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Brain-machine interfaces (BMIs) can improve the control of assistance mobility devices

making its use more intuitive and natural. In the case of an exoskeleton, they can also

help rehabilitation therapies due to the reinforcement of neuro-plasticity through repetitive

motor actions and cognitive engagement of the subject. Therefore, the cognitive

implication of the user is a key aspect in BMI applications, and it is important to assure

that the mental task correlates with the actual motor action. However, the process of

walking is usually an autonomous mental task that requires a minimal conscious effort.

Consequently, a brain-machine interface focused on the attention to gait could facilitate

sensory integration in individuals with neurological impairment through the analysis of

voluntary gait will and its repetitive use. This way the combined use of BMI+exoskeleton

turns from assistance to restoration. This paper presents a new brain-machine interface

based on the decoding of gamma band activity and attention level during motor imagery

mental tasks. This work also shows a case study tested in able-bodied subjects prior to a

future clinical study, demonstrating that a BMI based on gamma band and attention-level

paradigm allows real-time closed-loop control of a Rex exoskeleton.

Keywords: brain-machine interface, EEG, gamma band, lower-limb exoskeleton, motor imagery, human

movement, sensory integration, Stockwell Transform

1. INTRODUCTION

Stroke, spinal cord injury (SCI), and limb loss are some of the most common causes of acquired
motor disabilities in adults, being the restoration of motor function often incomplete. Normally,
therapists try to recover some residual ability for movement when possible, acting over the distal
physical level, trying to influence the neural system through mechanisms of neural plasticity
(Ang and Guan, 2013). Traditional therapies focus on improving the functional ambulation for
patients in the sub-acute phase, using overground training. This requires the design of preparatory
exercises, the observation by a physical therapist and the direct manipulation of the limbs during
gait over a regular surface, followed by supervised walking. Orthesis and prosthesis devices have
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been developed in the last years in order to assist people
with motor limitations (Contreras-Vidal et al., 2016). The
introduction of these robotic devices into rehabilitation therapies
can further improve them (Bortole et al., 2015). Regarding the
control, EMG-based interfaces can be used to control prosthesis
(Villarejo Mayor et al., 2017), but a Brain-Machine Interface
(BMI) offers a more suitable option to control a mechanical
device, such as a speller or a wheelchair (Li et al., 2014), and
exoskeletons or robotic orthesis (Do et al., 2013; Kilicarslan et al.,
2013; López-Larraz et al., 2016; Liu et al., 2017). In addition, a
BMI can improve neuroplasticity during rehabilitation therapies
through the cognitive engagement of the subject (Cramer, 2008;
Gharabaghi, 2016; Barrios et al., 2017), a fact that has been proved
in clinical studies (Donati et al., 2016).

One of the most common paradigms used for BMIs to
decode the brain activity is motor imagery (MI). It has been
demonstrated that the mental task of imaging a movement
produces similar brain patterns to the actual motion (Stippich
et al., 2002; Bakker et al., 2007; Batula et al., 2017). Feature
extraction of MI is usually based on the frequency analysis of
the subject’s electroencephalographic signals (EEG) in alpha (8−
12 Hz) and beta bands (12 − 32 Hz) (Pfurtscheller et al., 2006),
or delta bands (0.1 − 4 Hz) (Bradberry et al., 2010; Presacco
et al., 2011). However, there are not many studies that focus on
gamma bands (32−100 Hz). Recently, the gamma band has been
related to gait attention (Costa et al., 2016; Costa-García et al.,
2019). However, the actual action of walking does not demand
high attention from the individual, as it is usually involving a
subconscious mental task. Besides, the subject can be affected by
external sensory distractions that can reduce the level of cognitive
engagement associated with the MI task. For this reason, it is
important to assess the attention level that the subject keeps
during themental task of controlling the robotic device. This way,
it can be assured that the cognitive engagement of the subject is
high during the therapy, and that the control outputs are accurate
and associated with the mental process of rehabilitation. This
allows to turn assistive BMIs into restorative BMIs (Gharabaghi,
2016).

The present research combines two different paradigms in
order to propose a new BMI for controlling a lower-limb
exoskeleton. First, a new BMI based on MI for gamma band
is presented. The current work expands the initial research
developed in Ortiz et al. (2019), studying the real-time feasibility
of the new MI paradigm in an opened-loop and closed-loop
control scenario. Second, the BMI proposed in Costa-García
et al. (2019) is adapted to the current research in order to
evaluate the attention to gait based on a dual task paradigm. The
attention level provides this way, a measurement of the cognitive
engagement of the subject during the use of an exoskeleton,
fact that has not been studied previously in literature. This
information could be provided during rehabilitation therapies
to the subject and clinical staff to assess the degree of
engagement during the MI mental task. Finally, the viability of
the combination of the attention level to gait as a modifier for
the initial MI paradigm is studied. The objective is to see if the
combination of both paradigms allows to operate the exoskeleton
with a higher accuracy. This new approach has been tested with

several able-bodied volunteers, as a preliminary study before its
employment with patients in a second stage of the research. The
results show that the proposed BMI can be used for real-time
closed-loop operation of a Rex exoskeleton.

2. MATERIALS AND METHODS

This section describes the experimental setup, the equipment
used, the data processing methods and the indices used
for assessment.

2.1. Equipment
Data acquisition was accomplished by two non-invasive bundles
of 32 wet scalp electrodes over an easyCap unit (Brain Products
GmbH, Germany). The cap followed the 10–10 distribution
of the international system. Four of the electrodes of the
first bundle (see Figure 1) were placed around the eyes in a
bipolar setup to assess the contribution of blinking to artifacts.
Reference and ground electrodes were positioned on both ears.
Data were transferred by wireless communication using a Move
transmitter (Brain Products GmbH, Germany) for their posterior
amplification by two brainAmp units (Brain Products GmbH,
Germany) and their processing and recording in a laptop.

The exoskeleton used was the Rex (Rex Bionics, New
Zealand). The exoskeleton was controlled by wireless
communication. The feedback information of the current
status of the Rex was acquired by the computer through a wire
serial port communication with a custom developed software.
Rex exoskeleton has several characteristics which make it
different from other lower-limb exoskeletons. First, it is a self-
standing exoskeleton that does not require any crutches and that
allows a full standing walking without any vertical inclination.
In addition, its walking pattern is very peculiar and far from
the anthropomorphic usual gait. The choice of this exoskeleton
was made based on the movement limitations it provides. In a
Rex exoskeleton, the limbs of the subject are tightly attached to
the robotic prosthesis by several straps, avoiding any lower limb
movement. This way, the subject can only move their legs when
the exoskeleton does, avoiding any lower-limb movement not
commanded by the BMI.

2.2. Experimental Setup
2.2.1. Subjects
Four able-bodied subjects (S1–S4) took part in the experiments.
The subjects did not report any known disease and participated
voluntarily in the research, giving written and informed consent.
All the procedures were approved by the Institutional Review
Board of the University of Houston, TX (USA). The research
included two different experiments. S1 and S2 participated in
the initial opened-loop experiments, which were used to set up
the initial algorithms of both BMIs (only MI and MI+attention).
Additionally, subjects S2–S4 participated in the sessions which
were designed with the objective to test the initial results in
a closed-loop control scenario. S1 could not participate in the
closed-loop experiments due to malfunctioning of the electrodes.
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FIGURE 1 | Electrode configuration for the experiments. Sixty of the electrodes were used for EEG recording. Four of the electrodes of the first bundle were used for

assessing eye artifacts. Ground and reference were positioned on left and right ear, respectively.

FIGURE 2 | Structure of a session with only opened-loop control per paradigm of control. The trials were registered and computed for a determined paradigm of

control (MI or MI+att) in groups of five trials. Each session consisted of 10 training trials, which were recalculated for the other paradigm of control in a pseudo-analysis

(1− 5 and 6− 10). The model used for testing each trial in opened-loop included the previous n-1 trials up to a maximum of four trials.

2.2.2. Subject Preparation
Preparation of the subject included two different steps. First the
limb length of the exoskeleton was adjusted to the subject. After
that, the electrodes were gelled to a value lower than 30k�.
Electrode’s impedance was checked before starting the trials and
after finishing to be sure no electrodes were marginally over
the 30k� value. Full process for both tasks could take around
an hour. Before starting data collection, a medical mesh was
positioned over the cap to avoid any wire movement andmitigate
motion artifacts. Before starting, several runs of walking by
manual control were accomplished in order to get the subject
used to the Rex movement.

2.2.3. Protocols
Figures 2, 3 show the structure of both kind of sessions (only
opened-loop control and with closed-loop control). First sessions
of the research included only training trials that were controlled
in opened-loop. Once the paradigms were set-up based on the
first sessions data, experimental sessions included test trials
which were controlled in closed-loop. Following paragraphs
detail the characteristic of both kind of trials.

2.2.3.1. Training trials
Training trials were the ones used for creating the classifier
model of each paradigm control (MI or MI+attention). As
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FIGURE 3 | Structure of a session with closed-loop control per paradigm of control. The subject performed the whole diagram once per each paradigm of control (MI

and MI+att). Each paradigm consisted of five training and five tests trials, so each session consisted of 20 trials. The test trials were tested with the specific trained

model.

the developed tool always works in real time, first training
trial needs a generic model 0 (randomized data) in order
to be processed. The output results of the first training trial
were not considered for this reason, as the trial was classified
with a model which contains data that was not related to
the subject. Subsequent training trials were tested in opened-
loop control with the model of the previous n-1 trials of the
subject. As real-time analysis can be done for only a specific
algorithm of control (MI or MI+attention), trials were run
with an specific kind of model paradigm. However, a pseudo-
online analysis for the other control paradigm was run to
compare the performance of both paradigms, as it will be seen in
results section.

The protocol of a training trial included three different mental
tasks (see Figure 4). First, 15 s were not used for classification
as they were needed for the convergence of the H∞ eye blinking
artifact removal algorithm (Kilicarslan et al., 2016). In addition,
these seconds helped the subject to feel relaxed before the start
of the trial. After that, an acoustic cue marked the start of a
rest/standing event, which ended by another acoustic cue for
starting the MI event and the Rex activation. After at least 20 s
of normal exoskeleton walking, a new acoustic cue indicated
the start of a reverse mental count. This mathematical task
substituted the original mathematical operations used in Costa-
García et al. (2019) for the assessment of the low attention to
gait, as it was difficult to attach a tablet to the Rex exoskeleton
without disturbing the subject. The mental operation consisted
of an accumulative counting of 1, 000 ± 7. The ± was changed
randomly between trials to avoid the repetition of the numbers
and any memorization of the operations by the subject. The
counting event was used as a distracting mental task to assure
that the focus of the subject was not on the gait during the
Rex walking. This counting also worked as a control class to

detect if the output differences in the MI class were related
to motion artifacts. As the Rex is moving in the same way
during MI and counting periods, the output differences were
just related to the mental processes. In addition, to take into
account the time that the exoskeleton needs to perform the
transition step to start or to stop, additional windows of time
of 5 s for the start (2 s for the cue influence +3 s for
the transition step) and 4 s for the stop were considered.
Status of the Rex can be seen in Figure 5 operating in an
opened-loop control. As it can be seen in the image, there is
some inherent lag since the real command is issued, which
in training trials is coincidental with difference between the
acoustic cue (start or stop) and the moment the Rex initiates the
transition step or achieves the reference status (normal walking
or standing position).

2.2.3.2. Test trials
Test trials were run in real-time closed-loop control in
order to assess the BMI behavior. The model that used
the test trials consisted of the previous five training
trials acquired.

The trials used for testing the BMIs were similar to the
training ones, but without the count event, see lower part of
Figure 4. In order to give enough time for the Rex to stop, the
final rest event was expanded to 20 s, as the lag introduced
by the Rex between the issue of a stop command and an
actual stop can last over 7 s depending on the position of the
mechanical limbs. This is because final standing position must
leave both limbs in parallel, requiring sometimes to fulfill a full
last step plus the transition step before stopping. The command
to start or to stop the Rex was issued only when a decision
command output was created by the BMI based on the output
of the classifier.
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FIGURE 4 | Times of the mental events during the experimental trials. Both trials included a previous time of 15 s followed by a 10 s rest period. In the case of training

trials, this period was followed by walk/mathematical count/stop events. Test trials for testing did not include the mathematical count event and had an extended final

stop event to allow the Rex to stop. As first and last steps of the exoskeleton had a variable time, extra windows of time of 5 s for the start and 4 s for the stop were

considered.

FIGURE 5 | Experimental protocol for the training trials. Each event

started/finished with an acoustic cue (red/blue/green arrows for start, stop,

counting events). The figure also shows the Rex status during the trial

(Standing/transition step to walk or stop/Normal walking). First 15 s were not

considered for analysis and were used to allow the artifact removal algorithm

to converge. As it can be seen there is a hardware lag in the status of the Rex

since a start or stop cue is issued and the Rex changes its status.

2.3. Signal Processing
The whole signal processing scheme can be seen in Figure 6.
The following paragraphs will describe it for the different
processing paradigms.

2.3.1. Initial Pre-processing
One of the most difficult problems a BMI based on non-invasive
EEG must confront is the presence of artifacts which could
spoil the information contained in the EEG signal. This is
especially difficult in the case of real-time algorithms, as no offline
analysis mitigation is possible. The movement of the Rex is slow
enough to not have important motion artifacts. Nevertheless,
the electrode’s wires were carefully attached using plastic clamps
and a medical mesh was placed over the cap in order to avoid
any fluctuation of the wires. In addition, subjects were advised
to avoid any swallowing or chewing during the experiment. In
order to mitigate the artifacts associated with eye blinking, H∞

(Kilicarslan et al., 2016) algorithm was applied (see Figure 1 for
detail of the electrodes used for H∞). As the algorithm needed
to work in a real-time scenario, the sampling frequency of the

original data was resampled from 1 kHz to 200Hz, applying each
sample for a variable state function for an anti-aliasing low-pass
filter. The filter was designed to maintain the Shannon sampling
theorem requirements, with cut-off frequency equal to the new
Nyquist frequency (Vaidyanathan, 1993). The 200 Hz frequency
was chosen as a compromise between frequency resolution
(allowing the extraction of γ band) and the processing speed of
an epoch of 1 s length. This value was based on the preliminary
analysis of former Rex data by the lab and the first of the opened-
loop sessions. Time processing was an important issue as each
epoch shifted every 0.5 s. Therefore, the whole processing time
since an epoch was collected and a command decision was taken
(see Figure 6) should be below 0.5 s for all the epochs in a trial.
This was accomplished for the pseudo-online and online analyses
requiring and optimization of the code not usually needed in an
offline analysis.

After the signal was resampled and free of ocular artifacts, a
standardization process was accomplished. This step is important
to give the same weight to different electrodes for the MI and
attention paradigms and to avoid that the changes in the EEG
voltages of the subject between training and test trials can affect
the classification. The standardization process was similar to the
one presented in Costa et al. (2016) using the maximum visual
threshold (MV). For each electrode i, it is computed based on its
voltageV , and updated for each epochm = 1 :N of the trial, with
a length of L samples as:

MV i
=

1

N

N
∑

m=1

max
[

abs
(

V i
(m−1)·L+1 :m·L

)]

(1)

Being the standardized voltage of the electrode i per each sample
at time t:

SV i(t) =
V i(t)

1
60

∑60
j=1MV j

(2)

For the first epoch of the first training trial, the BMI takes the
MV thresholds of the generic model 0 file, based on the data of
a former subject. This information is updated for each epoch,
converging to a stable value after several seconds, so it does not
affect the epochs in the events under analysis. Following trials
use the updated thresholds of previous trials, so model 0 is just
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FIGURE 6 | Scheme of the full processing of an epoch since it is acquired and an output command decision is interpreted. The processing is carried out in the same

way for the pseudo and the online analysis in real time. The only difference is that during pseudo-online analysis the command decision is not sent to the exoskeleton.

Attention paradigm part is in green while MI paradigm is in beige.

used for the initial seconds of the first training trial as a way to
accelerate the MV convergence.

2.3.2. Attention Level Paradigm
The attention level BMI is based on the previous research
published in Costa-García et al. (2019). However, it is

particularized for the 60 EEG channels of the proposed setup
instead of the original 31 channels, and the mental tasks of this
research, as it is not possible for the Rex to follow ground stamps.

The first step is to detect the presence of any residual noise in
the signal. An epoch of electrode i is considered as noisy if the
instant MV threshold is over 150 µV , its instant kurtosis is over
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15 µV , and its spectral power obtained by the maximum entropy
method is not over 14 µV2.

Regarding the data processing, first a notch filter at 60 Hz and
a fourth order Butterworth band-pass filter (5−90 Hz) is applied
to the epoch, followed by a spatial Common Average Reference
filter (McFarland et al., 1997). After that, the power spectral
density of the channel is computed by the maximum entropy
method (Rainford and Daniell, 1994) for the bands between 30–
55 and 65–90 Hz. Bands were changed from the original research
due to the different line frequency in the USA.

In order to consider an epoch as valid for attention level
assessment, at least 21 channels must be not noisy. If this is
not the case, the attention level is considered as the one of the
previous epoch (please check Costa-García et al., 2019 for further
information of the method). This means that the feature data
vector can range between 21 and 60 data. Nevertheless, due
to the extended number of channels in this research, and the
preliminary artifact filters, this was not needed in practice, as the
noise content was below the original research.

For the classification, three different classes were considered:
rest, count and walk. Rest class contains the epochs of the
standing rest periods of the Rex (standing blue parts in Figure 5,
about 20 s); count data consists of the 20 s of walking
mathematical operations (green part in Figure 5 neglecting the
2 s after the count cue); and walk class is based on the normal
step walking periods (upper red part in Figure 5, about 20 s).
Due to the uncertain time needed to do the transition steps,
rest and walk periods can have slightly different number of
epochs. However, the difference is not high enough to unbalance
the classes.

The classifier uses a Linear Discriminant Analysis (LDA)
algorithm, which is a generalization of Fishers Discriminant
classifier (Izenman, 2013). For the opened-loop analysis, the
model is created using the data-set of the previous training
trials. This means that trial i is classified with the information
of training trials 1 : i − 1. In the case of the closed-loop testing,
the model is created with the five associated training trials (see
Figures 2, 3). The first training trial needs a generalized model 0
to be processed as there is not previous model data and the tool
works always in real-time for all the registers. This output can
not be used for assessment as it is not relevant. This is the reason
why opened-loop analysis shows only the information of training
trials 2− 5.

After each epoch is classified, a weight is assigned depending
on the output label. If the output corresponds to a rest or count
label, an attention value of 0 is assigned and if it is a walk a 1. This
value is then averaged for the last 10 epochs. This means that for
obtaining a maximum attention value of 1, 10 consecutive epochs
must be classified (5 s due to the shifting). Considering the data
acquisition lag (+0.5 s) means that at least 5.5 s are needed to
achieve a perfect attention level. This is important to understand
that certain lag is inherent to the assessment method. This way,
a medium level attention is considered when it is over 0.25 and a
high level over 0.5 (around 3 s of consecutive walk detection).
An example of the attention level can be seen in Figure 7 as
the bars of the attention paradigm image (down). Each of the
classifications can be seen in the image as a •.

2.3.3. Motor Imagery Paradigm
The MI BMI is based on the preliminary study developed in
Ortiz et al. (2019). In that research, a BMI based on γ band was
presented and the conclusion extracted was that γ band could
be used for commanding an exoskeleton with a low false positive
ratio. However, the study was limited to one subject and tested
in an offline scenario. In the present research some changes have
been done to the former BMI to allow its use in real time and in
coordination with the attention level BMI for commanding the
Rex exoskeleton in closed-loop control.

As it can be seen in Figure 5, data is first notch filtered
at 60 Hz. The rest of the processing is applied to the central
electrodes associated with MI tasks: Fz, FC1, FCz, FC2, C1, Cz,
C2, CP1, CPz, and CP2.

Regarding the feature extraction, this is done using Stockwell
Transform (ST) for each epoch (Stockwell et al., 1996). Although
ST is applied to the whole epoch (1 s), in order to avoid border
effects the information considered is extracted from 0.25 to
0.75 s of each epoch. This means, that each epoch overlaps
information for a quarter of second, as epochs are shifted at
a 0.5 s pace. Once ST is computed, the instantaneous power
of the voices from 30 to 55 Hz lower γ band is added. This
changes from the original research that used the maximum peaks
of the low and high γ bands. Preliminary studies using the
S1, and S2 training data revealed that high γ band did not
produce a significant improvement of accuracy, while its no
consideration kept the processing times below the shifting time.
Besides, the addition of power, instead of the computation of the
maximum peak, produced slightly better results without affecting
the computation times.

The buffer for smoothing the output was extended to 4 s in
this research (this contains data since 4.5 s due to +0.5 s needed
for acquisition). This is a compromise between 3 s needed for a
medium attention level and the 5.5 s for a high attention level.
An example for the smoothed value of electrode Cz can be seen
as standardized power in the upper image of Figure 7.

This smoothed value is averaged afterwards for each epoch
to obtain the associated feature of each electrode. This is
another difference in comparison with the former research, as the
calculation of the features is done by each individual electrode
and epoch and its value is not averaged for the 10 electrodes
(Ortiz et al., 2019). This allows to use the 10 features per epoch as
a vector data for the LDA classifier.

Regarding the classifier, only two classes are considered, walk
and rest, instead of the three classes of the attention model.
Similarly to the attention BMI, depending on the output label of
the classifier, a 0 is assigned to each epoch for a rest detection
and a 1 for walk. This way, the MI level is computed in an analog
way to the attention paradigm, see MI paradigm (center) image
of Figure 7. In the same way than the attention paradigm, the MI
level is shown as bars and the classifier output as a •.

2.3.4. Command Decision
Once the MI and attention levels are assessed, they are used to
create a decision for the output command of the BMI. In the
case of the opened-loop trials, the information is recorded for
its evaluation, while in the case of closed-loop trials it is sent to
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FIGURE 7 | Output information of the fifth opened-loop training trial of subject S1. Up image shows the output of the MI paradigm features for electrode Cz. Center

image shows the MI classifier output. Down image shows the attention classifier output. Mental tasks are color coded (Blue for rest, red for walk and green for count).

MI and attention levels are shown for each paradigm in bars ranged from 0 to 1. A high level is considered when the bars are above 0.5 (green dotted) and a medium

level when it is above 0.25 (golden dotted). Classifier outputs are shown as •, and exoskeleton commands as •. Rex command status is represented as a thicked

black line, which would represent the status of the exoskeleton in the case the commands could be issued instantaneously without any hardware lag. The exoskeleton

was commanded for this example using the MI+att paradigm based on the periods of high and medium MI and attention.

the exoskeleton providing feedback to the subject. Two different
command rules were tested depending on the paradigms used:
MI and MI+att.

First control method (MI) only uses the information of the
MI levels, creating an output command when its value is over
0.5. To simulate the time needed for the exoskeleton to finish
a step, it is not possible to send two different commands in a
timelapse of 3 s. This does not affect the behavior of the control in
a closed-loop scenario, as the hardware cannot process opposite
commands during a step. However, it provides a more realistic
output of the commands and indices for opened-loop trials. An
example of a closed-loop control using just the MI control can be
see in Figure 8.

Second control method (MI+att) combines both paradigms
to make a command decision. The requisite of no-different
commands within a 3 s period is also present. The rules are more
complex and can be summed as:

• If no command was issued since 3 s.

– If MI> 0.5 and att> 0.5, walk (high MI and att).
– If MI< 0.5 and att< 0.5, stop (medium or less MI and att,

can be accounted while in standing position).
– if EXO command = 1 and MI< 0.5 and att< 0.25, stop

(during walking, medium or low MI with low att).

• else

– If EXO command = 1 and MIepochi> 0.25 and MIepochi−1>

0.25 or att> 0.25, reinforcing walk (during walking, at least
medium MI for current and previous epoch or medium att
for current one).

Reinforcing commands are needed to assure that the exoskeleton
goes on walking, as the absence of a walking commandmakes the
Rex to stop.

2.4. Indices for Assessment the BMI
Performance
One of the most important aspects to evaluate the performance
of a BMI is to correctly define the indices considered for its
evaluation. Literature is not always precise in the definition of
them, which can cause difficulties to compare the results. This
subsection tries to overcome this difficulty clearly defining all the
indices that are going to be used for the BMI assessment in a
quantitative and qualitative way.

2.4.1. True Positive Ratio (TPR)
It indicates the percentage of walking events that are executed
during a walking event. As the trials have only a walking event,
this value can be only 0% or 100% per trial, indicating the average
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FIGURE 8 | Output information of the first closed-loop test trial of subject S2. Information is presented in a similar way to Figure 7. In the upper image it is also

included the actual movement status of the exoskeleton caused by the EXO commands. As it can be seen, there is a certain lag between the EXO command status

and the actual movement due to the hardware (difference between the thicked black line and the thin black line in the upper image). The exoskeleton was

commanded for this example using just the MI paradigm, neglecting the information provided by the attention paradigm. The combination of both paradigms would

have result in a shorter movement following the rules in subsection 2.3.4 issuing the activation command in the 33 s approximately instead of the 30.5 s.

value the percentage of trials with true activations. The qualitative
scale would be: poor< 50%, average ≥ 50%, good ≥ 65%, very
good ≥ 75%, and excellent ≥ 85%.

2.4.2. Accuracy (Acc)
It indicates the number of correct commands issued with respect
to the total number of commands. A correct command is when
a walk or stop command is computed in a walk or stop event,
respectively. The qualitative scale is the same of TPR.

2.4.3. False Positives (FP) and False Positives per

Minute (FP/min)
This is one of the most important indices, as it quantifies
the number of walking commands issued during rest or count
periods. One of the objectives of the research is to kept this
number as low as possible, even if it limits the accuracy of
the BMI. For the real-time control of an exoskeleton, it is an
important problem if the exoskeleton is activated when it is not
desired, as it could be frustrating for the patient during therapies
or make the control unusable for assistance. This index is usually
computed per minute, which is also included for comparison
of the different performances. The qualitative scale for the FP
is: poor > 2, average ≤ 2, good ≤ 1.5, very good ≤ 1, and
excellent ≤ 0.5.

2.4.4. Percentage per Epoch and Paradigm
There are three different indices: %MI, %att, and %Command.
The first two indicate the accuracy of each classifier paradigm,
as the number of correct detections divided by the number of
total detections. Detections can be seen in Figures 7–9 as •. A
correct detection value would be 1 for walk events and 0 for the
other events. The third one is based on the percentage of epochs
with correct EXO command status. It is important to notice that
due to the way the algorithms work (averaging previous epochs
and outputs in the case of the MI and attention levels), it is not
possible to have a 100% accuracy as it would need at least several
seconds of perfect features to compute a change of event. The
qualitative scale would be: poor < 50%, average ≥ 50%, good
≥ 60%, very good ≥ 70%, and excellent ≥ 80%.

2.4.5. Lags in Command
It can be computed for the commands (opened-loop) and for
the exoskeleton (closed-loop). As the second one is hardware
dependent, it does not provide any information of the BMI
performance. They are a quantitative value of the time needed
to change the status since a cue is established. For instance, the
time needed to walk or to send the walk command since the
walking acoustic cue is issued. There is not a qualitative scale,
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FIGURE 9 | Example of an erroneous classification in an opened-loop trial. The image corresponds to the training trial 5 of subject S4. The poor %MI classification

(52.8%) produced three FP and an Acc of 37.5%. If the attention paradigm had been considered, the three FP marked by the arrows would not have been computed.

However, the exoskeleton would have been activated for a shorter period of time (between 33 and 38 s), stopping before the count event starts. This would have had

a 50% Acc as the stop would have been commanded before the MI period ended. Compare Table 1 results for both paradigms of training trial 5 of S4.

but a good value would be <10 s for the EXO command having
in consideration the lag of the algorithms and the exoskeleton.

3. RESULTS

As previously stated, all the trials (training and test) were
processed in a real-time (online) scenario. Training trials were
executed in opened-loop control while test trials were executed
in closed-loop control. Each trial was performed following a
determined method of control (MI or MI+att). In the case of
closed-loop control tests, the method of control corresponds to
the one used when registered. However, in the case of training
trials, they were simulated again using a pseudo-online analysis.
For this reason, training trials show the results of bothmethods of
control and test trials only the method that was actually executed
in real time.

3.1. Opened-Loop Results
Table 1 shows the results obtained for the training trials. When
there was not an activation of the exoskeleton, there is a “-” under
Acc index. The results by subject and algorithm of control can be
seen in Tables 2, 3 based on the section 2.4 indices.

Regarding the method of control (Table 2), the main
differences appear for the TPR and FP. The fact that MI+Att
requires to keep a level of attention makes harder to activate the
exoskeleton, but provides less FP. For the same reason, when

both paradigms are used, the lags for starting are longer and
for stopping shorter, as the time the exoskeleton is going to
be moving is shorter. Nevertheless, there is not a significant
difference between the %Command of both control methods,
because a shorter walking time provides less time walking
during walking periods, but less time walking during the last
rest period, compensating the %Command value between both
events. Therefore, it could be said that MI+Att makes the control
safer, but less responsive.

Regarding the subject performance (Table 3), the Acc results
vary depending on the subject (p < 0.05), with S1 and S2 having
values for the classifiers over 75% in average. The subject with
lower results is S4, which shows a high TPR 75% with a an Acc
around 53.1%, which indicates that the BMI is activating the
exoskeleton during the walking events (TPR), but for a short
time (low Acc). This irregularity, specifically in the %MI, causes a
higher value of FP when the attention paradigm is not considered
(see Figure 9). Another fact to take into account is that the last
trial uses more information for its model than the second trial,
which uses just the first trial. This does not have to be negative in
all the cases, since the consideration of an spoiled training trial in
the model could be more negative for its use in the classification.

3.2. Closed-Loop Results
Once the five training trials were done for each control option,
the test trials were registered. They were carried out after the
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TABLE 1 | Results of the analysis of the training trials.

Subject Control Trial TPR Acc FP FP/min %MI %Att %Command Lag

start

Lag

stop

Subject Control Trial TPR Acc FP FP/min %MI %Att %Command Lag

start

Lag

stop

S1

MI+att

pseudo

2 100 50 1 0 83.1 74.7 73.2 13 –

S2

MI+att

pseudo

2 100 100 0 0 79.6 63.4 75.4 15.0 3.5

3 100 75 0 0 81 82.4 70.4 14 5 3 0 – 0 0 71.1 66.9 64.8 – –

4 100 50 0 0 76.8 76.1 70.4 6.5 – 4 0 – 0 0 76.1 67.6 64.8 – –

5 100 50 0 0 87.3 78.9 85.9 9 – 5 100 50 0 0 71.1 74.7 70.4 15 19

Avg 100 56.3 0.25 0.0 82.0 78.0 75.0 10.6 5.0 Avg 50.0 75.0 0.00 0.0 74.5 68.1 68.8 15.0 11.3

MI

opened-loop

2 100 50 1 1.8 83.1 83.1 5.5 –

MI

opened-loop

2 100 100 0 0 79.6 79.6 15.0 0.5

3 100 100 0 0 81.0 74.7 14.0 5.0 3 100 50 0 0 71.1 70.4 16.5 –

4 100 50 1 1.8 76.8 70.4 6.5 – 4 100 50 0 0 76.1 78.9 10.5 –

5 100 50 0 0 87.3 89.4 6.5 – 5 100 50 0 0 71.1 70.4 15.0 19.0

Avg 100 62.5 0.50 0.9 82.0 79.4 8.1 5.0 Avg 100 62.5 0.00 0.0 74.5 74.8 14.3 9.8

MI+att

pseudo

7 100 100 0 0 88.7 77.5 91.6 6.0 1.0

MI+att

pseudo

7 0 – 0 0 64.8 64.8 64.8 – –

8 100 75 0 0 85.2 72.5 71.8 9.0 4.0 1st session 8 100 100 0 0.0 69.0 66.9 66.2 23.5 1.5

9 100 100 0 0 81.0 78.2 66.2 19.0 6.0 9 100 62.5 1 1.8 61.3 69.0 67.6 13.0 2.5

10 100 100 0 0 91.6 63.4 77.5 8.0 9.0 10 0 – 0 0 64.8 72.5 64.8 – –

Avg 100 93.8 0.00 0.0 86.6 72.9 76.8 10.5 5.0 Avg 50.0 81.3 0.25 0.4 65.0 68.3 65.8 18.3 2.0

MI

opened-loop

7 100 100 0 0 88.7 84.5 6.0 6.0

MI

opened-loop

7 100 50 3 5.3 64.8 59.2 6.5 4.0

8 100 75 0 0 85.2 78.9 5.5 4.0 8 100 66.7 1 1.8 69.0 66.9 13.5 3.0

9 100 100 0 0 81.0 73.9 9.5 10.0 9 100 100 0 0 61.3 59.9 7.5 22.0

10 100 100 0 0 91.6 85.2 5.5 6.0 10 0 – 0 0 64.8 64.8 – –

Avg 100 93.8 0,00 0.0 86.6 80.6 6.6 6.5 Avg 75 72.2 1.00 1.8 65.0 62.7 9.2 9.7

S2

MI+att

pseudo

2 100 100 0 0 83.1 81.0 81.0 8.5 6.0

S3

MI+att

pseudo

2 0.0 – 0 0.0 61.3 71.8 64.8 – –

3 100 100 0 0.0 87.3 86.6 83.1 7.0 6.0 3 100 50 0 0.0 62.0 69.0 73.9 9.0 –

4 100 100 0 0.0 85.2 81.7 76.1 11.0 7.0 4 100 100 0 0.0 90.9 77.5 92.3 6.5 0.5

5 100 75 0 0.0 85.9 77.5 80.3 9.0 8.0 5 100 75 0 0.0 71.1 70.4 71.8 13.0 2.5

Avg 100.0 93.8 0.00 0.0 85.4 81.7 80.1 8.9 6.8 Avg 75.0 75.0 0.00 0.0 71.3 72.2 75.7 9.5 1.5

MI

opened-loop

2 100 75 1 1.8 83.1 78.9 8.5 4.5

MI

opened-loop

2 0 50 1 1.8 61.3 58.5 – –

3 100 100 0 0.0 87.3 83.1 7.0 6.0 3 100 50 1 1.8 62.0 64.8 8.5 –

4 100 100 0 0.0 85.2 79.6 11.0 4.5 4 100 100 0 0.0 90.9 92.3 4.0 2.5

5 100 100 0 0.0 85.9 84.5 9.0 3.0 5 100 50 3 5.3 71.1 74.7 – 2.5

Avg 100.0 93.8 0.25 0.4 85.4 81.5 8.9 4.5 Avg 75.0 62.5 1.25 2.2 71.3 72.5 6.3 2.5

MI+att

opened-loop

7 0 – 0 0.0 64.8 64.8 64.8 – –

MI+att

opened-loop

7 100 75 1 1.8 63.4 55.6 62.0 21.0 4.0

2nd

session

8 100 100 0 0.0 69.0 66.9 64.1 23.5 3.0 8 100 50 0 0.0 63.4 79.6 69.0 11.0 –

9 100 75 0 0.0 61.3 69.0 63.4 13.0 11.0 9 100 50 2 3.5 71.8 71.1 66.2 6.5 –

10 0 – 0 0.0 64.8 72.5 64.8 – – 10 100 50 0 0.0 77.5 76.8 88.0 7.0 –

Avg 50.0 87.5 0.00 0.0 65.0 68.3 64.3 18.3 7.0 Avg 100.0 56.3 0.75 1.3 69.0 70.8 71.3 11.4 4.0

(Continued)
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TABLE 1 | Continued

Subject Control Trial TPR Acc FP FP/min %MI %Att %Command Lag

start

Lag

stop

Subject Control Trial TPR Acc FP FP/min %MI %Att %Command Lag

start

Lag

stop

MI

pseudo

7 100 50 3 5.3 64.8 59.2 6.5 –

MI

pseudo

7 100 66.7 2 3.5 63.4 57.8 21.0 4.0

8 100 66.7 1 1.8 69.0 66.9 13.5 3.0 8 100 50 1 1.8 63.4 63.4 11.0 –

9 100 100 0 0.0 61.3 59.9 7.5 22.0 9 100 50 2 3.5 71.8 69.7 8.0 –

10 0 – 0 0.0 64.8 64.8 – – 10 100 100 0 0.0 77.5 80.3 7.0 8.0

Avg 75.0 72.2 1.00 1.8 65.0 62.7 9.2 12.5 Avg 100.0 66.7 1.25 2.2 69.0 67.8 11.8 6.0

S4

MI+att

pseudo

2 0 50 1 1.8 45.1 59.9 56.3 – –

3 100 50 1 1.8 54.2 61.3 62.0 5.0 –

4 100 57.1 3 5.3 28.2 59.9 36.6 18.5 7.0

5 100 50 0 0.0 52.8 69.7 72.5 8.0 –

Avg 75.0 51.8 1.25 2.2 45.1 62.7 56.9 10.5 7.0

MI

opened-loop

2 100 75 1 1.8 45.1 38.7 20.5 5.5

3 100 50 2 3.5 54.2 58.5 5.0 –

4 100 60 2 3.5 28.2 24.7 18.5 4.5

5 100 37.5 3 5.3 52.8 58.5 8.0 –

Avg 100 55.6 2.00 3.5 45.1 45.1 13.0 5.0

MI+att

opened-loop

7 0 – 0 0.0 71.8 66.2 64.8 – –

8 100 50 1 1.8 71.8 66.2 59.9 14.0 –

9 0 50 1 1.8 56.3 66.2 59.2 – –

10 100 50 0 0.0 73.9 74.7 76.1 11.0 –

Avg 50.0 50.0 0.50 0.9 68.5 68.3 65.0 12.5 –

MI

pseudo

7 100 50 2 3.5 71.8 61.3 13.0 –

8 100 66.7 1 1.8 71.8 66.2 1.5 6.0

9 0 50 1 1.8 56.3 59.2 – –

10 100 50 1 1.8 73.9 70.4 4.5 –

Avg 75.0 54.2 1.25 2.2 68.5 64.3 6.3 6.0

The trials were also tested in a pseudo-online analysis for the type of control not used during the opened-loop session. Averaged very good results using the qualitative scale are in bold, while poor in red.
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TABLE 2 | Results of the training trials averaged per method of control.

Control TPR Acc FP FP/min %MI %Att %Command Lag start Lag Stop

MI+Att 75.0 ± 43.9 70.9 ± 34.8 0.30 ± 0.65 0.49 ± 1.13 71.2 ± 13.3 71.1 ± 7.0 70.0 ± 10.3 11.8 ± 6.8 5.6 ± 4.1

MI 90.0 ± 30.4 69.5 ± 26.8 0.85 ± 1.00 1.50 ± 1.77 71.2 ± 13.3 69.1 ± 13.2 9.6 ± 5.5 6.8 ± 5.6

Averaged very good results using the qualitative scale are in bold. No poor results were achieved for the averaged indices per method of control.

TABLE 3 | Results of the training trials averaged per subject.

Subject TPR Acc Fp Fp/min %Mi %Att %Command Lag start Lag stop

S1 100.0 ± 0.0 76.6 ± 23.2 0.19 ± 0.40 0.22 ± 0.60 84.3 ± 4.7 75.4 ± 5.7 77.9 ± 7.7 9.0 ± 4.0 5.6 ± 3.4

S2 75.0 ± 44.0 80.0 ± 21.8 0.31 ± 0.78 0.55 ± 1.38 72.4 ± 9.0 71.6 ± 6.9 70.1 ± 8.0 11.9 ± 4.8 7.6 ± 6.9

S3 87.5 ± 34.2 64.4 ± 20.5 0.81 ± 0.98 1.43 ± 1.73 70.2 ± 9.8 71.5 ± 7.4 71.8 ± 11.2 10.3 ± 5.3 3.4 ± 2.3

S4 75.0 ± 44.7 53.1 ± 8.7 1.25 ± 0.93 2.21 ± 1.64 56.8 ± 15.2 65.5 ± 5.1 57.8 ± 13.6 10.6 ± 6.3 5.8 ± 1.0

No poor results were achieved for the averaged indices per subject. Averaged very good results using the qualitative scale are in bold.

training in sequence. This means five training sessions for MI
followed by five tests for MI and then five training sessions
for MI+att followed by five tests for MI+att. Table 4 shows the
closed-loop results obtained.

Looking at Table 4, some facts can be extracted. The most
obvious one is that S3 was not able to make the BMI work
in closed-loop control. Rex was hardly activated during the
tests. This contrasts with the results obtained by the subject in
the opened-loop trials. However, S2 and S4 obtained a good
performance for theMI control with a high number of activations
of the exoskeleton during walking periods (TPR) and a proper
activation of the commands (Acc). Nevertheless, classifier
accuracies were a bit lower than in the opened-loop scenario.

In the case of the %EXO index, i.e., the time that the Rex is
standing or walking during the correct events, achieved a value
of 56.3 and 51.2 for subjects S2 and S4. This, a priori low value, is
caused by two causes. First the algorithms need several seconds of
correct features in order to achieve a command decision (sections
2.3.2 and 2.3.3). Second, Rex has an inherent lag for responding
to the commands which is very variable, especially in the case of
a stop, as it depends on the limbs position when the command
is issued. This information can be calculated by the difference
between Start exo and Lag start, and between Stop exo and Lag
stop from the data in Table 4. Rex lags were in average 2.8 s for
the start and 5.4 s for the stop, times which are added to the
command lag decision. For instance, looking at Figure 8, which
corresponds to the 1st MI test trial of S2, it lags 8 s for the
start and 12.5 s for the stop. This makes a %EXO of only 67.0%,
for a excellent classifier trial (89.8%MI and 77.1%Att). Another
consequence that can be extracted from the results is that the
MI control performs better than the MI+att for S2 and S4. In
the same way than in the opened-loop trials, the combination of
the paradigms makes the BMI more conservative, avoiding the
activation of the Rex in two of the five test trials for both subjects.

4. DISCUSSION

The MI paradigm is based on gamma band. This is not a band
that it is usually considered in literature and only a few studies
prior to our previous research (Ortiz et al., 2019) have considered

it (Seeber et al., 2015). Two were the main reasons to focus
on this band instead of θ , α, or β bands. First, γ band is less
affected by low frequency noise. In the research, an active filter
was applied to mitigate eye blinking (H∞) and passive mitigation
(mesh, clamps) to avoid wire oscillations or muscle noise (no
swallowing or chewing). However, as the whole tool works in real
time, no other offline mitigation techniques can be applied, such
as independent component analysis (ICA) (Delorme andMakeig,
2004), so this band can be less affected by motion noise. Second,
γ band is associated with attentive focus (Rao, 2013) and gait
attention (Costa et al., 2016; Costa-García et al., 2019). For this
reason, the attention level paradigm reinforces the MI paradigm
by requiring a high focus of the subject during the walk events.
This produces that the proposed BMI obtains sometimes a lower
accuracy than other MI paradigms in the literature, but with a
lower value in FP/min, which was one of the priority objectives
of the research. This can be seen comparing the results of this
research with the ones presented in the review of lower-limb
exoskeletons by He et al. (2018). FP/min is only provided in the
study by Do et al. (2013) achieving a 7.42 ± 2.85 FP/min. This
is substantially higher than the FP/min presented in this article,
which rarely go beyond 2 FP/min and are in most cases below 1
FP/min. The comparison with accuracy can be hard, as the way
it is accounted can vary from different researches. Table 2 of He
et al. (2018) varies from 68 to 99% depending on the study. This
value can be confronted with the Acc index for the whole BMI
or with %MI or %Att for the individual paradigms. Accuracy
is in the range of the literature studies except for S4 and the
closed-loop trials of S3.

Results by subject also indicate one of the most common
problems of BMI studies, which it is the high dependency of
the results on the individual. The fact that the tool provides
performance indices since the second trial could help to detect
subjects that are having troubles with the BMI. This is especially
important in the case of ACV or stroke patients, which could
also have cognitive difficulties which could make them unable
to use the BMI, even if they have been selected as suitable in
the previous clinical selection stage. A quick detection of these
problems could help clinicians to adapt the therapy in these
cases, for instance only applying an opened-loop control to the
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TABLE 4 | Results of the analysis of the test trials.

Subject Control Trial TPR Acc FP FP/min %MI %Att %Command %EXO Lag start Start exo Lag stop Stop exo

S2

MI

1 100 100 0 0.00 89.8 77.1 82.2 67.0 5.5 8.0 6.0 12.5

2 100 100 0 0.00 79.7 60.2 78.8 68.6 13.0 14.6 0.5 3.4

3 100 75 0 0.00 67.8 55.1 59.3 57.6 12.0 13.6 7.0 10.0

4 100 100 0 0.00 64.4 65.3 55.1 39.8 13.5 16.0 14.0 19.9

5 100 100 0 0.00 70.3 64.4 62.7 48.3 13.5 16.0 9.5 15.5

Avg 100.0 95.0 0.00 0.00 74.4 64.4 67.6 56.3 11.5 13.6 7.4 12.2

MI+att

1 0 50 1 1.76 38.1 43.2 38.1 24.6 – – 12.5 19.1

2 0 – 0 0.00 44.1 59.3 57.6 57.6 0.0 – – –

3 0 – 0 0.00 66.1 72.0 57.6 57.6 – – – –

4 100 100 0 0.00 71.2 57.6 62.7 50.0 21.0 23.5 0.0 7.0

5 100 50 1 1.76 68.6 67.8 59.3 49.2 13.0 14.5 5.5 13.3

Avg 40.0 66.7 0.40 0.71 57.6 60.0 55.1 47.8 17.0 19.0 6.0 13.1

S3

MI

1 0 – 0 0.00 52.5 52.5 57.6 57.6 – – – –

2 0 0 1 1.30 48.3 58.5 46.6 50.0 – – – –

3 0 0 2 2.61 38.1 42.4 38.1 36.4 – – – –

4 100 100 0 0.00 62.7 48.3 54.2 43.2 24.5 27.5 3.0 11.0

5 0 50 1 1.30 39.8 39.0 44.1 34.8 – – – –

Avg 20.0 37.5 0.80 1.04 48.3 48.1 48.1 44.4 24.5 27.5 3.0 11.0

MI+att

1 0 – 0 0.00 56.8 54.2 57.6 57.6 – – – –

2 0 – 0 0.00 57.6 61.0 57.6 57.6 – – – –

3 0 – 0 0.00 46.6 54.2 57.6 57.6 – – – –

4 0 0 1 1.30 48.3 48.3 52.5 56.8 – – – –

5 0 – 0 0.00 49.2 51.7 57.6 57.6 – – – –

Avg 0.0 0.0 0.20 0.26 51.7 53.9 56.6 57.5 – – – –

S4

MI

1 100 62.5 2 2.61 56.8 60.2 52.5 40.7 7.5 9.5 1.5 7.0

2 0 50 2 2.61 39.8 60.2 37.3 33.9 – – – –

3 100 50 1 1.30 50.9 56.8 60.2 57.6 0.0 1.6 – –

4 100 50 1 1.30 60.2 61.9 54.2 59.3 9.5 11.5 7.0 13.3

5 100 66.7 1 1.30 67.0 61.0 70.3 64.4 3.5 6.0 0.0 3.0

Avg 80.0 55.8 1.40 1.83 54.9 60.0 54.9 51.2 5.1 7.2 2.8 7.8

MI+att

1 100 75 1 1.30 60.2 59.3 52.5 28.0 21.0 22.6 0.0 6.0

2 100 75 0 0.00 58.5 63.6 67.8 60.2 13.0 15.5 3.5 7.5

3 0 – 0 0.00 48.3 56.8 57.6 57.6 – – – –

4 0 – 0 0.00 51.5 55.9 57.6 57.6 – – – –

5 100 50 1 1.30 62.7 54.2 57.6 61.0 5.0 6.5 4.4 6.4

Avg 60 66.7 0.40 0.52 56.2 58.0 58.6 52.9 13.0 14.9 2.6 6.6

All the tests were done in closed-loop control. Averaged results considered very good using the qualitative scale are in bold, while poor in red.

exoskeleton. In addition, the degree of expertise of the subject
with a BMI is a factor that improves the performance. In this
study, only one session per subject (except for S2) was carried out,
which does not allow to study the evolution of each individual
with the different sessions.

Another important factor to consider is the use of erroneous
trials to create the model, as it affects the classifier output. One
BMI based on attention is more subject to distractions which
could cause erroneous training trials, but MI or rest events
are also affected by mental distractions. Even as environment
conditions can up to a certain point be controlled, mental
distractions are hard to detect beyond the subject’s feedback. In
this research, each training trial is checked in real time with
the model created with previous training data which allows
to discharge bad training trials to avoid spoiling the posterior

performance of the BMI. For instance, the fourth training trial
of S4 should have been neglected for model creation due to
achieving just a %MI of 28.2% (Table 1). This trial filtering for
the model creation was not considered in this research to limit
the length of the sessions and to compare all the subjects in the
same conditions. However, it will be something to apply in future
researches avoiding any trial with %MI or %Att below 70% to
improve model output when used in the closed-loop trials.

The proposed BMI has been designed to serve as a tool
for rehabilitation therapies helping the subject to keep a high
cognitive engagement during a trial. The attention level paradigm
helps to improve the FP/min index, but makes the BMI less
responsive with lower Acc and TPR, and less activation time
of the exoskeleton (%Command). A revision of the command
decision rules explained in subsection 2.3.4 could help to improve
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the results. Another option would be to offer the attention level
as a feedback that could enhance the mental engagement of the
subject during the walk events, or reduce it during the rest events.
Additionally, the order of the application of the control methods
could have affected the subjects due to fatigue. A high fatigue
produces a low attention to the mental task of MI. Looking
at Table 1, this is sustained by the classifier percentages. The
training trials value for 7 − 10 trials (MI+att opened-loop trials)
were in almost all the cases lower than for 2− 5 trials which were
the ones used for the model of the MI+att closed-loop trials. The
length of the experiments is another key factor to consider. As
two differentmethods of control were tested, closed-loop sessions
extended to 3 h, indicating the subjects that fatigue was clearly
present in the last test trials. This could be the reason of the lower
test results of S3 and theMI+att of S2 (Table 4). Protocolsmust be
improved in order to avoid sessions over an hour and a half since
the beginning of the preparation of the subject, even if the actual
active time of the session is below an hour, all the preparation
times must be reduced.

5. CONCLUSIONS

During this research, a new BMI based on MI in γ

band has been tested with a Rex exoskeleton in real time,
not only in opened-loop control, but also in closed-loop
control. In addition, an innovative BMI to assess the level
of attention to gait has been implemented and combined
with the former BMI. Two of the experimental subjects
were able to control the exoskeleton in closed-loop control
with very low FP, which was one of the main objectives
to achieve.

Regarding the combination of the attention level with the
MI paradigm, it provided similar results in opened-loop trials,
but activating the exoskeleton in a more conservative way with
slightly fewer FP and times of activation. However, the length
of the proposed protocols was so long that the induced fatigue
affected the results of the closed-loop test trials. Independently
of its use in the closed-loop control, the attention level can
be used as a way to give feedback to the subject and to
inform the clinical supervisor of the cognitive engagement of
the subject.

The experimental sessions fulfilled, show a case of study for
the validation of the proposal, which has been validated as a
promising technique to operate an exoskeleton in rehabilitation
therapies which imply the cognitive engagement of the subject.
Future research, will explore how the expertise of the subject can
affect both paradigms during several sessions. In addition, the
flaws detected in the current proposal will be corrected in future
implementations of the BMI, such as limiting the fatigue of the
subject with shorter sessions and assuring that the model training

trials are not inducing errors in the classifier. All of this, in order
to allow its future implementation with non able-bodied subjects
in a clinical study.
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