setting to head-mounted eye
tracking (Bulling and Gellersen, 2010). Today, multiple commercial
eye tracking systems can be found, such as Tobii 3 or Pupil glasses 4.
On the other hand, the EOG systems measure the electric potential
generated by the muscles around the eyes when the user changes gaze
direction. In 1996, the first successful study was presented by Gips
et al., which enabled people with disabilities to control a computer
with an EOG-based system. Then, in 2009, a novel embedded EOG
goggles were introduced by Bulling et al., they were able to long-term
record data and stream processed EOG signals over Bluetooth with
dry electrodes. Nowadays, these systems are widely used in multiple
scenarios such as assistance, communication or activity recognition
(Barea et al., 2011; Bulling et al., 2011; Soekadar et al., 2016).

The last access technology presented here is the electroencephal-
ography (EEG), usually the only input signal that users with any
physical ability can use to communicate with the environment. In
1929, EEG was firstly recorded in human by Berger, who also invented
the electroencephalogram. This fact opened a new field of study with
great potential in neurological diseases detection or direct environ-
mental communication with the brain, among others. From there,
many studies were conducted in which the EEG was analyzed (Gibbs
et al., 1937; Blakemore and Cooper, 1970). But it was not until 1977,
when Vidal developed a first BCI system, in which a human controlled
a cursor in a 2D maze through EEG signals. Then, the interest in the
development of BCI systems increased and, in 2000s, several studies
achieved communication systems that do not depend on nerves and
muscles activity. Thus, EEG became a new output channel for the
brain with an adaptive capacity to optimize performance, appearing
non-invasive and invasive techniques (Birbaumer et al., 2000; Donchin
et al., 2000; Wolpaw et al., 2000; Wolpaw et al., 2002). In recent years,
the technology improvements allow to bring non-invasive BCI sys-
tems out of the laboratory environments, offering grater independence

3 https://www.tobii.com/
4 https://pupil-labs.com/

https://www.tobii.com/
https://pupil-labs.com/
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to people with severe motor disability at home (Sellers et al., 2010;
Miralles et al., 2015).

It was not found any research focused only in the development of a
multipurpose ECI for assistance. However, the HCI and BCI systems
introduced here were developed under different control interfaces.
They were used as a single purpose interfaces, such as mouse control,
communication, or external devices control, being able to only achieve
the desired tasks.

2.4 conclusion

This chapter presented theoretical and empirical works that invest-
igate the use of robotic devices in neurorehabilitation therapies for
post-stroke patients. It was demonstrated that both end-effector-based
and exoskeleton-based devices improved the rehabilitation outcomes,
although end-effector-based robots are most used in clinical environ-
ments due to the versatility they have to different pathologies. The
chapter also highlighted the importance of objectively measure the
motor improvements along neurorehabilitation therapy. Moreover, it
was argued that clinical assessment scales should be supported by
the information collected through these devices, with a particular
emphasis in measuring the ROM of the limbs during the rehabilitation
exercises with the robotic devices.

Since one of the aims of this thesis is to develop an algorithm for
upper-limb kinematic reconstruction in neurorehabilitation with en-
d-effector-based robots, the discussion moved to works investigating
motion capturing systems in the field of rehabilitation. Wearable in-
ertial-based device systems were found as the less intrusive system,
i. e. it does not disturb the normal development of a therapy in which
the therapist and the patients are continuously interacting. The first
upper-limb kinematic reconstruction algorithm was introduced by
Mihelj (2006), this method estimated the upper-limb joints with two
accelerometers placed onto the upper arm. Subsequently, Papaleo
et al. improved the algorithm using only the information provided by
one accelerometer, but it was validated in a constrained and artificial
environments with patients. The last step was performed by Morales
Vidal, he developed an off-line algorithm, based on the same principle
as Papaleo et al., introducing an approach to bring the kinematic
reconstruction to a clinical environment, however this method was
only tested in a simulated scenario. Therefore, this thesis seeks to go
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beyond this algorithm and develop an online algorithm, establishing a
protocol to be used in a real robot-aided neurorehabilitation therapy.

Technology solutions for home environments background was in-
troduced within the last section, where new technology solutions for
rehabilitation and assistance at home are necessary. It was argued
that rehabilitation systems for home are increasing but there are still
no clinical studies that support them. Finally, AT was proven to have
great potential for those who suffer severe motor impairments as the
advancements of access technology are taking these systems out of
the laboratories.
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3
U P P E R - L I M B K I N E M AT I C S R E C O N S T R U C T I O N
A L G O R I T H M

This chapter describes the kinematic reconstruction algorithm, intro-
duced by Morales Vidal, with the necessary modifications in order
to online estimate the upper-limb joint movements in robot-aided
neurorehabilitation therapies with end-effector-based devices. Sec-
tion 3.1 presents the kinematic model of the upper limb used through-
out this thesis and the protocol established to manually measure the
upper arm and the forearm lengths. Then, the resolution of the upper-
-limb inverse kinematics, through the augmented Jacobian introduced
by Kreutz-Delgado et al., and the estimation of the elbow pose, i. e.
the orientation and the position, are introduced in Section 3.2 and
Section 3.3, respectively. The estimation of the initial position of the
upper-limb is presented in Section 3.4, it determines the starting point
of the numerical integration proposed. Then, Section 3.5 shows the val-
idation results obtained in a simulation environment and Section 3.6
in a real scenario with healthy subjects. In addition, Section 3.7 stud-
ies the stability of this algorithm and the Papaleo et al. algorithm in
clinical environments with patients. Finally, Section 3.8 summarizes
this chapter and discusses the limitations of the proposed algorithm.

Research from this chapter has been previously published in Ber-
tomeu-Motos et al. (2015a) and Bertomeu-Motos et al. (2018).

3.1 kinematic upper-limb model

The human upper limb is a complex system of three segments: the
upper arm, the forearm, and the hand. This extremity can be seen as a
kinematic chain with seven rotational degrees of freedom (DoFs). From
a mechanical point of view, the mobility of the shoulder, although
it can be studied as a complex joint including scapular movements
(Bagg and Forrest, 1988; Lenarčič and Umek, 1994; Inman et al., 1996),
in this thesis it is modeled as a spherical joint of three DoFs, the
abduction-adduction (sAB-AD), the flexion-extension (sF-E), and the
internal-external rotation (sRot). The elbow can be modeled as a
double-hinge joint with two DoFs, the flexion-extension (eF-E) and the

21
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pronation-supination (wP-S). Even though the wP-S is an anatomical
part of the elbow joint, it is considered as a mechanical joint of the
wrist and, therefore, the wrist joint is modeled as a spherical joint
with three DoFs, the wP-S, the ulnar-radial deviation (wDev) and the
flexion-extension (wF-E).

Figure 3.1 shows the kinematic chain of the right upper limb with
the corresponding rotational movements, where the length of the
upper arm and the forearm are expressed as lu and l f , respectively.

Figure 3.1: Kinematic chain of the right upper limb with each rotational joint
movement, lu and l f define the length of the upper arm and the
forearm, respectively.

Following the Denavit-Hartenberg (DH) convention (Denavit and
Hartenberg, 1955), the reference frames of each joint movement have
been selected for each limb as shown in Figure 3.2, the first ref-
erence frame is placed in the shoulder joint, indicated as S0. The
corresponding DH parameters, presented in Table 3.1, determined
the homogeneous transformation matrix necessary to calculate the
forward kinematics from the frame i to the frame i− 1, expressed as
i−1Ti(qi), with i ∈ [1, 7].

Thus, the matrices related to the shoulder, elbow and wrist joints
remain, respectively, as

0T3 (q1, q2, q3) = Ts =
0 T1 (q1) ·1 T2 (q2) ·2 T3 (q3) , (3.1)

3T4 (q4) = Te, (3.2)
4T7 (q5, q6, q7) = Tw =4 T5 (q5) ·5 T6 (q6) ·6 T7 (q7) , (3.3)
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(b) Left limb.

Figure 3.2: Reference systems of each joint variable following the DH con-
vention presented on each upper limb.

and the forward kinematics that relates the hand pose as a function of
all joint variables (~q) is obtained as

0T7 (~q) = Ts · Te · Tw. (3.4)

Table 3.1: DH parameters of the upper limbs (i ∈ [1, 7]).

Joint

Movement

Right upper limb Left upper limb

θi di ai αi θi di ai αi

sAB-AD π/2 + q1 0 0 π/2 π/2 + q1 0 0 −π/2

sF-E 3π/2 + q2 0 0 π/2 3π/2 + q2 0 0 −π/2

sRot q3 lu 0 −π/2 q3 −lu 0 π/2

eF-E π/2 + q4 0 0 π/2 π/2 + q4 0 0 −π/2

wP-S π/2 + q5 l f 0 π/2 π/2 + q5 −l f 0 −π/2

wDev π/2 + q6 0 0 π/2 π/2 + q6 0 0 −π/2

wF-E π/2 + q7 0 0 π/2 π/2 + q7 0 0 π/2

In addition, this thesis proposes a protocol to manually measure the
upper-limb segments following Norton and Olds (1996). The upper
arm is measured from the lateral side of the acromion to the proximal
radius head, in the elbow, and the length of the forearm is determined
from the proximal radius head to the radial styloid, the distal part of
the radius.
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3.2 inverse kinematics algorithm

In 1990, Kreutz-Delgado et al. presented a kinematic analysis for
seven DoFs serial link manipulators with revolute joints to uniquely
determine the inverse kinematics. The redundancy of these robots was
characterized by a scalar variable, defined here as ‘swivel angle’ (α).
Thus, if the upper limb is visualized as a redundant manipulator with
seven DoFs, the swivel angle is defined as the angle between the plane
shaped by the shoulder, elbow and wrist joints; and a reference plane
(SVW), as shown in Figure 3.3.

Figure 3.3: Graphic representation of the swivel angle.

Then, the inverse kinematics computation of these redundant ma-
nipulators is given by the augmented Jacobian (JA(~q)) (Kreutz-Delgado
et al., 1990), which gives end-effector location and α as a function of
the joint variables. It is expressed as

JA(~q) =


 Jg(~q)

Jα(~q)


 , (3.5)

where Jg(~q) is the geometric Jacobian of the upper-limb, i. e. the con-
tribution of the joint speed vectors to the hand velocity, and Jα(~q) is
the α Jacobian, i. e. the contribution of the joint velocities with respect
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to the rate of change of α. Thus, the inverse kinematics algorithm
computed through JA(~q), remains

~̇q = J−1
A (~q)






 ~v

α̇


+ K · ~err



 . (3.6)

Equation (3.6) expresses the joints velocity vector (~̇q) regarding the
inverse of the augmented Jacobian given the hand velocity vector (~v)
and the amount of change of α (α̇). The term ~err is introduced to
correct the error of the numerical integration method proposed, as
the end-effector pose corresponding to the computed joint variables
differ from the desired one (Siciliano et al., 2010). The gain matrix K is
a positive definite matrix that determines the convergence rate to zero
of the error.

In order to estimate the joint variables of the upper limb close to the
singularities of this redundant manipulator, a damped least-squares
inverse of the augmented Jacobian (J∗A) is replaced to JA in (3.6), this
matrix is defined by Siciliano et al. as

J∗A = JT
A

(
JA · JT

A + k2 · I
)−1

, (3.7)

where k is a damping factor that, chosen properly, permits a joint
variable to be close to the singularity area, and I is the 7× 7 identity
matrix. Finally, the joint variables at time tk, with 1 ≤ k ≤ n where
n ∈N, are estimated as

~q(tk) = ~q(tk−1) + ~̇q(tk)∆t, (3.8)

being~q(tk−1) the previous joint variables and ∆t the sampling rate. The
estimation of the joint variables at time k = 0, necessary to initialize the
proposed method, is presented in Section 3.4. The proposed numerical
integration avoids huge jumps in consecutive joint variables, that can
appear caused by jerk movements of the patient, as they can not be
anatomically performed.

3.3 elbow joint pose estimation

The kinematic reconstruction algorithm proposed in this thesis is
developed to be used in robot-aided rehabilitation therapies with en-
d-effector-based devices. In this context, the position of the wrist joint
is provided by the robot since the hand of the patient is attached to
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the end effector of the device. Furthermore, the shoulder joint pose is
measured before the exercise and it is assumed fixed. Therefore, the
estimation of the elbow joint pose is the key point of this algorithm,
necessary to estimate the upper-limb joint variables through the aug-
mented Jacobian (Kreutz-Delgado et al., 1990). This joint is estimated
through the upper arm acceleration measured with an accelerometer
device placed onto this segment. The acceleration data has two com-
ponents, the static acceleration, related to the gravity, and the dynamic
acceleration, related to the upper-limb movement. However, if slow
movements are assumed, given the application to stroke rehabilitation,
the static component dominates over the dynamic component and,
therefore, the dynamic term of the acceleration can be removed. Thus,
the proposed algorithm uses only the static acceleration in order to
estimate the elbow joint pose. The mathematical description is per-
formed for the right upper limb, the same principle is used to perform
the left upper-limb kinematics reconstruction but with the proper DH
parameters.

The main goal of this algorithm is to determine the proper orienta-
tion of the accelerometer when the patient performs the rehabilitation
exercise, and therefore the elbow joint pose. The reference position of
the upper limb is here defined as the position where ~q =~0, shown in
Figure 3.4. From this reference position, from the DH parameters, and
from the initial values, the following matrices are known:

• Tr: homogeneous transformation matrix of S0, externally mea-
sured before the exercise.

• rTw: homogeneous transformation matrix from S7 to S0, given
by end-effector robot.

• rRacc0 : reference rotation matrix from the accelerometer orienta-
tion to S0.

• acc0 Re: reference rotation matrix from S4 to the accelerometer
orientation.

We start from the hypothesis that exists a rotation matrix (acc0 Racc)
that relates the static acceleration at a known reference position (acc0Vg)
with the acceleration at a random position of the upper limb (accVg),
defined as

acc0Vg = acc0 Racc · accVg, (3.9)

where acc0Vg = [ 0 1 0 ]T, normalized with respect to the gravity
acceleration value.
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Figure 3.4: Reference position of the right upper limb.

However, it exists infinite rotation matrices that satisfies (3.9), but
one possible solution can be obtained as

acc0 R̃acc = I + M + M2 1− cos (θ)
sin2 (θ)

, (3.10)

with

M =




0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0


 ,

V = acc0Vg × accVg,

sin(θ) = ‖V‖,
cos(θ) = acc0Vg · accVg.

Then, as the plane shaped by the X and Y axes of acc0 R̃acc (Π plane
in Figure 3.5) does not include the known wrist joint pose, the real
rotation that the accelerometer suffers is computed forcing the Π
plane to include the wrist joint. Thus, the Π plane is rotated around
the gravity vector (g), placed at the shoulder joint, a specific angle
(γ) until it includes the known shoulder (S) and wrist (W) joints, as
shown in Figure 3.5, and therefore the proper accelerometer rotation
is estimated.

The γ angle is the angle between W and its projection in Π (W̃),
where W̃ is defined as

W̃ =
(

g · Ŵ
)

g + cos (γ)
(
Ŵ −

(
g · Ŵ

)
g
)
− sin (γ)

(
g× Ŵ

)
, (3.11)
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Figure 3.5: Graphic representation of the Π plane (left) and the γ angle (right).
It is also represented the gravity vector.

where

Ŵ =
(W − S)
‖ (W − S) ‖ ,

g =
[

0 0 −1
]T

.

Therefore, γ is calculated doing the distance be zero between W
and Π as

d (W, Π) =

∣∣AΠW̃x + BΠW̃y + CΠW̃z + DΠ
∣∣

√
AΠ

2 + BΠ
2 + CΠ

2
= 0, (3.12)

with



AΠ

BΠ

CΠ


 = SP̃y

acc × P̃x
accP̃y

acc,

DΠ =
[

AΠ BΠ CΠ

]T
· S,

and

P̃x
acc =

acc0 R̃acc

[
1 0 0

]T
,

P̃y
acc =

acc0 R̃acc

[
0 1 0

]T
,

SP̃y
acc =

(
P̃y

acc − S
)

,

P̃x
accP̃y

acc =
(

P̃y
acc − P̃x

acc
)

.
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From this point, the resolution of γ is computationally expensive
and a simplification is needed to online estimate the upper-limb joint
movements. Thereby, defining

a = AΠ · W̃x + BΠ · W̃y, (3.13)

b = AΠ · W̃y + BΠ · W̃x, (3.14)

c = AΠ · Sx + BΠ · Sy + CΠ · (W̃z + Sz) + DΠ, (3.15)

the equation (3.12) remains

a · cos (γ)− b · sin (γ) + c = 0. (3.16)

Then, multiplying and dividing by the norm of vector ~ab, (3.16)
yields

√
a2 + b2

[
a√

a2 + b2
· cos (γ) +

−b√
a2 + b2

· sin (γ)

]
+ c = 0. (3.17)

On the other hand, as the component of a vector divided by its norm
varies between ±1, the following approximation can be assumed

cos (η) =
a√

a2 + b2
, (3.18)

sin (η) =
−b√

a2 + b2
. (3.19)

Hence, (3.17) can be rewritten as

m [cos (η) · cos (γ) + sin (η) · sin (γ)] + c = 0, (3.20)

m · cos (η − γ) + c = 0, (3.21)

being m =
√

a2 + b2. Thus, the desired γ value remains solved as

γ = η − arcos
(−c

m

)
, (3.22)

where
η = artg

(−b
a

)
.

Finally, two possible γ values are obtained

γ1 = artg
(−b

a

)
− arcos

( −c√
a2 + b2

)
, (3.23)

γ2 = artg
(−b

a

)
− arcos

( −c
−
√

a2 + b2

)
− π. (3.24)
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These solutions allows us to solve (3.12) through simple mathe-
matical operations obtaining two possible rotation matrices acc0 R(j)

acc,
with j ∈ [1, 2]. Therefore, two elbow positions are derived from these
matrices as

rP(j)
e = rT(j)

acc ·
[

0 lu 0 1
]T

, (3.25)

with

rT(j)
acc =




rRacc0 · acc0 R(j)
acc

rPs

0 1


 ,

being rPs the known shoulder joint position regarding S0. However,
as the Z-axis of acc0 R(j)

acc must point the same sense as the result of
EW × ES, only one solution satisfied this constrain. Thus, the elbow
joint pose is estimated as

rTe =




rRe
rPe

0 1


 , (3.26)

with
rRe =

rRacc0 · acc0 Racc · acc0 Re.

Once the location of the elbow joint is estimated, the swivel angle,
necessary to compute the augmented Jacobian, can be computed
(Kreutz-Delgado et al., 1990). The last step of the algorithm is the
estimation of the initial joints, explained in Section 3.4.

3.4 estimation of the initial joints

The initial joint variables are, a priori, unknown. However, it is pos-
sible to estimate them through the DH parameters. From Section 3.3,
the elbow pose is estimated and, therefore, all the upper-limb joints
are known: Ts, Te, Tw. If the homogeneous transformation matrix is
defined as

T =




nx ny nz px

ox oy oz py

ax ay az pz

0 0 0 1




, (3.27)
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the shoulder movements remain

Ts =




c1s3 − c3s1s2 −c2s1 c1c3 + s1s2s3 luc2s1

s1s3 + c1c3s2 c1c2 c3s1 − c1s2s3 −luc1c2

−c2 c3 s2 c2 s3 −lus2

0 0 0 1




, (3.28)

with ck = cos (qk) and sk = sin (qk), k ∈ [1, 2, 3]. Two possible solu-
tions of the shoulder joint variables are obtained. Expressed follow-
ing (3.27), the variables yields: (i) if q2 ∈ [0 π]

q1 = sAB-AD = atan2

(
−ny, oy

)
, (3.29)

q2 = sF-E = atan2

(
ay,
√

n2
y + o2

y

)
, (3.30)

q3 = sRot = atan2 (az,−ax) , (3.31)

and (ii) if q2 ∈ [−π 0]

q1 = atan2

(
ny,−oy

)
, (3.32)

q2 = atan2

(
ay,−

√
n2

y + o2
y

)
, (3.33)

q3 = atan2 (−az, ax) . (3.34)

The eF-E movement affects the distance SW and, therefore, it can
be unequivocally estimated through the law of the cosines as

q4 = eF-E = arcsin


 l2

u + l2
f − ||W − S||2

2lul f


 , (3.35)

and Te remains determined. Since the wrist pose is given by the end
effector of the robot, Tw is determined following the same criterion
used to solve the shoulder joint variables

Tw = (Ts · Te)
−1 · rTw, (3.36)

Tw =




c5c7 − s5s6s7 −c6s5 c5s7 + c7s5s6 0

c7s5 + c5s6s7 c5c6 s5s7 − c5c7s6 0

−c6s7 s6 c6c7 l f

0 0 0 1




, (3.37)
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and two possible solutions are also obtained, the first solution is

q5 = wP-S = −atan2

(
ny, oy

)
, (3.38)

q6 = wDev = arcsin
(
ay
)

, (3.39)

q7 = wF-E = −atan2 (ax, az) , (3.40)

and the second solution is

q5 = π − atan2

(
ny, oy

)
, (3.41)

q6 = π − arcsin
(
ay
)

, (3.42)

q7 = π − atan2 (ax, az) . (3.43)

Thereby, four solutions, two from each spherical joint, satisfy the
kinematic constrains and one solution, at least, accomplishes the ana-
tomical features of the human upper limb. This statement is provable
because the human upper-limb joints vary in [−π/2 π/2] range and
each spherical joint solution belongs either [0 π] range or [0 − π]

range. If more than one solution accomplishes the anatomical features,
it is selected the closest solution to the center of the joint variables, i. e.
the solution with the maximum weight (w(~q)), described by Siciliano
et al. as

w(~q) = − 1
2n

n

∑
i=1

(
qi − qi

qiM − qim

)2

, (3.44)

being n = 7 and where qiM (qim) denotes the maximum (minimum)
joint limits and qi the middle value of each joint range. In conclusion,
this method establishes the initial values of the seven joint variables
necessary to compute the proposed kinematic reconstruction algo-
rithm.

3.5 validation in simulated environment

Before study the proposed algorithm in a real environment, a simu-
lated scenario was developed in order to test the theoretical develop-
ment of the algorithm, in which the variables involved are controlled.
For this purpose, the simulation of the upper-limb kinematics chain
was developed in a Matlab® class, based on Corke (2011) toolbox. This
class includes all the kinematic parameters and functions to simulate
upper-limb trajectories knowing the joint variables at each point.

In addition, it also had the necessary functions for 3D visualiza-
tion of the human body in order to represent the movements of the
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Figure 3.6: Simulated environment developed to test the kinematic recon-
struction algorithm. The developed Matlab® class was able to
simulate upper-limb movements and an end-effector-based robot.

right and left limbs. Furthermore, a simulation environment of an
end-effector-based robot (for more information, please refer to Ap-
pendix A.1) was used. The 3D environment is presented in Figure 3.6.
Finally, the static acceleration (accVg) was modeled from the simulated
upper-limb joint variables as

accVg = eR−1
acc0
· R−1

s · Rr · acc0Vg. (3.45)

The simulated joint trajectories of the right upper limb were de-
termined following the D1 Proprioceptive Neuromuscular Facilita-
tion (PNF) diagonal (Voss et al., 1985), commonly used in neurore-
habilitation therapies, guided by a simulated end-effector-based robot.
Therefore, knowing the fixed shoulder joint and wrist joint poses along
the upper-limb movement, the proposed method was evaluated.

3.5.1 Results & Discussion

In this scenario, the simulated upper-limb joint variables are compared
against the estimated through the proposed algorithm. Figure 3.7
shows the seven upper-limb joint variables defined, blue smooth line,
and the estimated, red dotted line, during the D1 PNF diagonal. In
addition, the root mean square error (RMSE), blue bar, and the max-
imum error, orange bar, are also shown. Furthermore, the normalized
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wrist and elbow trajectories simulated and estimated are also shown
as blue smooth and red dotted lines, respectively.
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Figure 3.7: Simulation error regarding the joint variables and the normalized
elbow and wrist positions. Blue smooth lines represent the defined
trajectories and red dotted lines the estimated trajectories. In
addition, the RMSE, blue bar, and the maximum error committed,
orange bar, in terms of joint variables are shown.

The presented results show high accuracy, less than 1 mm, with
respect to the two studied joints, at each axis. Regarding the joint
variables, the maximum error committed at each joint movement
is less than 0.5 deg with a mean RMSE of 0.1361 deg. This result
demonstrates the precision of the proposed algorithm when all the
constraints are controlled during the exercise. The next step is to
evaluate this method in a real scenario with healthy subjects and an
end-effector-based robot.

3.6 validation in real environment

Before the proposed algorithm can be used in a clinical environment,
it is necessary to study its accuracy in a real environment with healthy
subjects. The proposed scenario was composed by an end-effector-
based robot with seven DoFs, the same robot used in the simulation
scenario, an optoelectronic system, basad on eight six DoFs optical
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tracking cameras Optitrack V100: R2 (see Appendix A.5 for more
details), and an accelerometer device (see Appendix A.3), as shown in
Figure 3.8.

Markers (x25)

Optitrack Cameras

Accelerometer

End-effector-based
Robot

Figure 3.8: Healthy subjects performed arm movements using an end-ef-
fector-based robot with seven DoFs, wearing an accelerometer,
placed onto the upper arm, and special jacket with 25 passive
optoelectronic markers.

The real joint variables, defined as the ‘ground truth’, were mea-
sured through the optoelectronic system following the baseline upper
body marker set (NaturalPoint, 2016), placing 25 retro-reflective mark-
ers onto a specific jacket as shown in Figure 3.8.

The proposed algorithm was applied with the gain matrix and
the damping factor set to K = diag{1.5, 1.5, · · · , 1.5} N/ms and k2 =

0.5, respectively, with a sampling rate of 100 Hz. They were chosen
through a ‘trial and error’ approach, under the exercise conditions.
The shoulder joint location was measured with the optoelectronic.
However, although this joint is assumed to be fixed, little shoulder
displacements may appear during the exercise. Finally, the hand of the
user was tightly attached to the end effector of the robot remaining
constant and known.

Seven right-handed healthy subjects performed three trials of a
point to point task, previously established in the robotic device. Thus,
the subjects only have to hold the end effector avoiding jerk and fast
upper-limb movements. The main information of the healthy subjects
is presented in Table 3.2.
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Table 3.2: Demography of the healthy subjects.

ID 1 2 3 4 5 6 7

Age 24 31 24 26 29 24 25

Forearm length [m] 0.25 0.21 0.26 0.26 0.26 0.23 0.26

Upper arm length [m] 0.34 0.30 0.32 0.29 0.31 0.33 0.30

3.6.1 Results & Discussion

The accuracy of the proposed algorithm is measured as the difference
between the estimated joint variables and the ones measured through
the optoelectronic system, namely direct joint variables. Figure 3.9
shows an example of the direct joint variables online measured, blue
smooth lines, and the estimated ones, red dotted lines, of a user
performing the exercise. Table 3.3 shows the seven joint variables, the
elbow joint position and the wrist joint position errors in terms of
RMSE, standard deviation (SD), and correlation (R).
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Figure 3.9: Joint variables of one trial performed by a healthy subject. The
blue smooth lines represent the direct joint variables and the red
dotted lines, the estimated joint variables.

The estimated joint variables show high correlation with respect to
the direct joint variables. It must be noted that the elbow and wrist
joint positions are accurately estimated, the RMSE is less than 2.5 cm
in both joints. This error implies a RMSE less than 5 degrees in all
joint variables with low SD. The minimum error is observed in eF-E
movement and the maximum in the most distal movement, the wF-E,
the most distal movement. Finally, the simplification performed to
estimate the γ angle allowed the algorithm to be performed in real
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time. Thus, the mean computational time necessary to estimate the
current seven upper-limb joints was 0.9 ms, running on an Intel Core
i7 3.40GHz computer with Matlab R2017a.

Table 3.3: Estimation error of the joint positions and movements regarding
the optoelectronic system, mean of the seven subjects.

RMSE SD R

Elbow joint position [cm] 2.13 1.10 0.977

Wrist joint position [cm] 1.89 1.12 0.982

sAB-AD [deg] 3.55 2.15 0.957

sF-E [deg] 3.27 2.99 0.977

sRot [deg] 4.57 3.04 0.966

eF-E [deg] 1.72 1.54 0.995

wP-S [deg] 4.51 2.74 0.873

wDev [deg] 2.83 2.23 0.899

wF-E [deg] 4.74 3.28 0.982

From the results, it is concluded that the proposed algorithm is able
to accurately estimate the seven upper-limb movements in real time.
In addition, this technique do not disturb the normal patient-clinician
interaction as it only uses one non-invasive wireless and wearable
device placed onto the upper arm.

3.7 stability of the algorithm in clinical environments

Once it has been demonstrated that the proposed algorithm is suitable
for this application, the last step is to study its stability in patients,
where shoulder movements cannot be completely avoided. In this
scenario, this algorithm was compared with the previously proposed
by Papaleo et al.

This experiment was carried out by three post-stroke patients dur-
ing a session of their rehabilitation therapy. The affected limb was
evaluated through two assessment scales, Ashworth (Bohannon and
Smith, 1987) for the elbow joint, and Fugl-Meyer (Fugl-Meyer et al.,
1975) for the upper limb. Their scores are shown in Table 3.4.

The end-effector-based robot used was the PUPArm robot, a planar
end-effector-based robot (Appendix A.2 contains more details about
PUPArm robot). The wF-E and wDev remained fixed during the
exercise, being able to estimate the shoulder displacements during the
rehabilitation exercise through the algorithm proposed in the following
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Table 3.4: Demographic and clinical characteristics of the post-stroke patients.
Fugl-Meyer scale for upper extremity was divided in: A) Upper
Extremity, B) Wrist, C) Hand, D) Coordination/speed

ID Affected

limb

Age Forearm

length [m]
Upper arm

length [m]
Fugl-Meyer

(A+B+C+D)
Ashworth

1 Right 51 0.24 0.30 (33+7+7+2) /66 2

2 Left 58 0.25 0.33 (27+4+3+3) /66 3

3 Left 74 0.24 0.35 (24+2+2+1) /66 3

chapter, due to the optoelectronic system could not be installed in the
clinical environment. Therefore, two wearable sensors were necessary
to estimate the joint variables, an accelerometer, placed onto the upper
arm, and a MARG (see Appendix A.3 for more details), placed onto
the shoulder, as shown in Figure 3.10. Detailed explanation regarding
the method used to measure the shoulder movements is described in
Chapter 4.

Figure 3.10: Patient performing a point to point exercise with the PUPArm
robot, wearing a MARG, placed onto the shoulder, and an accel-
erometer, placed onto the upper arm.

The patients performed three point to point movements in a roulette
activity (Lledó et al., 2016). The algorithm parameters selected for both
algorithms were the same used in Section 3.6, also sampled at 100 Hz,
and online estimating the five joint variables.

3.7.1 Results & Discussion

In order to compare both algorithms over shoulder displacements,
the algorithm that will be described in Chapter 4 was used. The first
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shoulder pose estimated by this algorithm was assumed as the fixed
pose. In addition, when the algorithm described by Papaleo et al.
could not estimate the joint variables, denoted as instability period,
the last known joint variables were assumed. This instability period is
marked as a gray color area in Figure 3.11.

The upper limb joint variables estimated from both methods are
presented at the top of Figure 3.11. The blue smooth lines represent
the kinematic reconstruction obtained from the proposed algorithm,
and the estimated joint variables through Papaleo et al. algorithm
is presented as red dotted lines. In the middle of Figure 3.11, the
shoulder displacements of the three patients during the exercise are
shown. Finally, the trajectory followed through the end effector of the
robot is presented at the bottom of Figure 3.11, where the red circles
denote the eight possible goals in the roulette exercise.

In addition, the measured ROM of each patient, estimated through
the proposed algorithm, is presented in Table 3.5. It is observed that
Patient #1, the patient with higher Fugl-Meyer and lower Ashworth
scores, has the higher ROM, as it was expected. Furthermore, this
patient performed the exercise with the higher roulette diameter,
15 cm, manually selected to optimize the motor recovery.

Table 3.5: ROM, in degrees, performed by the patients, measured through
the proposed algorithm.

ID sAB-AD sF-E sRot eF-E wP-S

1 37.5 5.46 43.63 35.8 11.78

2 17.99 11.74 18.04 29.29 9.20

3 18.99 9.47 16.13 26.04 11.38

In summary, it is important to note that shoulder movements cannot
be avoided during a rehabilitation exercise with patients. Furthermore,
comparing both algorithms, it is observed that the estimated joint
variables are very similar outside of the instability areas. In addition,
just before the appearance of the instability, the difference between
both methods tends to increase. However, as it was not possible to
carry the optoelectronic system to the clinic, the error committed with
respect to the real joint variables could not be studied in these areas.
The instability of the Papaleo et al. algorithm appears due to the strict
constrains assumed by this algorithm as it is based on the upper limb
lengths. Thus, it can fail with little shoulder displacements, leading
a false ROM estimation and, therefore, an error in motor recovery
assessment.
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3.8 conclusions

This chapter presented a novel kinematic reconstruction algorithm
for the online estimation of a simplified upper-limb model with
seven DoFs. The proposed algorithm was developed to be used in ro-
bot-aided neurorehabilitation therapies with end-effector-based robot.
It only used the static acceleration of the upper arm, acquired through
a wireless accelerometer, and the information of the end effector of
the robot, where the hand of the patient is attached. It was assumed
slow upper-limb movements, to avoid the dynamic component of the
acceleration, and that the shoulder remained fixed during the exercise.
Furthermore, a protocol to manually measure the length of the upper
arm and forearm was introduced. Over these conditions, the proposed
method can be easily used in clinical environments without disturbing
the patient-clinician interaction.

This algorithm was firstly validated in a simulated environment
in order to test the theoretical development of the algorithm. In this
scenario, the restrictions of slow movements and fixed shoulder can
be controlled complying with the mathematical restrictions. The de-
veloped environment simulated a rehabilitatation exercise, the D1
PNF diagonal, with an end-effector-based robot where the upper-limb
trajectory was known and the acceleration at each position could be
computed. The results showed an accurate estimation of the seven joint
variables, less than 0.5 deg, and the wrist and elbow joint positions,
less than 1 mm, throughout the upper-limb movement.

The next step was to study its precision in a real environment with
healthy subjects. Thus, an end-effector-based robot was used to per-
form a 3D point to point task by seven healthy subjects. The real
upper-limb trajectory was measured by an optoelectronic system and
compared to the joint variables estimated through the proposed algo-
rithm. Furthermore, the upper-limb lengths were manually measured
and an accelerometer was placed onto the upper arm. In this exercise,
the error increased with respect to the simulation exercise, as it was
expected. However, the measured error remains less than 5 deg in
all joint variables and less than 2.5 cm with respect to the elbow and
wrist joint positions. Therefore, the proposed algorithm was able to
accurately estimate the joint variables during a rehabilitation exercise,
as well as measure the ROM performed by the patients after a therapy
session in real time.
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Finally, this algorithm was compared to Papaleo et al. algorithm
in a clinical environment with three patients, during a rehabilitation
exercise using a planar end-effector-based robot. It was observed that
when the patients performed shoulder displacements to achieve the
goal, due to the motor impairments, the proposed algorithm is stable
whilst the other algorithm was unable to determine the kinematic
configuration of the upper limb.

Although the proposed algorithm accurately estimates the seven
upper-limb joint movements and is stable to shoulder displacements,
the main limitation is the assumption that the shoulder is fixed dur-
ing the exercise. Furthermore, these compensatory movements can
have beneficial effects on functional outcomes (Jones, 2017). There-
fore, an improvement of this algorithm is explained in Chapter 4,
where shoulder displacements are measured together with the joint
movements.



4
E S T I M AT I O N O F J O I N T M O V E M E N T S A N D
S H O U L D E R D I S P L A C E M E N T S I N PAT I E N T S

The algorithm presented in the previous chapter allows a therapist to
assess the motor recovery of the upper limbs through the estimated
ROM. However, it is assumed that the shoulder is fixed, a strong
constraint that cannot be applied to all patients. Hence, this chapter
presents a modification of the previous algorithm in order to also
estimate the shoulder displacements, just adding a magneto-inertial
device onto the shoulder. Then, the proposed algorithm is validated
with healthy subjects performing a rehabilitation execersie in a planar
rehabilitation robot. Finally, the algorithm is tested in the worst scen-
ario, when large shoulder displacements appear.

The research presented in this chapter has been previously pub-
lished in Bertomeu-Motos et al. (2015b).

4.1 kinematic upper-limb model

The algorithm presented in this chapter performs a five DoFs kinematic
reconstruction of the upper limb. Therefore, the corresponding DH
parameters has been selected as shown in Table 4.1. The length of the
upper arm and forearm are also manually measured following the
methodology proposed in Section 3.1.

Table 4.1: DH parameters of the upper limbs (i ∈ [1, 7]).

Joint

Movement

Right upper limb Left upper limb

θi di ai αi θi di ai αi

sAB-AD π/2 + q1 0 0 π/2 π/2 + q1 0 0 −π/2

sF-E 3π/2 + q2 0 0 π/2 3π/2 + q2 0 0 −π/2

sRot q3 lu 0 −π/2 q3 −lu 0 π/2

eF-E π/2 + q4 0 0 π/2 π/2 + q4 0 0 −π/2

wP-S q5 l f 0 0 q5 l f 0 0

43
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4.2 elbow and shoulder joints estimation

This algorithm uses the same method as proposed in Section 3.2, i. e.
through the inverse of the Jacobian. However, it is not necessary to
compute the augmented Jacobian as the kinematic chain is composed
of five DoFs, a non-redundant chain. Thus, (3.6) remains

~̇q = J−1 (~q) {~v + K · ~err} , (4.1)

and, therefore, the numerical integration can be applied. On the other
hand, the acceleromenter orientation is obtained through the tech-
nique presented in Section 3.3. The only difference is that the two
known joints are the wrist and the elbow, instead of the wrist and
the shoulder. Thus, the elbow position is known from the wrist joint
position, provided by the robot, as

rPe =
rTw ·

[
0 0 −l f 1

]T
. (4.2)

Then, this algorithm has to estimate the elbow rotation and the
shoulder pose. To estimate the elbow rotation and the shoulder po-
sition, γ angle must be obtained from the static acceleration of the
upper arm. In this case, γ angle is obtained by rotating the Π plane,
obtained from (3.10), around the gravity vector (g), placed at the elbow
joint (E), forcing to also include the wrist joint (W). Thus, γ angle is
also defined as the angle between W and its projection over Π (W̃),
where W̃ is determined as

W̃ =
(

g · Ŵ
)

g + cos (γ)
(
Ŵ −

(
g · Ŵ

)
g
)
− sin (γ)

(
g× Ŵ

)
, (4.3)

where

Ŵ =
(W − E)
‖ (W − E) ‖ ,

g =
[

0 0 −1
]T

.

Then, γ angle is computed by solving (3.12), i. e. forcing Π to con-
tain W. Thus, two possible accelerometer rotations are also obtained,
acc0 R(j)

acc with j ∈ [1, 2]. From this two solutions, two shoulder positions
are derived

rPj
s =

rT j
e ·
[

0 lu 0 1
]T

, (4.4)
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with

rT j
e =




rRj
e

rPe

0 1


 ,

rRj
e =

rRacc0 · acc0 Rj
acc · acc0 Re.

From these two solution, there is only one that meets the restriction
that the Z-axis point the same sense as the result of EW × ES and,
therefore, the shoulder position and the elbow pose are determined.

The last step is to estimate the shoulder orientation. For this reason,
a magneto-inertial device is placed onto the shoulder, as shown in
Figure 4.1, in order to measure the orientation of the selected device
and translate this orientation to the shoulder joint. However, this
orientation is not directly obtained.

IMU or MARG

Accelerometer

S

E

W

Figure 4.1: Reference orientation of the accelerometer and the magneto-iner-
tial device.

The relation between the device and the shoulder can be computed
if the device is initialized in a known orientation regarding S0 (rRDev0).
Then, the rotation matrix that relates the device orientation with
respect to S0 remains

rRre f =
rRDev0 · Dev0 Rre f , (4.5)

where Dev0 Rre f is the rotation matrix of the device at that initial posi-
tion. Therefore, the rotation of the device regarding S0 remains known
as

rRDev = rRre f · DevR−1
re f , (4.6)
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with DevRre f represents the current rotation of the device. Finally, as
the position of this device with respect to the shoulder is known
(Dev0 Rs), the orientation of the shoulder is determined as

rRs =
r RDev ·Dev0 Rs, (4.7)

and the homogeneous transformation matrix of the shoulder is estim-
ated as

rTs =




rRs
rPs

0 1


 . (4.8)

From this point, it is necessary to establish the initial position of
the upper limb, computed through the same method presented in
Section 3.4 and then, the numerical integration proposed through (3.8)
and (4.1) can be applied.

4.3 algorithm validation

The accuracy of the proposed algorithm was studied with the PUPArm
robot (detailed in Appendix A.2). In this scenario, a MARG and an
accelerometer (refer to Appendix A.3 for detailed information) are
placed onto the shoulder and upper arm, respectively, as shown in
Figure 4.2. Furthermore, the real joint variables are measured through
the six DoFs optical tracking camera Optitrack V120: Trio (for more
information, please refer to Appendix A.5).

3D Roulette
activity

Accelerometer

MARG

End-effector Robot

Figure 4.2: Healthy subject performing the 3D roulette activity. She wore
an accelerometer and a MARG placed onto the upper arm and
shoulder, respectively.
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Four healthy right-handed subjects, presented in Table 4.2, per-
formed a rehabilitation exercise, a point to point exercise in a roulette
scenario, doing 24 displacements. The algorithm parameters, were set
to K = diag{1.5, 1.5, ...1.5} N/ms and k2 = 0.5, the gain matrix and
the damping factor respectively, with a sampling rate of 100 Hz. Fur-
thermore, the rotation matrix of the MARG placed onto the shoulder
was estimated through the Madgwick et al. algorithm.

Table 4.2: Demography of the healthy subjects.

ID 1 2 3 4

Age 21 51 32 31

Forearm length [m] 0.23 0.21 0.25 0.21

Upper arm length [m] 0.32 0.33 0.31 0.33

4.3.1 Results & Discussion

The difference between the estimated and the measured upper-limb
joint variables and shoulder position are studied in terms of RMSE,
SD.

The mean error committed is presented in Table 4.3. It is observed
that the error regarding the shoulder movements is less than 2.5 cm.
On the other hand, the error with respect to the five joint variables is
lower than 5 deg. The maximum error appears in the sF-E, possibly due
to the alignment of the accelerometer with respect to the upper-arm
segment, a critical point of this algorithm.

Table 4.3: Error committed between the estimated and the real upper-limb
variables, mean of the four subjects.

RMSE SD

Shoulder Left/Right [cm] 2.13 0.92

Shoulder Backward/Forward [cm] 2.43 1.45

Shoulder Up/Down [cm] 1.55 0.56

sAB-AD [deg] 1.42 0.91

sF-E [deg] 4.51 0.34

sRot [deg] 2.87 0.92

eF-E [deg] 2.87 0.92

wP-S [deg] 1.96 0.02
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If we compare this error with the algorithm presented in Chapter 3,
it is observed that they are very similar. This fact was expected because
the used technique was based on the same criterion. In terms of
shoulder displacements, the measured error is lower than 2.5 cm, an
acceptable error for this application.

Figure 4.3 shows an example of the estimated, red dotted lines, and
the measured, blue smooth lines, regarding the joint variables and the
shoulder displacements during a complete exercise.
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Figure 4.3: Joint variables (left) and shoulder movements (right) estimated
through the proposed algorithm, red dotted lines, and measured
through the optoelectronic system, blue smooth lines, of a subject
during a complete exercise.

4.4 study of the rom with trunk compensation

This algorithm proposes a method to measure shoulder displacements
during a rehabilitation exercise. This trunk compensations appear
when the patients try to achieve the goals of the proposed exercises due
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to the loss of mobility. Therefore, this feature allows the therapist to
asses not only the upper-limb ROM, but also movement compensation,
directly related to shoulder displacements.

This experiment evaluates the ROM of 51 healthy right-handed
subjects, 29 men and 22 women, between 20 and 72 years old. They
performed 24 point to point movements in two different scenarios of
the same exercise. The first trial they tried not to move the shoulder
during the exercise. Then, in the second trial, the subjects were in-
structed to follow the hand movements with the trunk. The same
setup as in the previous section was used, two wearable devices and
an optoelectronic system.

4.4.1 Results & Discussion

The results are presented in Figure 4.4 as a boxplot of the mean ROM,
estimated through the proposed algorithm, at each joint variable in
both exercises. The blue boxes represent the exercise without compens-
ation and the orange boxes the exercise with trunk compensation. Both
groups were statistically analyzed with the Pearson’s linear correlation
coefficient. It must be observed that the mean estimated ROMs in the
compensation trial are lower than in the trial without compensation,
showing significant differences in four of the five joint movements.
The ROMs of the wP-S movement are similar in both scenarios, show-
ing a p − value > 0.05. This effect is explained due to this specific
movement is not affected by the trunk compensation.

Finally, the error committed in the second scenario, in terms of
shoulder displacements, is measured in order to study the behavior
of the proposed algorithm when high displacements were performed.
Figure 4.5 shows the error committed in terms of RMSE and the SD
together with an example of the shoulder displacements estimated,
red dotted line, and measured, blue smooth line. It must be noted
that the lower error is committed in the forward/backward movement
and all movement errors are below 5 cm, a very good estimation with
respect to the real shoulder for the purpose of this application.

4.5 conclusions

This chapter improved the algorithm described in the previous chapter.
It was able to estimate the shoulder displacements and five upper-limb
movements during the rehabilitation exercise in a real clinical environ-
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the SD of all subjects.

ment. Although the joint movements are reduced, from seven to five,
this two movements are commonly fixed by the end-effector-based
robots used in neurorehabilitation therapies.

It was studied the accuracy of the proposed algorithm obtaining
good accuracy, less than 5 deg regarding the joint variables and less
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than 2.5 cm with respect to the shoulder position. While there are
extensive technologies applied to the measurement of human limbs
for neurorehabilitation purposes, to my knowledge this is the first
algorithm that is able to estimate not only the upper-limb joint move-
ments, but also the trunk compensation through non-invasive wear-
able devices that allow a normal patient-clinician interaction in real
rehabilitation environments.

The kinematic analysis of the patient presented here was developed
to be used in clinical environments. However, technology solution
for home environments can help to improve the neurorehabilitation
outcomes and to increase the independence at home for people with
severe motor impairments. Thus, the next chapter investigates two
intelligent technology solutions for rehabilitation and assistance scen-
arios.
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5
I N T E L L I G E N T T E C H N O L O G Y S O L U T I O N S F O R
R E H A B I L I TAT I O N A N D A S S I S TA N C E AT H O M E

This chapter presents two novel systems based on artificial intelligent
techniques. Section 5.1 proposes a novel system to intelligently assess
the quality of a set of upper-limb movements offering a new tool to
guide post-stroke patients during a rehabilitation exercise at home.
Section 5.2 proposes an intelligent ECI that uses the information of
the environment and the behavior of the user to enhance the level
of independence at home for people with reduced mobility. Finally,
Section 5.3 summarizes and concludes this chapter.

5.1 upper-limb movements analysis for self-managed re-
habilitation

After stroke, repetitive and intense therapy improves the rehabilitation
progress. However, a discontinuity between therapy in hospital and
at home slow down the upper-limb mobility recovery (Demain et al.,
2013). Is here where intelligent technology can play an important role
offering tools for self-managed rehabilitation, always supervised by a
clinician.

This section introduces a method for rehabilitation at home based on
the measurement of kinematic configuration of the upper limb fused
with machine learning techniques in order to guide the patients during
the exercise, according to the quality of the movement performed.

5.1.1 Estimation of Upper-limb Kinematic Configuration

In Section 2.2, three different methods to measure the kinematic con-
figuration of the body joints have been introduced. However, as the
proposed system has to be affordable, easy to use and precise in the
estimation of the joint movements, the wearable inertial-based device
systems are the best that fit these conditions. From literature, it has
been demonstrated that with only three magneto-inertial devices it
is possible to accurately estimate the kinematic configuration of the

53
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upper limbs (de Vries et al., 2010; Bouvier et al., 2015; El-Gohary and
McNames, 2015).

The estimation of the orientation of each upper-limb segment was
performed through a calibration process in order to know the orienta-
tion of the three devices with respect to the reference system S0. Thus,
as described in Section 4.2, if the devices are initialized in a known
orientation, the orientation of each segment is estimated as

rRupper =
rRDevupper · Dev0 Rupper, (5.1)

rR f ore =
rRDev f ore · Dev0 R f ore, (5.2)

rRhand = rRDevhand · Dev0 Rhand, (5.3)

where rRDevupper ,
rRDev f ore and rRDevhand are the current orientation of the

devices obtained through (4.5) and (4.6); and Dev0 Rupper, Dev0 R f ore and
Dev0 Rhand are the reference position of the three devices with respect
to the corresponding segment.

Finally, following the kinematic chain of the upper limbs used in
Section 3.1, the matrices related to the seven upper-limb joints remain

Ts =




rRupper
rPe

0 1


 , (5.4)

Te =




rR−1
upper · rR f ore

rPe

0 1


 , (5.5)

Th =




rR−1
f ore · rRhand

rPh

0 1


 , (5.6)

being

rPe =
rRupper ·

[
0 lu 0

]T
, (5.7)

rPh = Ts · Te ·
[

0 0 l f 1
]T

. (5.8)

Finally, the online estimation of the joint variables are computed
using the integration method proposed in Section 3.2, through (3.6)
and (3.8).

5.1.2 Evaluation of Upper-limb Movements

The proposed system assesses the quality of the upper-limb move-
ments performed by the patients comparing them to the expert move-
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ments, i. e. clinicians. These movements are a set of gestures that goes
from simple actions, e. g. touch the head, to complex actions, e. g.
draw a circle with the hand, commonly used in neurorehabilitation
therapies.

The first step is to present to the patient the gesture that has to be
performed. Then, a time series classification model, trained through
the expert gestures, classifies the gesture that the patient executes.
From literature, it was found an adaptive system able to operate
with sequential and multivariate data in noisy environments, a model
that perfectly adjust to our data. This model, called Online Infinite
Echo-State Gaussian Process (OIESGP), was introduced by Soh and
Demiris in 2015. It fuses a class of recursive neural network, the
echo-state network (Jaeger, 2001), with Bayesian online learning for
Gaussian processes (Csató and Opper, 2002). Furthermore, it can
behave as a generative classification model in order to know the
confidence about the prediction.

After the classification of the gesture performed, it is complemented
by the dynamic time warping (DTW) (Sakoe and Chiba, 1978) as
follows:

a. The patient executed a correct gesture when it is correctly classi-
fied and the DTW distance is low at each joint variable.

b. A false positive can be detected if a desired gesture is correctly
classified but the distance between the executed movement and
the expert movement is high enough.

c. If the model classifies an undesired gesture and the DTW dis-
tance is low with respect to that gesture, it implies that the
patient misunderstood the order and executed that gesture cor-
rectly, not the proposed one.

d. A false negative can be detected if an undesired gesture is clas-
sified, the distance with respect to that gesture is high, but the
distance with respect to the proposed gesture is low.

e. The patient could not perform the desired gesture correctly if
the model classifies a different gesture and the DTW distance is
high with respect to the classified and the proposed gesture.

Finally, according to the previous statements, after each movement
the system can make an intelligent decision taking into account the
quality of the movement executed. Furthermore, through all the ac-
quired information, such as ROM, joint movements, DTW distance



56 intelligent technology solutions for rehabilitation and assistance at home

or gestures correct classified, the therapist can evaluate the patient
improvements.

5.1.3 Experimental Evaluation

The potential of this system in terms of quality movement was eval-
uated. Thus, two expert performed ten trials of a set of gestures,
with the dominant limb, in order to train the OIESGP model. Then, a
healthy subject and two stroke patients executed five trials of these
gestures with the dominant and affected limbs, respectively, to study
the capability of the trained model to classify the non-expert gestures
and evaluate the DTW distance.

All the subjects wore three MARG sensors (see Appendix A.3),
placed onto the upper arm, forearm and hand. A sEMG armband
(see Appendix A.4 for more details) was placed onto the proximal
part of the forearm in the expert subjects, as observed in Figure 5.1.
The upper-limb segments of each subject were manually measured as
proposed in Chapter 3. Table 5.1 shows the information of the experts,
the healthy subject and the patients. In addition, the affected limbs of
the patients were evaluated through the Ashworth test (Bohannon and
Smith, 1987) for the elbow joint, and the Daniels and Worthingham’s
Muscle Testing (Hislop et al., 2013).

Figure 5.1: Experimental setup. The subjects wore three magneto-inertial
devices placed onto the upper limb. Furthermore, the experts
subjects performed the gestures with an sEMG armband. They
were sat down in front of a screen where the desired gesture was
shown.
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Table 5.1: Main information of all the participants

ID D/A limb Age Forearm

length [m]
Upper arm

length [m]
Asworth DWMT

E1 Right 27 0.24 0.310 - -

E2 Right 28 0.28 0.30 - -

H1 Right 28 0.27 0.23 - -

P1 Right 74 0.28 0.29 0 3/5

P2 Right 68 0.27 0.28 0 3/5

E: Expert, H: Healthy Subject, P: Patient.
D/A limb: Dominant (for healthy subjects)/Affected (for patients) limb.

The subjects sat down in front of a screen where the desired gesture
was shown. They had five seconds, at most, to complete the corres-
ponding gesture. However, the experts were instructed to perform
slow movements and complete the gesture in exactly five seconds.
All the devices were sampled at 200 Hz. The rotation matrix of each
MARG device was estimated through the Madgwick et al. algorithm.
The set of gestures determined for this experiment are presented in
Table 5.2. The starting position of the corresponding limb was with
the hands over the thighs.

Table 5.2: Set of the defined gestures.

Name Action

Mouth The participant touches his/her mouth with the finger-
tips.

Shoulder The participant touches his/her contralateral shoulder.

Knee The participant touches his/her contralateral knee.

Ear The participant touches his/her contralateral ear.

Head The participant touches the top of the head.

Triangle The participant draws a triangle with the hand in front
of his/her chest.

Square The participant draws a square with the hand in front
of his/her chest.

Circle The participant draws a circle with the hand in front of
his/her chest.
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5.1.4 Results & Discussion

The acquired data from the experts were used to train three OIESGP
models. Figure 5.2 shows a graphic representation of each gesture
regarding the seven joint variables. For better visualization, each
gestures was normalized with respect to the mean ROM of each

E
A

R
H

E
A

D
K

N
E

E
M

O
U

T
H

S
H

O
U

L
D

E
R

S
Q

U
A

R
E

T
R

IA
N

G
L

E

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

C
IR

C
L

E

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

Time [sec]

sAB-AD wF-EwDevwP-SeF-EsRotsF-E

Figure 5.2: Mean joint movements of the gestures performed by the experts.
The blue area represents the SD of each joint variable.
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joint variable, shown in Table 5.3. The blue area represents the SD of
each joint movement.

Table 5.3: Mean ROM of each joint variable regarding the expert gestures.

Gesture sAB-AD sF-E sRot eF-E wP-S wDev wF-E

Mouth
RMSE 17.7 43.5 33.1 64.3 94.3 19.5 18.6

SD 12.6 3.3 10.7 7.4 12 4.6 11.2

Shoulder
RMSE 29.2 46.4 59.4 67.1 71.8 14.6 18.8

SD 21.2 3.3 30.0 10.6 7.3 6.5 6

Knee
RMSE 15.7 24.9 58 15.2 22.5 7.1 10.1

SD 5.9 5.5 6.1 6.2 6 2.6 3.2

Ear
RMSE 51.4 57.7 61.6 61.2 109.4 16.3 16.6

SD 22.1 9.3 34.2 7.9 9.9 6.7 3.1

Head
RMSE 49.5 62.2 58.7 56.8 84.6 18.9 14.4

SD 30.8 8 23.3 8.1 11.4 7.8 5

Triangle
RMSE 60.1 57.1 80.7 29.3 19.4 17.8 21.4

SD 12.3 4.7 18.8 11.5 5 8.7 9.8

Square
RMSE 86.7 58.3 100.2 37.2 21.4 19.2 23.9

SD 28.7 5.9 20.9 13 5 9.2 7.2

Circle
RMSE 73.2 56.5 84 29 22.9 14 14.9

SD 18.6 4.5 17.2 13.3 7.7 6.6 5

Then, Figure 5.3 shows the confusion matrices obtained through the
test set. It presents three different training scenarios: with the seven
joint variables, with the eight sEMG sensors and with only five joint
variables, skipping the wF-E and wDev joint movements. The training
results are studied with only five upper-limb joint movements due to
the gestures chosen, since they were focused on gross movements. Fur-
thermore, the patients with high motor disability usually are unable
to accurately control the distal joint movements.

From the results, it must be noted that two of the proposed models,
using five and seven joint movements, were able to classify the set
of gestures over the 80% of success. However, when the model was
trained with only the sEMG data, the model poorly classifies the 46%
of the gestures.

It should be emphasized that, even though low accuracy was ob-
tained with sEMG training data, three groups can be differentiated,
one is composed of the Face, Mouth, Shoulder, Ear and Head gestures,
the second is only the Knee gesture, and the third group is the Triangle,
Square and Circle gestures. These groups discern gestures performed
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Figure 5.3: Confusion matrices obtained with the OIESGP model trained
through expert data, in three different scenarios: seven joint move-
ments, five joint movements, and sEMG.

around the face, gestures that drew a figure in the air, and the knee
gesture.

The next step was to study the classification model and the DTW
distance with the healthy subject and patients. The model trained
with only five joint variables was chosen, as the classification accuracy
of the models trained with five and seven joint variables were very
similar. Figure 5.4 presents the confusion matrix of the classification
gestures obtained with the healthy user, with an accuracy of 64%. It is
observed that the gestures Shoulder and Head are confused with a very
similar gesture, Mouth. This effect also occurs with Circle gesture, that
is confused with Square. The success rate of the classification model
with the patients are 38% and 8.3%, respectively. This inaccuracy is
owed to the motor impairments that, even the DWMT scores shows a
full range of motion against gravity, they are unable to perform the
desired gestures.

On the other hand, Figure 5.5 shows the classification results of the
healthy subject and the patients, regarding the DTW distance to the
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Figure 5.4: Confusion matrix obtained with the healthy subject gestures. This
data was tested with the OIESGP model trained through the five
joint movements scenario.

true and predicted gestures. The DTW is computed as the mean of the
five joint movements. It is observed that when a gesture was correctly
classified, marked as circle, the distances to the predicted and true
gestures are the same, as expected. However, when a gesture was
wrongly classified, marked as asterisk, both distances are different. In
case the distance to the predicted gestures is greater than the distance
to the true gesture, the asterisk appears under the diagonal, otherwise,
the asterisk is over the diagonal. The healthy subject is printed in red
color, Patient #1 in green color, and Patient #2 in blue color.

From Figure 5.5, it must be noted that the healthy subject obtains
the lowest distances, regardless the prediction made, while the DTW
distance obtained with the patient gestures are always higher. It is
explained as the movement performed by the patients is deficient and,
even though the model achieves a correct classification, the quality of
the gesture is low regarding the expert joint movements.

In addition, Figure 5.6 presents three of these cases to better under-
stand how to interpret the results of the classification model together
with the DTW distances.

The first example, left column, shows the third trial of the Ear
gesture performed by the healthy subject. The top graph shows the
probability over the different gestures throughout the movement,
where the corresponding gesture was correctly classified, shown as
thick purple line. Under that graph, the left column presents the
performed joint movements, purple line, over the desired movement,
blue line, computed from the expert data. It is observed that the joint
movements were properly executed and, therefore, the aligned signals,
right column, are very similar, with low DTW distance computed.
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Figure 5.5: Graphic representation of the DTW distance regarding the true
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is printed in red color, Patient #1 in green color, and Patient #2 in
blue color.

The second trial is the third Shoulder gesture performed by Patient #2.
In this case, the gesture was also correctly classified, thick orange
line, but the performed joint movements were not properly executed
and, therefore, the DTW distance is high. Thus, the system could
detect that the patient need to improve the execution of this gesture.
The last trial shown is the third Circle gesture done by Patient #2.
The performed gesture was misclassified by the model and, as it
can be observed in the first column, the executed joint movements
were very different from the expert movements. Then, two DTW are
computed, the distance from the desired gesture, in the second column,
obtaining high distances at each joint movement, and the distance
from the predicted gesture, third column, computing high distances
too. Thus, we can conclude that the gesture performed by the patient
was incorrect.



5.1 upper-limb movements analysis for self-managed rehabilitation 63

S
u
b
je

ct

E
xp

e
rt

H
1

: 
T

ri
a

l 3
 -

 G
e

st
u

re
 E

A
R

0
5

00
.2

0
.4

0
.60
.81

T
im

e
 [

se
c
]

Probability
over Gestures

0
2

4

-4
0

-2
00

2
0

5
0

1
0

0
1

5
0

-2
00

2
0

0
2

4

2
0

4
0

6
0

5
0

1
0

0
1

5
0

2
0

4
0

6
0

0
2

4

-1
0

0

-5
0

2
0

6
0

1
0

0
1

4
0

-8
0

-6
0

-4
0

0
2

4

-2
00

2
0

5
0

1
0

0
1

5
0

-2
00

2
0

0
2

4
5

0

1
0

0

1
5

0

5
0

1
0

0
1

5
0

8
0

1
0

0
1

2
0

1
4

0
1

6
0

1
8

0

sAB-AD [deg]

T
im

e
 [

s
e

c
]

Deg

S
a

m
p

le
s

sF-E [deg] sRot [deg] eF-E [deg] wP-S [deg]

D
T

W
 =

 4
.4

2

D
T

W
 =

 5
.5

3

D
T

W
 =

 1
.6

4

D
T

W
 =

 2
.8

D
T

W
 =

 5
.7

1

P
2

: 
T

ri
a

l 3
 -

 G
e

st
u

re
 S

H
O

U
L

D
E

R

0
5

00
.2

0
.4

0
.60
.81

T
im

e
 [

s
e

c]

Probability
over Gestures

-5
00

5
0

5
0

1
0

0
1

5
0

-5
00

5
0

2
0

4
0

6
0

5
0

1
0

0
1

5
0

2
0

4
0

6
0

-1
2

0
-1

0
0

-8
0

-6
0

-4
0

-2
0

5
0

1
0

0
1

5
0

-1
2

0
-1

0
0

-8
0

-6
0

-4
0

-2
0

-2
00

2
0

4
0

5
0

1
0

0
1

5
0

-2
00

2
0

5
0

1
0

0

5
0

1
0

0
1

5
0

8
0

1
0

0

1
2

0

0
2

4
T

im
e

 [
se

c]

sAB-AD [deg] sF-E [deg]
sRot [deg]

eF-E [deg] wP-S [deg]

0
2

4

0
2

4

0
2

4

0
2

4

D
T

W
 =

 6
2

.5
6

D
T

W
 =

 2
1

.0
7

D
T

W
 =

 3
6

.6
9

D
T

W
 =

 4
0

.3
3

D
T

W
 =

 1
3

.6
8

Deg

S
a

m
p

le
s

0

5
0

1
0

0

5
0

1
0

0

5
0

1
0

0
1

5
0

5
0

1
0

0

2
0

4
0

6
0

2
0

6
0

1
0

0
1

4
0

2
0

4
0

6
0

2
0

6
0

1
0

0

2
0

4
0

6
0

-6
0

-4
0

-2
00

2
0

4
0

5
0

1
0

0
1

5
0

-4
0

-2
00

2
0

4
0

2
0

6
0

1
0

0
1

4
0

-6
0

-4
0

-2
00

2
0

4
0

-4
0

-2
00

2
0

4
0

2
0

6
0

1
0

0
-4

0

-2
00

2
0

4
0

2
0

6
0

1
0

0
-4

0

-2
00

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

2
0

6
0

1
0

0

8
0

1
0

0

1
2

0

1
4

0

2
0

6
0

1
0

0

8
0

1
0

0

1
2

0

1
4

0

0
2

4
T

im
e

 [
se

c]

sAB-AD [deg] sF-E [deg]

0
2

4

sRot [deg]

0
2

4

eF-E [deg]

0
2

4

wP-S [deg]

0
2

4

5
0

1
0

0
1

5
0

Deg

Deg

S
a

m
p

le
s

S
a

m
p

le
s

P
2

: 
T

ri
a

l 3
 -

 G
e

st
u

re
 C

IR
C

L
E

0
5

00
.2

0
.4

0
.60
.81

T
im

e
 [

se
c]

Probability
over Gestures

D
T

W
 =

 7
4

.5
1

D
T

W
 =

 5
7

.1
6

D
T

W
 =

 5
6

.9
9

D
T

W
 =

 1
2

3
.1

2

D
T

W
 =

 8
8

.0
7

D
T

W
 =

 9
0

.3
4

D
T

W
 =

 5
8

.7
8

D
T

W
 =

 7
4

.6
5

D
T

W
 =

 1
1

7
.9

9

D
T

W
 =

 9
6

.9
7

M
O

U
T

H

S
H

O
U

L
D

E
R

E
A

R

H
E

A
D

S
Q

U
A

R
E

C
IR

C
L

E

T
R

IA
N

G
L

E

K
N

E
E

S
u
b
je

ct

E
xp

e
rt

Fi
gu

re
5
.6

: E
xa

m
pl

e
of

th
re

e
di

ff
er

en
t

ge
st

ur
es

ex
ec

ut
ed

by
th

e
he

al
th

y
su

bj
ec

t
an

d
th

e
pa

tie
nt

s.
Th

e
pr

ob
ab

ili
ty

ov
er

th
e

ge
st

ur
es

w
as

es
tim

at
ed

by
th

e
O

IE
SG

P
m

od
el

(t
op

).
In

ad
di

ti
on

,t
he

le
ft

co
lu

m
ns

sh
ow

th
e

ex
ec

ut
ed

ge
st

ur
es

,p
ur

pl
e

sm
oo

th
lin

es
,r

eg
ar

di
ng

th
e

ex
pe

rt
jo

in
t

m
ov

em
en

ts
,

bl
ue

sm
oo

th
lin

es
.F

in
al

ly
,t

he
D

TW
di

st
an

ce
s

m
ea

su
re

d
fr

om
th

e
tr

ue
ge

st
ur

es
,c

en
te

r
co

lu
m

n,
an

fr
om

th
e

pr
ed

ic
te

d
ge

st
ur

e,
ri

gh
tc

ol
um

n,
ar

e
sh

ow
n.



64 intelligent technology solutions for rehabilitation and assistance at home

5.1.5 Conclusions

This section proposed a novel system for measurement and evaluation
of the quality of upper-limb gestures. While three wearable devices
online estimate the seven joint movements, an OIESGP model classifies
the gesture that the subject is executing. Then, the combination of
the model prediction with the measurement of the DTW distance
improves the assessment of the joint movements, being able to decide
the quality of the performed gesture.

The OIESGP model was trained through a set of eight gesture
performed by experts, obtaining high accuracy, more than 80%, in
two different scenarios: seven joint variables training and five joint
variables training. In addition, a sEMG bracelet with eight sensors
was also placed on the forearm in order to study the OIESGP model
accuracy with only this information. Even though low precision was
obtained, it was found an interesting result. With only the sEMG data,
the model was able to differentiate the three working areas of the
proposed gestures: the gestures performed near the face, the Knee
gesture, and the gestures that draw figures in the air.

Then, it was studied the proposed upper-limb movement assess-
ment with a healthy subject and two stroke patients. It has been
demonstrated that the fusion of the prediction model, with five joint
movements, and the DTW distance offers an intelligent system to
assess the quality of an executed movement, taking into account
each joint variable independently. Thus, it can be concluded that the
proposed system was able to determine the motor capacity over a
rehabilitation movement in an intelligent manner. Therefore, it has
the potential to become a novel tool for self-managed rehabilitation at
home. Furthermore, the acquired information also offers an important
data to the therapist in order to enhance the patient assessment.

5.2 user intention recognition for eci improvement

In this section the target patients are not just stroke survivors, it is
also extend to people with severe motor disabilities, e. g. people who
suffered a SCI. The purpose of this section is to develop and test
a multimodal system able to recognize the intention of the users,
and help them to perform ADL at home through an intelligent ECI
mounted on a wheelchair. Furthermore, this system has to adapt to
the residual capabilities of each user.
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This section’s research has been previously published in Bertomeu-
Motos et al. (2019).

5.2.1 Environmental Control Interface

One of the main parts of this system was the ECI, the interface used for
augmentative and alternative communication and for environmental
control. It was based on two software components: the GRID3 from
Smartbox1 and the SHX, a specific developed software. This ECI had
three different abstraction levels, shown in Figure 5.7. The first one
was related to the room, named ‘room menu’, the second allowed
the selection of an activity related to a specific room, named ‘activity
menu’, and the last level was related to the actions regarding a specific
activity, named ‘ADL menu’. Along this section, a jump between two
consecutive levels is named as ‘step’.

A) B)

C)

Figure 5.7: The ECI had three different abstraction levels: related to the room,
related to the activities that can be performed in a specific room
and related to the actions regarding a specific activity. An example
menu of each level is shown in (A), (B) and (C), respectively.

Levels one and two were specific grid sets created in GRID3. They
included the necessary grids to perform an ADL, a communication
grid, a grids for a wheelchair control and one for upper-limb exoskel-
eton or robotic arm control. The last three grids were out of the scope
of this thesis. Furthermore, the following color code had been used to
ease the scan: the red color represented the alarm; the green color was
used for communication purpose, computer control and digital leisure;
white color remarked the wheelchair and arm control; light blue for

1 http://thinksmartbox.com/

http://thinksmartbox.com/
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the rooms; and the dark blue was used for environmental control
activities. The dark blue cells linked GRID3 with SHX software. SHX
was used to develop the third level, the level for environmental control
management. Finally, the developed software allowed the user to scan
across the different cells and selected them through different access
technology, e. g. EOG, EEG or eye tracking, at the three abstraction
levels.

5.2.2 Prediction Model

The ECI was developed to combine the information gathered from the
environment with the user behavior in order to predict the intention
of the user. At home, the remarkable information about an ADL is the
room where the activity is being performed, the duration of the task,
the brightness of the room, the objects that are part of the activity and
where the user is looking at while performing the task.

Under these conditions and due to the difficulty of generating data,
the Conditional Random Fields (CRF) model was chosen as it fits our
conditions. It is a probabilistic model for labeling and segmentation
sequence data, introduced by Lafferty et al. in 2001. This discriminate
model uses not only the current state but also the previous states to
perform its prediction. Furthermore, as it is a conditional model, it
also specifies the probabilities of possible label sequences given an
observation sequence.

Finally, the model inputs were: the localization, the objects in the
environment, the object that the user is observing, the temperature
of the room, the brightness of the room and the time to complete the
task. The output of the model was the most probable action, directly
linked with a specific ‘ADL menu’ of the ECI. Table 5.4 shows the
proposed ADL and the menus of the third abstraction level.

5.2.3 Experimental Evaluation

The evaluation of the proposed system was carried out within the
AIDE2 project. The purpose was to compare the developed ECI with a
traditional ECI, i. e. without the prediction of the user intention model.
For this purpose and due to the early phase of the project, a virtual
house was developed in order to perform the ADL and simulate the
input data related to them. The layout of the developed house and a

2 https://aideproject.umh.es/

https://aideproject.umh.es/


5.2 user intention recognition for eci improvement 67

Table 5.4: Correspondence table between the proposed ADL and the ADL
menu of the ECI.

ADLs ADL Menu

Open/close fridge Drink and Eat
Open/close microwave Drink and Eat
Eating task Eat
Drinking task Drink
Switch on/off Music Entertainment
Switch on/off PC Entertainment
Switch on/off TV TV
Switch on/off air conditioner Air conditioner
Brushing teeth Teeth
Washing face Face
Raise/lower the bed head Bed
Raise/lower the bed feet Bed
Open/close the blinds Blinds
Switch on/off the light Light

screen shot of the software application while performing an ADL are
shown in Figure 5.8. In addition, the software platform was also able
to generate the necessary data to train a CRF model.

The experimental evaluation consisted on a two screen layout, as
shown in Figure 5.9, where the users had to perform simulated ADL.
One screen showed the ECI and the other the virtual environment. The
users had to perform a list of ADL in two different modes, randomly
selected, during ten minutes each mode:

• MANUAL mode: the user had to accomplish the task, showed in
top right corner of the virtual environment, navigating through
the three abstraction levels. The objects related to the corres-
ponding task were surrounded by a green color.

• AIDE mode: in this mode the prediction model was used. Thus,
the user had to look at the objects related to the corresponding
ADL and, after the model prediction, the ECI directly jumped to
the corresponding ‘ADL menu’. Then the user had to complete
the activity navigating like MANUAL mode. In case of wrong
prediction, the user had to manually go to the second abstraction
level to achieve the desired ADL. In this model, the gaze point
of the user were online detected from the Tobbi 3 PCEye go eye

3 http://www.tobii.com

http://www.tobii.com
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tracker (see Appendix A.7 for more information), placed on the
virtual environment screen in order to detect the objects that
the user was observing. The rest of the input parameters were
online simulated.

Figure 5.8: Virtual house developed: layout of the house (up), and screen
shot of the software application while performing a specific ADL
(down).

Each subject had to perform two experimental sessions in two
consecutive days. The user training and the system calibration was
performed in the first day. Furthermore, it was performed a famili-
arization phase with whole system, including the access technology
selected. This session lasted around 60-80 minutes. An example of sen-
sorimotor rhythm (SMR) and EOG movements in the training session
is shown in Figure 5.10, C and D, respectively.

The second session lasted a maximum of 60 minutes. The setup
and re-familiarization phase took approximately 15 minutes. Then,
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Environment
Control Interface

Virtual Home
Simulator

Eye Tracking

Figure 5.9: The experimental setup was composed by two screens: the ECI
and the virtual environment. An eye tracking was placed in the
virtual environment screen to detect the gaze point.

they had 10 minutes to perform a predefined ADLs list in both mode.
There were two kind of ADL: a single action that has a visual effect
on the house simulator, e. g. swith on a lamp; or a multiple action
that correspond to a complex activity showing a short video about
it, e. g. drink from a glass. The order of the modes was randomly
selected and during the break, five minutes approximately, and at the
end of this session, the subjects answered the NASA task load index
questionnaire (Hart and Staveland, 1988).

The proposed ECI was developed to be used with multiple access
technologies. In this experimentation, the control of the ECI was
performed through a hybrid EEG/EOG-based interface (for more
information, please refer to Appendix A.6). Thus, the scan through the
ECI was performed with looking-right eye movements (Figure 5.10,
B) implying a forward displacement of the grid marker (Figure 5.10,
a-e). After reaching the wanted grid, the user had to wait until the
ECI ‘switch off’ the rest of the grids (Fig. 5.10, f ) a customized time,
chosen in the first session. Finally, the online detection of the SMR-
Event-Related Desynchronization (ERD) was used to click at that
specific grid, passing to the next abstraction level or completing the
activity (Figure 5.10, A).

On the other hand, in the phase f of the Figure 5.10, the user had
the option to cancel the selection of a grid through a looking-left
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eye movement, returning the ECI to the phase a. When the users
performed the desired activity, a visual feedback was presented in the
virtual house (Figure 5.10, g) and they waited for the next task.

Figure 5.10: The user had to perform different actions in order to execute
the corresponding ADL, in this example, the user had to switch
on the TV in the AIDE mode. Phases a-g show the behavior
of both screens during the task. EEG (A) and EOG (B) signals
were acquired to online control the ECI in order to perform
ADL in the virtual house. When the task started (vertical purple
line), the scan through the ECI was performed by EOG activity
detection [orange smooth line in (B)], i.e. when HOV activity
exceeded the threshold [indicated by the orange dashed line in
(B)] the grid marker moved forward (phases a-e). Once the subject
stopped at one grid, a task confirmation was needed [indicated
by the vertical black line] and the ECI ‘switched off’ the rest of
the grids indicating this purpose (phase f ). The confirmation was
performed by the detection of SMR-ERD [indicated by red line
in (A)] and the action was done, so the ADL finished (vertical
dotted purple line). This ADL was performed in one step, i. e.
the user only needed to navigate through the last abstraction
level to complete the task. Before the experimentation, the user
was trained in motor imagery (C) and EOG movement (D) to
setup the access technology with the personalized parameters.
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This experimental evaluation was performed by 8 subjects with
motor disabilities. Table 5.5 shows their demographic and clinical
characteristics, and their Barthel scores (Quinn et al., 2011) measured
before the experiment. All participants gave informed consent us-
ing their standard communication channel prior to participation in
the study. The protocol was approved by the Office Research Ethics
Northern Ireland - approval granted for project (15/NE/0384).

Table 5.5: Demographic and clinical characteristics of participants.

ID Patient Sex Age Diagnosis Barthel Score

1 Male 32 C4 SCI 4/20

2 Male 22 Duchenne Muscular Dystrophy 6/20

3 Male 55 Brain stem strokes 16.5/20

4 Male 30 C4/C5 SCI 2/20

5 Female 20 C6/C7 SCI 10/20

6 Male 58 Ischemic Stroke 19/20

7 Male 55 Multiple Systems Atrophy 5/20

8 Male 30 C6/C7 SCI 9/10

5.2.4 Results & Discussion

The performance of the users regarding both modes are presented
in Figure 5.11. The number of the performed activities with respect
to the mean time per activity spent is presented in Figure 5.11, (A).
Furthermore, a Support Vector Machine (SVM) model with Gaussian
kernel was trained to estimate the boundary between both modes,
represented as a yellow smooth line, being able to clearly differentiate
both modes. In addition, a statistically significant differences between
both modes was obtained through the Wilcoxon test (p − value <

0.001) .
Figure 5.11, (C) shows the distribution of the steps performed to

successfully achieve the proposed activities. ADL manually omitted
during the experimentation, due to the user was blocked during the
ECI scan caused by frustration or fatigue, were excluded from the
study.

On the other hand, the AIDE mode uses the CRF model previously
trained with simulated data in order to predict the user intention.
Thus, the confusion matrix of the prediction model regarding the ADL
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ID User Number of Tasks Mean time [s]

AIDE MANUAL AIDE MANUAL

1 16 1 29.2 120.7

2 14 1 28.2 208.5

3 11 5 30.6 100.9

4 14 5 29.4 92.1

5 17 7 26.6 74.3

6 12 3 36.5 132.6

7 8 4 37.5 108.1

8 15 4 30.4 122.1

p-value < 0.001 p-value < 0.001
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Figure 5.11: (A) Number of the activities achieved regarding the mean time
spent per user. Furthermore, it has been trained a SVM model
to find the boundary between both modes, yellow smooth line.
(B) Confusion matrix of the model, used in the AIDE mode.
(C) Interaction with the ECI, measured by steps.

menus is presented in Figure 5.11 (B). In addition, the results obtained
through the NASA-tlx questionnaire are presented in Figure 5.12.

The results show that the AIDE mode is more efficient, allowing
the user to perform the desired activity using less steps. The users
performed one step in the 90% of the activities through the AIDE
mode, and three steps, at least, were necessary in the Manual mode.
Furthermore, this fact implies that the users were able to perform
the ADL spending less time in the AIDE mode. It is important to
note that, even though the prediction model fails, only three steps
were necessary as the performed prediction is always related to the
information gathered from the environment. However, five or seven
steps in the Manual mode involve a failure in the selection of the
abstraction level, that can be caused by lack of practice or system
performance.

The AIDE mode uses a CRF model to perform the predictions about
the user intention. The model uses the information of the virtual home
and the object that the user is looking at, acquired thought an eye
tracking device. The model was previously trained with simulated
data using the same virtual house environment. Thus, Fig. 5.11 (B)
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Figure 5.12: Mean scores of the NASA-tlx questionnaire regarding each
mode.

shows the confusion matrix of the prediction model, regarding the
‘ADL menu’, with a global accuracy about 87%. The CRF model, as
it takes into account not only the current state but also the previous
states to perform its prediction, it could fail in the prediction of task
with common features. Therefore, the 50% of the trials related to the
Drink menu are predicted as the ADL related with the Eat menu.
In addition, the TV and the Teeth menus are rarely predicted as the
Entertainment and Face menus, respectively.

Observing the NASA-tlx results, shown in Figure 5.11 there is not
statistically significant differences between both modes, unexpectedly.
We can say that, as it was the first time that the users handle this
complex EEG/EOG interface and multimodal system, both modes
were felt very similar. However, a regular use of the proposed system
will imply a difference between the modes in terms of task load.

5.2.5 Conclusions

The proposed system allows users with motor disabilities to perform
ADL in a simulated environment through an ECI controlled by a
hybrid EEG/EOG interface. This system uses a prediction model
based on CRF in order to detect the user intention and aid in the
ECI navigation. Even though the users do not perceive subjective
differences between the proposed ECI and the normal ECI, it was
observed that the proposed one was more efficient because the users
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spent less time to do the desired activity, performing more tasks and
doing less steps through the ECI.

We can conclude that the environment analysis and the identification
of the user behaviors are a good tool to predict the user intention.
Furthermore, it allows to speed up the ECIs scan, opening a new
paradigm in the design of these interfaces. Although the developed
ECI was only tested in a simulated environment with a specific user
interface, it can be easily adapted to a real environment, as the scenario
proposed in the AIDE project, and to different interfaces, as switches or
voice control commands. Thus, this system demonstrates that assistive
technology research can increase the independence at home for people
with reduced mobility.

5.3 conclusions

This chapter presented two different intelligent technology solutions
for home environments. The first scenario proposed a system to in-
telligently measure independent upper-limb gestures through three
MARG devices placed onto the upper arm, forearm and hand. This
system uses an OIESGP model, trained through expert data, in order
to classify the gesture performed by the patients. In addition, the
DTW distance between the performed gesture and the expert gesture
was used to assess the quality of the performed gesture and decide
the next step in a rehabilitation exercise. This system could allow the
patient to rehabilitate not only the motor impairments, but also the
cognitive deficits due to the patient must be aware to the indicated
actions. These orders can be the execution of simple gestures, complex
gestures, a chain of gestures that the patient must complete or a com-
bination of gestures between both upper limbs. In addition, the online
feature of this system can allow the system to act at any point of the
exercise, guiding the patient to perform a better movement. Finally, all
the acquired information can be thoroughly analyzed by the therapist
in order to assess the evolution of the patient at home before a therapy
session.

On the other hand, the second scenario presented the development
of an intelligent ECI that was able to adapt its scan control based on the
residual capabilities of the user. Furthermore, it took into account the
routine of the subjects and the environmental information facilitating
the navigation through the proposed interface. It was demonstrated
that learning from the user behaviors and environmental information
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is crucial in order to understand their necessities, thus enhancing their
independence at home and improving the performance of the ADL.

This chapter has investigated two promising intelligent systems for
rehabilitation and assistance at home. However, further developments,
discussed in Section 6.2.2 and Section 6.2.3, are necessary before these
systems become a powerful tool.
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6
C O N C L U S I O N S A N D F U T U R E W O R K

This chapter summarizes the contributions that were presented in this
thesis and presents the work in progress and future research direction
that might emerge from this dissertation.

6.1 overview and contributions

This thesis is focused on the development of upper-limb assessment
techniques for robot-aided neurorehabilitation therapies at clinical and
home environments on the one hand, and on the other for assistance
at home when severe motor deficiencies persist after rehabilitation
process. The thesis has thus addressed research in various phases and
environments that takes part in stroke recovery.

First, it improved the technique presented by Morales Vidal, to
online estimate the upper-limb kinematic configuration in neurore-
habilitation therapies assisted by end-effector-based robotic devices. It
has been demonstrated that the presented algorithm is stable under
shoulder displacements, assumed fixed, that can appear due to the
motor impairments of the patients. Furthermore, the wearable device
attached onto the upper arm, an acceleromenter, does not disturb
the normal development of a therapy in which the therapist and the
patients are continuously interacting.

To address the issue of the fixed shoulder and bring this tool to a
real clinical environment, a second device, attached onto the shoulder,
was used to measure the trunk compensations. Thus, a novel algorithm
was developed in order to online estimate the upper-limb movements
together with the shoulder displacements, and it was successfully
validated. Therefore, the proposed algorithm has become an important
tool to enhance the assessment of patients during the rehabilitation
therapy, as a complement to the clinical assessment scales.

On the other hand, the clinical therapy can be complemented with
self-managed rehabilitation systems in order to increase the intensity
of the therapy and to improve the rehabilitation outcomes. Thus, this
thesis also proposed an intelligent solution, based on the measurement
of a set of upper-limb gestures through three wearable devices, to
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assess the quality of the exercise performed. The joint movements were
assessed through the fusion of two different techniques, one studied
the performed movement as a whole, and the other evaluated each
joint independently. The promising results suggest that this system
could become a new tool to perform motor and cognitive rehabilitation
exercises at home as well as endow objective data to the therapist.

Finally, an intelligent environment control interface for ADL assist-
ance at home for people who suffer from severe motor impairments,
such as stroke survivors, people with motor disabilities caused by a
neurodegenerative disease or a SCI, was developed. This interface was
provided with a machine learning model to improve the navigation
through it, being able to recognize the intention of the user studying
the relevant information of the environment and the user behavior.
Furthermore, the scan control of the proposed interface could be ad-
apted to the residual motor capabilities of each individual. Therefore,
it is crucial to understand the necessities of each disable person in
the development of assistive technology solutions in order to enhance
their independence at home.

These contributions focus on both the therapists, providing objective
data to perform a better assessments of the patient recovery, and
the patients, giving solutions to intensify the therapy at home and
improving the rehabilitation outcomes or, in the worst case scenario,
offering a tool to increase their independence in daily life.

6.2 future directions

This section describes some research lines that emerge from the pre-
sented work in this thesis which could be addressed in the future.

6.2.1 Upper-limb Kinematic Reconstruction Algorithm

This thesis proposes an algorithm to online measure the upper-limb
joint variables and the shoulder displacement during a robot-aided
neurorehabilitation exercise. However, the upper-limb movements are
only used to compute the ROM and the maximum shoulder displace-
ment after the exercise to complement the objective data that the robot
itself can provide. One future step is to relate this information with the
clinical assessment scales in order to estimates their scores. Further-
more, joint movements can be used to contribute in the user feedback
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during the rehabilitation exercises. Thus, the patient can online correct
its position and improve the recovery outcomes.

On the other hand, the upper-limb is a complex chain with more
than seven DoFs. Thus, the clavicle displacements, omitted in this
algorithm, and trunk movements, directly related with shoulder dis-
placements, could be studied and accordingly introduced in the algo-
rithm, in order to enlarge the objective information that the therapist
receives.

6.2.2 Self-managed Rehabilitation System

The proposed system for self-managed rehabilitation was tested in
off-line mode with a healthy subject and two stroke patients. The next
step would be to study this system under a specific therapy, online
measuring the quality of the gestures performed. Thus, the decisions
made by the proposed platform could be analyzed.

Moreover, measuring both limbs and trunk movements would en-
large the therapy options, e. g. to perform a different gesture with each
limb, increasing the data offered to the therapist. Indeed, a serious
game developed around this system would increase the motivation of
the patient and, therefore, the intensity of the therapy.

6.2.3 Intelligent Environment Control Interface

The multimodal system proposed was partially simulated due to the
complexity in the development of an intelligent house. Furthermore,
an hybrid EOG/EEG control system was used to navigate through
the proposed ECI. Therefore, this system should be studied in a real
environment, with cameras mounted on the user’s wheelchair and
sensors all around the house. In addition, different control systems
could be also tested and compared with the one used in this research,
as voice control or eye tracking systems.
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A
R O B O T S , C O M P O N E N T S A N D S E N S O R S

This thesis features several robots, components and sensors, which are
described in this appendix for reference.

a.1 hermes robot

Figure A.1 shows the Hermes robot, a redundant serial robot of
seven DoFs. It was designed and built by the Neuro-Bioengineer-
ing Research Group (nBio)1, Miguel Hernández University of Elche,
Spain. The workspace of the Hermes robot includes the workspace
of the human upper-limb allowing the users to perform three-dimen-
sional movements. It is fully controlled through MatLab®, including
forward and inverse kinematic functions, trajectory planning, real time
visualization and a simulation environment.

1.510m

Grasping point

Figure A.1: Hermes Robot.

a.2 puparm robot

The PUPArm robot, shown in Figure A.2, is a pneumatic planar robot
used in many studies as an end-effector-based neurorehabilitation
device (Badesa et al., 2014; Lledó et al., 2016). It was designed and

1 http://nbio.umh.es/
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built by the Neuro-Bioengineering Research Group (nBio), Miguel
Hernández University of Elche, Spain. It is fully controlled through
Simulink, MatLab®, including real time visualization and a simulation
environment.

Figure A.2: PUPArm Robot.

a.3 magneto-inertial sensors

Wearable devices have been used throughout this thesis in order to
measure the acceleration and the orientation of specific upper-limb
segments. Figure A.3 shows the device used with the default axis di-
rections. It is developed by Shimmer™2 with integrated 9 DoFs inertial
sensing via accelerometer, gyroscope and magnetometer, with a max-
imum sample rate of 1 kHz, and a size of 51 mm x 34 mm x 14 mm. It
is a wireless device connected via Bluetooth. This device was used as a
simple accelerometer and as an inertial measurement unit depending
on the needs of each experimentation.

X+

X-

Y+

Y-

Z-

Z+

Figure A.3: Wearable device sensor. The default axis directions are marked.

2 http://shimmersensing.com/

http://shimmersensing.com/
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a.4 semg armband

The Myo Armband3, developed by Thalmics Labs™, was used in Sec-
tion 5.1 and it is shown in Figure A.4. It is a wireless sEMG Armband
with eight electrodes developed for muscle sensing and equipped with
an IMU. The communication is performed via Bluetooth with its own
dongle, with a sampling frequency of 200 Hz.

Figure A.4: Myo Armband.

a.5 motion capture cameras

Two different motion capture systems were used in the experiments of
this thesis. For the validation of the kinematic reconstruction algorithm
reported in Chapter 3, a set of eight 6 DoFs optical tracking cameras
Optitrack V100: R2, developed by NaturalPoint®4 was used, shown in

Figure A.5: Optitrack V100: R2 (up) and Optitrack V120: Trio (down) motion
capture cameras.

3 https://support.getmyo.com/hc/en-us
4 https://www.naturalpoint.com

https://support.getmyo.com/hc/en-us
https://www.naturalpoint.com
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Figure A.5, up, which relies on the capture of passive markers, with a
frame rate from 30 to 100 frames per second, a 640× 480 px resolution,
and an approximate precision of 0.3mm.

The Optitrack V120: Trio, also developed by NaturalPoint®, was
used in the validation of the proposed algorithm introduced in Chap-
ter 4, shown in Figure A.5, down. It is a six DoFs optical tracking with
three cameras, with a resolution of 640× 480 px and a frame rate from
30 to 120 frames per second each one.

a.6 eeg/eog acquisition system

In Section 5.2, the control of the proposed ECI was tested through a
hybrid EEG/EOG-based interface (Soekadar et al., 2016). It consists
in one acquisition system of eight solid-gel electrodes, placed in F3,
C3, Cz, P3, T7 and mastoid with the reference electrode in C4 and the
ground in FpZ according to the international 10/20 system, to acquire
the SMR, as shown in Figure A.6, left. The horizontal eye movements
were acquired with two electrodes placed on the outer canthus of the
eyes. The EEG/EOG signals were acquired with the Enobio amplifier,
developed by Neuroelectrics®5, Barcelona, Spain, shown in Figure A.6,
right. It sends the amplified signals to a computer via Bluetooth.

FpzFp1 Fp2

F8

Fz F4F3
F7

T3 C3 C4 T4

PZP3
T5

P4

Oz

T6

O1 O2

Cz

Nasion

Inion

Figure A.6: Position of the electrodes selected, marked as red circles, (left)
and Enobio amplifier (right).

The real-time SMR-based interface was implemented using BCI2000,
a freely distributed software for multipurpose standard BCI platform
(Schalk et al., 2004). The sample frequency of the system was set to
500 Hz, bandpass filtered at 0.4− 70 Hz and pre-processed using a
Laplacian filter.

5 https://www.neuroelectrics.com/

https://www.neuroelectrics.com/
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a.7 eye tracker

The Tobii®6 PCEye Go, shown in Figure A.7, is an eye tracker used in
Section 5.2 in order to measure the gaze point of the subjects. Thus,
the system was able to detect the objects that the user was observing
in the virtual house. It consists in a two infrared illuminators shining
light on the user’s face, which is then reflected by the cornea. This
reflection is registered by a camera in order to estimates the position of
each eye over a specific screen. The calibration process is very simple
and easy to use by different subjects. The device enables a tracking
rate of 30 Hz and an accuracy of 0.4 deg.

Figure A.7: Eye tracker.

6 https://www.tobii.com/

https://www.tobii.com/
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Abstract: This paper presents a novel kinematic reconstruction of the human arm chain with five
degrees of freedom and the estimation of the shoulder location during rehabilitation therapy assisted
by end-effector robotic devices. This algorithm is based on the pseudoinverse of the Jacobian
through the acceleration of the upper arm, measured using an accelerometer, and the orientation
of the shoulder, estimated with a magnetic angular rate and gravity (MARG) device. The results
show a high accuracy in terms of arm joints and shoulder movement with respect to the real arm
measured through an optoelectronic system. Furthermore, the range of motion (ROM) of 50 healthy
subjects is studied from two different trials, one trying to avoid shoulder movements and the
second one forcing them. Moreover, the shoulder movement in the second trial is also estimated
accurately. Besides the fact that the posture of the patient can be corrected during the exercise, the
therapist could use the presented algorithm as an objective assessment tool. In conclusion, the joints’
estimation enables a better adjustment of the therapy, taking into account the needs of the patient,
and consequently, the arm motion improves faster.

Keywords: kinematic reconstruction; neuro-rehabilitation; end-effector robots; upper limbs; MARG

1. Introduction

Robot-aided neuro-rehabilitation therapies have become an interesting field in the robotics area.
There are several devices, such as exoskeletons, prosthesis or end-effector configuration robots,
developed for this purpose [1,2]. They are able to help and assist the shortcomings of human beings.
Post-stroke patients usually lose limb mobility due to the impairment in motor activity. Rehabilitation
in this field takes an important role when it comes to improving the motor and proprioceptive
activity [3,4]. In terms of the activities of daily living (ADL), the total or partial recovery of the upper
limbs is the most important part in early rehabilitation. End-effector configuration robots are the most
common devices used in these therapies. They are easily adapted to and easy to use by patients with
different diseases.

These robots provide objective information about the trajectory followed by the end effector and
the improvement in the motor recovery. However, they are not able to measure and control the arm
movements. The progress in the arm joints, i.e., the range of motion (ROM), is an important parameter
in these kinds of therapies. This estimation requires non-invasive wearable sensors, which must be
easy to place onto the patient’s arm and must be extended to a clinical environment. Visual feedback
of the arm configuration is studied in some rehabilitation therapies, though the arm joints cannot be
measured [5,6]. This estimation can be accurately performed with optoelectronic systems based on
motion tracking, even though they cannot be adapted to a rehabilitation environment [7,8]. In 2006,

Sensors 2015, 15, 30571–30583; doi:10.3390/s151229818 www.mdpi.com/journal/sensors
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Mihelj developed a method to estimate the arm joints through two accelerometers placed onto the
upper arm [9]. Then, Papaleo et al. improved this method using a numerical integration through the
augmented Jacobian in order to estimate the arm configuration with only one accelerometer [10,11].
This algorithm performs a kinematic reconstruction of the simplified human arm model with seven
degrees of freedom (DoFs) assuming that the shoulder is fixed during the therapy. Due to the
loss of motor function, shoulder movements cannot be avoided by the patient, and therefore, this
assumption cannot be always accomplished. Thus, it is necessary to measure shoulder movements in
order to correct the position of the patient during the activity. This compensation can be detected and
categorized through the fusion of a depth camera with skeleton tracking algorithms [12]. However,
to compute the kinematic reconstruction, the position and orientation of the shoulder with respect to
the robot are necessary.

This paper presents a kinematic reconstruction algorithm of human arm joints assuming a
simplified model with five DoFs. Furthermore, this method is able to estimate the shoulder
movement, i.e., its position and orientation. It is based on the inverse kinematics through the
pseudo-inverse of the Jacobian [13]. The end-effector planar robot, called “PUPArm”, with three
DoFs (see Figure 1), designed and built by Neuro-Bioengineering Research Group (nBio), Miguel
Hernández University of Elche, Spain, is used [14]. The accuracy of the estimated joints with respect
to the real arm joints, measured through a tracking camera, is studied. In addition, the ROMs on
50 healthy subjects performing a therapy activity are evaluated in two different cases: trying not to
move the shoulder during the exercise and following the movement with the trunk to reach the goal.

Figure 1. PUPArm robot.

2. Algorithm Description

2.1. Human Arm Kinematic Chain

The human arm is a complex kinematic chain that can be defined as the contribution of several
robotic joints. The arm was defined as a chain of nine rotational joints by Lenarčič and Umek [15].
Only seven DoFs take part in this experiment: a spherical joint in the shoulder; an elbow joint;
and a spherical joint in the wrist; as is shown in Figure 2a. On the other hand, the PUPArm
robot fixes two kinds of movements: the ulnar-radial deviation and the flexion-extension of the
hand; thus, abduction-adduction (q1), flexion-extension (q2) and internal-external rotation (q3) of the
shoulder, flexion-extension (q4) of the elbow and pronation-supination (q5) of the forearm comprise
the kinematic chain linked through two segments: the upper arm (lu) and the forearm (l f ). The
Denavit–Hartenberg (DH) parameters of the arm are shown in Table 1, and their reference systems
are shown in Figure 2b.
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Table 1. DH parameters of the kinematic arm chain.

i θi di ai αi

1 π/2 + q1 0 0 π/2
2 3π/2 + q2 0 0 π/2
3 q3 lu 0 −π/2
4 π/2 + q4 0 0 π/2
5 q5 l f 0 0

z

y

lu

lf

q1 q2

q3
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x
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(b)

Figure 2. Human arm joints. (a) Simplification of human arm joints with seven DoFs;
(b) Denavit–Hartenberg (DH) coordinate systems of the arm with five DoFs.

2.2. Integration Method

The inverse kinematics of the human arm during the exercise is based on the numerical
integration through the pseudo-inverse of the Jacobian (J) [10]. The necessary devices to estimate
the arm joints are: the end-effector robot; an accelerometer placed onto the upper arm and a magnetic
angular rate and gravity (MARG) device placed onto the shoulder. Instantaneous joint velocities may
be assessed as:

~̇q = J−1(~q){ ~̇vd + K · ~err} (1)

being ~̇vd the Cartesian vector of the hand velocity and ~err the error committed due to the numerical
integration. It should be noted that ~̇vd is the hand velocity vector with respect to the shoulder,
estimated through the MARG and the accelerometer. To minimize this error, a 7 × 7 gain matrix
K is added to this Equation [13]. Then, the current arm joints are computed as:

~q(tk+1) = ~q(tk) + ~̇q(tk)∆t (2)

where ~q(tk) is the previous estimated joints, ~̇q(tk) is the joint velocity vector obtained through
Equation (1) and ∆t is the sampling time. On the other hand, the initial arm joints are necessary
to begin the integration method; their computation is explained in Section 2.6.

2.3. Accelerometer Orientation

If slow movements are assumed, the orientation of the accelerometer can be estimated in any
position of the arm within the reachable workspace of the robot. When joints q1 to q5 are equal to
zero, the reference position of the arm is set; a visual representation of this position is shown in
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Figure 2b. The acceleration acquired in the reference orientation of the accelerometer regarding the
gravity, which is shown in Figure 3a, is:

acc0 Vg =




0
1
0


 (3)

z

y

x

z y

x

MARG

Accelerometer

(a)

z y

x

(b)

Figure 3. (a) Reference orientation of the accelerometer and the MARG. (b) Plane Π shaped by the X
axis and Y axis of acc0 R̃acc.

Moreover, at any random position of the arm, acc0 Vg can be computed through the applied
rotation to the accelerometer (acc0 Racc) as:

acc0 Vg = acc0 Racc
accVg (4)

being accVg the acceleration at this random position regarding the gravity.
Equation (4) has infinite rotation matrices over the gravity vector, though one possible solution

may be computed as:
acc0 R̃acc = I + M + M2 1− cos (θ)

sin2 (θ)
(5)

with:

M =




0 −V3 V2

V3 0 −V1

−V2 V1 0




V = acc0 Vg × accVg

sin(θ) = ‖V‖
cos(θ) = acc0 Vg · accVg

(6)

Thereby, a plane can be shaped by the X axis and Y axis of acc0 R̃acc (plane Π). This plane only
contains the elbow point (E), but the correct orientation of the accelerometer must also contain the
shoulder (S) and the wrist (W) points. Thus, the rotation angle (θ) is defined as the angle between
the known wrist point and the new wrist point ( ˜̂H), contained in the plane Π, when it is rotated
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around the gravity vector (g) placed in E (see Figure 3b). Therefore, ˜̂H, expressed in terms of θ, can
be defined as:

˜̂W =
(

g · Ŵ
)

g + cos (θ)
(
Ŵ −

(
g · Ŵ

)
g
)
− sin (θ)

(
g× Ŵ

)
(7)

where Ŵ = (W − E) / (‖W − E‖) and g =
[

0 0 −1
]T

. Then, θ can be obtained solving the
following equation:

d
(

˜̂W, Π
)
=

∣∣∣AΠ
˜̂Wx + BΠ

˜̂Wy + CΠ
˜̂Wz + DΠ

∣∣∣
√

AΠ
2 + BΠ

2 + CΠ
2

= 0 (8)

having the plane Π computed as follows:

P̃x
acc =

acc0 R̃acc

[
1 0 0

]T

P̃y
acc =

acc0 R̃acc

[
0 1 0

]T

SP̃y
acc =

(
P̃y

acc − S
)

P̃x
acc P̃y

acc =
(

P̃y
acc − P̃x

acc

)




AΠ

BΠ

CΠ


 = SP̃y

acc × P̃x
acc P̃y

acc

DΠ =
[

AΠ BΠ CΠ

]T
· S

(9)

Two possible solutions are obtained through Equation (8) and, therefore, two values of acc0 Racc.
The correct solution is one for which the Z axis is in the same direction as the cross product
between the elbow-wrist segment and elbow-shoulder segment due to the reference position of the
accelerometer. Finally, the rotation of the accelerometer regarding the robot is computed as:

rRacc =
r Racc0 ·acc0 Racc (10)

being rRacc0 the reference orientation of the accelerometer concerning the robot (see Figure 3a). This
orientation is required to estimate the elbow orientation and shoulder position during the exercise.

2.4. MARG Orientation

The orientation of magneto-inertial devices is usually based on Kalman filtering [16];
nevertheless, they can be quite complicated, and an extended Kalman filter is needed to linearize the
problem. The orientation filter to measure the rotation of the MARG of Madgwick et al. is used in this
algorithm [17]. The magnetic distortion that may be introduced by external sources, including metal
furniture and metal structures within a building, is performed in this filter [18]. Furthermore, the
orientation algorithm requires an adjustable parameter (β) that can be adjusted to the requirements
of this exercise. Hence, the value of this parameter (β = 5) was established after a “trial and error”
approach tested before the experiment, taking into account the features of the exercises.

This filter measures the reference quaternion of the device with respect to the Earth reference
system, defined by the gravity vector and the Earth’s magnetic field lines. However, the rotation
of the Earth concerning the robot is unknown. If the MARG is placed in a known orientation with
respect to the robot (R

M0
q̂), the acquired transformation defines the Earth frame relative to the sensor

frame (M0
E q̂), and therefore, the reference transformation between the robot and the Earth is known as:

R
E q̂ =R

M0
q̂⊗M0

E q̂ (11)
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Therefore, every rotation of the MARG is defined in the workspace as:

R
Mq̂ =R

E q̂⊗M
E q̂∗ (12)

where M
E q̂ is the current value of the sensor. In this way, the shoulder orientation is estimated during

the exercise.

2.5. Elbow and Shoulder Location

The hand, as was said before, is tightly attached to the end effector of the robot, and the
ulnar-radial deviation and flexion-extension of the hand remain constant. Hence, the transformation
matrix between the hand and the end effector (rTw) is known, and therefore, the elbow position may
be obtained as:

rPe =
r Tw ∗

[
0 0 −l f 1

]T
(13)

The orientation of the elbow, since the rotation matrix between the elbow and the accelerometer
orientation (acc0 Re) is known (see Figure 3a), may be calculated as:

rRe =
r Racc ·acc0 Re (14)

with rRacc the rotation matrix computed through Equation (10). Thus, the transformation of the elbow
relative to the robot remains:

rTe =

[
rRe

rPe

0 0 0 1

]
(15)

On the other hand, one of the most important points of this algorithm is the ability to estimate
the shoulder position and orientation during the exercise. The shoulder position can be processed
easily through Equation (15) as:

rPs =
r Te ∗

[
0 lu 0 1

]T
(16)

Whilst the orientation of the MARG relative to the robot is known by Equation (12), its rotation
matrix rRM is directly obtained [19]. Thus, the shoulder orientation is estimated as:

rRs =
r RM ·M0 Rs (17)

where rRM is the current rotation of the sensor with respect to the robot and M0 Rs the reference
position of the MARG relative to the shoulder (see Figure 3a). Hence, the transformation of the
shoulder relative to the robot remains:

rTs =

[
rRs

rPs

0 0 0 1

]
(18)

Finally, since the elbow and the shoulder location are instantaneously known, the initial
conditions and the integration method can be performed.

2.6. Initial Conditions

In this algorithm, since it is based on a numerical integration, the initial conditions are required.
The locations of the three main points, namely the shoulder (rTs), the elbow (rTs) and the wrist (rTs),
are known. The shoulder joints (q1, q2 and q3) are directly related to the matrix sTe =r T−1

s ·r Te,
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defined in the previous section, and they can be acquired by the spherical joint method [13]. This
matrix, in terms of the corresponding joints, can be expressed by DH parameters shown in Table 1 as:

s0 Ts3 = s0 Ts1 · s1 Ts2 · s2 Ts3 =




c1s3 − c3s1s2 −c2s1 c1c3 + s1s2s3 luc2s1

s1s3 + c1c3s2 c1c2 c3s1 − c1s2s3 −luc1c2

−c2 c3 s2 c2 s3 −lus2

0 0 0 1


 (19)

having si = sin (qi) and ci = cos (qi), i = {1, 2, 3}. If the transformation matrix s0 Ts3 is defined as:

s0 Ts3 (q1,q2,q3) =




nx ny nz px

ox oy oz py

ax ay az pz

0 0 0 1


 (20)

two possible solutions of the shoulder joints are obtained; if q2 ∈ [0 π]:

q1 = atan2
(
−ny, oy

)

q2 = atan2
(

ay,
√

n2
y + o2

y

)

q3 = atan2 (az,−ax)

(21)

and if q2 ∈ [−π 0]:
q1 = atan2

(
ny,−oy

)

q2 = atan2
(

ay,−
√

n2
y + o2

y

)

q3 = atan2 (−az, ax)

(22)

Thereby, the elbow joint (q4) is directly determined with the cosine law as:

q4 = arcsin


 l2

u + l2
f − ||H − S||2

2lul f


 (23)

and its homogeneous matrix remains:

s3 Ts4 =




− sin (q4) 0 cos (q4) 0
cos (q4) 0 sin (q4) 0

0 1 0 0
0 0 0 1


 (24)

Thus, the transformation matrix between the systems s0 and s4 can be computed. The known
matrix sTh =r T−s 1 ·r Th defines the transformation between the system s0 and s5. On the other hand,
the last joint, q5, is defined with the DH parameters as:

s4 Ts5 (q5) =




− sin (q5) cos (q5) 0 0
cos (q5) sin (q5) 0 0

0 0 1 0
0 0 0 1


 (25)

and therefore, q5 is estimated as:
q5 = atan2 (−nx, ox) (26)
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Finally, two possible configurations of the arm joints are found, even though only one solution
is possible. Due to the limits of the arm joints, [−π/2 π/2], only one solution accomplishes this
restriction, and the initial position of the arm is assessed. This method can produce abrupt changes
in the estimated arm joints caused by possible perturbations in the accelerometer that might lead
to a non-anatomical position. Hence, since the new position depends on the latest position and the
sample time, the integration method for real-time reconstruction is the best way to overcome the
aforementioned drawbacks following Equations (1) and (2).

3. Results and Discussion

3.1. Experimental Exercises

With the aim of studying the arm joint estimation algorithm, with K = diag{1.5, 1.5, ...1.5}N/ms
(chosen by the “trial and error” approach tested before the experiment), two different experiments
were performed. The first exercise was to compute the algorithm accuracy in terms of the arm joints
and the position of the shoulder, performed by four healthy subjects. Then, a rehabilitation exercise
with two different trials was performed by 50 healthy subject (aged between 20 and 72) to test the
behavior of the presented algorithm. In both cases, the length of the upper arm was measured from
the lateral side of the acromion to the proximal radius head, in the elbow joint. From the proximal
radius head to the radial styloids, the distal part of the radius, the forearm length was measured [20].
Moreover, both experiments are performed under the same activity: 3D roulette, which may be seen
in Figure 4. The activity consisted of taking a box from the perimeter and placing it in the center of
the screen; hand movements are symbolized as a wrench (see Figure 4). One movement is considered
when the subject goes from the center of the roulette to the perimeter and returns again to the center.

3D Roulette
activity

Accelerometer

MARG

End-effector Robot

Figure 4. Subject wearing the sensors, the accelerometer and the MARG, grasping the end effector of
the robot and performing the 3D roulette activity.

A magneto-inertial sensor, developed by Shimmer c©, is tightly attached onto the upper arm and
onto the shoulder to compute the kinematic reconstruction algorithm. The real position of the arm is
computed with a six DoF optical tracking camera Optitrak V120: Trio, developed by NaturalPoint R©.
Specific parts attached to the hand, upper arm and forearm with retro-reflective markers were
developed for this purpose. Information about the subjects who carried out the validation experiment
are shown in Table 2; they performed three trials of the same exercise.
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Table 2. Main subject data from the validation experiment.

ID Age Gender Forearm Length (m) Upper Arm

1 21 Male 0.23 0.32
2 51 Female 0.21 0.33
3 32 Male 0.25 0.31
4 31 Male 0.21 0.33

In the second experiment, two different trials of the same activity were performed. The first
trial was intended not to move the shoulder while the exercise was being conducted, i.e., without
compensation with the trunk. However, the participants were asked to follow the hand movements
with the shoulder in the second exercise. Each trial consisted of 24 movements.

3.2. Algorithm Validation

The mean error committed, in terms of root mean square error (RMSE) and standard deviation,
is shown in Figure 5a. The mean RMSE of the joints is 0.047 rad with a standard deviation of
0.013 rad. Otherwise, the error committed on the shoulder position estimation, which may be found
in Figure 5b, shows the mean RMSE committed, less than 0.87 cm, and the standard deviation, around
0.83 cm. The good results show that the error committed is small (it is hardly noticeable by the human
eye), and therefore, the accuracy of the presented algorithm with respect to the real arm movements
is high. A kinematic reconstruction of the arm joints and the estimation of shoulder position acquired
from both methods through the presented algorithm (red dotted line) and the direct reconstruction
(blue line) are pictured in Figure 6.

q1
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0.04
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q2 q3 q4 q5
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x y z
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0.5

1
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(b)

Figure 5. Error committed in the reconstruction algorithm. (a) Mean RMSE (blue bar) of the joints
committed by the subjects and standard deviation (gray bar); (b) Mean RMSE (blue bar) of the
shoulder position committed by the subjects and the standard deviation (gray bar): x, left/right
movements; y, forward/backward movements; z, up/down movements.
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Figure 6. Joints and shoulder movements estimated through the algorithm (dotted red line) and
measured through the optoelectronic system (blue line) of a subject during an exercise.

3.3. Arm Joint Range

In this experiment, the ROM between both trials, with and without compensation with the trunk,
is studied. Furthermore, the shoulder movement is compared to its real position, acquired with the
optoelectronical system mentioned before. To compare both groups, statistical analysis is performed
through the t-test for paired data for each ROM. Joints 1 to 4 show significant differences (p ≤ 0.05),
but nevertheless, Joint 5, as the subject wrist is attached to the end effector of the robot, does not show
significant differences (p = 0.064).

The estimated ROM in the exercise without compensation and with compensation is shown in
Figure 7a, and the error committed might be seen in Figure 7b. It should be noted that the error
committed in each joint for both exercises is smaller than six degrees. On the other hand, the ROM
estimated for the trial without compensation is larger than that from the other trial. This result was
expected, because the shoulder compensation affects the joint range. However, the ROMs of Joint 5
are similar, because the pronation-supination of the forearm is not affected when the compensation
is performed.
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Figure 7. Representation of both trials: without compensation (orange bar) and with compensation
(blue bar), and the standard deviation (gray bar) in terms of arm joints. (a) Estimated range of motion
(ROM); (b) Error committed between the real ROM and the estimated ROM.

The accuracy of the shoulder position, taking into account the whole population (N = 51), is
shown in Figure 8a. The estimated shoulder position with respect to the real shoulder location in a
compensation trial performed by one subject can be seen in Figure 8b.
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Figure 8. Shoulder movement in the compensation trial. (a) Mean RMSE (blue bar) committed by the
population and the standard deviation (gray bar): x, left/right movements; y, forward/backward
movements; z, up/down movements; (b) Estimated movement through the proposed algorithm
(dotted red line) and the direct movement (blue line) performed by one subject.
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4. Conclusions

In this paper, a kinematic reconstruction of the upper limbs during robot-aided rehabilitation
with planar robots taking into account shoulder movements is presented. The estimated arm joints
are very accurate with respect to the real position of the arm. Thus, the arm joint improvements of
the patient can be measured objectively, and a better adaptation of the therapy to the patient needs
can be also performed.

The measurement of the shoulder movement can be also computed accurately. To the best of our
knowledge, this feature is not included in the previous algorithms where the shoulder is assumed
to be fixed, even when little movements cannot be avoided during the exercise. This feature helps
the therapist to correct the patient’s posture during exercise for faster improvement in terms of
arm mobility.

In summary, the arm joints’ improvement may be included as a new objective assessment
parameter in addition to the motor and proprioceptive activity and assessments scales, which are,
by definition, subjective, as the Fugl–Meyer assessment [21].
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Abstract

Background: End-effector robots are commonly used in robot-assisted neuro-rehabilitation therapies for upper
limbs where the patient’s hand can be easily attached to a splint. Nevertheless, they are not able to estimate and
control the kinematic configuration of the upper limb during the therapy. However, the Range of Motion (ROM)
together with the clinical assessment scales offers a comprehensive assessment to the therapist. Our aim is to present
a robust and stable kinematic reconstruction algorithm to accurately measure the upper limb joints using only an
accelerometer placed onto the upper arm.

Methods: The proposed algorithm is based on the inverse of the augmented Jaciobian as the algorithm (Papaleo,
et al., Med Biol Eng Comput 53(9):815–28, 2015). However, the estimation of the elbow joint location is performed
through the computation of the rotation measured by the accelerometer during the arm movement, making the
algorithm more robust against shoulder movements. Furthermore, we present a method to compute the initial
configuration of the upper limb necessary to start the integration method, a protocol to manually measure the upper
arm and forearm lengths, and a shoulder position estimation. An optoelectronic system was used to test the accuracy
of the proposed algorithm whilst healthy subjects were performing upper limb movements holding the end effector
of the seven Degrees of Freedom (DoF) robot. In addition, the previous and the proposed algorithms were studied
during a neuro-rehabilitation therapy assisted by the ‘PUPArm’ planar robot with three post-stroke patients.

Results: The proposed algorithm reports a Root Mean Square Error (RMSE) of 2.13cm in the elbow joint location and
1.89cm in the wrist joint location with high correlation. These errors lead to a RMSE about 3.5 degrees (mean of the
seven joints) with high correlation in all the joints with respect to the real upper limb acquired through the
optoelectronic system. Then, the estimation of the upper limb joints through both algorithms reveal an instability on
the previous when shoulder movement appear due to the inevitable trunk compensation in post-stroke patients.

Conclusions: The proposed algorithm is able to accurately estimate the human upper limb joints during a
neuro-rehabilitation therapy assisted by end-effector robots. In addition, the implemented protocol can be followed
in a clinical environment without optoelectronic systems using only one accelerometer attached in the upper arm.
Thus, the ROM can be perfectly determined and could become an objective assessment parameter for a
comprehensive assessment.
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Background
Robot-assisted therapies have become a new tool in post-
stroke upper limb treatments [1, 2]. One of the most com-
mon consequences of stroke, brain cells damage caused by
an interruption of the blood flow to the brain, is the hemi-
paresis, a loss of physical strength on one side of the body,
as well as memory problems that they directly affect the
realization of the Activities of Daily Living (ADL) [3]. The
main goal in these kind of therapies is the effective use
of neuroplasticity of the brain performing several exer-
cises assisted by a robotic device which can be adapted
to the tasks regarding his/her residual motor capabilities.
This technology aims to maximize the patient’s recov-
ery, minimize the rehabilitation period and encourage the
motivation of patients [4–6].
Rehabilitation robotic devices for upper limbs can be

classified into two types: exoskeletons devices [7], have
robot axes aligned with the anatomical axes of the upper
limb segments providing direct control of individual
joints, and end-effector devices [8], work by applying
mechanical forces to the distal segments of limbs (see
Fig. 1). Though exoskeletons allow the total control of
the arm joints, they are difficult to adapt and attach to
the patient arm [9, 10]. Moreover, the attachment process
takes a long time in order to avoid misalignment between
the robot and the arm that can injure the patient. How-
ever, end-effector robots can be easily adapted and used by
several patients with different pathologies [11–14]. Nev-
ertheless, these robots provide information about the end
effector trajectory followed during the therapy and the
interaction forces between the hand and the end effector,
by which the therapist can perform an objective assess-
ment and customize the therapy based on patients’ needs
[15–17], but they are not able to know the upper limb
joints of the patient.
On the other hand, monitoring joint angles enables

human posture to be analyzed in a wide range
of application and disciplines, such as physical and
neuro-rehabilitation, sports medicine or virtual train-
ing. The Range of Motion (ROM) in upper limb neuro-
rehabilitation therapy offers a comprehensive assessment

together with the clinical assessment scales [18–20]. Stan-
dard motion analysis instruments are widely used in these
fields that can be mainly divided into three groups: opto-
electronic systems, inertial measurement units (IMUs)
systems, and wearable goniometers. The former system
is often very expensive and difficult to adapt into a clinic
environment, it requires a large and controlled area with-
out camera obstruction [21]. The latter is an emerging
technology that aims to measure the angle joints by
the deformation of a specific sensor or by optical-based
goniometers [22–24]. However, they are able to measure
only simple joints as a flexo-extension of the knee or
the elbow, not a combination of upper limb joints. The
IMUs systems, based on the integration of accelerom-
eters, gyroscopes and magnetometers, have gained the
reputation of being the cutting edge of wearable motion
tracking systems [25, 26]. IMUs estimate the orienta-
tion of the body segments where they are attached by
combining multi-sensor information through dedicated
optimal sensor fusion algorithms. However, the calibra-
tion of these sensors is sometimes very difficult to achieve
with post-stroke patient due to a specific body configura-
tion requirements, as with the well known XSens MVN
system [27], or the system need a fusion of many sensors
placed onto the body [28].
There are several studies which have produced arm

reconstruction through motion tracking cameras to esti-
mate the position of the arm and implement a visual
feedback on rehabilitation activities [29, 30]. However,
they do not perform an accurate measurement of the arm
joints during the rehabilitation therapy. A new tool capa-
ble to compute the arm joints through two non-invasive
accelerometers placed onto the upper armwas introduced
by Mihelj [31]. Papaleo et al. improved this method by
integrating the joint kinematic reconstruction through the
inverse of the augmented Jacobian being able to accu-
rately estimate the human upper limb joints using only
one accelerometer [32]. Although this algorithm presents
a low error with respect to the real arm, it is unstable when
a small shoulder movement is done due to the inevitable
trunk compensation performed by patients. Furthermore,

a b

Fig. 1 Robotic devices for upper limb rehabilitation: a Exoskeletons, b End effector
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the system uses the information of an optoelectronic sys-
tem to measure the upper arm and forearm lengths, the
shoulder position, and the initial position.
In this paper, an upper limb kinematic reconstruction

algorithm, based on the same criterion presented in [32],
is developed. It uses the information provided by one
accelerometer placed onto the upper arm and by the end
effector of the robot. This algorithm solves the instability
in the upper limb joints estimation, proposing a pro-
tocol to manually measure the upper arm and forearm
lengths and we present a technique to estimate the initial
upper limb joints. The main difference between the pro-
posed and the previous algorithm is that the estimation of
the elbow joint location is done through computation of
the accelerometer rotation after an arm displacement. The
end-effector robot with seven Degrees of Freedom (DoF),
designed and built by the Neuro-Bioengineering Research
Group (nBio), Miguel Hernández University of Elche,
Spain, was used to carry out the experimental validation of
the proposed algorithm [33]. Furthermore, a comparative
analysis of both algorithms in a neuro-rehabilitation ther-
apy with post-stroke patients is performed, studying their
behavior when shoulder movements cannot be avoided by
patients but measured through the method proposed in
[34] using the ‘PUPArm’ robot.

Methods
Kinematic model of the human arm
The human arm is a complex kinematic chain that can be
simplified into seven DoF arm model, connected through

two links: upper arm (lu) and forearm (lf ), as can be
seen in Fig. 2a) [35]. The shoulder has been modeled as
a spherical joint composed of abduction-adduction (q1),
flexion-extension (q2) and internal-external rotation (q3)
movements. The double-hinge elbow joint comprises the
flexion-extension (q4) and pronation-supination (q5) of
the forearm. Though q5 anatomically belongs to the elbow
joint, it is considered as a wrist DoF. Thereby, the wrist
joint is a spherical joint composed of q5, ulnar-radial devi-
ation (q6) and flexion-extension (q7) of the hand. The
Denavit-Hartenberg (DH) parameters [36] of the arm and
the reference systems of each joint were established as are
shown in Table 1 and in Fig. 2b, respectively.

Inverse kinematics with augmented Jacobian
The kinematic reconstruction algorithm is based on the
augmented Jacobian introduced by Kreutz-Delgado [37].
The analysis of a seven DoF manipulator with revolute
joints was performed to uniquely determine the joint
angles for a given end-effector location. The redundancy
is catheterized by the swivel angle (α), the angle between
the arm plane formed by the shoulder, elbow and wrist
points and a reference plane SVW, shown in Fig. 3.
Then, the augmented Jacobian can be expressed as

JA(�q) =
[
Jg(�q)
Jα(�q)

]
,

where Jg(�q) is the geometric Jacobian matrix of the arm
and Jα(�q) is the swivel angle Jacobian, providing the joint
velocities with respect to the amount of change of α. Thus,

Fig. 2 Simplified human arm model. a Rotational joints. b DH reference systems where X, Y and Z axes are represented by the red, green and blue
colors, respectively
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Table 1 DH Parameters of the human arm

i θi di ai αi

1 π/2 + q1 0 0 π/2

2 3π/2 + q2 0 0 π/2

3 q3 lu 0 −π/2

4 π/2 + q4 0 0 π/2

5 π/2 + q5 lf 0 π/2

6 π/2 + q6 0 0 π/2

7 π/2 + q7 0 0 π/2

the arm joint velocities are computed through the inverse
of the augmented Jacobian with respect to the upper limb
joints (�q) as

�̇q = J−1
A (�q)

{[ �̇vd
α̇

]
+ K · �err

}
, (1)

being �̇vd the hand velocity vector and α̇ the swivel angle
velocity. The error produced by the discrete integration is

Fig. 3 Self motion arc and angle α represented on a random position
of the arm

minimized with the vector error ( �err) multiplied by a suit-
able gain matrix K [38]. The Jacobian matrix can induce
high joint speed in the regions close to kinematic chain
singularities. Thereby, the damped least-square approach
[38] was applied to the augmented Jacobian matrix as

J∗A = JTA
(
JA · JTA + k2 · I

)−1
,

where k2 is the damping factor that, chosen properly, per-
forms an accuracy approach to the singularity area, and I
is the identity matrix. Therefore, the Jacobian matrix J∗A is
introduced in (1) instead of JA.
Thus, the arm joints at time tk are estimated as

�q(tk) = �q(tk−1) + �̇q(tk)�t,

being �q(tk−1) the previous arm joints, �̇q computed
from (1) and �t the sampling rate.

Elbow estimation
The estimation of the elbow joint pose is the key of the
proposed inverse kinematic reconstruction. It is com-
puted through the orientation of the accelerometer placed
onto the upper arm. This orientation can be estimated
assuming slow movements during the exercise, to erase
the dynamic component of the acceleration.
Starting from the reference position of the arm and the

accelerometer, shown in Fig. 4, the value of the accelerom-
eter at this position, normalized with respect to the gravity
acceleration, is

acc0Vg =
⎡
⎣ 0
1
0

⎤
⎦ .

The acceleration value in a random upper limb position
can be expressed as a combination of the reference value
and the rotation applied (acc0Racc) as

accVg = (acc0Racc
)−1 acc0Vg .

The rotation matrix acc0Racc is unknown, however one
possible solution might be computed as

acc0 R̃acc = I + M + M2 1 − cos(θ)

sin2(θ)
,

with

M =
⎡
⎣ 0 −V (3) V (2)

V (3) 0 −V (1)
−V (2) V (1) 0

⎤
⎦ ,

V = acc0Vg × accVg ,
sin(θ) = ‖V‖,
cos(θ) = acc0Vg · accVg .

From this rotation, it is possible to find the proper arm
position making the plane XY of acc0 R̃acc to include the
known shoulder and wrist joints position, shown as �
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Fig. 4 Reference position of the arm and reference orientation of the
accelerometer where X, Y and Z axes are represented by the red,
green and blue colors, respectively

plane in Fig. 4. Hence, it is necessary to rotate the matrix
acc0 R̃acc around the gravity vector a γ angle to accomplish
this restriction. The computation of this angle is explained
in the Additional file 1. The simplification performed in
order to obtain this angle allows the algorithm to be per-
formed in real time (average time in the computation of
the mathematical operations: ≈ 0.9 ms running on the
Intel Core i7 3.40GHz with Matlab R2017a).
Two solutions of angle γ are found, each solution com-

putes a different rotation matrix acc0R(i)
acc, with i ∈ {1, 2}, in

which the Z axis point to each normal vector of the plane
�. Thus, two elbow positions with respect to the robot
(rPe) are obtained as

rPe =r Tacc · [
0 lu 0 1

]T , with

rTacc =
[ rRacc0 · acc0R(i)

acc rPs
0 1

]
,

being rTacc the homogeneous matrix of the accelerome-
ter regarding the robot, rRacc0 the rotationmatrix between
the robot and the accelerometer in the reference position
of the arm and rPs the shoulder joint position regarding
the robot. Therefore, the correct elbow position is the one
which the Z axis of the acc0R(i)

acc points the same direc-
tion as the cross product between the segment EW and

ES being S, E and W the shoulder, elbow and wrist joint
position.
Finally, the elbow location regarding the robot is esti-

mated as

rTe =
[ rRe rPe

0 1

]
, with (2)

rRe =r Racc0 ·acc0 Racc ·acc0 Re

being acc0Re the rotation matrix of the elbow regarding
the accelerometer in the reference arm position. Once the
location of the elbow joint is estimated, the swivel angle,
necessary to compute the augmented Jacobian, can be
computed [37].

Initial conditions
The initial upper limb joints are necessary to the kine-
matic reconstruction algorithm. The following locations
with respect to the robot are initially known: the shoul-
der rTs, obtained at the beginning of the therapy; the wrist
rTw, known through the end effector of the robot; and the
elbow rTe, estimated as explained in the previous section.
Thus, the initial joint angles can be estimated using the
DH parameters [39] shown in Table 1.
The known matrix that determines the shoulder move-

ment regarding its joints (q1, q2, q3) is defined as

rTs = s0Ts3 = s0Ts1 · s1Ts2 · s2Ts3 �

⎡
⎢⎢⎣
nx ny nz px
ox oy oz py
ax ay az pz
0 0 0 1

⎤
⎥⎥⎦ ;

and two possible solutions of the shoulder joints are
obtained as
(i) if q2 ∈ [0 π ] : (ii) if q2 ∈ [0 π ] :

q1 = atan2
(−ny, oy

)
q1 = atan2

(−ny, oy
)

q2 = atan2
(
ay,

√
n2y + o2y

)
q2 = atan2

(
ay,−

√
n2y + o2y

)

q3 = atan2 (az,−ax) q3 = atan2 (−az, ax)

On the other hand, the flexion-extension of the elbow,
joint q4, affects the distance SW and, therefore, it can be
unequivocally computed through the law of the cosines as

q4 = arcsin
(
l2u + l2f − ||W − S||2

2lulf

)
.

Finally, since the wrist location is given by the robot
end-effector pose, its transformation matrix rTw = s0Ts7
is known. Thus, the wrist joints can be also estimated
following the criterion used to solve the shoulder joints as

s4Ts7 = (s0Ts3 · s3Ts4
)−1 · s0Ts7 �

⎡
⎢⎢⎣
nx ny nz px
ox oy oz py
ax ay az pz
0 0 0 1

⎤
⎥⎥⎦ ;
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with s3Ts4 the homogeneous matrix of the joint q4, and
two possible solutions can be also obtained as

(iii) if q6 ∈ [−π/2 π/2] : (iv) if q6 ∈ [π/2 3π/2] :
q5 = −atan2

(
ny, oy

)
q5 = π − atan2

(
ny, oy

)
q6 = arcsin

(
ay

)
q6 = π − arcsin

(
ay

)
q7 = −atan2 (ax, az) q7 = π − atan2 (ax, az)

Thereby, four solutions, two due to the shoulder joints
and two due to the wrist joints, can satisfy the kine-
matic constraints. However, only one solution accom-
plishes the anatomical features of the human upper limb.
This statement is provable because the human arm joints
vary in [−π/2 π/2] and each solution belongs either
[0 π ] range or [0 − π ] range and, therefore, the ini-
tial arm joints remain defined. An extensive explanation
of the estimation of the initial conditions is presented in
Additional file 2.

Experimental protocol
Two different experiments were performed, in the first
experiment was intended to measure the accuracy of the
proposed algorithm with respect to an optoelectronic sys-
tem, taken as a ground truth, and the second was intended
to study the behaviour of the algorithm in a rehabilitation
therapy and compare its stability with respect to the pre-
vious algorithm presented in [32]. Data recordings have
been approved by the ethics committee of the Miguel
Hernández University of Elche, Spain. All the subjects
provided written informed consent.
The first experimental exercise was carried out by seven

right-handed healthy subjects performing three trials,
their main information is presented in Table 2. The sub-
jects wore a specific jacket with 25 markers attached to
it using the baseline upper body marker set [40] in order
to measure the ‘ground truth’ joints. Thus, the location of
the upper arm, forearm and hand were directly obtained
through the optoelectronic system and therefore the arm
joints were computed as explained in the previous section.
In order to estimate the upper limb joints through the
proposed algorithm, a magneto-inertial sensor was tightly
attached to the upper arm and the wrist joint location

Table 2 Main information of the healthy subjects

ID Age Forearm length [m] Upper arm length [m]

1 24 0.25 0.34

2 31 0.21 0.30

3 24 0.26 0.32

4 26 0.26 0.29

5 29 0.26 0.31

6 24 0.23 0.33

7 25 0.26 0.30

was obtained with the end-effector robot with seven DoF,
designed and built by the Neuro-Bioengineering Research
Group (nBio), Miguel Hernández University of Elche,
Spain [33]. The shoulder joint location was only mea-
sured at the beginning of the experimentation through the
optoelectronic system as the shoulder and the trunk are
fixed during the exercise. The trajectory was previously
established in the end-effector robot, a point to point task.
The second experimental exercise was carried out by

three post-stroke patients, the scores of two assessment
scales are shown in Table 3, Ashworth [41], for the elbow
joint, and Fugl-Meyer [42]. Two magneto-inertial sensors
were used, one attached to the upper arm and the other
onto the shoulder (see Fig. 5). The wrist joints location
was computed during the exercise with the end-effector
robot called ‘PUPArm’, designed and built by the Neuro-
Bioengineering ResearchGroup (nBio),Miguel Hernández
University of Elche, Spain; and the shoulder joint location,
as the flexion-extension and ulnar-radial deviation of the
wrist joint is fixed by the robot, the algorithm proposed in
[34] can be used and the shoulder location remains esti-
mated during the exercise. The subjects performed three
movements in the roulette activity [43].
In both exercises, the length of the upper arm was man-

ually measured from the lateral side of the acromion to the
proximal radius head, in the elbow joint; and the forearm
length was measured from the proximal radius head to the
radial styloid, the distal part of the radius [44]. Further-
more, the upper limb joints were on-line estimated. The
main parameters of the kinematic reconstruction algo-
rithm, the gain matrix and the damping factor, were set to
K = diag{1.5, 1.5, . . . 1.5}N/ms and k2 = 0.5 respectively.
They were chosen through a “trial and error” approach
under the exercise conditions. The magneto-inertial sen-
sors used were developed by Shimmer™ and sampled at
100Hz. The optoelectronical system was composed by 8
6DoF optical tracking cameras Optitrack V100: R2, devel-
oped by NaturalPoint®. This camera has a 640 × 480 px
resolution with an approximate precision of 0.3 mm and
frame rate of 30 − 120 frames per second.

Results
Validation of the proposed algorithm
This algorithmwas previously studied in a simulated envi-
ronment with a 7 DoF robot, being able to avoid shoulder
movements and misalignment between the accelerometer
and the upper arm, in [45]. The accuracy of the proposed
algorithm was measured as the difference between the
values acquired through the optoelectronic system and
estimated by the proposed algorithm in terms of Root
Mean Square Error (RMSE), Standard Deviation (SD) and
correlation coefficient (R), shown in Table 4. It can be
observed that the correlation between both upper limb
joints reconstruction is high with low error. In addition,
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Table 3 Main information of the post-stroke patients

ID Affected arm Age Forearm length [m] Upper arm length [m] Fugl-Meyer (A+B+C+D)* Ashworth

1 Right 51 0.24 0.30 (33+7+7+2) /66 2

2 Left 58 0.25 0.33 (27+4+3+3) /66 3

3 Left 74 0.24 0.35 (24+2+2+1) /66 3

*Fugl Meyer scale for upper extremity is divided in: A) Upper Extremity, B) Wrist, C) Hand, D) Coordination/speed

the reconstructed kinematic joints of a subject while per-
forming a trial is shown in Fig. 6.

Experimental results with patients
The proposed kinematic reconstruction algorithm was
tested in a clinic environment with post-stroke patients
during a robot-aided neuro-rehabilitation therapy with
the ‘PUPArm’ robot. In addition, the previous algorithm
presented by Papaleo et al. was also studied [32]. Figure 7
shows the upper limb joints estimated with the proposed
algorithm and with the previous algorithm. Furthermore,
the shoulder displacement of the patients and the trajec-
tory followed with the end effector of the robot are also
shown. The gray area denote the instability of the pre-
vious algorithm, i.e. the time in which the upper limb
joints cannot be estimated with the previous algorithm.
In these areas the arm joints were set to the last known
value estimated through the previous algorithm. The tra-
jectory followed with the end effector of the robot is also
shown in the figure together with the eight possible goals
of the roulette exercise [43]. In this case the exercise per-
formed was to achieve three goals. It can be observed
that the diameter of the roulette is higher in the user one,

15 cm, than in the user two and three, 13 cm and 12 cm
respectively, implying higher estimated ROM in joints q1
and q3 (see Table 5), as it was expected due to the high
Fugl-Meyer score (see Table 3).

Discussion
The aim of this study was to develop a robust kinematic
reconstruction algorithm of the human upper limb joints
being able to perform a real-time joint estimation dur-
ing a neuro-rehabilitation therapy assisted by robots with
only one accelerometer placed onto the upper arm. Fur-
thermore, the previous algorithm, presented in [32], the
initial upper limb joints; the upper arm and the fore-
arm length; and the shoulder position were measured by
the optoelectronic system, not used in a clinical environ-
ment. Therefore, we have defined a protocol to manually
measure the upper arm and forearm lengths; we have
introduced a mathematical method to estimate the initial
upper limb joints; and the presented algorithm, as it is
based on the computation of the accelerometer rotation,
is always able to estimate the upper limb joints.
The kinematic reconstruction algorithm proposed

shows high correlation with respect to the real upper arm.

a b

Fig. 5 Experimental exercises. a Healthy subjects performed an arm movement using a 7 DoF robot wearing an accelerometer placed onto the
upper arm and special jacket with optoelectronic markers. b Post-stroke patients performed arm movements using the ‘PUPArm’ robot wearing an
accelerometer placed onto the upper arm and a magneto-inertial device placed onto the shoulder
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Table 4 RMSE of the proposed algorithm regarding the
optoelectronic system reconstruction (grand mean of the seven
subjects)

RMSE SD R p-value

Elbow joint position [cm] 2.13 1.1 0.977 < 0.001

Wrist joint position [cm] 1.89 1.12 0.982 < 0.001

q1 [deg] 3.548 2.148 0.957 < 0.001

q2 [deg] 3.271 2.992 0.977 < 0.001

q3 [deg] 4.569 3.041 0.966 < 0.001

q4 [deg] 1.719 1.542 0.995 < 0.001

q5 [deg] 4.506 2.741 0.873 < 0.001

q6 [deg] 2.825 2.226 0.899 < 0.001

q7 [deg] 4.742 3.279 0.982 < 0.001

Although the error committed in the estimation of the
wrist and shoulder position is low, 2cm approximately,
it implies an upper limb joints RMSE about 3.5 degrees
(mean of the seven joints) with high correlation in all
joints. It must be noticed that q5 and q6 joints have low
correlation with respect to the others, it may be due to
these joints are in the distal part of the armwhere the error
between the real arm and the estimated arm is maximum
and the estimation could differ slightly.
The second experiment was intended to study the

behavior of the proposed and previous algorithms in
patients during a neuro-rehabilitation therapy assisted by
end-effector robots, being able to estimate the shoul-
der movements using the method proposed in [34] and
assuming the joints q6 and q7 fixed by the robot. Figure 7
shows that the previous algorithm is unstable when shoul-
der movements appear, areas marked in gray, whilst the

proposed not. Although the shoulder is assumed fixed in
both methods, it is very difficult to fix the shoulder and
avoid little displacements with patients. It must be noticed
that, before the error appears, the difference between both
algorithms increases and, after the instability, the previous
algorithm tends to follow the proposed estimated joints.
Therefore, we can say that in the areas when the previ-
ous algorithm fails the proposed kinematic reconstruction
performs a correct estimation. This error appears due to
the method employed in the estimation of the elbow joint
location because it is based on the strict constrains of
the human upper limb which, a little movement of the
shoulder assumed fixed, can lead to the algorithm fail-
ure. Furthermore, this error is closely related to the ROM
estimation, a very important parameter in these therapies,
and could lead a false ROM improvement [17]. There-
fore, it is very important the stability of the kinematic
reconstruction algorithm during the exercise.
On the other hand, the estimation of the ROM together

with the assessments scales proposed and the trajec-
tory performed by the user with the end effector of
the robot encompasses an objective and comprehensive
assessment of the patient condition during a robot-aided
neuro-rehabilitation therapy. Thus, it can be observed that
subject 3 performed worse trajectories than the other two
subjects as it was expected due to the low score on the
Fugl-Meyer scale with high Ashworth score. Furthermore,
the patient with higher Fugl-Meyer and less Ashworth
scores has the highest estimated ROM.

Conclusions
The presented kinematic reconstruction algorithm of the
human upper limbs has a low error regarding the real
arm acquired through an optoelectronic system. This

Fig. 6 Reconstructed upper limb joints estimated by the proposed algorithm (blue smooth line) and acquired through the optoelectronic system
(red dotted line) of one trial performed by a healthy subject
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Fig. 7 (Up) Upper limb joints angles estimated through the proposed algorithm (blue line) and with the previous algorithm (red dotted line). The
gray area denote the instability of the previous algorithm, i.e. the time in which the upper limb joints cannot be estimated with the previous
algorithm. In these areas the arm joints were set to the last known value estimated through the previous algorithm. (Middle) Shoulder displacement
performed during the therapy by the patients. The red line is the right(+)/left(-) movement, the green line is the forward(+)/backward(-) movement
and the blue line means the up(+)/down(-) movement. (Down) Trajectory performed during the therapy with the end effector of the robot (blue
line). The red circles are the goals of the roulette exercise

algorithm performs the kinematic reconstruction during
the exercise allowing the therapist to correct, in real time,
wrong upper limb position. Furthermore, compared to
the previous algorithm, it is stable; proposes a protocol
to manually measure the upper arm and forearm length;
and estimates the initial upper limb joints being able to be
used in a clinic environment. In addition, the study of the
kinematics in the ‘normal’ model, performed by healthy
subjects, during robot-aided rehabilitation tasks could be
directly applied in the evaluation of the patients. Finally,
the ROM estimation of the upper limb joints together
with the assessment scales, as Fugl-Meyer or Ashworth,
and the trajectory performed by the patient allows the
therapist to have a comprehensive assessment during the
therapy.

Table 5 ROM, in degrees, estimated through the proposed
algorithm during the therapy

ID Joint q1 Joint q2 Joint q3 Joint q4 Joint q5

1 37.5 5.46 43.63 35.8 11.78

2 17.99 11.74 18.04 29.29 9.20

3 18.99 9.47 16.13 26.04 11.38

Additional files

Additional file 1: Solution of γ angle. (PDF 104 kb)

Additional file 2: Estimation of the initial conditions. (PDF 107 kb)
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Abstract

Background: Assistive technologies aim to increase quality of life, reduce dependence on care giver and on the
long term care system. Several studies have demonstrated the effectiveness in the use of assistive technology for
environment control and communication systems. The progress of brain-computer interfaces (BCI) research together
with exoskeleton enable a person with motor impairment to interact with new elements in the environment. This
paper aims to evaluate the environment control interface (ECI) developed under the AIDE project conditions, a
multimodal interface able to analyze and extract relevant information from the environments as well as from the
identification of residual abilities, behaviors, and intentions of the user.

Methods: This study evaluated the ECI in a simulated scenario using a two screen layout: one with the ECI and the
other with a simulated home environment, developed for this purpose. The sensorimotor rhythms and the horizontal
oculoversion, acquired through BCI2000, a multipurpose standard BCI platform, were used to online control the ECI
after the user training and system calibration. Eight subjects with different neurological diseases and spinal cord injury
participated in this study. The subjects performed simulated activities of daily living (ADLs), i.e. actions in the simulated
environment as drink, switch on a lamp or raise the bed head, during ten minutes in two different modes, AIDE mode,
using a prediction model, to recognize the user intention facilitating the scan, andManualmode, without a prediction
model.

Results: The results show that the mean task time spent in the AIDE mode was less than in theManual, i.e the users
were able to perform more tasks in the AIDE mode during the same time. The results showed a statistically significant
differences with p < 0.001. Regarding the steps, i.e the number of abstraction levels crossed in the ECI to perform an
ADL, the users performed one step in the 90% of the tasks using the AIDE mode and three steps, at least, were
necessary in theManualmode. The user’s intention prediction was performed through conditional random
fields (CRF), with a global accuracy about 87%.

Conclusions: The environment analysis and the identification of the user’s behaviors can be used to predict the user
intention opening a new paradigm in the design of the ECIs. Although the developed ECI was tested only in a
simulated home environment, it can be easily adapted to a real environment increasing the user independence at
home.
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Background
It is estimated that one in six people in the world are
diagnosed with a neurological disorder and this number
is expected to rise considerable due to extensions of life
expectancy [1]. A neurological condition is a damage to
the brain, spinal column or nerves due to illness or injury
such as spinal cord injury, acquired brain damage, stroke,
motor neurons disease and locked in syndrome. Neu-
rological disorders are considered the primary cause of
disability in modern society [1, 2]. The debilitating conse-
quences of neurological disorders include communication
difficulties, impaired memory, inappropriate behav-
ior, physical disability, restricted independence, social
isolation and poor quality of life.
Assistive technologies aim to increase quality of life

[3–6], reduce dependence on care giver [7] and reduce
dependence on the long term care system [8]. Several
studies have demonstrated the effectiveness in the use
of environment control interfaces (ECI) for environment
control or communication through voice commands [9],
scan interfaces based on grid structure, eye tracking
[10–12] or brain-computer interface (BCI) based on P300
[13], among others. These software platforms actively aid
during the Activities of Daily Living (ADL) improving the
independence both at home and outside. However, these
platforms are based in a manual scan over the different
abstraction levels of the ECIs and the scan speed only
depends on the users familiarization with the system and
the configuration of the grids over the different menus.
Thus, introducing the user environment and behavior into
this loop will help the navigation agility in the ECIs.
On the other hand, The progress of BCI research

together with exoskeleton enables a person with motor
impairment to interact with new elements of the environ-
ment [14, 15]. Thus, this progress will deliver new scenar-
ios to BCI systems out of laboratories and move BCI into
the domestic environment. The AIDE project1 aims to
create new shared-control paradigm for assistive devices
that integrates information from identification of resid-
ual abilities, behaviors, emotional state and intentions of
the user on one hand and analysis of the environment and
context factors on the other hand. In this context, a hybrid
BCI model was chosen to control the ECI. It was devel-
oped as a fusion between non-invasive electroencephalog-
raphy (EEG) and electrooculography (EOG) system [16].
The EEG records the sensorimotor rhythms (SMR) called
event-related desynchronization (ERD) and event-related
synchronization (ERS) during a motor imagery (MI) task
[17] whilst the EOG records the horizontal oculoVer-
sion (HOV).
This paper aims to evaluate the ECI developed under the

AIDE project conditions, a multimodal system developed
to assist people with acquired brain damage or neuro-
degenerative diseases that need a wheelchair and has low

or any upper limbs mobility in their ADLs, in a simulated
environment able to detect the user intention through the
environment analysis and the identification of the user’s
behaviors, based on a conditional random fields (CRF)
model [18]. Thus, the handling of the interface was stud-
ied in two different ways, with and without the prediction
of the user’s intention. Users with neurological and mus-
cular diseases and spinal cord injury (SCI) tested the
system on a virtual home due to the early phase of the
project.

Methods
This study evaluated the ECI in a simulated scenario
under the AIDE project conditions, a multimodal inter-
face able to analyze and extract relevant information from
the environments as well as from the identification of
residual abilities, behaviors, and intentions of the user. It
consisted in a two screen layout: ECI and simulated room,
with an EEG and EOG data acquisition system (see Fig. 1).

Environment control interface
The environment control system used in this experi-
mentation was based in two main software components:
GRID3 from Smartbox2, a commercial augmentative and
alternative communication (AAC) solution, and SHX, a
specific developed software, presented in Fig 2. The ECI
had three different abstraction levels: 1) related with the
room (room menu), 2) related to the activities that can
be performed in a specific room (activity menu), and 3)
related to the actions regarding a specific activity (ADL
menu). The jump between two consecutive abstraction
levels will be named as step.
Levels one and two were specific grid sets, created in

GRID3, to be used in the context of the experimentation.
They include grids for the different rooms, communica-
tion, control a wheelchair and control an exoskeleton arm.
In all grids, a color code has been used: red for the alarm;
green for communication, computer control and digital
leisure; white for wheelchair and arm control (not used
in this experimentation); light blue for the rooms; dark
blue for environmental control activity. The dark blue cells
are referred to environmental control activities and linked
Grid3 with the SHX application. The user could scan
across the different cells, select one, and then confirm or
cancel the selection using the chosen signals (EOG, EEG,
eye tracking, etc.).
SHX is a custom build solution for environmental con-

trol management, level three. It allowed the user to easily
configure and select the actions programmed for a specific
activity. Different scenes for each of the possible activities
in every room were created. Here too, the user could scan
across the different cells, select one, and then confirm or
cancel the selection using the chosen signals (EOG, EEG,
eye tracking, etc.).
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a b

Fig. 1 Experimentation setup. The experimental setup was composed by two screens layout: ECI & Virtual home simulator, and an eye tracking
placed in the bottom screen. The users performed tasks in the simulated environment (a) and they also interacted with real elements (b)

Data acquisition
The acquisition of the brain activity was performed
with eight solid-gel electrodes placed according to
international 10-20 system placed at F3, C3, Cz, P3,
T7 and Mastoid, a reference electrode was placed
on C4 and the ground on FpZ. Furthermore, two

electrodes were placed on the outer canthus of the
eyes to the EOG signal recording. The EEG/EOG
signal was acquired via Bluetooth through the Neuro-
electrics amplifier (Enobio, Neuroelectrics, Barcelona,
Spain). Skin/electrode resistance was kept below
12 kOhm.

a

c

b

Fig. 2 Environment Control Interface. The ECI had three different abstraction levels: 1) related with the room, 2) related to the activities that can be
performed in a specific room and 3) related to the actions regarding a specific activity. An example menu of each level is shown in (a), (b) and (c)
respectively



Bertomeu-Motos et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:10 Page 4 of 9

A real-time SMR-based BCI was implemented using
BCI2000, a freely distributed software for multipurpose
standard BCI platform [19]. EEG and EOG were recorded
at a sampling rate of 500 Hz, bandpass filtered at 0.4-
70 Hz and pre-processed using a small Laplacian filter.
Based on the maximum values for basal ERD, the ongoing
EEG signal associated with the specified SMR rhythm fre-
quency range (11-14 Hz) calculated from C3 electrode, a
subject’s individual motor imagery discrimination thresh-
old were set. The EOG discrimination thresholds were
calculated regarding the average amplitudes of horizon-
tal saccades. These individual parameters were obtained
from the training session and used for later online BCI
control [20].

Prediction model
The proposed ECI combines the environmental informa-
tion and context factors together with user’s behaviors
in order to detect the user intention. Thus, the input
information of the prediction model was a sequence
of data, the user is moving and looking at the envi-
ronment, that had to be labeled. In this context, dif-
ferent models were tested (time-delay neural networks,
decision trees, hidden markov model (HMM)...) and
the CRF model was chosen, showing the best results.
The CRF model is a probabilistic model for segmen-
tation and labeling sequence data. This discriminate
model takes into account not only the current state
but also the previous states to perform its prediction.
A conditional model specifies the probabilities of pos-
sible label sequences given an observation sequence
in contras of the generative models that make very
strict independence assumptions on the observation, for
instance conditional independence given the labels as
HMM [21].
In our case, the inputs of the system were: localiza-

tion, objects in the environment, object that the user
is looking at, temperature of the room, brightness of
the room and day time; the output was the ADL menu,
i.e. the most probable action that the user wanted to
perform that were directly linked with a specific ADL
(see Table 1.

Participants
Eight persons with different neurological pathology and
spinal cord injury participated in this study (37 ± 15
years old), their demographic and clinical characteris-
tics are listed in (Table 2). The subjects were evalu-
ated before the experiment with the barthel index [22].
All participants gave informed consent using their stan-
dard communication channel prior to participation in the
study. The protocol was approved by the Office Research
Ethics Northern Ireland - approval granted for project
(15/NE/0384).

Table 1 Correlation between the ADLs and ADL menu name, in
the third abstraction level

ADLs ADL menu ADLs ADL menu

Open/close
fridge

Drink or eat Switch on/off air
conditioner

Air conditioner

Open/close
microwave

Drink or eat Brushing teeth Teeth

Eating task Eat Washing face Face

Drinking task Drink Raise/lower the
bed head

Bed

Switch on/off
Music

Entertainment Raise/lower the
bed feet

Bed

Switch on/off PC Entertainment Open/close the
blinds

Blinds

Switch on/off TV TV Switch on/off the
light

Light

Experimental protocol
Subjects were sitting in his/her own wheelchair in front of
a table with two screens, as shown in Fig. 1. The screens
were used to show the ECI and the virtual home simula-
tor. Subjects used the AIDE multimodal interface, hybrid
EEG EOG system, to online control the ECI and preform
specific ADLs. Two modes were tested:

A) MANUAL mode: the user had to navigate through
the three abstraction levels in order to accomplish
the task showed in the virtual house. The objects
related with the corresponding task were surrounded
by a green color in the virtual house environment
and the task appeared in the right top corner.

B) AIDE mode: in this mode the prediction model was
used. The user had to look at the objects related to
the specific ADL, showed like in the other mode, and,
after the user’s intention prediction, the ECI directly
jumped to the corresponding ADL menu. Then the
user had to navigate like MANUAL mode. In case of

Table 2 Demographic and clinical characteristics of participants

ID Patient Sex Age Diagnosis Barthel score

1 Male 32 C4 SCI 4/20

2 Male 22 Duchenne
Muscular
Dystrophy

6/20

3 Male 55 Brain stem
strokes

16.5/20

4 Male 30 C4/C5 SCI 2/20

5 Female 20 C6/C7 SCI 10/20

6 Male 58 Ischemic Stroke 19/20

7 Male 55 Multiple Systems
Atrophy

5/20

8 Male 30 C6/C7 SCI 9/10
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wrong prediction, the user had to manually go back,
the second abstraction level, and complete the
corresponding ADL. The observed objects were
online detected from the eye tracking Tobbi3 PCEye
go, placed on the virtual environment screen, and the
rest of the inputs were online simulated.

Each subject performed two experimental sessions in
two consecutive days. The first session was for training
and calibration purpose as well as for the familiariza-
tion with the systems to be controlled. This session lasted
around 60-80 min. In the last part of this session the
user learned how to use the hybrid EEG/EOG interface
in order to control the ECI. An example of MI and EOG
movements in the training session are shown in Fig. 3c
and d, respectively.
The second session lasted a maximum of 60 min. The

setup and familiarization phase took approximately 15
min (subjects have already tested the system in the first
session). They had 10 min to perform a predefined ADLs
list in both AIDE and Manual modes (all ADLs can be
observed in Table 1). Each ADL can be a single action, it
has a visual effect on the house simulator, e.g. swith on a
lamp, or an exoskeleton action, the simulator play a short
video showing the corresponding action, e.g. drink from
a glass. The order of the modes was randomly selected
and, before each mode, a baseline of 3 min was acquired.
During the break (5 min) and at the end of this session
the subjects answered the NASA task load index (tlx)
questionnaire [23].
The scan in the ECI was performed through looking-

right eye movements (Fig. 3b) implying a forward dis-
placement of the grid marker (Fig. 3a-e). Once the subject
stopped at one grid a customized time, chosen in the first
session, the ECI ‘switch off ’ the rest of the grids (Fig. 3f ).
Then, the next level or the action in the ECI was achieved
by on-line ERD detection, like the subjects learned during
the first session (Fig. 3a). On the other hand, if the user
did not want to click on this specific grid, in the phase
Fig. 3f, a looking-left eye movement returns the ECI to
the phase Fig. 3a. When the user performs an action, a
visual feedback is presented in the virtual home regarding
to the action performed (Fig. 3g) and he/she waited for the
next task.
After both modes, they were instructed to interact with

real elements through the ECI and watch a video using
objects of a multi-sensory room, as can be observed in
Fig. 1b.

Results
The users performed simulated ADLs during 10 min
in a virtual home using an ECI in both Manual and
AIDE modes. The number of the performed tasks with
respect to the mean time spent per user is presented

in Fig. 4a. Furthermore, it has been trained a Support
Vector Machine (SVM) model with Gaussian kernel
to estimate the boundary between both modes (yel-
low line in Fig. 4a). It should be noted that statistically
significant differences between both modes in terms
of number of tasks and mean tasks time is shown
(p − value < 0.001 using Wilcoxon test). The steps dis-
tribution that the users performed in both modes are
shown in Fig. 4c. ADLs manually omitted tasks were
excluded from the study due to the subject was blocked
during the ECI scan caused by frustration or fatigue over a
specific task.
On the other hand, the AIDE mode uses a CRF

model, previously trained with simulated data using the
same virtual home, to predict the user intention. Thus,
the confusion matrix of the prediction model regarding
the ADL menus is presented in Fig. 4b. In addition, the
results obtained through the NASA tlx questionnaire are
presented in Fig. 5.

Discussion
The AIDE project aims to develop a multimodal system in
order to help people with neurological diseases wearing a
wheelchair. The presented environment allowed the user
to navigate through a virtual house and perform several
ADLs using a developed ECI. Two modes were estudied,
theAIDEmode, that used a CRFmodel to predict the user
intention and ease the ECI scan, and the Manual mode,
that needed a complete scan through the ECI to perform
a specific ADL. The ECI was online controlled using the
AIDE multimodal system based on a combination of EEG
and EOG wireless acquisition system [17].
The results presented in Fig. 4a show the mean time

per task spent in the AIDE mode is less than in the Man-
ual mode being able to perform more tasks in the same
time, both modes show statistically significant differences
(p < 0.001). Furthermore, both modes can be easily clas-
sified by training a SVM model with Gaussian kernel, the
boundary is presented with a yellow line in Fig. 4a.
On the other hand, Fig. 4c shows the difference between

both groups in terms of steps, i.e. the ECI abstraction lev-
els that the user had to cross in order to perform a specific
ADL. It must be noticed that in the AIDE mode, the users
performed one step in the 90% of the tasks and three steps,
at least, were necessary in the Manual mode. Regarding
the AIDEmode, three steps were necessary only when the
CRF model realized a wrong prediction and, therefore,
the user had to return to the activity menu and select the
proper ADL menu. Although a bad prediction is some-
times performed, the multimodal system helps in terms of
location, i.e. the activity that the system predicts is always
related with the room where the user is, facilitating the
navigation. Perform five or seven steps in the Manual
mode implies that a wrong abstraction level was selected,



Bertomeu-Motos et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:10 Page 6 of 9

a c

b d

Fig. 3Multimodal system processing for one ADL in AIDE mode. The user had to perform different actions in order to execute the corresponding
ADLs, in this example, the user had to switch on the TV, phases a-g show the behavior of both screens during the task. EEG (a) and EOG (b) signals
were acquired to online control the ECI in order to perform ADLs in a virtual house. When the task started (vertical purple line), the scan through the
ECI was performed by EOG activity detection [orange line in (b)], i.e. when HOV activity exceeded the threshold [indicated by the orange dashed
line in (b)] the grid marker moved forward (phases a-e). Once the subject stopped at one grid, a task confirmation was needed [indicated by the
vertical black line] and the ECI ‘switched off’ the rest of the grids indicating this purpose (phase f). The confirmation was performed by the detection
of SMR-ERD [indicated by red line in (a)] and the action was done, so the ADL finished (vertical dotted purple line). This ADL was performed in one
step, i.e. the user only needed to navigate through the last abstraction level to complete the task. Before the experimentation, the user was trained
in motor imagery (c) and EOG movement (d) to the set up the control system with the personalized parameters
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a

b c

Fig. 4 Environment control interface performance. The users performed two different trials with the same goal: complete as many tasks as possible
in 10 min by using theManualmode and the AIDE mode (a). Both modes have been used to train a SVM model with Gaussian kernel and find the
boundary between them [yellow line in (a)]. The interaction with the ECI was measured by steps that a user had to perform in order to complete the
tasks (c). Furthermore, in AIDE mode the user’s intention prediction was performed through CRF model and, therefore, the confusion matrix of the
model is obtained (b)

due to user confusion or lack of practice, and the user had
to go back in the ECI.
The AIDE mode uses a CRF model to perform the

predictions about the user’s intention. The model uses
the information of the virtual home and the object that
the user is looking at, acquired thought an eye tracking
device. The model was previously trained with simulated
data using the same virtual house environment. Thus,
Fig. 4b shows the confusion matrix of the prediction
model, regarding the ADL menu, with a global accuracy
about 87%. The CRF model, as it takes into account not
only the current state but also the previous states to per-
form its prediction, it could fail in the prediction of task
with common features. Therefore, the ADLs related to the
Drink menu are sometimes predicted as the ADLs related

with the Eat menu, in this case around the 50% of the
trials. In addition, TV and the Teeth menus are rarely
selected as Entertainment and Facemenu, respectively, by
the prediction model.
After each mode, the subjects answered the NASA tlx

questionnaire in order to assess the workload between the
modes, showed in Fig. 5. Unexpectedly, it has not sta-
tistically significant differences, so we can say that the
users do not notice subjective differences between both
modes in terms of workload. It can be explained because
it was the first time that the users handle the com-
plex multimodal control system (EEG+EOG) with this
ECI. We assume that, observing the results presented
in Fig 4, the workload should decrease, at least, in the
AIDE mode.
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Fig. 5 NASA task load index. The subjects answered the NASA tlx questionnaire after each mode

Conclusion
The presented ECI allowed the users to perform simulated
ADLs with a multimodal control system. The platform
was tested in two different scenarios: Manual and AIDE
mode. The first one was presented as a simple ECI where
the user had to achieve the corresponding ADL. The
second mode used a CRF model to predict the user’s
intention through the environment analysis and identifi-
cation of the user’s behaviors. We conclude that, even the
users do not perceive subjective differences between both
modes in terms of workload, the AIDE mode helps the
user to perform mode ADLs, spending less time per task,
showing statistically significant differences with respect
to the Manual mode. This effect is caused by the user’s
intention prediction as the ECI jumps directly to the last
abstraction level of the ECI. The environment analysis and
the identification of the user’s behaviors can be used to
predict the user intention and will allow to speed up the
ECIs scan opening a new paradigm in the design of these
interfaces. Although the developed ECI was tested only in
a simulated home environment, it can be easily adapted
to a real environment increasing the user independence
at home.

Endnotes
1 http://aideproject.umh.es/
2 http://www.thinksmartbox.com
3http://www.tobii.com
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