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a b s t r a c t 

Slacks that arise when nonparametrically constructing technologies are relevant because they can be an 

important source of technical inefficiency. This paper extends the measurement of dynamic inefficiency in 

the full input–output space in the adjustment-cost theory framework to account for slacks. In particular, 

the paper develops the dynamic weighted additive model in Data Envelopment Analysis (DEA) and shows 

its main properties. Additionally, the approach is illustrated by a real application. The empirical applica- 

tion concerns data on large firms in the dairy-manufacturing industry in the main dairy-producing coun- 

tries in the European Union (France, Germany, Italy, Spain, Poland, and the Czech Republic) from 2005 to 

2012. The results show the differences in average dynamic inefficiency between the analyzed countries. 

The findings also indicate that, not surprisingly, firms are, on average, closer to their own-country fron- 

tier than the common frontier comprising all firms, regardless of country. Greater inefficiency was also 

found, on average, in the new approach when related to the dynamic framework that does not account 

for slacks. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The measurement of production (in)efficiency attracts consider-

ble attention in the scientific literature, as it is a relevant topic for

anagers and policy-makers. 1 Since Farrell’s (1957) work show-

ng how to empirically estimate production functions enveloping

ll observations in the sample, research on inefficiency measure-

ent focuses on developing and applying static inefficiency mod-

ls through the nonparametric method of data-envelopment anal-

sis (DEA) ( Charnes, Cooper, & Rhodes, 1978; Banker, Charnes,

 Cooper, 1984 ) or parametric approaches of deterministic and

tochastic frontier models ( Aigner & Chu, 1968; Aigner, Lovell, &

chmidt, 1977 ). Static models of inefficiency ignore the dynamic

nterdependence of firms’ production decisions over time and treat

rms’ capital and other quasi-fixed inputs as fixed. If there is dy-

amic interdependence, assuming a static theory of production re-

ults in biased measurements of inefficiency. 

More recent inefficiency literature, both in DEA and parametric

ontexts, recognizes the importance of modelling the dynamics of
∗ Corresponding author. 

E-mail address: magdalena.kapelko@ue.wroc.pl (M. Kapelko). 
1 This line of research uses both the terms efficiency and inefficiency , as firms’ 

erformance can be analyzed from two sides as either degree of efficiency or inef- 

ciency achieved by the firm. Because the models we develop in this paper define 

rms’ performance in terms of inefficiency, we used the term inefficiency in the 

receding parts of this paper. 
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rms’ production decisions ( Serra, Oude Lansink, & Stefanou, 2011;

ilva, Oude Lansink, & Stefanou, 2015; Kapelko, Oude Lansink, &

tefanou, 2014; Fallah-Fini et al., 2014; Tone & Tsutsui, 2010, 2014 ).

espite different approaches developed to measure dynamic ineffi-

iency of production, one can broadly classify them into two main

roups. 

The first group of studies, initiated by Shephard and Färe

1975), Sengupta (1995) , and Färe and Grosskopf (1996) rely on the

dea of multi-stage production systems, in which some activities

re carried over from one period to the next. For example, an out-

ut in one period is used as an input for the next, or a quasi-fixed

nput at the end of the period is treated as an additional output in

hat period. As such, this group of studies is closely related with

etwork inefficiency models (see Avkiran, 2009; Tone and Tsutsui,

009 ). Chronologically speaking, Nemoto and Goto (1999, 2003 ),

ueyoshi and Sekitani (2005), Chen (2009), Chen and Van Dalen

2010), Tone and Tsutsui (2010, 2014 ), and Skevas, Oude Lansink,

nd Stefanou (2012) are all examples of this research line of dy-

amic inefficiency studies. 

The second group of studies employs the adjustment-cost tech-

ology framework, in which the dynamic interdependence of

rms’ production decisions is in the form of adjustment costs.

hese costs that represent transaction or reorganization costs,

uch as for learning, arise in this framework from the changes in

uasi-fixed factors of production associated with investments in

hese factors. The pioneering works within this line of research

https://doi.org/10.1016/j.ejor.2018.08.045
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.08.045&domain=pdf
mailto:magdalena.kapelko@ue.wroc.pl
https://doi.org/10.1016/j.ejor.2018.08.045
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3 Luenberger (1992, 1995) introduced the concept of benefit function as a repre- 

sentation of the amount that an individual is willing to trade, in terms of a specific 

reference commodity bundle g , for the opportunity to move from a consumption 
include Silva and Stefanou (20 03, 20 07 ), subsequently extended by

Rungsuriyawiboon and Stefanou (2007), Serra et al. (2011), Kapelko

et al. (2014), Ang and Oude Lansink (2014) , and Silva et al. (2015) ,

among others. 2 However, the theory of adjustment costs was de-

veloped in the economic and econometric literature some time

before the aforementioned works, with key contributions from

Treadway (1970), McLaren and Cooper (1980) , and Epstein (1981) . 

In contrast to the parametric literature on efficiency in which

measuring technical efficiency is based on a few measures, mainly

the Shephard input- and output-distance function ( Shephard, 1953 )

and the directional distance function ( Chambers, Chung, & Färe,

1998 ), the first years of DEA saw the introduction of many dif-

ferent technical efficiency measures: the Russell input and out-

put measures and the Russell graph measure of technical effi-

ciency (see Färe, Grosskopf, & Lovell, 1985 ); the additive model

( Charnes, Cooper, Golany, Seiford, & Stutz, 1985 ); the weighted

additive model ( Lovell & Pastor, 1995 ); the range-adjusted mea-

sure ( Cooper, Park, & Pastor, 1999 ); the enhanced Russell graph

( Pastor, Ruiz, & Sirvent, 1999 ); and the slacks-based measure ( Tone,

2001 ), to name but a few. More recent contributions related to the

slacks-based measure have been Sueyoshi and Sekitani (2005) and

Matin and Ghahfarokhi (2015) . One reason for the introduction of

many different technical efficiency measures in DEA is the piece-

wise linear nature of the boundary of the estimated technology. In

this context, one notion that comes into play is Pareto-efficiency

( Koopmans, 1951 ), which ultimately means that the efficiency eval-

uation is performed, accounting for the possible presence of slacks.

Input and output slacks are important because they are sources

of technical inefficiency that must be considered in terms of not

wanting to neglect some causes of underperformance in the data. 

However, Pareto-efficiency seems not be a problem for the

parametric approach, in which the functional forms utilized to

model production frontiers are usually smooth. This different set

of tools for estimating technical inefficiency in the parametric and

nonparametric world reveals the importance in DEA of measuring

inefficiency with respect to the Pareto-efficient frontier, a particu-

lar subset of the production frontier. 

Regarding the literature that relates to both dynamic ineffi-

ciency of production and Pareto-efficiency, the only directly re-

lated approach of which we are aware is Tone and Tsutsui (2010) ,

which develops a dynamic DEA model that accounts for slacks.

However, this paper extends upon Shephard and Färe (1975), Sen-

gupta (1995) , and Färe and Grosskopf (1996) , by introducing slacks

in modeling the effects of carry-over activities between two con-

secutive periods. Therefore, it does not extend the adjustment cost-

based dynamic approach, what is particularly proposed in this pa-

per as a new advance in this line. 

To sum up, the objective of this paper is to extend the mea-

surement of dynamic inefficiency in the full input–output space in

the adjustment-cost framework to account for slacks. The result-

ing approach is the dynamic weighted additive model that is de-

veloped based on the well-known weighted additive model in DEA

( Lovell & Pastor, 1995 ). The new approach is applied to the data on

large firms in the dairy-manufacturing industry in the main dairy-

producing countries in the European Union (France, Germany, Italy,

Spain, Poland, and the Czech Republic) from 2005 to 2012. 

The remainder of this paper is organized as follows:

Section 2 provides the notation and a brief revision of the

literature about static and dynamic approaches. In Section 3 ,

we introduce a new version of the weighted additive model

for measuring technical inefficiency in the dynamic framework.
2 The adjustment costs are explicitly modeled in all these works. See De Mateo, 

Coelli, and O’Donnell (2006) for an implicit consideration of adjustment costs in 

dynamic inefficiency measurement. 

b

(

t

a

c

ection 4 shows an empirical application of how the new model

erforms. Section 5 concludes the paper. 

. Notation and background 

In this section, we introduce the necessary notation and briefly

eview the basic elements that will be used in the text. 

.1. The static approach 

Let us consider n DMUs that use m inputs to produce s out-

uts. These are denoted by ( x j , y j ) , j = 1 , ..., n . It is assumed that

 j = ( x 1 j , ..., x m j ) ∈ R m + , x j � = 0 m 

, j = 1 , ..., n , and y j = ( y 1 j , ..., y s j ) ∈
 

s + , y j � = 0 s , j = 1 , ..., n . The relative efficiency of each DMU 0 in the

ample is traditionally assessed with reference to the production

echnology, which is defined as follows: 

 = { ( x, y ) / x can produce y } (1)

Assuming variable returns to scale (VRS), T can be empirically

onstructed from n observations as follows ( Banker et al., 1984 ): 

 = 

{ 

( x, y ) ∈ R 

m + s 
+ 

/
x ≥

n ∑ 

j=1 

λ j x j , y ≤
n ∑ 

j=1 

λ j y j , 

n ∑ 

j=1 

λ j = 1 , λ j ≥ 0 , j = 1 , ..., n 

} 

(2)

In the production literature, the concept of frontier is linked to

he notion of technology. Specifically, the weakly efficient frontier

f T is defined as ∂ w (T ) := { ( x, y ) ∈ T : ˆ x < x, ̂  y > y ⇒ ( ̂  x , ̂  y ) / ∈ T } .
ollowing Koopmans (1951) , isolating a certain subset of ∂ w (T )

s necessary to measure technical efficiency in the Pareto sense.

e refer to the strongly efficient frontier of T , defined as ∂ s (T ) :=
 ( x, y ) ∈ T : ˆ x ≤ x, ̂  y ≥ y, ( ̂  x , ̂  y ) � = ( x, y ) ⇒ ( ̂  x , ̂  y ) / ∈ T } . In this way,

 

s (T ) is the set of all the Pareto-Koopmans efficient points of T ,

r points for which it is not possible to improve any input or out-

ut without worsening some other input or output. 

The literature has proposed several measures to determine the

echnical efficiency of a set of DMUs in the full input–output

pace in a DEA context. The so-called directional distance func-

ion, relevant for its properties (flexibility, duality, units invariance,

nd translation invariance), is defined as follows ( Chambers et al.,

998 ): 3 

→ 

D 

(
x 0 , y 0 ; g x 0 , g 

y 
0 

)
= max β0 

s.t. 
n ∑ 

j=1 

λ j0 x i j ≤ x i 0 − β0 g 
x 
i 0 , i = 1 , ..., m 

−
n ∑ 

j=1 

λ j0 y r j ≤ −y r0 − β0 g 
y 
r0 

, r = 1 , ..., s 

n ∑ 

j=1 

λ j0 = 1 , 

λ j0 ≥ 0 , j = 1 , ..., n (3)
undle to a utility threshold. Luenberger also defined a so-called shortage function 

 Luenberger, 1992 , p. 242, Definition 4.1), which measures the distance in the direc- 

ion of a vector g of a production plan from the boundary of the production possi- 

bility set. In other words, the shortage function measures the amount by which a 

specific plan is short of reaching the frontier of the technology. Chambers, Chung, 

nd Färe (1998) redefined the benefit function and the shortage function as effi- 

iency measures, introducing the directional distance function. 
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4 In the case of dynamic models we talk about variable inputs as we distinguish 

between variable and quasi-fixed inputs. 
5 Notice that in model (5) the quasi-fixed input is incorporated through invest- 

ment constraint. 
n which g = ( g x 
0 
, g 

y 
0 
) ∈ R m + × R s + is a directional vector and β0 mea-

ures the degree of technical inefficiency in the full input–output

pace of DMU 0 , with vector of inputs and outputs ( x 0 , y 0 ) . Direc-

ional distance function projects any input and output vector onto

he technology frontier in a pre-assigned direction, given by the di-

ectional vector. Therefore, this measure does not always reach the

trongly efficient frontier. It implements the Debreu-Farrell defini-

ion of technical efficiency ( Debreu, 1951; Farrell, 1957 ), instead of

he Pareto-Koopmans alternative notion ( Koopmans, 1951 ). 

The weighted additive (WA) model is another approach for

easuring technical inefficiency in the full input–output space

 Lovell & Pastor, 1995 ). This measure was introduced in the lit-

rature to apply the notion of Pareto-efficiency in DEA (see also

harnes et al., 1985 ): 

A ( x 0 , y 0 ; w 

x , w 

y ) = Max 

m ∑ 

i =1 

w 

x 
i s 

x 
i 0 + 

s ∑ 

r=1 

w 

y 
r s 

y 
r0 

s.t. 
n ∑ 

j=1 

λ j0 x i j + s x i 0 ≤ x i 0 , i = 1 , ..., m 

−
n ∑ 

j=1 

λ j0 y r j + s y 
r0 

≤ −y r0 , r = 1 , ..., s 

n ∑ 

j=1 

λ j0 = 1 , 

s x i 0 ≥ 0 , i = 1 , ..., m 

s y 
r0 

≥ 0 , r = 1 , ..., s 

λ j0 ≥ 0 , j = 1 , ..., n , (4) 

n which w 

x = ( w 

x 
1 
, ..., w 

x 
m 

) ∈ R m ++ and w 

y = ( w 

y 
1 
, ..., w 

y 
s ) ∈ R s ++ are

eights representing the relative importance of unit inputs and

nit outputs. Different paths can be followed in choosing such

eights. One possibility selects them, based on the observations.

t is then possible to achieve a dimensionless optimal value in ( 4 ).

his line was first proposed by Lovell and Pastor (1995) , followed

y Cooper et al. (1999) with the measure of inefficiency propor-

ions (MIP) and the Range-Adjusted Measure (RAM) and, more re-

ently, by Cooper, Pastor, Borras, Aparicio, and Pastor (2011) to in-

roduce the bounded-adjusted measure (BAM). 

WA ( x 0 , y 0 ; w 

x , w 

y ) = 

∑ m 

i =1 w 

x 
i 
s x ∗

i 0 
+ 

∑ s 
r=1 w 

y 
r s 

y ∗
r0 

, in which 

∗ de-

otes optimality, represents the technical inefficiency associated

ith DMU 0 . The weighted additive model maximizes a weighted

 1 distance from DMU 0 to the frontier of the technology, and si-

ultaneously increases outputs and reduces inputs. In contrast to

he directional distance function, an important property of the

eighted additive model is that it satisfies the Pareto-Koopmans

efinition of technical inefficiency: ( x 0 , y 0 ) ∈ ∂ s (T ) , if and only if

A ( x 0 , y 0 ; w 

x , w 

y ) = 0 ( Cooper et al., 1999 ). 

.2. The dynamic approach 

The above models were built on the conventional static ap-

roach and did not take into account the investments in capital.

he dynamic directional distance function is a different proposal

or the conventional directional distance function (3) , which en-

ompasses the static approach ( Ang & Oude Lansink, 2014; Kapelko

t al., 2014; Kapelko, 2017; Silva et al., 2015 ) and represents an

djustment-cost production technology. Before showing its mathe-

atical expression in the case of DEA, let us introduce some addi-

ional, necessary notions. 
We assume that each DMU j , j = 1 , ..., n , in addition to consume

 inputs 4 x j = ( x 1 j , ..., x m j ) , uses a vector of f gross investments

n quasi-fixed inputs I j = ( I 1 j , ..., I f j ) , and a vector of f quasi-fixed

nputs k j = ( k 1 j , ..., k f j ) , f or producing s output s y j = ( y 1 j , ..., y s j ) .

he dynamic production technology transforms variable inputs and

ross investments into outputs at a given level of quasi-fixed in-

uts. 

The dynamic directional distance function in the full input–

utput space may be defined as follows ( Ang & Oude Lansink,

014; Silva et al., 2015 ): 

�
 

 

(
x 0 , I 0 , y 0 , k 0 ; g x 0 , g 

y 
0 
, g I 0 

)
= Max β0 

s.t. 

n ∑ 

j=1 

λ j0 x i j ≤ x i 0 − β0 g 
x 
i 0 , 

i = 1 , ..., m 

n ∑ 

j=1 

λ j0 y r j ≥ y r0 + β0 g 
y 
r0 

, r = 1 , ..., s 

n ∑ 

j=1 

λ j0 

(
I h j − δh k h j 

)
≥ ( I h 0 − δh k h 0 ) 

+ β0 g 
I 
h 0 , h = 1 , ..., f 

n ∑ 

j=1 

λ j0 = 1 , 

λ j0 ≥ 0 , j = 1 , ..., n (5) 

n which δh denotes depreciation rates, which are specific for each

ype of investment, and g x 
i 0 

is a directional vector for variable in-

uts, g 
y 
r0 

is a directional vector for outputs and g I 
h 0 

is a directional

ector for gross investments 5 . The dynamic directional distance

unction is defined by simultaneously contracting variable inputs,

nd expanding outputs and gross investments. β0 measures the

egree of dynamic technical inefficiency in the full input–output

pace of DMU 0 . 

Fig. 1 illustrates how the dynamic directional distance function

orks, assuming one variable input x , one dynamic factor (invest-

ent), and a fixed output level. In the figure, the bold solid line

epresents the set of Pareto-Koopmans points, or the strongly ef-

cient frontier, which is a subset of the weakly efficient frontier,

epresented by the union of the bold solid line and the dashed

ines. Point C is projected onto the isoquant (the weakly efficient

rontier), following a pre-fixed direction. In particular, Fig. 1 shows

hree projections, associated with three possible directions: g1 , g2 ,

nd g3 . Note that directions g1 and g2 project unit C onto D and E ,

espectively, which are non-Pareto efficient points, since both are

ominated by unit A . Direction g3 is a different case in which unit

 is projected onto F , which is Pareto-efficient. Therefore, the dy-

amic directional distance function may not take into account all

ources of technical inefficiency (slacks, in the case of the first two

irections). 

In view of the preceding discussion, the dynamic approach, in

ontrast to the static approach, has recently attracted the attention

f researchers when dynamic factors, such as investment, must be

onsidered in the data analysis. The dynamic directional distance

unction is one of the preferred approaches for measuring techni-

al inefficiency, due to its flexibility and good properties. However,

ne of the unsolved challenges is extending this approach to al-

ow for considering all sources of technical inefficiency in the mea-

urement. Therefore, research must be directed at developing at
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Fig. 1. The dynamic directional distance function. 
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additive model satisfies. 

6 Input-specific inefficiencies in a dynamic context were considered by Kapelko, 

Oude Lansink, and Stefanou (2017) . However, this study considered an input-specific 

framework, and not a full input-output space approach as analyzed here. 
least a new measure capable of dealing with the notion of Pareto-

efficiency in a dynamic framework. In the next section, we intro-

duce a new dynamic measure, based on the well-known weighted

additive model in DEA. 

3. The dynamic weighted additive model in DEA 

In this section, we introduce a new dynamic measure of tech-

nical inefficiency for accounting for slacks in DEA. It is based

upon model (4) , the weighted additive model by Lovell and Pas-

tor (1995) . 

In the same context as Section 2.2 , the dynamic weighted ad-

ditive model for determining the technical inefficiency of DMU 0 ,

with vector ( x 0 , I 0 , y 0 , k 0 ) in the full input–output space, is defined

as follows: 

A 

(
x 0 , I 0 , y 0 , k 0 ; w 

x 
0 , w 

y , w 

I 
)

= Max 

m ∑ 

i =1 

w 

x 
i s 

x 
i 0 + 

s ∑ 

r=1 

w 

y 
r s 

y 
r0 

+ 

f ∑ 

h =1 

w 

I 
h s 

I 
h 0 

s.t. 

n ∑ 

j=1 

λ j0 x i j ≤ x i 0 − s x i 0 , 

i = 1 , ..., m 

n ∑ 

j=1 

λ j0 y r j ≥ y r0 + s y 
r0 

, r = 1 , ..., s 

n ∑ 

j=1 

λ j0 

(
I h j − δh k h j 

)
≥ ( I h 0 − δh k h 0 )

+ s I h 0 , h = 1 , ..., f 

n ∑ 

j=1 

λ j0 = 1 , 

λ j0 ≥ 0 , j = 1 , ..., n 

s x i 0 ≥ 0 , i = 1 , ..., m 

s y 
r0 

≥ 0 , r = 1 , ..., s 

s I ≥ 0 , h = 1 , ..., f (6)
h 0 
This maximization problem (6) solves for DMU 0 , its dynamic

echnical inefficiency, and its corresponding intensity variables λ j0 ,

j = 1 , ..., n . The first, second, and third constraints imply strong

isposability of inputs, outputs and gross investments, respec-

ively. The assumption of variable returns to scale is reflected by

he fourth constraint. The remaining constraints guarantee non-

egativity of the decision variables. The optimal value of (6) co-

ncides with the weighted � 1 distance from the point ( x 0 , I 0 , y 0 ) to

he boundary of the production technology T D . The corresponding

eights of this mathematical distance are specifically w 

x 
0 
, w 

y 
0 

and

 

I 
0 for variable inputs, outputs, and gross investments, respectively.

iven that s x 
0 

≥ 0 is subtracted from x 0 , s 
y 
r0 

≥ 0 is added to y 0 , and

 

I 
0 

is added to I 0 , this measure is defined by simultaneously con-

racting variable inputs, and expanding outputs and dynamic fac-

ors of gross investments. It is worth adding that using formula

6) , in addition to computing inefficiency for all inputs and out-

uts simultaneously, it is also possible to calculate input-specific

nd output-specific inefficiencies, that is, inefficiencies with regard

o each input employed and output produced by the DMU 

6 . 

If we compare the dynamic model (6) with respect to its static

ersion in model (4) , the most significant difference is related to

he addition of the constraint associated with investment and the

erm 

∑ f 

h =1 
w 

I 
h 
s I 

h 0 
added to the objective function of model (4) . Ob-

iously, the dynamic weighted additive model (6) is an extension

f the static weighted additive model (4) , which also happened

ith models (3) and (5) . 

The following lemma will be useful to prove additional results

n the text. 

emma 1. Let ( λ∗
0 
, s x ∗

0 
, s 

y ∗
0 

, s I∗
0 
) be an optimal solution of model (6) ,

hen all the constraints in (6) are binding. 

Proof. Let us assume that some of the constraints are not

inding, such as the first constraint for the inputs 
∑ n 

j=1 λ
∗
j0 

x 1 j <

 10 − s x ∗
10 

. We can then define ( λ∗
0 , ̂  s x 

0 
, s 

y ∗
0 

, s I∗0 ) , with ˆ s x 
10 

= x 10 −
 n 
j=1 λ

∗
j0 

x 1 j > s x ∗
10 

and ˆ s x 
i 0 

= s x ∗
i 0 

for i � = 1 , and get a feasible solu-

ion for model (6) . Regarding the objective function 

∑ m 

i =1 w 

x 
i ̂

 s x 
i 0 

+
 s 
r=1 w 

y 
r s 

y ∗
r0 

+ 

∑ f 

h =1 
w 

I 
h 
s I∗

h 0 
> 

∑ m 

i =1 w 

x 
i 
s x ∗

i 0 
+ 

∑ s 
r=1 w 

y 
r s 

y ∗
r0 

+ 

∑ f 

h =1 
w 

I 
h 
s I∗

h 0 
,

hich is a contradiction with the fact that ( λ∗
0 , s 

x ∗
0 

, s 
y ∗
0 

, s I∗0 ) is an

ptimal solution for model (6) . Consequently, all the constraints in

6) must be binding. �
Regarding the satisfaction of properties, Färe and Lovell

1978) were the first to propose a set of desirable properties that

n ideal efficiency measure should meet, although these were

nunciated for the particular case of an input-oriented measure.

astor et al. (1999) listed similar requirements and suggested some

thers for approaches devoted to measuring technical inefficiency

n the full input–output space (graph measures). In particular, their

ain properties were (P1), the assessed DMU 0 is Pareto-Koopmans

fficient if, and only if, the inefficiency measure takes a value of

ero; (P2), units invariant; and (P3), strong monotonicity. Specifi-

ally, strong monotonicity means that holding all other inputs and

utputs constant, an increase in any of its outputs and/or a de-

rease in any of its inputs will decrease the inefficiency score.

ranslation invariance is another relevant property, mainly for

ealing with negative data (see Pastor and Aparicio, 2015; Apari-

io, Pastor, & Vidal, 2016 ). Of course, the aforementioned properties

ere enunciated in the static framework. However, it is possible to

xtend these properties to the dynamic context by analogy. 

We now show the main properties that the dynamic weighted
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t  

O  

d  

t  
roposition 1. The dynamic weighted additive model meets the

ollowing properties. 

(i) WA ( x 0 , I 0 , y 0 , k 0 ; w 

x , w 

y , w 

I ) ≥ 0 ; 

(ii) If w 

x 
i 

= t( x i 0 ) , w 

y 
r = q ( y r0 ) and w 

I 
h 

= p( I h 0 , k h 0 ) are homoge-

neous functions of degree -1 in their arguments for all i, r

and h , then Model (6) is units invariant. 

(iii) Model (6) is translation invariant. 

(iv) WA ( x 0 , I 0 , y 0 , k 0 ; w 

x , w 

y , w 

I ) is strongly monotonic. 7 

Proof. (i) It is a consequence of the non-negativity

onstraints s x 
i 0 

≥ 0 , i = 1 , ..., m , s 
y 
r0 

≥ 0 , r = 1 , ..., s , s I 
h 0 

≥ 0 ,

 = 1 , ..., f , and that the expression of the objective function

s 
∑ m 

i =1 w 

x 
i 
s x 

i 0 
+ 

∑ s 
r=1 w 

y 
r s 

y 
r0 

+ 

∑ f 

h =1 
w 

I 
h 
s I 

h 0 
. (ii) Without loss of

enerality, let us assume that the investment h ′ , h ′ = 1 , ..., f ,

nd its related quasi-fixed input are transformed as I h ′ → αh ′ I h ′ 
nd k h ′ → αh ′ k h ′ , with αh ′ > 0 . In this way, the related con-

traint in (6) is transformed into 
∑ n 

j=1 λ j0 ( αh ′ I h ′ j − δh ′ αh ′ k h ′ j ) ≥
( αh ′ I h ′ 0 − δh ′ αh ′ k h ′ 0 ) + s I 

h ′ 0 . By Lemma 1 , this implies that, at opti-

um, s I 
h ′ 0 = 

∑ n 
j=1 λ j0 

( αh ′ I h ′ j − δh ′ αh ′ k h ′ j ) − ( αh ′ I h ′ 0 − δh ′ αh ′ k h ′ 0 ) =
h ′ [ 

∑ n 
j=1 λ j0 

( I h ′ j − δh ′ k h ′ j ) − ( I h ′ 0 − δh ′ k h ′ 0 ) ] . Regard- 

ng the objective function, the term affected by

he transformation would remain as w 

I 
h ′ s 

I 
h ′ 0 →

p( αh ′ I h ′ 0 , αh ′ k h ′ 0 ) αh ′ [ 
∑ n 

j=1 λ j0 
( I h ′ j − δh ′ k h ′ j ) − ( I h ′ 0 − δh ′ k h ′ 0 ) ] . 

inally, by the hypothesis of homogeneity of degree -1 of the func-

ion p( I h ′ 0 , k h ′ 0 ) , the effect of αh ′ vanishes. (iii) Without loss of

enerality, let us assume that the investment h ′ , h ′ = 1 , ..., f , and

ts related quasi-fixed input, are transformed as I h ′ → I h ′ + αh ′ and

 h ′ → k h ′ + αh ′ with αh ′ > 0 . In this way, the related constraint in

6) is transformed into
∑ n 

j=1 λ j0 ( I h ′ j + αh ′ − δh ′ k h ′ j − δh ′ αh ′ ) ≥
( I h ′ 0 + αh ′ − δh ′ k h ′ 0 − δh ′ αh ′ ) + s I 

h ′ 0 , which is equivalent

o 
∑ n 

j=1 λ j0 ( I h ′ j − δh ′ k h ′ j ) + 

∑ n 
j=1 λ j0 αh ′ −

∑ n 
j=1 λ j0 δh ′ αh ′ ≥

( I h ′ 0 − δh ′ k h ′ 0 ) + αh ′ − δh ′ αh ′ + s I 
h ′ 0 . Applying 

∑ n 
j=1 λ j0 = 1 , we

et 
∑ n 

j=1 λ j0 ( I h ′ j − δh ′ k h ′ j ) + αh ′ − δh ′ αh ′ ≥ ( I h ′ 0 − δh ′ k h ′ 0 ) + αh ′ −
h ′ αh ′ + s I 

h ′ 0 , which is equivalent to 
∑ n 

j=1 λ j0 ( I h ′ j − δh ′ k h ′ j ) ≥
( I h ′ 0 − δh ′ k h ′ 0 ) + s I 

h ′ 0 , meaning that the effect of the trans-

ormation vanishes due to the hypothesis of VRS. (iv) Let

( x 0 , I 0 , y 0 , k 0 ) and ( ̂  x , ̂  I , ̂  y , ̂  k ) , such that x 0 ≤ ˆ x , I 0 ≥ ˆ I , y 0 ≥ ˆ y and

 0 ≤ ˆ k . In particular, let us assume, without loss of general-

ty, that I h ′ 0 > ̂

 I h ′ for some h ′ = 1 , ..., f . Let ( λ∗
0 , s 

x ∗
0 

, s 
y ∗
0 

, s I∗0 ) be

n optimal solution of model (6) for assessing ( x 0 , I 0 , y 0 , k 0 ) .

t is then easy to show that ( λ∗
0 
, s x ∗

0 
, s 

y ∗
0 

, s I∗
0 
) is a feasible so-

ution for model (6) for assessing ( ̂  x , ̂  I , ̂  y , ̂  k ) , since x i 0 ≤ ˆ x i ,

 = 1 , ..., m , y r0 ≥ ˆ y r , r = 1 , ..., s , and I h 0 − δh k h 0 ≥ ˆ I h − δh 
ˆ k h ,

 = 1 , ..., f . From ( λ∗
0 
, s x ∗

0 
, s 

y ∗
0 

, s I∗
0 
) , we can define another

easible solution of model (6) for assessing ( ̂  x , ̂  I , ̂  y , ̂  k ) as

( λ∗
0 
, s x ∗

0 
, s 

y ∗
0 

, ̂  s I ) , with ˆ s I 
h ′ = 

∑ n 
j=1 λ

∗
j0 
( I h ′ j − δh ′ k h ′ j ) − ( ̂ I h ′ − δh ′ ̂  k h ′ )

nd ˆ s I 
h 

= s I∗
h 0 

for h � = h ′ . Note that ˆ s I 
h ′ = 

∑ n 
j=1 λ

∗
j0 
( I h ′ j − δh ′ k h ′ j ) −

( ̂ I h ′ − δh ′ ̂  k h ′ ) > 

∑ n 
j=1 λ

∗
j0 
( I h ′ j − δh ′ k h ′ j ) − ( I h ′ 0 − δh ′ k h ′ 0 ) because

 h ′ 0 − δh ′ k h ′ 0 > ̂

 I h ′ − δh ′ ̂  k h ′ , which means that ˆ s I 
h ′ > s I∗

h ′ 0 , since s I∗
h ′ 0 =

 n 
j=1 λ

∗
j0 
( I h ′ j − δh ′ k h ′ j ) − ( I h ′ 0 − δh ′ k h ′ 0 ) by Lemma 1 . Finally, re-

arding the objective function of model (6) for assessing ( ̂  x , ̂  I , ̂  y , ̂  k ) ,

e have that WA ( ̂  x , ̂  I , ̂  y , ̂  k ; w 

x , w 

y , w 

I ) = 

∑ m 

i =1 w 

x 
i 
s x ∗

i 0 
+ 

∑ s 
r=1 w 

y 
r s 

y ∗
r0 

+
 f 

h =1 
w 

I 
h ̂

 s I 
h 

> 

∑ m 

i =1 w 

x 
i 0 

s x ∗
i 0 

+ 

∑ s 
r=1 w 

y 
r0 

s 
y ∗
r0 

+ 

∑ f 

h =1 
w 

I 
h 0 

s I∗
h 0 

= WA 

( x 0 , I 0 , y 0 , k 0 ; w 

x , w 

y , w 

I ) , as we were seeking to prove. �
7 We use the definition of strong monotonicity according to Pastor, Ruiz, and Sir- 

ent (1999) and Cooper et al. (1999) . They describe this property as follows: Hold- 

ng all other inputs and outputs constant, an increase in any of its inputs will in- 

rease the inefficiency score for an inefficient DMU 0 . The same is true for a decrease 

n any of its outputs. 

t  

y  

u

g

Although there are many alternative weights for the objec-

ive function of model (6) , we suggest the specific weights w 

x 
i 0 

=
1 

(m + s + f ) ·x i 0 , i = 1 , ..., m , w 

y 
r0 

= 

1 
(m + s + f ) ·y r0 

, r = 1 , ..., s , and w 

I 
h 0 

=
1 

(m + s + f ) ·0 . 2 ·k h 0 , h = 1 , ..., f , for unit ( x 0 , I 0 , y 0 , k 0 ) , which are asso-

iated with the measure of inefficiency proportions (MIP) (see

ooper et al., 1999 ). In the case of weights for investments, the

ormula contains 20 percent of the size of the capital stock, which

pproximates the size of investments in firms. 8 With such weights

ur measure can be interpreted as the average of inefficiency pro-

ortions due to excessive inputs, and output and investment short-

alls. 

The next section includes an empirical illustration of the use

f the new methodology proposed in this paper. We are espe-

ially interested in comparing the results generated by the dy-

amic weighted additive model with those obtained from the dy-

amic directional distance function. 

. Empirical application 

.1. Dataset 

Our data consist of annual observations for large dairy-

anufacturing firms in six EU countries from 2005 to 2012.

MADEUS dataset (Bureau van Dijk) is the source of our data. Large

rms have more than 250 employees with an annual turnover

hat exceeds €50 million, which follows from the EU definition of

rm size ( European Commission, 2003 ). Limiting the study to large

rms provides in a homogenous sample, which is important for in-

fficiency analysis using DEA. We chose the main dairy-producing

ountries in the EU within each geographical region: Poland and

zech Republic for Eastern Europe; Italy and Spain for Southern

urope; and France and Germany for Western Europe. 

The dynamic technology modeled in this study consisted of one

utput, two variable inputs, one quasi-fixed input, and one gross

nvestment. All variables were measured via accounting data. Out-

ut was measured by revenues, which were deflated using the

roducer price index for food manufacturing. The variable inputs

onsisted of the material and labor costs, which were deflated by

he producer price index for non-durable consumer goods and la-

or cost index in industry, respectively. The quasi-fixed input was

easured as the beginning value of fixed assets in year t (the end

alue of fixed assets from the previous year) and was deflated us-

ng the producer price index for capital goods. Gross investments

n fixed assets in year t were calculated as the beginning value of

xed assets in year t + 1 , minus the beginning value of fixed as-

ets in year t , plus the beginning value of depreciation in year t + 1 .

ll price indices used to deflate the aforementioned variables were

ountry-specific and supported by the Eurostat (2017) database. All

ariables were extracted from the AMADEUS database in local cur-

encies and adjusted using the purchasing power parity (PPP) of

he local currency to the US dollar. 

The final dataset usable for analysis was obtained by remov-

ng missing and outlier observations. This study applied Simar’s

2003) approach of outlier detection, which is commonly used for

rontier models to determine outliers, based on the application of

he method of order-m efficiencies ( Cazals, Florens, & Simar, 2002 ).

ur final sample consisted of an unbalanced panel of 311 large,

airy-manufacturing firms (1,625 observations) in six EU coun-

ries from 2005 to 2012. Table 1 reports descriptive statistics for

he output, inputs, and investments for the data pooled over all

ears, separately for each country and region, and for the whole
8 Another option for the weights for investments would be to use the actual val- 

es of investments in the formula. We did not use the actual values of investments, 

iven the high heterogeneity in the investment variable ( Dakpo, 2015 ). 
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Table 1 

Descriptive statistics of input–output variables per country and region, and for the whole sample, 2005–2012 (thou- 

sands of PPP, as of 2004). 

Country No of obs. Output Material costs Employee costs Fixed assets Investments 

Czech Republic 136 114721.50 87131.60 5769.88 19138.27 2976.28 

(85506.91) (66061.94) (4983.13) (18438.25) (3761.19) 

France 295 262950.50 172750.44 20562.27 48365.31 7836.96 

(368391.53) (216919.04) (29846.84) (69666.97) (12300.21) 

Germany 349 326906.95 264807.99 22022.35 48106.18 11729.31 

(510372.26) (421914.95) (35586.56) (82012.44) (31548.54) 

Italy 346 286055.26 171779.79 27988.60 103416.12 14288.40 

(716320.18) (386321.78) (81282.94) (325401.19) (41441.01) 

Poland 290 164801.92 132421.59 6494.95 42163.52 9947.61 

(232236.46) (188787.25) (8050.27) (122817.18) (33570.65) 

Spain 209 251121.16 14 9433.6 8 23639.69 76612.67 11306.51 

(352022.93) (163434.71) (35626.74) (92205.68) (13956.47) 

Eastern Europe 426 148813.80 117962.82 6263.47 34812.74 7722.02 

(198856.16) (161458.12) (7216.02) (102375.01) (27954.12) 

Southern Europe 555 272899.90 163364.77 26350.90 93322.57 13165.49 

(605270.09) (321071.90) (67789.46) (263250.47) (33833.36) 

Western Europe 644 297610.13 222638.77 21353.52 48224.88 9946.32 

(451712.37) (346358.33) (33064.20) (76546.76) (24730.93) 

Whole sample 1625 250163.11 174953.22 19104.40 60111.43 10462.68 

(468908.84) (302136.22) (45577.75) (171185.22) (29012.56) 

Note : Standard deviations are in parentheses. 
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10 In this analysis and also in the analysis contained in Table 3 , we also applied 

another nonparametric test, namely the Wilcoxon test, and the results obtained 

replicate these obtained from the S-Z test. In addition, as the S-Z test is based on 
sample. This data shows that the largest output value is exhibited

by the average German dairy-manufacturing firm, while the small-

est value was from the average firm in the Czech Republic. This

data also indicates that dairy manufacturing firms in Western Eu-

rope have the largest values of output and material costs on av-

erage, while firms in Southern Europe have the largest values of

employee costs, fixed assets, and investments. By contrast, firms in

Eastern Europe exhibit the smallest values of all variables, on av-

erage. Despite focusing our analysis on large firms, the statistics in

Table 1 show that there is still considerable variation in the sam-

ple, as indicated by the large values of standard deviations, relative

to their respective averages. 

4.2. Results 

The empirical analysis was undertaken in two steps. First, we

analyzed the results for our new dynamic weighted additive model

that takes slacks into account, so projects on the strongly efficient

frontier. We then compared the results of our new model with a

dynamic model that does not account for slacks and projects on

the weakly efficient frontier in the form of dynamic directional dis-

tance function ( Silva et al., 2015; Kapelko et al., 2014; Ang & Oude

Lansink, 2014 ). 9 We will refer to this latter model as a traditional

dynamic model. 

The inefficiency results were derived from a new dynamic

model that takes slacks into account and a dynamic model that

does not take them into account for each year separately. The com-

putations were done with regard to the country-specific frontier

and the pooled frontier, constituting all firms in the sample, re-

gardless of country. We made both types of computations, due to

the fact that inefficiency measures under group-specific technolo-

gies cannot be directly compared, while results under the pooled

frontier can be directly compared since the pooled frontier cov-

ers all observations. Because of the considerable variation in the

sample, as shown by the descriptive statistics in Table 1 , we de-

cided to calculate inefficiencies with regard to the VRS frontier. The

value of the directional vector used in computations of the tradi-

tional dynamic model is g x 
i 0 

= x i 0 , i = 1 , ..., m , for variable inputs,

g 
y 
r0 

= y r0 , r = 1 , ..., s , for outputs, and g I 
h 0 

= 0 . 2 · k h 0 , h = 1 , ..., f , for
9 All DEA models were estimated using the GAMS program. 

b

a

t

nvestments, which is in line with weights applied in the dynamic

eighted additive model outlined in Section 3 . Table 2 reports the

verage values of dynamic inefficiency derived from the dynamic

eighted additive model per country and region, and for the whole

ample in regard to country-specific and common frontiers. The

ignificance of differences in inefficiencies between countries and

egions is tested using Simar and Zelenyuk’s (2006) test, denoted

s the S-Z test. 10 

Table 2 shows that there are significant differences (in almost

ll cases) across countries, in terms of average values of dynamic

echnical inefficiency measured in relation to country-specific fron-

ier. This result indicates that dynamic technical inefficiency un-

er different group technologies is heterogeneous. When assessed

ith regard to own-country frontier, Poland is the most inefficient

ountry, while the Czech Republic exhibits the lowest values of in-

fficiency. Moreover, Poland and Germany, and France, Italy, and

pain have the most similar levels of performance within their

wn groups. 

Table 2 also shows that, in the majority of cases, there are sig-

ificant differences between countries for the average values of dy-

amic technical inefficiency assessed in relation to pooled fron-

ier. Not surprisingly, firms, on average, operate closer to their

wn-country frontier than to the common frontier that covers all

rms in the sample, regardless of country. This is revealed by

he lower values of dynamic inefficiency for the country-specific

rontier for all countries in the sample. Western European coun-

ries (Germany and France) show the largest gap between country-

pecific and common frontier, while Poland shows the most similar

evels for country-specific and common performance. Interestingly,

hile Poland was the most inefficient compared to its own frontier,

rms in this country were the most efficient group when assessed

ith regard to all firms in the sample. Therefore, on average, the

est-performing companies in the pooled sample are mainly from

oland. In fact, when assessed with regard to pooled frontier, as

ompared to other countries, Poland has the highest number of
ootstrapping, we applied a different number of bootstrap replications (10 0, 50 0 

nd 10 0 0) and the results of the test remain the same. Hence, the results of the 

ests can be considered as robust. 
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Table 2 

Dynamic inefficiency results per country and region, and for the whole sample, country-specific and common 

frontiers, 2005–2012. 

Country Country-specific frontier Common frontier 

Czech Republic 0.2217 1.6073 

France 0.4149 1.9830 

Germany 0.5449 3.2385 

Italy 0.4228 1.4192 

Poland 0.6122 0.9956 

Spain 0.4273 1.0583 

Eastern Europe 0.4876 1.1909 

Southern Europe 0.4245 1.2833 

Western Europe 0.4854 2.6636 

Whole sample 0.4651 1.8061 

Significance (S-Z test) between 

countries at the critical 5 percent level 

Yes, except of between Germany and 

Italy, and Germany and Poland 

Yes, except of between 

Italy and Poland 

Significance (S-Z test) between regions 

at the critical 5 percent level 

Yes, except of between Southern and 

Eastern 

Yes 

Table 3 

Dynamic inefficiency results – new model versus traditional model, 2005–2012. 

Country-specific frontier Common frontier 

Country New model Traditional model New model Traditional model 

Czech Republic 0.2217 0.0309 ∗∗∗ 1.6073 0.1291 ∗∗∗

France 0.4149 0.0810 ∗∗∗ 1.9830 0.1563 ∗∗∗

Germany 0.5449 0.0389 ∗∗∗ 3.2385 0.1861 ∗∗∗

Italy 0.4228 0.0856 ∗∗∗ 1.4192 0.1493 ∗∗∗

Poland 0.6122 0.0522 ∗∗∗ 0.9956 0.1116 ∗∗∗

Spain 0.4273 0.0579 ∗∗∗ 1.0583 0.1409 ∗∗∗

Eastern Europe 0.4876 0.0454 ∗∗∗ 1.1909 0.1172 ∗∗∗

Southern Europe 0.4245 0.0751 ∗∗∗ 1.2833 0.1461 ∗∗∗

Western Europe 0.4854 0.0582 ∗∗∗ 2.6636 0.1724 ∗∗∗

Whole sample 0.4651 0.0606 1.8061 0.1490 

∗∗∗ Denotes statistically significant differences between new and traditional model at the 

critical 1 percent level. 
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11 Although in our paper we talk about a dynamic model based on the directional 

distance function, a directional distance function model is still similar to a radial 
fficient firms relatively to all firms in the Polish sample (15 per-

ent of efficient firms as compared to, for example, Czech Republic

ith 7 percent). 

Table 3 presents the comparison of inefficiency results between

he new dynamic model that incorporates slacks and a traditional

ynamic model based on the dynamic directional distance func-

ion. The findings are reported per country and region, and for the

hole sample, with regard to country-specific and common fron-

iers. Simar and Zelenyuk’s (2006) test is used to assess the differ-

nces in inefficiencies between new and traditional models. 

Table 3 shows that the application of a traditional dynamic

odel finds somewhat small values of inefficiency. The model

rojects on the weakly efficient frontier the majority of times.

he findings reported in Table 3 also indicate statistically signifi-

ant differences in average values of technical inefficiency between

ew and traditional dynamic models for the country-specific and

ooled performance. In particular, the traditional model reveals

maller values of average inefficiency than the new model. There-

ore, the weakly efficient frontier is quite far from the strongly

fficient frontier in our sample of dairy-producing firms. This re-

ult seems to be logical, as the new model takes into account all

ources of inefficiency, including slacks. Slacks as the sources of

echnical inefficiency are not considered in the traditional dynamic

odel, in contrast to our new model that always considers this

ype of inefficiency in its calculation. Hence, when projecting with

lacks on the dynamic frontier, we find larger values of inefficiency

han when projection is made without taking slacks into account.

his finding seems also to be in line with previous literature, that

n a static context reported considerably larger values of ineffi-

m

iency when an additive model was applied, which projects on the

trongly efficient frontier, in comparison to the radial model, which

rojects on the weakly efficient frontier (see Pastor et al., 1999 ) 11 .

lso in a static context, the literature reports different results for

roductivity change computed using directional distance function

n comparison to productivity change based on the weighted addi-

ive model, which is due to the differences in the efficiency change

omponent, that is, if projection on the production frontier is un-

ertaken with or without slacks (see Aparicio, Borras, Ortiz, Pastor,

 Vidal, 2018 ). 

However, in attempting to interpret the differences in ineffi-

iency between both models more thoroughly, we compute inef-

ciency with regard to all variables (output, two variable inputs,

nd investments) using the new model. Table 4 reports these re-

ults. We can observe from the table that this heterogeneity in re-

ults between the new and the traditional model is mainly due

o the inefficiency of investments. The values of inefficiency for

utput and two variable inputs are very similar to inefficiency

ound in the traditional dynamic model, while inefficiency of in-

estments diverges considerably from the inefficiency reported by

he traditional dynamic model. For example, the average country-

pecific inefficiency for Germany is 0.0116 for output, 0.0085 for

aterials and 0.0337 for employee costs, while it is as much as

.1259 for investments. 
odel, in the sense that both project on the weakly efficient frontier. 
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Table 4 

Dynamic input–and output-specific inefficiency results for the new model, per country and region, and for the whole sample, country-specific and 

common frontiers, 2005–2012. 

Country-specific frontier Common frontier 

Country Output Material costs Employee costs Investments Output Material costs Employee costs Investments 

Czech Republic 0.0084 0.0163 0.0839 0.7783 0.0572 0.0106 0.0211 6.3403 

France 0.0344 0.0353 0.0557 1.5341 0.0806 0.0226 0.0785 7.7519 

Germany 0.0116 0.0085 0.0337 2.1259 0.0835 0.0402 0.0963 12.7341 

Italy 0.0354 0.0211 0.0757 1.5588 0.0712 0.0129 0.1008 5.4919 

Poland 0.0479 0.0066 0.1104 2.2841 0.0657 0.0155 0.0304 3.8707 

Spain 0.0226 0.0211 0.1020 1.5637 0.0713 0.0199 0.0921 4.0499 

Eastern Europe 0.0353 0.0097 0.1019 1.8034 0.0630 0.0139 0.0274 4.6591 

Southern Europe 0.0306 0.0211 0.0856 1.5606 0.0713 0.0156 0.0975 4.9489 

Western Europe 0.0220 0.0207 0.0438 1.8548 0.0821 0.0322 0.0881 10.4519 

Whole sample 0.0284 0.0180 0.0733 1.7409 0.0734 0.0217 0.0754 7.0538 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

 

A  

A  

 

A  

B  

 

C  

C  

 

 

C  

 

 

 

C  

 

C  

 

C  

 

D  

 

 

 

D  

D  

 

E  

E  

 

 

E  

F  

F  

F  

F  

F

 

5. Conclusions 

The paper develops the DEA-based, dynamic-weighted addi-

tive model that accounts for slacks when measuring dynamic in-

efficiency in the adjustment-cost theory framework. The paper

also summarizes and proves the main properties of the developed

model. Our new model allows for projecting inefficient firms to the

strongly efficient, dynamic frontier, so estimates Pareto-Koopmans

efficiency in the dynamic context. Moreover, it measures dynamic

inefficiency in the full input–output space. 

To illustrate, we applied the new approach to a recent dataset

of large dairy-processing firms in the main dairy-producing coun-

tries in the EU from 2005 to 2012. The results revealed that

there were considerable dynamic inefficiencies in the sample of

dairy-producing countries. The comparison between the new ap-

proach that accounts for slacks and the traditional dynamic ap-

proach, based on dynamic directional distance function, indicates

that there are differences in dynamic inefficiencies. The new ap-

proach shows more inefficiency, which proves to be caused mainly

by the inefficiency of investments. 

Future research efforts could focus on extending the dynamic

weighted additive model developed in this paper to other mea-

sures within the family of weighted additive models such as, the

range-adjusted measure (RAM) ( Cooper et al., 1999 ), the bounded-

adjusted measure (BAM) ( Cooper et al., 2011 ) or the slacks-based

measure (SBM) ( Tone, 2001 ). As future research, the general model

developed in this study for the case of the full input–output space

can be also converted into its input-oriented or output-oriented

versions. Another important extension of the current study would

be applying the dynamic weighted additive model to the context of

measuring productivity change over time and incorporating slacks.
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