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Abstract
This paper introduces the methodology necessary to evaluate inefficiency of reg-
ulated decision making units that operate under quotas through data envelopment 
analysis, accounting for both quotas restrictions and negative environmental exter-
nalities of production. Three technical inefficiency measures are proposed: ineffi-
ciency in the production of marketed output, environmental inefficiency, and inef-
ficiency with quotas. It is then shown how to aggregate these measures in order to 
obtain indicators of overall performance. The new approach is illustrated through a 
numerical example that uses real data available for the European Union dairy sec-
tor. The results show that considerable differences in inefficiencies could be found 
when quotas restrictions are accounted for in the model than in the model without 
quota imposition, indicating that not accounting explicitly for quotas when measur-
ing performance in regulated sectors may lead to a not accurate estimation of firms’ 
technical inefficiency.

Keywords  Data envelopment analysis · Environmental and technical inefficiency · 
Production under quotas

1  Introduction

Many types of economic sectors throughout the world are subject to intervention 
by government policies that control the supply side of production. One of the forms 
of such supply limitation consists of production quotas that impose constraints on 
production thereby preventing an excess being produced. Such policy is often imple-
mented in the agriculture sector as agricultural price support programs provide 
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incentives for greater production (Alvarez et al. 2006). One of the noteworthy exam-
ples of quota system is the European Union (EU) policy with respect to the limita-
tion of milk production in the dairy sector,1 from 1984 until its abolition in 2015. 
Quota restrictions were introduced through the European Common Agricultural 
Policy (CAP) in response to significant overproduction of milk and budgetary defi-
cits (Naylor 1987). The quota system allowed for milk quota transfers at farm level 
within each country and involved the application of a levy on the overrun in the 
national quota.2 In general, there were two types of quotas available: ‘delivery to 
dairies’ quota (the maximum amount of milk delivered to dairies) and ‘direct sales 
to customers’ quota (the limit for direct sales at farm level). In the part of this article 
devoted to provide a numerical and illustrative example, we focus our attention on 
the former case of quota in the dairy sector at the level of EU countries.

The impact of quotas has been analyzed from various perspectives including 
prices and income (e.g., De Frahan et al. 2011), herd size (e.g., Huettel and Jonge-
neel 2011), price and price uncertainty (e.g., Burrell 1985; Bouamra-Mechemache 
et al. 2008) and efficiency (e.g., Alvarez et al. 2006). Theoretical considerations on 
the efficiency effects of quota policy suggest the creation of economic inefficiency 
by this system in comparison to a free market policy (Fulginiti and Perrin 1993). 
However, the theory also argues that efficiency could improve and efficient produc-
ers would expand their activity at the expense of less efficient producers, especially 
when quotas are tradeable (Alston 1981; Colman 2000; Alvarez et al. 2006; Areal 
et  al. 2012a), and especially when restrictions on milk quota trade are removed 
(Boots et al. 1997). Empirical research on the efficiency effects of a quota regime 
or incorporating quotas as one of the variables in efficiency measurement is rather 
scarce, while reported results are inconclusive (see Alvarez et al. 2006; Sauer 2010; 
Areal et al. 2012a, b; Steeneveld et al.; 2012; Aparicio et al. 2017a).

Additionally, the measurement of environmental efficiency of economic sec-
tors integrating, in addition to marketed (desirable, intended or ‘good’) output, the 
negative environmental externalities into efficiency modeling (the production of so 
called undesirable, unintended or ‘bad’ outputs, such as pollution) is an increasingly 
important focus of recent economic research. The agriculture sector, and within 
it the dairy sector, are not exceptions.3 Numerous authors have analyzed the effi-
ciency of different agricultural sectors accounting for undesirable factors, for exam-
ple, Chambers et al. (2014) study on cereals, oilseeds and protein crops, Serra et al. 

1  Despite the recent removal of the quota system from the EU dairy sector, as soon as 2016 a new policy 
to regulate this market with an objective similar to quotas—to reduce the quantity of milk available on 
the market was introduced. This policy is called ‘milk production reduction scheme’ (European Commis-
sion 2016).
2  The quantities of quotas were divided among producers in each EU member country. The quota trans-
fers and exchanges were allowed with trading rules differing across member countries leading to a large 
heterogeneity in the implementation of quotas between countries (Ang and Oude Lansink 2016). If the 
quantities of milk exceeded the quota at country level, the levy needed to be paid by the member country 
responsible for producing the surplus.
3  The review of different approaches to modeling environmental efficiency in the agriculture sector is 
made by Oude Lansink and Wall (2014).
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(2014) analysis of arable crop farms or Dakpo et al. (2017) for sheep meat farming. 
Regarding the environmental efficiency of dairy farming, studies include the analy-
sis of dairy farms in Scotland by Shortall and Barnes (2013), Dutch dairy farms by 
Reinhard et al. (1999, 2000), Swiss dairy farms by Ferjani (2011), and dairy farms 
in Spain by Pérez Urdiales et al. (2016) and Orea and Wall (2017).4

The studies discussed here have in common the fact that the production of ‘bad’ 
outputs and quota restrictions on production when measuring inefficiency, were 
not considered simultaneously, which can lead to biased measures of inefficiency. 
This article proposes a new method to analyze inefficiency of decision making units 
(DMUs) accounting for both quotas and negative environmental externalities. As we 
will show through a numerical example, not accounting for quotas when measuring 
inefficiency of the system regulated by quotas could lead to substantial differences 
in inefficiency as compared to the situation when quotas are taken into account.

With regard to dealing with negative environmental externalities, several meth-
odologies are available for modeling pollution-generating technologies when 
measuring DMUs inefficiency. In this study we build on the recent approach of by-
production (Murty et al. 2012), which is based on the idea of considering two sub-
technologies in parallel: one that generates good outputs and a second that generates 
bad outputs. Extending Murty et al. (2012), we introduce the ‘by-production’ out-
put-oriented directional distance function, which allows environmental inefficiency 
to be measured accounting for production quotas. Our approach is operationalized 
using Data Envelopment Analysis (DEA). Within our approach three inefficiency 
measures are proposed on by-production technologies with quotas: (1) standard 
technical inefficiency in the production of marketed output, (2) environmental ineffi-
ciency, and (3) inefficiency with quotas. Based on these inefficiency indicators some 
measures of overall performance are proposed.

Our study contributes to the literature in two main ways. Firstly, we develop a 
novel method to measure technical inefficiency of the system in which DMUs pro-
duction decisions are regulated by quotas accounting for both quotas and undesirable 
outputs. In particular, through the new approach we demonstrate that not accounting 
for quotas could lead to substantial changes in inefficiency of DMUs. Secondly, we 
extend the by-production model and propose the ‘by-production’ output-oriented 
directional distance function accounting for quotas to measure DMUs inefficiency.

The method developed is illustrated through a numerical example using the data 
on the dairy sector of 23 EU countries during 2005, 2007, 2010 and 2013. Explor-
ing environmental inefficiency accounting for quotas could be relevant from a policy 
perspective as it could provide some suggestions on how the sector can improve its 
level of efficiency through implementing various policy measures.

The structure of the article is as follows. We start by briefly reviewing the meth-
odologies to measure environmentally sensitive efficiency with particular attention 
to the by-production model. Next, we develop our model for measuring environmen-
tal inefficiency incorporating quotas, thereby extending the by-production model. 

4  The literature on modeling efficiency of dairy farms without taking into account environmental factors 
is more extensive including the studies by Mbaga et al. (2003), Alvarez and del Corral (2010), Emvalo-
matis et al. (2011) or Sauer and Latacz-Lohmann (2015).
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Then, we discuss the data and the results. The final section of the article contains a 
summary and some conclusions.

2 � The by‑production approach to modeling pollution

The study of environmentally sensitive efficiency taking into account undesirable 
outputs has grown significantly in recent years (see, for example, Aparicio et  al. 
2017b). The asymmetric modeling of outputs when measuring efficiency depending 
on their nature, increasing those that are market oriented while reducing those that 
are detrimental to the environment, was initiated by Färe et al. (1986). One impor-
tant question is on how to model undesirable outputs when calculating technical effi-
ciency. Most particularly, if the axioms underlying the production technology should 
reflect their strong or weak disposability, and eventually, if they should be modeled 
as outputs or as if they were inputs. But in this latter case an infinite amount of unde-
sirable outputs could be produced with limited inputs in the standard model, which 
is a controversial hypothesis. For many years there has been an ongoing debate on 
this issue in the framework of environmental efficiency measurement (see, on the 
one hand, Hailu and Veeman 2000; Färe and Grosskopf 2003; Hailu 2003; and, on 
the other hand, Seiford and Zhu 2002; Färe and Grosskopf 2004; Seiford and Zhu 
2005). Dakpo et al. (2016) is an updated revision on how to characterize undesir-
able production based on alternative approaches, including: (a) the Materials Bal-
ance Principle requiring knowledge of the technical coefficients (weights) between 
desirable outputs, undesirable outputs and inputs, and whose most recent evolution, 
based on the concept of G-disposability is Hampf and Rødseth (2015); and (b) the 
use of two sub-technologies (by-production): one generating the desirable outputs 
and a second generating the undesirable outputs (Førsund 2009; Murty, et al. 2012).

Among the existing approaches for dealing with undesirable outputs and effi-
ciency, the by-production model introduced by Murty and Russell (2002) and Murty 
et al. (2012) is currently considered as one of the better options (for applications in 
agriculture see, for example, Chambers et al. 2014; Serra et al. 2014; Dakpo et al. 
2017). The by-production approach posits that complex production systems are 
made up of several independent processes (Frisch 1965). In this model, the technol-
ogy can be separated into sets of sub-technologies; one for the production of good 
outputs and one for the generation of bad outputs. The ‘global’ technology implies 
interactions between several separate sub-technologies. Førsund (2018) and Murty 
and Russell (2018) have recently classified the by-production approach among the 
multi-equation modeling approaches and argued that an important advantage of this 
approach is that it represents pollution-generating technologies by accounting for 
Material Balance Principle and therefore satisfies thermodynamic laws. Addition-
ally, as Murty et al. (2012) point out, the by-production model avoids two inconsist-
encies of previous approaches. In particular, there could be several technical effi-
ciency combinations of good and bad outputs, with varying levels of bad output, that 
are possible holding (pollutant and non-pollutant) input quantities fixed. However, 
in the absence of the application of abatement activities in the firm, this type of 
combinations are contrary to the phenomenon of by-production, since by-production 
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implies that at fixed levels of inputs there is only one level of pollution at the fron-
tier of the production possibility set. Moreover, it is possible to observe a negative 
trade-off between the inputs associated with the pollution, like fuel, and the bad 
output, like CO2, which represents a clear inconsistency (more fuel and, however, 
less CO2). These are the reasons why the by-production approach is utilized in this 
paper for determining the efficiency of the dairy sector in EU under the generation 
of desirable (meat and milk) and undesirable (pollutants) outputs. In particular, we 
will extend this approach to the case of production taking into account milk quotas.

In order to briefly review the standard by-production approach, let us formally 
define x ∈ Rn

+
 as a vector of inputs, y ∈ Rm

+
 as a vector of good outputs, z ∈ Rm�

+
 as a 

vector of pollutants, and let us assume that p DMUs have been observed. To work it 
out, Murty et al. (2012) split the input vector into two groups5: non-pollution caus-
ing inputs, x1 ∈ R

n1
+ , and pollution-generating inputs, x2 ∈ R

n2
+  , with n1 + n2 = n . The 

first set could comprise land and labor, while the second set could be inputs like num-
ber of cows in the production of meat and milk, and certain pollutants as by-products.

In this way, the ‘global’ technology, denoted by T , is the intersection of two sub-
technologies, T1 and T2 . Whereas T1 is the standard production technology with only 
good outputs, T2 represents the production of bad outputs. Both technologies are linked 
through the level of pollutant inputs of the evaluated DMU, for example number of 
cows. It is important to highlight that the recent paper by Førsund (2018) argues that 
non-pollution causing inputs could also be included in technology T2 given that sub-
stitution between non-pollution causing inputs can help mitigating the pollution. Addi-
tionally, Dakpo et al. (2017) indicate that some additional constraints must be added to 
the by-production approach by Murty et al. (2012) in order to guarantee that the projec-
tion points for input dimensions are the same in T1 and T2 . In our study, seeking simplic-
ity, we extend the original model by Murty et al. (2012). Nevertheless, our model can 
be easily adapted to the models proposed by Dakpo et al. (2017) and Førsund (2018).

In the non-parametric framework of DEA the two sub-technologies may be 
expressed mathematically under Variable Returns to Scale (VRS) as6:

(1)

T1 =

{(
x1, x2, y, z

)
≥ 0 ∶

p∑
d=1

�dx1d ≤ x1,

p∑
d=1

�dx2d ≤ x2,

p∑
d=1

�dyd ≥ y,

p∑
d=1

�d = 1, �d ≥ 0

}

T2 =

{(
x1, x2, y, z

)
≥ 0 ∶

p∑
d=1

�dx2d ≥ x2,

p∑
d=1

�dzd ≤ z,

p∑
d=1

�d = 1,�d ≥ 0

}

5  Ayres and Kneese (1969) proposed these two same groups when introducing the materials balance to 
economists.
6  Bad outputs are introduced as “inputs” in sub-technology T2, something that was criticized in the pre-
vious literature on environmental efficiency measurement, as we pointed out in this section. However, 
Murty and Russell (2018) have recently defended the by-production approach, indicating that there are 
a lower bound and an upper bound on emission generation for given amounts of emission-generating 
inputs. The existence of an upper and lower boundary for emissions complicates the modeling of an 
emission-generating technology, particularly in the study of its disposability and the implied monotonic-
ity properties. Fortunately, as they treat emissions as undesirable by-products, efficiency requires mini-
mization of the production of emissions, conditional on input quantities. Therefore, the attention can be 
restricted to the study of the properties of the lower bounds on emission generation, which is what is 
really estimated by the specification of T2.
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Finally, T = T1 ∩ T2.
Note that the sub-technologies are defined with two different intensity variables, 

� and � . Additionally, as Murty et al. (2012) highlight, T1 satisfies the standard free-
disposability property of inputs (pollutant and non-pollutant) and the good output. On 
the pollution side, the bad outputs satisfy the assumption of costly disposability, which 
implies the possibility of observing inefficiency in the generation of pollution (see 
Murty 2010, for more details).

Regarding the measurement of technical efficiency, Murty et al. (2012) show that 
some conventional approaches, like the hyperbolic and directional distance func-
tion defined on T = T1 ∩ T2 , are inadequate in the context of by-production. We say 
‘output-oriented’ in this context because these distance functions measure efficiency 
in both good and bad outputs at the same time. In this way, the weakness is due to the 
fact that the two aforementioned measures use the same coefficient (decision variable) 
for determining efficiency both in T1 for the good outputs and T2 for the bad outputs. It 
implies that it is possible to reach the efficiency frontier for some of the sub-technol-
ogies but we can be short in achieving the frontier of the other one. Efficiency in the 
by-production approach needs efficiency models that project the assessed observations 
onto the efficient frontier of T1 and the efficient frontier of T2 at the same time.

The above drawback of standard approaches motivated Murty et al. (2012) to pro-
pose a different measure for dealing with good and bad outputs under by-production. 
This measure is good output-specific and bad-output specific and is based on the index 
previously defined by Färe et al. (1985):

(2)

min
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

m

m�
j=1

�j

⏟⏞⏟⏞⏟
standard
efficiency

+
1

m�

m��
k=1

�k

⏟⏞⏟⏞⏟
environmental

efficiency

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

s.t.
p∑

d=1

�dxid ≤ xi0, i = 1,… , n

p∑
d=1

�dyjd ≥ yj0
�
�j, j = 1,… ,m

p∑
d=1

�d = 1,

p∑
d=1

�dxid ≥ xi0, i = n1 + 1,… , n

p∑
d=1

�dzkd ≤ �kzk0, k = 1,… ,m�

p∑
d=1

�d = 1,

�j ≤ 1, j = 1,… ,m

�k ≤ 1, k = 1,… ,m�

�d ≥ 0, �d ≥ 0, d = 1,… , p
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The optimal value of (2) coincides with the mean of the standard good-output-
oriented efficiency and the environmental bad-output-oriented efficiency. Note also 
that the above model is separable. In this case, this means that the optimal value can 
be determined as the mean of a model that minimizes 1

m

∑m

j=1
�j on T1 and a model 

that minimizes 1
m�

∑m�

k=1
�k on T2:

In the next section, we extend the by-production approach to the case of quota-
constrained production for some good output, as happens in the dairy sector in the 
EU. To do that, we introduce the ‘by-production’ output-oriented7 directional dis-
tance function, which uses a different coefficient (decision variable) for bad and 
good outputs. The advantage of using a directional distance function approach in 
contrast to the above measure is that it allows the quota to be dealt with ‘naturally’, 
i.e., we will get positive values of the inefficiency measure for firms that operate 
satisfying the quota and negative values for firms that violate the quota; something 
that is not possible in the case of resorting to model (3) and adding quotas.8 Moreo-
ver, fixing a reference direction for the potential improvement of production of good 
outputs in T1 allows the technical inefficiency of each firm to be determined and 
decomposed into a part due to the quota system and another due to a bias the mod-
eler makes in case the quotas are ignored in the analysis.

(3)

min
1

m

m∑
j=1

�j min
1

m�

m�∑
k=1

�k

s.t.
p∑

d=1

�dxid ≤ xi0, i = 1,… , n s.t.
p∑

d=1

�dxid ≥ xi0, i = n1 + 1,… , n2

p∑
d=1

�dyjd ≥ yj0
�
�j, j = 1,… ,m

p∑
d=1

�dzkd ≤ �kzk0, k = 1,… ,m�

p∑
d=1

�d = 1,
p∑

d=1

�d = 1,

�j ≤ 1, j = 1,… ,m �k ≤ 1, k = 1,… ,m�

�d ≥ 0, d = 1,… , p �d ≥ 0, d = 1,… , p

7  The reason why we select this particular orientation is twofold. First, from a methodological point of 
view, it seems natural to resort to the same orientation as used by Murty et al. (2012) since our approach 
is, in part, an extension of that model. Second, from an empirical point of view, it makes sense to inves-
tigate the direct effect of the quota on the inefficiency measure through an output-oriented framework 
since quota limits the output production and affects it directly.
8  In model (3) we could substitute �j ≤ 1 by �j free in the presence of quotas in order to avoid the pos-
sibility of infeasibilities when the assessed DMU exceeds the quota constraints. However, if we use that 
modified model to evaluate a unit that satisfies the quotas, then it is not possible to assure that �j ≤ 1 for 
all j at optimum, which allows to apply the Pareto dominance notion. In this sense, the model that we 
propose in this paper may be seen as more natural for dealing with this type of context since we do not 
need to adapt it for units satisfying the quotas and for units exceeding them.
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3 � Environmental inefficiency measurement with quotas

Let us assume that each DMU (the dairy sector in each country) produces two out-
puts, milk and meat, from the consumption of several inputs, like land, labor and 
cows. In this case, both land and labor can be considered as non-pollution-generating 
inputs, while cows are related to some type of pollution like greenhouse gas emis-
sions from manure management and enteric fermentation of cattle. Let us assume, 
without loss of generality, that milk represents the first output. In addition, let us 
suppose that the market regulator imposes DMU-specific milk quotas that must be 
taken into account. This is, for example, the case of the EU dairy sector which will 
be analyzed as an illustrative numerical example in this paper.

In this context, the (conditioned) production possibility set for DMU0 with quota 
q0 is defined as:

Therefore, by definition, the conditioned production possibility set Tq0 is the orig-
inal ‘unbounded’ technology T  with a DMU-specific upper bound for the milk pro-
duced. Additionally, in our context, the quota exclusively affects T1 since T  is separa-
ble into T1 and T2 . Note that Tq0 is not a standard technology under the deterministic 
approach since some units can exceed their corresponding quota and, therefore, they 
can be located outside of the set Tq0.

Let us now introduce the ‘by-production’ output-oriented directional distance 
function in DEA. As we explained in the previous section, Murty et al. (2012) dis-
missed the conventional measures, in particular, the hyperbolic and directional dis-
tance function, because they use the same coefficient for dealing with good and bad 
outputs in T1 and T2 at the same time. Therefore, the by-production output-oriented 
directional distance function needs to treat good and bad outputs in a different way 
(see Aparicio et al. 2013, where a modified directional distance function that plays 
with two different ‘betas’ is introduced in the standard production context). The by-
production output-oriented directional distance function must be calculated through 
the two following linear problems.

As usual, we will use actual values of the outputs of the evaluated DMU as the 
reference directional vectors, i.e., (gT1

0
, g

T2
0
) = (y0, z0) . By using this reference vector, 

(4)
Tq

0 = T ∩
{(

x
1
, x

2
, y, z

)
≥ 0 ∶ y

1
≤ q

0

}

=
[
T
1
∩
{(

x
1
, x

2
, y, z

)
≥ 0 ∶ y

1
≤ q

0

}]
∩ T

2
= T

q

1
∩ T

2

(5)

max �T1 max �T2

s.t.
p∑

d=1

�dxid ≤ xi0, i = 1,… , n s.t.
p∑

d=1

�dxid ≥ xi0, i = n1 + 1,… , n

p∑
d=1

�dyjd ≥ yj0 + �T1g
T1
j0
, j = 1,… ,m

p∑
d=1

�dzkd ≤ zk0 − �T2g
T2
k0
, k = 1,… , ,m�

p∑
d=1

�d = 1,

p∑
d=1

�d = 1,

�T1 ≥ 0, �T2 ≥ 0,

�d ≥ 0, d = 1,… , p �d ≥ 0, d = 1,… , , p
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note that the optimal value �T2∗ is always between zero and one, with zero signaling 
efficiency in T2 . However, regarding the optimal value �T1∗ , we cannot say the same. 
We only know that �T1∗ ≥ 0 , with zero signaling efficiency in T1 . So, in order to 
define an ‘overall’ measure as a mix of standard and environmental inefficiency, we 
suggest using the aggregated measure:

which is always between zero and one and a value of zero is associated with 
�T1∗ = �T2∗ = 0.

In our quota-driven context, where the first good output is upper-bounded by the 
regulator, the model associated with T1 must be transformed adding a constraint 
associated with the quota9,10:

(6)
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

�
1 −

1

1 + �T1∗

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
intended inefficiency

without quota

+ �T2∗

⏟⏟⏟
unintended
inefficiency

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

max �T
q

1

s.t.
p∑

d=1

�dxid ≤ xi0, i = 1,… , n

p∑
d=1

�dyjd ≥ yj0 + �T
q

1 yj0, j = 1,… ,m

p∑
d=1

�d = 1,

y10 + �T
q

1 y10 ≤ q0,

�T
q

1 free,

�d ≥ 0, d = 1,… , p

9  We assume that data observed from the DMUs, inputs and outputs, are affected by the quota restric-
tions because it is reasonable to think that farms have accounted for quotas in their production plans 
before producing. Consequently, quotas affect the input mix and thereby influence the pollutant inputs 
and, implicitly, the bad outputs. However, in our mathematical approach, the constraint associated with 
the quota appears exclusively in the model related to the standard technology (T1) since good outputs, 
which are in this case the type of outputs that are regulated, are the only part of the model for measuring 
standard technical efficiency. Note that, in fact, following Murty et al. (2012), good outputs are not a part 
of the model associated with the environmental technology T2.
10  Brännlund et  al. (1995) is related to our approach. Brännlund et  al. (1995) analyzed the impact of 
environmental regulation in the Swedish pulp and paper industry on firms’ profit. On one hand, a com-
mon feature of Brännlund et al. (1995) and our approach is the way in which regulation is introduced in 
the model: an upper bound for good outputs. On the other hand, there are two main differences between 
our model and Brännlund et  al. (1995). Firstly, Brännlund et  al. (1995) focused on profit inefficiency 
while our approach focuses on technical inefficiency. In particular, we selected the directional distance 
function (DDF) for measuring environmental technical inefficiency and defined a suitable DDF to work 
in the context of by-production (Murty et  al., 2012). Secondly, Brännlund et  al. (1995) introduced the 
bad outputs in their model as inputs in one step without distinguishing between non-pollution causing 
inputs and pollution-generating inputs. In our approach, which is based on the recent by-production 
model (Murty et al., 2012), the bad outputs are exclusively introduced in sub-technology T2, distinguish-
ing between the two mentioned types of inputs.
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In this case, �T
q

1
∗ can take positive and negative values depending on whether the 

evaluated firm satisfies the quota or not.11 If �T
q

1
∗
≥ 0 , then its value represents the 

standard technical inefficiency with respect to the frontier of Tq

1
 , while 𝛽T

q

1
∗ < 0 is a 

measure of the non-fulfillment of the quota, i.e., it does not measure standard techni-
cal inefficiency. In particular, in case of being 𝛽T

q

1
∗ < 0 , the bigger |||�T

q

1
∗||| is, the big-

ger is the non-fulfillment. For this scenario of by-production with quota, we 
suggest:

(8)
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎝
1 −

1

1 +
����T

q

1
∗���

⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

intended inefficiency with quota
or non - fulfillment of the quota

+ �T2∗

⏟⏟⏟
unintended
inefficiency

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1   Illustrative example for T
1
 and Tq

1

11  A negative value in the traditional output-oriented directional distance function reflects that the evalu-
ated output bundle is not feasible, i.e. the inputs are not sufficient to produce the output. However, in our 
approach this interpretation changes and a negative value is associated with producing beyond the quota 
(see Fig. 1 below).
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as a measure of overall performance. If �T
q

1
∗
≥ 0 , then the first term in the aggre-

gated measure is related to standard technical inefficiency, whereas if 𝛽T
q

1
∗ < 0 , then 

its value is associated with the non-fulfillment of the quota.
An advantage of using the directional distance function in T

1
 and Tq

1
 is that the 

inefficiency can be computed through the same reference direction, which implies 
that, for firms satisfying the quota, �T1∗ may be decomposed into �T

q

1
∗ , which is the 

inefficiency due to the quota, plus a bias that the modeler makes in case the quotas 
are ignored. We go on to show this and other scenarios through a graphical example.

In Fig. 1, the frontier of T
1
 is the piece-wise linear function that envelops all the 

DMUs (A, B, C, D, E and F). Let us assume that the quota is fixed in y1 = 2 . In this 
way, the set Tq

1
 is the intersection between T

1
 and the points that satisfy y1 ≤ 2 . Con-

sequently, the frontier of Tq

1
 only coincides in part with the frontier of T

1
 . There are 

several possible scenarios. DMU A represents a firm that is technically efficient for 
both T

1
 and Tq

1
 and, in fact, �T1∗

A
= �

T
q

1
∗

A
= 0 . DMU B represents a firm that is techni-

cally efficient in T1 , �
T1∗

B
= 0 , but it does not satisfy the quota. So, 𝛽T

q

1
∗

B
< 0 and 

||||�
T
q

1
∗

B

|||| 
signals how big is the non-fulfillment. Moreover, we have a DMU like D, which ful-
fills the quota but it is not technically efficient in Tq

1
 . Additionally, D can be projected 

onto a part of the frontier of T
1
 that is not part of the frontier of Tq

1
 (DMU B). In this 

case, 𝛽T1∗
D

> 𝛽
T
q

1
∗

D
> 0 . In this way, �T1∗

D
= �

T
q

1
∗

D
+ }pure (engineering) inefficiency’ . 

DMU E represents a firm that fulfills the quota, is in the interior of Tq

1
 and its associ-

ated projection is part of the frontier of Tq

1
 (DMU A). In this case, 𝛽T1∗

D
= 𝛽

T
q

1
∗

D
> 0 . 

Finally, DMU F represents a firm that violates the quota and is in the interior of T
1
 . 

Under this scenario, 𝛽T1∗
F

> 0 and 𝛽T
q

1
∗

F
< 0.

4 � Dataset and variables

This section uses data on dairy sectors in twenty-three countries from the EU for 
2005, 2007, 2010 and 2013 (balanced panel).12 The following EU countries have 
been excluded from the sample due to the lack of the data on quotas for some years: 
Poland, Slovenia, Bulgaria, Romania, and Croatia.13 We undertake our analysis with 
aggregated data at the country level and not at the farm level since data on quotas is 
available only at the country level.14

12  The data for quotas and milk production is available for the periods 2004/2005, 2006/2007, 2009/2010 
and 2012/2013, which corresponds to the years 2005, 2007, 2010 and 2013, respectively, for which the 
rest of variables is presented.
13  For Poland and Slovenia the period 2005/2006 was the first year of the application of the quota sys-
tem, Bulgaria and Romania entered EU in 2007 and their first period of quota data was 2007/2008, while 
Croatia became EU member in 2013 and its first period of quota data is 2013/2014. So there is no rel-
evant data of quotas for these countries for some of the years of the period analyzed in this paper, hence 
these countries were excluded from our sample.
14  The aggregated data concerns specialist dairy farms and cattle-dairying, rearing and fattening com-
bined farms.
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In the numerical example we use the following variables: two non-pollution caus-
ing inputs, utilized agricultural area (in hectares) and total labor force (in terms of 
full-time labor equivalents measured in annual work units AWU);15 one pollution-
generating input, number of cows (in thousand heads of animals); two good out-
puts, production of cows’ milk (in tons) and production of cows’ meat (in thousands 
of tons); and two bad outputs, the greenhouse gas emissions from cattle manure 
management (in thousands of tons) and the greenhouse gas emissions from enteric 
fermentation of cattle (in thousands of tons).16 Additionally, we consider that milk 
production is restricted by the quota system, hence our additional variable is quota 
volume (in tons).17 To sum up, in this application, technology T1 is composed of 
utilized agricultural area, total labor force, number of cows, milk production, and 
meat production, while technology T2 is made by the number of cows, greenhouse 
gas emissions from cattle manure management, and greenhouse gas emissions from 
enteric fermentation of cattle. Overall, such configuration of T1 and T2 is consistent 
with the initial idea of Murty et al. (2012).18 As was explained before, inefficiencies 
under technologies T1 and T2 are calculated by two separate DEA models (which is 
in line with Murty’s et al. (2012) approach). Hence, we never use all input and out-
put variables in one DEA model and both DEA models estimated comply with the 
‘rule of thumb’ provided by Dyson et al. (2001) (that is, in order to achieve a reason-
able level of discrimination in DEA one needs the number of DMUs to be at least 
2 m × s where m × s is the product of the number of inputs and number of outputs).

Data on utilized agricultural area, total labor force, number of cows, meat pro-
duction, greenhouse gas emissions from cattle manure management and greenhouse 
gas emissions from enteric fermentation of cattle was derived from Eurostat (2017). 
Eurostat’s (2017) data comes from the Farm Structure Survey which is used to col-
lect information on agricultural holdings in the EU member states over different 
geographical regions and periods. Target population of the survey is the universe of 
the agricultural holdings, excluding only the smallest holdings which together con-
tribute 2 percent or less to the total utilized agricultural area and 2 percent or less to 
the total number of farm livestock units. Data on milk production and quotas was 
derived from the EU Milk Market Observatory of European Commission (2017). 
This observatory is prepared based on the data from surveys on dairies covering 
95% of the cows’ milk collected by Member States. Therefore, being the sum of data 
on almost all farms within each country, the data represents almost the whole dairy 

15  Full time corresponds to 1800 annual working hours.
16  The main environmental issues of dairy sector concern water and air pollution, with the latter being 
mainly from manure management and enteric fermentation (OECD 2004). Due to the absence of data for 
water pollution of dairy sector, we restrict our analysis to bad outputs related with greenhouse gas emis-
sions.
17  As it was mentioned before, our analysis focuses on the delivery quotas. Hence, the variable of milk 
production is equivalent to quantities of milk delivered to dairies and quota is equivalent to available 
quota for deliveries.
18  Usually in the literature concerning agricultural efficiency, the production technology is modeled also 
including general production costs or purchased feed (see for example, Emvalomatis et al. 2011). How-
ever, such data was missing in the datasets used in this study, while in other datasets such data would not 
be comparable to the remaining variables in our sample.
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production in each country, hence it can be considered to approximate well the real 
production. However, because our data does not include all EU countries (due to 
the absence of data for some countries, as explained before), our empirical applica-
tion serves mainly as an illustration and a numerical example on how the proposed 
method works. Finally, since only a small fraction of data is presented for every 
year, we are restricted to the years for which the data on all variables is available, 
that is 2005, 2007, 2010 and 2013.

Table  1 reports the descriptive statistics (average and standard deviation), for 
each input, output and quota for every country in the sample, for the data pooled for 
each year. This data underscores dairy sector in Malta as having the smallest val-
ues of all variables, and, by contrast, dairy sector in France and Germany exhibiting 
the largest values of almost all variables, on average. Table data also indicate that 
these two latter countries are the most polluting in terms of greenhouse gas emis-
sions from manure management and enteric fermentation. Interesting to note from 
the table is that the Netherlands exceeded their quota allowance (milk production 
larger than quota, on average) over all years analyzed. However, as we will see later 
in the results obtained, other countries also exceeded their milk quota when particu-
lar years are analyzed.

5 � Results

The analysis was undertaken in two steps. First, we analyzed the inefficiency results 
obtained for good output technology T1 ( �T1∗ ), for bad output technology T2 ( �T2∗ ) 
and for good output technology with quota Tq

1
 ( �T

q

1
∗ ), following Eqs. (5) and (7), for 

dairy sector in each of the analyzed countries, for each of the analyzed years and for 
all years together. We then computed overall performance measures given Eqs. (6) 
and (8) without taking into account quotas and incorporating the quota restriction, 
respectively, for dairy sector in each of the sample countries, for each of the sam-
ple years and for all years together. To test the differences between individual and 
overall performances we apply the Simar and Zelenyuk (2006) test (S–Z test). The 
S–Z test focuses on the comparison of the entire distributions, not on summary 
statistics such as the means or the medians (as it is in the case of the two-sample 
t test and the Kruskal–Wallis test, respectively). The S–Z test is based on the Li 
(1996) test, which measures the global distance (closeness) between two densities. 
The S–Z test consists of adaptation of Li (1996) test for the case of DEA efficiency 
scores, by accounting for the fact that efficiency distribution is bounded and that 
estimated rather than ‘true’ efficiency scores are measured by DEA. In particular, 
it is based on the computation and bootstrapping of the Li statistic (Li 1996) using 
DEA scores, where scores for efficient firms are smoothed by adding a small noise. 
Overall, the application of this test allows for robust statistical analysis in the context 
of efficiency measures estimated using DEA.19

19  We apply this test using the data for all analyzed years together instead of performing it year by year 
to have a large enough sample size. In particular, Li (1996) shows in Monte Carlo simulations that the 
test performs well for moderate sample sizes. Also, Simar and Zelenyuk (2006) show through Monte 
Carlo simulations that the test is a reliable tool for moderate dimensions of the DEA model (as measured 

Author's personal copy



	 J. Aparicio et al.

1 3

We computed inefficiency results by pooling all countries together, hence we 
have implicitly assumed that these countries have access to similar environmental 
technology. This assumption is consistent with previous research on environmen-
tal efficiency (for example, Zofio and Prieto 2001; Mahlberg and Sahoo 2011; Färe 
et  al. 2004; Vlontzos et  al. 2014; Jaraitė and di Maria 2012). The assumption of 
technology homogeneity is reasonable when countries are advanced (Zofio and Pri-
eto 2001). In fact, all countries in our sample are high income economies. Moreo-
ver, all countries belong to the EU and, hence, agriculture in all these countries is 
impacted by a variety of policies such as the European Common Agricultural Policy 
(CAP), regional policy, environmental policy, food safety policy, competition policy 
and innovation policy that render production technologies similar across these coun-
tries (European Parliament 2016).20

Table  2 reports the results obtained for �T1∗ , �T2∗ and �T
q

1
∗ for the year 2005. 

Table 2 shows that twelve countries in the sample proved to be efficient under tech-
nology T1 , that is, they were able to produce more milk and meat using the same 
amount of inputs of land, labor and cows compared to remaining countries in the 
sample. Nevertheless, the results also show that in 2005 not all countries that were 
efficient under technology T1 , were also efficient under technology T2 . In particular, 
out of these twelve countries efficient in T1 , there were six countries that were inef-
ficient in T2 emitting more greenhouse gases while maintaining input of cows at its 
current level compared to other countries. Looking more closely at the results of 
�T2∗ , we can observe that there were ten countries that were ecologically efficient 
with environmental inefficiency scores equal to 0, that is, they were able to gener-
ate less pollution with the current amount of cows as compared to other countries. 
Table 2 seems to indicate also that for the majority of cases, the countries that were 
more inefficient in technology T1 were likely to be less environmentally inefficient 
under T2 , and vice versa. Hence, some trade-offs existed in our sample between 
inefficiency in the production of good outputs and bad outputs. According to the 
results for �T

q

1
∗ , that is inefficiency under technology Tq

1
 ( T1 with quota restriction) 

Footnote 19 (continued)
by the number of inputs and outputs) relative to the sample size. In particular, they concluded that the 
power of the test is fairly good for the DEA model of two or three inputs and one output for as many as 
50 observations in each group. And, for example, for five inputs and one output for 20 observations in 
each group, they show that the power of the test is quite low. Given the maximum of five dimensions of 
the DEA model that we have (to estimate good outputs technology we have three inputs and two outputs) 
and 23 observations of countries in each year, the application of the test on a yearly basis would result in 
the low power of the test. Hence, we decide to apply the S-Z test for all years together, which results in a 
considerably larger sample size given the dimensions of the DEA model.
20  We estimated frontiers separately for each year, which means that we are not able to interpret the 
results of inefficiency changes over time as improving or worsening with certainty. To interpret the 
results of inefficiency changes over time with more certainty we would need, for example, to compute 
inefficiency for all years together (hence, assuming that technology and frontier is not changing over 
time).
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in Table 2, nine countries exceeded their quota allowance, presenting the negative 
values of inefficiency. Out of these nine countries, Belgium, Denmark, Germany, 
Ireland, Spain, Italy and the Netherlands were the countries that were efficient in T1 , 
but they did not satisfy the quota requirement of 2005; their non-fulfillment is equal 
to 0.0072, 0.0004, 0.0147, 0.0084, 0.0111, 0.0383 and 0.0063, respectively. These 
countries present a similar behavior as DMU B in Fig. 1. On the contrary, Luxem-
bourg and Austria, while violating the quota limit, were inefficient in T1 , presenting 
similar behavior as firm F on Fig. 1. Worth noting are France and Malta which are 
the only countries that were efficient in both T1 and T2 , and at the same time they 
fulfilled the quota requirement and were efficient under the quota system. Such situ-
ation is similar to DMU A in Fig. 1. Finally, we have nine countries similar to DMU 
D in Fig. 1, which satisfied the quota but they were inefficient in both T1 and Tq

1
 , and 

their �T
q

1
∗ is lower than �T1∗ . Among these countries, for example, ‘the bias associ-

ated with ignoring the quotas’ for Estonia, that is inefficiency that is left from sub-
tracting inefficiency in Tq

1
 from inefficiency in T1 , was relatively large and equal to 

2.2474 (= 2.3127 − 0.0653). We did not find cases of countries as DMU E in Fig. 1.
The inefficiency results for the year 2007 are provided in Table 3 and they indi-

cate that there were twelve countries efficient under T1 , these were the same coun-
tries that were efficient in the previous period, 2005. In 2007, to the contrary to the 
previous period, eight countries exceeded their milk quotas, which consists of one 
country less than in 2005. Regarding environmental technology, there were nine 
countries efficient under T2 (which is one country less than in 2005). The results of 
this year also suggest that in 2007 there was one country more (Ireland) that together 
with France and Malta were efficient in T1 , T2 and Tq

1
.

The results for the year 2010 (Table 4) highlight dairy sectors in eleven coun-
tries efficient under T1 (which corresponds to one country less than in the previ-
ous periods, 2005 and 2007). It is worth adding that among these eleven countries 
only three proved to be also efficient under T2 (Germany, France and Malta). In 
total, there were eight countries ecologically efficient considering the environ-
mental technology, which consists of one country less than in 2007 and two coun-
tries less than in 2005. The results in Table 4 also indicate that during 2010 only 
three countries did not accomplish with their quota restriction (Denmark, Cyprus 
and Netherlands). Three countries, Germany, France and Malta, were efficient 
in all technologies T1 , T2 and Tq

1
 . Finally, in this same year we encountered one 

country (Sweden) that presented a similar case as DMU E shown in Fig. 1, that 
is, it fulfilled the quota, however it was inefficient under quota and its associated 
projection was part of the frontier of Tq

1
 ; as a result 𝛽T1∗

D
= 𝛽

T
q

1
∗

D
> 0.

For the last analyzed year 2013, we can observe in Table 5 that in this period 
there were ten countries efficient under T1 (one country less than in the previous 
year). Among countries efficient under the standard technology, four countries 
were also ecologically efficient under the environmental technology (Germany, 
France, Malta and Netherlands). In total, ten countries were environmentally 
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efficient, that is, they produced less greenhouse gas emissions than other coun-
tries in the sample using the same amount of cows. The upshot of the results for 
the technology with quota indicates that during 2013, four countries exceeded 
their quota allowance (Denmark, Germany, Cyprus and Austria). France, Malta 
and the Netherlands were countries efficient under all scenarios, that is under T1 , 
T2 and Tq

1
 . Finally, the results show that there were four countries (Greece, Hun-

gary, Portugal and Sweden) that presented a similar case as DMU E shown in 
Fig. 1.

Table 6 summarizes the average inefficiency results for good output technology, 
for bad output technology and for good output technology with quota for all years 
together. It also presents the results of the S–Z test that allows the assessment of 
the statistical significance of the differences between inefficiencies.21 To sum up, on 
average, the dairy sectors of the countries in the sample were more concerned about 
the environmental dimension of their production activities or their environmen-
tal efficiency was easier to achieve, since average environmental inefficiency was 
always less than in the standard production technology and these differences were 
statistically significant according to S–Z test. Since greenhouse gases emissions 
from agriculture were not regulated in the EU in the period under study, our result 
could imply that not regulated technology leads to lower inefficiency than technol-
ogy regulated by the quota. In fact literature in general is not clear on the effects of 
regulations on efficiency reporting both positive and negative impacts (Alpay et al. 
2002; Kapelko et al. 2015). Zhao (2017) also finds that environmental inefficiency 
was lower than standard inefficiency for some China’s provinces.

On average, we also observed inefficiency estimates for dairy sector to be con-
sistently higher when quota was not taken into account than when the inefficiency 
model considered quota restriction, and these differences proved to be statistically 
significant according to S–Z test as shown in Table 6. However, it should be noted 
that such results on the lower inefficiency when quota is included stems directly 
from the fact that a linear programming approach is used in estimating inefficiency, 
in which adding a restriction (in our case, a quota restriction) implies an increase in 
the minimum of the objective function. Based on this, lower values of inefficiency 
are not surprising. Nevertheless, such a result is important since it implies that not 
accounting for quotas when estimating inefficiency of DMUs being exposed to quota 
regulations considerably changes the DMUs efficient performance. The study by 
Aparicio et al. (2017a) in the context of Canadian dairy quotas also found big differ-
ences regarding efficiency when quota was accounted for in the efficiency measures. 
In the context of EU quotas, Areal et al. (2012a) reported positive efficiency impact 
of the quotas which are tradable, however this study did not compared the efficiency 
models with and without quotas. Similarly, Sauer (2010) provided arguments in 

21  The test (presented in Table 6 and then also in Table 8) was performed for values of inefficiencies for 
each DMU and not for average values of inefficiencies. The average values of inefficiencies were com-
puted to give an additional glance on countries’ performance over the entire period analyzed.
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favor of deregulated allocation of quotas and Areal et al. (2012b) in favor of larger 
participation in quota market in terms of efficiency increases, without comparing the 
models with and without quotas. On the contrary, Alvarez et al. (2006) results cast 
some doubt on whether EU quotas are allocated to efficient dairy farms.

We now turn to show the results of measures of overall performance that aggre-
gate the standard inefficiencies of good output production and inefficiencies of bad 
output production. Table 7 reports such results obtained for the cases of production 
without quota, and production taking into account quota restriction, for each of the 
countries and periods analyzed in this study. The first column for each year pertains 
to without quota inefficiency measure (6) and the second column pertains to with 
quota inefficiency measure (8). In addition, Table  8 reports the average values of 
both measures across analyzed periods together with the results of S–Z test for the 
assessment of the statistical significance of the differences between measures.

The results reveal that France and Malta were the only countries that sustained 
their efficient performance (the level of inefficiency of 0) when standard and envi-
ronmental inefficiencies are aggregated both without and with consideration of 
the impact of quota throughout all analyzed periods. Looking in more detail into 

Table 2   Inefficiency values 
for good output technology T

1
 

( �T1∗ ), for bad output technology 
T
2
 ( �T2∗ ) and for good output 

technology with quota Tq

1
 ( �T

q

1
∗ ). 

Year 2005

Country �T1∗ �T2∗ �T
q

1
∗

Belgium 0 0.2509 − 0.0072
Czech Republic 0 0.7408 0
Denmark 0 0 − 0.0004
Germany 0 0 − 0.0147
Estonia 2.3127 0 0.0653
Ireland 0 0 − 0.0084
Greece 0 0.4660 0
Spain 0 0.5859 − 0.0111
France 0 0 0
Italy 0 0.1905 − 0.0383
Cyprus 0.2359 0 0.0915
Latvia 1.9799 0.3878 0.3754
Lithuania 1.7359 0.1599 0.1545
Luxembourg 0.9639 0.2099 − 0.0085
Hungary 0.2581 0.5429 0.2237
Malta 0 0 0
Netherlands 0 0 − 0.0063
Austria 1.3698 0 − 0.0134
Portugal 0.1000 0.1022 0.0083
Slovakia 0.4805 0.6259 0.1534
Finland 0.7080 0.0254 0.0204
Sweden 0.2845 0 0.0297
United Kingdom 0 0.3351 0
Mean 0.4535 0.2010 0.0441
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particular years, Table 7 shows that the measure without quota resulted in a larger 
number of countries receiving an inefficiency score of 0 than does the specification 
with quota. The findings in Table 7 indicate that during 2005 six countries (Den-
mark, Germany, Ireland, France, Malta and Netherlands) were efficient according 
to the aggregated measure of standard and environmental efficiency without tak-
ing into account quotas; however only two of these countries (France and Malta) 
remained efficient when quota was considered in the measure. In 2007, five coun-
tries (Germany, Ireland, France, Malta and Netherlands) where found to be efficient 
as revealed by the measure that did not take into account quotas, but only two coun-
tries (Ireland and Malta) maintained their full efficiency when quota was consid-
ered in the measure. In 2010, the same three countries (Germany, France and Malta) 
were found to be efficient according to both measures. In 2013 Germany, France, 
Malta, and the Netherlands were efficient according to the measure without quotas, 
however Germany proved not to be efficient when quota was taken into account in 
computations.

As it is natural, since one technology is a subset of the other one, inefficiency 
in the production of good outputs ( �T1∗ ) was larger or equal to inefficiency of good 

Table 3   Inefficiency values 
for good output technology T

1
 

( �T1∗ ), for bad output technology 
T
2
 ( �T2∗ ) and for good output 

technology with quota Tq

1
 ( �T

q

1
∗ ). 

Year 2007

Country �T1∗ �T2∗ �T
q

1
∗

Belgium 0 0.2704 0
Czech Republic 0 0.7389 0
Denmark 0 0.0312 − 0.0064
Germany 0 0 − 0.0003
Estonia 2.2006 0 0.0677
Ireland 0 0 0
Greece 0 0.4862 0
Spain 0 0.5882 0
France 0 0 0
Italy 0 0.1135 − 0.0570
Cyprus 0.1644 0 − 0.0045
Latvia 2.1446 0.2457 0.1243
Lithuania 1.3381 0.2177 0.1719
Luxembourg 1.2672 0.1485 − 0.0027
Hungary 0.2898 0.5151 0.2096
Malta 0 0 0
Netherlands 0 0 − 0.0028
Austria 1.1960 0 − 0.0315
Portugal 0.0748 0.0185 0.0288
Slovakia 0.6653 0.5496 0.0656
Finland 0.7226 0.0574 0.0305
Sweden 0.2377 0 0.0637
United Kingdom 0 0.2503 0
Mean 0.4479 0.1840 0.0286
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outputs with quota consideration ( �T
q

1
∗ ) both for individual countries and in average 

terms (see Tables 2, 3, 4, 5, 6). However, the results of aggregated measures that 
take into account the production of bad outputs in Table 7 reveal that, in few cases, 
the aggregated inefficiency without quota was larger than aggregated inefficiency 
with quota, at the level of individual countries (for example in 2005 this was the case 
for Spain and Italy). Nevertheless, when considering the average values of aggre-
gated inefficiencies across all countries, the aggregated inefficiency without quota 
remains larger than aggregated inefficiency with quota consideration. Table 8 fur-
ther confirms that these differences observed are statistically significant as revealed 
by the results of S–Z test.

6 � Conclusions

This paper introduces the method to evaluate inefficiency of DMUs that operate in 
regulated markets under production quotas accounting for negative environmental 
externalities. Our approach builds on Murty et  al. (2012) that models the DMUs 

Table 4   Inefficiency values 
for good output technology T

1
 

( �T1∗ ), for bad output technology 
T
2
 ( �T2∗ ) and for good output 

technology with quota Tq

1
 ( �T

q

1
∗ ). 

Year 2010

Country �T1∗ �T2∗ �T
q

1
∗

Belgium 0 0.2827 0
Czech Republic 0 0.7151 0
Denmark 0 0.0341 − 0.0044
Germany 0 0 0
Estonia 1.8016 0 0.1457
Ireland 0.1007 0 0.1007
Greece 0 0.5462 0
Spain 0 0.5770 0
France 0 0 0
Italy 0 0.1794 0
Cyprus 0.0164 0 − 0.0030
Latvia 2.7544 0.0514 0.1783
Lithuania 1.4424 0.1376 0.3279
Luxembourg 1.1443 0.1437 0.0088
Hungary 0.3412 0.4884 0.2920
Malta 0 0 0
Netherlands 0 0.0004 − 0.0041
Austria 1.1918 0 0.0153
Portugal 0.1686 0 0.0823
Slovakia 0.6646 0.4392 0.2608
Finland 0.6785 0.1122 0.1173
Sweden 0.1627 0.0531 0.1627
United Kingdom 0 0.2964 0
Mean 0.4551 0.1764 0.0731
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technologies as the interaction of different subtechnologies. Extending the Murty 
et  al. (2012) approach of by-production, in this study three inefficiency measures 
are proposed, namely standard technical inefficiency in the production of marketed 
output, environmental inefficiency, and inefficiency accounting for quotas. It is then 
shown how to aggregate these measures in order to obtain the overall performance 

Table 5   Inefficiency values 
for good output technology T

1
 

( �T1∗ ), for bad output technology 
T
2
 ( �T2∗ ) and for good output 

technology with quota Tq

1
 ( �T

q

1
∗ ). 

Year 2013

Country �T1∗ �T2∗ �T
q

1
∗

Belgium 0 0.3326 0
Czech Republic 0 0.7055 0
Denmark 0 0.0168 − 0.0038
Germany 0 0 − 0.0009
Estonia 1.6120 0 0.0700
Ireland 0.1673 0 0.0306
Greece 0.1115 0.5015 0.1115
Spain 0 0.5605 0
France 0 0 0
Italy 0 0.1714 0
Cyprus 0.0542 0 − 0.0080
Latvia 2.3282 0 0.0374
Lithuania 1.1855 0.2127 0.2662
Luxembourg 1.0466 0.0933 0.0240
Hungary 0.2404 0.5384 0.2404
Malta 0 0 0
Netherlands 0 0 0
Austria 1.0630 0 − 0.0346
Portugal 0.1051 0 0.1051
Slovakia 0.5349 0.4293 0.2477
Finland 0.6539 0.1258 0.1671
Sweden 0.2125 0.0875 0.2125
United Kingdom 0 0.3348 0
Mean 0.4050 0.1787 0.0637

Table 6   Inefficiency values 
for good output technology T

1
 

( �T1∗ ), for bad output technology 
T
2
 ( �T2∗ ) and for good output 

technology with quota Tq

1
 ( �T

q

1
∗ ), 

average over 2005, 2007, 2010 
and 2013, and results of S–Z test

a Statistically significant differences between �T1∗ and �T2∗ at 5% level
b Statistically significant differences between �T1∗ and �T

q

1
∗ at 1% level

c Statistically significant differences between �T2∗ and �T
q

1
∗ at 1% level

Inefficiency Average 
and S–Z 
test

�T1∗ 0.4404
�T2∗ 0.1850

�T
q

1
∗ 0.0524

Significance a, b, c
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indicators that represent the by-production without quota and by-production with 
quota.

Applying the DEA approach, we demonstrated the workability of the approach 
using a numerical example. In particular, we work on the dairy sector across twenty-
three EU countries for the years 2005, 2007, 2010 and 2013 that until recently was 
regulated through the system of quotas. Our analysis suggests several conclusions. 
First, the potential exists for the EU dairy sector to improve its competitiveness and 
lower harmful environmental impact by decreasing standard and environmental inef-
ficiencies. In particular, the results show that average inefficiency across all coun-
tries and years for standard production technology and environmental technology 
was approximately 0.4 and 0.2, respectively. Hence, in our numerical example, the 
EU dairy sector was more inefficient regarding marketed outputs of milk and meat 
than undesirable output of greenhouse gas emissions. Second, on average, across all 
sample countries and years, considerably smaller inefficiency outcomes were found 
under a model where quotas were taken into account than that without quota imposi-
tion. Third, France and Malta were the only countries in the sample that sustained 
their efficient performance across all sample years in terms of individual inefficien-
cies in standard technology, environmental technology and technology with quotas 
and in aggregated (overall performance) terms.

Our results indicate that the new approach could be utilized in future applications 
for deriving policy implications in more complex contexts; for example, with the 
aim to promote the increase of efficiency in the EU dairy sector. Integrating envi-
ronmental and quota aspects into productive efficiency could provide policy makers 
with detailed information on sector production systems that could lead to improve-
ment in the design of future policies. For example, policy makers could introduce 
environmental policy measures to encourage dairy sectors to reduce greenhouse gas 
emissions through incentives for acquiring new technologies that will enable these 
reductions.

Our result showing differences in inefficiency between the model that does not 
take into account quotas as compared to the model with quotas implies that not 
accounting for quotas, when measuring inefficiency of DMUs being impacted by 
this regulation, could yield a not accurate estimation of technical efficiency. Hence, 
we make a precautionary call to researchers to take into account quotas when meas-
uring inefficiency of DMUs regulated by bounds in production and adopt our new 
model or devise one of their own.

However, further research is needed to investigate the inefficiency effects of 
quotas and environmental inefficiency more thoroughly. Most importantly, more 
recent data on the EU dairy sector already immersed in a quota-free system 
could allow for real conclusions regarding the comparison of efficiency of firms 
in the governed by quota and quota-free system. Also, the application of data at 
the farm level could allow for more detailed policy implications. The analysis of 
the transferability of the quota system in each EU country could provide more 
insights into understanding the differences in inefficiency found between coun-
tries. Also, the analysis of the levies applied when the countries exceeded the 
quota could provide some additional conclusions in the future research. The mod-
els developed in this paper could be applied in different contexts where quotas 
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and negative environmental externalities play an important role that can allow the 
robustness of our results to be assessed (see, for example, Cazals et al. 2002). The 
assessment of robustness of results will allow for formulations of more thorough 
policy implications. From a methodological point of view, an obvious extension 
would be also the development of models that measure productivity change over 
time. Also, an interesting future line of research is the extension towards the 
analysis of inefficiency in an economic sense, which could make it possible, for 
example, to analyze the monetary consequences of violating the quota restriction. 
However, such analysis would require the collection of data on market prices of 
inputs and outputs, which are generally not easy to obtain. In particular, getting 
market prices for bad outputs (separate prices for greenhouse gas emissions from 
cattle manure management and greenhouse gas emissions from enteric fermenta-
tion of cattle in our numerical example) can be a complicated challenge. Future 
research could also take into account some recent developments of the original 
by-production model proposed in the studies by Førsund (2018), Lozano (2015) 
or Dakpo et al. (2017). Also, although to test the differences in inefficiency meas-
ures we apply the test based on bootstrapping, still more robust results would be 
obtained by the application of bootstrap methods in the estimation of measures 
itself. Nevertheless, this procedure requires a previous analysis of the properties 
(consistency, rate of convergence, asymptotic distributions, etc.) of the estimator 
of the new approach. Although all these properties have been recently studied 
in depth in Simar et  al. (2012) for the traditional directional distance function, 
they cannot be straightforwardly applied to our new approach as it is based on a 
modification of the directional distance function in the context of by-production 
and quotas. Hence, we leave it as an open research question to be undertaken in 
a future study. Finally, the proposed approach could be seen as an alternative to 
non-parametric efficiency models defined for dealing with exogenous variables. It 
would be possible to consider the fulfillment of the quota as an exogenous vari-
able. In this case, statistical tests could be performed in order to establish the 
effect of the quota on technical efficiency. However, we believe that our approach 
presents some advantages over this last possibility. On one hand, if one does not 
constrain the technology regarding the feasible production of good outputs (con-
sidering the quota), then the solution of the models could determine targets above 
the limits set by the regulator. This is something that, a priori, should not be valid 
or, at least, would be problematic. In this way, the efficient point used by the 
model to evaluate the performance of each DMU would be not realistic. On the 

Table 8   Measures of overall 
performance, for the systems 
without and with quotas, 
average over 2005, 2007, 2010 
and 2013, and results of S–Z test

***Statistically significant differences at 1% level

Measure Average and S–Z test

Without quota 0.1897
With quota 0.1171
S–Z statistic 0.8415
P value 0.0090***
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other hand, as far as we are aware, there are no models based on by-production 
and extended for dealing with exogenous variables. In this sense, a good avenue 
for further research would be to develop this new model and compare it with that 
introduced in this paper.
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