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Abstract—Data Envelopment Analysis (DEA) is a non-
parametric methodology for estimating technical efficiency of a
set of Decision Making Units (DMUs) from a dataset of inputs and
outputs. This paper is devoted to computational aspects of DEA
models under the application of the Principle of Least Action.
This principle guarantees that the efficient closest targets are
determined as benchmarks for each assessed unit. Usually, these
models have been addressed in the literature by applying unsat-
isfactory techniques, based fundamentally on combinatorial NP-
hard problems. Recently, some heuristics have been developed to
partially solve these DEA models. This paper improves the heuris-
tic methods used in previous works by applying a combination
of metaheuristics and an exact method. Also, a parameterized
scheme of metaheuristics is developed in order to implement
metaheuristics and hybridations/combinations, adapting them to
the particular problem proposed here. In this scheme, some
parameters are used to study several types of metaheuristics,
like Greedy Random Adaptative Search Procedure, Genetic
Algorithms or Scatter Search. The exact method is included
inside the metaheuristic to solve the particular model presented in
this paper. A hyperheuristic is used on top of the parameterized
scheme in order to search, in the space of metaheuristics, for
metaheuristics that provide solutions close to the optimum. The
method is competitive with exact methods, obtaining fitness close
to the optimum with low computational time.

I. INTRODUCTION

This paper is devoted to computational aspects of Data
Envelopment Analysis (DEA) models under the application
of the Principle of Least Action. DEA is a non-parametric
technique (it is not necessary to set a specific functional
form for the underlying production function) which is based
on mathematical programming and generates a polyhedral
technology. There are different DEA efficiency measures,
depending on how the distance from the evaluated DMU to
the frontier of the technology is operationalized. Each DEA
efficiency measure is calculated by solving a mathematical
programming model. DEA models provide both an efficiency
score for each of the assessed DMUs and information on the
targets that have been used in the efficiency assessment in
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the case of inefficient DMUs. The targets are the coordinates,
in the input-output space, of the efficient projection point
on the frontier and thus represent levels of operation of
inputs and outputs that can make the corresponding inefficient
DMU perform efficiently. Overall, targets indicate keys for the
inefficient DMUs to improve their performance and, therefore,
are managerially important.

One common criticism of targets yielded by traditional
DEA efficiency models is that they are located far from the
assessed DMU (see, for example, Aparicio et al. [1]), being
too demanding and not easily achievable for firms. This has
aroused increasing interest among researchers to develop DEA
measures of technical efficiency capable of yielding achievable
targets. Examples are the papers by Briec and Lesourd [2],
Pastor and Aparicio [3], and Aparicio and Pastor [4], [5], [6].
The philosophy behind all these approaches is the application
of the Principle of Least Action (PLA), which always seeks
the efficient targets closest to the evaluated unit (Aparicio et
al. [7]).

A point to highlight is that applying the PLA is compu-
tationally more difficult than obtaining the furthest efficient
targets, since these are usually associated with the resolution
of a standard linear program, something that does not happen
with the determination of the least distance to the production
frontier (see Briec [2]). Regarding papers that have studied
the computational aspects of DEA models associated with
the PLA, some of these approaches are based on Mixed
Integer Linear Programming ([1]), others are derived from
algorithms that facilitate the determination of all the facets
of a polyhedron, while still others apply metaheuristics such
as genetic algorithms. As we will argue in Section II, all these
approaches have strong and weak points and there is currently
no approach accepted as the best solution to the problem
of determining closest efficient targets from a computational
point of view.

The approach in [1] has been recently studied from a
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metaheuristic perspective (Benavente et al. [8], Lopez-Espin
et al. [9] and Gonzalez et al. [10]). In [8], [9] heuristics were
used to generate valid solutions for a subset of restrictions of
the problem, while in [10] all the constraints are incorporated,
the heuristics are improved, and new ones are developed, so
initial populations of solutions satisfying all the constraints are
generated.

Our paper takes up where Gonzélez et al. [10] left off in
the application of metaheuristics to the approach in [1]. The
improvement of previous heuristics for the generation of valid
solutions is a possible option, but greatly limits the search
for valid solutions for large problem sizes, because when the
number of variables grows, the number of valid solutions
decreases.

Exact methods can also be used to solve these problems.
The main drawback of these methods is the great amount of
time needed to solve a NP-hard problem. When the problem
grows, the number of possible combinations between variables
increases exponentially. The studies on the execution time
show that when heuristics are used, the execution time is lower
than the exact methods for the same problems.

The contributions of this work include the development of
an algorithm that belongs to the class of hybrid metaheuristics
[11]. Metaheuristics and exact methods are complementary
optimization strategies in terms of the quality of solutions
and the search time used to find them. The hybrid meta-
heuristic that combines metaheuristics with exact method is
called Matheuristic in this paper. In addition, a parameterized
scheme of metaheuristics is introduced to use metaheuristics
in combination with the same exact method and to compare
them. Metaheuristic algorithms are very powerful in dealing
with this kind of problem [12]. In this paper, some examples
of Greedy Random Adaptative Search Procedure, Genetic
Algorithms or Scatter Search are developed, and combinations
of them are created using the parameterized scheme. The
metaheuristics work with an initial population of valid and
invalid solutions generated by the exact method, trying to
obtain a greater number of valid solutions and better fitnesses,
using techniques of improvement, combinations and muta-
tions. A hyperheuristic is implemented to take control over
the parameterized metaheuristic scheme. This method is able
to create several metaheuristics and compare them, searching
in the space of metaheuristics. Furthermore, the hyperheuristic
is implemented as a metaheuristic with the same parameterized
scheme. In this way, satisfactory metaheuristics (determined by
the values of the parameters in the parameterized metaheuristic
scheme) are obtained. Figure 1 shows the combination of all
the mentioned methods.

The remainder of the paper is organized as follows. In
Section II, a brief introduction of the main notions associated
with Data Envelopment Analysis is presented, and the exist-
ing approaches for determining closest targets are outlined.
The working problem is also presented in this section. The
Matheuristic used to generate and improve valid solutions is
studied in Section III. A parameterized scheme to improve the
solutions is discussed in Section IV. In Section V, the results

of some experiments are summarized. Section VI concludes
the paper and outlines some possible research directions.

Hyperheuristic — Fix the parameters

Metaheuristic

Exact method

Initialize — Fix the discrete variable —
Improve — Modify the discrete variable
Selection — Fix the reference set
Crossover — Combine solutions
Mutation — Diversify

Solve the model

Fix the continuous variables

vy vv

A

Fig. 1: Scheme of a hyperheuristic working on top of hybrid
metaheuristic-exact methods

II. DATA ENVELOPMENT ANALYSIS AND THE PROBLEM
TO BE SOLVED

DEA involves the use of Mathematical Programming to con-
struct a non-parametric piece-wise surface over the data in the
input-output space. Technical efficiency measures associated
with the performance of each DMU are then calculated relative
to this surface, as a distance from it.

Before solving the Mathematical Programming model, we
introduce some notations. Let us assume that data on m inputs
and s outputs for n DMUs are observed. For the j-th DMU
these are represented by x;; > 0,¢=1,...,m, and y,; > 0,
r=1,...,s.

=

1 .
max {,Bk = i zlll,t }

S.t.
1 s t:rk
RS (1)
—Brxik + Z?ﬂ ajpTij+t,. =0 Vi (c.2)
—BrYrk + X j—y AykYr —th, =0 Vr  (c3)
= 2 Vikig + ey ke +djg =0 Vi (c4)
pek =1 Vr (c.6)
dj, < Mbjr, Vi (c.7)
ajr SM(1—bj) Vi (c8)
bik=0,1 Vj (c9)
Br >0 (e.10)
20 Vi (1)
th, >0 Vr (cl2)
A >0 V5 (c13)
Ajk >0 V] (0.14)

Basic DEA models are based on radial projections to the
production frontier. However, many other approaches give
the projection freedom, so the final efficient targets do not
conserve the mix of inputs and outputs. This is the case,
for example, of the original Enhanced Russell Graph measure
[13]. However, it presents a drawback shared with other tradi-
tional measures in DEA. In particular, the traditional Enhanced
Russell Graph measure yields efficient targets that are far
from DMU k. Therefore, in order to determine the closet
efficient targets, [1] includes the following Mixed Integer

589



Linear Programming model that must be solved for each DMU
k in the sample.

The definition and interpretation of the decision variables
and constraints of model 1 can be found in [1].

One weakness of the approach in model 1 is that it uses a
“big M” in (c.7) and (c.8). These constraints allow us to link
d;, to o, by means of the binary variable b;). The value of
M can be calculated if and only if all the facets that define
the DEA technology are previously determined. Unfortunately,
the identification of all these facets is a combinatorial NP-hard
problem. This weakness will be overcome in the new approach
introduced here, since the new methodology does not need to
resort to a big M to obtain the desired result.

III. MATHEURISTIC

The algorithm presented in this paper, called matheuris-
tic, combines metaheuristics with exact methods, delivering
the necessary work and improving performance. It has been
developed to solve model 1. In this approach, a solution
is encoded as a combination of values for all the variables
in model 1. This solution is composed of the variables [y,
Ok, tips t:_k,u,;k,,urk,djk € RT and bjk € {0,1}, with
i=1,....m,j=1,...,n,r = 1,...,s. Only the solutions
that meet all 14 constraints of the model 1 are considered
valid. The others are classified as invalid solutions, and the
algorithm will try to improve them and transform them into
valid ones.

The matheuristic follows the same skeleton as a common
metaheuristic, but includes an exact method to solve the
mathematical problem. The configuration of this algorithm is
described in the following steps: Initialize (generate the binary
variable bj;, and solve the model 1 using an exact method),
improvement, selection, combine and mutate. A previous step
is included where the efficiency of each DMU is determined,
separating the efficient DMUs that form the frontier to use
them to solve the inefficient ones. Algorithm 1 shows the steps
of this matheuristic.

The steps of the algorithm are explained in greater depth:

1) Find the efficient DMUs: The algorithm solves an
additive model 2 (Charnes et al.[14]) to find which
DMUs of the set are efficient. A set, F, is created
with all the efficient DMUs. The number of efficient
DMUs is denoted by w. Now, for each inefficient DMU,
model 1 is solved only using the efficient DMUs from
E ={j =1,...,n/A; = 0}. So, the number of
variables in model 1 decreases, and the variables o
and dj;, are the most affected in constraints (c.2), (c.3)
and (c.4), because now only the DMUs in set E are used
to solve these constraints.

Al = max {2221 Tt 201 7;2}
s.t.

Z;-L:l NjkTij = Tip — T, Vi (c.1)

i Ak = Yrk + hovr (c2) (2)
Ajk >0 (c.3)
T >0 (c.4)
Th >0 (c.5)
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Require: Inputs (z;;), Outputs (y,;)
Ensure: FE, Solution with best fitness.
1: Find the number of efficient DMUs (w) with the additive
model and save them on the efficient set (F)
2. for k=1,...,n do
3 ifk ¢ E then

4: for : = 1,..., Initial Population do

5: Generate the binary variable b, randomly, where
p=1,...,w.

6: Solve model 1 (using set & of DMUs) to

generate solutions with an exact method. Some
solutions can be invalid.
end for
Improve valid and invalid solutions.
: while not End Condition do
10: Select a number of valid and invalid solutions.

11: Combine the selected solutions to create new
ones.

12: Improve the new solutions generated and mutate
some solutions randomly.

13: end while

14:  end if

15:  Save the best solution.

16: end for

Algorithm 1: Algorithm to create and improve solutions

2) Initialize: This step is used to generate the initial
population. The algorithm includes two steps:

a) Generate the binary variable: For the inefficient
DMUs, a binary variable (bp) is created. Each
DMU £k has a variable by, p = 1,...,w. It is
randomly created, with the same probability of O
or 1.

b) Solve the model: Once b, has been generated,
model 1 is solved with an exact method, obtaining
values for the rest of variables. The exact method
tries to solve the model while fulfilling the 14
constraints. If a valid solution is found, the fitness
value is saved and the solution is marked as valid.
If not, it is marked as invalid. The exact method
always finds a solution, which can be valid or
invalid.

3) Improvement: A number of valid and invalid solutions,
selected randomly from the reference set, are improved.
The algorithm tries to improve the fitness value from
the valid solutions, and tries to transform the invalid
solutions into valid ones. In each solution, a single value
of by, (randomly selected) is modified, and model 1 is
solved again using the exact method. For valid solutions,
if the fitness is improved, the new value of by, and
the fitness obtained are saved. If the fitness does not
improve, the new by is discarded, and this step is
repeated, changing another value of the initial b,. For
invalid solutions, if the new b, generates a valid solu-
tion (solving model 1 with the exact method), the value



is saved and the improvement stops for this solution. A
maximum number of evaluations is established, both for
valid and invalid solutions.

4) Selection: The solutions are sorted, with the valid ones
first, in order from the highest to the lowest fitness,
followed by the invalid ones, randomly ordered. A
percentage of solutions is selected to be combined and
mutated. The best solutions (with the highest fitness)
are selected from the valid set. From the invalid set, the
solutions are selected randomly.

5) Combine: The algorithm includes a combination func-
tion. It combines pairs of solutions, randomly chosen
from those previously selected. The pair of solutions
must be from the same group, combining valid solutions
with valid solutions and invalid solutions with invalid
ones. These combinations generate new solutions that
inherit some characteristics from their parents. For all
the combinations, the algorithm only uses b,. The rest
of the parameters are obtained solving model 1 with
the exact method. To carry out these combinations, a
multi-point crossover operator has been developed which
generates an offspring by copying its genes from the
parents, chosen according to a randomly constructed
crossover mask. This mask is used to generate a new
bpk, and contains ones and zeros randomly generated
with the same probability. The selected values from each
of the two solutions are determined by the mask in each
position, taking the value from the first solution if there
is 1 in the mask, and from the second one if not. With
this new variable, model 1 is solved using the exact
method.

6) Improvement and mutation: The solutions generated
by crossover are improved using the same function as in
step 3. A mutation step is also included. The mutation
is used to diversify the search. It modifies an invalid
solution by randomly generating a new b, and model
1 is solved with the exact method. Usually, the solutions
obtained by mutation are not better than the previous
ones, and in most cases they are invalid. To try to make
them valid and useful for the algorithm, some mutated
solutions (randomly selected) are improved in the same
way.

Steps 4, 5 and 6 are repeated until a stopping condition
is reached. The stopping condition states a certain number of
repetitions for the improvements, combinations and mutations
(while in Algorithm 1). It also states that when the best
solution is not improved in a specified number of iterations,
the algorithm ends.

IV. A PARAMETERIZED SCHEME OF METAHEURISTCS

In a previous work [10], the solution of the problem was
addressed with a genetic algorithm. Now, not only a genetic
algorithm is used, and a modified version of the parameterized
scheme of metaheuristics created in [15] is applied. This
offers the possibility of analysing a large number of different
metaheuristics with the objective of finding the best one,

which allows us to obtain a satisfactory solution. The scheme
proposed in this section includes parameters to modify the
matheuristic used in Section III. The parameterized scheme
comprises a skeleton (Algorithm 2) with six basic functions:
Initialize, EndCondition, Selection, Combine, Improve and
Include. The reference set with all the solutions is called S.

Require: S, ParamINI, ParamEND, ParamSEL, ParamCOM,
ParamIMP, ParamINC.
1: Initialize (S,ParamINTI)
2: while (not EndCondition(S,ParamEND)) do
3 SS = Select (S,ParamSEL)
4. SS1 = Combine (SS,ParamCOM)
5 SS2 = Improve (SS1,ParamIMP)
6 S = Include (SS2,ParamINC)

7: end while
Algorithm 2: Parameterized metaheuristic scheme

To analyze how the parameterized scheme can be applied
to our problem, three basic metaheuristics are considered:
Greedy Randomized Adaptive Search Procedure (GRASP),
Scatter Search (SS) and Genetic Algorithms (GA) ([15]). They
are implemented within the scheme, and the inclusion of
the parameters allows us to experiment with the three basic
metaheuristics and with different types of hybridations.

This scheme is applied to the algorithm shown in Section III.
For that, some modifications are made to the basic Algorithm
2. What is shown below is the particular application of this
parameterized scheme to Algorithm 1. The scheme is applied
for each inefficient DMU (for loop in Algorithm 1, line 2).

« Initialize: This step generates the initial population of
the algorithm in Section III. The initial population is
composed of a total of INEIni valid and invalid solutions.
A percentage of these solutions (PEIIni) is improved with
an intensification (IIEIni) (line 8 in Algorithm 1). Finally,
a number of solutions (FNEIni) constitutes the reference
set, denoted by S in Algorithm 2.

+ EndCondition: Two conditions are considered for the
while in line 9: A maximum number of iterations
(MNIEnd) or a maximum number of iterations without
improving the best solution (NIREnd).

o Select: The solutions are clustered in two groups: valid
and invalid solutions. The best NBESel solutions of the
valid group are selected, and NWESel are randomly
selected from the invalid ones. If the number of valid
or invalid solutions is lower than the corresponding
parameter, all the solutions are selected. So, the set SS
is divided into two subsets: SS, and S'S;.

o Combine: The solutions selected are combined by pairs.
A number of crossovers between the best solutions (PBB-
Com) using the set S5, and the worst ones (PWWCom)
using the set SS; is performed. Combinations between
valid and invalid solutions are not carried out. Two sets
are created to be improved: SS1, and S51;

o Improve: A percentage (PEIImp) of the solutions gener-
ated is improved with a specified intensification (IIEImp).
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Two improvement functions are used: The first tries to
improve the valid solutions (SS1,) and the second tries
to make valid solutions from the invalid ones (SS51;).
This improvement is applied in the solutions created
in the initialization and in the solutions obtained after
the combinations (lines 8 and 12 in Algorithm 1). To
explore the solutions space, a diversification is included
(equivalent to the mutation in a Genetic Algorithm). A
percentage of solutions (PEDImp) is diversified using the
mutation function explained in Section III, with a specific
intensification (IIDImp) for improvement of the elements
(with the function shown in step 3 in Section III) obtained
by diversification.

o Include: The best FNEIni elements are selected for
the next iteration. Valid and invalid solutions could be
included, selecting the invalid ones randomly.

Table I summarizes the parameters used in the basic func-
tions of the scheme. A parameterized scheme has already
been used and tested in [15], where more parameters were
considered. The number and meaning of the parameters would
change if other basic metaheuristics are considered or if
the basic functions are implemented in a different way, but
the parameters and the basic metaheuristics considered here
allow us to experiment with different heuristics and combina-
tions/hybridations, and to improve previous results.

Table II shows three sets of values of the parameters, which
correspond to three basic metaheuristics. The values of each
parameter have been designed with the aim of representing
the basic metaheuristics used in the experiments. These values
have been decided to perform the tests efficiently. Some
parameters are set to O to drive the metaheuristic to its
most specific form. Each metaheuristic uses different tools
to obtain good solutions. A Genetic Algorithm (GA) creates
a number of initial solutions, combines only the best ones
and mutates some elements, with a certain improvement. By
contrast, a Greedy Randomized Adaptive Search Procedure
(GR) creates more initial solutions, and improves them through
high intensification. The Scatter Search (SS) is a population
based algorithm, which works with a small set of solutions,
with good and scattered elements, combining them and tries
to improve each solution.

Apart from these basic metaheuristics, a huge number of
combinations/hybridations can be considered simply by select-
ing different values for the parameters. The best metaheuristic
from those obtained with the parameterized scheme could
be obtained by generating all the possible combinations of
the parameters and by applying them to some small training
problems. In this way, the metaheuristic (given by the values
of the parameters) which gives the best results for the training
set can be considered as a satisfactory metaheuristic for the
problem in hand. The number of possible combinations of
the parameters in the parameterized metaheuristic scheme is
huge, and the problem of obtaining the best metaheuristic
for the training set is an optimization problem. So, it is a
suitable problem for metaheuristics. Taking into account that
model 1 is intended to maximize the objective function, a

hyperheuristic is developed to find the parameter configuration
that obtains the maximum value. For this, the hyperherustic
uses the function value like a fitness and tries to obtains the
optimal metaheuristic that provides the maximum value. A
hyperheuristic can be developed as a metaheuristic searching
for satisfactory metaheuristics, and can be developed on top
of the parameterized metaheuristic scheme. The hyperheuristic
uses the same scheme (Algorithm 2) as the metaheuristic. In
this case, and for low execution times, only the Initialize and
Combine functions are considered:

1) Inmitialize: A number HINEIni metaheuristis are gener-
ated.

2) Combine: A number of combinations between meta-
heuristics in the initial population is established (HP-
Com).

The combination uses the same method used for the meta-
heuristics, although, in this case, by combining the parameters
of the metaheuristics selected to create new metaheuristics,
which are improved by increasing a randomly selected pa-
rameter. The increment of the parameter is specified with an
intensification parameter.

V. EXPERIMENTAL RESULTS

Experiments were conducted to analyze the effectiveness
of the parameterized scheme of metaheuristics and the hyper-
heuristic developed. The number of valid solutions obtained
with the algorithm proposed in this paper is studied for
different population sizes. The fitness values obtained with
basic metaheuristics similar to GA, GR or SS are compared
with hybrid metaheuristics generated with a hyperheuristic
using the scheme. We call the metaheuristic generated by the
hyperheuristic “general metaheuristic”. Finally, the fitness and
time obtained with a satisfactory metaheuristic are compared
with those with an exact method. For all the experiments, the
IBM ILOG CPLEX Optimization Studio (CPLEX) is used.
The system used in the experiments is a NUMA node with
4 Intel hexa-core Nehalem-EX EC E7530, with 24 cores, at
1.87 GHz and 32 GB of RAM.

One of the most critical aspects of the algorithm presented
in Section III, lies in the creation of valid solutions. To study
this aspect, the Algorithm 1 has been executed for three initial
population sizes (10, 100 and 1000), with 10 executions for
each size. The execution is performed using only the first
part of the algorithm, without improvements, crossovers or
mutations. Execution time, fitness, and the percentage of valid
solutions generated with the algorithm are compared in Tables
III (small problems) and IV (big problems), which also show
the standard deviation (as a subscript) in the percentage of
valid solutions. For the other measures the standard deviation
is not shown because the values do not suffer significant
changes. Times are expressed in seconds.

When the problem size increases, the number of valid
solutions usually decreases. For small problems, increasing
the initial population implies a substantial improvement in
the fitness obtained. When the problem size is larger, this
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TABLE I: Parameters used in each basic function of the parameterized metaheuristic scheme

Function Parameter Description
INEIni Initial number of elements
Initialize FNElpi Final number of elements gelected for the'it'er.ati.ons.
PEIIni Percentage of elements to improve in the initialization
IIEIni Intensification of the improvement of elements in the initialization
End Condition MNIEnd Max?mum number of iterat?ons ‘ ] _ _
NIREnd Maximum number of iterations without improving the best solution
Selection NBESel Number of best yalid elements selected
NWESel Number of invalid elements selected
Combination PBBCom Number of comb%nat%ons between yalid. elements
PWWCom | Number of combinations between invalid elements
PEIImp Percentage of elements obtained by combination to be improved
Improve IIEImp Intensification of the improvement
PEDImp Percentage of elements to diversify
IIDImp Intensification of the improvement of elements obtained by diversification

TABLE II: Values of the parameters for the three basic metaheuristics considered

Metaheuristic IINEIni FNEIni | PElIni 1IEIni NBESel | NWESel | PBBCom
GA 500 250 0 0 100 100 100
GR 1500 1 100 25 0 0 0
SS 1000 30 50 10 10 10 50
Metaheuristic | PWWCom | PElImp | IIEImp | PEDImp | IDEImp | MNIEnd NIREnd
GA 100 0 0 10 10 25 5
GR 0 0 0 0 0 25 5
SS 50 50 10 0 0 25 5

TABLE III: Execution time, percentage of valid solutions and fitness obtained for all the DMUs, obtained with Algorithm 1,
for several small problems and three values of parameter INEIni

size Hybrid method (10) Hybrid method (100) Hybrid method (1000) Efficiency
m n s % val. fitness  time(sec) % val. fitness  time(sec) % val. fitness  time(sec) | Efficient Inefficient
2 30 1 55.557.00 0.137 0.01 100.000.00 0.413 6.23 100.000.00 0.413 59.50 27 3
3 30 2 20.006.53 0.059 0.01 83.925.90 0.355 4.12 100.009.00  0.566 46.81 20 10
4 30 2| 19.0510.32 0.041 1.32 95.231 .47 0.419 4.05 100.000.00 0.48 49.35 21 9
4 30 3 0.000.00 0.00 1.42 45.4512.72  0.146 2.37 90.901.10 0.414 27.29 11 19
5 30 3 20.007.07 0.247 0.02 60.008.36 0.282 3.62 90.09.08 0.398 30.03 10 20
6 30 4 0.000.00 0.00 0.01 50.0027.38  0.073 1.15 100.00.00 0.208 13.71 2 28
footnotesize

TABLE IV: Execution time, percentage of valid solutions and fitness obtained for all the DMUs, obtained with Algorithm 1,
for several large problems and three values of parameter INEIni

size Hybrid method (10) Hybrid method (100) Hybrid method (1000) Efficiency
m n s % val. fitness  time(sec) % val. fitness  time(sec) % val. fitness  time(sec) | Efficient Inefficient
2 100 1 | 89.583.11  0.359 2.01 100.000.00  0.459 22.12 100.000.00  0.462 226.50 96 4
3 100 2 | 34.482.35 0.312 2.58 89.655.28 0.40 20.25 100.000.00  0.505 201.52 87 13
4 100 2 | 19.758.14 0.261 2.33 81.482 .29 0.360 22.50 100.000.00 0.484 223.05 81 19
4 100 3 2.631.12 0.006 2.73 19.745 .22 0.051 21.04 71.0512.33  0.273 209.91 66 34
5 100 3 | 15.157.28 0.261 2.32 39.396.12 0266 20.87 75.752.87 0.432 193.62 76 24
6 100 4 0.000.00 0.00 1.00 2.381.09 0.017 15.32 30.9512.54  0.115 151.12 42 58

parameter has more influence and better solutions are gen-
erated. The modification of the initial population significantly
improves both the amount of valid solution found and the
fitness obtained, but at the expense of larger execution times
(Table 1V).

Another aspect to be considered is the amount of inefficient
DMUs in each problem. As discussed in Section III, the al-
gorithm initially estimates the number of efficient DMUs, and
tries to evaluate the fitness of the inefficient ones. As shown
in Tables III and IV, if the number of DMUs to be evaluated
is fixed and the number of inputs and outputs increases, the
number of efficient DMUs also increases (due to the way
the input and output data are generated for testing). When

the number of inefficient DMUs increases, it is necessary
to use larger initial populations. More valid solutions could
be generated with larger populations, but the execution time
increases.

A hyperheuristic is used to generate hybrid metaheuristics.
The method works by generating random metaheuristics, using
as a seed the parameters of the three basic metaheuristics.
The values for the parameters are randomly generated, in a
range between the minimum and maximum values of the basic
metaheuristics in Table II. A number of new metaheuristics are
generated by a combination working as the combination for the
algorithm in Section III. The hyperheuristic uses parameters
for the number of metaheuristics to generate and of combina-
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tions. 20 metaheuristics are generated in the experiment: 10
in the initial population (HINEIni) and 10 with combinations
(HPCom).

In the experiments, the hyperheuristic is applied to each
problem. Figure 2 shows a comparison of the fitness obtained
using the three basic metaheuristics (GRASP, Genetic Algo-
rithm and Scatter Search), whose parameters are shown in
Table II, with the fitness obtained with the best metaheuristic
obtained by the hyperheuristic. The fitness obtained by CPLEX
is also shown. The results are shown for optimality problems
and different sizes. However, the fitness obtained by CPLEX
in the last problem (6-50-4) is not shown because the time to
solve this kind of NP-hard problem is huge. Each value is the
average of 10 executions with the same inputs and outputs.
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Fig. 2: Fitness obtained by the three basic metaheuristics, an
exact method and a hyperheuristic, varying the problem size

The metaheuristics obtain satisfactory values of the fitness,
with low execution times. So, they are competitive with exact
methods for large problems when these are impracticable.
The application of the hyperheuristic generates better results
than the metaheuristics, especially for large problems. Table
V shows the values of the parameters of the metaheuristic
obtained by the hyperheuristic for each problem. The param-
eters obtained with the hyperheuristic are similar for different
problems. A large number of elements are created, and more
than 50% of the elements are improved. The number of
selected elements does not have a great influence. By contrast,
the number of combinations should be high. Improvement and
end parameters vary widely. Some problems improve many
elements while others include more mutations.

The hyperheuristic is trained with small problems to gen-
erate a general metaheuristic with satisfactory behavior for
those problems, and which is expected to work satisfactorily
for other problems The metaheuristics for each problem size
can be combined in different ways. To analyze the behavior of
a general metaheuristic, a value for each parameter is selected
(from the 6 problems proposed), creating a metaheuristic that
combines features of all the problems evaluated. For example,
if the highest value is selected for each parameter, Table VI

shows that the fitness obtained with this general metaheuristic
improves the fitness generated by the hyperheuristic when it
is directly applied to each problem.

The parameterized scheme of metaheuristics is used to gen-
erate a satisfactory metaheuristic by training a hyperheuristic
with small problems. Better fitness is obtained, but the opti-
mum solution is not always reached. Even so, metaheuristics
are an alternative to exact methods for large problems, for
which the execution time of exact methods is unaffordable.
The execution time of an exact method is compared with
that of the general hybrid metaheuristic in Figure 3. In the
graph it can be observed how for small sizes the exact method
without metaheuristics improves, in computational time, to the
proposed algorithm. As the size of the problem increases, the
hybrid algorithm improves this characteristic. At the problem
with 4-50-2 size the times are similar, and when the size grows,
the hybrid algorithm improves to the exact method alone. For
the biggest problem considered (6-50-4 is not included due to
huge execution time with CPLEX), the general metaheuristic
is approximately 100 times faster than the exact method, and
the difference increases with the problem size.
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Fig. 3: Comparison of the execution time (in seconds and
logarithmic scale) between an exact method and the hybrid
metaheuristic developed

VI. CONCLUSIONS AND FUTURE WORKS

Determining closest efficient targets is a topic of relevance
in recent DEA literature. However, it is well-known that from
a computational point of view this has usually been tackled
with unsatisfactory approaches, associated with combinatorial
NP-hard problems.

This paper improves previous heuristics for the generation
of valid solutions for an optimization problem in DEA - the
Enhanced Russell Graph. The new algorithm provides more
valid solutions which satisfy all the constraints in the model
and with low execution times. A parameterized scheme has
been developed by working with an initial population of valid
and invalid solutions to generate more valid solutions and
to improve the fitness. Future applications will incorporate
parameters for the control of the exact method.
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TABLE V: Metaheuristic parameters obtained by the hyperheuristic for different problem sizes

Problem size IINEIni FNEIni | PEIIni 1EIni NBESel | NWESel | PBBCom
m=2,n=250,s=1 1050 63 75 11 46 66 15
m=3,n=250,s=2 977 94 50 10 59 69 69
m=4,n=250,s=2 1238 85 68 8 65 60 94
m=4,n=250,s=3 1451 33 59 3 10 68 59
m=2>5,n=250,s=3 1500 171 92 18 32 10 78
m=06,n=250,s=4 1406 177 68 13 31 53 63

Problem size PWWCom | PElImp | IIEImp | PEDImp | IIDImp | MNIEnd NIREnd
m=2,n=250,s=1 83 35 10 8 3 5 3
m=3,n=>50,s=2 100 42 4 2 5 12 5
m=4,n=250,s=2 89 13 4 9 2 10 3
m=4,n=250,s=3 100 23 7 7 5 8 5
m=>5,n=>50,s=3 29 33 8 10 8 7 4
m=6,n=050,s=4 41 28 8 9 5 5 5

TABLE VI: Comparison between the fitness obtained with the
direct application to different problems of the hyperheuristic
and with the general metaheuristic obtained by the hyper-
heuristic

Schemes Hyperheuristic | General Metaheuristic
m=2,n=>50s=1 0.393197 0.393197
m=3,n=2>50,s=2 0.576276 0.578523
m=4,n=2>50,s=2 0.605534 0.609163
m=4,n=>50,s=3 0.518284 0.520264
m=>5,n=>50s=3 0.488011 0.502334
m=6,n=>50s=4 0.454793 0.429670

A hyperheuristic is developed on top of the parameterized
metaheuristic scheme. It is trained with some problems to
generate a hybrid metaheuristic with which satisfactory results
are obtained. The metaheuristic obtained is preferable to exact
methods for large problems, for which exact methods are not
applicable due to their huge execution time. The hyperheuristic
presented is a basic one, and a deeper analysis is needed to
generate better hybrid metaheuristics.
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