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Giménez2

1 Center of Operations Research, Miguel Hernández University of Elche, Alicante,
Spain

2 Department of Computer Science and Systems, University of Murcia, Spain

Abstract. Data Envelopment Analysis (DEA) is a non-parametric method-
ology for estimating technical efficiency and benchmarking. In general,
it is desirable that DEA generates the efficient closest targets as bench-
marks for each assessed unit. This may be achieved through the applica-
tion of the Principle of Least Action. However, the mathematical models
associated with this principle are based fundamentally on combinatorial
NP-hard problems, difficult to be solved. For this reason, this paper uses
a parallel matheuristic algorithm, where metaheuristics and exact meth-
ods work together to find optimal solutions. Several parallel schemes are
used in the algorithm, being possible for them to be configured at differ-
ent stages of the algorithm. The main intention is to divide the number
of problems to be evaluated in equal groups, so that they are resolved
in different threads. The DEA problems to be evaluated in this paper
are independent of each other, an indispensable requirement for this al-
gorithm. In addition, taking into account that the main algorithm uses
exact methods to solve the mathematical problems, different optimiza-
tion software has been evaluated to compare their performance when
executed in parallel. The method is competitive with exact methods,
obtaining fitness close to the optimum with low computational time.

1 Introduction

Data Envelopment Analysis (DEA) is a mathematical programming, non-parametric
technique commonly used to measure the relative performance of a set of ho-
mogeneous processing units, which use several inputs to produce several out-
puts. These operating units are usually called Decision Making Units (DMUs)
in recognition of their autonomy in setting their input and output levels. Thanks
to being a non-parametric technique, DEA does not need to suppose a partic-
ular functional form for the production function, technical efficiency may be
easily evaluated with multiple inputs and outputs and it also produces relevant
benchmarking information from a managerial point of view. In particular, DEA
provides both input and output efficient targets, the coordinates of the projec-
tion point on the estimated efficient frontier, and represents levels of operation
that can make the corresponding inefficient DMU perform efficiently.
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Traditional DEA measures maximize the total technical effort associated with
the evaluated unit in order to reach the efficient frontier. Instead, it seems more
natural to assume that inefficient DMUs apply a Principle of Least Action, a
well-known law in physics, with the aim of being technically efficient. Otherwise,
inefficient units would need to make an extra effort, decreasing inputs and/or
increasing outputs, to reach the frontier. The application of this ‘natural’ Prin-
ciple of Least Action is linked to the determination of the closest targets on
the efficient frontier of the corresponding DEA production possibility set. This
drawback of traditional DEA measures has aroused increasing interest among
researchers to develop new models capable of yielding achievable targets. Exam-
ples are the papers by Briec and Lesourd [2], Pastor and Aparicio [3], Aparicio
and Pastor [1,4,5,6] and Aparicio et al. [7].

The application of the Principle of Least Action has been recently studied
from a metaheuristic perspective (Benavente et al. [8], López-Esṕın et al. [9] and
González et al. [10]). In [8,9] heuristics were used to generate valid solutions
for a subset of restrictions of the problem, while in [10] all the constraints are
incorporated, the heuristics are improved, and new ones are developed, thereby
generating initial populations of solutions that satisfy all constraints.

Our paper takes up where González et al. [10] left off in the application of
metaheuristics to the approach in [1]. The improvement of previous heuristics
for the generation of valid solutions is a possible option, but greatly limits the
search for valid solutions for large problem sizes, because when the number of
variables grows, the number of valid solutions decreases. Exact methods can also
be used to solve these problems. The main drawback of these methods is the great
amount of time needed to solve a NP-hard problem. When the problem grows,
the number of possible combinations between variables increases exponentially.

The contributions of this work include the development of a parallel algorithm
that belongs to the class of hybrid metaheuristics [11]. New parallel features have
been included in the matheuristic developed in [12]. The algorithm developed is
focused on the need to solve multiple simultaneous models. This is due to the
DEA problem that concerns us, in which numerous models must be analyzed
for each DMU evaluated. The aim is to separate the number of DMUs to be
evaluated in the most efficient way in the different available threads. For this,
message-passing (MPI) and shared memory (OpenMP) programming have been
considered.

The remainder of the paper is organized as follows. In Section 2, a brief
introduction to the main notions associated with Data Envelopment Analysis is
presented, and existing approaches for determining closest targets are outlined.
The working problem is also presented in this section. The parallel algorithm
used to generate and improve valid solutions is studied in Section 3. In Section
4, the results of some experiments are summarized. Section 5 concludes the paper
and outlines some possible lines of research.
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2 Data Envelopment Analysis and the Problem to be
Solved

DEA involves the use of mathematical programming to construct a non-parametric
piecewise surface over the data in the input-output space. Technical efficiency
measures associated with the performance of each DMU are then calculated
relative to this surface, as a distance from it.

Before solving the mathematical programming model, we introduce some
notations. Let us assume that data on m inputs and s outputs for n DMUs are
observed. For the j-th DMU, these are represented by xij ≥ 0, i = 1, . . . ,m, and
yrj ≥ 0, r = 1, . . . , s.

One of the models that can be solved by applying the Principle of Least
Action in DEA is that by [1]:

max

{
βk − 1

m

∑m
i=1

t−
ik

xik

}
s.t.

βk + 1
s

∑s
r=1

t+
rk

yrk
= 1 (c.1)

−βkxik +
∑n

j=1 αjkxij + t−ik = 0 ∀i (c.2)

−βkyrk +
∑n

j=1 αjkyrj − t+rk = 0 ∀r (c.3)

−
∑m

i=1 νikxij +
∑s

r=1 µrkyrj + djk = 0 ∀j (c.4)
νik ≥ 1 ∀i (c.5)
µrk ≥ 1 ∀r (c.6)

djk ≤Mbjk ∀j (c.7)
αjk ≤M(1− bjk) ∀j (c.8)

bjk = 0, 1 ∀j (c.9)
βk ≥ 0 (c.10)
t−ik ≥ 0 ∀i (c.11)
t+rk ≥ 0 ∀r (c.12)
djk ≥ 0 ∀j (c.13)
αjk ≥ 0 ∀j (c.14)

(1)

The definition and interpretation of the decision variables and constraints of
the model 1 can be found in [1].

One weakness of the approach in model 1 is that it uses a “big M” in (c.7) and
(c.8). These constraints allow us to link djk to αjk by means of the binary variable
bjk. The value of M can be calculated if and only if all the facets that define
the DEA technology are previously determined. Unfortunately, the identification
of all these facets is a combinatorial NP-hard problem. This weakness will be
overcome in the new approach introduced here, since the new methodology does
not need to resort to a big M to obtain the desired result.

3 Parallel Algorithm

In order to improve the performance of the algorithm developed in [12], it has
been parallelized at different levels. Some of the objectives to parallelize the al-
gorithm are related to the difficulty of solving problems such as the one proposed
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in section 2, where a lot of computing time is taken to find satisfactory solutions.
So, the proposed parallelization models are intended to reduce computation time
to solve these models and improve the fitness of the solutions obtained. For this,
both shared memory (OpenMP) and message-passing (MPI) schemes have been
used, since it is possible to use them either separately or in combination. The
metaheuristic parallelised in this scheme is based on generating initial solutions
to the given model, and improving them with the intention of finding satisfactory
solutions. For this, the following scheme is followed: Initialization, Improvement,
Selection, Crossing and Diversification. Each parallelization models tries to im-
prove the solution quality or computational time:

– OpenMP: Shared memory parallelization functions have been included within
the algorithm’s own functions, making them faster. Mainly, these improve-
ments have been included in the initialization function, where it is possible
to distribute the generation of solutions between the different threads, and
in the improvement and crossing functions, where these tasks can be divided
into smaller functions. This model of parallelism has been introduced with
the intention of improving the internal loops of the main metaheuristic al-
gorithm. Therefore, in all parts of the algorithm where many models must
be evaluated (initialization, improvement, crossing), whenever the evalua-
tion of the models are independent of each other, this type of parallelism is
introduced.

– MPI: Message-passing functions have been included over and above meta-
heuristics. These functions optimize the computing time and the fitness of
the final solutions. This level of parallelism is found in a higher level than the
shared memoria scheme. In this way, the number of models to be evaluated
are divided in equal parts in the different threads. Thus, the computation
time is decreased as the number of cores increases.If it is not possible to
divide all the DMUs into equal groups, the remaining units will be assigned
randomly to the different cores.

The OpenMP scheme can also be used at the same level as the MPI scheme.
A comparison between these two schemes is developed in the results of the exper-
iment. This comparison is made to decide where implement each of the schemes.
Figure 1 shows how the algorithm works and all the possible configurations.

In the literature, there are several mathematical methods that can solve
both mixed integer linear programming (MILP) and linear programming (LP)
problems. In the algorithm developed in this paper, a MILP-based decomposition
is used to divide the main DEA problem, which is difficult to solve, into smaller
LP-type problems that are easier to solve. In this regard, an exact method able
of optimally solving numerous LP problems is needed. For this task, two exact
methods that work optimally are evaluated to measure their performance in
combination with our parallel algorithm. The software packages used are CPLEX
and GUROBI.
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Fitness and time for all n Problems (DMUs)

Fig. 1: Generation of metaheuristics and structure of the algorithm.

4 Experimental Results

Experiments were conducted to analyze the effectiveness of the parallel scheme
developed. Two different exact methods are compared in terms of fitness and
time, working in parallel. The performance of each exact method is also eval-
uated. For all the experiments, the IBM ILOG CPLEX Optimization Studio
(CPLEX) and GUROBI are used. The system used in the experiments is a AMD
Phenom II X6 1075T CPU (hexacore) at 3 GHz with 16 GBytes of RAM, private
L1 and L2 caches of 64 KBytes and 512 KBytes respectively, and a L3 cache of
6 MBytes shared by all cores. For all the experiments, a standard problem has
been taken with the following dimensions: 3 inputs, 2 outputs and 50 DMUs.
Regarding the data, in our simulations the m inputs and s outputs of each of the
n DMUs are generated at random but taking into account that the production
function that governs the production situation is the well-known Cobb-Douglas
function [13].

First, we analize the behavior of the different models of parallelism in the
main algorithm will be studied. For this, the two available paradigms (MPI
and OpenMP) will be used to perform the same function: divide the DMUs to
be evaluated in equal groups, thus creating parallel executions of the algorithm,
and therefore, of the metaheuristics and exact methods. In this evaluation, while
comparing the parallel models, the different exact methods used in this paper
are also compared: CPLEX and GUROBI. Therefore, there is going to be a
comparison between how the MPI model works with CPLEX and GUROBI and
how the OpenMP model also works with CPLEX and GUROBI.
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Fig. 2: Comparison of the execution time (in seconds) using different threads with
the same problem, for each optimizer and different parallel algorithms: GUROBI
with MPI (GMPI) and OpenMP (GOpen), and CPLEX with MPI (CMPI) and
OpenMP (COpen).

Figure 2 shows how, as the number of CPUs increases, the computation time
decreases. However, it can be seen how, when the number of CPUs grows, the
improvement in the computational time decreases, becoming lower each time .
This is due to the fact that, depending on the number of DMUs to be evalu-
ated, from certain divisions, the resulting DMU groups have practically the same
number of elements, therefore the computation time is smaller, but similar. In
addition, this figure also shows that the exact methods chosen work well in par-
allel, being possible to execute multiple instances of them at the same time. It
must be taken into account that the files in which the problems to be solved
are written must have different names to avoid any confusion during the execu-
tion. This experiment shows that the MPI message-passing programming model
works better than the OpenMP shared memory model in this first step of the
algorithm. Therefore reaffirming what was stated in section 3.

Another important parameter to analyze, is the objective value achieved by
each optimizer. For this, it is necessary to emphasize that the initial generation
of solutions is done in a random way, so that the initial solutions generated by an
optimizer are not the same as for the other, since the executions are independent
of each other. To evaluate the results, 20 executions have been made for each
optimizer, making 5 for each set of threads. The results shown in graph 3 show
the average values of all the executions for each set of threads. Analyzing the
obtained values, it can be affirmed that, after performing several experiments,
the CPLEX optimizer obtains better fitness values in all the sets. As mentioned
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Fig. 3: Objective values obtained for each optimizer and different parallel algo-
rithms: GUROBI with MPI (GMPI) and OpenMP (GOpen), and CPLEX with
MPI (CMPI) and OpenMP (COpen). The values are the average of 5 executions.

before, the generation of initial solutions is randomly created and is independent
for each optimizer. Even so, after a statistical study, CPLEX obtained better
fitness values in this experiment.

5 Conclusions and Future Works

The application of the Principle of Least Action in DEA is a topic of relevance
in recent DEA literature. However, it is well-known that from a computational
point of view, this has usually been tackled with inadequate approaches, associ-
ated with combinatorial NP-hard problems.

Parallel algorithms are good solutions for solving these kind of problems.
This is because a high number of independent problems must be solved, and
those problems can be divided and solved by different threads. Furthermore,
several optimized software packages can be used, but not all of them work well
in parallel. To improve performance, is necessary to include optimizers that can
be executed in different instances. For that, CPLEX and GUROBI are tools for
these tasks. The parallel algorithm proposed in these paper works in an optimal
way with both of these optimizers and with different parallel paradigms.

For future work, we propose the use of other free optimizers, and to check
their performance compared with the most powerful optimizers in the market.
In addition, it is also desirable to incorporate improvements in parallelism, so
that the internal functions of the metaheuristic algorithm can be executed more
quickly and accurately.
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targets, benchmarking and data envelopment analysis: a heuristic algorithm to
obtain valid solutions for the shortest projection problem. In 11th International
Conference on Applied Computing, 2014.
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