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Abstract Anew scheme for dealing with uncertainty in scenario trees is presented for
dynamic mixed 0–1 optimization problems with strategic and operational stochastic
parameters. Let us generically name this type of problems as capacity expansion plan-
ning (CEP) in a given system, e.g., supply chain, production, rapid transit network,
energy generation and transmission network, etc. The strategic scenario tree is usually
a multistage one, and the replicas of the strategic nodes root structures in the form of
either a special scenario graph or a two-stage scenario tree, depending on the type of
operational activity in the system. Those operational scenario structures impact in the
constraints of the model and, thus, in the decomposition methodology for solving usu-
ally large-scale problems. This work presents the modeling framework for some of the
risk neutral and risk averse measures to consider for CEP problem solving. Two types
of risk averse measures are considered. The first one is a time-inconsistent mixture of
the chance-constrained and second-order stochastic dominance (SSD) functionals of
the value of a given set of functions up to the strategic nodes in selected stages along
the time horizon, The second type is a strategic node-based time-consistent SSD func-
tional for the set of operational scenarios in the strategic nodes at selected stages. A
specialization of the nested stochastic decomposition methodology for that problem
solving is outlined. Its advantages and drawbacks as well as the framework for some
schemes to, at least, partially avoid those drawbacks are also presented.
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1 Introduction and motivation

The realization of the uncertain parameters in mathematical optimization is usually
structured in a finite set of scenarios along the periods (in our case, grouped in stages of
non-necessarily equal length) in the time horizon. The representation of the uncertain
data affects the type of decision to be made in the problem as well as the related
model and problem solving decomposition methodologies to be dealt with. So, the
quality of the solution offered to the decision making process is also affected by
the type of scenario tree to generate in stochastic optimization. While dealing with
problems with a large time horizon, say, capacity expansion planing (CEP) and others,
there are, undoubtedly, two types of data, two types of uncertainties and two types of
variables, namely, strategic and operational ones. The strategic variables are related to
the decisions on the location, capacity and timing of the decisions on the infrastructure
elements of the CEP of a system, say supply chain, production system, rapid transit
network, energy transmission network and energy generationmix system, to name just
a few. The operational variables are related to the decisions on the operation planning
of the available elements in the system at the periods along the time horizon. So, we
have two types of dynamic optimization models, namely, the strategic one and the
operational submodels, very different in all aspects and intrinsically inter-related in a
usually large-sized global model for real-life problem solving.

The main contributions that we present in this work for dealing with CEP problems
are as follows:

• A framework for representing the uncertainty in a multistage non-symmetric sce-
nario tree with strategic nodes in the first period of each stage. For each strategic
node, there is either an operational multiperiod scenario special graph or an oper-
ational scenario two-stage tree, both in the stages along the time horizon. Each
structure is locally related to a strategic node, let its nodes be named operational
ones. The graph structure is rooted with as many operational replicas of the related
strategic node as the number of operational scenarios that are considered for the
stage the strategic node belongs to. It is worth to pointing out that each operational
node in the graph is linked to a period in the stage. On the other hand, the tree
structure is rooted with just one operational replica of the strategic node, and the
operational second stage nodes are the same operational scenarios. Notice that
they are only related to the so-named ’reference’ period in the stages along the
time horizon.

• The investment on the capacity expansion of the system is assumed to be made at
the strategic nodes, so that the operation of the available elements of the system
is made at the operational nodes. The goal in the proposed model consists of
minimizing the net present value (NPV) of the expected investment costs plus
operational costs. The strategic and operational submodels are run interconnected
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by the so-called linking variables. On the other hand, there are frequently several
functions to be optimized in this type of problems, basically, due to environmental
and cultural reasons, besides the usual cost minimization.

• A multi-function risk averse measure is considered in the model for reducing the
risk of a negative impact of the proposed solution in low-probability high-cost
scenarios (i.e., the so-called black swan scenarios). The measure that is proposed
is based on stochastic dominance (SD) functional in the two following flavors.
The first one is a second-order SD functional, where the risk averse measure on
the values of the function to consider is individualized for the set of operational
scenarios in the graphs and trees structures. Those ones are rooted with the related
replicas of the strategic nodes in the stages. It is a strategic node-based time-
consistent measure. The second flavor is a mixture of the chance-constrained and
second-order SD functionals.Here, the risk reduction in the value of the functions is
considered up to the stagewhere the strategic nodewith one-to-one correspondence
with the concerned strategic scenarios belongs to. Note: The terms of the functions
also include those related to the operational scenarios in the strategic nodes. It is
a time-inconsistent measure.
It is worth to point out that the time-consistent measure performs the risk man-
agement on the operational scenarios in the strategic nodes. The time-inconsistent
measure performs the risk management on the global set of strategic and oper-
ational scenarios at the selected stages, very useful for problems with long-term
time horizons.

The rest of the paper is organized as follows: Sect. 2 introduces the main con-
cepts and notation of the risk neutral multistage multiperiod mixed 0–1 optimization
model for strategic and operational planning problems. Section 3.1 presents the Time-
inconsistent Stochastic Dominance (TSD) functional for strategic functions where
operational functions are embedded. Section 3.2 presents the time-consistent Expected
Conditional Stochastic Dominance (ECSD) functional for operational functions. And,
Sect. 4 discusses the results and outlines a future research plan.

2 Multistage multihorizon stochastic mixed 0–1 optimization

2.1 Introduction

Let us some definitions for a multistage scenario tree. A stage of a given horizon is a
set of consecutive time periods where the realizations of the uncertain parameters take
place. A scenario is a realization of the uncertain parameters in the stages along a time
horizon. A node for a given stage in the scenario tree is the representation of a group
of scenarios that have the same realization of the uncertain parameters up to the stage.
The Nonanticipativity principle states that the scenarios of a group with one-to-one
correspondence with a node in the tree have a unique solution up to the stage where
the node belongs to.

Figure 1 depicts a scenario tree where the uncertain parameters, whose realizations
as represented in a node are either strategic or operational.However, it is a bad approach
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Ω = Ω1 = {4, 5, 6, 7}; Ω2 = {4, 5}
N = {1, . . . , 7}; N2 = {2, 3}
A3 = {1, 3}, S2 = {4, 5}

Fig. 1 Multistage scenario tree

for CEP in case where a set of uncertain parameters in a node is a mixture of both
types and there has been no difference in their treatment in the model.

For modeling the CEP of a system along a usually long-term, the strategic decisions
in a node should not be based on the isolated realizations of operational parameters
in ancestor nodes. They should basically be based on the strategic decisions made in
the ancestor nodes, the strategic parameters in the node and its successors, and in the
stagewise-dependent ancestor strategic parameters, if any.

The operational scenarios in a node should only be considered for the following
types of decisions:

• Operational decisions for the related operational scenarios in the strategic node,
on an individual basis.

• Strategic decisions to be made in the node and its ancestor strategic nodes, as a
whole set.

• Operational decisions, usually, made in their immediate successor strategic nodes,
for specific types of problems where the operations in the last periods of a stage
may influence in the operations to be made in those successor nodes.

In this work, the structure of a multistage multihorizon scenario tree is studied,
where the multistage strategic tree includes the nodes in the first periods of each stage.
The multihorizon setting is related to the operational scenario graphs up to a given
stage and the operational scenario two-stage trees after that stage. An operational
graph structure for a strategic node is rooted with the operational replicas of the node,
and it includes a set of so-named operational scenarios, each one composed of an
operational node for each period in the stage. An operational two-stage tree structure
for a strategic node is rootedwith the related operational replica, and it includes a set of
its operational scenarios for the reference period that, in a weighted form, represents
all of them in the stage. The goal consists of minimizing the NPV of the expected
investment cost of the CEP infrastructure elements in the set of strategic nodes plus
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the expected cost related to the operation of the available CEP elements along the
time horizon. Thus, CEP is only performed in the strategic nodes, and the operation
of the available elements is performed at the operational nodes. See also the two-stage
structure in Kaut et al. (2014), Werner et al. (2013).

2.2 Multistage strategic scenario tree

Let the following notation for a multistage multiperiod strategic scenario tree, as
depicted in Fig. 1.

T , set of periods (usually, semesters, years) in the time horizon, such that
T = |T | and T = {1, . . . , T }.

E , set of consecutive stages in the strategic scenario tree where the set T is
partitioned, such that E = |E | and E = {1, . . . , E}.

T e, set of periods in stage e, for e ∈ E , such that T = ∪e∈ET e and T e∩T e′ = ∅
for e, e′ ∈ E : e �= e′.

N , set of strategic nodes,where the system’sCEP is decided, such that N = |N |
and N = {1, . . . , N }.

N e, set of strategic nodes that belong to stage e, for e ∈ E , such that N =
∪e∈EN e and N e ∩ N e′ = ∅ for e, e′ ∈ E : e �= e′. Without loss of
generality (wlog), it is assumed that N 1 is a singleton set and 1 ∈ N 1.

�, strategic scenario set.
�n , group of strategic scenarios in set � with one-to-one correspondence with

node n, for n ∈ N . Note: �n is singleton for any leaf node n of the strategic
scenario tree (i.e., n ∈ N E ). Let us assume that ω = n, for ω ∈ �.

e(n), stage the scenario node n belongs to, for n ∈ N . Note: Wlog it is assumed
that there is only one strategic node for any stage in a Hamiltonian path
rooted with node 1 in set N 1 until its leaf node in the scenario tree (i.e., a
node in set N E ).

t(e), first period in set T e for stage e in set E , and t(e) is its last period.
t (n), period the strategic node n belongs to, for n ∈ N . Wlog it is assumed that

t (n) is the first period in set T e(n), so, t (n) = t(e(n)).
wω, weight or probability assigned to strategic scenario ω ∈ �, such that wn =∑

ω∈�n
wω and

∑
n∈N e wn = 1∀e ∈ E .

An , set composed by the same strategic node n and its ancestor strategic nodes
in the scenario tree, for n ∈ N .

Ãn , subset of ancestor nodes to node n in set An whose related variables have
nonzero elements in constraints of node n, for n ∈ N .

σ(n), immediate ancestor strategic node to node n, for n ∈ N .
Sn , successor strategic set to node n, for n ∈ N . Note: Sn = ∅ for n ∈ N E .

S1
n ⊂ Sn , immediate successor strategic set to node n, for n ∈ N .

ẽ, last stage where each period in set T e is to be individually considered in the
operational scenario graph structure to be presented below. Note: The graph
structure becomes an operational scenario two-stage tree for any stage e,
such that e ∈ E : e > ẽ, where 0 ≤ ẽ ≤ E .
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e = 1

1 1 2 3

e = 2

2 4 5 6 7 8 9

3 4 5 6 7 8 9

e = 3

4 10 11 12 13 14 15

5 10 11 12 13 14 15

6 10 11 12 13 14 15

7 10 11 12 13 14 15

e = 4 e = 5 e = 6

8 16 24

9 17 25

10 18 26

11 19 27

12 20 28

13 21 29

14 22 30

15 23 31

Fig. 2 A strategic scenario tree. E = 6, |T e| = 6 ∀e ∈ E , ẽ = 3, N = 31

Remark All operational nodes belong to a graph structure for ẽ = E , and they belong
to a two-stage tree structure for ẽ = 0. Notice that the multiperiod setting for the latter
structure is replaced with a reference period.

Figure 2 depicts some operational nodes for the periods in set T e for e = 1, 2, 3
as well as the operational scenarios for the reference periods in the stages {e > ẽ}.
[Note: The first part of the figure, i.e., up to stage e = 3 has been taken from Vespucci
et al. (2013)].

2.3 Operational structures: multiperiod graph and reference period two-stage
tree

Let us denote a operational multiperiod scenario graph in strategic node n as structure
graphn , for n ∈ N : e(n) ≤ ẽ, and an operational scenario two-stage tree as structure
treen , for n ∈ N : e(n) > ẽ, see Fig. 3.
The elements for each strategic node n are as follows, for n ∈ N :

Qn , operational node set.
Qt

n , operational node set that belongs to period t in structure graphn , for t ∈ T e(n),
such that Qn = ∪t∈T e(n)Qt

n .

By construction, |Qt (n)
n | = |Qt

n| ∀t ∈ T e(n) in structure graphn , since Qt (n)
n

gives the realizations of the operational uncertainty in period t (n) in graphn ,
being obviously the first period in set T e(n).
For structure treen , Qn is considered as the set of scenarios in the two-stage
tree rooted with the unique operational replica of node n.

t (q), period the operational nodeq belongs to in structure graphn (i.e., for e(n) ∈ E :
e(n) ≤ ẽ) and, so, t (q) ∈ T e(n), for q ∈ Qn . Note: t (q) = t (n) for q ∈ Qt (n)

n

and, thus, Qt (n)
n is the set of operationally-oriented replicas of strategic node

n, being the root nodes in the graph structure.
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Ln , leaf node set in structure graphn , that is, Ln ≡ Qt
n where t = t(e(n)), for

e(n) ≤ ẽ. It is a very useful set for consideringvariables in the operational nodes
that have also nonzero elements in the constraints of the operational replicas
of the nodes in the immediate successor strategic node set S1

n . In our case, the
replicas of any of those successor nodes are, precisely, the root ones of the
related immediate successor operational structures graphn′ for e(n) < ẽ and
operational structures two-stage treen′ for e(n) = ẽ, for n′ ∈ S1

n . Remember
that in the tree structure there it only one replica of the node.
As an illustrative example, let us consider an energy generation CEP where
the water in hyper hydro reservoirs as well as gas, oil and other crucial raw
materials in thermal plants that are stored at the end of a period are used in
the next one. So, the items that are stored, say, at the end of any leaf node in a
stage become available for use at the first period of the next one. On contrary,
those items are assumed to be non-stored for strategic nodes in stage e ∈ E ,
for e(n) > ẽ. On the other hand, if the storing of those items in the system
does not play a significant role in the system’s operation then it is assumed that
ẽ = 0 and, thus, only structure treen is taken into account, for any n ∈ N .

�n , operational scenario set {π}. For notational purposes, consider in structure
graphn that π ≡ q for q ∈ Qt

n where t = t(e(n)) (i.e., the last period in stage
e(n)). Consider also in structure treen that Qn = �n , following the rationale
considered above.

Aq
n , ancestor operational node set (including itself) of operational node q in struc-

ture graphn , for q ∈ Qn , such that Aπ
n is the set of ancestor nodes (including

itself) of operational scenario π for π ∈ �n . Notice that strategic node n is not
in Aq

n for q ∈ Qn , but remember that t (q) = t (n) for its replicas q ∈ Qt (n)
n ,

see Fig. 3. Note: Aq
n = {q}, q ∈ Qt (n)

n .
For easing modeling notation, it is considered that Aπ

n = {π}, for π ∈ �n in
structure treen .

σ(q), immediate ancestor operational node to operational nodeq in structure graphn ,
for q ∈ Qn . Note: σ(q) = ∅, for q ∈ Qt (n)

n .

4 104

10′
4

10′′
4

114

11′
4

11′′
4

124

12′
4

12′′
4

134

13′
4

13′′
4

144

14′
4

14′′
4

154

15′
4

15′′
4

8 16 24

9 17 25

Fig. 3 Operational multiperiod graph4 and operational reference period treen for n ∈ S4
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wπ , weight or probability of operational scenario π , for π ∈ �n , in both structures
graphn and treen , such that

∑
π∈�n

wπ = 1. Note: Given the character of
structure graphn , it results that wq = wπ ∀q ∈ Aπ

n .

For clarification purposes, let Fig. 3 be a zoom of Fig. 2 for strategic node n = 4 and
successors. Then, the operational uncertainty is represented in graphn , where stage
e(4) = 3 and the node set L4 = {15′

4, 154, 15
′′
4} reaches the operational scenario sets

�8 and �9. By construction, since e(8) = e(9) = 4 > ẽ = 3, observe that the root
of the operational scenario two-stage treen is, precisely, the own replica of strategic
node n, for n = {8, 9}. Notice that their related second stages are represented by the
node sets �8 and �9. Observe also that there is no difference in the treatment of the
uncertainty in the periods that belong to set T e(n), since at that point in time no variables
are considered linking the periods. Then, it is assumed that the operational scenarios
occur in the reference period and, so, it is assumed that set T e(n) is represented by the
related reference period.

On the other hand, observe in Fig. 2 that strategic node n = 4 belongs to the
immediate successor strategic node set S1

2 . Since e(4) is not greater than ẽ = 3
(in fact, it is equal), the related operational uncertainty is represented in graphn
as depicted in Fig. 3, where Q4 = ∪t∈T 3Qt

4. Notice also that it is assumed that
there are linking variables between two consecutive periods in T 3 = {10, · · · , 15}.
Remember that any strategic node n for e(n) ≤ ẽ is replaced with as many oper-
ational replicas as the number |�n| of the operational scenarios. For example,
strategic node n = 4 (whose period is t (n) = 10) is replaced with the operational
replicas 10

′
4, 104 and 10

′′
4, so, �π

4 = {15′
4, 154, 15

′′
4}, such that as an illustration

Aπ
4 = {104, 114, 124, 134, 144, 154}, for π = 154.
For purposes of completion, Fig. 4 depicts a two-stage tree structure for the strategic

multistage tree depicted in Fig. 1.

2.4 Infrastructure elements in a synthesized CEP problem

The notation of the elements in the system’s CEP is as follows:

I, set of infrastructure elements in the system whose capacity could be inde-
pendently constructed or expanded.

I I , subset of infrastructure elements in set I, where x̂i denotes the capacity
of element i , and the value 1 of the step 0–1 variable (xn)i means that
it is constructed by period t (n) in strategic node n and otherwise, 0, for
i ∈ I I , n ∈ N .
Illustrative examples are some types of power generation units as thermal
plants and hydropower turbines in energy generation, cables in electricity
transmission lines, and stations and hedges in rapid transit networks. Other
examples are production units, machines, transportation capacity, distribu-
tion, sorting and market centers in supply chains, and others.

IC , subset of infrastructure elements in setI, where the step continuous variable
(yn)i denotes the capacity of element i that is built by period t (n) in strategic
node n, up to a given bound, say ŷi , for i ∈ IC , n ∈ N . Notice that the
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Fig. 4 Reference period two-stage trees for strategic nodes. ẽ = 0

capacity can be increased in any successor strategic node to the node where
it was constructed.
Illustrative examples are intermittent power generation types as wind, solar
and photovoltaic farms, among others. Note: I = I I ∪ IC

Ii , subset of elements in set I, whose construction or capacity increase cannot
start until the construction or the last capacity increase of element i is over,
for i ∈ I I in the first case and i ∈ IC in the second one.

J , set of operational elements in the system.
Illustrative examples are energy generation in the plants, energy flow though
a cable of a transmission line, and passengers transportation flow from one
station to another in a rapid transit network. Other examples are product pro-
duction in a factory, plant or unit, water stored in reservoirs in a hydro-power
system, rawmaterial, subassemblies and end-products stored inwarehouses,
and others.

I j , set of infrastructure elements in set I that should be available when opera-
tional element j is active, for j ∈ J .

τi , latency (number of periods) required between the onewhere the construction
of element i starts for i ∈ I I or the period where the last capacity increase

123



L. F. Escudero, J. F. Monge

is performed for i ∈ IC , and the period at which the element becomes
available.

κi , earliest period to start the construction of infrastructure element i that sat-
isfies the precedence relationships given by set {i ′ ∈ I : i ∈ Ii ′ }, for i ∈ I.
It is computed as

κi = maxi ′∈I:i∈Ii ′ {κi ′ + τi ′ }.

κ j , earliest period at which operational element j can be active and, then, it
satisfies the precedence relationships given by set I j , for j ∈ J . It is
computed as

κ j = maxi∈I j {κi + τi }.
ι(t (q))i , strategic node whose period t (ι(t (q))i ) is the latest one by which infras-

tructure element i , for i ∈ I, can start its construction, so that it is
available for use in the system at period t (q) in structure graphn , so,
q ∈ Qn, n ∈ N : κi ≤ t (n) ∧ e(n) ≤ ẽ.
Node ι(t (q))i is computed as

ι(t (q))i = argmaxn′∈An {t (n′) ∈ T : t (n′) ≤ t (q) − τi }. (1)

On the other hand, the concept of ι(t (q))i for operational scenario q in structure
treen is as for the graph structure, such that q ∈ Qn, n ∈ N : κi ≤ t (n) ∧ e(n) > ẽ,
where Qn ≡ �n . However for computing ι(t (q))i , period t (q) is replaced with t (n)

in expression (1), i.e., the computing of the latency for structure treen only considers
the first periods of the stages.

Remark 1 All operational nodes {q} in the sets Qn share the same node ι(t (q))i for
the strategic nodes {n} that belong to the same stage, say e, such that n ∈ N e, for
e ∈ E .

Remark 2 The operational nodes {q} in set Qn , for n ∈ N , that share the same node
ι(t (q))i are those that have in common the same stage e for which period t (q) − τi
belongs to set T e, for e ∈ E .

2.5 Risk neutral (RN) model

Formally, the value 1 of step 0–1 variable (xn)i , for i ∈ I I , means that infrastructure
element i has started its construction by period t (n) (i.e., it started at strategic node
n or at any of its ancestor in the scenario tree), and otherwise, 0, for n ∈ N : κi ≤
t (n) ≤ T − τi , whose capacity is x̂i .

Formally, a positive value of the step continuous variable (yn)i , for i ∈ IC , means
that infrastructure element i has started its construction with that capacity or it started
the last increase to reach that capacity by period t (n) (i.e., at strategic node n or at any
of its ancestor in the scenario tree), and otherwise, 0, for n ∈ N : κi ≤ t (n) ≤ T − τi .
Remember that the capacity (yn)i is allowed to grow up at any strategic node n′, for
n′ ∈ N : t (n) < t (n′) ≤ T − τi up to the given bound ŷi .
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Let the impulse 0–1 variable (δn)i , such that its value 1 means that infrastructure
element i , for IC , starts its construction or increases its capacity at period t (n) in
strategic node n and otherwise, 0, for n ∈ N : κi ≤ t (n) ≤ T − τi . Let yi and yi
denote the conditional lower and upper bound of each capacity increase of element i ,
res., such that ’conditional’ means that the increase happens if and only if (δn)i = 1,
see below.

Let the impulse continuous variable (zq) j denote, for j ∈ J , the activity at oper-
ational node q in structure graphn for e(n) ≤ ẽ and the activity at for operational
scenario q in structure treen for e(n) > ẽ, for q ∈ Qn, n ∈ N . Remark: Any
impulse variable (zq) j cannot have a value greater than zero if all related step vari-
ables (x ι(t (q))i )i for i ∈ I I ∩ I j and (yι(t (q))i )i for i ∈ IC ∩ I j do not have nonzero
values.

So, let xn and x̂ denote the vectors of the variables (xn)i and capacity bounds x̂i ,
res., for i ∈ I I ; yn and ŷ are the vectors of the variables (yn)i and capacity bounds
ŷi , res., for i ∈ IC ; and zq is the vector of the variables (zq) j for j ∈ J .

The other parameters of the synthesized RN model for strategic node n ∈ N are as
follows:

an1 (res. cn1), vector of objective function coefficients for the strategic variables in
vector xn (res. yn).

bq1 , vector of objective function coefficients for the operational variables in vector
zq , for q ∈ Aπ

n , π ∈ �n, n ∈ N . Note: Remember that it is assumed that
Aπ

n = {π} in structure treen , for π ∈ �n .
hn (res. hq ), rhs for the constraints related to strategic node n (res. operational

node q, for q ∈ Qn).
An′
n (res. Cn′

n ), constraint matrix for the strategic variables in vector xn
′
(res. yn

′
)

of the ancestor strategic node n′ in strategic constraints related to node n, for
n′ ∈ Ãn .

B�
n , constraintmatrix for the operational variables in leaf vector y� in the constraints

related to operational node q in structure graphn , for � ∈ Lσ(n) : e(n) ≤
ẽ, q ∈ Qn : t (q) = t (n). On the other hand, B�

n is the constraint matrix for the
operational scenarioq in structure treen , for � ∈ Lσ(n) : e(n) = ẽ+1, q ∈ Qn .

Bσ(q)
q , constraint matrix for the operational variables in vector zσ(q) in the constraints

related to operational node q in structure graphn , for q ∈ Qn : e(n) ≤
ẽ ∧ t (q) > t (n).

Bq , constraint matrix for the operational variables in vector zq in the constraints
related to operational node q, for q ∈ Qn : e(n) ≤ ẽ. On the other hand, Bq

is the constraint matrix for the operational scenario q in structure treen , for
q ∈ �n : e(n) > ẽ.

Remember that Qn = ∪t∈T e(n)Qt
n in graphn (i.e., e(n) ≤ ẽ) and, for simplifying

modeling purposes, Qn = �n and Aπ
n = {π} in treen (i.e., e(n) > ẽ).
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The objective function can be expressed as

min
∑

i∈I

∑

n∈N :κi≤t (n)≤T−τi

1

(1 + ρt (n))
wn[(an1 (x

n − xσ(n))):i∈I I

+ (cn1(y
n − yσ(n))):i∈IC

]

+
∑

n∈N

1

(1 + ρt (n))
wn(|T e(n)|:e(n)>ẽ)

∑

π∈�n

∑

q∈Aπ
n

wπbq1 z
q , (2)

where ρt (n) is the interest rate in period t (n).
The objective function (2) consists of minimizing the NPV of the following two

terms. The first one is the expected cost of the CEP investment in the infrastructure
elements. Notice that xn − xσ(n) = 1 for ∈ I I means that element i has started its
construction at period t (n). Similarly, yn − yσ(n) > 0 for i ∈ IC means that element
i either has started its construction at period t (n) or its capacity has been increased at
that node.

The second term of function (2) is the expected cost of the operational elements
(or activities). Notice that the cost in the operational scenarios in �n is related to the
reference period in the two-stage tree. It is weightedwith the number of periods |T e(n)|
in the related stage e(n). On the contrary, structure graphn applies for e(n) ≤ ẽ and,
then, the cost in each scenario π in set�n is the sum of the costs in the related ancestor
operational nodes in set Aπ

n , each one being related to a period in set T e(n).
The set of strategic constraints can be expressed as

(xσ(n))i ≤ (xn)i , (xn)i ∈ {0, 1} ∀n ∈ N : κi ≤ t (n) ≤ T − τi , i ∈ I I (3)

(xn)i ′ − (xσ(n))i ′ ≤ (x ι(t (n))i )i ∀n ∈ N : κi ′ ≤ t (n) ≤ T − τi ′ , i
′ ∈ Ii , i ∈ I I

(4)

0 ≤ (yn)i ≤ ŷi , (δn)i ∈ {0, 1},
y
i
· (δn)i ≤ (yn)i − (yσ(n))i ≤ yi · (δn)i ∀n ∈ N :κi ≤ t (n) ≤ T − τi , i ∈ IC (5)

(yn)i ′ − (yσ(n))i ′ ≤ Mi,i ′ · (yι(t (n))i )i ∀n ∈ N : κi ′ ≤ t (n) ≤ T − τi ′ , i
′ ∈ Ii , i ∈ IC

(6)
∑

n′∈Ãn

(
An

′
n xn

′ + Cn′
n yn

′) = hn ∀n ∈ N . (7)

Constraints (3) define the step variables in vector xn . Constraints (4) allow the start-
ing of the construction of the one-shot infrastructure elements, provided the availability
of all of its precedent elements and otherwise, 0.

Constraints (5) define the step variables in vector yn and force the conditional lower
and upper bounds for each capacity increase (even, for the first one). The type of
infrastructure elements that are considered are those whose construction and capacity
increase can be performed in a continuous form for each block. Notice that (δn)i = 0
implies (yn)i = (yσ(n))i (i.e., no capacity increase on element i at node n).

It is assumed in constraints (6) that any capacity increase in element i ′ in set
Ii cannot be greater than the Mi,i ′ -factorized capacity of its precedent element i ,
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provided that it is available and otherwise, 0. Note: The problem-dependent fraction
Mi,i ′ gives the impact of the capacity of element i in the capacity increase of element
i ′, for i ′ ∈ Ii , i ∈ IC . Constraints (7) define the general relationships among the
infrastructure elements at each strategic node.

The set of constraints linking strategic and operational variables can be expressed
as

0 ≤ (zq ) j ≤ Ni, j · x̂i (x ι(t (q))i )i ∀q ∈ Qn, n ∈ N : κi ≤ t (n), j ∈ Ji , i ∈ I I (8)

0 ≤ (zq ) j ≤ Ni, j · (yι(t (q))i )i ∀q ∈ Qn, n ∈ N : κi ≤ t (n), j ∈ Ji , i ∈ IC (9)

(zq ) j = 0 ∀q ∈ Qn, n ∈ N : t (n) < κ j , j ∈ Ji , i ∈ I. (10)

Constraints (8) and (9) allow operational elements be active, provided the avail-
ability of all of their related influential infrastructure elements and otherwise, 0. The
problem-dependent fraction Ni, j gives the impact of the capacity of element i in the
operational variable (zq) j , for j ∈ Ji , i ∈ I. Illustrative examples are passenger
demand at a given station that cannot be attended until the station and its connections
are available in rapid transit networks, and energy generation in a power plant that
cannot be possible until the plant is available. Other examples are energy flow through
a cable of a transmission system that cannot be possible until the cable is available,
product production in a factory that cannot be possible until the related infrastructure
elements are available in a given supply chain network, etc.

The set of constraints for allowing the operations in the available infrastructure
elements in the system for strategic node n, for n ∈ N e, e ∈ E , can be expressed as

⎛

⎝
∑

�∈Lσ(n):t (q)=t (n)

w�B�
n z

�

⎞

⎠ + (Bσ(q)
q zσ(q)):t (q)>t (n) + Bqzq = hq ∀q ∈ Qn : e(n) ≤ ẽ

(11)
⎛

⎝
∑

�∈Lσ(n):e(n)=ẽ+1

w�B�
n z

�

⎞

⎠ + Bπ zπ = hπ ∀π ∈ �n : e(n) > ẽ. (12)

Constraints (11) are related to structure graphn where, by construction, there are
links between the activities in the periods. Some variables in the leaf nodes related to
the immediate ancestor strategic node σ(n) have nonzero elements in the constraints
of the operational nodes that are the replicas of node n. In order to make the model
moremanageable, it is worth to pointing out that the influence of the activity z� ∀� ∈ L
of the leaf nodes in the replicas of the successor strategic nodes is approximated by
its expected value

∑
�∈Lσ(n):t (q)=t (n) w�B�

nz
�. For the other periods in stage e(n) (i.e.,

subset T e(n) : t (q) > t (n)) the link only exists between consecutive periods (i.e., a
link between operational node q and its immediate ancestor σ(q)) in the stage. Typical
examples of variables in vector zq are product storing in supply chains and production
planning, water, gas and fuel storing in energy generation plants, etc. It can be assumed
that the variables’ linking after stage ẽ + 1 may not be relevant enough to take it into
account in the decision making at early periods along the time horizon.
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Constraints (12) are related to structure treen where, by construction, it is assumed
that there is not any linking between the activities in the periods of a stage. Thus, the
uncertainty in the operational parameters is realized in the set of operational scenarios
for the reference period. Typical examples of the type of settings for ẽ = 0 are
passengers’ flow through a set of stations in rapid transit networks, energy generation
in intermittent renewable energy sources, energy flow in transmission lines and other
procurement services. Finally, observe the expected value of the terms related to the
linking variables between the operational leaves of the immediate ancestor strategic
node and the operational scenarios in set �n for stage e(n) = ẽ + 1.

3 Risk averse dynamic stochastic dominance (SD) functionals

The popular risk neutral (RN) model (2)–(12) minimizes the expected cost in the
scenarios along the time horizon. However, it ignores the variability of the objective
function value in the scenarios, in particular, the impact of the solution in the “right”
tail of the non-wanted scenarios (i.e., low-probability high cost scenarios). On the
other hand, there is not any other function to consider, besides the objective one.
There are some risk averse approaches that additionally deal with risk management
(Pflug and Römisch 2007), see a computational comparison in Alonso-Ayuso et al.
(2014). Among them, the measures considered in the section reduce the risk of the
negative impact of the solutions in non-wanted scenarios in a better way than the others
under some circumstances. See in Dentcheva and Ruszczynski (2003) its theoretical
foundations, among others.

3.1 Time-inconsistent SD measure for strategic functions

The time stochastic dominance (TSD) risk averse measure that we have proposed
elsewhere (Escudero et al. 2016, 2017a, b) is considered in our approach. As RN it
also aims to minimizing the objective function expected value. However, additionally,
a modeler-driven set of thresholds on the value of given functions up to each strategic
node in selected stages is taken into account. The new parameters are a bound on the
surplus on reaching each threshold, a bound on the probability of having surplus and
a bound on the expected surplus in the stages. Hence, new variables and constraints
have to be considered in the model, such that the nice scenario node-based structure of
the constraint system is destroyed. The proposed risk averse measure is a mixture of
the first- and second-order stochastic dominance functionals induced by integer-linear
recourse for the two-stage setting introduced in Gollmer et al. (2008, 2011), res.

TSD requires the following sets of modeler-driven functions and profiles:

F St , set of strategic functions to consider, such that the function indexed with f is
to be named from now on as simply function f . Function f = 1 is the one to
be minimized, e.g., investment and operational costs. Other functions could be
related to environmental and cultural targets, etc.

E f , subset of stages in set E , where TSD is to be considered for function f , for
f ∈ F St .

123



On capacity expansion planning under strategic and...

anf (res. cnf ), vector of coefficients in function f for the strategic variables in vector

xn (res. yn), for n ∈ N , f ∈ F St .
bqf , vector of coefficients in function f for the operational variables in vector zq ,

for q ∈ Aπ
n , π ∈ �n, n ∈ N , f ∈ F St . Note: Very frequently there are zero

coefficients in the vectors anf , c
n
f and bqf for some functions f .

Pe
f , set of profiles, for e ∈ E f , f ∈ F St .

For each profile p ∈ Pe
f in stage e ∈ E f for function f ∈ F St , let the following

modeler-driven parameters:

φ p, function f threshold to consider up to strategic node n, where the operational
scenarios in set �n are taken into account, for n ∈ N e.

s̃ p, upper bound of the surplus of the π -expected value of function f on reaching
threshold φ p up to strategic node n, for n ∈ N e, where the set of operational
scenarios �n is taken into account.

s p, upper bound of the (n, π)-expected surplus on reaching threshold φ p up to
stage e.

ν p, upper bound of the expected fraction of the strategic nodes in set N e with
surplus on reaching threshold φ p.

The variables for pair (n, p), where n is a strategic node and p is the indexation of
a profile in TSD stage e, for n ∈ N e, p ∈ Pe

f , e ∈ E f are as follows for function f ,

for f ∈ F St :

sn,p, continuous variable that takes the surplus of the expected value of function f
over threshold φ p up to strategic node n, where the set of operational scenarios
�n is taken into account.

νn,p, 0–1 variable such that its value is 1 if sn,p > 0 and otherwise, 0; and viceversa.

The TSD constraint system can be expressed as

∑

i∈I

∑

n′∈An :κi≤t (n′)≤T−τi

1

(1 + ρt (n′))

[
(an

′
f (xn

′ − xσ(n′))):i∈I I + (cn
′
f (yn

′ − yσ(n′))):i∈IC

]

+
∑

n′∈An

1

(1 + ρt (n′))
(|T e(n′)|:e(n′)>ẽ)

∑

π∈�n′

∑

q∈Aπ
n′

wπbqf z
q − sn,p ≤ φ p

∀n ∈ N e, p ∈ Pe
f , e ∈ E f , f ∈ F St (13)

0 ≤ sn,p ≤ s̃ pνn,p, νn,p ∈ {0, 1} ∀n ∈ N e, p ∈ Pe
f , e ∈ E f , f ∈ F St (14)

∑

n∈N e

wnsn,p ≤ s p ∀p ∈ Pe
f , e ∈ E f , f ∈ F St (15)

∑

n∈N e

wnνn,p ≤ ν p ∀p ∈ Pe
f , e ∈ E f , f ∈ F St . (16)

Constraint (13) for pair (n, p) defines the surplus variable sn,p, such that the first
part of the lhs of the constraint gives the expected value of function f for any of the
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strategic scenarios in set �n up to stage e(n). Observe that the reason for calling it
’expected’ is due to considering the set of operational scenarios (with the relatedweight
wπ for each scenario π ) in each ancestor strategic node n′ to node n, including itself.
Remember that

∑
π∈�n′ wπ = 1. Notice also that vector bqf refers to the coefficients

in period t (q) for scenario π in structure graphn . However, it simply refers to the
coefficients in the reference period for scenario π in structure treen (and, then, those
coefficients areweightedwith the number of periods |T e(n′)| of the related stage e(n′)).
The lhs of constraints (15) and (16) give the expected surplus and expected fraction
of strategic scenarios with surplus on reaching threshold φ p up to stage e, res. The
concept of the expected cost surplus (15) of the objective value on satisfying a given
threshold has its roots in the Integrated Chance Constraints concept introduced in
Klein Haneveld (1986), see also Klein Haneveld and Vlerk (2006). Note: Constraints
(16) have their roots in the chance-constrained concept introduced in the seminal work
(Charnes et al. 1958).

Following the rationale in Pflug (2000) for the CVaR measure, it can be shown
that TSD is a coherent risk measure, according to the standards set up in Artzner et al.
(1999), Artzner et al. (2007) for the properties, namely, translation invariance, positive
homogeneity, monotonicity and convexity.

The TSD risk reduction has an interesting add-value, since it controls the period-
based peak of the values of the functions of concern in given intermediate stages, such
that the longer the time horizon, the more useful the strategy is, see Alonso-Ayuso
et al. (2018). However, its time inconsistency is a drawback. Notice that the outlook
of the scenarios that do not belong to the group with one-to-one correspondence with
a strategic node in the scenario tree (and, then, they do not occur in that situation) do
have influence in the solution for that group. To prove the statement it can be observed
in model TSD that the solution for node n, for n ∈ N e, e ∈ E , is affected by the
satisfaction of the risk constraint system (15)–(16) related to stage e over all of its
nodes in setN e, for e ∈ E f , f ∈ F St . However, by construction, none of the scenarios
in set �n′ is to occur in that case, since �n ∩ �n′ = ∅, for n, n′ ∈ N e : n′ �= n.

3.2 Strategic node-based time-consistent SD measure for operational functions

The expected conditional second-order stochastic dominance (ECSD) measure that
we proposed elsewhere (Escudero et al. 2017b) for operational multistage scenario
tree-based problems is specialized in this section as a measure for risk reduction in
the structures graphn and treen , for n ∈ N . Here, a set of operational functions, say
FOp, and a subset of stages, say E f for f ∈ FOp are given for risk control in the sets
of operational scenarios. Note: F St ∩ FOp could be an empty set.

Thus, the set of profiles, denoted as P f
n , is associated with strategic node n, for

n ∈ N e, e ∈ E f , f ∈ FOp, instead of been associated with stage e(n) as it is in TSD.

For each profile p ∈ P f
n , the following parameters are required:

γ p, function f threshold to consider in any operational node π , for π ∈ �n .
s̃ p, upper bound of the surplus on reaching threshold γ p in any operational node

π , for π ∈ �n .

123



On capacity expansion planning under strategic and...

s p, upper bound of the expected surplus on reaching threshold γ p in the set of
operational nodes �n .

Let sπ,p denote the continuous variable that takes the surplus of the value of function
f over threshold γ p in operational scenario π for strategic node n.
The ECSD constraint system can be expresses as

1

(1 + ρt (n))

(
|T e(n)|:e(n)>ẽ

) ∑

q∈Aπ
n

bqf z
q − sπ,p ≤ γ p, 0 ≤ sπ,p ≤ s̃ p

∀π ∈ �n, p ∈ P f
n , n ∈ N e, e ∈ E f , f ∈ FOp (17)

∑

π∈�n

wπ sπ,p ≤ s p ∀p ∈ P f
n , n ∈ N e, e ∈ E f , f ∈ FOp. (18)

Similarly to constraint (13) for TSD, constraint (17) for pair (π, p) defines the
surplus variable sπ,p, such that the first part of the lhs of the constraint gives the value
of function f that corresponds to operational scenario π for strategic node n. We refer
to the above remark for (13) on relation to coefficient bqf , scenario π and the structures
graphn and treen . The lhs of constraint (18) gives the expected surplus of the value
of function f on reaching the threshold in the set of operational scenarios of node n.

Let the following additional remarks:

1. TheECSDconstraint system (17), (18) for structure treen as a risk averse functional
has certain parallelismwith the risk averse functional CVaR (Gaivoronski and Pflug
2005; Rockafellar andUryasev 2000) considered inKaut et al. (2014),Werner et al.
(2013) for multistage multiperiod stochastic problems.

2. No first-order stochastic dominance functional is considered in this type of ECSD.
The main reason is that, probably, the cardinality |�n| is not high enough. And, in
any case, the relatednumber of 0–1variables

∑
f ∈FOp

∑
e∈E f

∑
n∈N e

∑
p∈P f

n
|�n|

that would be required is big enough to make the model’s solving unaffordable for
today HW/SW standards.

3. According to the definition of the time consistency property of risk averse mea-
sures given in Homem-de-Mello and Pagnoncelli (2016), it is not difficult to
prove that ECSD in treen is a strategic node-based time-consistent functional. See
also Kormik and Morton (2015), Pflug and Pichler (2015), Rudloff et al. (2014),
Ruszczyński (2010), Shapiro (2009), Shapiro and Pichler (2016), among others.

4. A very interesting functional could be the mixture of the TSD and ECSD constraint
systems in the same model, no matter the additional difficulty of the decomposi-
tion methodology that is required for problem solving. Good results are reported in
Alonso-Ayuso et al. (2018) for a mixture of time-consistent and time-inconsistent
versions of the CVaR functional (Gaivoronski and Pflug 2005; Pflug 2000; Rock-
afellar and Uryasev 2000).

So, themodel that is proposed in thiswork can be expressed as the objective function
(2) to be minimized, subject to the following constraint system: strategic node-based
constraints (3)–(7), constraints for linking strategic and operational variables (8)–
(10), operational node-based constraints (11), (12), cross strategic node-based TSD
constraints (13)–(16), and cross operational node-based ECSD constraints (17), (18).
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4 Discussion and research plan outline

In this work, we have presented the modeling framework for a multistage multiperiod
stochastic mixed 0–1 model for capacity expansion planning (CEP) problems in a
broad sense along a long-term time horizon. Two types of decisions are considered,
namely strategic ones (i.e., decisions on the selection, location, capacity and timing of
infrastructure elements) in a system, and operational decisions based on the available
infrastructure elements in the periods of the time horizon. Those periods are partitioned
in stages and, without loss of generality, the first period of each stage is chosen for the
strategic decision making. Given the dynamic nature of the problem, the realization
of main parameters is uncertain. Two types of uncertainties are considered, namely
the strategic and operational ones. Examples of the former are the investment cost of
the infrastructure elements in the system and the product or service demand intervals,
among others. Examples of the latter are the elements’ disruption and operational
costs, and product or service specific demand, among other local parameters. A finite
set of discrete scenarios, represented in amultistage scenario tree, is taken into account
for considering the two types of uncertainties, contrary to the traditional approach in
practice that considers expected values for the uncertain parameters.

Additionally, contrary to the traditional approach in stochastic optimization liter-
ature for dynamic CEP (as is the case) and others, the uncertain parameters in the
scenario tree are not independently considered of their strategic or operational charac-
ter. In accordance with that, a set of scenarios for the uncertain operational parameters
are to be linked in an independent isolated way with the strategic nodes in the multi-
stage scenario tree. The rationale behind the partition of the uncertainty’s realizations
in strategic and operational ones is that an operational uncertain parameter should not
have any influence in future strategic decisions in an individual basis. It should just
have influence in the operational decisions in its related strategic node. As a scenario
set, those realizations do also influence the strategic decisions in the node and related
ancestors.

The proposed modeling framework considers that the parameter uncertainty is
stagewise. In fact, the probability distribution of the realization of the strategic param-
eters depends upon the realization of the uncertain parameters in the previous stage.
A set of operational scenarios has been represented as a graph-based structure up to a
given stage and as a two-stage tree structure after that stage, and it is basically problem
dependent. The graph-based structure explicitly considers the modeling of the activity
at the periods in the stages (by assuming that the activity in one period influences on
the successors). On the other hand, the two-stage tree structure rooted with a replica
of the strategic node in the multistage tree assumes that the activity in a period of a
stage is independent of the activity in the other periods of the same stage. Notice that
it is assumed in the two-stage tree structure the periods in a stage share the same set
of available infrastructure elements.

In spite of the strategic-operational partition in the scenario tree, themodel’s dimen-
sions are very high. As an illustrative example, let us consider the risk neutral (RN)
version of a multistage pure 0–1 stochastic model for a well known rapid transit net-
work design (RTND) problem. Here, since the demand is only for passenger transport
services, there is no place for operational graph structures and, thus, ẽ = 0. The
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problem has 9 station-nodes, 30 edges and 72 passenger groups, where the proof-of-
concept symmetric scenario tree consisted of 3 stages and 7 strategic nodes (1, 2 and
4 nodes in stages 1, 2 and 3, res.) and 8 operational scenarios for each strategic node,
see Figs. 1 and 4. For that case, the number of constraints and (all binary) variables in
the model are 462,000+ and 291,000+, res., see Cadarso et al. (2018). Plain use of the
CPLEX engine v12.6.2 for problem solving reaches the 10h time limit (in a processor
Intel Xeon E5-2620, 2.4Ghz, 6 cores, RAM 64GB) without proving the optimality
of the incumbent solution, its optimality gap is 5.77%. Let the RTND problem with
a larger scenario tree (4 stages and 40 strategic nodes with 8 operational scenarios
each), where the constraints and variables that force a penalization of the passenger
transfer from one line to another are removed. Its dimensions are 2.4M+ constraints
and 1.6M+ variables. For illustrative purposes, the optimization of that reduced model
was stopped due to running out of memory after 85h and 6min, as reported in Cadarso
et al. (2018). In any case, that model’s reduced version gives an unacceptable solution
for a real-life rapid transit network operational problem, since it allows many pas-
senger transfers on their way from origin to destination. A solution for the original
model has been obtained by a fix-and-lazy scenario clustering-basedmatheursitic with
a dynamic aggregation and de-aggregation scheme for the operational scenarios in the
two-stage trees. It exploits the scenario node-based nice structure of the RN version
of the original model. The schemes for variable fixing and cut generation and append-
ing presented there were key ingredients for obtaining good solutions in reasonable
computational time, given the very large model dimensions.

A matheuristic version of the Nested Stochastic Decomposition (NSD) methodol-
ogy, in particular, theStochasticDynamicProgramming (SDP) algorithm for stagewise
dependent uncertainty is one of the most suitable methodologies for solving dynamic
problems as CEP and others, see our works (Aldasoro et al. 2015; Cristobal et al.
2009; Escudero et al. 2017b). One of the main reasons for its good performance is
that the partition of stages in the so-named stage blocks (of consecutive stages) makes
the NSD decomposition procedure easier, where each iteration has two main steps.
The first step, the so-named forward one, is devoted to improving the incumbent solu-
tion by sequentially solving each stage block related submodel. The second step, the
so-named backward one, is devoted to generating and appending (hopefully) strong
cuts in the stage block submodel to be used by the forward step of the next iteration.
Now, the constraint system of the RN stage block submodel includes independent
submodels. Each one is supported by a subtree rooted with a strategic node in the
set of immediate successor nodes of each leaf strategic node in the previous stage
block.

Notice that for solving real-life multistage strategic problems with operational
graph and tree structures, RN-based models could provide solutions with high cost
variability in the scenarios. Thus, risk averse functionals should be dealt with, so that
low-probability high-negative values in those functions are prevented. The type of
risk management to address in our research plan considers a mixture of the following
strategic node-based time-consistent and time-inconsistent multi-function functionals
for risk averse:
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1. The time stochastic dominance TSD functional on the (strategic and operational-
based) values of the chosen functions up to the nodes in modeler-driven
intermediate stages along the time horizon, see Sect. 3.1. Notice that the func-
tional destroys the nice structure of the RN model, due to the many related cross
scenario node constraints that are involved.

2. The expected conditional stochastic dominance ECSD functional on the values
of the operational functions at the operational scenarios in the strategic nodes,
see Sect. 3.2. Notice that the functional does not destroy the structure of the RN
model and, on the other hand, it strongly increase the dimensions of the strategic
node-based constraint system.

However, in spite of the advantages of using the NSD methodology for dynamic
problem solving, it has still some drawbacks. In fact, we have observed in our expe-
rience mainly with stochastic mixed 0–1 models that the NSD’s efficiency is reduced
for those problems with stepwise dependent non-Markovian processes where some
variables link a high number of consecutive stages. In any case, it is a good approach
for solving very large-sized stochastic problems where the linking is only required
for each pair of consecutive stage blocks. For other types of stochastic problems a
good feasible solution may require a high number of NSD iterations and, addition-
ally, the lower bound on the optimal solution that is automatically obtained could be
weak for that type of problems. The main reason is the way in which the so-called
Expected Future Value of the objective function is calculated in the backward steps. To
avoid that significant drawback, the modeling framework that is proposed in this work
allows, by construction, that the model be an easier stepwise dependent Markovian
process.

Given the character of the consecutive stage blocks linking (i.e., state) variables,
our NSD research would benefit from the splitting variable scheme considered in
Zou et al. (2018) for state 0–1 variables. We will also consider in the NSD forward
step a fix-and-lazy scenario clustering-based matheuristic for getting solutions, where
the risk averse constraint systems are considered as proposed next. Notice that the
TSD approach includes cross strategic node constraints in the submodels to solve at
each NSD iteration. So, a scheme is required for decomposing the submodel. We are
considering a scenario Cluster Dualization approach for the now required splitting
constraints of the TSD variables, jointly with a Lagrangean Relaxation of the TSD
constraints. So, for that purpose, we will follow in our research plan the scheme that
has been presented in Escudero et al. (2017a).
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