
Universidad Miguel Hernández de Elche

MÁSTER UNIVERSITARIO EN ROBÓTICA

ASAP: Adaptive Scheme for Asynchronous Processing
of event-based vision algorithms

Trabajo de Fin de Máster
2019-2020

Autor: Raúl Tapia López
Tutor: Óscar Reinoso García

Cotutor: José Ramiro Martínez de Dios





Trabajo Fin de Máster
Máster en Robótica

ASAP: Adaptive Scheme for
Asynchronous Processing of
event-based vision algorithms

Autor:

Raúl Tapia López

Tutor:

Óscar Reinoso García
Catedrático de la Universidad Miguel Hernández de Elche

Cotutor:

José Ramiro Martínez de Dios
Catedrático de la Universidad de Sevilla

Universidad Miguel Hernández

Elche, 2020





A mis padres, por acompañarme en este camino que llega a su fin;
a mi hermana, a quien deseo suerte en el camino que le toca iniciar;

y a Sara, con quien recorreré todos los caminos que quedan por venir.

A dos referentes que hacen crecer mi pasión por la investigación cada día
y son piezas fundamentales en este proyecto:

Augusto, por su ayuda y enseñanzas;
y Ramiro, por su constante motivación y apoyo.

A los profesores del Máster Universitario en Robótica, por su acogida y entrega;
en especial a Óscar Reinoso, por su dedicación.





Abstract

Event cameras are neuromorphic sensors that capture changes in lighting intensity
at pixel-level. They provide a number of advantages over conventional cameras
and other perception sensors –such as high temporal resolution, low latency, high
dynamic range or low power consumption– which have led to a revolution from
a research and a commercial point of view. The potential applications of event
cameras have motivated increasing interest in the robotics community.

The processing of events generated by the relative movement between the camera
and the scene entails a paradigm shift in computer vision. Many algorithms in the
literature group events to form fixed-frame images. However, these approaches
do not fully exploit the advantages of the sensors. In order to cope with this issue,
the development of asynchronous processing algorithms is required. This is a
research effort that involves a review of all existing perception techniques.

One of the main problems of asynchronous processing is the management of
the event stream. Some works feed the perception algorithms event-by-event,
which provides low latency at a very high computational cost. Other approaches
group the events in packets to reduce the computational cost, decreasing the
responsiveness of the event-based algorithms.

This project presents ASAP (Adaptive Scheme for Asynchronous Processing),
a solution based on a trade-off between event-by-event and event packet ap-
proaches. It is a framework whose aim is to feed event-based algorithms as soon
as possible while avoiding the overflow caused by an excess of events in a short
period of time.

The focus of this document is to describe the design, development and imple-
mentation of a novel method to achieve efficient processing while adapting to
the environment –i.e., the generation of events– and the requirements of the
perception algorithms through variable-sized event packets. Moreover, experimen-
tal results are presented to validate the correct operation of ASAP on-board a
multirotor aerial vehicle.

III





Resumen

Las cámaras de eventos son sensores neuromórficos que capturan cambios en la
intensidad luminosa a nivel de píxel. Proporcionan una serie de ventajas frente
a las cámaras convencionales y otros sensores de percepción –alta resolución
temporal, baja latencia, alto rango dinámico, bajo consumo de energía...– que han
supuesto una revolución desde el punto de vista comercial y de investigación. Las
potenciales aplicaciones de las cámaras de eventos han motivado un creciente
interés en el ámbito de la robótica.

El procesamiento de los eventos generados por el movimiento relativo entre la
cámara y la escena implica un cambio de paradigma en la visión artificial. Muchos
algoritmos presentes en la literatura agrupan eventos para formar imágenes a una
frecuencia constante, sin embargo, dichos enfoques no explotan al máximo las
ventajas de estos sensores. Para afrontar este problema, se requiere el desarrollo
de algoritmos de procesamiento asíncrono. Este es un esfuerzo de investigación
que implica una revisión de todas las técnicas de percepción existentes.

Uno de los principales problemas del procesamiento asíncrono es la gestión
del flujo de eventos. Algunos trabajos alimentan los algoritmos de percepción
evento a evento, lo que proporciona una baja latencia con un coste computacional
muy elevado. Otros enfoques agrupan los eventos en paquetes para reducir el
coste computacional, disminuyendo la capacidad de respuesta de los algoritmos
basados en eventos.

Este proyecto presenta ASAP (Adaptive Scheme for Asynchronous Processing),
una solución basada en un compromiso entre ambos enfoques. Se trata de un
marco de trabajo cuyo objetivo es alimentar a los algoritmos basados en eventos
tan pronto como sea posible, evitando al mismo tiempo el desbordamiento causado
por un exceso de eventos en un corto período de tiempo.

El objetivo de este documento es describir el diseño, desarrollo e implementación
de un método novedoso para lograr un procesamiento eficiente a la vez que se
produce una adaptación al entorno –es decir, a la generación de eventos– y a
los requisitos de los algoritmos de percepción, utilizando para ello paquetes de
eventos de tamaño variable. Además, se presentan resultados experimentales
para validar el correcto funcionamiento de ASAP en un vehículo aéreo multirotor.

V





Short Contents

Abstract III

Resumen V

Short Contents VII

Contents IX

List of Figures XIII

List of Tables XVII

List of Algorithms XIX

Notation XXI

1 Introduction 1

1.1 Objective 1

1.2 Contribution 2

1.3 Context 2

1.4 Structure 4

2 State of the Art 7

2.1 Introduction 7

2.2 Event Cameras 7

2.3 Event Processing 22

2.4 Conclusions 25

3 ASAP: Adaptive Scheme for Asynchronous Processing 27

3.1 ASAP Framework 27

3.2 Event-Based Algorithm Connection: BRIDGE 31

3.3 Conclusions 33

4 Event Filtering Module 35

4.1 Effect of Event Filtering 35

4.2 Event Filter Operation 37

4.3 Computational Capacity vs. Filtering 39

VII



VIII Short Contents

4.4 Preliminary Results 40

4.5 Conclusions 40

5 Event Packing Module 43
5.1 Effect of Event Packing on Latency 43

5.2 Event Packer Operation 44

5.3 Preliminary Results 47

5.4 Event-by-Event Processing using ASAP 48

5.5 Conclusions 49

6 Experimental Validation 51
6.1 Off-Board Experiments 51

6.2 On-Board Experiments 52

6.3 Conclusions 55

7 Result Analysis 57
7.1 Off-Board Experiment Results 57

7.2 Clustering Experiment Results 57

7.3 Corner Detector Experiment Results 59

7.4 Conclusions 59

8 Conclusions and Future Work 61
8.1 Conclusions 61

8.2 Future Work 63

9 Conclusiones 67
9.1 La revolución de las cámaras de eventos 67

9.2 Procesamiento de eventos 68

9.3 Contribución de ASAP a la percepción basada en eventos 68

9.4 ASAP bajo el marco del proyecto ERC Advanced Grant GRIFFIN 68

Appendix A ASAP Implementation 71
A.1 ASAP Algorithm 71

A.2 ROS Node Structure 71

Bibliography 73

Index 81

Glossary 83



Contents

Abstract III

Resumen V

Short Contents VII

Contents IX

List of Figures XIII

List of Tables XVII

List of Algorithms XIX

Notation XXI

1 Introduction 1
1.1 Objective 1

1.2 Contribution 2

1.3 Context 2

1.3.1 ASAP 2

1.3.2 H2020 GRIFFIN 2

1.3.3 Visual Perception for Winged Aerial Robots 3

1.3.4 ASAP Code Developing 4

1.3.5 DAVIS346 Event Camera 4

1.4 Structure 4

2 State of the Art 7
2.1 Introduction 7

2.2 Event Cameras 7

2.2.1 Principle of Operation 7

2.2.2 Event Camera Designs 10

Dynamic Vision Sensor (DVS) 10

Asynchronous Time-based Image Sensor (ATIS) 11

Dynamic and Active Pixel Vision Sensor (DAVIS) 11

Sensors Specifications Comparison 11

2.2.3 Event Cameras Advantages 12

Low Latency 12

High Temporal Resolution 12

IX



X Contents

High Dynamic Range 13

Low Power Consumption 14

2.2.4 Applications 14

Feature Detection 14

Tracking 15

Segmentation and Clustering 16

Object Recognition 17

Optical Flow 17

3D Reconstruction 18

Visual Odometry and SLAM 18

Visual Servoing 19

Standard Images Reconstruction 19

2.2.5 Commercial Devices 20

Prophesee 20

iniVation 20

Samsung 21

Insightness 21

CelePixel 21

Commercial Devices Comparative 22

2.3 Event Processing 22

2.3.1 AER Vision Sensor 22

2.3.2 Frame-Based vs. Event-based Algorithms 24

2.3.3 Single Events vs. Event Packets 24

2.4 Conclusions 25

3 ASAP: Adaptive Scheme for Asynchronous Processing 27

3.1 ASAP Framework 27

3.1.1 Parameters 28

3.1.2 Outer Loop: Event Filtering 28

3.1.3 Inner Loop: Event Packing 30

3.1.4 ASAP Communication Structure 30

3.2 Event-Based Algorithm Connection: BRIDGE 31

3.3 Conclusions 33

4 Event Filtering Module 35

4.1 Effect of Event Filtering 35

4.2 Event Filter Operation 37

4.2.1 Event Rate Computation 38

4.2.2 Parameters 38

4.2.3 Implementation 39

4.3 Computational Capacity vs. Filtering 39

4.4 Preliminary Results 40

4.5 Conclusions 40

5 Event Packing Module 43



Contents XI

5.1 Effect of Event Packing on Latency 43

5.2 Event Packer Operation 44

5.2.1 Parameters 44

5.2.2 Proportional Gain Adjustment 46

5.2.3 Responsiveness Level Adjustment 46

5.2.4 Implementation 47

5.3 Preliminary Results 47

5.4 Event-by-Event Processing using ASAP 48

5.5 Conclusions 49

6 Experimental Validation 51

6.1 Off-Board Experiments 51

6.2 On-Board Experiments 52

6.2.1 Clustering 53

6.2.2 Corner Detector 54

6.3 Conclusions 55

7 Result Analysis 57

7.1 Off-Board Experiment Results 57

7.2 Clustering Experiment Results 57

7.3 Corner Detector Experiment Results 59

7.4 Conclusions 59

8 Conclusions and Future Work 61

8.1 Conclusions 61

8.1.1 The Event Camera Revolution 61

8.1.2 Event Processing 62

8.1.3 ASAP Contribution to Event-Based Research 62

8.1.4 ASAP in the Context of ERC Advanced Grant GRIFFIN Project 62

8.2 Future Work 63

8.2.1 Proportional Gain Adjustment Method 63

8.2.2 Packing Adaptation Techniques 64

8.2.3 Low-Level ASAP Version 64

8.2.4 Implementation on Board a Winged Aerial Robot 64

8.2.5 Future Publications and Open Source Version 64

9 Conclusiones 67

9.1 La revolución de las cámaras de eventos 67

9.2 Procesamiento de eventos 68

9.3 Contribución de ASAP a la percepción basada en eventos 68

9.4 ASAP bajo el marco del proyecto ERC Advanced Grant GRIFFIN 68

Appendix A ASAP Implementation 71

A.1 ASAP Algorithm 71

A.2 ROS Node Structure 71



XII Contents

Bibliography 73

Index 81

Glossary 83



List of Figures

1.1 GRIFFIN ornithopter prototypes designs by GRVC Robotics Laboratory of the

University of Seville 3

1.2 GRIFFIN ornithopter prototype with an onboard DAVIS346 event camera. Adapted

from [28] 3

1.3 DAVIS346 Event Camera 4

2.1 Standard camera operation 8

2.2 Event camera operation 8

2.3 Standard image (left) and event frame image (right) 8

2.4 Generated events with constant angular velocity 9

2.5 Generated events with variable angular velocity 9

2.6 Simplified pixel schematic. Adapted from [38] 10

2.7 Pixel principle of operation. Adapted from [38] 11

2.8 DAVIS pixel schematic. Adapted from [11] 12

2.9 Motion blur in standard image (left) and event frame image (right) 13

2.10 Standard image (up) and event frame image (down) for two different lighting condition 13

2.11 Experimental setup (left) and detected corners over time (right). Adapted from [76] 14

2.12 Surface of active events representation. Adapted from [44] 15

2.13 Surface of active events representation. Adapted from [3] 15

2.14 Intruder monitoring during night. Adapted from [63] 16

2.15 Example of ball detection. Adapted from [25] 16

2.16 Real scene (left), predicted contours (center) and predicted ownership (right).

Adapted from [7] 17

2.17 Image of events (left) and clustering output (right). Extracted from [6] 17

2.18 Events image (left) and optical flow (right). Adapted from [5] 18

2.19 Event-based 3D reconstruction of a cube. Adapted from [15] 18

2.20 Map and path generated (left) and trajectory (right). Adapted from [78] 19

2.21 Manipulator robot for visual servoing (left) and image of events (right). Adapted

from [48] 19

2.22 Images of events (left), intensity image reconstruction (center) and intensity im-

age reference (right). Adapted from [8] 20

2.23 IMAGO VisionCam, powered by Prophesee. Extracted from [57] 20

2.24 Left to right. DVS240, DAVIS240, eDVS, DVS128. Adapted from [29] 21

2.25 Left to right. DAVIS345, DVXplorer and DVXplorer Lite. Adapted from [29] 21

XIII



XIV List of Figures

2.26 Samsung SmartThings Vision. Extracted from [77] 21

2.27 Insightness Rino 3 Silicon Eye. Extracted from [30] 22

2.28 Address representation (AR) vs. content representation (CR) 24

3.1 ASAP simplified scheme 28

3.2 Communication through messages in ASAP. See Table 3.2 for notation 31

3.3 BRIDGE simplified scheme 32

4.1 ASAP event filtering module 35

4.2 Event images for different γ values 36

4.3 Functions ∆ t̄ vs. γmax (left) and R̄ vs. γ (right) 37

4.4 Example of event rate computation for NR = 10 38

4.5 γ filter preliminary results in low event rate scenario. Constant γmax 40

4.6 γ filter preliminary results in high event rate scenario. Constant γmax 41

4.7 γ filter preliminary results in high event rate scenario. Variable γmax 41

5.1 ASAP event packing module 43

5.2 Time difference between event generation and processing for different packet sizes 45

5.3 Saturation caused by a very high Kp value 46

5.4 Event packing preliminary results in low event rate scenario 48

5.5 Event packing preliminary results in high event rate scenario 48

6.1 Aerial robot based on DJI Flamewheel F450 equipped with a DAVIS346 event

camera and a Khadas VIM3 single-board computer 52

6.2 Experimental setup for event-based clustering test 53

6.3 Event-based clustering result. Generated events (left) and corresponding clus-

ters (right) 53

6.4 Experimental setup for event-based FAST corner detector test 54

6.5 Event-based FAST corner detector result. Generated events (left) and detected

corners (right) 54

7.1 Off-board experiment results. From top-left: event rate, normalized algorithm

temporal cost (from 0 to 1), γ value, events per packet and time difference be-

tween the newest and the oldest event in each packet 58

7.2 Multirotor trajectory during experiment. Position (left) and velocity (right) over time 58

7.3 Event-based clustering experiment results. From top-left: event rate, normalized

algorithm temporal cost (from 0 to 1), γ value and events per packet 59

7.4 Multirotor trajectory during experiment. Position (left) and velocity (right) over time 60

7.5 Event-based corner detection experiment results. From top-left: event rate, nor-

malized algorithm temporal cost (from 0 to 1), γ value and events per packet 60

8.1 Number of papers per publication year for event camera topic. Graph extracted

from Web of Science [49] 61

8.2 Floating-Point performance over time. Ordinate axis adjusted according to SPEC

CPU2006 benchmark. Figure extracted from Preshing on Programming [50],

where Standard Performance Evaluation Corporation (SPEC) [72] data were used 63

9.1 Número de artículos por año de publicación para el tema cámara de eventos.

Gráfica obtenida de Web of Science [49] 67



List of Figures XV

9.2 Rendimiento de la operación de punto flotante a lo largo del tiempo. Eje de

ordenadas ajustado de acuerdo a la prueba de evaluación SPEC CPU2006.

Figura extraída de Preshing on Programming [50], donde se utilizaron datos de

la Standard Performance Evaluation Corporation (SPEC) [72]. Versión traducida

al español 69

A.1 ROS node and topic network 71





List of Tables

2.1 DVS, ATIS and DAVIS specifications 12

2.2 Comparative of commercial event-based technologies 23

3.1 ASAP parameters 29

3.2 Figure 3.2 notation 31

4.1 Filtering module parameters 38

5.1 Packing module parameters 44

6.1 Parameters for experimental validation 51

XVII





List of Algorithms

1 BRIDGE Interface 33

2 Constant-valued γ filtering 36
3 Event rate computation 39
4 γ computation for event filtering 39
5 Variable-valued γ filtering 40

6 Event packing 47

7 Dummy algorithm for testing 52

8 ASAP 72

XIX





Notation

∼ Approximately

:= Assign, update

∈ Belongs to

∆ Increment

x̄ Normalized value of x

A⊤ Transpose of matrix A

XXI





1 Introduction

Event cameras are neuromorphic sensors capable of detecting changes in lighting
intensity at pixel-level with microsecond temporal resolution and high dynamic
range. The many advantages of this new type of sensor have attracted an increas-
ing research interest in robotics in recent years, especially for real-time applications
or variable lighting conditions scenarios.

Event processing involves a paradigm shift for computer vision. Although it is
possible to group events to form images –i.e., event frames–, it does not exploit all
the advantages of event cameras. Therefore, it will be necessary to redesign the
traditional vision techniques to achieve event-based algorithms.

Most of the event-based algorithms in the literature are fed with event packets –i.e.,
grouped events–. This approach can cause a lack of responsiveness in cases with
a low event generation rate. In contrast, other algorithms are fed event-by-event,
which carries a risk of overflowing –especially with high event generation rate–.

1.1 Objective

The choice between event packing or event-by-event approach is a trade-off
between responsiveness and risk of overflowing. This document presents an
adaptive scheme for asynchronous event processing. The objective of the method
is to manage the event stream using variable-size packets to optimize event
processing. The aim is to feed event-based algorithms in such a way that an
efficient and responsiveness behaviour is achieved and, at the same time, to
prevent overflowing.

Low contrast or low dynamic scenes will generate few events, so small packets
–even event-by-event– should be used to avoid inefficient processing. For a high
rate of input events (e.g. aggressive manoeuvres on board a robot), the packets
should be large in order to avoid non real-time processing. These ideas are the
basis for the adaptive scheme that will be presented in this document.

1



2 Chapter 1. Introduction

1.2 Contribution

Currently in event processing related literature, two approaches are used in order
to input the generated events into the vision algorithm: event-by-event and event
packets. Both alternatives have advantages and disadvantages. Event-packing
prevents algorithm computing saturation but it is not always efficient, while event-
by-event approach is close real-time but can produce overflowing.

This work presents ASAP (Adaptive Scheme for Asynchronous Processing), a
framework whose goal is to take advantage of both options using packets that vary
in size according to the event-based algorithm computational requirements.

The project focuses on four main goals: the design of an efficient and innovative
method for asynchronous processing, its development, its implementation on
board an aerial robot and its experimental validation.

Achieving these goals is a major step in event-based perception towards a new
form of communication between low-level event acquisition and event-based algo-
rithms. ASAP is designed to be a modular friendly-use framework easy to integrate
with the different event-based algorithms.

Previous work in this same direction has resulted in the publication of a paper in
an ICRA 2020 workshop. Due to its innovation in the field of event processing, it is
intended to extend the work done to publish in a journal.

1.3 Context

1.3.1 ASAP

This project is an extension of a previous work [73] published in IEEE International
Conference on Robotics and Automation (ICRA) 2020 Workshop on Unconven-
tional Sensors in Robotics. A first prototype of ASAP was presented there to
manage the event stream that feed an event-based clustering algorithm. The ex-
perimental results showed that an efficient algorithm processing can be achieved.

1.3.2 H2020 GRIFFIN

This work is part of the GRIFFIN ERC Advanced Grant 2017 (788247) [74] [75]
european project, granted to the GRVC Robotics Laboratory [35] of the University
of Seville. The aim of GRIFFIN (General compliant aerial Robotic manipulation
system Integrating Fixed and Flapping wings to INcrease range and safety) is
to create a unified framework for the development of autonomous flapping-wing
robots –also called ornithopters– with dexterous manipulation capabilities.

GRIFFIN ornithopters (Figure 1.1) will be able to fly minimizing energy consumption
and to perform manipulation tasks while held on a surface. In many scenarios, this



1.3 Context 3

kind of robot allows safer operation than rotorcrafts, especially in human interaction
tasks.

Figure 1.1 GRIFFIN ornithopter prototypes designs by GRVC Robotics Laboratory
of the University of Seville.

1.3.3 Visual Perception for Winged Aerial Robots

Visual perception has been widely used in aerial robotics due to the size, weight,
and consumption of the sensors. Flapping wing robots generate a challenge for
visual perception because fast-flying manoeuvrers cause high vibrations, which
produce motion blur in the images. For this reason, event sensors are seen as a
desirable option to place on board an ornithopter.

Event-based vision not only prevents motion blur, but also makes working under
strong lighting changes possible. To these advantages, it must be added the lower
consumption and lower latency compared to conventional sensors.

Gómez et al. [28] presented a paper showing a comparison between a monocular
camera and an event camera on board the platform in Figure 1.2. The authors
concluded that considering the nature of the orthopter’s flight –high speed ma-
noeuvrers and vibrations–, event-based cameras have better properties than
frame-based cameras.

Figure 1.2 GRIFFIN ornithopter prototype with an onboard DAVIS346 event camera.
Adapted from [28].



4 Chapter 1. Introduction

1.3.4 ASAP Code Developing

All the code used in this project has been implemented in C++ 11 under ROS
Melodic Morenia framework. ROS (Robot Operating System) is a middleware
for robotics software development. It provides services for heterogeneous com-
puter cluster (e.g., message communication, client-server structures, hardware
abstraction, low-level device control...). Its advantages include modular and
reusable code, concurrency, integration of developing tools –debugging, visu-
alization, simulation...— and a wide use in robotics.

1.3.5 DAVIS346 Event Camera

A DAVIS346 event camera (Figure 1.3) was used during design and for experimen-
tal testing. This is a 346 x 260 pixels DVS (Dynamic Vision Sensor) event camera
with a 1 µs temporal resolution, over 20 µs latency, 120 dB dynamic range. DAVIS
sensors include an APS (Active Pixel Sensor), so it also outputs fixed frame-rate
grayscale images.

Figure 1.3 DAVIS346 Event Camera.

1.4 Structure

This document consists of 9 chapters and 1 appendix. Chapter 2 presents the
state of the art of event processing. Chapter 3 provides an overview of the ASAP
software. Chapters 4 and 5 detail the modules that compose the developed
framework. Chapter 6 presents the experiments performed in order to validate the
proposed method. In Chapter 7, an analysis of the obtained results is presented.



1.4 Structure 5

Finally, in Chapter 8 the conclusions drawn during the realization of this project and
its possible future work are presented. Chapter 9 contains a Spanish translation of
these conclusions. Appendix A present the ASAP algorithm for implementation.





2 State of the Art

2.1 Introduction

This chapter will present the state of the art of bio-inspired event-based computer
vision. First, an introduction to event camera sensors –principle of operation, dif-
ferent designs, advantages over standard camera sensors, commercial devices...–
will be given. This will be followed by the state of the literature related to event
processing.

2.2 Event Cameras

An event camera is a bio-inspired neuromorphic sensor whose operation differs
from that of a conventional camera. A standard camera acquires images at a fixed
frame rate, while an event camera captures light intensity changes asynchronously.
Therefore, event cameras will only output information in dynamic environments
with contrast –something in the scene moves or the camera moves–.

This kind of performance provides many advantages over traditional image acqui-
sition, although it changes the paradigm of existing perception algorithms. Even
though event cameras are commercially available since 2008 [38], the literature
related to this research field [22] and a mass production interest by companies
(e.g., iniVation [29], Prophesee [57] or Samsung [77]) has grown in a short time.
This highlights the many advantages and the commercial interest in exploiting
these new sensors.

2.2.1 Principle of Operation

A digital camera is an electronic device that captures images using a sensor
capable of detecting the intensity with which the photons collide on it (Figure
2.1). This kind of sensors is composed of an array of light-sensitive elements.
Each element is known as pixel and the number of pixels in the array defines the
sensor resolution. Currently, the most commonly used sensors in digital cameras
are CCD (Charged Coupled Devices) and CMOS (Complementary Metal-Oxide

7



8 Chapter 2. State of the Art

Figure 2.1 Standard camera operation.

Semiconductor).

In contrast to conventional cameras, event cameras capture light intensity changes
–called events– asynchronously and independently –i.e., at pixel-level–. When a
pixel experiences a change to a higher intensity level, the camera will take it as
a positive event, while if a change to a lower level occurs, it will be interpreted
as a negative event (Figure 2.2). This positive/negative state is called event polarity.

t = t0 t = t1

Figure 2.2 Event camera operation.

Figures 2.3, 2.4 and 2.5 are intended to be an event camera behaviour demon-
stration. The experiment –based on [38]– consisted of a wheel spinning (Figure
2.3). When the rotation speed is constant, the events pattern repeats over time
(Figure 2.4). On the other hand, with variable rotation speed, the helicoid pitch is
lower the higher the speed (Figure 2.5).

Figure 2.3 Standard image (left) and event frame image (right).



2.2 Event Cameras 9

Figure 2.4 Generated events with constant angular velocity.

Figure 2.5 Generated events with variable angular velocity.



10 Chapter 2. State of the Art

2.2.2 Event Camera Designs

The first approach to bio-inspired vision sensors –so-called silicon retinas [20]
[53] [54]– was the device developed by M. Mahowald in his thesis [41]. Its many
limitations (e.g., very large pixels, bias circuit for each node which must be adjusted,
non-homogeneous pixel response...) made it not a system for a practical use.
However, different designs over the years have overcome these problems to
achieve fully functional devices [56].

The following sections will present the most commonly used event-based vision
sensors [83]: the Dynamic Vision Sensor (DVS) [38], the Asynchronous Time-
based Image Sensor (ATIS) [55] and the Dynamic and Active Pixel Vision Sensor
(DAVIS) [11]. There are other less widely used retina designs [40], such as the
asynchronous Parvo–Magno retina model [79] [80], the octopus retina [19] or the
spatial contrast and orientation vision sensor (VISe) [66].

Dynamic Vision Sensor (DVS)

The DVS [38] is based on previous frame-based silicon retina designs [21] [33]
[39] which used a photoreceptor capacitively coupled to a readout circuit. However,
DVS quantizes relative intensity changes at pixel-level in continuous time –i.e., non
frame-based–. Bio-inspirated and neuromorphic systems literature [20] [56] [40]
highlights the advantages of this type of operation.

DVS pixels get light changes using a logarithmic photoreceptor circuit, a differenc-
ing circuit –for amplifying the changes– and two transistor comparators (Figure
2.6). Figure 2.7 illustrates the DVS pixel operation principle, where it is shown
how DC mismatch between pixels can be solved by setting the differencing circuit
output to a reset level after each event generation.

Figure 2.6 Simplified pixel schematic. Adapted from [38].



2.2 Event Cameras 11

Figure 2.7 Pixel principle of operation. Adapted from [38].

Asynchronous Time-based Image Sensor (ATIS)

ATIS [55] is presented as a device which aims to combine different bio-inspired
approaches in order to acquire asynchronous event-based information. The sensor
incorporates an array of asynchronous pixels and pulse-width-modulation exposure
measurement circuits.

Each pixel in ATIS is made of a DVS subpixel which activates another subpixel
to read out the absolute intensity and which resets the differencing voltage level.
Although an ATIS pixel allows intensity values to be obtained, its area is more than
twice the DVS pixel area.

Dynamic and Active Pixel Vision Sensor (DAVIS)

The DAVIS [11] combines a DVS pixel and a active pixel sensor (APS) in the same
pixel. This device allows to obtain intensity level with a much smaller pixel size
than ATIS, since the photoreceptor is shared. The APC outputs information at a
constant frame rate and has the standard camera limitations.

Figure 2.8 presents the DAVIS pixel schematic, where it can be seen that the
photoreceptor circuit voltage serves as APS input.

Sensors Specifications Comparison

Table 2.1 aims to be a summary of the specifications of the three types of sensors
above-mentioned. All the information has been extracted from [83], [40], [38], [55]
and [11].



12 Chapter 2. State of the Art

Figure 2.8 DAVIS pixel schematic. Adapted from [11].

Table 2.1 DVS, ATIS and DAVIS specifications.

DVS ATIS DAVIS

Release 2006 2008 2013

Pixel size 40 µm × 40 µm 30 µm × 30 µm 18.5 µm × 18.5 µm

Sensor size 128 px × 128 px 304 px × 240 px 240 px × 180 px

Latency 15 µs 4 µs 3 µs

Dynamic range 120 dB 125 dB 130 dB

Consumption 24 mW 50 - 175 mW 5- 14 mW

2.2.3 Event Cameras Advantages

As stated above, the silicon retinas operation has a large number of advantages
over standard cameras. This section will detail the most remarkable and useful
advantages from the point of view of computer vision processing algorithms.

Low Latency

It is not necessary to wait for a global exposure time for each frame, but pixels
are independent. This asynchronous behaviour makes a very low latency value
possible.

High Temporal Resolution

Events are detected with a microsecond temporal resolution. Unlike traditional
cameras, these sensors are able to capture very fast movements with no motion
blur (Figure 2.9).



2.2 Event Cameras 13

Figure 2.9 Motion blur in standard image (left) and event frame image (right).

High Dynamic Range

Event cameras have a high dynamic range (HDR), over 120 dB –standard cameras
dynamic range is about 60 dB–. For that reason, silicon retinas can acquire
information under different lighting conditions (Figure 2.10). Like a human eye,
these sensors are capable of adapting to scenarios from very dark to very bright.

Figure 2.10 Standard image (up) and event frame image (down) for two different
lighting condition.



14 Chapter 2. State of the Art

Low Power Consumption

Artificial retinas have a power consumption about tens of milliwatt. This low
power consumption is mainly due to the fact that redundant information is avoided
–energy is only used on pixels whose intensity changes–.

2.2.4 Applications

Event-based processing has brought about a paradigm shift in computer vision
algorithms. Traditional image-based algorithms must be redesigned to work with
asynchronous processing in order to take full advantage of the event cameras.
This new paradigm is very challenging from a research point of view.

This section will describe some of the many algorithms present in the literature
in order to give an idea of the many applications of these sensors. Generally,
these algorithms focus on scenarios where real-time response, low power and
uncontrolled lighting conditions operation are needed.

Feature Detection

An event by itself does not provide information about its neighbourhood, so it is
impossible to know if it belongs to a corner. Clady et al. [18] propose as a solution
to accumulate the events to create a map of the timestamp of the latest event for
each pixel, called SAE (Surface of Active Events). They estimate corners by fitting
planes to the SAE and searching for intersections.

Vasco et al. [76] present a faster method –plane fitting is a costly operation, so a
large number of events per second cannot be processed–. They use two binary
SAEs on which they apply the Harris corner detector algorithm. Figure 2.11 shows
some experimental results.

Figure 2.11 Experimental setup (left) and detected corners over time (right).
Adapted from [76].

However, event-based Harris corner detection is not computationally efficient due
to the required matrix operations. Mueggler et al. [44] propose an event-based
detector relied on FAST corner detector. Their algorithm compares each event



2.2 Event Cameras 15

with the SAE events arranged in a circumference around that pixel (Figure 2.12).
Alzugaray et al. [3] also based on FAST for their detector design, but with an arc
of circumference searching (Figure 2.13).

Figure 2.12 Surface of active events representation. Adapted from [44].

Figure 2.13 Surface of active events representation. Adapted from [3].

An improved Harris-based corner detector is presented by Li et al. in [37]. They
implemented a Global Surface of Active Event (G-SAE) for enhancing real-time
performance, reaching eight times the speed of Vasco et al. [76] detector.

Tracking

Zhu et al. [81] and Alzugaray et al. [2] are two examples of feature tracking. The
first publication uses a data association modelled with probabilities computed from
optical flow. The second one is presented as an asynchronous framework to track
event features using an underlying directed graph representation.

Pose tracking algorithm from Mueggler et al. [47] was used on board a multirotor
that was aggressively manoeuvred, taking advantage of the fact that event cameras
are not affected by motion blur.

Rodríguez-Gómez et al. presented in [63] an asynchronous event-based tracking
for intrusion monitoring under different lighting conditions (Figure 2.14). Their



16 Chapter 2. State of the Art

method employs an event clustering and a feature tracking modules optimized to
support event-based processing computational constraints.

Figure 2.14 Intruder monitoring during night. Adapted from [63].

Segmentation and Clustering

Glover et al. [25] [26] propose a method to detect and track a moving ball using a
Hough transform approach (Figure 2.15). The paper extends the Hough-based
circle detection algorithm using optical flow, extracted from spatio-temporal event
space.

Figure 2.15 Example of ball detection. Adapted from [25].

A contour detector is presented by Barranco et al. in [7]. Authors compute contours
and scene segmentation (Figure 2.16) using a Structures Random Forest (SRF)
on event-based features for encoding information to feed a classifier.



2.2 Event Cameras 17

Figure 2.16 Real scene (left), predicted contours (center) and predicted ownership
(right). Adapted from [7].

The method proposed by Barranco et al. [6] is an example on event-based clus-
tering algorithm (Figure 2.17) relying on probability density function to represent
the feature space. Another instance is the aforementioned publication [63] by
Rodríguez-Gómez et al., who use a real-time asynchronous clustering technique
to group events created by an intruder in the scene.

Figure 2.17 Image of events (left) and clustering output (right). Extracted from [6].

Alonso et al. [1] designed a semantic segmentation convolutional neural network
fed only with events. Semantic labels are generated from grayscale image.

Object Recognition

Employing event-based data with machine learning tools –such as neural networks–
allows object recognition. Serrano-Gotarredona et al. [69] –who use a Convo-
lutional Neural Network–, Moeys et al. [43] –also using a CNN–, Li et al. [36]
–with a random forest based classifier– or Ghosh et al. [24] –based on an Extreme
Learning Machine (ELM)– are examples of recognition applications.

Optical Flow

Publication instances about event-based visual motion estimation are: Benosman
et al. [9] –where results demonstrate optical flow computation current limitations
can be overcome by using event-based acquisition, since high temporal resolution
allows optical flow with microsecond accuracy–, Orchard et al. [51] –whose authors
describe a visual motion estimation which uses a spiking neural network to exploit



18 Chapter 2. State of the Art

high temporal resolution event data– or Barranco et al. [5] –where optical flow
computation (Figure 2.18) is used for a contour motion estimation–.

Figure 2.18 Events image (left) and optical flow (right). Adapted from [5].

3D Reconstruction

An event-based multi-view reconstruction is presented by Rebecq et al. in [60] and
later extended in [59], where authors estimate 3D structure from an event camera
with known trajectory using monocular depth estimation.

Also three-dimensional reconstruction using structured light is possible. Brandli et
al. [12] employ a pulsed laser line extraction for terrain reconstruction. In the field
of stereo depth estimation (Figure 2.19), there are papers such as Rogister et al.
[64], Carneiro et al. [15] or Camuñas-Mesa et al. [13] [14].

Figure 2.19 Event-based 3D reconstruction of a cube. Adapted from [15].

Visual Odometry and SLAM

Kueng et al. [34], Zhu et al. [82] and Censi et al. [17] are examples of event-
based visual odometry algorithms. Both methods exploit the event processing
advantages for low-latency response and high temporal resolution.

Mueggler et al. [46] propose a localization algorithm adapted to event cameras
asynchronous operation. Gallego et al. [23] describe another localization method
which uses the contrast residual as a measure of the pose estimation accuracy.



2.2 Event Cameras 19

Event-based visual SLAM (Simultaneous Localization And Mapping) (Figure 2.20)
has also been developed in recent years, with publications such as Weikersdorfer
et al. [78], Kim et al. [32], Rebecq et al. [61] or Rosinol et al. [65], among others.

Figure 2.20 Map and path generated (left) and trajectory (right). Adapted from [78].

Visual Servoing

The field of event-based visual servoing is a currently growing and challenging line
of research where there is still much to be done. It is worth mentioning the recent
publication by Muthusamy et al. [48], who has developed an eye-in-hand visual
servoing for a manipulator robot (Figure 2.21).

Figure 2.21 Manipulator robot for visual servoing (left) and image of events (right).
Adapted from [48].

Standard Images Reconstruction

Is it possible to reconstruct grayscale images from events? Some works such as
Barua et al. [8], Kim et al. [31], Scheerlinck et al. [68] or Reinbacher et al. [62]
have shown that, using machine learning algorithms –e.g., manifold regularization–
or optimization techniques, good accuracy results (Figure 2.22) are obtained.



20 Chapter 2. State of the Art

Figure 2.22 Images of events (left), intensity image reconstruction (center) and
intensity image reference (right). Adapted from [8].

2.2.5 Commercial Devices

Different advantages and applications have made some companies interested in
producing event cameras. These commercial products facilitate in many cases
the sensor integration in robots for research purposes in the field of event-based
computer vision. Next, some of the models available on the market are shown.

Prophesee

Prophesee [57] has developed ATIS-Gen1, CD-Gen2, ATIS-Gen3, CD-Gen3,
ATIS-Gen4 and ATIS-Gen4. Currently, the company markets an event camera
Evaluation Kit (EVK). Their last release is the IMAGO VisionCam –powered by
Prophesee– (Figure 2.23), announced as the first industrial event-based vision
system.

Figure 2.23 IMAGO VisionCam, powered by Prophesee. Extracted from [57].

iniVation

iniVation [29] has four discontinued products: eDVS, DVS128, DVS240 and
DAVIS240 (Figure 2.24). At the moment, they market the new models DAVIS346,
DVXplorer and DVXplorer Lite (Figure 2.25).



2.2 Event Cameras 21

Figure 2.24 Left to right. DVS240, DAVIS240, eDVS, DVS128. Adapted from [29].

Figure 2.25 Left to right. DAVIS345, DVXplorer and DVXplorer Lite. Adapted from
[29].

Samsung

Samsung Electronics [67] has also shown interest in this type of technology,
releasing the DVS-Gen1, DVS-Gen2, DVS-Gen3 and DVS-Gen4 devices. Recently,
this company has put up for sale the SmartThings Vision [77] (Figure 2.26), a
commercial product for home monitoring.

Figure 2.26 Samsung SmartThings Vision. Extracted from [77].

Insightness

Insightness [30] has developed the Rino 3 Silicon Eye (Figure 2.27). Among its
many uses are UAS collision avoidance or augmented reality applications.

CelePixel

CelePixel [16] released in 2018 the first one megapixel event-camera sensor,
called CeleX-V (1280x800). This device is the result of different iteration over



22 Chapter 2. State of the Art

Figure 2.27 Insightness Rino 3 Silicon Eye. Extracted from [30].

the past few years: CeleX-I (64x64) in 2012, CeleX-II (192x160) and CeleX-III
(384x320) in 2015 and CeleX-IV (768x640) in 2017.

Commercial Devices Comparative

Table 2.2 shows a comparison between the specifications of the above-mentioned
technologies. All values has been extracted from [57], [29], [67], [52], [71], [30],
[16] and [22].

2.3 Event Processing

Artificial retinas asynchronous behaviour means that these sensors output is not
constant frame rate images, but a timestamped events stream. This kind of read
access is called Address-Event Representation (AER) [40] [10]. This section will
describe the main characteristics of AER and its advantages over frame-based
representation.

2.3.1 AER Vision Sensor

Address-Event Representation is bio-inspired by the neurons communication.
Pixels asynchronously output event position –i.e., their address– (Figure 2.28)
when they detect a significant intensity change.

Power consumption required for this type of operation is much lower compared
to frame-based sensors. In addition, a much higher temporal resolution can be
achieved, since it is not necessary to wait for an global exposure time –each pixel
output is independent–.



2.3 Event Processing 23

Ta
b

le
2.

2
C

om
pa

ra
tiv

e
of

co
m

m
er

ci
al

ev
en

t-
ba

se
d

te
ch

no
lo

gi
es

.

R
el

ea
se

R
es

ol
ut

io
n

P
ix

el
si

ze
S

en
so

r
si

ze
La

te
nc

y
D

yn
.

ra
ng

e
P

ow
er

co
ns

.

p
x

2
µ

m
2

m
m

2
µ

s
d

B
m

W

P
ro

ph
es

ee
C

D
-G

en
3

20
17

64
0
×

48
0

15
×

15
9.

6
×

7.
2

12
12

0
36

-
95

AT
IS

-G
en

3
20

17
48

0
×

36
0

20
×

20
9.

6
×

7.
2

12
12

0
25

-
87

C
D

-G
en

4
20

20
12

80
×

72
0

4.
86
×

4.
86

6.
22
×

3.
5

12
12

4
32

-
73

in
iV

at
io

n

eD
V

S
20

08
12

8
×

12
8

40
×

40
6
×

6.
6

12
12

0
23

D
V

S
12

8
20

08
12

8
×

12
8

40
×

40
6.

3
×

6
12

12
0

23

D
V

S
24

0
20

14
24

0
×

18
0

18
.5
×

18
.5

5
×

5
12

12
0

5
-

14

D
A

V
IS

24
0

20
14

24
0
×

18
0

18
.5
×

18
.5

5
×

5
12

12
0

5
-

14

D
A

V
IS

34
6

20
17

34
6
×

26
0

18
.5
×

18
.5

8
×

6
20

12
0

10
-

17
0

D
V

X
pl

or
er

20
20

64
0
×

48
0

-
-

10
0

11
0

-

D
V

X
pl

or
er

Li
te

20
20

32
0
×

24
0

-
-

10
0

11
0

-

S
am

su
ng

D
V

S
-G

en
1

20
14

64
0
×

48
0

9
×

9
9.

7
×

8
-

66
15

D
V

S
-G

en
2

20
16

64
0
×

48
0

9
×

9
8
×

5.
8

65
-

41
0

90
27

-
50

D
V

S
-G

en
3

20
18

64
0
×

48
0

9
×

9
8
×

5.
8

50
90

40

D
V

S
-G

en
4

20
20

12
80
×

96
0

4.
95
×

4.
95

8.
4
×

7.
6

15
0

10
0

13
0

In
si

gh
tn

es
s

R
in

o
3

20
18

32
0
×

26
2

13
×

13
5.

3
×

5.
3

12
5

10
0

20
-

70

C
el

eP
ix

el
C

el
eX

-I
V

20
17

76
8
×

64
0

18
×

18
15

.5
×

15
.8

10
90

-

C
el

eX
-V

20
19

12
80
×

80
0

9.
8
×

9.
8

14
.3
×

11
.6

8
12

0
40

0



24 Chapter 2. State of the Art

0 0 0

0 0 1

0 0 1

0, 0, 0, 0, 0, 1, 0, 0, 10

0 1 2

1

2

(1, 2), (2, 2)

CR

AR

Figure 2.28 Address representation (AR) vs. content representation (CR).

According to Delbruck et al. [20], AER sensors can be classified into:

• Spatial Contrast (SC) sensors –which reduce spatial redundancy based on
intensity ratios– and Spatial Difference (SD) sensors –which use intensity
differences–.

• Temporal Contrast (TC) sensors –which reduce temporal redundancy based
on relative intensity changes– and Temporal Difference (TD) sensors –which
use absolute intensity changes–.

• Frame event sensors –which use a synchronous global exposure time– and
asynchronous event sensor –with no global exposure–.

The vast majority of event sensors are asynchronous, so AER-based and asyn-
chronous event-based concepts are usually used synonymously. Ruedi et al. [66]
is an example of fixed frame –i.e. non-asynchronous– AER vision sensor.

In addition, AER is not limited to event-based sensors. There are a few standard
intensity-value sensors such as Shoushun et al. [70], Culurciello et al. [19] or
Azadmehr et al. [4]. However, these designs are expensive and do not provide
significant latency reduction, so they are not very common.

2.3.2 Frame-Based vs. Event-based Algorithms

Algorithms fed with the event stream can group them to form frames –i.e. event
images–. However, this kind of operation does not exploit all the advantages of
silicon retinas and is computationally less efficient than event-based methods.

Rodríguez-Gómez [63] is an example of event-based processing. Authors show
the advantages of asynchronous processing, especially useful for real-time appli-
cations which require high computational efficiency.

2.3.3 Single Events vs. Event Packets

In order to feed event-based algorithms, two main methods are employed: single
events –events are sent and processed one by one– and event packets –events
are packed before being sent to the processing algorithm–.

Event packeting (e.g., [27], [45] or [47]) prevents algorithm overflow but it is not



2.4 Conclusions 25

an efficient operation when algorithm can process events faster that they are
received. On the other hand, single-events option (e.g., [42] or [63]) is the closest
operation to real-time thanks to the event camera microsecond temporal resolution.
However, this can result in an algorithm overflow, especially when many events
are generated in a short period of time.

The most common option in literature is event packeting. Two approaches are
used to group: packed by number of events –all packets are the same size– and
packed by time –packets are sent periodically–. The greater the relative movement
between scene and camera, the greater the number of events generated. Thus, a
greater number of packets –if number packing is used– or larger packets –if time
packing is used– will be generated.

2.4 Conclusions

This chapter has intended to give an idea of the revolution that event cameras rep-
resent for computer perception. These new sensors represent a very challenging
paradigm shift for researchers that is bringing about a lot of possibilities.

In the event processing context, it can be stated that event-based algorithms are
generally more efficient than frame-based algorithms because they allow all the
advantages of silicon retinas to be exploited.

The choice between single-event based or event-packet based processing involve
a compromise between responsiveness and overflow risk. In order to exploit the
full capability of event-based vision, the project described in this document aims
to design an adaptive scheme for events processing. A previous work [73] has
already confirmed the possibility of optimizing the event packet size to obtain an
efficient real-time behaviour without risk of overflowing.





3 ASAP: Adaptive Scheme for
Asynchronous Processing

This chapter will present the scheme and general operation of ASAP framework.
The objective of ASAP (Adaptive Scheme for Asynchronous Processing) is to mod-
ify in real-time the size of the event packets that will be input into the event-based
vision algorithm according to its computational needs.

Afterwards, the operation of the two modules that compose the scheme –filtering
module and packing module– will be introduced. The first module is used to re-
duce the computational consumption by removing some random events –avoiding
redundant information–. The second one is designed to pack the events in a
computationally efficient way.

Furthermore, the communication structure between the different ASAP compo-
nents, the messages types that use these communications and the connection of
the event-based algorithms will be explained.

3.1 ASAP Framework

The number of events generated will depend on the contrast and dynamics of the
scene. To maintain a near real-time behaviour, events must be processed right
after they are generated by the sensor. However, a large number of events in a
small period of time could saturate the algorithm and cause overflowing. In these
cases it is desirable to send them by groups.

Based on this knowledge, ASAP (Figure 3.1) aims to adapt the size of event
packets to achieve the most efficient processing result. To this end, events will
be sent to the algorithm as soon as possible, ensuring that there is no risk of
saturation.

27



28 Chapter 3. ASAP: Adaptive Scheme for Asynchronous Processing

γ filter Packing Algorithm
e eγ E

Compute
event rate

R

Event
camera

ASAP

∆t

Figure 3.1 ASAP simplified scheme.

The modules presented in Figure 3.1 are as follows:

• Event camera: Events e are output from the vision sensor and fed into
ASAP.

• γ filter: This preprocessing step is used to reduce the number of events
to be packed, resulting in a lower eγ rate. The reduction will be greater the
higher the event rate and the higher the algorithm computational cost ∆ t.

• Event rate computation: Event rate R –i.e., events per second– is com-
puted to suit the filtering.

• Packing: The size of the event packets E will be adjusted according to the
algorithm temporal cost ∆ t.

• Algorithm: The vision event-based algorithm processes the events in E and
returns the required time ∆ t.

3.1.1 Parameters

One of the goals during the design stage was to reduce the number of parameters
as much as possible. Table 3.1 shows the parameters to be adjusted, which will
depend on the computational requirements of the system on which the event-
based algorithm is running. It should be noted that parameters are presented here
just for reference, since they will be extensively explained in later chapters.

The parameter setting depends on the desired ASAP behaviour, always assuming
a compromise between latency and robustness. Algorithms with similar complexity
will require similar parameter values, so an ASAP tuning is generally valid for
several event-based algorithms.

3.1.2 Outer Loop: Event Filtering

Event filtering is a preprocessing stage in which a percentage of the generated
events will be randomly removed. To do this, a random value is generated from a



3.1 ASAP Framework 29

Ta
b

le
3.

1
A

S
A

P
pa

ra
m

et
er

s.

D
es

cr
ip

ti
o

n
W

h
en

in
cr

ea
se

s
W

h
en

d
ec

re
as

es
Ty

p
ic

al
va

lu
e

M
o

re
d

et
ai

ls
in

N
R

S
iz

e
of

th
e

w
in

do
w

us
ed

to
co

m
pu

te
ev

en
tr

at
e

B
et

te
r

es
tim

at
io

n,
sl

ow
er

up
da

tin
g

W
or

se
es

tim
at

io
n,

fa
st

er
up

da
tin

g
∼

10
00

ev
en

ts

C
ha

pt
er

4
γ

m
in

M
in

im
um

va
lu

e
fo

r
ev

en
t

fil
te

rin
g

F
ew

er
re

m
ov

ed
ev

en
ts

M
or

e
re

m
ov

ed
ev

en
ts

∼
[0

.1
,0

.4
]

γ
m

a
x

M
ax

im
um

va
lu

e
fo

re
ve

nt
fil

te
rin

g
M

or
e

re
m

ov
ed

ev
en

ts
F

ew
er

re
m

ov
ed

ev
en

ts
∼

[0
.7

,1
]

K
p

P
ro

po
rt

io
na

lg
ai

n
to

ad
-

ju
st

ev
en

tp
ac

ki
ng

H
ig

he
rr

es
po

ns
e

ve
lo

ci
ty

,
m

or
e

ris
k

of
in

st
ab

ili
ty

Lo
w

er
re

sp
on

se
ve

lo
ci

ty
,

le
ss

ris
k

of
in

st
ab

ili
ty

-

C
ha

pt
er

5
∆

t̄ r
e

f
D

es
ire

d
re

sp
on

si
ve

ne
ss

le
ve

l
Le

ss
re

sp
on

si
ve

ne
ss

M
or

e
re

sp
on

si
ve

ne
ss

∼
[0

.1
,0

.9
]

S
m

in
M

in
im

um
pa

ck
et

si
ze

be
-

fo
re

se
nd

in
g

Le
ss

re
sp

on
si

ve
ne

ss
M

or
e

re
sp

on
si

ve
ne

ss
∼

[1
,1

00
]

µ
s

S
m

a
x

M
ax

im
um

pa
ck

et
si

ze
be

fo
re

se
nd

in
g

Le
ss

re
sp

on
si

ve
ne

ss
M

or
e

re
sp

on
si

ve
ne

ss
∼

[1
03

,1
05

]
µ

s



30 Chapter 3. ASAP: Adaptive Scheme for Asynchronous Processing

normal distribution that is compared to a threshold.

The filter is adjusted through the γ parameter. The lower the γ, the higher the
deleted events percentage. A value of γ = 1 implies that no event is removed, while
with γ = 0 all events would be discarded. Rodríguez-Gómez et al. demonstrated in
[63] –where they used a constant γ value– that a high percentage of events could
be filtered out without losing relevant information.

The γ value is automatically adapted according to the input event rate –information
from scenario– and the processing requirements –information fed back from the
algorithm–. γ will range from a maximum γmax to a minimum γmin value that can be
adjusted.

This preprocessing filter will be extensively detailed in Chapter 4.

3.1.3 Inner Loop: Event Packing

The main module of ASAP is the event packer. The generated events are stored
in a packet and sent to the algorithm when a certain time condition is satisfied.
When a packet is sent, a new packet will start to be filled in.

The time condition to be verified for sending a packet Ek varies adaptively according
to the computational time the algorithm needed to compile the previous packet
Ek−1 –i.e., ∆ t, which is fed back from the algorithm–.

This module will be further detailed in Chapter 5.

3.1.4 ASAP Communication Structure

ASAP runs as a ROS node and communicates with the event-based algorithm
through messages (Figure 3.2) published in a topic to which the algorithm must
subscribe.

Event packet messages consist of a timestamp –by convention, packets are tagged
with the last-added event timestamp–, the sensor dimensions –width and height–
and an event array –i.e., the packet–.

Each event within a packet is a message composed of a timestamp, the position
of the event in image plane coordinates –x and y, being (0,0) the upper left corner
of the sensor– and the event polarity —positive when the lighting change is an
increase and negative when a decrease–.

Time feedback is also communicated using a ROS message. This value is sent by
the algorithm and received by ASAP.



3.2 Event-Based Algorithm Connection: BRIDGE 31

ASAP Algorithm

E

e0 e1 e2 e3 e4 e5 e6 e7 eN...

t3 x3 y3 p3

tN w h

packet

∆t

Figure 3.2 Communication through messages in ASAP. See Table 3.2 for notation.

Table 3.2 Figure 3.2 notation.

tk Time instant in which event ek was generated

xk,yk Position in which event ek was generated

ek k-th event in E

E Event packet

h,w Sensor height and width

∆ t Time required to process E

3.2 Event-Based Algorithm Connection: BRIDGE

One of the initial problems with ASAP was the need to modify the algorithm to
return the temporal cost of processing each received packet. Although this is
not a very complex modification, it reduces the ASAP modularity. BRIDGE was
designed to solve this problem.

BRIDGE is an interface that modifies the event handler –the callback function that
is executed every time a packet is received– to calculate the time that the algorithm
has taken to process each event in the packet (see Figure 3.3). So, actually, ASAP
sends event packets to BRIDGE and the algorithm only has to subscribe to it for
acquiring the events.

The time outputted by BRIDGE is normalized in order to return a value between



32 Chapter 3. ASAP: Adaptive Scheme for Asynchronous Processing

0 and 1 (where 0 means that the temporary cost is the lowest possible and 1
the highest). To normalize ∆ t, expression in Equation 3.1 is used, where ∆ tmin

and ∆ tmax are respectively the lowest and highest ∆ t values ever obtained and
∆̄ t ∈ [0,1] is the normalized value.

∆̄ t =
∆ t−∆ tmin

∆ tmax−∆ tmin

(3.1)

To prevent high values of ∆ t from leading to poor normalization conditioning, a
forgetting factor α can be used in order to decrease the value of ∆ tmax over time,
as shown in Equation 3.2. This is more necessary the higher the variance of the
algorithm temporal cost.

∆ tmax := (1−α) ·∆ tmax (3.2)

ASAP Event-based

t0 ← getT ime()

t1 ← getT ime()

∆t← t1−t0

n

∆t

E

BRIDGE

E

Event camera algorithm

∆t← normalize(∆t)

n← getSize(E)

Figure 3.3 BRIDGE simplified scheme.

Algorithm 1 shows this interface operation, where E is an event packet and ∆ t is
the average temporal cost per event in E.



3.3 Conclusions 33

Algorithm 1: BRIDGE Interface
Input :E

Output :∆t

Parameters :α ⊲ Optional

Initialization :∆tmax ← 0, ∆tmin ← ∞ ⊲ Execute only the first time

1 n← getSize(E)

2 t0 ← getCurrentTime()

3 callAlgorithm(E)

4 t1 ← getCurrentTime()

5 ∆t← (t1 - t0) / n

6 if ∆t > ∆tmax then

7 ∆tmax ← ∆t

8 else if ∆t < ∆tmin then

9 ∆tmin ← ∆t

10 end

11 if ∆tmin = ∆tmax then

12 ∆t← 0

13 else

14 ∆t← (∆t - ∆tmin) / (∆tmax - ∆tmin)

15 end

16 ∆tmax ← (1-α) · ∆tmax ⊲ Optional

3.3 Conclusions

This chapter has intended to provide a general overview of how ASAP works. It
has been used as an introduction to the next two chapters, where the concepts
summarized here will be explained in further detail.

In addition, thanks to BRIDGE, ASAP can be presented as a modular method easy
to couple to different algorithms. The aim of this connection is to make ASAP an
easy-to-use alternative for any user in the event perception research community.





4 Event Filtering Module

This chapter presents the event preprocessing. This first stage (Figure 4.1) reduces
the workload of the system on which ASAP is executed, so it is an indispensable
stage for systems with low computing capacities.

γ filter Packing Algorithm
e eγ E

Compute
event rate

R

Event
camera

ASAP

∆t

Figure 4.1 ASAP event filtering module.

The events generated by the silicon retina are acquired through the AER protocol
by ASAP. To decrease the computational cost, not all events will be processed.
For an event to be processed it must pass the γ filter, which randomly discards
them.

It is very important to avoid excessive filtering –i.e., removing too much relevant
information–. Ideally, all deleted events should be redundant information from the
scene.

4.1 Effect of Event Filtering

The implemented filter is based on the procedure proposed by Rodrígez-Gómez et
al. in [63]. The method they presented uses a randomly generated value according
to a normal distribution that is compared with a constant γ ∈ [0,1] threshold (see
Algorithm 2, where e is the event to be evaluated).

35



36 Chapter 4. Event Filtering Module

Figure 4.2 shows the results obtained by applying different values of γ . It is possible
to check the lower γ the lower the number of events in the image –i.e., the lower
the information from scene–.

Algorithm 2: Constant-valued γ filtering
Input :e

Output :e or no output

Parameters :γ

1 r← generateRandomValue(0,1)

2 if r < γ then

3 pass(e)

4 else

5 remove(e)

6 end

Figure 4.2 Event images for different γ values.



4.2 Event Filter Operation 37

4.2 Event Filter Operation

The advantage of the designed filter over the method proposed in the previous
section is that it is capable of varying γ according to the computational needs of
the event-based algorithm.

The γ value will vary between γmin and γmax values depending on the event rate R

–i.e., events generated per second– as expressed in Equation 4.1.

γ = γmax− R̄ · (γmax− γmin) (4.1)

The R̄ value in Equation 4.1 denotes the normalized event rate (see Equation 4.2).
To make the normalization more robust, a forgetting factor α that decreases Rmax

over time can be established.

R̄ =
R−Rmin

Rmax−Rmin

=
R

Rmax

(4.2)

The γmin and γmax values are defined by the user to control the maximum and
minimum amount of events to be deleted. To take into account the computational
cost ∆ t of the vision algorithm, the γmax value can be modified by ASAP. This way,
when the algorithm is overloaded, γmax will decrease to reduce the event rate and
vice versa. However, the range of γmax values can still be controlled by the user
through γBOT

max and γTOP
max (so that γmax ∈ [γBOT

max ,γTOP
max ] as shown in Equation 4.3).

γmax = γTOP
max −∆ t̄ · (γTOP

max − γBOT
max ) (4.3)

Figure 4.3 presents the behaviour of γ as a function of the normalized event rate R̄

and the normalized temporal cost of the algorithm ∆ t.

0 1

∆̄t

γmax

γTOP
max

γBOT
max

0 1

R̄

γ

γmax

γmin

A

B

C

D

E

A

B

C

D

E

Figure 4.3 Functions ∆ t̄ vs. γmax (left) and R̄ vs. γ (right).



38 Chapter 4. Event Filtering Module

4.2.1 Event Rate Computation

The event rate indicates how the number of events varies over time (see Equation
4.4, where n is the number of events received). In order to implement the event
rate computation (see Algorithm 3), a window of fixed size NR (Figure 4.4) will be
used, thus the rate can be calculated using the expression in Equation 4.5.

R(t) =
dn

dt
(4.4)

Rk =
∆n

∆ t
=

NR

tk− tk−NR+1

(4.5)

... e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

t0

R|t=t0
=

NR

t9−t0

e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

t1

R|t=t1
=

NR

t10−t1

... e14

Figure 4.4 Example of event rate computation for NR = 10.

4.2.2 Parameters

Table 4.1 shows the parameters used by the filtering method. These are parame-
ters whose value must depend on the computing capacity of the system on which
ASAP is running.

Table 4.1 Filtering module parameters.

γmin Minimum γ value that can be achieved

γmax = [γBOT
max ,γTOP

max ]⊤ Maximum γ value that can be achieved

NR Window size used to compute event rate

α (optional) Forgetting factor for Rmax



4.3 Computational Capacity vs. Filtering 39

Algorithm 3: Event rate computation
Input :e

Output :R

Parameters :NR

Initialization :R← 0, Rlist ← emptyList()

1 Rlist ← insert(Rlist, e)

2 if length(Rlist) > NR then

3 Rlist ← removeOldestItem(Rlist)

4 rn ← getNewestItem(Rlist)

5 ro ← getOldestItem(Rlist)

6 tr ← getTime(rn) - getTime(ro)

7 R← NR / tr
8 end

4.2.3 Implementation

Algorithm 4 presents the γ calculation. This allows the constant-valued filter
introduced above to be modified to obtain an adaptive filtering (see Algorithm 5).

Algorithm 4: γ computation for event filtering
Input :R, ∆ t̄

Output :γ

Parameters :γmin, γBOT
max , γTOP

max , α

Initialization :Rmax ← 0 ⊲ Execute only the first time

1 γmax ← γTOP
max − (γTOP

max − γBOT
max ) ·∆ t̄

2 if R > Rmax then

3 Rmax ← R

4 end

5 R̄ ← R / Rmax

6 γ = γmax− (γmax− γmin) · R̄

7 Rmax ← (1-α) · Rmax ⊲ Optional

4.3 Computational Capacity vs. Filtering

It should be noted that this processing stage is designed specifically for systems
with limited computing constraints (e.g., on-board computers). However, by ad-
justing the parameters, it is possible to reduce or even eliminate the filtering of
acquired events. This implies no loss of information.



40 Chapter 4. Event Filtering Module

Algorithm 5: Variable-valued γ filtering
Input :e, γ

Output :e or no output

1 r← generateRandomValue(0,1)

2 if r < γ then

3 pass(e)

4 else

5 remove(e)

6 end

It is up to the user to decide how much information to remove for the sake of
a faster processing. For example, on desktop computers it will usually not be
necessary any filtering.

4.4 Preliminary Results

This section presents some results obtained when testing the event filtering. The
value of R and γ for a low event rate scenario (Figure 4.5) and a high event rate sce-
nario (Figure 4.6) are shown. Values γmin = 0.3 and γmax = 0.9 were used. Figure
4.7 shows the result obtained by allowing ASAP to vary γmax between γBOT

max = 0.7

and γTOP
max = 0.9.

Figure 4.5 γ filter preliminary results in low event rate scenario. Constant γmax.

4.5 Conclusions

Although information loss is generally never desirable in a perception system,
removing redundant information is a perfect way to dedicate all processing power
to the most useful data.



4.5 Conclusions 41

Figure 4.6 γ filter preliminary results in high event rate scenario. Constant γmax.

Figure 4.7 γ filter preliminary results in high event rate scenario. Variable γmax.

The main conclusion of this chapter is that it is possible to automatically adapt the
filtering by only using information from the scene.

Events not removed by the filter will be sent to the packing module, which will be
described in the next chapter.





5 Event Packing Module

This chapter will detail the operation of the main ASAP module: the event packer
(Figure 5.1). This stage allows to adjust the events transmission to achieve an
efficient and highly responsive operation of the event-based vision algorithm.

Furthermore, the parameters of this adaptive scheme and its effect on processing
will be presented. Some notions on how to adjust these parameters to achieve
different processing behaviours will also be given.

γ filter Packing Algorithm
e eγ E

Compute
event rate

R

Event
camera

ASAP

∆t

Figure 5.1 ASAP event packing module.

5.1 Effect of Event Packing on Latency

Event-by-event processing allows very low latency – i.e., real-time operation –.
However, high-speed movements will cause millions of events per second, so
being able to process all of them will require a very high computational capacity.

On the other hand, event-packet processing allows near real-time performance
but without taking full advantage of the event camera’s time resolution.

Comparing both alternatives, it can be concluded that the higher the event packet,

43



44 Chapter 5. Event Packing Module

the higher the latency between event generation and processing but the lower
the computational requirement. See Figure 5.2, corresponding to experiments in
which packets of 100 events generated a latency around 0.2 - 0.3 milliseconds,
packets of 1000 events generated a latency around 2 - 3 milliseconds, and packets
of 10000 events generated a latency around 30 milliseconds

Therefore, it will be necessary to use small packets when not generating many
events per second –to achieve real time processing– and large packets when
generating many events –to avoid overflowing–.

5.2 Event Packer Operation

In order to set the packet size S, ASAP employs the computational cost ∆ t fed
back from the event-based algorithm using the expression from Equation 5.1.
Although the expression is based on that of a proportional incremental control
with error ∆ t̄−∆ t̄re f , it should be clear that the aim is not to stabilize the feedback
signal according to a reference, since it is assumed that the scenario will be in a
continuous change and a constant ∆ t̄re f value cannot be achieved.

S := S+Kp · (∆ t̄−∆ t̄re f ) (5.1)

The computed size can be used as a threshold of number of events per packet or
as a threshold of time in the packet –i.e., time of the most recent event minus time
of the oldest event)–. The settings of Kp and ∆ t̄re f will vary depending on the type
of threshold used. From now on, a temporary threshold will be used, since it has
been proven to give better results (see Chapter 7).

The threshold will move between the values Smin and Smax, used to set the desired
minimum and maximum processing responsiveness.

5.2.1 Parameters

Table 5.1 shows the parameters used by the packing method. These are parame-
ters whose value must depend on the event-based algorithm complexity and the
responsiveness to be achieved.

Table 5.1 Packing module parameters.

Kp Proportional gain to adjust event packing

∆ t̄re f Desired responsiveness level

Smin Minimum allowed size

Smax Maximum allowed size



5.2 Event Packer Operation 45

Figure 5.2 Time difference between event generation and processing for different
packet sizes.



46 Chapter 5. Event Packing Module

5.2.2 Proportional Gain Adjustment

The proportional gain defines how quickly the threshold is updated. It is difficult
to define a typical value for this variable, since it will depend on the nature of the
event-based algorithm. Even so, similar complexity algorithms may use the same
Kp value.

For relatively low values, the threshold will not be updated fast enough to fit
the real-time environment. Otherwise, relatively high values will cause a rapid
saturation of the threshold (see Figure 5.3).

Figure 5.3 Saturation caused by a very high Kp value.

Generally speaking, increasing Kp will lead to a faster update of the threshold and
therefore a higher adaptive capacity and decreasing Kp will lead to less risk of
adjustment instability.

5.2.3 Responsiveness Level Adjustment

The value ∆ t̄re f allows to determine the average value of the desired algorithm
temporal cost, where ∆ t̄re f = 1 is the longest time taken for processing and ∆ t̄re f = 0

is the shortest.

As mentioned above, this value should not be understood as a reference to be
reached, but as a parameter that defines the algorithm responsiveness to be
achieved. This parameter makes it possible to adjust the compromise between
processing speed and robustness. As can be proven in Equation 5.1, small values
of ∆ t̄re f imply higher tendency to increase the threshold, and therefore, large packet
generation –i.e., low latency but high robustness–. In contrast, large values imply
higher tendency to decrease the threshold, and consequently, smaller packets or
even event-by-event processing –i.e., high latency but low robustness–.



5.3 Preliminary Results 47

5.2.4 Implementation

Algorithm 4 –where e is the input event from γ-filter, E is the current event packet,
and ∆ t is the temporal cost per event of the previous packet– corresponds to the
ASAP packing module implementation.

Algorithm 6: Event packing
Input :e, ∆ t̄

Output :E or no output

Parameters :Smin, Smax, Kp, ∆ t̄ref

Initialization :E← emptyList() ⊲ Execute only the first time

1 E← insert(E, e)

2 S← S + Kp · (∆ t̄ - ∆ t̄ref)

3 if S > Smax then

4 S← Smax

5 else if S < Smin then

6 S← Smin

7 end

8 en ← getNewestItem(E)

9 eo ← getOldestItem(E)

10 s← getTime(en) - getTime(eo)

11 if s > S then

12 sendToAlgorithm(E)

13 E← emptyList()

14 end

5.3 Preliminary Results

This section presents some results obtained when testing the event packing.
Values Kp = 10, ∆ t̄re f = 0.1, Smin = 1µs and Smax = 1ms have been used. Figure 5.4
shows the results for a low event rate scenario, while Figure 5.5 corresponds to a
high event rate scenario.



48 Chapter 5. Event Packing Module

Figure 5.4 Event packing preliminary results in low event rate scenario.

Figure 5.5 Event packing preliminary results in high event rate scenario.

5.4 Event-by-Event Processing using ASAP

It is worth noting that through an appropriate parameter setting, it is possible to get
ASAP to send events to the algorithm one by one. It is also possible to adjust a
general event-by-event processing that switches to packet-based processing only
at certain times, when there is a large generation of events per second.

This feature makes ASAP capable of adapting to various applications and devices
with different computational capabilities.



5.5 Conclusions 49

5.5 Conclusions

This chapter has tried to show the relevance of event packing on the event-based
vision algorithm connected to ASAP. Through the parameter adjustment, it is
possible to achieve different behaviours that emphasize different features (e.g.,
computational efficiency, robustness against overflowing, low latency...), as well as
operations that combine some of these features.

This chapter, in conjunction with the two previous ones, constitutes the description
of the designed adaptive scheme for asynchronous event processing. Appendix 1
contains the complete implementation of the described method.





6 Experimental Validation

This chapter presents the experimental evaluation performed to validate the
method proposed in this document. Several tests were carried out, both off-board
–for parameters setting– and on-board a multirotor. The three most significant
experiments –one off-board and two on-board– will be shown here.

First, an off-board test is presented. A dummy algorithm was used to close the
feedback loops and emulate a vision algorithm whose complexity increases over
time –for each event there is an increasing delay–. This experiment was employed
to verify if ASAP is able to work in a wide range of temporal cost.

After that, two experiments performed to test ASAP on-board an aerial robot are
presented. An event-based clustering algorithm [63] and an event-based FAST
corner detector [44] were used.

6.1 Off-Board Experiments

Different tests were performed to adjust the ASAP parameters. The selected
values are shown in Table 6.1 –no forgetting factors were established, since the
experiments will have a not very long duration–. The same values will be used
for the different on-board tests to demonstrate that a same setting can work for
algorithms with similar complexity.

Table 6.1 Parameters for experimental validation.

γ Filtering Event Packing

γmin γBOT
max γTOP

max NR Kp ∆ t̄re f Smin Smax

0.3 0.7 0.9 1000 5 0.15 1 µs 1 ms

51



52 Chapter 6. Experimental Validation

In order to validate the correct operation of the method, it was implemented an
algorithm whose computational cost increased each time it received a packet (see
Algorithm 7). The goal of this test was to verify the adaptive behaviour of ASAP.
The obtained results will be analysed in the following chapter.

Although it is not a realistic case –no algorithm temporal cost experiences a
constant variation over time–, this evaluation will allow to verify if ASAP can be
adapted according to a variable temporal cost.

Algorithm 7: Dummy algorithm for testing
Input :E

Initialization : t← 0 ⊲ Execute only the first time

1 t← t + 10−6 ⊲ Increase 1 microsecond

2 waitSeconds(t)

6.2 On-Board Experiments

The experimental setup consists of a DAVIS346 event camera on-board a DJI
Flamewheel F450 with a PixRacer autopilot (Figure 6.1). ASAP was running on a
low-cost Khadas VIM3 single-board computer on top of the UAL [58] using ROS
Kinetic Kame and the PX4 low-level controller. Multirotor flights were conducted
inside an OptiTrack testbed.

Figure 6.1 Aerial robot based on DJI Flamewheel F450 equipped with a DAVIS346
event camera and a Khadas VIM3 single-board computer.



6.2 On-Board Experiments 53

6.2.1 Clustering

The first tested algorithm was the event-based clustering proposed by Rodríguez-
Gómez et al. in [63]. The experimental scenario consisted of a set of pipes
placed vertically over which the multirotor flew (see Figure 6.2). From the events
generated by the multirotor movement, the algorithm was able to group the pipes
into clusters (Figure 6.3).

Figure 6.2 Experimental setup for event-based clustering test.

Figure 6.3 Event-based clustering result. Generated events (left) and corresponding
clusters (right).



54 Chapter 6. Experimental Validation

6.2.2 Corner Detector

The second algorithm to be tested was the event-based FAST corner detector
presented by Mueggler et al. in [44]. The scenario of the experiment consisted of
a grid formed by three horizontal and three vertical lines (see Figure 6.4). Figure
6.5 shows some results obtained by the corner detector.

Figure 6.4 Experimental setup for event-based FAST corner detector test.

Figure 6.5 Event-based FAST corner detector result. Generated events (left) and
detected corners (right).



6.3 Conclusions 55

6.3 Conclusions

This chapter has sought to describe the experimental validation performed to verify
and evaluate ASAP. The analysis of the logged results will be detailed in Chapter
7. Two algorithms with quite different processing performance have been used to
check the adaptive nature of ASAP.

It is worth noting that the results of the event-based vision algorithms (Figures 6.3
and 6.5) are presented here by way of illustration, since neither the accuracy nor
the efficiency of the algorithm is an objective for this validation.





7 Result Analysis

The results obtained after the experiments described in the previous chapter will
be analysed here. From this analysis it will be possible to validate the efficient and
robust operation of ASAP.

Three analyses are presented, corresponding to the three experiments performed:
an off-board test, the on-board event-based clustering and the on-board event-
based FAST corner detector.

7.1 Off-Board Experiment Results

Figure 7.1 shows the results obtained by placing the event camera in front of a
a low-contrast and low-dynamic scene. An algorithm whose computational cost
increases over time was used (see Chapter 6).

Note that as the processing cost increases, the length of the packets –i.e., the
number of events per packet– increases. For this reason, the temporal cost per
event (see top right graphic in Figure 3) remains within a constant value range.

The γ value is adapted according to the event rate R. Due to the nature of the
scenario, γ does not reach very low values –although the lower limit γmin was 0.3,
the minimum reached is approximately 0.8–.

These results validate the adaptive nature of ASAP, both to the environment and
to the processing of the algorithm. This behaviour is desired for asynchronous
event processing, so it can be stated that one of the main objectives of this project
has been fulfilled.

7.2 Clustering Experiment Results

Graphics in Figure 7.3 correspond to the event-based clustering test (Figure 7.2).
The peaks that appear in the event rate –top left graphic– correspond to moments

57



58 Chapter 7. Result Analysis

Figure 7.1 Off-board experiment results. From top-left: event rate, normalized
algorithm temporal cost (from 0 to 1), γ value, events per packet and
time difference between the newest and the oldest event in each packet.

in which a large number of events are generated due to an abrupt multirotor
movement or to the existence of many pipes in the field of view of the camera.

Each of these peaks corresponds to a γ filter peak –see bottom left graphic–.
The filtering is activated in case of an excess of events per second to avoid the
saturation of the algorithm.

In terms of processing temporal cost, it can be seen that the peaks also appear
–top right graphic–, but quite attenuated. ASAP has managed event stream to
homogenize the temporal cost in values generally below 0.4. Remember that the
temporal cost is represented normalized –i.e., 0 is the shortest time required by
the clustering to process an event and 1 the longest–.

Figure 7.2 Multirotor trajectory during experiment. Position (left) and velocity (right)
over time.



7.3 Corner Detector Experiment Results 59

Figure 7.3 Event-based clustering experiment results. From top-left: event rate,
normalized algorithm temporal cost (from 0 to 1), γ value and events per
packet.

7.3 Corner Detector Experiment Results

The results of the event-based corner detection test (Figure 7.4) are shown in
Figure 7.5. The γ filter operation is similar to the one shown in the previous section
–γ decreases when the number of events generated increases in order to avoid
overflowing–.

The homogenization of the algorithm temporal cost per event is even greater than
in the previous case. It can be seen how it almost never exceeds the value 0.3
–i.e. 30% of the highest cost requiered–. These data are a good example of the
adaptive nature of ASAP. Between t = 50s and t = 110s the number of generated
events is not very high –the grid has not yet appeared in the field of view– so
the number of discarded events and the number of events per packet will be low.
In contrast, from t = 110s the grid is seen by the camera and a lot of events are
generated. The γ filter starts to discard more events and the number of events per
packet increases.

7.4 Conclusions

The analysis of the results of the different experiments makes it possible to verify
that ASAP achieves the expected operation. Both the event filtering and the event
packing meet expectations, achieving high responsiveness with no processing
saturation.



60 Chapter 7. Result Analysis

Figure 7.4 Multirotor trajectory during experiment. Position (left) and velocity (right)
over time.

Figure 7.5 Event-based corner detection experiment results. From top-left: event
rate, normalized algorithm temporal cost (from 0 to 1), γ value and events
per packet.

The adaptive performance of this method is very important for asynchronous event
processing. Therefore, it can be stated that ASAP is a desirable solution when
handling the events stream for event-based algorithms.

These tests have also been used to check the ease of software integration. Al-
though two different author algorithms with differing code structures have been
used, connecting them to ASAP has not been a problem.



8 Conclusions and Future Work

This chapter presents the general conclusions drawn during the development of
this project. This is followed by some new avenues for future research.

8.1 Conclusions

8.1.1 The Event Camera Revolution

Event cameras are a revolutionary technology that offers multiple advantages
over traditional cameras. Their features make them a suitable option for robotic
applications in scenarios inaccessible to other perception sensors.

The growing research and commercial interest reflected by different fields in the
literature –e.g., neuromorphic systems, computer vision or robotics– is an indicator
of the current expansion of these new sensors (see Figure 8.1).

Figure 8.1 Number of papers per publication year for event camera topic. Graph
extracted from Web of Science [49].

61



62 Chapter 8. Conclusions and Future Work

8.1.2 Event Processing

One of the biggest challenges of event-based research is the optimization of the
number of events processed in each iteration by the vision algorithm. This choice
will define the event-based perception system responsiveness

The two main approaches, event-by-event processing and event-packet processing,
have advantages and disadvantages. The first approach achieves low latency, but
can be overloaded during high-speed movements –where millions of events are
generated– when running on a CPU. The second one can achieve a real-time
operation with no need for a GPU, but it is not possible to reach a microsecond
resolution. This project defends that an efficient solution would be a trade-off
between both approaches.

8.1.3 ASAP Contribution to Event-Based Research

This document has presented ASAP, an adaptive scheme for dynamic event pack-
ing, specially designed for a fast and efficient event processing. This scheme re-
sponds to the paradigm shift that asynchronous event-based sensors has brought
about in recent years.

There are not many event-based algorithms available nowadays compared to
frame-based algorithms. However, the evolution of neuromorphic retinas tends
to the appearance of more and more event-by-event algorithms. This is a logical
evolution, since this type of processing allows to exploit all the advantages of event
cameras.

Event processing requires a very high computational capacity, due to the high
temporal resolution of event sensors. Advances in computer technology and
computer science provide systems with increasing computing power (see Figure
8.2). However, although onboard computers also increase their processing power
over the years, they still generally do not meet the restrictions imposed by the time
resolution of event cameras.

8.1.4 ASAP in the Context of ERC Advanced Grant GRIFFIN Project

One of the biggest limitations of the current GRIFFIN winged robot prototypes is
their payload. For this reason, the onboard electronics must be as light as possible,
resulting in a limitation in processing capacity.

This is where ASAP becomes relevant, since it allows to take full advantage of the
ornithopter’s processing system. An efficient vision system is indispensable, as it
will serve as a basis for manoeuvres planning and control.



8.2 Future Work 63

Figure 8.2 Floating-Point performance over time. Ordinate axis adjusted according
to SPEC CPU2006 benchmark. Figure extracted from Preshing on
Programming [50], where Standard Performance Evaluation Corporation
(SPEC) [72] data were used.

8.2 Future Work

This section will describe some possible lines of future work to focus. Some are
currently being explored, while others are ideas raised during the development of
this project that may serve to improve some features of the method described.

8.2.1 Proportional Gain Adjustment Method

The value of Kp used by the event packer is manually adjusted to set the desired
responsiveness level –considering that the faster the response, the greater the
workload for the algorithm–.

A possible future development is the design of an analytical method that, given a
desired system behaviour, allows to obtain an appropriate value of the proportional
gain.



64 Chapter 8. Conclusions and Future Work

8.2.2 Packing Adaptation Techniques

The design of ASAP is based on some discrete systems theory techniques. The
choice of a proportional gain as the only control parameter is due to the fact that
the experimental results obtained verify the correct operation of the method.

However, other alternatives could be explored. For example, the inclusion of a
derivative gain that improves the transient behaviour or tools from adaptive control.

Analysing the obtained experimental results, it has been verified the correct adapta-
tion of ASAP, both to the environment and to the requirements of the event-based
vision algorithm. Therefore, this should not be focused as a main task, since the
improvement may not be significant.

8.2.3 Low-Level ASAP Version

The development of a low-level ASAP version for devices with very low processing
capacity is currently underway. This version is being implemented in C without
using ROS, as it is intended to reduce its computational complexity as much as
possible.

Since it is not under ROS framework, a new communication structure must be
designed to handle event traffic. This structure must be efficient, robust and
low-latency.

The main disadvantage is the loss of portability, since ROS is a widely used
middleware in robotics research. However, it will allow access to less power-
consuming and cheaper technology.

8.2.4 Implementation on Board a Winged Aerial Robot

One of the final objectives of ASAP is to allow the processing of events on board
the H2020 GRIFFIN project ornithopters. Event-based vision is necessary to
avoid motion blur caused by flapping vibrations and for being able to perform
manoeuvrers in low-light scenarios.

Payload restrictions mean that onboard electronics should be kept to a minimum.
This implies that the processing capacity will not be as high as in other robotic
vehicles, being necessary an efficient management of the generated events.

8.2.5 Future Publications and Open Source Version

All the work generated will result in a paper for a special issue of IEEE International
Conference on Robotics and Automation (ICRA) 2020 Workshop on Unconven-
tional Sensors in Robotics, where a preliminary version of ASAP has already been
accepted [73].

This publication will be accompanied with the release of ASAP as open source for
free access by the event-based perception community. The focus should be on



8.2 Future Work 65

facilitating the integration of different algorithms through a multi-platform interface
that allows them to be connected.





9 Conclusiones

Esta es una adaptación al español de las conclusiones del Capítulo 8.

9.1 La revolución de las cámaras de eventos

Las cámaras de eventos son una tecnología revolucionaria que ofrece múltiples
ventajas en comparación con las cámaras tradicionales. Sus características las
convierten en una opción adecuada para aplicaciones en el campo de la robótica,
especialmente en escenarios inaccesibles por otros sensores de percepción.

El creciente interés investigativo y comercial reflejado en la literatura de distintos
ámbitos (por ejemplo, sistemas neuromórficos, visión artificial o robótica) es un
indicador de la actual expansión de estos nuevos sensores (véase la Figura 9.1).

Figure 9.1 Número de artículos por año de publicación para el tema cámara de
eventos. Gráfica obtenida de Web of Science [49].

67



68 Chapter 9. Conclusiones

9.2 Procesamiento de eventos

Uno de los mayores desafíos en el ámbito de las retinas artificiales es la opti-
mización del número de eventos a procesar en cada iteración del algoritmo de
visión. Esta elección definirá la capacidad de respuesta del sistema de percepción
basado en eventos.

Los dos enfoques principales, procesamiento evento a evento y procesamiento
de paquetes de eventos, poseen ventajas y desventajas. El primero logra una
baja latencia, pero puede provocar una saturación con movimientos de gran ve-
locidad (momentos en los que se generan millones de eventos) al ejecutarse en
CPU. El segundo puede lograr un funcionamiento en tiempo real sin necesidad
de ejecución en GPU, pero no es posible alcanzar una resolución del orden de
microsegundos. Este proyecto defiende un compromiso entre ambos enfoques
como una solución eficiente.

9.3 Contribución de ASAP a la percepción basada en eventos

Este documento ha presentado ASAP, un esquema adaptativo para el empaque-
tado dinámico de eventos, especialmente diseñado para un procesamiento de
eventos rápido y eficiente. Este método responde al cambio de paradigma que
los sensores asíncronos de eventos han supuesto en los últimos años.

No existe actualmente un gran número de algoritmos basados en eventos en
comparación con el número de algoritmos basados en imágenes. Sin embargo,
la evolución de las retinas neuromórficas tiende a la aparición de cada vez más
algoritmos con procesamiento evento a evento. Esta es una evolución lógica, ya
que este tipo de procesamiento permite explotar al máximo las ventajas de las
cámaras de eventos.

El procesamiento de eventos requiere una capacidad computacional muy ele-
vada, dada la alta resolución temporal de estos sensores. Los avances en las
tecnologías de la computación y la información proporcionan sistemas con una
potencia de cálculo cada vez mayor (véase la Figura 9.2). Sin embargo, aunque
los ordenadores de abordo también ven incrementada su potencia de cálculo con
los años, todavía no son capaces, por lo general, de satisfacer las restricciones
impuestas por la resolución temporal de las cámaras de eventos.

9.4 ASAP bajo el marco del proyecto ERC Advanced Grant GRIFFIN

Una de las mayores limitaciones de los prototipos de robots de ala batiente en
GRIFFIN es su carga de pago. Por ello, la electrónica de abordo debe ser lo más
ligera posible, lo que implica una limitación en su capacidad de procesamiento.



9.4 ASAP bajo el marco del proyecto ERC Advanced Grant GRIFFIN 69

Figure 9.2 Rendimiento de la operación de punto flotante a lo largo del tiempo. Eje
de ordenadas ajustado de acuerdo a la prueba de evaluación SPEC
CPU2006. Figura extraída de Preshing on Programming [50], donde
se utilizaron datos de la Standard Performance Evaluation Corporation
(SPEC) [72]. Versión traducida al español.

Es en este punto donde ASAP cobra importancia, pues permite aprovechar al
máximo el sistema de procesamiento del ornitóptero. Un sistema de visión efi-
ciente es indispensable, ya que servirá de base para la planificación de maniobras
y para el control de la plataforma.





Appendix A

ASAP Implementation

This appendix presents the ASAP algorithm for its implementation. It also shows
the structure and communications of the ROS nodes during its execution.

A.1 ASAP Algorithm

The complete implementation of ASAP is shown in Algorithm 8. The different
parameters used have been described throughout the chapters of this document.

A.2 ROS Node Structure

Figure A.1 presents the ROS node structure during the ASAP running. Be-
sides events –/asap/events–, DAVIS346 device also outputs grayscale images
–/asap/images– and data from an IMU integrated into the camera –/asap/imu–.

Figure A.1 ROS node and topic network.

71



72 Chapter A. ASAP Implementation

Algorithm 8: ASAP
Input :e, ∆ t̄

Output :E or no output

Parameters :NR, γmin, γBOT
max , γTOP

max , Smin, Smax, Kp, ∆ t̄ref

Initialization :E← emptyList(), Rlist ← emptyList(), R← 0, γ ← γTOP
max

1 Rlist ← insert(Rlist, e)

2 if length(Rlist) > NR then

3 Rlist ← removeOldestItem(Rlist)

4 rn ← getNewestItem(Rlist)

5 ro ← getOldestItem(Rlist)

6 tr ← getTime(rn) - getTime(ro)

7 R← NR / tr
8 end

9 r← generateRandomValue(0,1)

10 if r < γ then

11 E← insert(E, e)

12 S← S + Kp · (∆ t̄ - ∆ t̄ref)

13 if S > Smax then

14 S← Smax

15 else if S < Smin then

16 S← Smin

17 end

18 en ← getNewestItem(E)

19 eo ← getOldestItem(E)

20 s← getTime(en) - getTime(eo)

21 if s > S then

22 sendToAlgorithm(E)

23 E← emptyList()

24 end

25 γmax ← γTOP
max − (γTOP

max − γBOT
max ) ·∆ t̄

26 if R > Rmax then

27 Rmax ← R

28 end

29 R̄ ← R / Rmax

30 γ = γmax− (γmax− γmin) · R̄

31 end



Bibliography

[1] Iñigo Alonso and Ana Murillo, Ev-segnet: Semantic segmentation for event-
based cameras, 11 2018.

[2] Ignacio Alzugaray and Margarita Chli, Ace: An efficient asynchronous corner
tracker for event cameras, 09 2018, pp. 653–661.

[3] , Asynchronous corner detection and tracking for event cameras in
real-time, IEEE Robotics and Automation Letters PP (2018), 1–1.

[4] Mehdi Azadmehr and J. Abrahamsen, A foveated aer imager chip, Interna-
tional Symposium on Circuits and Systems, ISCAS 2005 3 (2005).

[5] Francisco Barranco, Cornelia Fermüller, and Yiannis Aloimonos, Contour
motion estimation for asynchronous event-driven cameras, Proceedings of
the IEEE 102 (2014), 1537–1556.

[6] Francisco Barranco, Cornelia Fermüller, and Eduardo Ros, Real-time cluster-
ing and multi-target tracking using event-based sensors, 10 2018, pp. 5764–
5769.

[7] Francisco Barranco, Ching Teo, Cornelia Fermüller, and Yiannis Aloimonos,
Contour detection and characterization for asynchronous event sensors, 12
2015, pp. 486–494.

[8] Souptik Barua, Yoshitaka Miyatani, and Ashok Veeraraghavan, Direct face
detection and video reconstruction from event cameras, 03 2016, pp. 1–9.

[9] Ryad Benosman, Sio-Hoi Ieng, Charles Clercq, Chiara Bartolozzi, and
Mandyam Srinivasan, Asynchronous frameless event-based optical flow,
Neural networks : the official journal of the International Neural Network
Society 27 (2011), 32–7.

[10] Kwabena Boahen, A burst-mode word-serial address-event link—i: Transmit-
ter design, Departmental Papers (BE) 51 (2004).

[11] Christian Brändli, Raphael Berner, Minhao Yang, S.-C Liu, and Tobi Delbruck,
A 240 × 180 130 db 3 µs latency global shutter spatiotemporal vision sensor,
Solid-State Circuits, IEEE Journal of 49 (2014), 2333–2341.

73



74 Bibliography

[12] Christian Brändli, Thomas Mantel, Marco Hutter, Mark Hoepflinger, Raphael
Berner, Roland Siegwart, and Tobi Delbruck, Adaptive pulsed laser line
extraction for terrain reconstruction using a dynamic vision sensor, Frontiers
in neuroscience 7 (2013), 275.

[13] Luis Camuñas-Mesa, Teresa Serrano-Gotarredona, Sio-Hoi Ieng, Ryad
Benosman, and Bernabé Linares-Barranco, On the use of orientation filters
for 3d reconstruction in event-driven stereo vision, Frontiers in neuroscience
8 (2014), 48.

[14] Luis Camuñas-Mesa, Teresa Serrano-Gotarredona, Bernabé Linares-
Barranco, Sio-Hoi Ieng, and Ryad Benosman, Event-driven stereo vision
with orientation filters, 06 2014, pp. 257–260.

[15] João Carneiro, Sio-Hoi Ieng, Christoph Posch, and Ryad Benosman, Asyn-
chronous event-based 3d reconstruction from neuromorphic retinas, Neural
Networks 45 (2013).

[16] CelePixel, http:// www.celepixel.com/ #/ Home, June 2020.

[17] Andrea Censi and Davide Scaramuzza, Low-latency event-based visual
odometry, 06 2014.

[18] Xavier Clady, Sio-Hoi Ieng, and Ryad Benosman, Asynchronous event-based
corner detection and matching, Neural Networks in press (2015).

[19] Eugenio Culurciello, Ralph Etienne-Cummings, and Kwabena Boahen, A
biomorphic digital image sensor, Solid-State Circuits, IEEE Journal of 38
(2003), 281 – 294.

[20] Tobi Delbruck, Bernabé Linares-Barranco, Eugenio Culurciello, and Christoph
Posch, Activity-driven, event-based vision sensors, 05 2010, pp. 2426–2429.

[21] Tobi Delbruck and Carver Mead, Time-derivative adaptive silicon photore-
ceptor array, Proceedings of SPIE - The International Society for Optical
Engineering (1993).

[22] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andrew Davison, Jorg Conradt,
Kostas Daniilidis, and Davide Scaramuzza, Event-based vision: A survey,
(2019).

[23] Guillermo Gallego, Christian Forster, Elias Mueggler, and Davide Scaramuzza,
Event-based camera pose tracking using a generative event model, (2015).

[24] Rohan Ghosh, Tang Siyi, Mahdi Rasouli, N.v Thakor, and Sunil Kukreja,
Pose-invariant object recognition for event-based vision with slow-elm, 09
2016, pp. 455–462.

[25] Arren Glover and Chiara Bartolozzi, Event-driven ball detection and gaze
fixation in clutter, 10 2016, pp. 2203–2208.

http://www.celepixel.com/#/Home


Bibliography 75

[26] , Robust visual tracking with a freely-moving event camera, 09 2017,
pp. 3769–3776.

[27] Arren Glover, Valentina Vasco, Massimiliano Iacono, and Chiara Bartolozzi,
The event-driven software library for yarp—with algorithms and icub applica-
tions, Frontiers in Robotics and AI 4 (2018).

[28] Augusto Gómez Eguíluz, Juan Gómez, Julio L. Paneque, Pedro Grau,
J. Ramiro Martinez-de Dios, and Anibal Ollero, Towards flapping wing robot
visual perception: Opportunities and challenges, 11 2019.

[29] iniVation, https:// inivation.com/ , June 2020.

[30] Insightness, https:// www.insightness.com/ , June 2020.

[31] Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoi Ieng, and Andrew
Davison, Simultaneous mosaicing and tracking with an event camera, 01
2014, pp. 1–12.

[32] Hanme Kim, Stefan Leutenegger, and Andrew Davison, Real-time 3d re-
construction and 6-dof tracking with an event camera, vol. 9910, 10 2016,
pp. 349–364.

[33] J. Kramer, An on/off transient imager with event-driven, asynchronous read-
out, 02 2002, pp. II–165.

[34] Beat Kueng, Elias Mueggler, Guillermo Gallego, and Davide Scaramuzza,
Low-latency visual odometry using event-based feature tracks, 10 2016,
pp. 16–23.

[35] GRVC Robotics Laboratory, https:// grvc.us.es/ , June 2020.

[36] Hongmin Li, Guoqi Li, and Luping Shi, Classification of spatiotemporal events
based on random forest, vol. 10023, 11 2016, pp. 138–148.

[37] Ruoxiang Li, Dianxi Shi, Yongjun Zhang, Kaiyue Li, and Ruihao Li, Fa-harris:
A fast and asynchronous corner detector for event cameras, 09 2019.

[38] P Lichesteiner, C Posch, and T Delbruck, A 128× 128 120 db 15µsec latency
asynchronous temporal contrast vision sensor, IEEE Jornal of Solid-State
Circuits 43 (2008), no. 2, 566–576.

[39] Patrick Lichtsteiner, Tobi Delbruck, and J. Kramer, Improved on/off temporally
differentiating address-event imager, 01 2005, pp. 211 – 214.

[40] Shih-Chii Liu, Tobi Delbruck, Giacomo Indiveri, Adrian Whatley, and Rodney
Douglas, Event-based neuromorphic systems, 12 2014.

[41] Misha Mahowald, Vlsi analogs of neuronal visual processing: a synthesis of
form and function, Ph.D. thesis, California Institute of Technology Pasadena,
1992.

https://inivation.com/
https://www.insightness.com/
https://grvc.us.es/


76 Bibliography

[42] Alexandre Marcireau, Sio-Hoi Ieng, and Ryad Benosman, Sepia, tarsier,
and chameleon: A modular c++ framework for event-based computer vision,
Frontiers in Neuroscience 13 (2020), 1338.

[43] Diederik Paul Moeys, Federico Corradi, Emmett Kerr, Philip Vance, Gautham
Das, Dan Neil, Dermot Kerr, and Tobi Delbruck, Steering a predator robot
using a mixed frame/event-driven convolutional neural network, 06 2016.

[44] Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza, Fast event-based
corner detection, 09 2017.

[45] Elias Mueggler, Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza,
Continuous-time visual-inertial odometry for event cameras, IEEE Transac-
tions on Robotics PP (2018), 1–16.

[46] Elias Mueggler, Guillermo Gallego, and Davide Scaramuzza, Continuous-time
trajectory estimation for event-based vision sensors, 07 2015.

[47] Elias Mueggler, Basil Huber, and Davide Scaramuzza, Event-based, 6-dof
pose tracking for high-speed maneuvers, 09 2014.

[48] Rajkumar Muthusamy, Abdulla Ayyad, Mohamad Halwani, Yahya Zweiri,
Dongming Gan, and Lakmal Seneviratne, Neuromorphic eye-in-hand visual
servoing, 04 2020.

[49] Clarivate Analytics. Web of Science, https:// clarivate.com/ products/ web-of-
science/ , June 2020.

[50] Preshing on Programming. A Look Back at Single-Threaded CPU Perfor-
mance, https:// preshing.com/ 20120208/ a-look-back-at-single-threaded-cpu-
performance/ , June 2020.

[51] Garrick Orchard, Ryad Benosman, Ralph Etienne-Cummings, and N.v Thakor,
A spiking neural network architecture for visual motion estimation, 10 2013,
pp. 298–301.

[52] Paul Park, Evgeny Soloveichik, Hyunsurk Ryu, Jun Kim, Chang Shin, Hyunku
Lee, Weiheng Liu, Qiang Wang, Yohan Roh, Jeonghan Kim, and Yotam
Ater, Low-latency interactive sensing for machine vision, 12 2019, pp. 10.6.1–
10.6.4.

[53] Christoph Posch, Bio-inspired vision, Journal of Instrumentation 7 (2012).

[54] , Bioinspired vision sensing, pp. 11–28, 08 2015.

[55] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt, A qvga 143 db
dynamic range frame-free pwm image sensor with lossless pixel-level video
compression and time-domain cds, Solid-State Circuits, IEEE Journal of 46
(2011), 259 – 275.

https://clarivate.com/products/web-of-science/
https://clarivate.com/products/web-of-science/
https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/


Bibliography 77

[56] Christoph Posch, Teresa Serrano-Gotarredona, Bernabé Linares-Barranco,
and Tobi Delbruck, Retinomorphic event-based vision sensors: Bioinspired
cameras with spiking output, Proceedings of the IEEE 102 (2014), 1470–
1484.

[57] Prophesse, https:// www.prophesee.ai/ , June 2020.

[58] Fran Real, Arturo Torres-González, Pablo Ramón Soria, Jesús Capitán, and
Anibal Ollero, Unmanned aerial vehicle abstraction layer: An abstraction
layer to operate unmanned aerial vehicles, International Journal of Advanced
Robotic Systems (2020), 1–10.

[59] Henri Rebecq, Guillermo Gallego, Elias Mueggler, and Davide Scaramuzza,
Emvs: Event-based multi-view stereo—3d reconstruction with an event cam-
era in real-time, International Journal of Computer Vision (2017).

[60] Henri Rebecq, Guillermo Gallego, and Davide Scaramuzza, Emvs: Event-
based multi-view stereo, 09 2016.

[61] Henri Rebecq, Timo Horstschaefer, Guillermo Gallego, and Davide Scara-
muzza, Evo: A geometric approach to event-based 6-dof parallel tracking and
mapping in real-time, IEEE Robotics and Automation Letters PP (2016).

[62] Christian Reinbacher, Gottfried Munda, and Thomas Pock, Real-time
intensity-image reconstruction for event cameras using manifold regulari-
sation, International Journal of Computer Vision (2016).

[63] Juan Pablo Rodríguez-Gómez, Augusto Gómez Eguíluz, José Ramiro
Martínez De-Dios, and Anibal Ollero, Asynchronous event-based cluster-
ing and tracking for intrusion monitoring in uas, 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2020.

[64] Paul Rogister, Ryad Benosman, Sio-Hoi Ieng, Patrick Lichtsteiner, and Tobi
Delbruck, Asynchronous event-based binocular stereo matching, IEEE trans-
actions on neural networks and learning systems 23 (2012), 347–353.

[65] Antoni Rosinol, Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza,
Ultimate slam? combining events, images, and imu for robust visual slam in
hdr and high speed scenarios, IEEE Robotics and Automation Letters PP
(2018), 1–1.

[66] Pierre-François Rüedi, Pascal Heim, F. Kaess, Eric Grenet, Friedrich Heitger,
Pierre-Yves Burgi, Stève Gyger, and Pascal Nussbaum, A 128 × 128 pixel
120-db dynamic-range vision-sensor chip for image contrast and orientation
extraction, Solid-State Circuits, IEEE Journal of 38 (2004), 2325 – 2333.

[67] Samsung, https:// www.samsung.com/ , June 2020.

[68] Cedric Scheerlinck, Nick Barnes, and Robert Mahony, Continuous-time inten-
sity estimation using event cameras, pp. 308–324, 05 2019.

https://www.prophesee.ai/
https://www.samsung.com/


78 Bibliography

[69] Teresa Serrano-Gotarredona, Bernabé Linares-Barranco, Francesco Galluppi,
L. Plana, and Steve Furber, Convnets experiments on spinnaker, 05 2015,
pp. 2405–2408.

[70] Chen Shoushun and A. Bermak, Arbitrated time-to-first spike cmos image
sensor with on-chip histogram equalization, Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 15 (2007), 346 – 357.

[71] Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun-Seok Kim, Chang-
woo Shin, Keunju Park, Kiyeung Lee, Jinman Park, Jooyeon Woo, Yohan
Roh, Hyunku Lee, Yibing Wang, Ilia Ovsiannikov, and Hyunsurk Ryu, A
640×480 dynamic vision sensor with a 9µm pixel and 300meps address-event
representation, 02 2017, pp. 66–67.

[72] Standard Performance Evaluation Corporation (SPEC), https:// www.spec.
org/ , June 2020.

[73] Raul Tapia, Augusto Gómez Eguíluz, J. Ramiro Martinez-de Dios, and Anibal
Ollero, Asap: Adaptive scheme for asynchronous processing of event-based
vision algorithms, 06 2020.

[74] CORDIS. GRIFFIN (General compliant aerial Robotic manipulation system
Integrating Fixed and Flapping wings to INcrease range and safety) ERC
Advanced Grant Project, https:// cordis.europa.eu/ project/ id/ 788247 , June
2020.

[75] GRIFFIN (General compliant aerial Robotic manipulation system Integrating
Fixed and Flapping wings to INcrease range and safety) ERC Advanced
Grant Project, https:// griffin-erc-advanced-grant.eu/ , June 2020.

[76] Valentina Vasco, Arren Glover, and Chiara Bartolozzi, Fast event-based harris
corner detection exploiting the advantages of event-driven cameras, 10 2016,
pp. 4144–4149.

[77] Samsung SmartThings Vision, https:// www.samsung.com/ au/ smart-home/
smartthings-vision-u999/ , June 2020.

[78] David Weikersdorfer, Raoul Hoffmann, and Jorg Conradt, Simultaneous
localization and mapping for event-based vision systems, vol. 7963, 09 2013,
pp. 133–142.

[79] Kareem Zaghloul and Kwabena Boahen, Optic nerve signals in a neuromor-
phic chip i: Outer and inner retina models, IEEE transactions on bio-medical
engineering 51 (2004), 657–66.

[80] , Optic nerve signals in a neuromorphic chip ii: Testing and results,
IEEE transactions on bio-medical engineering 51 (2004), 667–75.

[81] Alex Zhu, Nikolay Atanasov, and Kostas Daniilidis, Event-based feature track-
ing with probabilistic data association, 05 2017, pp. 4465–4470.

https://www.spec.org/
https://www.spec.org/
https://cordis.europa.eu/project/id/788247
https://griffin-erc-advanced-grant.eu/
https://www.samsung.com/au/smart-home/smartthings-vision-u999/
https://www.samsung.com/au/smart-home/smartthings-vision-u999/


Bibliography 79

[82] Dekai Zhu, Jinhu Dong, Zhongcong Xu, Canbo Ye, Yingbai Hu, Hang Su,
Zhengfa Liu, and Guang Chen, Neuromorphic visual odometry system for
intelligent vehicle application with bio-inspired vision sensor, 09 2019.

[83] Cho “Dan” and Taejae Lee, A review of bioinspired vision sensors and their
applications, Sensors and Materials 27 (2015).





Index

3D reconstruction, 18

aerial robotics, 2, 3, 52
artificial retinas, see event cam-
eras

asyncronous processing, see
event-based algorithms

bio-inspired sensors, see event
cameras

clustering, 16, 53, 57
computer vision, 1, 3, 27, 61
conventional cameras, 7

dexterous manipulation, 2

event cameras, 1, 4, 7, 10, 61
dynamic range, 13
latency, 12, 43
power consumption, 14
temporal resolution, 12

event filtering, 28, 35
event packing, 30, 43
event processing, 22, 27, 62

event packet processing, 1,
2, 24
event-by-event processing, 1,

2, 24, 48
single event processing, see

event-by-event processing
event-based algorithms, 1, 24

feature detection, 14, 54, 59
flapping-wing robots, 2, 3, 62

gamma filtering, see event fil-
tering

human-robot cooperation, 2

image reconstruction, 19
image-based algorithms, 1, 24

multirotors, 52

neuromorphic sensors, see
event cameras

object recognition, 17
optical flow, 17
ornithopters, see flapping-wing
robots

real-time applications, 1, 14

segmentation, 16
silicon retinas, see event cam-
eras

SLAM, 18

tracking, 15

visual odometry, 18
visual servoing, 19

81





Glossary

AER Address Event Representation. 22, 24, 35

APS Active Pixel Sensor. 4, 11

ASAP Adaptive Scheme for Asynchronous Processing. 2, 4, 5, 27, 28, 30, 31, 33,
35, 37, 38, 40, 43, 44, 47–49, 51, 52, 55, 57–60, 62, 64, 68, 69

ATIS Asynchronous Time-based Image Sensor. 11, 12, 20, 23

CCD Charged Coupled Devices. 7

CMOS Complementary Metal-Oxide Semiconductor. 7

DAVIS Dynamic and Active Pixel Vision Sensor. 4, 11, 12, 20, 23, 52

DVS Dynamic Vision Sensor. 4, 10–12, 20, 21, 23

ERC European Research Council. 2

GRIFFIN General compliant aerial Robotic manipulation system Integrating Fixed
and Flapping wings to INcrease range and safety. 2, 62, 64, 68

GRVC Grupo de Robótica, Visión y Control (Robotics, Vision and Control Re-
search Group). 2

ICRA International Conference on Robotics and Automation. 2, 64

IEEE Institute of Electrical and Electronics Engineers. 2, 64

ROS Robot Operating System. 4, 30, 52, 64

83


	Abstract
	Resumen
	Short Contents
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Notation
	Introduction
	Objective
	Contribution
	Context
	ASAP
	H2020 GRIFFIN
	Visual Perception for Winged Aerial Robots
	ASAP Code Developing
	DAVIS346 Event Camera

	Structure

	State of the Art
	Introduction
	Event Cameras
	Principle of Operation
	Event Camera Designs
	Dynamic Vision Sensor (DVS)
	Asynchronous Time-based Image Sensor (ATIS)
	Dynamic and Active Pixel Vision Sensor (DAVIS)
	Sensors Specifications Comparison

	Event Cameras Advantages
	Low Latency
	High Temporal Resolution
	High Dynamic Range
	Low Power Consumption

	Applications
	Feature Detection
	Tracking
	Segmentation and Clustering
	Object Recognition
	Optical Flow
	3D Reconstruction
	Visual Odometry and SLAM
	Visual Servoing
	Standard Images Reconstruction

	Commercial Devices
	Prophesee
	iniVation
	Samsung
	Insightness
	CelePixel
	Commercial Devices Comparative


	Event Processing
	AER Vision Sensor
	Frame-Based vs. Event-based Algorithms
	Single Events vs. Event Packets

	Conclusions

	ASAP: Adaptive Scheme for Asynchronous Processing
	ASAP Framework
	Parameters
	Outer Loop: Event Filtering
	Inner Loop: Event Packing
	ASAP Communication Structure

	Event-Based Algorithm Connection: BRIDGE
	Conclusions

	Event Filtering Module
	Effect of Event Filtering
	Event Filter Operation
	Event Rate Computation
	Parameters
	Implementation

	Computational Capacity vs. Filtering
	Preliminary Results
	Conclusions

	Event Packing Module
	Effect of Event Packing on Latency
	Event Packer Operation
	Parameters
	Proportional Gain Adjustment
	Responsiveness Level Adjustment
	Implementation

	Preliminary Results
	Event-by-Event Processing using ASAP
	Conclusions

	Experimental Validation
	Off-Board Experiments
	On-Board Experiments
	Clustering
	Corner Detector

	Conclusions

	Result Analysis
	Off-Board Experiment Results
	Clustering Experiment Results
	Corner Detector Experiment Results
	Conclusions

	Conclusions and Future Work
	Conclusions
	The Event Camera Revolution
	Event Processing
	ASAP Contribution to Event-Based Research
	ASAP in the Context of ERC Advanced Grant GRIFFIN Project

	Future Work
	Proportional Gain Adjustment Method
	Packing Adaptation Techniques
	Low-Level ASAP Version
	Implementation on Board a Winged Aerial Robot
	Future Publications and Open Source Version


	Conclusiones
	La revolución de las cámaras de eventos
	Procesamiento de eventos
	Contribución de ASAP a la percepción basada en eventos
	ASAP bajo el marco del proyecto ERC Advanced Grant GRIFFIN

	Appendix ASAP Implementation
	ASAP Algorithm
	ROS Node Structure

	Bibliography
	Index
	Glossary

